
Chapter 2

Group Representations

2.1 Finite-Dimensional Group Representations

For simplicity, we begin with finite-dimensional represen-
tations.

Definition 2.1.Given a locally compact group G and a
normed vector space V of dimension n, a continuous lin-
ear representation of G in V of dimension (or degree)
n is a group homomorphism ⇢ : G ! GL(V ), where
GL(V ) denotes the group of invertible linear maps from
V to itself, such that the following condition holds:

(C) The map g 7! ⇢(g)(u) is continuous for every u 2 V .

The space V , called the representation space, may be a
real or a complex vector space.
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If V has a Hermitian (resp. Euclidean) inner product
h�,�i, we say that ⇢ : G ! GL(V ) is a continuous
unitary representation if

(U) Every linear map ⇢(g) is an isometry , that is,

h⇢(g)(u), ⇢(g)(v)i = hu, vi,
for all g 2 G and all u, v 2 V.

A unitary representation is denoted ⇢ : G ! U(V ).

Thus, a continuous linear representation of G is a map
⇢ : G ! GL(V ) satisfying Condition (C) as well as the
properties:

⇢(gh) = ⇢(g)⇢(h)

⇢(g�1) = ⇢(g)�1

⇢(1) = idV

for all g, h 2 G.
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If ⇢ is a unitary representation, then we also have

(⇢(g))�1 = (⇢(g))⇤.

If G is a finite group, the continuity requirement is omit-
ted.

To avoid confusion when representations involving dif-
ferent groups arise we denote the space of the represen-
tation ⇢ by V⇢, and so we denote a representation as
⇢ : G ! GL(V⇢).

To reduce the amount of parentheses we often write ⇢g(u)
instead of ⇢(g)(u).

The representation such that ⇢(g) = idV for all g 2 G is
called the trivial representation .
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It should be noted that because V is finite-dimensional,
the condition that for every u 2 V , the map g 7! ⇢(g)(u)
is continuous, is actually equivalent to the fact that the
map g 7! ⇢(g) from G to L(V ) equipped with the oper-
ator norm induced by any norm on V , is continuous.

Since the space V of a representation ⇢ : G ! GL(V ) is
finite-dimensional, say n, it is often convenient to pick a
basis (e1, . . . , en) of V , and then every invertible linear
map ⇢(g) 2 GL(V ) is represented by an n ⇥ n matrix
that we denote 1

M⇢(g) = (⇢ij(g)).

We obtain a continuous mapM⇢ : G ! GL(n,C) assign-
ing an invertible n⇥n complex matrix M⇢(g) = (⇢ij(g))
to g 2 G satisfying the properties

M⇢(gh) = M⇢(g)M⇢(h)

M⇢(g
�1) = (M⇢(g))

�1

M⇢(1) = In

for all g, h 2 G.

1To be perfectly rigorous the matrix M⇢ should be indexed by the basis E = (e1, . . . , en), say as ME
⇢ , but

this is just too much decoration.
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The continuity of M⇢ is equivalent to the fact that the
n2 functions g 7! ⇢ij(g) are continuous. If ⇢ is a unitary
representation, then we also have

(M⇢(g))
�1 = (M⇢(g))

⇤.

If G is finite we drop the continuity requirement. Con-
versely we have the notion of representation in matrix
form.

Definition 2.2.Given a locally compact groupG a con-
tinuous linear representation of G of dimension (or
degree) n in matrix form is a mapping
M⇢ : G ! GL(n,C) assigning an invertible n⇥ n com-
plex matrix M⇢(g) = (⇢ij(g)) to g 2 G satisfying the
properties

M⇢(gh) = M⇢(g)M⇢(h)

M⇢(g
�1) = (M⇢(g))

�1

M⇢(1) = In

for all g, h 2 G, and such that the n2 functions
g 7! ⇢ij(g) are continuous.
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If M⇢ is a unitary representation, then we also have

(M⇢(g))
�1 = (M⇢(g))

⇤.

