
Chapter 5

Matrix Representations of SL(2,C),
SU(2) and SO(3)

This chapter deals with explicit matrix descriptions of
the irreducible representations of the groups SL(2,C),
SU(2) and SO(3) (unitary representation in the last two
cases).

Our presentation (except for Section 5.7) relies heavily on
Vilenkin’s exposition [39], especially Chapter III.

To the best of our knowledge Vilenkin contains the most
detailed presentation of this type of material.
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5.1 Irreducible Representations of SU(2) and SO(3)

In Example 2.8 it was proven that the representations
Um : SU(2) ! GL(PC

m(2)) are irreducible.

In Example 2.9 it was proven that the representations
W` : SO(3) ! GL(PC

2`(2)) are irreducible.

Recall that since SU(2) is compact and P
C

m(2) is finite-
dimensional there is an invariant inner product on P

C

m(2)
so we may assume that these representations are unitary.

Proposition 5.1. Every irreducible unitary represen-
tation of SU(2) is equivalent to one of the irreducible
unitary representations Um : SU(2) ! U(PC

m(2)). Fur-
thermore, every irreducible unitary representation of
SO(3) is equivalent to one of the irreducible unitary
representations Wm : SO(3) ! U(PC

2m(2)).

The key point is to figure out what are the characters �Um

of the irreducible unitary representations Um.
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We now give a more pleasant description of the irreducible
representations of SO(3) in terms of harmonic polynomi-
als.

5.2 Irreducible Representations of SO(3); Harmonics

Recall that the Laplacian in R
n is given by

�f =
@2f

@x2
1

+
@2f

@x2
2

+ · · · +
@2f

@x2n

where f : Rn
! C is twice di↵erentiable.

The n-sphere Sn
✓ R

n+1 is given by

Sn = {(x1, . . . , xn+1) 2 R
n+1

| x2
1
+ · · · + x2n+1

= 1}.
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Definition 5.1. Let P
C

k (n + 1) denote the space of
homogeneous polynomials of degree k in n + 1 � 2
variables with complex coe�cients, and let PC

k (S
n) de-

note the restrictions of homogeneous polynomials in
P

C

k (n + 1) to Sn.

Let HC

k (n + 1) denote the space of complex harmonic
polynomials , with

H
C

k (n + 1) = {P 2 P
C

k (n + 1) | �P = 0};

in the above equation, we view P as a function on R
n+1.

Harmonic polynomials are sometimes called solid har-
monics .

Finally, let HC

k (S
n) denote the space of complex spheri-

cal harmonics as the set of restrictions of harmonic poly-
nomials in H

C

k (n + 1) to Sn.
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It not hard to prove that the restriction map from
H

C

k (n + 1) to H
C

k (S
n) is a bijection, and thus a linear

isomorphism; see Gallier and Quaintance [23] (Section
7.5).

The functions in H
C

k (S
n), the spherical harmonics, have

been studied extensively.

They are the eigenspaces of the Laplacian on the sphere
Sn; see Gallier and Quaintance [23] (Chapter 7). We will
return to these functions later.

The group SO(n + 1) acts on P
C

k (n + 1) by the (left
regular) action

(RQ(P ))(x) = P (Q�1x),

Q 2 SO(n + 1), P 2 P
C

k (n + 1), x 2 R
n+1.
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Note that the above formula shows that R is also an
action of SO(n + 1) on smooth functions on R

n+1.

The action R on P
C

k (n + 1) is reducible for k � 2.

For example, we easily check that the subspace of
P

C

2
(n + 1) generated by the polynomial x2

1
+ · · · + x2n+1

is invariant.

However this action turns out to be irreducible on
H

C

k (n + 1).

This will be shown in Section 6.10.

But first we need to prove that the action of the Laplacian
on smooth functions on R

n+1 commutes with the action
R.
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Recall that �Qf is the function given by
(�Qf )(x) = f (Q�1x).

Proposition 5.2.The action of the Laplacian on smooth
functions on R

n+1 commutes with the action R; that
is, for every smooth function f on R

n+1, for every
Q 2 SO(n + 1), for all u 2 R

n+1, we have

�(�Qf )(u) = (�f )(Q�1u).

As a corollary of Proposition 5.2, the vector space
H

C

k (n + 1) is invariant under R, and so
R : SO(n + 1) ! GL(HC

k (n + 1)) is a representation.

Since SO(n + 1) is compact and H
C

k (n + 1) is finite-
dimensional, we may assume that R is unitary.
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It is shown in Gallier and Quaintance [23] (Section 7.5)
that HC

k (n + 1) has dimension

ak,n+1 =

✓
n + k

k

◆
�

✓
n + k � 2

k � 2

◆

if n � 1, k � 2, with a0,n+1 = 1 and a1,n+1 = n, For
n = 2, we get ak,3 = 2k + 1.

Here is a list of bases of the homogeneous harmonic poly-
nomials of degree k in three variables up to k = 4.

k = 0 1

k = 1 x, y, z

k = 2 x2 � y2, x2 � z2, xy, xz, yz

k = 3 x3 � 3xy2, 3x2y � y3, x3 � 3xz2, 3x2z � z3,

y3 � 3yz2, 3y2z � z3, xyz

k = 4 x4 � 6x2y2 + y4, x4 � 6x2z2 + z4, y4 � 6y2z2 + z4,

x3y � xy3, x3z � xz3, y3z � yz3,

3x2yz � yz3, 3xy2z � xz3, 3xyz2 � x3y.
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To prove that the representations
R : SO(n+1) ! U(HC

k (n+1)) are irreducible we restrict
ourselves to the case where n = 2.

In order to deal with the case where n > 2, we need
results from the next chapter.

Since these regular representations map to di↵erent spaces,
for clarity we index them by k, that is, we write
Rk : SO(n + 1) ! U(HC

k (n + 1)).

Proposition 5.3. The representations
Rk : SO(3) ! U(HC

k (3)) are irreducible. In fact, the
representations Rk : SO(3) ! U(HC

k (3)) and
Wk : SO(3) ! U(PC

2k(2)) are equivalent.

Proposition 5.3 also shows that the representations
Rk : SO(3) ! U(HC

k (3)) form a complete set of irre-
ducible representations of SO(3).
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5.3 Factorization of the Unit Quaternions Using
Euler Angles

In order to obtain formulae for the matrix elements of the
representations of SU(2) in terms of special functions, the
Jacobi polynomials, it is necessary to understand how to
express the unit quaternions in terms of Euler angles.

The key fact is that there are three types of unit quater-
nions, rx('), ry( ), rz(✓) that define rotations around the
x-axis, y-axis, and z-axis, respectively, namely

rx('/2) =

 
e
i'
2 0

0 e�
i'
2

!
, ry( /2) =

 
cos  

2
� sin  

2

sin  
2

cos  
2

!
,

rz(✓/2) =

 
cos ✓

2
i sin ✓

2

i sin ✓
2

cos ✓
2

!
.
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We immediately check that the rotations corresponding
to rx('/2), ry( /2), rz(✓/2) under the homomorphism
⇢ : SU(2) ! SO(3) (see Theorem 1.1) are given by the
matrices

Rx(') =

0

@
1 0 0
0 cos' � sin'
0 sin' cos'

1

A , Ry( ) =

0

@
cos 0 � sin 
0 1 0

sin 0 cos 

1

A ,

Rz(✓) =

0

@
cos ✓ � sin ✓ 0
sin ✓ cos ✓ 0
0 0 1

1

A .

So Rx(') is a rotation by ' around the x-axis (with the
plane orthogonal to the x-axis oriented by (e2, e3, e1)),
Ry( ) is a rotation by  around the �y-axis (with the
plane orthogonal to the �y-axis oriented by (e1, e3,�e2),
or equivalently a rotation by � around the y-axis with
the plane orthogonal to the y-axis oriented by (e3, e1, e2)),
and Rz(✓) is a rotation by ✓ around the z-axis (with the
plane orthogonal to the z-axis oriented by (e1, e2, e3)).
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Remark: Beware that a number of authors switch the
roles of x and z, in particular Vilenkin [39] and most
books on quantum mechanics.

As a consequence, the orientation of the plane normal to
the y-axis is flipped. In this case, Rx(') and Rz(') are
swapped, butRy( ) becomesRy(� ), which is a rotation
by  around the y-axis (with the plane orthogonal to the
y-axis oriented by (e3, e1, e2)).

Vilenkin denotes our matrices rx, ry, rz as !3,!2,!1.

The issue of deciding exactly how a quaternion acts on
R

3 as a rotation is quite confusing, and we feel that some
clarifications are in order.
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First we need to decide whether a vector (x, y, z) 2 R
3

is represented as a skew-hermitian matrix (a matrix in
su(2)) or as a hermitian matrix.

