Chapter 5

Matrix Representations of $SL(2, \mathbb{C})$, SU(2) and SO(3)

This chapter deals with explicit matrix descriptions of the irreducible representations of the groups $\mathbf{SL}(2, \mathbb{C})$, $\mathbf{SU}(2)$ and $\mathbf{SO}(3)$ (unitary representation in the last two cases).

Our presentation (except for Section 5.7) relies heavily on Vilenkin's exposition [39], especially Chapter III.

To the best of our knowledge Vilenkin contains the most detailed presentation of this type of material.

5.1 Irreducible Representations of SU(2) and SO(3)

In Example 2.8 it was proven that the representations $U_m: \mathbf{SU}(2) \to \mathbf{GL}(\mathcal{P}_m^{\mathbb{C}}(2))$ are irreducible.

In Example 2.9 it was proven that the representations $W_{\ell} \colon \mathbf{SO}(3) \to \mathbf{GL}(\mathcal{P}_{2\ell}^{\mathbb{C}}(2))$ are irreducible.

Recall that since $\mathbf{SU}(2)$ is compact and $\mathcal{P}_m^{\mathbb{C}}(2)$ is finitedimensional there is an invariant inner product on $\mathcal{P}_m^{\mathbb{C}}(2)$ so we may assume that these representations are unitary.

Proposition 5.1. Every irreducible unitary representation of $\mathbf{SU}(2)$ is equivalent to one of the irreducible unitary representations $U_m: \mathbf{SU}(2) \to \mathbf{U}(\mathcal{P}_m^{\mathbb{C}}(2))$. Furthermore, every irreducible unitary representation of $\mathbf{SO}(3)$ is equivalent to one of the irreducible unitary representations $W_m: \mathbf{SO}(3) \to \mathbf{U}(\mathcal{P}_{2m}^{\mathbb{C}}(2))$.

The key point is to figure out what are the characters χ_{U_m} of the irreducible unitary representations U_m .

We now give a more pleasant description of the irreducible representations of $\mathbf{SO}(3)$ in terms of harmonic polynomials.

5.2 Irreducible Representations of SO(3); Harmonics

Recall that the Laplacian in \mathbb{R}^n is given by

$$\Delta f = \frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} + \dots + \frac{\partial^2 f}{\partial x_n^2}$$

where $f : \mathbb{R}^n \to \mathbb{C}$ is twice differentiable.

The *n*-sphere $S^n \subseteq \mathbb{R}^{n+1}$ is given by

$$S^{n} = \{ (x_{1}, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \mid x_{1}^{2} + \dots + x_{n+1}^{2} = 1 \}.$$

Definition 5.1. Let $\mathcal{P}_k^{\mathbb{C}}(n+1)$ denote the space of homogeneous polynomials of degree k in $n+1 \geq 2$ variables with complex coefficients, and let $\mathcal{P}_k^{\mathbb{C}}(S^n)$ denote the restrictions of homogeneous polynomials in $\mathcal{P}_k^{\mathbb{C}}(n+1)$ to S^n .

Let $\mathcal{H}_k^{\mathbb{C}}(n+1)$ denote the space of *complex harmonic polynomials*, with

$$\mathcal{H}_k^{\mathbb{C}}(n+1) = \{ P \in \mathcal{P}_k^{\mathbb{C}}(n+1) \mid \Delta P = 0 \};$$

in the above equation, we view P as a function on \mathbb{R}^{n+1} . Harmonic polynomials are sometimes called *solid har-monics*.

Finally, let $\mathcal{H}_k^{\mathbb{C}}(S^n)$ denote the space of *complex spherical harmonics* as the set of restrictions of harmonic polynomials in $\mathcal{H}_k^{\mathbb{C}}(n+1)$ to S^n . It not hard to prove that the restriction map from $\mathcal{H}_{k}^{\mathbb{C}}(n+1)$ to $\mathcal{H}_{k}^{\mathbb{C}}(S^{n})$ is a bijection, and thus a linear isomorphism; see Gallier and Quaintance [23] (Section 7.5).

The functions in $\mathcal{H}_k^{\mathbb{C}}(S^n)$, the spherical harmonics, have been studied extensively.

They are the eigenspaces of the Laplacian on the sphere S^n ; see Gallier and Quaintance [23] (Chapter 7). We will return to these functions later.

The group $\mathbf{SO}(n+1)$ acts on $\mathcal{P}_k^{\mathbb{C}}(n+1)$ by the (left regular) action

$$(\mathbf{R}_Q(P))(x) = P(Q^{-1}x),$$

$$Q \in \mathbf{SO}(n+1), \ P \in \mathcal{P}_k^{\mathbb{C}}(n+1), \ x \in \mathbb{R}^{n+1}$$

Note that the above formula shows that \mathbf{R} is also an action of $\mathbf{SO}(n+1)$ on smooth functions on \mathbb{R}^{n+1} .

The action **R** on $\mathcal{P}_k^{\mathbb{C}}(n+1)$ is reducible for $k \geq 2$.

For example, we easily check that the subspace of $\mathcal{P}_2^{\mathbb{C}}(n+1)$ generated by the polynomial $x_1^2 + \cdots + x_{n+1}^2$ is invariant.

However this action turns out to be irreducible on $\mathcal{H}_k^{\mathbb{C}}(n+1)$.

This will be shown in Section 6.10.

But first we need to prove that the action of the Laplacian on smooth functions on \mathbb{R}^{n+1} commutes with the action **R**. Recall that $\lambda_Q f$ is the function given by $(\lambda_Q f)(x) = f(Q^{-1}x).$

Proposition 5.2. The action of the Laplacian on smooth functions on \mathbb{R}^{n+1} commutes with the action \mathbf{R} ; that is, for every smooth function f on \mathbb{R}^{n+1} , for every $Q \in \mathbf{SO}(n+1)$, for all $u \in \mathbb{R}^{n+1}$, we have

$$\Delta(\lambda_Q f)(u) = (\Delta f)(Q^{-1}u).$$

As a corollary of Proposition 5.2, the vector space $\mathcal{H}_k^{\mathbb{C}}(n+1)$ is invariant under **R**, and so $\mathbf{R}: \mathbf{SO}(n+1) \to \mathbf{GL}(\mathcal{H}_k^{\mathbb{C}}(n+1))$ is a representation.

Since $\mathbf{SO}(n+1)$ is compact and $\mathcal{H}_k^{\mathbb{C}}(n+1)$ is finitedimensional, we may assume that **R** is unitary. It is shown in Gallier and Quaintance [23] (Section 7.5) that $\mathcal{H}_k^{\mathbb{C}}(n+1)$ has dimension

$$a_{k,n+1} = \binom{n+k}{k} - \binom{n+k-2}{k-2}$$

if $n \ge 1$, $k \ge 2$, with $a_{0,n+1} = 1$ and $a_{1,n+1} = n$, For n = 2, we get $a_{k,3} = 2k + 1$.

Here is a list of bases of the homogeneous harmonic polynomials of degree k in three variables up to k = 4.

$$\begin{split} &k = 0 \ 1 \\ &k = 1 \ x, \ y, \ z \\ &k = 2 \ x^2 - y^2, \ x^2 - z^2, \ xy, \ xz, \ yz \\ &k = 3 \ x^3 - 3xy^2, \ 3x^2y - y^3, \ x^3 - 3xz^2, \ 3x^2z - z^3, \\ &y^3 - 3yz^2, \ 3y^2z - z^3, \ xyz \\ &k = 4 \ x^4 - 6x^2y^2 + y^4, \ x^4 - 6x^2z^2 + z^4, \ y^4 - 6y^2z^2 + z^4, \\ &x^3y - xy^3, \ x^3z - xz^3, \ y^3z - yz^3, \\ &3x^2yz - yz^3, \ 3xy^2z - xz^3, \ 3xyz^2 - x^3y. \end{split}$$

To prove that the representations $\mathbf{R}: \mathbf{SO}(n+1) \to \mathbf{U}(\mathcal{H}_k^{\mathbb{C}}(n+1))$ are irreducible we restrict ourselves to the case where n = 2.

In order to deal with the case where n > 2, we need results from the next chapter.

Since these regular representations map to different spaces, for clarity we index them by k, that is, we write $\mathbf{R}_k \colon \mathbf{SO}(n+1) \to \mathbf{U}(\mathcal{H}_k^{\mathbb{C}}(n+1)).$

Proposition 5.3. The representations $\mathbf{R}_k: \mathbf{SO}(3) \to \mathbf{U}(\mathcal{H}_k^{\mathbb{C}}(3))$ are irreducible. In fact, the representations $\mathbf{R}_k: \mathbf{SO}(3) \to \mathbf{U}(\mathcal{H}_k^{\mathbb{C}}(3))$ and $W_k: \mathbf{SO}(3) \to \mathbf{U}(\mathcal{P}_{2k}^{\mathbb{C}}(2))$ are equivalent.

Proposition 5.3 also shows that the representations $\mathbf{R}_k : \mathbf{SO}(3) \to \mathbf{U}(\mathcal{H}_k^{\mathbb{C}}(3))$ form a complete set of irreducible representations of $\mathbf{SO}(3)$.

5.3 Factorization of the Unit Quaternions Using Euler Angles

In order to obtain formulae for the matrix elements of the representations of $\mathbf{SU}(2)$ in terms of special functions, the Jacobi polynomials, it is necessary to understand how to express the unit quaternions in terms of *Euler angles*.

The key fact is that there are three types of unit quaternions, $r_x(\varphi), r_y(\psi), r_z(\theta)$ that define rotations around the *x*-axis, *y*-axis, and *z*-axis, respectively, namely

$$r_x(\varphi/2) = \begin{pmatrix} e^{\frac{i\varphi}{2}} & 0\\ 0 & e^{-\frac{i\varphi}{2}} \end{pmatrix}, \quad r_y(\psi/2) = \begin{pmatrix} \cos\frac{\psi}{2} & -\sin\frac{\psi}{2}\\ \sin\frac{\psi}{2} & \cos\frac{\psi}{2} \end{pmatrix},$$
$$r_z(\theta/2) = \begin{pmatrix} \cos\frac{\theta}{2} & i\sin\frac{\theta}{2}\\ i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix}.$$

We immediately check that the rotations corresponding to $r_x(\varphi/2)$, $r_y(\psi/2)$, $r_z(\theta/2)$ under the homomorphism $\rho: \mathbf{SU}(2) \to \mathbf{SO}(3)$ (see Theorem 1.1) are given by the matrices

$$R_x(\varphi) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi \\ 0 & \sin \varphi & \cos \varphi \end{pmatrix}, R_y(\psi) = \begin{pmatrix} \cos \psi & 0 & -\sin \psi \\ 0 & 1 & 0 \\ \sin \psi & 0 & \cos \psi \end{pmatrix},$$
$$R_z(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

So $R_x(\varphi)$ is a rotation by φ around the *x*-axis (with the plane orthogonal to the *x*-axis oriented by (e_2, e_3, e_1)), $R_y(\psi)$ is a rotation by ψ around the -y-axis (with the plane orthogonal to the -y-axis oriented by $(e_1, e_3, -e_2)$, or equivalently a rotation by $-\psi$ around the *y*-axis with the plane orthogonal to the *y*-axis oriented by (e_3, e_1, e_2)), and $R_z(\theta)$ is a rotation by θ around the *z*-axis (with the plane orthogonal to the *z*-axis oriented by (e_1, e_2, e_3)).

Remark: Beware that a number of authors switch the roles of x and z, in particular Vilenkin [39] and most books on quantum mechanics.

As a consequence, the orientation of the plane normal to the y-axis is flipped. In this case, $R_x(\varphi)$ and $R_z(\varphi)$ are swapped, but $R_y(\psi)$ becomes $R_y(-\psi)$, which is a rotation by ψ around the y-axis (with the plane orthogonal to the y-axis oriented by (e_3, e_1, e_2)).

Vilenkin denotes our matrices r_x, r_y, r_z as $\omega_3, \omega_2, \omega_1$.

The issue of deciding exactly how a quaternion acts on \mathbb{R}^3 as a rotation is quite confusing, and we feel that some clarifications are in order.

First we need to decide whether a vector $(x, y, z) \in \mathbb{R}^3$ is represented as a skew-hermitian matrix (a matrix in $\mathfrak{su}(2)$) or as a hermitian matrix.

The first option seems to be followed by most mathematicians and by the computer graphics community.

On the other hand, physicists seem to prefer hermitian matrices to skew-hermitan matrices.