In this case M⇢ is a homomorphism M⇢ : G ! U(n). If
G is finite we drop the continuity requirement.

A representation in matrix form M⇢ : G ! GL(n,C)
(resp. M⇢ : G ! U(n)) defines the representation
⇢ : G ! GL(Cn) (resp. ⇢ : G ! U(Cn)) given by

(⇢(g))(z) = M⇢(g)z, z 2 C
n, g 2 G.

We also often identify a matrix representation with the
representation associated with it. The same issue arises
in linear algebra and we hope that the reader is already
familiar with it and will not be confused.

Given any basis (e1, . . . , en) of V , we may think of the
scalar functions g 7! ⇢ij(g) as special functions on G.
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As explained in Dieudonné [4] (see also Vilenkin [16]), es-
sentially all special functions (Legendre polynomials, ul-
traspherical polynomials, Bessel functions etc.) arise in
this way by choosing some suitable G and V .

Remark: In Chapter ?? we will consider the situation
where G is a group not equipped with any topology, and
V is a vector space, possibly infinite-dimensional, not
equipped with any norm.

Then a linear representation of G in V is simply a ho-
momorphism ⇢ : G ! GL(V ), which amounts to drop-
ping Condition (C) from Definition 2.1.

However, in this chapter and the next, all representations
satisfy Condition (C).
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Example 2.1. Consider the group S3 of permutations
on the set {1, 2, 3}. There are 3! = 6 permutations

⇡1 = (1, 2, 3), ⇡2 = (1, 3, 2), ⇡3 = (2, 1, 3),

⇡4 = (2, 3, 1), ⇡5 = (3, 1, 2), ⇡6 = (3, 2, 1).

The first permutation ⇡1 = (1, 2, 3) is the identity; the
permutations

⇡2 = (1, 3, 2), ⇡3 = (2, 1, 3), ⇡6 = (3, 2, 1)

are transpositions and thus have negative signature, and
the permutations

⇡4 = (2, 3, 1), ⇡5 = (3, 1, 2)

are cyclic permutations and thus have positive signature.
We obtain a representation ⇢1 : S3 ! GL(C3) as follows.
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If (e1, e2, e3) is the canonical basis of C3, then ⇢1(⇡i) is
the linear map given by

⇢1(⇡i)(ej) = e⇡i(j), 1  i, j  3.

In the basis (e1, e2, e3), the linear maps ⇢1(⇡i) are repre-
sented by the 3⇥ 3 matrices M1, . . ., M6 given by

0

@
1 0 0
0 1 0
0 0 1

1

A ,

0

@
1 0 0
0 0 1
0 1 0

1

A ,

0

@
0 1 0
1 0 0
0 0 1

1

A ,

0

@
0 0 1
1 0 0
0 1 0

1

A ,

0

@
0 1 0
0 0 1
1 0 0

1

A ,

0

@
0 0 1
0 1 0
1 0 0

1

A .

This is an example of a permutation representation.

Here is another representation of the group S3 in C
6.
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Example 2.2. This time we define the representation
⇢R : S3 ! GL(C6) as follows.

Let (e⇡1, . . . , e⇡6) be the canonical basis of C
6 indexed by

the permutations ⇡i (1  i  6), and set

⇢R(⇡i)(e⇡j) = e⇡i�⇡j , 1  i, j  6.

Note that the 6⇥6 matrix representing ⇢R(⇡i) in the basis
(e⇡1, . . . , e⇡6) consists of the permutation of the columns
of the identity matrix I6 whose indices are given by the
ith row of the multiplication table of the group S3.