The first option seems to be followed by most mathemati-
cians and by the computer graphics community.

On the other hand, physicists seem to prefer hermitian
matrices to skew-hermtian matrices.

Of course, if S is a skew-hermitian matrix, then iS is a
hermitian matrix, and this is the method used to make the
conversion, although sometimes (�i)S is used instead.
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In the first method, we embed R
3 into su(2) ✓ H using

the map

su(x, y, z) =

✓
ix y + iz

�y + iz �ix

◆
, (x, y, z) 2 R

3.

Then q 2 SU(2) defines the map ⇢q (on R
3) given by

⇢q(x, y, z) = su�1(q su(x, y, z)q⇤).

This is the method used in this book and in Gallier and
Quaintance [23] (Chapter 15). It is possible to derive
an explicit orthogonal matrix corresponding to ⇢q; see
Proposition 15.5.
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The representation of R3 as the space of hermitian ma-
trices has several variations, and this is the source of the
confusion.

One option is to represent (x, y, z) 2 R
3 by the hermitian

matrix

(�i)su(x, y, z) =

✓
x z � iy

z + iy �x

◆
,

A nice feature of this representation is that
✓

x z � iy
z + iy �x

◆
= x�3 + y�2 + z�1,

where �1, �2, �3 are the Pauli spin matrices , where

�1 =

✓
0 1
1 0

◆
, �2 =

✓
0 �i
i 0

◆
, �3 =

✓
1 0
0 �1

◆
.
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This representation is equivalent to the representation us-
ing su and yields the exact same rotation ⇢q. See Gallier
and Quaintance [23] (Chapter 15).

The second option apparently adopted in most of the
quantum mechanics literature is to use a version of isu,
except that x and z are swapped and y becomes �y.

Vilenkin [39] (Chapter II, Section 1) uses the map

(x1, y1, z1) 7!

✓
z1 x1 + iy1

x1 � iy1 �z1

◆
,

so in terms of our embedding,

z1 = x, x1 = z, y1 = �y.
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We can check that the unit quaternions
rx('/2), ry( /2), rz(✓/2) induce the rotations
Rz('), Ry(� ), and Rx(✓), namely

Rz(') =

0

@
cos' � sin' 0
sin' cos' 0
0 0 1

1

A , Ry(� ) =

0

@
cos 0 sin 
0 1 0

� sin 0 cos 

1

A ,

Rx(✓) =

0

@
1 0 0
0 cos ✓ � sin ✓
0 sin ✓ cos ✓

1

A .

These are the rotation matrices used in most books on
quantum mechanics, including Sakurai and Napolitano
[35].
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Using our notation, Vilenkin factors a unit quaternion as

q = rx('/2)rz(✓/2)rx( /2);

see Page 99 of Vilenkin [39]. This quaternion induces the
rotation Rz(')Rx(✓)Rz( ).

Wigner [42] (Page 158) uses the map

(x1, y1, z1) 7!

✓
�z1 x1 + iy1

x1 � iy1 z1

◆
,

so in terms of our embedding,

z1 = �x, x1 = z, y1 = �y.
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Analogously to the factorization of rotation matrices in
terms of the Euler angles, we will prove that every unit
quaternion q can be written in the form

q = u(', ✓, ) = rx('/2)rz(✓/2)rx( /2).

Multiplying out the above matrices we get

u(', ✓, ) =

 
e
i'
2 0

0 e�
i'
2

! 
cos ✓

2
i sin ✓

2

i sin ✓
2

cos ✓
2

! 
e
i 
2 0

0 e�
i 
2

!

=

0

@ cos ✓
2
e
i('+ )

2 i sin ✓
2
e
i('� )

2

i sin ✓
2
e�

i('� )
2 cos ✓

2
e�

i('+ )
2

1

A .

The reader can reconfirm by inspection that
u(', ✓, )�1 = u(', ✓, )⇤.
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Proposition 5.4. Every unit quaternion

q =

✓
↵ �
�� ↵

◆
, ↵, � 2 C, |↵|2 + |�|2 = 1

can be expressed as

q = u(', ✓, ) = rx('/2)rz(✓/2)rx( /2)

=

 
e
i'
2 0

0 e�
i'
2

! 
cos ✓

2
i sin ✓

2

i sin ✓
2

cos ✓
2

! 
e
i 
2 0

0 e�
i 
2

!
.

If � = 0, we can pick ✓ = 0 and ' and  such that

↵ = ei
('+ )

2 ,

and in particular,  = 0.

If ↵ = 0, we can pick ✓ = ⇡ and ' and  such that

� = ei
('� +⇡)

2 ,

and in particular,  = ⇡.
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If ↵� 6= 0 and if we require that

0  ' < 2⇡, 0 < ✓ < ⇡, �2⇡   < 2⇡,

then ' and  are unique. In this case,

cos ✓ = 2|↵|2 � 1, ei' = �
↵�i

|↵||�|
, e

i 
2 =

↵

|↵|
e�

i'
2 .

An interesting corollary of Proposition 5.4 is the fact that
every rotation matrix Q 2 SO(3) can be written in the
terms of the Euler angles as a product

Q = Rx(')Rz(✓)Rx( ),
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namely

Q =

0

@
1 0 0
0 cos' � sin'
0 sin' cos'

1

A

0

@
cos ✓ � sin ✓ 0
sin ✓ cos ✓ 0
0 0 1

1

A

0

@
1 0 0
0 cos � sin 
0 sin cos 

1

A .

But in this case, we may assume that 0   < 2⇡.

This is because both q and �q define the same rotation
⇢q, but since ei⇡ = e�i⇡ = �1, we have
�rx( /2) = rx(

 +2⇡
2

), so if �2⇡   < 0, then
0   + 2⇡ < 2⇡ and Q = Rx(')Rz(✓)Rx( + 2⇡).
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5.4 Multiplication of Quaternions in Terms of Euler
Angles
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5.5 Dehomogenized Representations of SL(2,C)
and SU(2)

In Example 2.8 we defined the irreducible representations
Um : SU(2) ! GL(PC

m(2)) of SU(2) whose representing
spaces are the vector spaces PC

m(2) of homogeneous poly-
nomials in two variables.

We also said that it is customary, especially in the physics
literature, to index homogeneous polynomials in terms of
` = m/2, which is an integer when m is even but a half
integer when m is odd.

In this context, in terms of ` = m/2, a homogeneous
polynomial is written as

P (z1, z2) =
X̀

k=�`

ckz
`�k
1

z`+k
2

,

where it is assumed that ` + k = j where j takes the
integral values j = 0, 1, . . . , 2` = m, so that ` � k =
2`� (` + k) = 2`� j takes the values 2`, 2`� 1, . . . , 0.
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Note that k = j�` = j�m/2 with j = 0, 1, . . . , 2` = m,
so k is an integer only if m is even.

If m is odd, say m = 2h+ 1, then ` = h+ 1

2
and k takes

the 2` + 1 = m + 1 values

�h�
1

2
, �(h� 1)�

1

2
, . . . ,�

1

2
,
1

2
, 1 +

1

2
, . . . , h +

1

2
,

and so k 6= 0.

If m is even, say m = 2h, then ` = h and k takes the
2` + 1 = m + 1 values

�h, �(h� 1), . . . ,�1, 0, 1, . . . , h� 1, h.
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For example, if ` = 3

2
, then k takes the four values

�
3

2
, �

1

2
,
1

2
,
3

2
,

and if ` = 2, then k takes the five values

�2, �1, 0, 1, 2.

The representing space is then P
C

2`(2) and it has dimen-
sion 2` + 1.

Using the standard technique of “dehomogenizing” and
“homogenizing” we can use the space of complex polyno-
mials of degree 2` + 1 in one variable z instead of the
space P

C

2`(2) of homogeneous polynomials in two vari-
ables z1, z2.
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Given a homogeneous polynomial P (z1, z2) of degree
m = 2`, by dehomogenizing we obtain the polynomial
Q(z) of degree m = 2` given by

Q(z) = P (z, 1). (dehomog)

So given

P (z1, z2) =
X̀

k=�`

ckz
`�k
1

z`+k
2

,

we obtain

Q(z) =
X̀

k=�`

ckz
`�k. (Q)
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Observe that due to our indexing scheme, the coe�cients
of Q have “funny” indices.

For example, for ` = 2, so that m = 2` = 4,

Q(z) = c�2z
4 + c�1z

3 + c0z
2 + c1z + c2,

and when ` = 5/2, so that m = 2` = 5, we have

Q(z) = c�5/2z
5+c�3/2z

4+c�1/2z
3+c1/2z

2+c3/2z+c5/2.

