Chapter 3

Fourier Analysis on a Locally Compact Abelian Group

3.1 Review of Fourier Analysis on \mathbb{T}

Definition 3.1. The *circle group* $\mathbb{T} = \mathbf{U}(1)$ is the group $\{z \in \mathbb{C} \mid |z| = 1\}$ of complex numbers of unit length under multiplication.

We give \mathbb{T} the subspace topology induced by \mathbb{C} .

The circle group \mathbb{T} is abelian (commutative). Geometrically, this is the *unit circle* $S = S^1$.

The map $\sigma \colon \mathbb{R} \to \mathbb{T}$ given by

$$\sigma(\theta) = e^{i\theta}$$

is clearly a surjective group homomorphism (with \mathbb{R} under addition, and \mathbb{T} under multiplication); see Figure 3.1.

Since $e^{i\theta} = 1$ iff $\theta = k2\pi$ with $k \in \mathbb{Z}$, we see that the kernel of σ is $2\pi\mathbb{Z}$, so by the first isomorphism theorem the additive group $\mathbb{R}/(2\pi\mathbb{Z})$ is isomorphic to the multiplicative group \mathbb{T} .

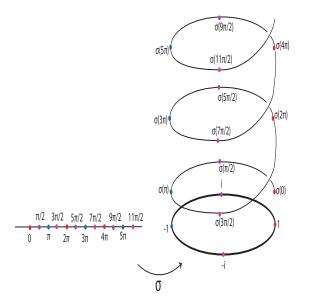


Figure 3.1: The map $\sigma \colon \mathbb{R} \to \mathbb{T}$ which "wraps" the line around the unit circle.

This isomorphism allows to view a complex number of unit length as $e^{i\theta}$, with θ defined modulo 2π , which is often more convenient than picking a representative of the equivalence class of $\theta \pmod{2\pi}$ in $[-\pi, \pi)$.

There is a bijection between the set of functions on \mathbb{T} and the set of *periodic functions* on \mathbb{C} of period 2π .

It is usually more convenient to deal with periodic functions. In this case we write $f(\theta)$ for $f(e^{i\theta})$. The vector space $L^1(\mathbb{T})$ is the space of functions $f: \mathbb{T} \to \mathbb{C}$ such that the integral

$$\int_{-\pi}^{\pi} f(\theta) \, \frac{d\theta}{2\pi}$$

is defined.

Remark that can be ignored if you don't know any measure theory.

We are using the σ -algebra generated by the Borel sets on \mathbb{T} and the positive measure on it induced by the Lebesgue measure on \mathbb{R} . This measure is left and right invariant.

We define the *norm* $\| \|_{L^1(\mathbb{T})}$ by

$$\|f\|_{\mathcal{L}^1(\mathbb{T})} = \int_{-\pi}^{\pi} |f(\theta)| \frac{d\theta}{2\pi}.$$

The space $L^1(\mathbb{T})$ is a *Banach space* (a complete normed vector space).

The vector space $L^2(\mathbb{T})$ is the space of measurable functions $f: \mathbb{T} \to \mathbb{C}$ such that the function $t \mapsto |f(t)|^2$ belongs to $L^1(\mathbb{T})$; that is, the integral

$$\int_{-\pi}^{\pi} |f(\theta)|^2 \frac{d\theta}{2\pi}$$

is defined.

We define an *inner product* $\langle -, - \rangle$ on $L^2(\mathbb{T})$ by

$$\langle f,g\rangle = \int_{-\pi}^{\pi} f(\theta)\overline{g(\theta)} \frac{d\theta}{2\pi}, \quad f,g \in \mathcal{L}^2(\mathbb{T}),$$

and the $norm \parallel \parallel_{\mathrm{L}^2(\mathbb{T})}$ by

$$||f||_{L^{2}(\mathbb{T})}^{2} = \langle f, f \rangle = \int_{-\pi}^{\pi} |f(\theta)|^{2} \frac{d\theta}{2\pi}$$