This multiplication table is given by

0

BBBBBB@

1 2 3 4 5 6
2 1 5 6 3 4
3 4 1 2 6 5
4 3 6 5 1 2
5 6 2 1 4 3
6 5 4 3 2 1,

1

CCCCCCA
,

where we denote ⇡i simply by i and where the (i, j) entry
represents ⇡i � ⇡j.
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We obtain the following 6 matrices:

0

BBBBBB@

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

1

CCCCCCA
,

0

BBBBBB@

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0

1

CCCCCCA
,

0

BBBBBB@

0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

1

CCCCCCA
,

0

BBBBBB@

0 0 0 0 1 0
0 0 0 0 0 1
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0

1

CCCCCCA
,

0

BBBBBB@

0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0

1

CCCCCCA
,

0

BBBBBB@

0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

1

CCCCCCA
.

The representation ⇢R is called the regular representa-
tion of S3.
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Example 2.3. For an example involving an infinite group,
we describe a class of representations of G = SL(2,C),
the group of complex matrices with determinant +1,

✓
a b
c d

◆
, ad� bc = 1.

Recall that PC

m(2) denotes the vector space of complex
homogeneous polynomials of degree m in two variables
(z1, z2).

A complex homogeneous polynomials of degree m in two
variables (z1, z2) is an expression of the form

P (z1, z2) =
mX

i=0

ciz
i
1
zm�i
2

,

with ci 2 C.
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For every matrix A 2 SL(2,C), with

A =

✓
a b
c d

◆
,

for every homogeneous polynomial P 2 PC

m(2), we define
Um(A)(P (z1, z2)) by

Um(A)(P (z1, z2)) = P (dz1 � bz2,�cz1 + az2).

If we think of the homogeneous polynomial Q(z1, z2) as
a function P

�z1
z2

�
of the vector

�z1
z2

�
, then

Um(A)

✓
P

✓
z1
z2

◆◆
= PA�1

✓
z1
z2

◆
= P

✓
d �b
�c a

◆✓
z1
z2

◆
.

This is a left regular representation, as discussed later in
Definition 2.6.
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The expression above makes it clear that

Um(AB) = Um(A)Um(B)

for any two matrices A,B 2 SL(2,C), so Um is indeed a
representation of SL(2,C) into PC

m(2).

The representations Um also yield representations of the
subgroup SU(2) of SL(2,C).

Recall that the group SU(2) consists of all 2⇥2 complex
matrices

S =

✓
↵ �
�� ↵

◆
, ↵↵ + �� = 1.

As above, the representation Um : SU(2) ! GL(PC

m(2))
is given by

Um(S)(P (z1, z2)) = P (↵z1 � �z2, �z1 + ↵z2).
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It can be shown that SL(2,C) has no nontrivial unitary
finite-dimensional representations!

This is because SL(2,C) is a connected simple noncom-
pact Lie group with finite center; see Dieudonné [5] (Sec-
tion 21.6, Problem 5).

Example 2.4.We define the representation
⇢9 : SO(3) ! GL(M3(C)) as follows: for any 3⇥ 3 com-
plex matrix A 2 M3(C), for any Q 2 SO(3),

⇢9(Q)(A) = QAQ>.

This is a representation in the vector space M3(C), which
has dimension 9.

To obtain a version of ⇢9 as a matrix representation M⇢9
we need to pick a basis of M3(C).
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Let us choose the canonical basis of nine matrices
E11, E12, E13, E21, E22, E23, E31, E32, E33, where Eij con-
tains 1 as the (i, j) entry and 0 otherwise.

A matrix M 2 M3(C) is then written as the column
vector

vec(A) = (a11, a12, a13, a21, a22, a23, a31, a32, a33).

It follows that over this basis, the matrix M⇢9(Q) repre-
senting the linear map ⇢9(Q) is given by

M⇢9(Q)(vec(A)) = vec(QAQ>).

However, it is a fact of linear algebra that for any m⇥m
matrix A, any n⇥n matrix B, and m⇥n matrix Z, we
have the identity

vec(AZB) = (B> ⌦ A)vec(Z),

where ⌦ denotes the Kronecker product of matrices.
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Therefore we deduce that

M⇢9(Q)(vec(A)) = vec(QAQ>) = (Q⌦Q)vec(A),

that is,

M⇢9(Q) = Q⌦Q,

a 9⇥ 9-matrix. The definition of the representation ⇢9 as
acting on the vector space M3(C) is a lot more economical
than its matrix version M⇢9 acting on C

9.