Conversely, given a polynomial Q(z) of degree m = 2`,
by homogenizing we obtain the homogeneous polynomial
P (z1, z2) of degree m = 2` given by

P (z1, z2) = z2`
2
Q

✓
z1
z2

◆
. (homog)
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Definition 5.2. Following Vilenkin, we denote the space
of polynomials of degreem = 2` with complex coe�cients
in one variable by P

C

` .

Note that the “funny” index ` is a half integer when m
is odd.

We can convert our representations
Um : SU(2) ! GL(PC

m(2)) to representations in the spaces
P

C

` .

Actually, until we use the fact that SU(2) is compact, we
consider representations of SL(2,C).
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Definition 5.3. Given any matrix

A =

✓
a b
c d

◆
, a, b, c, d 2 C, ad� bc = 1,

in SL(2,C), for any polynomial Q 2 P
C

` , define
T`(A)(Q(z)) by

T`(A)(Q(z)) = (bz + d)2`Q

✓
az + c

bz + d

◆
. (T`)

It is immediately verified that the above formula yields
a representation T` : SL(2,C) ! GL(PC

` ) which yields
a representation T` : SU(2) ! GL(PC

` ) when restricted
to the subgroup SU(2) of SL(2,C).
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Note that the above formula for T`(A)(Q(z)) is not what
we would obtain directly from the representation U`.

We are using Vilenkin’s formula to facilitate comparison
with his exposition; see

Vilenkin [39] (Chapter III, Section 2.1) and Kosmann-
Schwarzbach [30].

With our version we define the representations T` as

T`(A)(Q(z)) = (�cz + a)2`Q

✓
dz � b

�cz + a

◆
.



402 CHAPTER 5. MATRIX REPRESENTATIONS OF SL(2,C), SU(2) AND SO(3)

In its homogeneous form, Vilenkin’s version of the repre-
sentation U` is

Uv
` (A)(Q(z1, z2)) = Q(az1 + cz2, bz1 + dz2).

Observe that

✓
az1 + cz2
bz1 + dz2

◆
=

✓
a c
b d

◆✓
z1
z2

◆
= A>

✓
z1
z2

◆
,

but in our case

✓
dz1 � bz2
�cz1 + az2

◆
=

✓
d �b
�c a

◆✓
z1
z2

◆
= A�1

✓
z1
z2

◆
.
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We immediately check that if

Y =

✓
b d
�a �c

◆
,

then

Y A> = A�1Y,

and det(Y ) = ad� bc = 1.

Then Y defines a linear isomorphism of PC

2`(2) given by
Q(z1, z2) 7! Q(bz1+dz2,�az1�cz2), and this map is an
equivalence between the representations U` and Uv

` (we
leave the details as an exercise).
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We also leave it as an exercise (using the dehomogeniza-
tion and the homogenization maps, which are linear iso-
morphisms) to check that the representation
U2` : SL(2,C) ! GL(PC

2`(2)) is equivalent to the rep-
resentation T` : SL(2,C) ! GL(PC

` ) and similarly the
representation U2` : SU(2) ! GL(PC

2`(2)) is equivalent
to the representation T` : SU(2) ! GL(PC

` ).

In particular, the representations
T` : SU(2) ! GL(PC

` ) form a complete set of irreducible
representations of SU(2).
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5.6 The Lie Algebra Representation Associated with
T`
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5.7 Irreducible Lie Algebra Representations of sl(2,C)
and su(2)
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5.8 SU(2)-Invariant Hermitian Inner Product on P
C

`

We now restrict our attention to the representations T`
of SU(2).

Our goal is to find explicitly an SU(2)-invariant hermi-
tian inner product on P

C

` .

Because SU(2) is compact, such an inner product must
exist.

If such an invariant hermitian inner product h�,�i ex-
ists, in particular it must be invariant for the matri-
ces T`(rx('/2)), T`(ry(✓/2)) and T`(rz( /2)), so we as-
sert such invariance and deduce consequences by taking
derivatives.

In fact the proof shows that is su�ces to assert invariance
for the matrices T`(rx('/2)) and T`(ry(✓/2)).
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First we need to figure out what is T`(rx('/2))(z`�k).

Proposition 5.5. Each polynomial z`�k is an eigen-
vector of T`(rx('/2)) for the eigenvalue e�ik', that is,

T`(rx('/2))(z
`�k) = e�ik'z`�k. (⇤1)

Thus in the basis (z`�k)�`k`, the matrix of T`(rx('/2))
is the diagonal matrix

0

BBBB@

ei`'

ei(`�1)'

. . .
e�i(`�1)'

e�i`'

1

CCCCA
.
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Next we need to state the invariance of the inner product
for T`(rx('/2)) and T`(ry('/2)).

After some labor we find that the 2` + 1 polynomials

z`�k

p
(`� k)!(` + k)!

,

form an orthonormal basis of PC

` for an invariant her-
mitian inner product on SU(2) which is uniquely deter-
mined by setting h1, 1i = (2`)!.

This is an important result that we record below.
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Proposition 5.6. In Vilenkin’s notation, the polyno-
mials

 k(z) =
z`�k

p
(`� k)!(` + k)!

, �`  k  ` (⇤10)

form an orthonormal basis of PC

` for a unique invari-
ant hermitian inner product on SU(2).

The  k are the unit-length eigenvectors of the linear
map T`(rx('/2)).



5.8. SU(2)-INVARIANT HERMITIAN INNER PRODUCT ON P
C

` 411

Actually, it is remarkable that if we define a hermitian
inner product on P

C

` by requiring that the polynomials
 k form an orthonormal basis, then this inner product is
SU(2) invariant.

The proof of this fact relies on two standard facts of Lie
group theory about the relationship between a represen-
tation and its derivative.

Proposition 5.7. The hermitian inner product on
P

C

` making the basis ( k) orthonormal is SU(2)-invariant.
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5.9 Matrices of the Irreducible Representations
of SL(2,C)

We now use the basis ( k) to find various expressions
for the matrix entries of the matrix t(`)(A) representing
T`(A) in this basis.

We give PC

` the hermitian inner product making ( k) an
orthonormal basis. In this section we consider an arbi-
trary matrix

A =

✓
↵ �
� �

◆
, ↵, �, �, � 2 C, ↵� � �� = 1

in SL(2,C).

The special case of SU(2) is considered in later sections.
In this latter case these matrices are unitary.



5.9. MATRICES OF THE IRREDUCIBLE REPRESENTATIONS OF SL(2,C) 413

We use ↵, �, �, � instead of a, b, c, d to make it easier
to follow Vilenkin’s exposition. Since the  k form an
orthonormal basis, we have

t(`)jk (A) = hT`(A)( k),  ji

=
hT`(A)(z`�k), z`�j

ip
(`� j)!(` + j)!(`� k)!(` + k)!

. (⇤21)

By (T`) we have

T`(A)(z
`�k) = (�z + �)2`

✓
↵z + �

�z + �

◆`�k

= (↵z + �)`�k(�z + �)`+k,

so we obtain

t(`)jk (A) =
h(↵z + �)`�k(�z + �)`+k, z`�j

ip
(`� j)!(` + j)!(`� k)!(` + k)!

. (⇤22)
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The expression on the right-hand side can be “doctored
on” in various ways.

The first brute-force method is to use the binomial for-
mula together with the orthogonality of z`�j and z`�k for
j 6= k and the formulae

hz`�k, z`�k
i = (`� k)!(` + k)!, �`  k  `.

We get

t(`)jk (A) =

s
(`� j)!(` + j)!

(`� k)!(` + k)!

NX

h=M

✓
`� k

`� j � h

◆✓
` + k

h

◆

↵`�j�h�h�j+h�k�`+k�h (⇤23)

with M = max(0, k � j), N = min(`� j, ` + k).
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This can be somewhat simplified as

t(`)jk (A) =
p
(`� j)!(` + j)!(`� k)!(` + k)!

⇥

NX

h=M

(h!(`� j � h)!(` + k � h)!(j � k + h)!)�1

↵`�j�h�h�j+h�k�`+k�h, (⇤24)

also with M = max(0, k � j), N = min(`� j, ` + k).

It is understood that if any of ↵, �, �, � is zero, then the
corresponding exponent must be zero.

Of course, since ↵� � �� = 1, at most two of these coef-
ficients must be nonzero.
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Using the factorization of A as the product of an upper
triangular matrix and a lower triangular matrix, Vilenkin
obtains simpler formulae; see Vilenkin [39] (Chapter III,
Section 3.2).