Of course, if S is a skew-hermitian matrix, then iS is a hermitian matrix, and this is the method used to make the conversion, although sometimes (-i)S is used instead.

In the first method, we embed \mathbb{R}^3 into $\mathfrak{su}(2) \subseteq \mathbb{H}$ using the map

$$\mathrm{su}(x,y,z) = \begin{pmatrix} ix & y+iz \\ -y+iz & -ix \end{pmatrix}, \quad (x,y,z) \in \mathbb{R}^3.$$

Then $q \in \mathbf{SU}(2)$ defines the map ρ_q (on \mathbb{R}^3) given by

$$\rho_q(x, y, z) = \operatorname{su}^{-1}(q \operatorname{su}(x, y, z)q^*).$$

This is the method used in *this book* and in Gallier and Quaintance [23] (Chapter 15). It is possible to derive an explicit orthogonal matrix corresponding to ρ_q ; see Proposition 15.5.

The representation of \mathbb{R}^3 as the space of hermitian matrices has several variations, and this is the source of the confusion.

One option is to represent $(x,y,z)\in \mathbb{R}^3$ by the hermitian matrix

$$(-i)$$
su $(x, y, z) = \begin{pmatrix} x & z - iy \\ z + iy & -x \end{pmatrix}$,

A nice feature of this representation is that

$$\begin{pmatrix} x & z - iy \\ z + iy & -x \end{pmatrix} = x\sigma_3 + y\sigma_2 + z\sigma_1,$$

where $\sigma_1, \sigma_2, \sigma_3$ are the *Pauli spin matrices*, where

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

This representation is equivalent to the representation using su and yields the *exact same* rotation ρ_q . See Gallier and Quaintance [23] (Chapter 15).

The second option apparently adopted in most of the quantum mechanics literature is to use a version of isu, except that x and z are swapped and y becomes -y.

Vilenkin [39] (Chapter II, Section 1) uses the map

$$(x_1, y_1, z_1) \mapsto \begin{pmatrix} z_1 & x_1 + iy_1 \\ x_1 - iy_1 & -z_1 \end{pmatrix},$$

so in terms of our embedding,

$$z_1 = x$$
, $x_1 = z$, $y_1 = -y$.

We can check that the unit quaternions $r_x(\varphi/2), r_y(\psi/2), r_z(\theta/2)$ induce the rotations $R_z(\varphi), R_y(-\psi)$, and $R_x(\theta)$, namely

$$R_{z}(\varphi) = \begin{pmatrix} \cos \varphi & -\sin \varphi & 0\\ \sin \varphi & \cos \varphi & 0\\ 0 & 0 & 1 \end{pmatrix}, R_{y}(-\psi) = \begin{pmatrix} \cos \psi & 0 & \sin \psi\\ 0 & 1 & 0\\ -\sin \psi & 0 & \cos \psi \end{pmatrix}$$
$$R_{x}(\theta) = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos \theta & -\sin \theta\\ 0 & \sin \theta & \cos \theta \end{pmatrix}.$$

,

These are the rotation matrices used in most books on quantum mechanics, including Sakurai and Napolitano [35].

$$q = r_x(\varphi/2)r_z(\theta/2)r_x(\psi/2);$$

see Page 99 of Vilenkin [39]. This quaternion induces the rotation $R_z(\varphi)R_x(\theta)R_z(\psi)$.

Wigner [42] (Page 158) uses the map

$$(x_1, y_1, z_1) \mapsto \begin{pmatrix} -z_1 & x_1 + iy_1 \\ x_1 - iy_1 & z_1 \end{pmatrix},$$

so in terms of our embedding,

$$z_1 = -x, \quad x_1 = z, \quad y_1 = -y.$$

Analogously to the factorization of rotation matrices in terms of the Euler angles, we will prove that every unit quaternion q can be written in the form

$$q = u(\varphi, \theta, \psi) = r_x(\varphi/2)r_z(\theta/2)r_x(\psi/2).$$

Multiplying out the above matrices we get

$$\begin{split} u(\varphi,\theta,\psi) &= \begin{pmatrix} e^{\frac{i\varphi}{2}} & 0\\ 0 & e^{-\frac{i\varphi}{2}} \end{pmatrix} \begin{pmatrix} \cos\frac{\theta}{2} & i\sin\frac{\theta}{2}\\ i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix} \begin{pmatrix} e^{\frac{i\psi}{2}} & 0\\ 0 & e^{-\frac{i\psi}{2}} \end{pmatrix} \\ &= \begin{pmatrix} \cos\frac{\theta}{2} e^{\frac{i(\varphi+\psi)}{2}} & i\sin\frac{\theta}{2} e^{\frac{i(\varphi-\psi)}{2}}\\ i\sin\frac{\theta}{2} e^{-\frac{i(\varphi-\psi)}{2}} & \cos\frac{\theta}{2} e^{-\frac{i(\varphi+\psi)}{2}} \end{pmatrix}. \end{split}$$

The reader can reconfirm by inspection that $u(\varphi, \theta, \psi)^{-1} = u(\varphi, \theta, \psi)^*$.

Proposition 5.4. Every unit quaternion

$$q = \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix}, \quad \alpha, \beta \in \mathbb{C}, \ |\alpha|^2 + |\beta|^2 = 1$$

can be expressed as

$$q = u(\varphi, \theta, \psi) = r_x(\varphi/2)r_z(\theta/2)r_x(\psi/2)$$
$$= \begin{pmatrix} e^{\frac{i\varphi}{2}} & 0\\ 0 & e^{-\frac{i\varphi}{2}} \end{pmatrix} \begin{pmatrix} \cos\frac{\theta}{2} & i\sin\frac{\theta}{2}\\ i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix} \begin{pmatrix} e^{\frac{i\psi}{2}} & 0\\ 0 & e^{-\frac{i\psi}{2}} \end{pmatrix}$$

•

If $\beta = 0$, we can pick $\theta = 0$ and φ and ψ such that $\alpha = e^{i\frac{(\varphi+\psi)}{2}},$

and in particular, $\psi = 0$.

If $\alpha = 0$, we can pick $\theta = \pi$ and φ and ψ such that

$$\beta = e^{i\frac{(\varphi - \psi + \pi)}{2}},$$

and in particular, $\psi = \pi$.

 $0 \le \varphi < 2\pi, \quad 0 < \theta < \pi, \quad -2\pi \le \psi < 2\pi,$

then φ and ψ are unique. In this case,

$$\cos \theta = 2|\alpha|^2 - 1, \quad e^{i\varphi} = -\frac{\alpha\beta i}{|\alpha||\beta|}, \quad e^{\frac{i\psi}{2}} = \frac{\alpha}{|\alpha|} e^{-\frac{i\varphi}{2}}.$$

An interesting corollary of Proposition 5.4 is the fact that every rotation matrix $Q \in \mathbf{SO}(3)$ can be written in the terms of the Euler angles as a product

$$Q = R_x(\varphi)R_z(\theta)R_x(\psi),$$

392 CHAPTER 5. MATRIX REPRESENTATIONS OF $SL(2, \mathbb{C})$, SU(2) AND SO(3) namely

$$Q = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi \\ 0 & \sin \varphi & \cos \varphi \end{pmatrix} \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \psi & -\sin \psi \\ 0 & \sin \psi & \cos \psi \end{pmatrix}.$$

But in this case, we may assume that $0 \le \psi < 2\pi$.

This is because both q and -q define the same rotation ρ_q , but since $e^{i\pi} = e^{-i\pi} = -1$, we have $-r_x(\psi/2) = r_x(\frac{\psi+2\pi}{2})$, so if $-2\pi \leq \psi < 0$, then $0 \leq \psi + 2\pi < 2\pi$ and $Q = R_x(\varphi)R_z(\theta)R_x(\psi+2\pi)$.

5.4 Multiplication of Quaternions in Terms of Euler Angles

5.5 Dehomogenized Representations of $SL(2, \mathbb{C})$ and SU(2)

In Example 2.8 we defined the irreducible representations $U_m: \mathbf{SU}(2) \to \mathbf{GL}(\mathcal{P}_m^{\mathbb{C}}(2))$ of $\mathbf{SU}(2)$ whose representing spaces are the vector spaces $\mathcal{P}_m^{\mathbb{C}}(2)$ of homogeneous polynomials in two variables.

We also said that it is customary, especially in the physics literature, to index homogeneous polynomials in terms of $\ell = m/2$, which is an integer when m is even but a half integer when m is odd.

In this context, in terms of $\ell = m/2$, a homogeneous polynomial is written as

$$P(z_1, z_2) = \sum_{k=-\ell}^{\ell} c_k z_1^{\ell-k} z_2^{\ell+k},$$

where it is assumed that $\ell + k = j$ where j takes the *integral* values $j = 0, 1, ..., 2\ell = m$, so that $\ell - k = 2\ell - (\ell + k) = 2\ell - j$ takes the values $2\ell, 2\ell - 1, ..., 0$.

Note that $k = j - \ell = j - m/2$ with $j = 0, 1, \dots, 2\ell = m$, so k is an integer only if m is even.

If m is odd, say m = 2h + 1, then $\ell = h + \frac{1}{2}$ and k takes the $2\ell + 1 = m + 1$ values

$$-h - \frac{1}{2}, -(h - 1) - \frac{1}{2}, \dots, -\frac{1}{2}, \frac{1}{2}, 1 + \frac{1}{2}, \dots, h + \frac{1}{2},$$

and so $k \neq 0$.

If m is even, say m = 2h, then $\ell = h$ and k takes the $2\ell + 1 = m + 1$ values

$$-h, -(h-1), \ldots, -1, 0, 1, \ldots, h-1, h.$$

For example, if $\ell = \frac{3}{2}$, then k takes the four values

$$-\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \frac{3}{2},$$

and if $\ell = 2$, then k takes the five values

$$-2, -1, 0, 1, 2.$$

The representing space is then $\mathcal{P}_{2\ell}^{\mathbb{C}}(2)$ and it has dimension $2\ell + 1$.

Using the standard technique of "dehomogenizing" and "homogenizing" we can use the space of complex polynomials of degree $2\ell + 1$ in *one* variable z instead of the space $\mathcal{P}_{2\ell}^{\mathbb{C}}(2)$ of homogeneous polynomials in *two variables* z_1, z_2 . Given a homogeneous polynomial $P(z_1, z_2)$ of degree $m = 2\ell$, by dehomogenizing we obtain the polynomial Q(z) of degree $m = 2\ell$ given by

$$Q(z) = P(z, 1).$$
 (dehomog)

So given

$$P(z_1, z_2) = \sum_{k=-\ell}^{\ell} c_k z_1^{\ell-k} z_2^{\ell+k},$$

we obtain

$$Q(z) = \sum_{k=-\ell}^{\ell} c_k z^{\ell-k}.$$
 (Q)

Observe that due to our indexing scheme, the coefficients of Q have "funny" indices.

For example, for $\ell = 2$, so that $m = 2\ell = 4$,

$$Q(z) = c_{-2}z^4 + c_{-1}z^3 + c_0z^2 + c_1z + c_2,$$

and when $\ell = 5/2$, so that $m = 2\ell = 5$, we have

$$Q(z) = c_{-5/2}z^5 + c_{-3/2}z^4 + c_{-1/2}z^3 + c_{1/2}z^2 + c_{3/2}z + c_{5/2}.$$

Conversely, given a polynomial Q(z) of degree $m = 2\ell$, by homogenizing we obtain the homogeneous polynomial $P(z_1, z_2)$ of degree $m = 2\ell$ given by

$$P(z_1, z_2) = z_2^{2\ell} Q\left(\frac{z_1}{z_2}\right).$$
 (homog)

Definition 5.2. Following Vilenkin, we denote the space of polynomials of degree $m = 2\ell$ with complex coefficients in one variable by $\mathcal{P}_{\ell}^{\mathbb{C}}$.

Note that the "funny" index ℓ is a half integer when m is odd.

We can convert our representations $U_m: \mathbf{SU}(2) \to \mathbf{GL}(\mathcal{P}_m^{\mathbb{C}}(2))$ to representations in the spaces $\mathcal{P}_{\ell}^{\mathbb{C}}$.

Actually, until we use the fact that $\mathbf{SU}(2)$ is compact, we consider representations of $\mathbf{SL}(2, \mathbb{C})$.