The representation ⇢9 is reducible . Indeed observe that
both the subspace of symmetric matrices and the sub-
space of skew-symmetric matrices are invariant since
(QAQ>)> = QA>Q>.

The subspace of symmetric matrices A with tr(A) = 0 is
also invariant.
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Definition 2.3. Given any two representations
⇢1 : G ! GL(V1) and ⇢2 : G ! GL(V2), a G-map (or
morphism of representations) ' : ⇢1 ! ⇢2 is a linear
map
' : V1 ! V2 which is equivariant , which means that the
following diagram commutes for every g 2 G:

V1

⇢1(g) //

'

✏✏

V1

'

✏✏

V2 ⇢2(g)
// V2,

i.e.

' � ⇢1(g) = ⇢2(g) � ', g 2 G.

The space of all G-maps between two representations as
above is denoted HomG(⇢1, ⇢2).
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Two representations ⇢1 : G ! GL(V1) and
⇢2 : G ! GL(V2) are equivalent i↵ ' : V1 ! V2 is an in-
vertible linear map (which implies that dimV1 = dimV2).

In matrix form, the representations ⇢1 : G ! GL(n,C)
and ⇢2 : G ! GL(n,C) are equivalent i↵ there is some
invertible n⇥ n matrix P so that

⇢2(g) = P⇢1(g)P
�1, g 2 G.
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If W ✓ V is a subspace of V , then in some cases, a
representation ⇢ : G ! GL(V ) yields a representation
⇢ : G ! GL(W ).

This is interesting because under certain conditions on G
(e.g., G compact) every representation may be decom-
posed into a “sum” of so-called irreducible representa-
tions (defined below), and thus the study of all repre-
sentations of G boils down to the study of irreducible
representations of G;
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Definition 2.4. Let ⇢ : G ! GL(V ) be a representa-
tion of G. IfW ✓ V is a subspace of V , then we say that
W is invariant (or stable) under ⇢ i↵ ⇢(g)(w) 2 W , for
all g 2 G and all w 2 W .

IfW is invariant under ⇢, then we have a homomorphism,
⇢ : G ! GL(W ), called a subrepresentation of G.

A representation ⇢ : G ! GL(V ) with V 6= (0) is
irreducible i↵ it only has the two subrepresentations
⇢ : G ! GL(W ) corresponding to W = (0) or W = V .
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Example 2.5. The representation ⇢1 : S3 ! GL(C3)
of Example 1.2 is reducible.

Indeed, the one-dimensional subspace V1 spanned by
e1+e2+e3 is invariant under ⇢1 since each ⇢1(⇡i) permutes
the indices 1, 2, 3.

The corresponding subrepresentation ofS3 in V1 is equiv-
alent to the irreducible trivial representation in C, given
by ⇢triv(⇡i) = 1 (1  i  6).

The orthogonal complement V2 of V1 is the plane of equa-
tion

x1 + x2 + x3 = 0,

which has (e1 � e2, e2 � e3) as a basis.
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It is easy to see that the subspace V2 is also invariant
under ⇢1. It is instructive to find an equivalent represen-
tation of ⇢1 in the basis (v1, v2, v3) given by

v1 = (1/3)(e1 + e2 + e3)

v2 = (1/3)(e1 � e2)

v3 = (1/3)(e2 � e3).