In particular, if � 6= 0, then we have the following fomula
that will be needed later:

t(`)jk (A) =

s
(`� j)!(`� k)!

(` + j)!(` + k)!
⇥

X̀

h=max(j,k)

(` + h)!

(`� h)!(h� j)!(h� k)!
�h�j�h�k�j+k.

(⇤25)
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If � = � = 0, then ↵� = 1,

A =

✓
↵ 0
0 1/↵

◆
,

and t(`)jk (A) is the diagonal matrix with

t(`)kk (A) = ↵�2k = �2k.

Another strategy is to use Taylor’s formula. Recall that
for polynomial P (z) of degree m we have

P (z) =
mX

j=0

P (j)(0)

j!
zj,

where P (k)(0) is the value of the kth derivative of P at
z = 0.



418 CHAPTER 5. MATRIX REPRESENTATIONS OF SL(2,C), SU(2) AND SO(3)

Proposition 5.8. With respect to the orthonormal
basis ( k) of PC

` , the entries in the matrix t(`)(A) are
given by the formulae below.

t(`)jk (A) =

s
(` + j)!

(`� k)!(` + k)!(`� j)!

d`�j

z`�j
[(↵z + �)`�k(�z + �)`+k]z=0. (⇤29)

If ↵� 6= 0, then

t(`)jk (A) =

s
(` + j)!

(`� k)!(` + k)!(`� j)!

�k�j

↵k+j

d`�j

dz`�j
[z`�k(z + 1)`+k]z=��. (⇤30)
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5.10 Euler Angles Matrix Representations of T`

The “best” formula is obtained by using the Euler angles.

We now restrict ourselves to SU(2), although it possible
to handle the more general case; see Vilenkin [39] (Chap-
ter III, Sections 3.3–3.9).

By Proposition 5.4 every matrix q 2 SU(2), where

q =

✓
↵ �
�� ↵

◆
, |↵|2 + |�|2 = 1,

can be expressed as

q = u(', ✓, ) = rx('/2)rz(✓/2)rx( /2)

=

 
e
i'
2 0

0 e�
i'
2

! 
cos ✓

2
i sin ✓

2

i sin ✓
2

cos ✓
2

! 
e
i 
2 0

0 e�
i 
2

!

with

0  ' < 2⇡, 0  ✓  ⇡, �2⇡   < 2⇡.
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Furthermore, if ↵� 6= 0 and if we require that 0 < ✓ < ⇡,
then ', ✓, are unique.

Since T` is a representation we have

T`(q) = T`(rx('/2))T`(rz(✓/2))T`(rx( /2)).

We also proved that the polynomials in the basis ( k(z))
are eigenvectors of T`(rx('/2)) and T`(rx( /2)), namely
(by (⇤1))

T`(rx('/2)) k(z) = e�ik' k(z)

T`(rx( /2)) k(z) = e�ik  k(z).
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Proposition 5.9. For any matrix q 2 SU(2) expressed
in terms of the Euler angles as
q = u(', ✓, ) = rx('/2)rz(✓/2)rx( /2), with respect
to the orthonormal basis ( k) of PC

` , we have

t(`)jk (q) = e�i(j'+k ) t(`)jk (rz(✓/2)). (⇤31)

Thus we are left with finding an explicit expression for
the matrix t(`)(rz(✓/2)),

Definition 5.4. Define the matrix t(`)(✓) as
t(`)(✓) = t(`)(rz(✓/2)), with

rz(✓/2) =

 
cos ✓

2
i sin ✓

2

i sin ✓
2

cos ✓
2

!
.
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If ✓ = ⇡, then rz(⇡/2) =

✓
0 i
i 0

◆
, and by (⇤27) we know

that t(`)(⇡) is the anti-diagonal matrix with t(`)jk (⇡) = 0 if

j 6= k and t(`)j�j(⇡) = i2`.

If ✓ = 0, then rz(0) is the identity matrix I2, and t(`)(0)
is the identity matrix I2`+1.

If 0  ✓ < ⇡, then we can find the matrix t(`)(✓) using
Equation (⇤25) in we which we set ↵ = � = cos ✓

2
6= 0

(since 0  ✓ < ⇡), and � = � = i sin ✓
2
.

We obtain the following formula.
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Proposition 5.10.The elements of the matrix t(`)(✓) =
t(`)(rz(✓/2)) (0  ✓ < ⇡) are given by the formula

t(`)jk (✓) = i�(j+k)

s
(`� j)!(`� k)!

(` + j)!(` + k)!

✓
cos

✓

2

◆j+k

⇥

X̀

h=max(j,k)

(` + h)! i2h

(`� h)!(h� j)!(h� k)!

✓
sin

✓

2

◆2h�(j+k)

.

(⇤32)

If ` is a half integer, then h is also a half integer.

For ✓ = 0, we must have h = j = k, and t(`)(0) is the
identity matrix I2`+1, as we already know.
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If we assume that 0 < ✓ < ⇡, then we obtain the following
formula given in Vilenkin:

t(`)jk (✓) = i�(j+k)

s
(`� j)!(`� k)!

(` + j)!(` + k)!

✓
cot

✓

2

◆j+k

⇥

X̀

h=max(j,k)

(` + h)! i2h

(`� h)!(h� j)!(h� k)!

✓
sin

✓

2

◆2h

.

(⇤33)
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If we recall from (†) that if j = �k then

(` + h)!

(`� h)!(h + k)!(h� k)!
=

✓
` + h

2h

◆✓
2h

h� k

◆
,

we obtain

t(`)k�k(✓) = t(`)
�kk(✓)

=
X̀

h=max(�k,k)

✓
` + h

2h

◆✓
2h

h� k

◆
i2h
✓
sin

✓

2

◆2h

.

(⇤34)
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Even though this equation was derived assuming that
✓ < ⇡, it is still correct for ✓ = ⇡, namely the follow-
ing equation holds

X̀

h=max(�k,k)

✓
` + h

2h

◆✓
2h

h� k

◆
i2h = i2`,

or equivalently, since we may assume that k � 0,

X̀

h=k

(�1)`�h

✓
` + h

2h

◆✓
2h

h� k

◆
= 1. (††)

Jocelyn showed that this equation can be proven using
an identity due to Euler.
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Because there is a surjective homomorphism
⇢ : SU(2) ! SO(3) whose kernel is {I,�I} (see Theo-
rem 1.1), Proposition 2.8, Proposition 5.1, and the fact
that the representation U2` : SU(2) ! GL(PC

2`(2)) is
equivalent to the representation T` : SU(2) ! GL(PC

` )
(see the end of Section 5.5), imply that the irreducible
unitary representations of SO(3) are of the form
W` : SO(3) ! U(PC

` ), with

W`(⇢q) = T`(q) q 2 SU(2), ` 2 N,

and where T`0 : SU(2) ! U(PC

`0 ) are the irreducible uni-
tary representations of SU(2) (with `0 a half integer or
an integer).

So the irreducible representations of SO(3) constitute
only half of the representations of SU(2), those that cor-
respond to nonnegative integer values of `.
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Therefore, all the formulae obtained for the matrices t(`)jk (q)

apply and the matrix w(`)
jk (⇢q) associated with the uni-

tary map W`(⇢q) is t(`)jk (q), with ` 2 N.

Remarkably, if q 2 SU(2) is expressed in terms of the
Euler angles as q = u(', ✓, ) = rx('/2)rz(✓/2)rx( /2),
then the corresponding rotation matrix R = ⇢q is given
by R = Rx(')Rz(✓)Rx( ), where we may assume that
0  ' < 2⇡, 0  ✓  ⇡, 0   < 2⇡ (see Section 5.3).

Consequently, if we express a rotation matrix R 2 SO(3)
in terms of Euler angles as R = Rx(')Rz(✓)Rx( ), we
find that the matrix w(`)(R) associated with the unitary
map W`(R) is t(`)(u(', ✓, )), with ` 2 N.

Using Proposition 5.9 and since by Definition 5.4,
t(`)(✓) = t(`)(rz(✓/2)), we obtain the following result.
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Proposition 5.11. For any matrix R 2 SO(3) ex-
pressed in terms of the Euler angles as
R = Rx(')Rz(✓)Rx( ), with respect to the orthonor-
mal basis ( k) of PC

` , the matrix w(`)(R) of the unitary
map W`(R) associated with the irreducible representa-
tion W` : SO(3) ! U(PC

` ) is given by

w(`)
jk (R) = e�i(j'+k ) t(`)jk (✓), ` 2 N. (⇤310)

Formula (⇤310) still gives the matrix elements T`(q) (with
q 2 SU(2)) of the irreducible representation T` of SU(2)
when ` is a positive half integer, but this is not a repre-
sentation of SO(3).