Then $L^2(\mathbb{T})$ with its norm $||f||_{L^2(\mathbb{T})}$ is a *Banach space*, and with its inner product it is a *Hilbert space*. 232CHAPTER 3. FOURIER ANALYSIS ON A LOCALLY COMPACT ABELIAN GROUP

Because \mathbb{T} is *compact*, we have

$$\|f\|_{\mathrm{L}^1(\mathbb{T})} \le \|f\|_{\mathrm{L}^2(\mathbb{T})}$$

and so

$$\mathrm{L}^{2}(\mathbb{T}) \subseteq \mathrm{L}^{1}(\mathbb{T}).$$

In general, this inclusion is *false* if the space is not compact.

Example 3.1. The periodic function $f: \mathbb{T} \to \mathbb{C}$ given by

$$f(\theta) = \begin{cases} \frac{1}{\sqrt{|\theta|}} & -\pi \le \theta < 0, \ 0 < \theta \le \pi, \\ 0 & \theta = 0 \end{cases}$$

belongs to $L^1(\mathbb{T})$ but does not belong to $L^2(\mathbb{T})$ because $|f|^2$ does not belong to $L^1(\mathbb{T})$.

Recall that for any $p \ge 1$, the space $\ell^p(\mathbb{Z})$ is the set of sequences $x = (x_n)_{n \in \mathbb{Z}}$ with $x_n \in \mathbb{C}$ such that $\sum_{n \in \mathbb{Z}} |x_n|^p < \infty$.

Also, if $1 \leq p < q$, then

$$\ell^p(\mathbb{Z}) \subseteq \ell^q(\mathbb{Z}).$$

In particular,

$$\ell^1(\mathbb{Z}) \subseteq \ell^2(\mathbb{Z}),$$

but

$$\mathrm{L}^{2}(\mathbb{T}) \subseteq \mathrm{L}^{1}(\mathbb{T}).$$

Each space $\ell^p(\mathbb{Z}) \ (p \geq 1)$ is a normed vector space with the norm

$$\|(x_m)_{m\in\mathbb{Z}}\| = \left(\sum_{m\in\mathbb{Z}} |x_m|^p\right)^{1/p}$$

The space $\ell^p(\mathbb{Z})$ $(p \ge 1)$ is a *Banach space* (it is complete).

For p = 2, the space $\ell^2(\mathbb{Z})$ is a *Hilbert space* with the inner product

$$\langle (x_m)_{m\in\mathbb{Z}}, (y_m)_{m\in\mathbb{Z}} \rangle = \sum_{m\in\mathbb{Z}} x_m \overline{y_m}$$

and norm

$$\|(x_m)_{m\in\mathbb{Z}}\| = \left(\sum_{m\in\mathbb{Z}} |x_m|^2\right)^{1/2}$$

Definition 3.2. The *convolution* f * g of two functions $f, g \in L^1(\mathbb{T})$ is given by

$$(f*g)(\theta) = \int_{\mathbb{T}} f(\theta - \varphi)g(\varphi) \frac{d\varphi}{2\pi} = \int_{\mathbb{T}} f(\varphi)g(\theta - \varphi) \frac{d\varphi}{2\pi}.$$

It can be shown that $f * g \in L^1(\mathbb{T})$.

Because $L^2(\mathbb{T}) \subseteq L^1(\mathbb{T})$, it can be shown that if $f, g \in L^2(\mathbb{T})$, then $f * g \in L^2(\mathbb{T})$.

This is generally false if the space is not compact!

If $f \in L^2(\mathbb{T})$, then the function f^* given by

$$f^*(t) = \overline{f(-t)}$$

is also in $L^2(\mathbb{T})$. We obtain an involution $f \mapsto f^*$.

With convolution as multiplication this makes $L^2(\mathbb{T})$ an *involutive Banach algebra*.