Definition 5.3. Given any matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad a, b, c, d \in \mathbb{C}, \ ad - bc = 1,$$

in $\mathbf{SL}(2, \mathbb{C})$, for any polynomial $Q \in \mathcal{P}_{\ell}^{\mathbb{C}}$, define $T_{\ell}(A)(Q(z))$ by

$$T_{\ell}(A)(Q(z)) = (bz+d)^{2\ell}Q\left(\frac{az+c}{bz+d}\right). \qquad (T_{\ell})$$

It is immediately verified that the above formula yields a representation $T_{\ell} \colon \mathbf{SL}(2, \mathbb{C}) \to \mathbf{GL}(\mathcal{P}_{\ell}^{\mathbb{C}})$ which yields a representation $T_{\ell} \colon \mathbf{SU}(2) \to \mathbf{GL}(\mathcal{P}_{\ell}^{\mathbb{C}})$ when restricted to the subgroup $\mathbf{SU}(2)$ of $\mathbf{SL}(2, \mathbb{C})$. Note that the above formula for $T_{\ell}(A)(Q(z))$ is *not* what we would obtain directly from the representation U_{ℓ} .

We are using Vilenkin's formula to facilitate comparison with his exposition; see

Vilenkin [39] (Chapter III, Section 2.1) and Kosmann-Schwarzbach [30].

With our version we define the representations T_{ℓ} as

$$T_{\ell}(A)(Q(z)) = (-cz+a)^{2\ell}Q\left(\frac{dz-b}{-cz+a}\right).$$

In its homogeneous form, Vilenkin's version of the representation U_ℓ is

$$U_{\ell}^{v}(A)(Q(z_1, z_2)) = Q(az_1 + cz_2, bz_1 + dz_2).$$

Observe that

$$\begin{pmatrix} az_1 + cz_2 \\ bz_1 + dz_2 \end{pmatrix} = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = A^\top \begin{pmatrix} z_1 \\ z_2 \end{pmatrix},$$

but in our case

$$\begin{pmatrix} dz_1 - bz_2 \\ -cz_1 + az_2 \end{pmatrix} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = A^{-1} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}.$$

We immediately check that if

$$Y = \begin{pmatrix} b & d \\ -a & -c \end{pmatrix},$$

then

$$YA^{\top} = A^{-1}Y,$$

and $\det(Y) = ad - bc = 1$.

Then Y defines a linear isomorphism of $\mathcal{P}_{2\ell}^{\mathbb{C}}(2)$ given by $Q(z_1, z_2) \mapsto Q(bz_1 + dz_2, -az_1 - cz_2)$, and this map is an equivalence between the representations U_{ℓ} and U_{ℓ}^v (we leave the details as an exercise).

We also leave it as an exercise (using the dehomogenization and the homogenization maps, which are linear isomorphisms) to check that the representation

 $U_{2\ell} \colon \mathbf{SL}(2, \mathbb{C}) \to \mathbf{GL}(\mathcal{P}_{2\ell}^{\mathbb{C}}(2))$ is equivalent to the representation $T_{\ell} \colon \mathbf{SL}(2, \mathbb{C}) \to \mathbf{GL}(\mathcal{P}_{\ell}^{\mathbb{C}})$ and similarly the representation $U_{2\ell} \colon \mathbf{SU}(2) \to \mathbf{GL}(\mathcal{P}_{2\ell}^{\mathbb{C}}(2))$ is equivalent to the representation $T_{\ell} \colon \mathbf{SU}(2) \to \mathbf{GL}(\mathcal{P}_{\ell}^{\mathbb{C}})$.

In particular, the representations

 $T_{\ell} \colon \mathbf{SU}(2) \to \mathbf{GL}(\mathcal{P}_{\ell}^{\mathbb{C}})$ form a complete set of irreducible representations of $\mathbf{SU}(2)$.

5.6 The Lie Algebra Representation Associated with T_{ℓ}

5.7 Irreducible Lie Algebra Representations of $\mathfrak{sl}(2,\mathbb{C})$ and $\mathfrak{su}(2)$
5.8 SU(2)-Invariant Hermitian Inner Product on $\mathcal{P}_{\ell}^{\mathbb{C}}$

We now restrict our attention to the representations T_{ℓ} of $\mathbf{SU}(2)$.

Our goal is to find explicitly an $\mathbf{SU}(2)$ -invariant hermitian inner product on $\mathcal{P}_{\ell}^{\mathbb{C}}$.

Because $\mathbf{SU}(2)$ is compact, such an inner product must exist.

If such an invariant hermitian inner product $\langle -, - \rangle$ exists, in particular it must be invariant for the matrices $T_{\ell}(r_x(\varphi/2)), T_{\ell}(r_y(\theta/2))$ and $T_{\ell}(r_z(\psi/2))$, so we assert such invariance and deduce consequences by taking derivatives.

In fact the proof shows that is suffices to assert invariance for the matrices $T_{\ell}(r_x(\varphi/2))$ and $T_{\ell}(r_y(\theta/2))$. First we need to figure out what is $T_{\ell}(r_x(\varphi/2))(z^{\ell-k})$.

Proposition 5.5. Each polynomial $z^{\ell-k}$ is an eigenvector of $T_{\ell}(r_x(\varphi/2))$ for the eigenvalue $e^{-ik\varphi}$, that is,

$$T_{\ell}(r_x(\varphi/2))(z^{\ell-k}) = e^{-ik\varphi} z^{\ell-k}.$$
 (*1)

Thus in the basis $(z^{\ell-k})_{-\ell \leq k \leq \ell}$, the matrix of $T_{\ell}(r_x(\varphi/2))$ is the diagonal matrix

Next we need to state the invariance of the inner product for $T_{\ell}(r_x(\varphi/2))$ and $T_{\ell}(r_y(\varphi/2))$.

After some labor we find that the $2\ell + 1$ polynomials

$$\frac{z^{\ell-k}}{\sqrt{(\ell-k)!(\ell+k)!}},$$

form an orthonormal basis of $\mathcal{P}_{\ell}^{\mathbb{C}}$ for an invariant hermitian inner product on $\mathbf{SU}(2)$ which is uniquely determined by setting $\langle 1, 1 \rangle = (2\ell)!$.

This is an important result that we record below.

Proposition 5.6. In Vilenkin's notation, the polynomials

$$\psi_k(z) = \frac{z^{\ell-k}}{\sqrt{(\ell-k)!(\ell+k)!}}, \quad -\ell \le k \le \ell \qquad (*_{10})$$

form an orthonormal basis of $\mathcal{P}_{\ell}^{\mathbb{C}}$ for a unique invariant hermitian inner product on $\mathbf{SU}(2)$.

The ψ_k are the unit-length eigenvectors of the linear map $T_{\ell}(r_x(\varphi/2))$.

Actually, it is remarkable that if we define a hermitian inner product on $\mathcal{P}_{\ell}^{\mathbb{C}}$ by requiring that the polynomials ψ_k form an orthonormal basis, then this inner product is $\mathbf{SU}(2)$ invariant.

The proof of this fact relies on two standard facts of Lie group theory about the relationship between a representation and its derivative.

Proposition 5.7. The hermitian inner product on $\mathcal{P}_{\ell}^{\mathbb{C}}$ making the basis (ψ_k) orthonormal is $\mathbf{SU}(2)$ -invariant.

5.9 Matrices of the Irreducible Representations of $\mathbf{SL}(2,\mathbb{C})$

We now use the basis (ψ_k) to find various expressions for the matrix entries of the matrix $t^{(\ell)}(A)$ representing $T_{\ell}(A)$ in this basis.

We give $\mathcal{P}_{\ell}^{\mathbb{C}}$ the hermitian inner product making (ψ_k) an orthonormal basis. In this section we consider an arbitrary matrix

$$A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}, \quad \alpha, \beta, \gamma, \delta \in \mathbb{C}, \ \alpha \delta - \beta \gamma = 1$$

in $\mathbf{SL}(2, \mathbb{C})$.

The special case of $\mathbf{SU}(2)$ is considered in later sections. In this latter case these matrices are unitary. We use $\alpha, \beta, \gamma, \delta$ instead of a, b, c, d to make it easier to follow Vilenkin's exposition. Since the ψ_k form an orthonormal basis, we have

$$t_{jk}^{(\ell)}(A) = \langle T_{\ell}(A)(\psi_k), \psi_j \rangle = \frac{\langle T_{\ell}(A)(z^{\ell-k}), z^{\ell-j} \rangle}{\sqrt{(\ell-j)!(\ell+j)!(\ell-k)!(\ell+k)!}}. \quad (*_{21})$$

By (T_{ℓ}) we have

$$T_{\ell}(A)(z^{\ell-k}) = (\beta z + \delta)^{2\ell} \left(\frac{\alpha z + \gamma}{\beta z + \delta}\right)^{\ell-k}$$
$$= (\alpha z + \gamma)^{\ell-k} (\beta z + \delta)^{\ell+k},$$

so we obtain

$$t_{jk}^{(\ell)}(A) = \frac{\langle (\alpha z + \gamma)^{\ell - k} (\beta z + \delta)^{\ell + k}, \, z^{\ell - j} \rangle}{\sqrt{(\ell - j)!(\ell + j)!(\ell - k)!(\ell + k)!}}.$$
 (*22)

The expression on the right-hand side can be "doctored on" in various ways.

The first brute-force method is to use the binomial formula together with the orthogonality of $z^{\ell-j}$ and $z^{\ell-k}$ for $j \neq k$ and the formulae

$$\langle z^{\ell-k}, \, z^{\ell-k} \rangle = (\ell-k)! (\ell+k)!, \quad -\ell \le k \le \ell.$$

We get

$$t_{jk}^{(\ell)}(A) = \sqrt{\frac{(\ell-j)!(\ell+j)!}{(\ell-k)!(\ell+k)!}} \sum_{h=M}^{N} \binom{\ell-k}{\ell-j-h} \binom{\ell+k}{h}$$
$$\alpha^{\ell-j-h} \beta^h \gamma^{j+h-k} \delta^{\ell+k-h} \tag{\ast_{23}}$$

with $M = \max(0, k - j), N = \min(\ell - j, \ell + k).$

This can be somewhat simplified as

$$\begin{split} t_{jk}^{(\ell)}(A) &= \sqrt{(\ell - j)!(\ell + j)!(\ell - k)!(\ell + k)!} \\ &\times \sum_{h=M}^{N} (h!(\ell - j - h)!(\ell + k - h)!(j - k + h)!)^{-1} \\ &\alpha^{\ell - j - h}\beta^{h}\gamma^{j + h - k}\delta^{\ell + k - h}, \end{split} \tag{*24}$$

also with $M = \max(0, k - j), N = \min(\ell - j, \ell + k).$

It is understood that if any of α , β , γ , δ is zero, then the corresponding exponent must be zero.

Of course, since $\alpha \delta - \beta \gamma = 1$, at most two of these coefficients must be nonzero.

Using the factorization of A as the product of an upper triangular matrix and a lower triangular matrix, Vilenkin obtains simpler formulae; see Vilenkin [39] (Chapter III, Section 3.2).

In particular, if $\delta \neq 0$, then we have the following fomula that will be needed later:

$$t_{jk}^{(\ell)}(A) = \sqrt{\frac{(\ell - j)!(\ell - k)!}{(\ell + j)!(\ell + k)!}} \times \sum_{h=\max(j,k)}^{\ell} \frac{(\ell + h)!}{(\ell - h)!(\ell - j)!(\ell - k)!} \beta^{h-j} \gamma^{h-k} \delta^{j+k}.$$
(*25)

If $\beta = \gamma = 0$, then $\alpha \delta = 1$,

$$A = \begin{pmatrix} \alpha & 0\\ 0 & 1/\alpha \end{pmatrix},$$

and $t_{jk}^{(\ell)}(A)$ is the diagonal matrix with

$$t_{kk}^{(\ell)}(A) = \alpha^{-2k} = \delta^{2k}.$$

Another strategy is to use Taylor's formula. Recall that for polynomial P(z) of degree m we have

$$P(z) = \sum_{j=0}^{m} \frac{P^{(j)}(0)}{j!} z^{j},$$

where $P^{(k)}(0)$ is the value of the kth derivative of P at z = 0.