This point is a notorious source of confusion.
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The functions e�i(j'+k ) t(`)jk (✓) arise in quantum mechan-

ics, but physicists prefer the functions t(`)jk (✓) to be real.

In his famous book first published in German in 1931
and then in English in 1959 (translated by J.J. Gri�n),
E. Wigner [42] introduced the matrices d`(✓) given by

d`jk(✓) = (�1)j�kij�kt(`)jk (✓).
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The reason for the factor (�1)j�kij�k is that by using
Formula (⇤24) with ↵ = � = cos ✓

2
and � = � = i sin ✓

2
,

we obtain

t(`)jk (✓) = ij�k
p
(`� j)!(` + j)!(`� k)!(` + k)!

⇥

NX

h=M

(�1)h(h!(`� j � h)!(` + k � h)!(j � k + h)!)�1

✓
cos

✓

2

◆2`+k�j�2h✓
sin

✓

2

◆2h+j�k

with M = max(0, k � j), N = min(` � j, ` + k) and
0  ✓  ⇡.
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When we multiply the above expression by (�1)j�kij�k,
we obtain the term

(�1)j�kij�kij�k = (�1)j�ki2(j�k) = (�1)j�k(�1)j�k = +1.

The above amounts to performing the following oper-
ations on the matrix t(`)(✓): multiply the jth row by
(�1)jij and multiply the kth column by (�1)�ki�k.

The resulting matrix d(`)(✓) remains unitary. In fact, it
becomes a real orthogonal matrix.
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Definition 5.5. The Wigner’s d-matrices d(`)(✓) are
given by

d(`)jk (✓) =
p

(`� j)!(` + j)!(`� k)!(` + k)!

⇥

NX

h=M

(�1)h(h!(`� j � h)!(` + k � h)!(j � k + h)!)�1

✓
cos

✓

2

◆2`+k�j�2h✓
sin

✓

2

◆2h+j�k

(⇤35)

with M = max(0, k � j), N = min(`� j, ` + k);

see Wigner [42], Formula 15.27.

The d-matrices d(`)(✓) are real orthogonal matrices.
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However, beware that besides the fact that the indices
`, j, k, h are denoted j, µ0, µ, and the angles ', ✓, 
are denoted ↵, �, �, the angles ↵, �, � have a di↵erent
meaning .

Indeed, Wigner factors a unit quaternion as
q = rx(�↵/2)ry(�/2)rx(��/2) (where rx and ry are de-
fined in Section 5.3), and the x-axis and the z-axis are
swapped, which means that in our notation, the rotation
matrix R associated with q is

R = Rz(�↵)Ry(�)Rz(��).

Wigner uses ry(�/2) instead of rz(�/2) because it is a
real matrix.
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As a consequence, Wigner’s D-matrices (see Wigner
[42], Formula 15.8 and Formula 15.27) are the matrices
D

(`) given by

D
(`)
jk (↵, �, �) = ei(j↵+k�)d(`)jk (�).

As earlier, the matrices D(`) correspond to the irreducible
unitary representations U` of SU(2) when ` assumes all
nonnegative integer and half integer values, and when `
is restricted to be a nonnegative integer, they correspond
to the irreducible unitary representations W` of SO(3).

According to Wigner, the method for determining the
irreducible representations of SO(3) as the irreducible
representations of SU(2) corresponding to nonnegative
integer values of ` is due to H. Weyl, who also discovered
the irreducible representations of SU(2).
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The irreducible representations of SU(2) corresponding
to half integer values of ` are often called double-valued
representations of SO(3), an unfortunate terminology
since they are not representations of SO(3), but instead
representations of SU(2).

Wigner’s sign conventions is not always the sign conven-
tion used in the physics literature.
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5.11 Representations of SL(2,C) and SU(2) Using
Finite Fourier Series

There is one more method for computing the matrix ele-
ments t(`)jk (A) (whereA 2 SL(2,C)) based on integration.

The idea is to use another representing space for the repre-
sentation T`, namely the vector space (of dimension 2`+1)
of finite Fourier series

�(ei') =
X̀

k=�`

cke
�ik',

with ck 2 C.
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Observe that if Q(z) is the polynomial of degree 2` given
by

Q(z) =
X̀

k=�`

ckz
`�k

so that the powers appears in the order z2`, z2`�1, . . . , z, 1,
the Fourier series �(ei') with the same coe�cients is given
by

�(ei') = e�i`'Q(ei').

Denote the space of Fourier series of dimension 2`+ 1 as
F`.

We would like to define a representation of SL(2,C) in
F`.
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Definition 5.6. The map T` : SL(2,C) ! GL(F`) is
defined by

T`(A)(�(e
i')) = e�i`'(aei'+ c)`(bei'+d)`�

✓
aei' + c

bei' + d

◆

(T`)

for every matrix

A =

✓
a b
c d

◆
2 SL(2,C)

and every Fourier series �(ei') 2 F`.

It is easily verified that T` : SL(2,C) ! GL(F`) is a
representation.
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It can be shown that the representation
T` : SL(2,C) ! GL(F`) is equivalent to the representa-
tion T` : SL(2,C) ! GL(PC

` )

Proposition 5.12. The matrix elements t(`)jk (A) are
given by the following formula:

t(`)jk (A) =
1

2⇡

s
(`� j)!(` + j)!

(`� k)!(` + k)!
Z

2⇡

0

(aei' + c)`�k(bei' + d)`+k ei(j�`)' d'.

(⇤37)

We obtain another useful formula for computing t(`)jk (✓)
by applying the above formula to the matrix

rz(✓/2) =

 
cos ✓

2
i sin ✓

2

i sin ✓
2

cos ✓
2

!
2 SU(2).
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We get

t(`)jk (✓) =
1

2⇡

s
(`� j)!(` + j)!

(`� k)!(` + k)!

Z
2⇡

0

✓
cos

✓

2
ei' + i sin

✓

2

◆`�k

✓
i sin

✓

2
ei' + cos

✓

2

◆`+k

ei(j�`)' d',

and since e�i`' = e�
i(`+k)'

2 e�
i(`�k)'

2 , the above formula is
also written as stated below.
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Proposition 5.13. The matrix elements t(`)jk (✓)
(0  ✓  ⇡) are given by the following formula:

t(`)jk (✓) =
1

2⇡

s
(`� j)!(` + j)!

(`� k)!(` + k)!
⇥

Z
2⇡

0

✓
cos

✓

2
e
i'
2 + i sin

✓

2
e�

i'
2

◆`�k

✓
i sin

✓

2
e
i'
2 + cos

✓

2
e�

i'
2

◆`+k

eij' d'. (⇤38)

For small values of `, this equation is quite practical.
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For example, here is a list of the matrices t`(✓) for ` =
0, 1/2, 1, 3/2 as in Vilenkin [39] (Chapter III, Section 3.7).

t(0)(✓) = (1), t(1/2)(✓) = rz(✓/2) =

 
cos ✓

2
i sin ✓

2

i sin ✓
2

cos ✓
2

!
,

t(1)(✓) =

0

BB@

cos2 ✓
2

i
p
2
sin ✓

2
� sin2 ✓

2

i
p
2
sin ✓

2
cos ✓ i

p
2
sin ✓

2

� sin2 ✓
2

i
p
2
sin ✓

2
cos2 ✓

2

1

CCA ,

and

t(3/2)(✓) =
0

BBBBB@

cos
3 ✓

2 i
p
3 sin

✓

2 cos
2 ✓

2 �
p
3 sin

2 ✓

2 cos
✓

2 �i sin3 ✓

2

i
p
3 sin

✓

2 cos
2 ✓

2 cos
3 ✓

2 � 2 cos
✓

2 sin
2 ✓

2 2i cos2 ✓

2 sin
✓

2 � i sin3 ✓

2 �
p
3 sin

2 ✓

2 cos
✓

2

�
p
3 sin

2 ✓

2 cos
✓

2 2i cos2 ✓

2 sin
✓

2 � i sin3 ✓

2 cos
3 ✓

2 � 2 cos
✓

2 sin
2 ✓

2 i
p
3 sin

✓

2 cos
2 ✓

2

�i sin3 ✓

2 �
p
3 sin

2 ✓

2 cos
✓

2 i
p
3 sin

✓

2 cos
2 ✓

2 cos
3 ✓

2

1

CCCCCA
.
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5.12 Matrix Elements of T`(q) and Jacobi Polynomials

In this section we assume again that q 2 SU(2) is given
in terms of the Euler angles as
q = u(', ✓, ) = rx('/2)rz(✓/2)rx( /2).