The change of basis matrix P from the basis (e1, e2, e3)
to the basis (v1, v2, v3) is

P =

0

@
1/3 1/3 0
1/3 �1/3 1/3
1/3 0 �1/3

1

A ,

whose inverse is

P�1 =

0

@
1 1 1
2 �1 �1
1 1 �2

1

A .
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Using the linear map ' from C
3 to itself given by P�1

(which transforms the coordinates of a vector in C
3 over

the basis (e1, e2, e3) to the coordinates of this vector over
the basis (v1, v2, v3)), we obtain the equivalent represen-
tation ⇢0

1
given by

⇢0
1
(⇡i) = '⇢1(⇡i)'

�1,

and over the basis (v1, v2, v3), the matrices representing
the linear maps ⇢0

1
(⇡i) are the matrices P�1MiP shown

below:

0

@
1 0 0
0 1 0
0 0 1

1

A ,

0

@
1 0 0
0 1 0
0 1 �1

1

A ,

0

@
1 0 0
0 �1 1
0 0 1

1

A ,

0

@
1 0 0
0 0 �1
0 1 �1

1

A ,

0

@
1 0 0
0 �1 1
0 �1 0

1

A ,

0

@
1 0 0
0 0 �1
0 �1 0

1

A .
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Some of the above matrices are not unitary.

We can fix this by choosing an orthonormal basis (w1, w2, w3)
with w1 = (1/

p
3)v1, a basis of V1, and (w2, w3), a basis

of V2.

For example we can pick

w1 = (1/
p
3)(e1 + e2 + e3)

w2 = (1/
p
2)(e1 � e2)

w3 = (1/
p
6)(e1 + e2 � 2e3).

The change of basis matrix Q from the basis (e1, e2, e3)
to the basis (w1, w2, w3) is

Q =

0

@
1/
p
3 1/

p
2 1/

p
6

1/
p
3 �1/

p
2 1/

p
6

1/
p
3 0 �2/

p
6

1

A

and Q�1 = Q>.
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We obtain an equivalent representation ⇢00
1
(⇡i) and over

the basis (w1, w2, w3), the unitary matrices representing
the linear maps ⇢00

1
(⇡i) are the matrices Q�1MiQ shown

below:

0

@
1 0 0
0 1 0
0 0 1

1

A ,

0

@
1 0 0
0 1/2

p
3/2

0
p
3/2 �1/2

1

A ,

0

@
1 0 0
0 �1 0
0 0 1

1

A ,

0

@
1 0 0
0 �1/2 �

p
3/2

0
p
3/2 �1/2

1

A ,

0

@
1 0 0
0 �1/2

p
3/2

0 �
p
3/2 �1/2

1

A ,

0

@
1 0 0
0 1/2 �

p
3/2

0 �
p
3/2 �1/2

1

A .

It is now clear that the subspace V1 spanned by w1 and
the subspace V2 spanned by w2 and w3 are invariant.
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It is not hard to show that the subrepresentation of ⇢00
1
in

V2 is irreducible.

This representation is usually called the standard repre-
sentation of S3; see Fulton and Harris [9], Section 1.3,

Thus we have two irreducible representations of S3, the
second one being two-dimensional.

It turns out that S3 only has one more irreducible repre-
sentation.

How do we find it? The answer is, as a subrepresentation
of the regular representation.
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Recall the regular representation ⇢R : S3 ! GL(C6) of
S3 from Example 2.2.

The notion of regular representation can be defined for
any finite group.

Definition 2.5. Let G be a finite group with g = |G|
elements. We define the regular representation
⇢R : G ! GL(Cg) as follows.

Let (es1, . . . , esg) be the canonical basis of C
g indexed by

the g elements of G and set

⇢R(si)(esj) = esisj, 1  i, j  g.

The following facts about irreducible finite-dimensional
representations of a finite group G can be shown.
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(1) Every irreducible finite-dimensional representation
⇢i : G ! GL(Cni) of the finite group G is equivalent
to a subrepresentation of the regular representation
⇢R : G ! GL(Cg) of G in C

g (where g = |G|).
(2) Every irreducible representation ⇢i : G ! GL(Cni)

occurs ni times in the regular representation; see Propo-
sition 4.6.