Definition 3.3. For any function $f \in L^1(\mathbb{T})$, the *Fourier* coefficients c_m (or \widehat{f}_m) are defined by

$$c_m = \int_{-\pi}^{\pi} f(t) e^{-imt} \frac{dt}{2\pi}, \quad m \in \mathbb{Z}.$$

Theorem 3.1. (Spectral Synthesis) Let $f \in L^2(\mathbb{T})$. Then

$$\lim_{n \to \infty} \left\| f - \sum_{m=-n}^{m=n} c_m e^{im\theta} \right\|_2 = 0.$$

and we have the Parseval theorem:

$$||f||^2_{\mathcal{L}^2(\mathbb{T})} = \sum_{m=-\infty}^{m=\infty} |c_m|^2.$$

The above implies that $c = (c_m)_{m \in \mathbb{Z}} \in \ell^2(\mathbb{Z})$.

The expression

$$\sum_{m=-\infty}^{m=\infty} c_m e^{im\theta}$$

is called the *Fourier series of* f.

The convergence of this series is an issue!

If $f \in L^2(\mathbb{T})$, the Fourier series *does not always converge pointwise*. However is does converge to f in the $L^2(\mathbb{T})$ -norm. Lennart Carleson showed in 1966 that for any function $f \in L^2(\mathbb{T})$, the partial sums of the Fourier series of f converge pointwise almost everywhere to f, putting a close to a problem that had been open for fifty years.

Remark: If $f \in L^1(\mathbb{T})$ and if $c = (c_m)_{m \in \mathbb{Z}} \in \ell^1(\mathbb{Z})$, then the Fourier series converges uniformly and

$$f(\theta) = \sum_{m=-\infty}^{m=\infty} c_m e^{im\theta}$$

almost everywhere, and if f is continuous, then they are equal.

3.2 Fourier Inversion on \mathbb{T}

Definition 3.4. Given any function $f \in L^1(\mathbb{T})$, the function $\mathcal{F}(f): \mathbb{Z} \to \mathbb{C}$ given by $\mathcal{F}(f)(m) = c_m$, where c_m is the *Fourier coefficient*

$$c_m = \int_{-\pi}^{\pi} f(t) e^{-imt} \frac{dt}{2\pi},$$

is called the *Fourier transform* of f.

We identify the sequence $\mathcal{F}(f)$ with the sequence $(c_m)_{m \in \mathbb{Z}}$, which is also denoted by \widehat{f} .

Theorem 3.2. (*Plancherel*) The map $\mathcal{F}: f \mapsto \widehat{f}$ is an isometric isomorphism of the Hilbert spaces $L^2(\mathbb{T})$ and $\ell^2(\mathbb{Z})$.

In particular, \mathcal{F} is continuous.

Definition 3.5. Given a sequence $c = (c_m)_{m \in \mathbb{Z}} \in \ell^1(\mathbb{Z})$, we define the *Fourier cotransform* $\overline{\mathcal{F}}(c)$ of c as the function $\overline{\mathcal{F}}(c) \colon \mathbb{T} \to \mathbb{C}$ defined on \mathbb{T} given by

$$\overline{\mathcal{F}}(c)(\theta) = \sum_{m=-\infty}^{m=\infty} c_m e^{im\theta} = \sum_{m=-\infty}^{m=\infty} c_m (e^{i\theta})^m,$$

the *Fourier series* associated with c (with $\theta \in \mathbb{R}/2\pi\mathbb{Z}$).

Given a function $f \in L^1(\mathbb{T})$, if \widehat{f} is the Fourier transform of f, then the Fourier cotransform $\overline{\mathcal{F}}(\widehat{f}) = \sum_{m=-\infty}^{m=\infty} \widehat{f}_m e^{im\theta}$ of \widehat{f} is called the *the Fourier series* of f.

Note that $e^{im\theta}$ is used instead of the term $e^{-im\theta}$ occurring in the Fourier transform.