Since cos ✓ = 2 cos2 ✓
2
� 1 and sin2 ✓

2
+ cos2 ✓

2
= 1, for

0  ✓  ⇡, we have 0  cos ✓
2
 1 and 0  sin ✓

2
 1, so

cos
✓

2
=

r
1 + cos ✓

2

sin
✓

2
=

r
1� cos ✓

2

cot
✓

2
=

r
1 + cos ✓

1� cos ✓
, (⇤39)

with ✓ > 0 for the third formula.
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Thus we see that t(`)jk (✓) is a function of cos ✓ for
0  ✓ < ⇡.

Therefore there is a function P `
jk(z) such that

t(`)jk (✓) = P `
jk(cos ✓), 0  ✓ < ⇡,

and (⇤31) is also written as

t(`)jk (q) = e�i(j'+k ) P `
jk(cos ✓).

By Equation (⇤32) and the above trigonometric identities
we obtain the following result.
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Proposition 5.14. The polynomial P `
jk(z)

(�1 < z  1) given by

P `
jk(z) = i�(j+k)

s
(`� j)!(`� k)!

(` + j)!(` + k)!

✓
1 + z

2

◆j+k
2

⇥

X̀

h=max(j,k)

(` + h)! i2h

(`� h)!(h� j)!(h� k)!

✓
1� z

2

◆2h�(j+k)
2

(⇤40)

has the property that

t(`)jk (✓) = P `
jk(cos ✓), 0  ✓ < ⇡, (⇤41)

and

t(`)jk (q) = e�i(j'+k ) P `
jk(cos ✓). (⇤42)

If ` is a half integer, then h is also a half integer.

It is understood that if z = 1, then P `
jk(1) = 1 i↵

j = k, and P `
jk(1) = 0 otherwise.
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Proposition 5.15. If 0 < ✓ < ⇡, so that �1 < z < 1,
then we have

P `
jk(z) =

(�1)`�kik�j

2`

s
(` + j)!

(`� k)!(` + k)!(`� j)!

⇥ (1 + z)�
(j+k)

2 (1� z)
k�j
2

d`�j

dy`�j
[(1� y)`�k(1 + y)`+k]y=z.

(⇤43)

The polynomials P `
jk(z) enjoy some symmetry relations.

Formula (⇤43) also reveals a relationship with the Jacobi
polynomials.
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Definition 5.7. The Jacobi polynomials P �,µ
h (z), with

�, µ 2 R, h 2 N, are defined by the formula

P �,⌫
h (z) =

(�1)h

2hh!
(1�z)��(1+z)�µ dh

dzh
[(1�z)�+h(1+z)µ+h].

(Ja)

Proposition 5.16. The polynomials P `
jk(z) and the

Jacobi polynomials are related by the equation

Pj�k,k+j
`�j (z) = 2jik�j

s
(`� k)!(` + k)!

(`� j)!(` + j)!

(1� z)
k�j
2 (1 + z)�

(k+j)
2 P `

jk(z). (⇤45)

As we noted earlier, if ` is a half integer then j and k
cannot be zero.
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If ` is an integer, then j = 0 or k = 0 is allowed, and so
� = 0 and µ = 0 are also allowed.

In this case the Jacobi polynomial P 0,0
` (z), simply de-

noted as P`(z), is given by

P`(z) =
(�1)`

2``!

d`

dz`
(1� z2)`,

or equivalently

P`(z) =
1

2``!

d`

dz`
(z2 � 1)`.

This is a Legendre polynomial.

Similarly, if ` is an integer, then for k = 0 the polynomials
P `
m0
(z) are related to polynomials Pm

` (z) known as the
associated Legendre polynomials.
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Definition 5.8. The Legendre polynomial P`(z) are
defined by

P`(z) =
(�1)`

2``!

d`

dz`
(1� z2)`,

and the associated Legendre polynomials

are defined by

Pm
` (z) =

(�1)m+`

2``!
(1� z2)

m
2

dm+`

dzm+`
(1� z2)`

= (�1)m(1� z2)
m
2

dm

dzm
P`(z),

with `,m 2 N.

Some authors omit the sign (�1)m in the definition of the
associated Legendre polynomials.
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We see immediately that

P `
00
(z) = P`(z). (⇤46)

It is not hard to show that

Pj
` (z) = ij

s
(` + j)!

(`� j)!
P `
j0(z). (⇤47)

See Vilenkin [39] (Chapter III, Section 3.9).

Since by (⇤42) we have

t(`)j0 (q) = e�ij' P `
j0(cos ✓),

we obtain

t(`)j0 (q) = i�j

s
(`� j)!

(` + j)!
e�ij' Pj

` (cos ✓), �`  j  `.

(⇤48)

Recall that ` is an integer.



452 CHAPTER 5. MATRIX REPRESENTATIONS OF SL(2,C), SU(2) AND SO(3)

Following Vilenkin [39] (Chapter III, Section 2.7) we show

how the the function t(`)j0 (q) (with q = rx('/2)rz(✓/2)),
which does not depend on  , can be viewed as a function
on the sphere S2.
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5.13 Harmonic Functions on the Sphere S2

First recall that the group SO(3) acts transitively in the
sphere S2 and that the stabilizer of the point e1 = (1, 0, 0)
is the subgroup Hx of rotations

Rx(') =

0

@
1 0 0
0 cos' � sin'
0 sin' cos'

1

A

around the x-axis, so the sphere S2 is homeomorphic to
the quotient space SO(3)/Hx.

It follows that the functions f 2 L2(SO(3)) such that
f (RQ) = f (R) for all R 2 SO(3) and all Q 2 Hx

correspond bijectively to the functions in L2(S2).
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From Section 5.3, since every rotation R can be factored
as

R = Rx(')Rz(✓)Rx( ),

with Rx('), Rx( ) 2 Hx, we see that a representative of
the left coset RHx is given by

Rx(')Rz(✓).

Therefore the points of S2 are the orbit of e1 = (1, 0, 0)
under all rotations Rx(')Rz(✓).

But the groupHx corresponds to the subgroup ⌦x defined
below.
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Definition 5.9. The subgroup ⌦x of SU(2) is given by

⌦x =

(
H(t) = rx(t/2) =

 
e
it
2 0

0 e�
it
2

! ����� 0  t  2⇡

)
.

(⌦x)

In fact we claim that SU(2)/⌦x is a homogeneous space
homeomorphic to S2 so that the functions f 2 L2(SU(2))
such that f (qH) = f (q) for all q 2 SU(2) and all
H 2 ⌦x also correspond bijectively to the functions in
L2(S2).
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The group SU(2) acts on the sphere S2 by rotations,
which means that for any skew-hermitian matrix

X =

✓
ix y + iz

�y + iz �ix

◆
, (x, y, z) 2 S2

and any q 2 SU(2), we have the action

q ·X = qXq⇤.
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Since this action is a rotation of S2, it is transitive.

We easily showe that the stabilizer of e1 = (1, 0, 0) is
indeed the subgroup ⌦x.

From Section 5.3, since every unit quaternion q can be
factored as

q = rx('/2)rz(✓/2)rx( /2),

with rx('/2), rx( /2) 2 ⌦x, we see that a representative
of the left coset q⌦x is given by

rx('/2)rz(✓/2).
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Therefore the points of S2 are the orbit of e1 = (1, 0, 0)
under all rotations rx('/2)rz(✓/2), and from Section 5.3,
since the corresponding rotation matrices are

Q =

0

@
1 0 0
0 cos' � sin'
0 sin' cos'

1

A

0

@
cos ✓ � sin ✓ 0
sin ✓ cos ✓ 0
0 0 1

1

A ,

by reading of the first column of the matrix Q, we see
that the corresponding orbit points on the sphere S2 have
coordinates

(cos ✓, sin ✓ cos', sin ✓ sin').
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According to the physical convention, the spherical coor-
dinates of a point p with respect to the (azimuthal) angle
' measured from the x-axis in the xy-plane and (polar)
angle ✓ measured from the z-axis in the plane containing
the z-axis an passing through the point p are given by

(sin ✓ cos', sin ✓ sin', cos ✓).

Thus we see that the coordinates

(cos ✓, sin ✓ cos', sin ✓ sin')

are “funny” spherical coordinates for which the x-axis
and the z-axis are swapped and ' is changed to ⇡/2�'.
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Following Vilenkin (Chapter III, Section 3.10) we make
the following definition.

Definition 5.10. For any j such that �`  j  `,
the function t(`)j0 (q) which does not depend on  (with
q = rx('/2)rz(✓/2)rx( /2)), can be viewed as a function
on the sphere S2, and is denoted Y`j(', ✓), with
0  ' < 2⇡ and 0  ✓ < ⇡. The function Y`j(', ✓) is
called a spherical function .