(3) If there are h irreducible representations
⇢i : G ! GL(Cni) (up to equivalence), then

n2

1
+ · · · + n2

h = g;

see Section 4.3, Example ??.

(4) The number h of irreducible representations of G (up
to equivalence) is equal to the number of conjugacy
classes of G; see Section 4.3, Example ??.

The proof of these standard facts of representation theory
can be found in Serre [14], Fulton and Harris [9], Simon
[15], Hall [13], or any book on representation theory.
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There is also a notion of regular representation on a vector
space of functions which occurs a lot in group equivariant
deep learning.

Definition 2.6. Let G be a finite group with g = |G|
elements. The representation R given by

(Rsi(f ))(sk) = f (s�1

i sk), f 2 C
G, 1  i, k  g, (⇤2)

is also called the regular representation of G in C
G.

The representation of Definition 2.6 is a special case of
the notion of regular representation defined in Definition
?? for locally compact groups.

To be very precise it is the left regular representation of
G because it acts on the left on functions in C

G.

At first glance the term s�1

i sk may seem wrong, but it is
necessary to use s�1

i instead of si to insure that R is a
left action on functions in C

G. We already noticed this
fact in Vol I, Section @@@8.2, Definition @@@8.7.
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There is also a right regular representation defined by

(Rr
si
(f ))(sk) = f (sksi), f 2 C

G, 1  i, k  g. (⇤3)

Representations as given by (⇤2) are said to be represen-
tations by left shifts , and representations as given by (⇤3)
are said to be representations by right shifts .

Obviously the notion of left regular representation (and
right regular representation) makes sense for any group
G, finite or infinite, and any subspace F of the vector
space all functions in C

G, namely it is the representation
R : G ! GL(F) given by

(Rs(f ))(t) = f (s�1t), f 2 F , s, t 2 G. (⇤4)

If G is an infinite locally compact groups, it is necessary
to replace the vector space CG of the representation by a
space of functions defined on G, namely L2

�(G;C) (where
� is a left Haar measure on G).
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If V has a hermitian inner product, then we can prove
that any irreducible linear representation ⇢ : G ! GL(V )
of a group G, finite or infinite, where ⇢ is not assumed to
satisfy Condition (C), is equivalent to some (irreducible)
subrepresentation b⇢ : G ! GL(F) of the left regular rep-
resentation R : G ! GL(CG).

The significance of this result is that for any group G,
there is always some irreducible representation whose rep-
resentation space has a cardinality at most the cardinality
of GC.
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We now return to the regular representation of Example
2.2.

Example 2.6. It is easy to see that the symmetric group
has three conjugacy classes, {⇡1}, {⇡2, ⇡3, ⇡6} and {⇡4, ⇡5},
so it has three irreducible representations.

Going back to the regular representation ⇢R : S3 ! GL(C6),
we see that the one-dimensional subspace V1 spanned by
e1+e2+e3+e4+e5+e6 is invariant so the representation
⇢R is reducible.

The subrepresentation of ⇢R in V1 is equivalent to the
trivial representation, which is irreducible.

Although this is not obvious, there is another one-dimensional
irreducible representation, which is the representation in-
duced by the signature function ✏ on permutations.
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Recall that for any permutation ⇡, its signature ✏(⇡) is
+1 if ⇡ is the composition of an even number of transpo-
sitions, �1 if it is the composition of an odd number of
transpositions.

The map ✏ : Sn ! C is a homomorphism and it yields
the irreducible representation ⇢✏ : Sn ! U(1) given by

(⇢✏(⇡))(z) = ✏(⇡)z, z 2 C.

Then we see that the subspace V2 spanned by the vec-
tor e1 � e2 � e3 + e4 + e5 � e6 (which corresponds to
the signatures +1,�1,�1,+1,+1,�1 of the permuta-
tions ⇡1, . . . , ⇡6) is invariant under ⇢R, and the subrep-
resentation of ⇢R to V2 is equivalent to the irreducible
representation ⇢✏.
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The orthogonal complement V3 of V1�V2 is the intersec-
tion of the two hyperplanes in C

6 given by the equations

x1 + x2 + x3 + x4 + x5 + x6 = 0

x1 � x2 � x3 + x4 + x5 � x6 = 0,

a subspace of dimension 4.