Proposition 5.8. With respect to the orthonormal basis (ψ_k) of $\mathcal{P}_{\ell}^{\mathbb{C}}$, the entries in the matrix $t^{(\ell)}(A)$ are given by the formulae below.

$$t_{jk}^{(\ell)}(A) = \sqrt{\frac{(\ell+j)!}{(\ell-k)!(\ell+k)!(\ell-j)!}} \frac{d^{\ell-j}}{z^{\ell-j}} [(\alpha z + \gamma)^{\ell-k} (\beta z + \delta)^{\ell+k}]_{z=0}. \quad (*_{29})$$

If $\alpha\beta \neq 0$, then

$$t_{jk}^{(\ell)}(A) = \sqrt{\frac{(\ell+j)!}{(\ell-k)!(\ell+k)!(\ell-j)!}} \frac{\beta^{k-j}}{\alpha^{k+j}} \frac{d^{\ell-j}}{dz^{\ell-j}} [z^{\ell-k}(z+1)^{\ell+k}]_{z=\beta\gamma}.$$
 (*30)

5.10 Euler Angles Matrix Representations of T_{ℓ}

The "best" formula is obtained by using the Euler angles.

We now restrict ourselves to $\mathbf{SU}(2)$, although it possible to handle the more general case; see Vilenkin [39] (Chapter III, Sections 3.3–3.9).

By Proposition 5.4 every matrix $q \in \mathbf{SU}(2)$, where

$$q = \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix}, \quad |\alpha|^2 + |\beta|^2 = 1,$$

can be expressed as

$$q = u(\varphi, \theta, \psi) = r_x(\varphi/2)r_z(\theta/2)r_x(\psi/2)$$
$$= \begin{pmatrix} e^{\frac{i\varphi}{2}} & 0\\ 0 & e^{-\frac{i\varphi}{2}} \end{pmatrix} \begin{pmatrix} \cos\frac{\theta}{2} & i\sin\frac{\theta}{2}\\ i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix} \begin{pmatrix} e^{\frac{i\psi}{2}} & 0\\ 0 & e^{-\frac{i\psi}{2}} \end{pmatrix}$$

with

$$0 \le \varphi < 2\pi, \quad 0 \le \theta \le \pi, \quad -2\pi \le \psi < 2\pi.$$

Furthermore, if $\alpha\beta \neq 0$ and if we require that $0 < \theta < \pi$, then φ, θ, ψ are unique.

Since T_{ℓ} is a representation we have

$$T_{\ell}(q) = T_{\ell}(r_{x}(\varphi/2))T_{\ell}(r_{z}(\theta/2))T_{\ell}(r_{x}(\psi/2)).$$

We also proved that the polynomials in the basis $(\psi_k(z))$ are eigenvectors of $T_{\ell}(r_x(\varphi/2))$ and $T_{\ell}(r_x(\psi/2))$, namely (by $(*_1)$)

$$T_{\ell}(r_x(\varphi/2))\psi_k(z) = e^{-ik\varphi}\psi_k(z)$$

$$T_{\ell}(r_x(\psi/2))\psi_k(z) = e^{-ik\psi}\psi_k(z).$$

Proposition 5.9. For any matrix $q \in \mathbf{SU}(2)$ expressed in terms of the Euler angles as $q = u(\varphi, \theta, \psi) = r_x(\varphi/2)r_z(\theta/2)r_x(\psi/2)$, with respect to the orthonormal basis (ψ_k) of $\mathcal{P}_{\ell}^{\mathbb{C}}$, we have

$$t_{jk}^{(\ell)}(q) = e^{-i(j\varphi + k\psi)} t_{jk}^{(\ell)}(r_z(\theta/2)). \qquad (*_{31})$$

Thus we are left with finding an explicit expression for the matrix $t^{(\ell)}(r_z(\theta/2))$,

Definition 5.4. Define the matrix $t^{(\ell)}(\theta)$ as $t^{(\ell)}(\theta) = t^{(\ell)}(r_z(\theta/2))$, with

$$r_z(\theta/2) = \begin{pmatrix} \cos\frac{\theta}{2} & i\sin\frac{\theta}{2} \\ i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix}$$

If $\theta = \pi$, then $r_z(\pi/2) = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$, and by $(*_{27})$ we know that $t^{(\ell)}(\pi)$ is the anti-diagonal matrix with $t^{(\ell)}_{jk}(\pi) = 0$ if $j \neq k$ and $t^{(\ell)}_{j-j}(\pi) = i^{2\ell}$.

If $\theta = 0$, then $r_z(0)$ is the identity matrix I_2 , and $t^{(\ell)}(0)$ is the identity matrix $I_{2\ell+1}$.

If $0 \leq \theta < \pi$, then we can find the matrix $t^{(\ell)}(\theta)$ using Equation (*₂₅) in we which we set $\alpha = \delta = \cos \frac{\theta}{2} \neq 0$ (since $0 \leq \theta < \pi$), and $\beta = \gamma = i \sin \frac{\theta}{2}$.

We obtain the following formula.

Proposition 5.10. The elements of the matrix $t^{(\ell)}(\theta) = t^{(\ell)}(r_z(\theta/2))$ ($0 \le \theta < \pi$) are given by the formula

$$t_{jk}^{(\ell)}(\theta) = i^{-(j+k)} \sqrt{\frac{(\ell-j)!(\ell-k)!}{(\ell+j)!(\ell+k)!}} \left(\cos\frac{\theta}{2}\right)^{j+k} \\ \times \sum_{h=\max(j,k)}^{\ell} \frac{(\ell+h)!\,i^{2h}}{(\ell-h)!(h-j)!(h-k)!} \left(\sin\frac{\theta}{2}\right)^{2h-(j+k)}$$
(*32)

If ℓ is a half integer, then h is also a half integer.

For $\theta = 0$, we must have h = j = k, and $t^{(\ell)}(0)$ is the identity matrix $I_{2\ell+1}$, as we already know.

If we assume that $0 < \theta < \pi$, then we obtain the following formula given in Vilenkin:

$$t_{jk}^{(\ell)}(\theta) = i^{-(j+k)} \sqrt{\frac{(\ell-j)!(\ell-k)!}{(\ell+j)!(\ell+k)!}} \left(\cot\frac{\theta}{2}\right)^{j+k} \\ \times \sum_{h=\max(j,k)}^{\ell} \frac{(\ell+h)! \, i^{2h}}{(\ell-h)!(h-j)!(h-k)!} \left(\sin\frac{\theta}{2}\right)^{2h}.$$
(*33)

If we recall from (†) that if j = -k then

$$\frac{(\ell+h)!}{(\ell-h)!(h+k)!(h-k)!} = \binom{\ell+h}{2h}\binom{2h}{h-k},$$

we obtain

$$t_{k-k}^{(\ell)}(\theta) = t_{-kk}^{(\ell)}(\theta)$$
$$= \sum_{h=\max(-k,k)}^{\ell} {\ell+h \choose 2h} {2h \choose h-k} i^{2h} \left(\sin\frac{\theta}{2}\right)^{2h}.$$
$$(*_{34})$$

Even though this equation was derived assuming that $\theta < \pi$, it is still correct for $\theta = \pi$, namely the following equation holds

$$\sum_{h=\max(-k,k)}^{\ell} \binom{\ell+h}{2h} \binom{2h}{h-k} i^{2h} = i^{2\ell},$$

or equivalently, since we may assume that $k \ge 0$,

$$\sum_{h=k}^{\ell} (-1)^{\ell-h} \binom{\ell+h}{2h} \binom{2h}{h-k} = 1. \qquad (\dagger\dagger)$$

Jocelyn showed that this equation can be proven using an identity due to Euler. Because there is a surjective homomorphism $\rho: \mathbf{SU}(2) \to \mathbf{SO}(3)$ whose kernel is $\{I, -I\}$ (see Theorem 1.1), Proposition 2.8, Proposition 5.1, and the fact that the representation $U_{2\ell}: \mathbf{SU}(2) \to \mathbf{GL}(\mathcal{P}_{2\ell}^{\mathbb{C}}(2))$ is equivalent to the representation $T_{\ell}: \mathbf{SU}(2) \to \mathbf{GL}(\mathcal{P}_{\ell}^{\mathbb{C}})$ (see the end of Section 5.5), imply that the irreducible unitary representations of $\mathbf{SO}(3)$ are of the form $W_{\ell}: \mathbf{SO}(3) \to \mathbf{U}(\mathcal{P}_{\ell}^{\mathbb{C}})$, with

$$W_{\ell}(\rho_q) = T_{\ell}(q) \quad q \in \mathbf{SU}(2), \quad \ell \in \mathbb{N},$$

and where $T_{\ell'} \colon \mathbf{SU}(2) \to \mathbf{U}(\mathcal{P}_{\ell'}^{\mathbb{C}})$ are the irreducible unitary representations of $\mathbf{SU}(2)$ (with ℓ' a half integer or an integer).

So the irreducible representations of $\mathbf{SO}(3)$ constitute only half of the representations of $\mathbf{SU}(2)$, those that correspond to nonnegative *integer values* of ℓ . Therefore, all the formulae obtained for the matrices $t_{jk}^{(\ell)}(q)$ apply and the matrix $w_{jk}^{(\ell)}(\rho_q)$ associated with the unitary map $W_{\ell}(\rho_q)$ is $t_{jk}^{(\ell)}(q)$, with $\ell \in \mathbb{N}$.

Remarkably, if $q \in \mathbf{SU}(2)$ is expressed in terms of the Euler angles as $q = u(\varphi, \theta, \psi) = r_x(\varphi/2)r_z(\theta/2)r_x(\psi/2)$, then the corresponding rotation matrix $R = \rho_q$ is given by $R = R_x(\varphi)R_z(\theta)R_x(\psi)$, where we may assume that $0 \leq \varphi < 2\pi, 0 \leq \theta \leq \pi, 0 \leq \psi < 2\pi$ (see Section 5.3).

Consequently, if we express a rotation matrix $R \in \mathbf{SO}(3)$ in terms of Euler angles as $R = R_x(\varphi)R_z(\theta)R_x(\psi)$, we find that the matrix $w^{(\ell)}(R)$ associated with the unitary map $W_\ell(R)$ is $t^{(\ell)}(u(\varphi, \theta, \psi))$, with $\ell \in \mathbb{N}$.

Using Proposition 5.9 and since by Definition 5.4, $t^{(\ell)}(\theta) = t^{(\ell)}(r_z(\theta/2))$, we obtain the following result.

Proposition 5.11. For any matrix $R \in \mathbf{SO}(3)$ expressed in terms of the Euler angles as $R = R_x(\varphi)R_z(\theta)R_x(\psi)$, with respect to the orthonormal basis (ψ_k) of $\mathcal{P}_{\ell}^{\mathbb{C}}$, the matrix $w^{(\ell)}(R)$ of the unitary map $W_{\ell}(R)$ associated with the irreducible representation W_{ℓ} : $\mathbf{SO}(3) \to \mathbf{U}(\mathcal{P}_{\ell}^{\mathbb{C}})$ is given by

$$w_{jk}^{(\ell)}(R) = e^{-i(j\varphi + k\psi)} t_{jk}^{(\ell)}(\theta), \quad \ell \in \mathbb{N}.$$
 (*31')

Formula $(*_{31'})$ still gives the matrix elements $T_{\ell}(q)$ (with $q \in \mathbf{SU}(2)$) of the irreducible representation T_{ℓ} of $\mathbf{SU}(2)$ when ℓ is a positive half integer, but this is *not* a representation of $\mathbf{SO}(3)$.

This point is a notorious source of confusion.

The functions $e^{-i(j\varphi+k\psi)} t_{jk}^{(\ell)}(\theta)$ arise in quantum mechanics, but physicists prefer the functions $t_{jk}^{(\ell)}(\theta)$ to be real.

In his famous book first published in German in 1931 and then in English in 1959 (translated by J.J. Griffin), E. Wigner [42] introduced the matrices $d^{\ell}(\theta)$ given by

$$d_{jk}^{\ell}(\theta) = (-1)^{j-k} i^{j-k} t_{jk}^{(\ell)}(\theta).$$

The reason for the factor $(-1)^{j-k}i^{j-k}$ is that by using Formula $(*_{24})$ with $\alpha = \delta = \cos \frac{\theta}{2}$ and $\beta = \gamma = i \sin \frac{\theta}{2}$, we obtain

$$t_{jk}^{(\ell)}(\theta) = i^{j-k} \sqrt{(\ell-j)!(\ell+j)!(\ell-k)!(\ell+k)!} \\ \times \sum_{h=M}^{N} (-1)^h (h!(\ell-j-h)!(\ell+k-h)!(j-k+h)!)^{-1} \\ \left(\cos\frac{\theta}{2}\right)^{2\ell+k-j-2h} \left(\sin\frac{\theta}{2}\right)^{2h+j-k}$$

with $M = \max(0, k - j)$, $N = \min(\ell - j, \ell + k)$ and $0 \le \theta \le \pi$.