Observe that the 2` + 1 functions Y`j(', ✓) = t(`)j0 (q)
(�`  j  `) constitute the middle column of the ma-
trix t(`)(q).
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In view of Proposition 5.11 and (⇤41), for any matrix
R 2 SO(3) expressed in terms of the Euler angles as
R = Rx(')Rz(✓)Rx( ), with respect to the orthonor-
mal basis ( k) of PC

` , the matrix w(`)(R) of the unitary
mapW`(R) associated with the irreducible representation
W` : SO(3) ! U(PC

` ) is given by

w(`)
jk (R) = e�i(j'+k ) t(`)jk (✓) = e�i(j'+k ) P `

jk(✓) = t(`)jk (q),

` 2 N,

where q = rx('/2)rz(✓/2)rx( /2). In particular, for
k = 0 we see that

w(`)
j0 (R) = t(`)j0 (q) = Y`j(', ✓).

Thus we have shown the following result.
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Proposition 5.17. The following facts hold.

(1) For any matrix R 2 SO(3) expressed as
R = Rx(')Rz(✓)Rx( ) in terms of the Euler an-
gles, with respect to the orthonormal basis ( k) of
P

C

` , the matrix w(`)(R) of the unitary map W`(R)
associated with the irreducible representation
W` : SO(3) ! U(PC

` ) is equal to the matrix t(`)(q)
of the unitary map T`(q) associated with the irre-
ducible representation T` : SU(2) ! U(PC

` ), where
q = rx('/2)rz(✓/2)rx( /2) (` 2 N).

(2) Viewed as functions on S2, the 2` + 1 functions

t(`)j0 (q) (with q = rx('/2)rz(✓/2)rx( /2)) constitute

the middle column of the matrix t(`)(q) and the

2`+1 functions w(`)
j0 (R) (with R = Rx(')Rz(✓)Rx( ))

constitute the middle column of the matrix w(`)(R).
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(3) Viewed as a function on S2 in spherical coordi-
nates

(x, y, z) = (cos ✓, sin ✓ cos', sin ✓ sin'),

we have

Y`j(x, y, z) = Y`j(', ✓) = t(`)j0 (q) = w(`)
j0 (R),

with q = rx('/2)rz(✓/2) and R = Rx(')Rz(✓).

As we observed earlier, the matrices t(`)(✓), and so the
polynomials P `

jk(z), are not all real.
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And indeed Equation (⇤48) shows that the functions

Y`j(', ✓) = t(`)j0 (q) are not all real.

A way to fix this is to multiply Y`j(', ✓) by ij.

It turns out that ij
p
2` + 1Y`j(', ✓) is a function known

as the classical spherical harmonic, (unfortunately) de-
noted Y j

` (✓,').

Definition 5.11. The function Y j
` (✓,') called Laplace

spherical harmonic by Dieudonné is given by

Y j
` (✓,') =

s
(2` + 1)(`� j)!

(` + j)!
e�ij'Pj

` (cos ✓).
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If we recall that the motivation for introducing theWigner
d-matrices was to deal with real orthogonal matrices
instead of complex unitary matrices, we can use the
Wigner d-matrices instead of the matrices t(`)(✓), but
there is an annoying sign issue.

Wigner defines his d-matrices as

d`jk(✓) = (�1)j�kij�kt(`)jk (✓),

so for k = 0, the factor ij makes the term real, but now we
have the extra factor (�1)j, so the middle column of the
d-matrix consists of the entries (�1)jP j

` (cos ✓) instead of
Pj
` (cos ✓).
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The remedy is to redefine the Wigner d-matrices by omit-
ting the factor (�1)j�k in the above formula, or equiva-
lently to define the Wigner D-matrix
D

(`)(R) = D
(`)(', ✓, ) as follows.

Definition 5.12. TheWigner D-matrix D(`)(R) is de-
fined as

D
(`)
jk (R) = D

(`)
jk (', ✓, ) = e�i(j'+k )(�1)j�kd(`)jk (✓)

= e�i(j'+k )ij�kt(`)jk (✓),

where R = Rx(')Rz(✓)Rx( ).

Of course the WignerD-matrixD(`) defines an irreducible
representation D

(`) : SO(3) ! U(PC

` ) equivalent to the
irreducible representation W` : SO(3) ! U(PC

` ).

Also now the middle column of D(`)(', ✓, ) consists of
the rescaled functions 1/

p
2` + 1Y j

` (✓,'), as desired.
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Note that Sakurai and Napolitano [35] also add the factor
(�1)j�k in their definition of the D-matrix.

We will prove in Section 5.15 that the family of func-
tions (Y j

` (✓,'))`2N,�`j` forms a Hilbert basis for the
functions in L2(S2).

There is another property of the functions Y j
` (✓,') worth

stating because it plays a role in equivariant deep learning
in cnns.

Here we assume that Y j
` (✓,') is viewed as a function on

SO(3)/Hx.

Since the group SO(3) acts on S2, it is natural to wonder
how the function �RY

j
` is related to Y j

` , for R 2 SO(3).
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Here is more natural to write Y j
` (x, y, z) , where

(x, y, z) 2 S2 are expressed in spherical coordinates in
terms of the Euler angles ' and ✓ as in Proposition 5.17.

Proposition 5.18.Denote the column vector consist-
ing of the 2`+1 functions Y j

` by Y` (` 2 N). For every
rotation R 2 SO(3) expressed as R = Rx(')Rz(✓)Rx( ),
we have

Y`(R · (x, y, z)) = D
(`)(R)Y`(x, y, z)

= D
(`)(', ✓, )Y`(x, y, z), (x, y, z) 2 S2.

As a corollary, we also have

Y`(R
�1

· (x, y, z)) = (D(`)(R))> Y`(x, y, z)

= (D(`)(', ✓, ))> Y`(x, y, z), (x, y, z) 2 S2.
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In special case where j = 0 the function t(`)
00
(q) = P`(cos ✓)

depends only on ✓ and is called a zonal spherical func-
tion .

More properties of the Legendre and Jacobi polynomials
and functional relations and generating functions for the
functions P `

jk(z), can be found in Vilenkin [39], Chapter
III, Sections 3-5.
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5.14 Integration on SU(2) and SO(3)

In this section we derive explicit formulae for the nor-
malized Haar measures on SU(2) and SO(3) when these
groups are parametrized by the Euler angles. Technically,
these parametrizations are injective only on open subsets
of SU(2) and SO(3), but the complements of these open
sets have measure zero so from the point of view integra-
tion we obtain formulae for integrating all functions in
L2(SU(2)) and all functions in L2(SO(3)) (respectively
equipped with these left and right invariant Haar mea-
sures).

As a first step we will need to derive a formula for an
SU(2)-invariant volume form on SU(2) as a pull-back of
the SO(4)-invariant volume form !S3 on S3. The reader
may want to review volume forms and integration on
manifolds before reading this section. These topics are
covered in Gallier and Quaintance [23] (Chapter 4 and
6).
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5.15 Fourier Series of Functions in L2(SU(2)), L2(SO(3))
and L2(S2)

In the preceding sections we computed explicitly several
matrix representations t(`)(q) for the irreducible represen-
tations T` : SU(2) ! U(PC

` ) with respect to an invariant
hermitian inner product on P

C

` .

In terms of the general results presented in Sections 4.2–
4.4, especially Theorem 4.4, ⇢ = `, n⇢ = 2` + 1,
M`(q) = t(`)(q), and since

M`(q) =

✓
1

n`
m(`)

ij (q)

◆
,

the functionsm(`)
ij (q) are given bym

(`)
ij (q) = (2`+1)t(`)ij (q),

where ` ranges through the set
R = {0, 1/2, 1, 3/2, 2, 5/2, 3, . . .} of all nonnegative inte-
ger and half integer values.
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By Peter–Weyl I (Theorem 4.3), the n2

` = (2`+1)2 func-

tions 1
p
n`
m(`)

ij =
p
2` + 1 t(`)ij in the matrix

p
2` + 1 t(`)

form an orthonormal basis of the minimal two-sided ideal
a` arising in the Hilbert sum

L2(SU(2)) =
M

`

a`,

and thus the family of functions
⇣p

2` + 1 t(`)ij

⌘

�`i,j`, `2R

with R = {0, 1/2, 1, 3/2, 2, . . .}, is a Hilbert basis of
L2(SU(2)).