By adding and subtracting these equations we see that
the subspace V3 is also defined by the equations

x1 + x4 + x5 = 0

x2 + x3 + x6 = 0.

We can prove directly that V3 is invariant under ⇢R, but
since the representation ⇢R is actually unitary, we prefer
using results form the next section.



188 CHAPTER 2. GROUP REPRESENTATIONS

An easy but crucial lemma about irreducible representa-
tions is Schur’s Lemma .

Lemma 2.1. (Schur’s Lemma) Let ⇢1 : G ! GL(V )
and ⇢2 : G ! GL(W ) be any two real or complex
finite-dimensional representations of a group G. If ⇢1
and ⇢2 are irreducible, then the following properties
hold:

(i) Every G-map ' : ⇢1 ! ⇢2 is either the zero map or
an isomorphism.

(ii) If ⇢1 is a complex representation, then every G-
map ' : ⇢1 ! ⇢1 is of the form ' = �id, for some
� 2 C.
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Proof. (i) Observe that the kernel Ker ' ✓ V of ' is
invariant under ⇢1. Indeed, for every v 2 Ker ' and
every g 2 G, we have

'(⇢1(g)(v)) = ⇢2(g)('(v)) = ⇢2(g)(0) = 0,

so ⇢1(g)(v) 2 Ker '. Thus, ⇢1 : G ! GL(Ker ') is a
subrepresentation of ⇢1, and as ⇢1 is irreducible, either
Ker ' = (0) or Ker ' = V .

In the second case, ' = 0. If Ker ' = (0), then ' is
injective.

However, '(V ) ✓ W is invariant under ⇢2, since for
every v 2 V and every g 2 G,

⇢2(g)('(v)) = '(⇢1(g)(v)) 2 '(V ),

and as '(V ) 6= (0) (as V 6= (0) since ⇢1 is irreducible)
and ⇢2 is irreducible, we must have '(V ) = W ; that is,
' is an isomorphism.
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The proof also works for infinite-dimensional spaces.

(ii) Since V is a complex vector space of finite dimension,
the linear map ' has some eigenvalue � 2 C.

Let E� ✓ V be the eigenspace associated with �.

The subspace E� is invariant under ⇢1, since for every
u 2 E� and every g 2 G, we have

'(⇢1(g)(u)) = ⇢1(g)('(u)) = ⇢1(g)(�u) = �⇢1(g)(u),

so ⇢1 : G ! GL(E�) is a subrepresentation of ⇢1, and as
⇢1 is irreducible andE� 6= (0), we must haveE� = V .

Part (i) of Schur’s lemma also holds for infinite-dimensional
representations as we noted in the proof.
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An interesting corollary of Schur’s Lemma is the following
fact:

Proposition 2.2.A complex irreducible finite-dimen-
sional representation ⇢ : G ! GL(V ) of a commuta-
tive group G is one-dimensional.
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2.2 Unitary Group Representations

We now generalize representations to allow the represent-
ing space to be a complex Hilbert space (typically sepa-
rable).

Definition 2.7.Given a locally compact group G and a
complex Hilbert spaceH , a unitary representation of G
in H is a group homomorphism U : G ! U(H), where
U(H) is the group of unitary operators on H , such that:

(C) The map g 7! U(g)(u) is continuous for every u 2 H .

(U) Every linear map U(g) is an isometry; that is,

hU(g)(u), U(g)(v)i = hu, vi,

for all g 2 G and all u, v 2 H . In particular U(g) is
continuous and

(U(g))�1 = (U(g))⇤ for all g 2 G.
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As in Definition 2.1, to avoid confusion when representa-
tions involving di↵ferent groups arise we denote the space
of the representation U by HU , and so we denote a rep-
resentation as U : G ! U(HU).