When we multiply the above expression by $(-1)^{j-k}i^{j-k}$, we obtain the term

$$(-1)^{j-k}i^{j-k}i^{j-k} = (-1)^{j-k}i^{2(j-k)} = (-1)^{j-k}(-1)^{j-k} = +1.$$

The above amounts to performing the following operations on the matrix $t^{(\ell)}(\theta)$: multiply the *j*th row by $(-1)^{j}i^{j}$ and multiply the *k*th column by $(-1)^{-k}i^{-k}$.

The resulting matrix $d^{(\ell)}(\theta)$ remains unitary. In fact, it becomes a *real orthogonal matrix*.

Definition 5.5. The Wigner's d-matrices $d^{(\ell)}(\theta)$ are given by

$$d_{jk}^{(\ell)}(\theta) = \sqrt{(\ell - j)!(\ell + j)!(\ell - k)!(\ell + k)!} \\ \times \sum_{h=M}^{N} (-1)^{h} (h!(\ell - j - h)!(\ell + k - h)!(j - k + h)!)^{-1} \\ \left(\cos\frac{\theta}{2}\right)^{2\ell + k - j - 2h} \left(\sin\frac{\theta}{2}\right)^{2h + j - k} (*_{35})$$

with $M = \max(0, k - j), N = \min(\ell - j, \ell + k);$

see Wigner [42], Formula 15.27.

The *d*-matrices $d^{(\ell)}(\theta)$ are real orthogonal matrices.

However, beware that besides the fact that the indices ℓ, j, k, h are denoted j, μ', μ, κ and the angles φ, θ, ψ are denoted α, β, γ , the angles α, β, γ have a different meaning.

Indeed, Wigner factors a unit quaternion as $q = r_x(-\alpha/2)r_y(\beta/2)r_x(-\gamma/2)$ (where r_x and r_y are defined in Section 5.3), and the *x*-axis and the *z*-axis are swapped, which means that in our notation, the rotation matrix R associated with q is

$$R = R_z(-\alpha)R_y(\beta)R_z(-\gamma).$$

Wigner uses $r_y(\beta/2)$ instead of $r_z(\beta/2)$ because it is a real matrix.

As a consequence, *Wigner's* \mathcal{D} -matrices (see Wigner [42], Formula 15.8 and Formula 15.27) are the matrices $\mathcal{D}^{(\ell)}$ given by

$$\mathcal{D}_{jk}^{(\ell)}(\alpha,\beta,\gamma) = e^{i(j\alpha+k\gamma)} d_{jk}^{(\ell)}(\beta).$$

As earlier, the matrices $\mathcal{D}^{(\ell)}$ correspond to the irreducible unitary representations U_{ℓ} of $\mathbf{SU}(2)$ when ℓ assumes all nonnegative integer and half integer values, and when ℓ is restricted to be a nonnegative integer, they correspond to the irreducible unitary representations W_{ℓ} of $\mathbf{SO}(3)$.

According to Wigner, the method for determining the irreducible representations of $\mathbf{SO}(3)$ as the irreducible representations of $\mathbf{SU}(2)$ corresponding to nonnegative *integer values* of ℓ is due to H. Weyl, who also discovered the irreducible representations of $\mathbf{SU}(2)$.

The irreducible representations of $\mathbf{SU}(2)$ corresponding to half integer values of ℓ are often called *double-valued representations* of $\mathbf{SO}(3)$, an unfortunate terminology since they are *not* representations of $\mathbf{SO}(3)$, but instead representations of $\mathbf{SU}(2)$.

Wigner's sign conventions is not always the sign convention used in the physics literature.

5.11 Representations of $SL(2, \mathbb{C})$ and SU(2) Using Finite Fourier Series

There is one more method for computing the matrix elements $t_{jk}^{(\ell)}(A)$ (where $A \in \mathbf{SL}(2, \mathbb{C})$) based on integration.

The idea is to use another representing space for the representation T_{ℓ} , namely the vector space (of dimension $2\ell+1$) of finite Fourier series

$$\Phi(e^{i\varphi}) = \sum_{k=-\ell}^{\ell} c_k e^{-ik\varphi},$$

with $c_k \in \mathbb{C}$.

Observe that if Q(z) is the polynomial of degree 2ℓ given by

$$Q(z) = \sum_{k=-\ell}^{\ell} c_k z^{\ell-k}$$

so that the powers appears in the order $z^{2\ell}, z^{2\ell-1}, \ldots, z, 1$, the Fourier series $\Phi(e^{i\varphi})$ with the same coefficients is given by

$$\Phi(e^{i\varphi}) = e^{-i\ell\varphi}Q(e^{i\varphi}).$$

Denote the space of Fourier series of dimension $2\ell + 1$ as \mathfrak{F}_{ℓ} .

We would like to define a representation of $\mathbf{SL}(2,\mathbb{C})$ in \mathfrak{F}_{ℓ} .

Definition 5.6. The map $\mathcal{T}_{\ell} \colon \mathbf{SL}(2, \mathbb{C}) \to \mathbf{GL}(\mathfrak{F}_{\ell})$ is defined by

$$\mathcal{T}_{\ell}(A)(\Phi(e^{i\varphi})) = e^{-i\ell\varphi}(ae^{i\varphi}+c)^{\ell}(be^{i\varphi}+d)^{\ell}\Phi\left(\frac{ae^{i\varphi}+c}{be^{i\varphi}+d}\right)$$
$$(\mathcal{T}_{\ell})$$

for every matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbf{SL}(2, \mathbb{C})$$

and every Fourier series $\Phi(e^{i\varphi}) \in \mathfrak{F}_{\ell}$.

It is easily verified that $\mathcal{T}_{\ell} \colon \mathbf{SL}(2,\mathbb{C}) \to \mathbf{GL}(\mathfrak{F}_{\ell})$ is a representation.

It can be shown that the representation $\mathcal{T}_{\ell} \colon \mathbf{SL}(2, \mathbb{C}) \to \mathbf{GL}(\mathfrak{F}_{\ell})$ is equivalent to the representation $T_{\ell} \colon \mathbf{SL}(2, \mathbb{C}) \to \mathbf{GL}(\mathcal{P}_{\ell}^{\mathbb{C}})$

Proposition 5.12. The matrix elements $t_{jk}^{(\ell)}(A)$ are given by the following formula:

$$\begin{split} t_{jk}^{(\ell)}(A) &= \frac{1}{2\pi} \sqrt{\frac{(\ell-j)!(\ell+j)!}{(\ell-k)!(\ell+k)!}} \\ &\int_{0}^{2\pi} (ae^{i\varphi} + c)^{\ell-k} (be^{i\varphi} + d)^{\ell+k} \, e^{i(j-\ell)\varphi} \, d\varphi. \end{split}$$

We obtain another useful formula for computing $t_{jk}^{(\ell)}(\theta)$ by applying the above formula to the matrix

$$r_z(\theta/2) = \begin{pmatrix} \cos\frac{\theta}{2} & i\sin\frac{\theta}{2} \\ i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix} \in \mathbf{SU}(2)$$

$$t_{jk}^{(\ell)}(\theta) = \frac{1}{2\pi} \sqrt{\frac{(\ell-j)!(\ell+j)!}{(\ell-k)!(\ell+k)!}} \int_0^{2\pi} \left(\cos\frac{\theta}{2}e^{i\varphi} + i\sin\frac{\theta}{2}\right)^{\ell-k} \\ \left(i\sin\frac{\theta}{2}e^{i\varphi} + \cos\frac{\theta}{2}\right)^{\ell+k} e^{i(j-\ell)\varphi} \, d\varphi,$$

and since $e^{-i\ell\varphi} = e^{-\frac{i(\ell+k)\varphi}{2}}e^{-\frac{i(\ell-k)\varphi}{2}}$, the above formula is also written as stated below.

Proposition 5.13. The matrix elements $t_{jk}^{(\ell)}(\theta)$ $(0 \le \theta \le \pi)$ are given by the following formula:

$$t_{jk}^{(\ell)}(\theta) = \frac{1}{2\pi} \sqrt{\frac{(\ell-j)!(\ell+j)!}{(\ell-k)!(\ell+k)!}} \times \int_{0}^{2\pi} \left(\cos\frac{\theta}{2}e^{\frac{i\varphi}{2}} + i\sin\frac{\theta}{2}e^{-\frac{i\varphi}{2}}\right)^{\ell-k} \left(i\sin\frac{\theta}{2}e^{\frac{i\varphi}{2}} + \cos\frac{\theta}{2}e^{-\frac{i\varphi}{2}}\right)^{\ell+k} e^{ij\varphi} d\varphi. \quad (*_{38})$$

For small values of ℓ , this equation is quite practical.
For example, here is a list of the matrices $t^{\ell}(\theta)$ for $\ell = 0, 1/2, 1, 3/2$ as in Vilenkin [39] (Chapter III, Section 3.7).

$$t^{(0)}(\theta) = (1), \quad t^{(1/2)}(\theta) = r_z(\theta/2) = \begin{pmatrix} \cos\frac{\theta}{2} & i\sin\frac{\theta}{2} \\ i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix},$$

$$t^{(1)}(\theta) = \begin{pmatrix} \cos^2 \frac{\theta}{2} & \frac{i}{\sqrt{2}} \sin \frac{\theta}{2} & -\sin^2 \frac{\theta}{2} \\ \frac{i}{\sqrt{2}} \sin \frac{\theta}{2} & \cos \theta & \frac{i}{\sqrt{2}} \sin \frac{\theta}{2} \\ -\sin^2 \frac{\theta}{2} & \frac{i}{\sqrt{2}} \sin \frac{\theta}{2} & \cos^2 \frac{\theta}{2} \end{pmatrix},$$

and

$$\begin{aligned} t^{(3/2)}(\theta) &= \\ \begin{pmatrix} \cos^3 \frac{\theta}{2} & i\sqrt{3}\sin\frac{\theta}{2}\cos^2\frac{\theta}{2} & -\sqrt{3}\sin^2\frac{\theta}{2}\cos\frac{\theta}{2} & -i\sin^3\frac{\theta}{2} \\ i\sqrt{3}\sin\frac{\theta}{2}\cos^2\frac{\theta}{2} & \cos^3\frac{\theta}{2} - 2\cos\frac{\theta}{2}\sin^2\frac{\theta}{2} & 2i\cos^2\frac{\theta}{2}\sin\frac{\theta}{2} - i\sin^3\frac{\theta}{2} & -\sqrt{3}\sin^2\frac{\theta}{2}\cos\frac{\theta}{2} \\ -\sqrt{3}\sin^2\frac{\theta}{2}\cos\frac{\theta}{2} & 2i\cos^2\frac{\theta}{2}\sin\frac{\theta}{2} - i\sin^3\frac{\theta}{2} & \cos^3\frac{\theta}{2} - 2\cos\frac{\theta}{2}\sin^2\frac{\theta}{2} & i\sqrt{3}\sin\frac{\theta}{2}\cos^2\frac{\theta}{2} \\ -i\sin^3\frac{\theta}{2} & -\sqrt{3}\sin^2\frac{\theta}{2}\cos\frac{\theta}{2} & i\sqrt{3}\sin\frac{\theta}{2}\cos^2\frac{\theta}{2} & \cos^3\frac{\theta}{2} \end{pmatrix} \end{aligned}$$

5.12 Matrix Elements of $T_{\ell}(q)$ and Jacobi Polynomials

In this section we assume again that $q \in \mathbf{SU}(2)$ is given in terms of the Euler angles as $q = u(\varphi, \theta, \psi) = r_x(\varphi/2)r_z(\theta/2)r_x(\psi/2).$

Since $\cos \theta = 2\cos^2 \frac{\theta}{2} - 1$ and $\sin^2 \frac{\theta}{2} + \cos^2 \frac{\theta}{2} = 1$, for $0 \le \theta \le \pi$, we have $0 \le \cos \frac{\theta}{2} \le 1$ and $0 \le \sin \frac{\theta}{2} \le 1$, so

$$\cos \frac{\theta}{2} = \sqrt{\frac{1 + \cos \theta}{2}}$$
$$\sin \frac{\theta}{2} = \sqrt{\frac{1 - \cos \theta}{2}}$$
$$\cot \frac{\theta}{2} = \sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}, \qquad (*_{39})$$

with $\theta > 0$ for the third formula.