Plancherel's theorem shows that the maps $\mathcal{F}: L^2(\mathbb{T}) \to \ell^2(\mathbb{Z})$ and $\overline{\mathcal{F}}: \ell^2(\mathbb{Z}) \to L^2(\mathbb{T})$ are *mutual inverses*.

Example 3.2. Let $f: [-\pi, \pi] \to \mathbb{R}$ be the periodic function given by

$$f(\theta) = \theta, \qquad -\pi < \theta \le \pi.$$

The graph of $f(\theta)$ is shown in Figure 3.2.

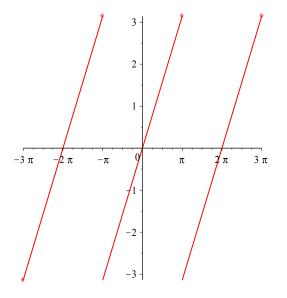


Figure 3.2: The graph of the periodic function $f(\theta) = \theta$, where $-\pi < \theta \le \pi$.

242CHAPTER 3. FOURIER ANALYSIS ON A LOCALLY COMPACT ABELIAN GROUP

The Fourier coefficients c_m are given by

$$c_0 = 0,$$

and for $m \neq 0$, by integrating by parts, we have

$$c_m = \frac{1}{2\pi} \int_{-\pi}^{\pi} \theta e^{-im\theta} d\theta = \frac{(-1)^{m+1}}{im}.$$

Hence the Fourier series for f is

$$\sum_{m \neq 0} \frac{(-1)^{m+1}}{im} e^{im\theta}.$$

We obtain the real Fourier series

$$2\sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{m} \sin m\theta. \tag{(*)}$$

The series belongs to $L^2(\mathbb{T})$ but it does not converge to f pointwise or uniformly.

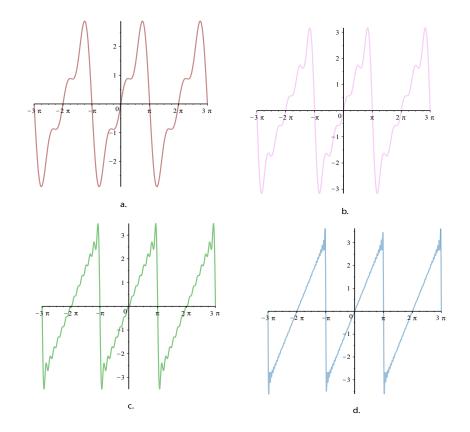


Figure 3.3: Let $S_M = 2 \sum_{m=1}^{M} \frac{(-1)^{m+1}}{m} \sin m\theta$. Figure (a) is the graph of S_3 ; Figure (b) is the graph of S_5 ; Figure (c) is the graph of S_{14} , and Figure (d) is the graph of S_{40} .

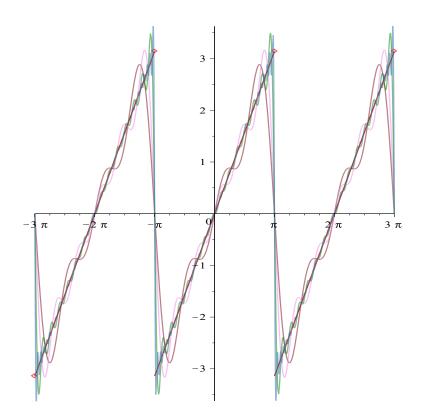


Figure 3.4: The partial sums S_3, S_5, S_{14}, S_{40} approximating $f(\theta)$ of Example 3.2.