5.15. FOURIER SERIES OF FUNCTIONS IN L
2
(SU(2)), L2

(SO(3)) AND L
2
(S2

) 473

By the results of Section 4.7 on the Fourier transform
and the Fourier cotransform, by Definition 4.19 of the
Fourier transform F(f ) and Equation (FI) (see also The-
orem 4.26),

f (s) =
X

⇢2R

n⇢ tr (F(f )(⇢)M⇢(s)) f 2 L2(G), s 2 G,

since M`(q) = t(`)(q), for every ` 2 R, the (2` + 1) ⇥
(2` + 1) matrix ↵(`) = F(f )(`) of Fourier coe�cients of
f 2 L2(SU(2)) is given by

↵(`) =

Z

SU(2)

f (q)(t(`)(q))⇤ d⌫(q),

where ⌫ is the normalized Haar measure on SU(2), and
by the Fourier inversion formula (FI) we have

f (q) =
X

`2R

(2` + 1) tr
�
↵(`)t(`)(q)

�
, q 2 SU(2).
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Written in terms of matrix elements, we obtain the equa-
tions

↵(`)
jk =

Z

SU(2)

f (q)t(`)kj (q) d⌫(q) (FC1)

and

f (q) =
X

`2R

(2` + 1)
X̀

j=�`

X̀

k=�`

↵(`)
kj t

(`)
jk (q), q 2 SU(2).

(FS1)
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Using the Euler angles, Proposition 5.14 (in particular,
(⇤41), (⇤42)), namely

t(`)jk (q) = t(`)jk (u(', ✓, )) = e�i(j'+k ) t(`)jk (✓)

= e�i(j'+k ) P `
jk(cos ✓), ` 2 R,

Proposition ?? (formula for the Haar measure on SU(2)),
and the fact that P `

jk(cos ✓) = (�1)j�kP `
jk(cos ✓) (left as

an exercise), by swapping j and k in (FC1), we obtain the
following series expansion for the functions in L2(SU(2)).
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Proposition 5.19. Every function f 2 L2(SU(2)) ex-
pressed in terms of the Euler angles
(0  ' < 2⇡, 0  ✓ < ⇡,�2⇡   < 2⇡) can be
written as the Fourier series

f (u(', ✓, ))

=
X

`2R

(2` + 1)
X̀

j=�`

X̀

k=�`

↵(`)
kj e

�i(j'+k )P `
jk(cos ✓),

(FS2)

where the Fourier coe�cients are given by

↵(`)
kj =

(�1)j�k

16⇡2

Z
2⇡

�2⇡

Z
2⇡

0

Z ⇡

0

f (u(', ✓, ))

ei(j'+k )P `
jk(cos ✓) sin ✓ d✓ d' d . (FC2)

Recall that u(', ✓, ) = rx('/2)rz(✓/2)rx( /2) 2 SU(2).
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The above discussion applies to SO(3) and its irreducible
representations W` : SO(3) ! U(PC

` ), which are now
indexed by the set N of natural numbers.

By Peter–Weyl I (Theorem 4.3), the n2

` = (2`+1)2 func-

tions 1
p
n`
m(`)

ij =
p
2` + 1w(`)

ij in the matrix
p
2` + 1w(`),

where w(`)(R) is the matrix associated with W `(R) for
R 2 SO(3), form an orthonormal basis of the minimal
two-sided ideal a` arising in the Hilbert sum

L2(SO(3)) =
M

`

a`,

and thus the family of functions
⇣p

2` + 1w(`)
ij

⌘

�`i,j`, `2N

is a Hilbert basis of L2(SO(3)).
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It follows that for every ` 2 N, the
(2` + 1) ⇥ (2` + 1) matrix ↵(`) = F(f )(`) of Fourier
coe�cients of f 2 L2(SO(3)) is given by

↵(`) =

Z

SO(3)

f (R)(w(`)(R))⇤ d⌫0(R),

where ⌫0 is the normalized Haar measure on SO(3), and
by the Fourier inversion formula (FI) we have

f (R) =
X

`2N

(2` + 1) tr
�
↵(`)w(`)(R)

�
, R 2 SO(3).
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Written in terms of matrix elements, we obtain the equa-
tions

↵(`)
jk =

Z

SO(3)

f (R)w(`)
kj (R) d⌫0(R) (FC1’)

and

f (R) =
X

`2N

(2` + 1)
X̀

j=�`

X̀

k=�`

↵(`)
kj w

(`)
jk (q), R 2 SO(3).

(FS1’)
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Using the Euler angles, Proposition 5.14 (in particular,
(⇤41), (⇤42)), Proposition ?? (formula for the Haar mea-
sure on SO(3)), that by Proposition 5.11 we have

w(`)
jk (R0(', ✓, )) = e�i(j'+k ) t(`)jk (✓)

= e�i(j'+k ) P `
jk(cos ✓), ` 2 N,

and using the fact that
P `
jk(cos ✓) = (�1)j�kP `

jk(cos ✓) (left as an exercise), we
obtain the following series expansion for the functions in
L2(SO(3)).

Let R0(', ✓, ) = Rx(')Rz(✓)Rx( ) 2 SO(3).
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Proposition 5.20. Every function f 2 L2(SO(3)) ex-
pressed in terms of the Euler angles
(0  ' < 2⇡, 0  ✓ < ⇡, 0   < 2⇡) can be written
as the Fourier series

f (R0(', ✓, ))

=
X

`2N

(2` + 1)
X̀

j=�`

X̀

k=�`

↵(`)
kj e

�i(j'+k )P `
jk(cos ✓),

(FS2’)

where the Fourier coe�cients are given by

↵(`)
kj =

(�1)j�k

8⇡2

Z
2⇡

0

Z
2⇡

0

Z ⇡

0

f (R0(', ✓, ))

ei(j'+k )P `
jk(cos ✓) sin ✓ d✓ d' d . (FC2’)
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Remarks:

(1) If the functions f are real-valued, it may be preferable
to use the Wigner d-matrices d(`)(✓) of Definition 5.5,
which are real orhogonal, instead of the complex ma-
trices t(`)(✓), which amounts to using (�1)j�kij�kt(`)jk (✓)

instead of t(`)jk (✓), that is, the real polynomials
(�1)j�kij�kP `

jk instead of P `
jk in (FS2’) and (FC2’).

This is common practice in computer vision.

(2) A variant of the definition of the Fourier transform
and of the Fourier cotransform occurs in the com-
puter vision community. In these formula, w(`)(R) is
replaced by (w(`)(R))⇤, namely

↵(`) =

Z

SO(3)

f (R)w(`)(R) d⌫0(R),

and

f (R) =
X

`2N

(2`+1) tr
�
↵(`)(w(`)(R))⇤

�
, R 2 SO(3).
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Our version is consistent with the definition of the
Fourier transform in the case where G is abelian.

We can also obtain the following Fourier series expansion
for every function f 2 L2(S2) in terms of the associated
Legendre functions,

f (', ✓) =
1X

`=0

(2` + 1)
X̀

j=�`

�j
` e

�ij'Pj
` (cos ✓), (FS8)

with

�j
` =

1

4⇡

(`� j)!

(` + j)!

Z
2⇡

0

Z ⇡

0

f (', ✓)eij'Pj
` (cos ✓) sin ✓ d✓ d'.

(FC8)
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We also have the Parseval identity

Z
2⇡

0

Z ⇡

0

|f (', ✓)|2d⌫ =
1X

`=0

(2` + 1)
X̀

j=�`

(` + j)!

(`� j)!
|�j
` |
2,

(PS2)

where d⌫ = (1/4) sin ✓ d✓ d' is the normalized measure
on S2 in spherical coordinates; among other sources, see
Gallier and Quaintance [23] (Section 6.4).
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Recall from Definition 5.10 and (⇤48) that

Y`j(', ✓) = t(`)j0 (q) = i�j

s
(`� j)!

(` + j)!
e�ij' Pj

` (cos ✓),

� `  j  `,

with ` 2 N, so we have

s
(2` + 1)(`� j)!

(` + j)!
e�ij'Pj

` (cos ✓) = ij
p

2` + 1Y`j(', ✓),

for ` 2 N and �`  j  `, and in view of (FS8) and
(FS2), the above functions form a Hilbert basis for the
functions in L2(S2).
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As we explained just after Proposition 5.17, the functions
ij
p
2` + 1Y`j(', ✓) are (a version of) the Laplace spher-

ical harmonics Y j
` (✓,'), namely

Y j
` (✓,') =

s
(2` + 1)(`� j)!

(` + j)!
e�ij'Pj

` (cos ✓).

Remark: Some authors include 1/
p
4⇡ in the leading

constant.

The associated Legendre functions can be computed start-
ing with the Legendre polynomials using some recurrence
equations; see Gallier and Quaintance [23] (Section 7.3).