Thus we see that $t_{jk}^{(\ell)}(\theta)$ is a function of $\cos \theta$ for $0 \le \theta < \pi$.

Therefore there is a function $P_{jk}^{\ell}(z)$ such that

$$t_{jk}^{(\ell)}(\theta) = P_{jk}^{\ell}(\cos\theta), \quad 0 \le \theta < \pi,$$

and $(*_{31})$ is also written as

$$t_{jk}^{(\ell)}(q) = e^{-i(j\varphi + k\psi)} P_{jk}^{\ell}(\cos\theta).$$

By Equation $(*_{32})$ and the above trigonometric identities we obtain the following result.

Proposition 5.14. The polynomial $P_{jk}^{\ell}(z)$ $(-1 < z \leq 1)$ given by

$$P_{jk}^{\ell}(z) = i^{-(j+k)} \sqrt{\frac{(\ell-j)!(\ell-k)!}{(\ell+j)!(\ell+k)!}} \left(\frac{1+z}{2}\right)^{\frac{j+k}{2}} \times \sum_{h=\max(j,k)}^{\ell} \frac{(\ell+h)!\,i^{2h}}{(\ell-h)!(h-j)!(h-k)!} \left(\frac{1-z}{2}\right)^{\frac{2h-(j+k)}{2}}$$

$$(*40)$$

has the property that

$$t_{jk}^{(\ell)}(\theta) = P_{jk}^{\ell}(\cos\theta), \quad 0 \le \theta < \pi, \qquad (*_{41})$$

and

$$t_{jk}^{(\ell)}(q) = e^{-i(j\varphi + k\psi)} P_{jk}^{\ell}(\cos\theta). \qquad (*_{42})$$

If ℓ is a half integer, then h is also a half integer.

It is understood that if z = 1, then $P_{jk}^{\ell}(1) = 1$ iff j = k, and $P_{jk}^{\ell}(1) = 0$ otherwise.

Proposition 5.15. If $0 < \theta < \pi$, so that -1 < z < 1, then we have

$$P_{jk}^{\ell}(z) = \frac{(-1)^{\ell-k} i^{k-j}}{2^{\ell}} \sqrt{\frac{(\ell+j)!}{(\ell-k)!(\ell+k)!(\ell-j)!}} \times (1+z)^{-\frac{(j+k)}{2}} (1-z)^{\frac{k-j}{2}} \frac{d^{\ell-j}}{dy^{\ell-j}} [(1-y)^{\ell-k} (1+y)^{\ell+k}]_{y=z}.$$

$$(*_{43})$$

The polynomials $P_{jk}^{\ell}(z)$ enjoy some symmetry relations.

Formula $(*_{43})$ also reveals a relationship with the Jacobi polynomials.

Definition 5.7. The *Jacobi polynomials* $P_h^{\lambda,\mu}(z)$, with $\lambda, \mu \in \mathbb{R}, h \in \mathbb{N}$, are defined by the formula

$$P_{h}^{\lambda,\nu}(z) = \frac{(-1)^{h}}{2^{h}h!}(1-z)^{-\lambda}(1+z)^{-\mu}\frac{d^{h}}{dz^{h}}[(1-z)^{\lambda+h}(1+z)^{\mu+h}].$$
 (Ja)

Proposition 5.16. The polynomials $P_{jk}^{\ell}(z)$ and the Jacobi polynomials are related by the equation

$$P_{\ell-j}^{j-k,k+j}(z) = 2^{j} i^{k-j} \sqrt{\frac{(\ell-k)!(\ell+k)!}{(\ell-j)!(\ell+j)!}}$$
$$(1-z)^{\frac{k-j}{2}} (1+z)^{-\frac{(k+j)}{2}} P_{jk}^{\ell}(z). \quad (*_{45})$$

As we noted earlier, if ℓ is a half integer then j and k cannot be zero.

If ℓ is an integer, then j = 0 or k = 0 is allowed, and so $\lambda = 0$ and $\mu = 0$ are also allowed.

In this case the Jacobi polynomial $P_{\ell}^{0,0}(z)$, simply denoted as $P_{\ell}(z)$, is given by

$$P_{\ell}(z) = \frac{(-1)^{\ell}}{2^{\ell}\ell!} \frac{d^{\ell}}{dz^{\ell}} (1-z^2)^{\ell},$$

or equivalently

$$P_{\ell}(z) = \frac{1}{2^{\ell}\ell!} \frac{d^{\ell}}{dz^{\ell}} (z^2 - 1)^{\ell}.$$

This is a *Legendre* polynomial.

Similarly, if ℓ is an integer, then for k = 0 the polynomials $P_{m0}^{\ell}(z)$ are related to polynomials $P_{\ell}^{m}(z)$ known as the associated Legendre polynomials.

Definition 5.8. The *Legendre polynomial* $P_{\ell}(z)$ are defined by

$$P_{\ell}(z) = \frac{(-1)^{\ell}}{2^{\ell}\ell!} \frac{d^{\ell}}{dz^{\ell}} (1-z^2)^{\ell},$$

and the associated Legendre polynomials

are defined by

$$\begin{split} P_{\ell}^{m}(z) &= \frac{(-1)^{m+\ell}}{2^{\ell}\ell!} (1-z^{2})^{\frac{m}{2}} \frac{d^{m+\ell}}{dz^{m+\ell}} (1-z^{2})^{\ell} \\ &= (-1)^{m} (1-z^{2})^{\frac{m}{2}} \frac{d^{m}}{dz^{m}} P_{\ell}(z), \end{split}$$

with $\ell, m \in \mathbb{N}$.

Some authors omit the sign $(-1)^m$ in the definition of the associated Legendre polynomials.

We see immediately that

$$P_{00}^{\ell}(z) = P_{\ell}(z). \tag{*46}$$

It is not hard to show that

$$P_{\ell}^{j}(z) = i^{j} \sqrt{\frac{(\ell+j)!}{(\ell-j)!}} P_{j0}^{\ell}(z). \qquad (*_{47})$$

See Vilenkin [39] (Chapter III, Section 3.9).

Since by $(*_{42})$ we have

$$t_{j0}^{(\ell)}(q) = e^{-ij\varphi} P_{j0}^{\ell}(\cos\theta),$$

we obtain

$$t_{j0}^{(\ell)}(q) = i^{-j} \sqrt{\frac{(\ell-j)!}{(\ell+j)!}} e^{-ij\varphi} P_{\ell}^{j}(\cos\theta), \quad -\ell \le j \le \ell.$$
(*48)

Recall that ℓ is an integer.

Following Vilenkin [39] (Chapter III, Section 2.7) we show how the function $t_{j0}^{(\ell)}(q)$ (with $q = r_x(\varphi/2)r_z(\theta/2)$), which does not depend on ψ , can be viewed as a function on the sphere S^2 .

5.13 Harmonic Functions on the Sphere S^2

First recall that the group $\mathbf{SO}(3)$ acts transitively in the sphere S^2 and that the stabilizer of the point $e_1 = (1, 0, 0)$ is the subgroup H_x of rotations

$$R_x(\varphi) = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos\varphi & -\sin\varphi\\ 0 & \sin\varphi & \cos\varphi \end{pmatrix}$$

around the x-axis, so the sphere S^2 is homeomorphic to the quotient space $\mathbf{SO}(3)/H_x$.

It follows that the functions $f \in L^2(\mathbf{SO}(3))$ such that f(RQ) = f(R) for all $R \in \mathbf{SO}(3)$ and all $Q \in H_x$ correspond bijectively to the functions in $L^2(S^2)$.

From Section 5.3, since every rotation R can be factored as

$$R = R_x(\varphi)R_z(\theta)R_x(\psi),$$

with $R_x(\varphi), R_x(\psi) \in H_x$, we see that a representative of the left coset RH_x is given by

$$R_x(\varphi)R_z(\theta).$$

Therefore the points of S^2 are the orbit of $e_1 = (1, 0, 0)$ under all rotations $R_x(\varphi)R_z(\theta)$.

But the group H_x corresponds to the subgroup Ω_x defined below.

Definition 5.9. The subgroup Ω_x of $\mathbf{SU}(2)$ is given by

$$\Omega_x = \left\{ H(t) = r_x(t/2) = \begin{pmatrix} e^{\frac{it}{2}} & 0\\ 0 & e^{-\frac{it}{2}} \end{pmatrix} \ \middle| \ 0 \le t \le 2\pi \right\}.$$
(\Omega_x)

In fact we claim that $\mathbf{SU}(2)/\Omega_x$ is a homogeneous space homeomorphic to S^2 so that the functions $f \in L^2(\mathbf{SU}(2))$ such that f(qH) = f(q) for all $q \in \mathbf{SU}(2)$ and all $H \in \Omega_x$ also correspond bijectively to the functions in $L^2(S^2)$. The group $\mathbf{SU}(2)$ acts on the sphere S^2 by rotations, which means that for any skew-hermitian matrix

$$X = \begin{pmatrix} ix & y + iz \\ -y + iz & -ix \end{pmatrix}, \quad (x, y, z) \in S^2$$

and any $q \in \mathbf{SU}(2)$, we have the action

$$q \cdot X = qXq^*.$$

Since this action is a rotation of S^2 , it is transitive.

We easily show that the stabilizer of $e_1 = (1, 0, 0)$ is indeed the subgroup Ω_x .

From Section 5.3, since every unit quaternion q can be factored as

$$q = r_x(\varphi/2)r_z(\theta/2)r_x(\psi/2),$$

with $r_x(\varphi/2), r_x(\psi/2) \in \Omega_x$, we see that a representative of the left coset $q\Omega_x$ is given by

 $r_x(\varphi/2)r_z(\theta/2).$

Therefore the points of S^2 are the orbit of $e_1 = (1, 0, 0)$ under all rotations $r_x(\varphi/2)r_z(\theta/2)$, and from Section 5.3, since the corresponding rotation matrices are

$$Q = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi \\ 0 & \sin \varphi & \cos \varphi \end{pmatrix} \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

by reading of the first column of the matrix Q, we see that the corresponding orbit points on the sphere S^2 have coordinates

```
(\cos\theta, \sin\theta\cos\varphi, \sin\theta\sin\varphi).
```

According to the physical convention, the spherical coordinates of a point p with respect to the (azimuthal) angle φ measured from the x-axis in the xy-plane and (polar) angle θ measured from the z-axis in the plane containing the z-axis an passing through the point p are given by

 $(\sin\theta\cos\varphi,\,\sin\theta\sin\varphi,\,\cos\theta).$

Thus we see that the coordinates

```
(\cos\theta, \sin\theta\cos\varphi, \sin\theta\sin\varphi)
```

are "funny" spherical coordinates for which the x-axis and the z-axis are swapped and φ is changed to $\pi/2 - \varphi$. Following Vilenkin (Chapter III, Section 3.10) we make the following definition.

Definition 5.10. For any j such that $-\ell \leq j \leq \ell$, the function $t_{j0}^{(\ell)}(q)$ which does not depend on ψ (with $q = r_x(\varphi/2)r_z(\theta/2)r_x(\psi/2)$), can be viewed as a function on the sphere S^2 , and is denoted $Y_{\ell j}(\varphi, \theta)$, with $0 \leq \varphi < 2\pi$ and $0 \leq \theta < \pi$. The function $Y_{\ell j}(\varphi, \theta)$ is called a *spherical function*.

Observe that the $2\ell + 1$ functions $Y_{\ell j}(\varphi, \theta) = t_{j0}^{(\ell)}(q)$ $(-\ell \leq j \leq \ell)$ constitute the *middle column* of the matrix $t^{(\ell)}(q)$. In view of Proposition 5.11 and $(*_{41})$, for any matrix $R \in \mathbf{SO}(3)$ expressed in terms of the Euler angles as $R = R_x(\varphi)R_z(\theta)R_x(\psi)$, with respect to the orthonormal basis (ψ_k) of $\mathcal{P}_{\ell}^{\mathbb{C}}$, the matrix $w^{(\ell)}(R)$ of the unitary map $W_{\ell}(R)$ associated with the irreducible representation $W_{\ell}: \mathbf{SO}(3) \to \mathbf{U}(\mathcal{P}_{\ell}^{\mathbb{C}})$ is given by

$$\begin{split} w_{jk}^{(\ell)}(R) &= e^{-i(j\varphi + k\psi)} t_{jk}^{(\ell)}(\theta) = e^{-i(j\varphi + k\psi)} P_{jk}^{\ell}(\theta) = t_{jk}^{(\ell)}(q), \\ \ell \in \mathbb{N}, \end{split}$$

where $q = r_x(\varphi/2)r_z(\theta/2)r_x(\psi/2)$. In particular, for k = 0 we see that

$$w_{j0}^{(\ell)}(R) = t_{j0}^{(\ell)}(q) = Y_{\ell j}(\varphi, \theta).$$

Thus we have shown the following result.