In fact, it is not obvious that the series

$$2\sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{m} \sin m\theta$$

converges pointwise. It does, with

$$2\sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{m} \sin m\theta = \begin{cases} \theta & \text{if } -\pi < \theta < \pi\\ 0 & \text{if } \theta = \pm \pi. \end{cases}$$

This series converges pointwise to the function f of Example 3.2, except for $\theta = (2k+1)\pi$ where $f((2k+1)\pi-) = \pi$ and $f((2k+1)\pi+) = -\pi$, according to a theorem of Dirichlet (see Section ??). 246 CHAPTER 3. FOURIER ANALYSIS ON A LOCALLY COMPACT ABELIAN GROUP

As a consequence of the previous results the following facts hold:

(1) The Fourier coefficients

$$c_m = \int_{-\pi}^{\pi} f(t) e^{-imt} \frac{dt}{2\pi}, \quad m \in \mathbb{Z}.$$

are given by the inner products

$$c_m = \langle f, e^{im\theta} \rangle_{\mathrm{L}^2(\mathbb{T})}.$$

(2) The functions $e^{im\theta}$ form an orthonormal family:

$$\langle e^{im\theta}, e^{in\theta} \rangle_{\mathrm{L}^{2}(\mathbb{T})} = \begin{cases} 1 & \text{if } m = n \\ 0 & \text{if } m \neq n. \end{cases}$$

(3) For every function $f \in L^2(\mathbb{T})$, its Fourier series $\sum_{m=-\infty}^{m=\infty} c_m e^{im\theta}$ converges to f in the $L^2(\mathbb{T})$ -norm.

So

$$f = \sum_{m = -\infty}^{m = \infty} c_m e^{im\theta}$$

but the series may not converge pointwise to f.

The family of functions $(e^{im\theta})_{m\in\mathbb{Z}}$ is kind of infinite orthonormal basis for $L^2(\mathbb{T})$.

It is *not* a basis in the sense of linear algebra because a linear combination only has a *finite number* of nonzero coefficients.

But in general infinitely many Fourier coefficients c_m are nonzero.

However the linear subspace of $L^2(\mathbb{T})$ (the set of (finite!) linear combinations of functions of the form $e^{im\theta}$) is dense in $L^2(\mathbb{T})$.

Such a family of functions is called a *Hilbert basis*.

See Gallier and Quaintance, Aspects of Harmonic Analysis and on Locally Compact Abelian Groups, Appendix D, Section D2.

The maps $e^{i\theta} \mapsto e^{im\theta} = (e^{i\theta})^m$, for $m \in \mathbb{Z}$ and $\theta \in \mathbb{R}/(2\pi\mathbb{Z})$, are continuous homomorphisms of the group $\mathbb{T} = \mathbf{U}(1)$ into itself.

In fact, it can be shown that *they are the only ones of this kind*.

They are called the *characters* of \mathbb{T} .

Obviously the set of characters of $\mathbb T$ is in bijection with $\mathbb Z.$

Thus the Fourier transform $\mathcal{F}(f)$ of a function $f \in L^2(\mathbb{T})$, a sequence of complex numbers indexed by \mathbb{Z} , can be viewed as *a function of the characters of* \mathbb{T} . The characters of \mathbb{Z} are the group homomorphisms $\varphi \colon \mathbb{Z} \to \mathbb{T}$.

Since \mathbb{Z} is generated by 1, a homomorphism satisfies the equation

$$\varphi(m) = (\varphi(1))^m, \qquad m \in \mathbb{Z},$$

so it is uniquely determined by picking $\varphi(1) = e^{i\theta} \in \mathbb{T}$ (with $\theta \in \mathbb{R}/(2\pi\mathbb{Z})$), and is of the form

$$\varphi(m) = (e^{i\theta})^m = e^{im\theta}$$

for all $m \in \mathbb{Z}$.

Thus the set of characters of \mathbb{Z} is in bijection with \mathbb{T} .

Then the Fourier cotransform $\overline{\mathcal{F}}(c)$ of a "function" $c \in \ell^2(\mathbb{Z})$ ($\overline{\mathcal{F}}(c)$ is the Fourier series associated with c) can also be viewed *as a function on the characters of* \mathbb{Z} , namely a function on \mathbb{T} .

This fact generalizes to an arbitrary *abelian locally compact group* and is the key to the definition of the Fourier transform on such a group.

3.3 The Fourier Transform and Cotransform on LCA Groups