Proposition 5.17. The following facts hold.

- (1) For any matrix $R \in \mathbf{SO}(3)$ expressed as $R = R_x(\varphi)R_z(\theta)R_x(\psi)$ in terms of the Euler angles, with respect to the orthonormal basis (ψ_k) of $\mathcal{P}_{\ell}^{\mathbb{C}}$, the matrix $w^{(\ell)}(R)$ of the unitary map $W_{\ell}(R)$ associated with the irreducible representation $W_{\ell} : \mathbf{SO}(3) \to \mathbf{U}(\mathcal{P}_{\ell}^{\mathbb{C}})$ is equal to the matrix $t^{(\ell)}(q)$ of the unitary map $T_{\ell}(q)$ associated with the irreducible representation $T_{\ell} : \mathbf{SU}(2) \to \mathbf{U}(\mathcal{P}_{\ell}^{\mathbb{C}})$, where $q = r_x(\varphi/2)r_z(\theta/2)r_x(\psi/2)$ $(\ell \in \mathbb{N})$.
- (2) Viewed as functions on S^2 , the $2\ell + 1$ functions $t_{j0}^{(\ell)}(q)$ (with $q = r_x(\varphi/2)r_z(\theta/2)r_x(\psi/2)$) constitute the middle column of the matrix $t^{(\ell)}(q)$ and the $2\ell+1$ functions $w_{j0}^{(\ell)}(R)$ (with $R = R_x(\varphi)R_z(\theta)R_x(\psi)$) constitute the middle column of the matrix $w^{(\ell)}(R)$.

(3) Viewed as a function on S^2 in spherical coordinates

$$(x, y, z) = (\cos \theta, \sin \theta \cos \varphi, \sin \theta \sin \varphi),$$

we have

$$Y_{\ell j}(x, y, z) = Y_{\ell j}(\varphi, \theta) = t_{j0}^{(\ell)}(q) = w_{j0}^{(\ell)}(R),$$

with
$$q = r_x(\varphi/2)r_z(\theta/2)$$
 and $R = R_x(\varphi)R_z(\theta)$.

As we observed earlier, the matrices $t^{(\ell)}(\theta)$, and so the polynomials $P_{jk}^{\ell}(z)$, are not all real.

And indeed Equation $(*_{48})$ shows that the functions $Y_{\ell j}(\varphi, \theta) = t_{j0}^{(\ell)}(q)$ are not all real.

A way to fix this is to multiply $Y_{\ell j}(\varphi, \theta)$ by i^j .

It turns out that $i^j \sqrt{2\ell + 1} Y_{\ell j}(\varphi, \theta)$ is a function known as the classical spherical harmonic, (unfortunately) denoted $Y_{\ell}^j(\theta, \varphi)$.

Definition 5.11. The function $Y_{\ell}^{j}(\theta, \varphi)$ called *Laplace* spherical harmonic by Dieudonné is given by

$$Y_{\ell}^{j}(\theta,\varphi) = \sqrt{\frac{(2\ell+1)(\ell-j)!}{(\ell+j)!}} e^{-ij\varphi} P_{\ell}^{j}(\cos\theta).$$

If we recall that the motivation for introducing the Wigner *d*-matrices was to *deal with real orthogonal matrices instead of complex unitary matrices*, we can use the Wigner *d*-matrices instead of the matrices $t^{(\ell)}(\theta)$, but there is an annoying sign issue.

Wigner defines his d-matrices as

$$d_{jk}^{\ell}(\theta) = (-1)^{j-k} i^{j-k} t_{jk}^{(\ell)}(\theta),$$

so for k = 0, the factor i^j makes the term real, but now we have the extra factor $(-1)^j$, so the middle column of the *d*-matrix consists of the entries $(-1)^j P_\ell^j(\cos \theta)$ instead of $P_\ell^j(\cos \theta)$. The remedy is to redefine the Wigner *d*-matrices by omitting the factor $(-1)^{j-k}$ in the above formula, or equivalently to define the Wigner \mathcal{D} -matrix $\mathcal{D}^{(\ell)}(R) = \mathcal{D}^{(\ell)}(\varphi, \theta, \psi)$ as follows.

Definition 5.12. The Wigner \mathcal{D} -matrix $\mathcal{D}^{(\ell)}(R)$ is defined as

$$\mathcal{D}_{jk}^{(\ell)}(R) = \mathcal{D}_{jk}^{(\ell)}(\varphi, \theta, \psi) = e^{-i(j\varphi + k\psi)}(-1)^{j-k}d_{jk}^{(\ell)}(\theta)$$
$$= e^{-i(j\varphi + k\psi)}i^{j-k}t_{jk}^{(\ell)}(\theta),$$

where $R = R_x(\varphi)R_z(\theta)R_x(\psi)$.

Of course the Wigner \mathcal{D} -matrix $\mathcal{D}^{(\ell)}$ defines an irreducible representation $\mathcal{D}^{(\ell)} \colon \mathbf{SO}(3) \to \mathbf{U}(\mathcal{P}_{\ell}^{\mathbb{C}})$ equivalent to the irreducible representation $W_{\ell} \colon \mathbf{SO}(3) \to \mathbf{U}(\mathcal{P}_{\ell}^{\mathbb{C}})$.

Also now the *middle column of* $\mathcal{D}^{(\ell)}(\varphi, \theta, \psi)$ consists of the rescaled functions $1/\sqrt{2\ell+1} Y^j_{\ell}(\theta, \varphi)$, as desired.

Note that Sakurai and Napolitano [35] also add the factor $(-1)^{j-k}$ in their definition of the \mathcal{D} -matrix.

We will prove in Section 5.15 that the family of functions $(Y_{\ell}^{j}(\theta, \varphi))_{\ell \in \mathbb{N}, -\ell \leq j \leq \ell}$ forms a Hilbert basis for the functions in $L^{2}(S^{2})$.

There is another property of the functions $Y_{\ell}^{j}(\theta, \varphi)$ worth stating because it plays a role in equivariant deep learning in cnns.

Here we assume that $Y_{\ell}^{j}(\theta, \varphi)$ is viewed as a function on $\mathbf{SO}(3)/H_{x}$.

Since the group $\mathbf{SO}(3)$ acts on S^2 , it is natural to wonder how the function $\lambda_R Y_{\ell}^j$ is related to Y_{ℓ}^j , for $R \in \mathbf{SO}(3)$. Here is more natural to write $Y_{\ell}^{j}(x, y, z)$, where $(x, y, z) \in S^{2}$ are expressed in spherical coordinates in terms of the Euler angles φ and θ as in Proposition 5.17.

Proposition 5.18. Denote the column vector consisting of the $2\ell+1$ functions Y_{ℓ}^{j} by Y_{ℓ} ($\ell \in \mathbb{N}$). For every rotation $R \in \mathbf{SO}(3)$ expressed as $R = R_{x}(\varphi)R_{z}(\theta)R_{x}(\psi)$, we have

$$\begin{aligned} Y_{\ell}(R \cdot (x, y, z)) &= \mathcal{D}^{(\ell)}(R) Y_{\ell}(x, y, z) \\ &= \mathcal{D}^{(\ell)}(\varphi, \theta, \psi) Y_{\ell}(x, y, z), \quad (x, y, z) \in S^2. \end{aligned}$$

As a corollary, we also have

$$\begin{split} \overline{Y_{\ell}}(R^{-1} \cdot (x, y, z)) &= (\mathcal{D}^{(\ell)}(R))^{\top} \, \overline{Y_{\ell}}(x, y, z) \\ &= (\mathcal{D}^{(\ell)}(\varphi, \theta, \psi))^{\top} \, \overline{Y_{\ell}}(x, y, z), \; (x, y, z) \in S^2. \end{split}$$

In special case where j = 0 the function $t_{00}^{(\ell)}(q) = P_{\ell}(\cos \theta)$ depends only on θ and is called a *zonal spherical function*.

More properties of the Legendre and Jacobi polynomials and functional relations and generating functions for the functions $P_{jk}^{\ell}(z)$, can be found in Vilenkin [39], Chapter III, Sections 3-5.

5.14 Integration on SU(2) and SO(3)

In this section we derive explicit formulae for the normalized Haar measures on $\mathbf{SU}(2)$ and $\mathbf{SO}(3)$ when these groups are parametrized by the Euler angles. Technically, these parametrizations are injective only on open subsets of $\mathbf{SU}(2)$ and $\mathbf{SO}(3)$, but the complements of these open sets have measure zero so from the point of view integration we obtain formulae for integrating all functions in $L^2(\mathbf{SU}(2))$ and all functions in $L^2(\mathbf{SO}(3))$ (respectively equipped with these left and right invariant Haar measures).

As a first step we will need to derive a formula for an $\mathbf{SU}(2)$ -invariant volume form on $\mathbf{SU}(2)$ as a pull-back of the $\mathbf{SO}(4)$ -invariant volume form ω_{S^3} on S^3 . The reader may want to review volume forms and integration on manifolds before reading this section. These topics are covered in Gallier and Quaintance [23] (Chapter 4 and 6).

5.15 Fourier Series of Functions in $L^2(SU(2))$, $L^2(SO(3))$ and $L^2(S^2)$

In the preceding sections we computed explicitly several matrix representations $t^{(\ell)}(q)$ for the irreducible representations $T_{\ell} \colon \mathbf{SU}(2) \to \mathbf{U}(\mathcal{P}_{\ell}^{\mathbb{C}})$ with respect to an invariant hermitian inner product on $\mathcal{P}_{\ell}^{\mathbb{C}}$.

In terms of the general results presented in Sections 4.2– 4.4, especially Theorem 4.4, $\rho = \ell$, $n_{\rho} = 2\ell + 1$, $M_{\ell}(q) = t^{(\ell)}(q)$, and since

$$M_{\ell}(q) = \left(\frac{1}{n_{\ell}}m_{ij}^{(\ell)}(q)\right),\,$$

the functions $m_{ij}^{(\ell)}(q)$ are given by $m_{ij}^{(\ell)}(q) = (2\ell+1)t_{ij}^{(\ell)}(q)$, where ℓ ranges through the set $R = \{0, 1/2, 1, 3/2, 2, 5/2, 3, ...\}$ of all nonnegative integer and half integer values. By Peter–Weyl I (Theorem 4.3), the $n_{\ell}^2 = (2\ell + 1)^2$ functions $\frac{1}{\sqrt{n_{\ell}}} m_{ij}^{(\ell)} = \sqrt{2\ell + 1} t_{ij}^{(\ell)}$ in the matrix $\sqrt{2\ell + 1} t^{(\ell)}$ form an orthonormal basis of the minimal two-sided ideal \mathfrak{a}_{ℓ} arising in the Hilbert sum

$$\mathrm{L}^{2}(\mathbf{SU}(2)) = \bigoplus_{\ell} \mathfrak{a}_{\ell},$$

and thus the family of functions

$$\left(\sqrt{2\ell+1}\,t_{ij}^{(\ell)}\right)_{-\ell\leq i,j\leq \ell,\,\ell\in R}$$

with $R = \{0, 1/2, 1, 3/2, 2, ...\}$, is a Hilbert basis of $L^2(\mathbf{SU}(2))$.

By the results of Section 4.7 on the Fourier transform and the Fourier cotransform, by Definition 4.19 of the Fourier transform $\mathcal{F}(f)$ and Equation (FI) (see also Theorem 4.26),

$$f(s) = \sum_{\rho \in R} n_{\rho} \operatorname{tr} \left(\mathcal{F}(f)(\rho) M_{\rho}(s) \right) \qquad f \in \mathcal{L}^{2}(G), s \in G,$$

since $M_{\ell}(q) = t^{(\ell)}(q)$, for every $\ell \in R$, the $(2\ell + 1) \times (2\ell + 1)$ matrix $\alpha^{(\ell)} = \mathcal{F}(f)(\ell)$ of Fourier coefficients of $f \in L^2(\mathbf{SU}(2))$ is given by

$$\alpha^{(\ell)} = \int_{\mathbf{SU}(2)} f(q) (t^{(\ell)}(q))^* \, d\nu(q),$$

where ν is the normalized Haar measure on $\mathbf{SU}(2)$, and by the Fourier inversion formula (FI) we have

$$f(q) = \sum_{\ell \in R} (2\ell + 1) \operatorname{tr} \left(\alpha^{(\ell)} t^{(\ell)}(q) \right), \quad q \in \mathbf{SU}(2).$$

474 CHAPTER 5. MATRIX REPRESENTATIONS OF $SL(2, \mathbb{C})$, SU(2) AND SO(3)

Written in terms of matrix elements, we obtain the equations

$$\alpha_{jk}^{(\ell)} = \int_{\mathbf{SU}(2)} f(q) \overline{t_{kj}^{(\ell)}(q)} \, d\nu(q) \tag{FC1}$$

and

$$f(q) = \sum_{\ell \in R} (2\ell + 1) \sum_{j=-\ell}^{\ell} \sum_{k=-\ell}^{\ell} \alpha_{kj}^{(\ell)} t_{jk}^{(\ell)}(q), \quad q \in \mathbf{SU}(2).$$
(FS1)

Using the Euler angles, Proposition 5.14 (in particular, $(*_{41}), (*_{42})$), namely

$$\begin{split} t_{jk}^{(\ell)}(q) &= t_{jk}^{(\ell)}(u(\varphi,\theta,\psi)) = e^{-i(j\varphi+k\psi)} t_{jk}^{(\ell)}(\theta) \\ &= e^{-i(j\varphi+k\psi)} P_{jk}^{\ell}(\cos\theta), \quad \ell \in R, \end{split}$$

Proposition ?? (formula for the Haar measure on $\mathbf{SU}(2)$), and the fact that $\overline{P_{jk}^{\ell}(\cos\theta)} = (-1)^{j-k}P_{jk}^{\ell}(\cos\theta)$ (left as an exercise), by swapping j and k in (FC1), we obtain the following series expansion for the functions in $L^2(\mathbf{SU}(2))$. **Proposition 5.19.** Every function $f \in L^2(\mathbf{SU}(2))$ expressed in terms of the Euler angles $(0 \leq \varphi < 2\pi, 0 \leq \theta < \pi, -2\pi \leq \psi < 2\pi)$ can be written as the Fourier series

$$f(u(\varphi, \theta, \psi)) = \sum_{\ell \in R} (2\ell + 1) \sum_{j=-\ell}^{\ell} \sum_{k=-\ell}^{\ell} \alpha_{kj}^{(\ell)} e^{-i(j\varphi + k\psi)} P_{jk}^{\ell}(\cos \theta),$$
(FS2)

where the Fourier coefficients are given by

$$\alpha_{kj}^{(\ell)} = \frac{(-1)^{j-k}}{16\pi^2} \int_{-2\pi}^{2\pi} \int_0^{2\pi} \int_0^{\pi} f(u(\varphi, \theta, \psi)) e^{i(j\varphi+k\psi)} P_{jk}^{\ell}(\cos\theta) \sin\theta \, d\theta \, d\varphi \, d\psi. \quad (\text{FC2})$$

Recall that $u(\varphi, \theta, \psi) = r_x(\varphi/2)r_z(\theta/2)r_x(\psi/2) \in \mathbf{SU}(2).$

The above discussion applies to $\mathbf{SO}(3)$ and its irreducible representations $W_{\ell} \colon \mathbf{SO}(3) \to \mathbf{U}(\mathcal{P}_{\ell}^{\mathbb{C}})$, which are now indexed by the set \mathbb{N} of natural numbers.

By Peter–Weyl I (Theorem 4.3), the $n_{\ell}^2 = (2\ell + 1)^2$ functions $\frac{1}{\sqrt{n_{\ell}}} m_{ij}^{(\ell)} = \sqrt{2\ell + 1} w_{ij}^{(\ell)}$ in the matrix $\sqrt{2\ell + 1} w^{(\ell)}$, where $w^{(\ell)}(R)$ is the matrix associated with $W^{\ell}(R)$ for $R \in \mathbf{SO}(3)$, form an orthonormal basis of the minimal two-sided ideal \mathfrak{a}_{ℓ} arising in the Hilbert sum

$$\mathrm{L}^{2}(\mathbf{SO}(3)) = \bigoplus_{\ell} \mathfrak{a}_{\ell},$$

and thus the family of functions

$$\left(\sqrt{2\ell+1}\,w_{ij}^{(\ell)}\right)_{-\ell\leq i,j\leq \ell,\,\ell\in\mathbb{N}}$$

is a Hilbert basis of $L^2(\mathbf{SO}(3))$.

It follows that for every $\ell \in \mathbb{N}$, the $(2\ell + 1) \times (2\ell + 1)$ matrix $\alpha^{(\ell)} = \mathcal{F}(f)(\ell)$ of Fourier coefficients of $f \in L^2(\mathbf{SO}(3))$ is given by

$$\alpha^{(\ell)} = \int_{\mathbf{SO}(3)} f(R) (w^{(\ell)}(R))^* \, d\nu_0(R),$$

where ν_0 is the normalized Haar measure on **SO**(3), and by the Fourier inversion formula (FI) we have

$$f(R) = \sum_{\ell \in \mathbb{N}} (2\ell + 1) \operatorname{tr} \left(\alpha^{(\ell)} w^{(\ell)}(R) \right), \quad R \in \mathbf{SO}(3).$$
5.15. FOURIER SERIES OF FUNCTIONS IN $L^2(SU(2))$, $L^2(SO(3))$ AND $L^2(S^2)$ 479

Written in terms of matrix elements, we obtain the equations

$$\alpha_{jk}^{(\ell)} = \int_{\mathbf{SO}(3)} f(R) \overline{w_{kj}^{(\ell)}(R)} \, d\nu_0(R) \tag{FC1'}$$

and

$$f(R) = \sum_{\ell \in \mathbb{N}} (2\ell + 1) \sum_{j=-\ell}^{\ell} \sum_{k=-\ell}^{\ell} \alpha_{kj}^{(\ell)} w_{jk}^{(\ell)}(q), \quad R \in \mathbf{SO}(3).$$
(FS1')

Using the Euler angles, Proposition 5.14 (in particular, $(*_{41}), (*_{42})$), Proposition ?? (formula for the Haar measure on **SO**(3)), that by Proposition 5.11 we have

$$w_{jk}^{(\ell)}(R_0(\varphi,\theta,\psi)) = e^{-i(j\varphi+k\psi)} t_{jk}^{(\ell)}(\theta)$$

= $e^{-i(j\varphi+k\psi)} P_{jk}^{\ell}(\cos\theta), \quad \ell \in \mathbb{N},$

and using the fact that

 $\overline{P_{jk}^{\ell}(\cos\theta)} = (-1)^{j-k} P_{jk}^{\ell}(\cos\theta)$ (left as an exercise), we obtain the following series expansion for the functions in $L^2(\mathbf{SO}(3))$.

Let $R_0(\varphi, \theta, \psi) = R_x(\varphi)R_z(\theta)R_x(\psi) \in \mathbf{SO}(3).$

Proposition 5.20. Every function $f \in L^2(\mathbf{SO}(3))$ expressed in terms of the Euler angles $(0 \le \varphi < 2\pi, 0 \le \theta < \pi, 0 \le \psi < 2\pi)$ can be written as the Fourier series

$$f(R_0(\varphi, \theta, \psi)) = \sum_{\ell \in \mathbb{N}} (2\ell + 1) \sum_{j=-\ell}^{\ell} \sum_{k=-\ell}^{\ell} \alpha_{kj}^{(\ell)} e^{-i(j\varphi + k\psi)} P_{jk}^{\ell}(\cos \theta),$$
(FS2')

where the Fourier coefficients are given by

$$\alpha_{kj}^{(\ell)} = \frac{(-1)^{j-k}}{8\pi^2} \int_0^{2\pi} \int_0^{2\pi} \int_0^{2\pi} \int_0^{\pi} f(R_0(\varphi, \theta, \psi))$$
$$e^{i(j\varphi+k\psi)} P_{jk}^{\ell}(\cos\theta) \sin\theta \, d\theta \, d\varphi \, d\psi. \quad (\text{FC2'})$$

Remarks:

- (1) If the functions f are real-valued, it may be preferable to use the Wigner d-matrices $d^{(\ell)}(\theta)$ of Definition 5.5, which are real orhogonal, instead of the complex matrices $t^{(\ell)}(\theta)$, which amounts to using $(-1)^{j-k}i^{j-k}t_{jk}^{(\ell)}(\theta)$ instead of $t_{jk}^{(\ell)}(\theta)$, that is, the real polynomials $(-1)^{j-k}i^{j-k}P_{jk}^{\ell}$ instead of P_{jk}^{ℓ} in (FS2') and (FC2'). This is common practice in computer vision.
- (2) A variant of the definition of the Fourier transform and of the Fourier cotransform occurs in the computer vision community. In these formula, $w^{(\ell)}(R)$ is replaced by $(w^{(\ell)}(R))^*$, namely

$$\alpha^{(\ell)} = \int_{\mathbf{SO}(3)} f(R) w^{(\ell)}(R) \, d\nu_0(R),$$

and

$$f(R) = \sum_{\ell \in \mathbb{N}} (2\ell+1) \operatorname{tr} \left(\alpha^{(\ell)} (w^{(\ell)}(R))^* \right), \quad R \in \mathbf{SO}(3).$$

Our version is consistent with the definition of the Fourier transform in the case where G is abelian.

We can also obtain the following Fourier series expansion for every function $f \in L^2(S^2)$ in terms of the associated Legendre functions,

$$f(\varphi,\theta) = \sum_{\ell=0}^{\infty} (2\ell+1) \sum_{j=-\ell}^{\ell} \beta_{\ell}^{j} e^{-ij\varphi} P_{\ell}^{j}(\cos\theta), \quad (FS8)$$

with

$$\beta_{\ell}^{j} = \frac{1}{4\pi} \frac{(\ell-j)!}{(\ell+j)!} \int_{0}^{2\pi} \int_{0}^{\pi} f(\varphi,\theta) e^{ij\varphi} P_{\ell}^{j}(\cos\theta) \sin\theta \, d\theta \, d\varphi.$$
(FC8)

$$\int_{0}^{2\pi} \int_{0}^{\pi} |f(\varphi,\theta)|^{2} d\nu = \sum_{\ell=0}^{\infty} (2\ell+1) \sum_{j=-\ell}^{\ell} \frac{(\ell+j)!}{(\ell-j)!} |\beta_{\ell}^{j}|^{2},$$
(PS2)

where $d\nu = (1/4) \sin \theta \, d\theta \, d\varphi$ is the normalized measure on S^2 in spherical coordinates; among other sources, see Gallier and Quaintance [23] (Section 6.4).

$$Y_{\ell j}(\varphi, \theta) = t_{j0}^{(\ell)}(q) = i^{-j} \sqrt{\frac{(\ell - j)!}{(\ell + j)!}} e^{-ij\varphi} P_{\ell}^{j}(\cos \theta),$$
$$-\ell \le j \le \ell,$$

with $\ell \in \mathbb{N}$, so we have

$$\sqrt{\frac{(2\ell+1)(\ell-j)!}{(\ell+j)!}}e^{-ij\varphi}P^j_\ell(\cos\theta) = i^j\sqrt{2\ell+1}\,Y_{\ell j}(\varphi,\theta),$$

for $\ell \in \mathbb{N}$ and $-\ell \leq j \leq \ell$, and in view of (FS8) and (FS2), the above functions form a Hilbert basis for the functions in $L^2(S^2)$.

As we explained just after Proposition 5.17, the functions $i^j \sqrt{2\ell + 1} Y_{\ell j}(\varphi, \theta)$ are (a version of) the *Laplace spher*ical harmonics $Y_{\ell}^j(\theta, \varphi)$, namely

$$Y_{\ell}^{j}(\theta,\varphi) = \sqrt{\frac{(2\ell+1)(\ell-j)!}{(\ell+j)!}} e^{-ij\varphi} P_{\ell}^{j}(\cos\theta).$$

Remark: Some authors include $1/\sqrt{4\pi}$ in the leading constant.

The associated Legendre functions can be computed starting with the Legendre polynomials using some recurrence equations; see Gallier and Quaintance [23] (Section 7.3).