Remark: Sometimes, a unitary representation as in Def-
inition 2.7 is called a continuous unitary representation.

Note that ifH is infinite-dimensional, the map g 7! U(g)
is not necessarily continuous .

However, the left action Ua : G⇥H ! H associated with
U given by

Ua(s, x) = U(s)(x), for all s 2 G and all x 2 H

is continuous .
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The notion of morphism of unitary representations and
of equivalence is adapted as follows.

Definition 2.8. Given any two unitary representations
U1 : G ! U(H1) and U2 : G ! U(H2), a G-map (or
morphism of representations) ' : U1 ! U2 is a contin-
uous linear map which is equivariant , which means that
the following diagram commutes for every g 2 G:

H1

U1(g) //

'

✏✏

H1

'

✏✏

H2 U2(g)
// H2,

i.e.

' � U1(g) = U2(g) � ', g 2 G.

The space of all G-maps between two representations as
above is denoted HomG(U1, U2).

A G-map is also called an intertwining operator .
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Two unitary representations U1 : G ! U(H1) and
U2 : G ! U(H2) are equivalent i↵ ' : H1 ! H2 is an
invertible linear isometry whose inverse is also continuous;
thus

U2(g) = ' � U1(g) � '�1,

for all g 2 G.

When U1 = U2, the space of G-maps HomG(U,U) is a
unital subalgebra of L(H) denoted by C(U) and is called
the commutant or centralizer of U .

Observe that

C(U) = {' 2 L(H) | '�U(g) = U(g)�' for all g 2 G}.
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Given a unitary representation U : G ! U(H), the defi-
nition of an invariant subspace W ✓ H is the same as
in Definition 2.4.

If W ✓ H is invariant under U , we say that the subrep-
resentation U : G ! U(W ) is closed if W is closed in
H .

As in the case of unitary representations of algebras, the
notion of subrepresentation is only well defined for closed
invariant subspaces of H .

However, by Proposition 2.4, since the closure W of an
invariant subspace W is closed, the notion of subrepre-
sentation of G in W is well defined.
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In the definition of an irreducible unitary representation
U : G ! U(H) (H 6= (0)), we require that the only
closed subrepresentations U : G ! U(W ) of the rep-
resentation U : G ! U(H) correspond to W = (0) or
W = H .

As for representations of algebras, we can define topolog-
ically cyclic representations and cyclic vectors.
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Definition 2.9. Let U : G ! U(H) be a unitary rep-
resentation of G in H . A vector x0 2 H is called a
totalizer , or totalizing vector , or cyclic vector for the
representation U if the subspace of H spanned by the set
{U(s)(x0) | s 2 G} is dense in H .

Equivalently if Mx0 denotes the closure of the set
{U(s)(x0) | s 2 G}, called the cyclic subspace generated
by x0, which is invariant under U , then x0 is a totalizer
(a cyclic vector) if Mx0 = H .

A representation which admits a totalizer is said to be
topologically cyclic.

The importance of totalizers stems from the following re-
sult.
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Proposition 2.3. Let U : G ! U(H) be a unitary
representation of G in H. Then H is the Hilbert sum
of a sequence (H↵)↵2⇤ of closed subspaces H↵ 6= (0) of
H invariant under U , and such that the restriction of
U to each H↵ is topologically cyclic. If H is separable,
the family ⇤ is countable (possibly finite).

Proposition 2.4. Let U : G ! U(H) be a unitary
representation of G in H.

(1) If the subspace E of H is invariant under U , then
its closure E is also invariant under U .

(2) Let E be a closed subspace of H invariant under
U . If E? is the orthogonal complement of E in H,
then E? is invariant under U .

If U1(s) and U2(s) are the restrictions of U(s) to
E and E?, then H = E�E? (the algebraic direct
sum), and the representation U is the Hilbert sum
of the representations U1 and U2.
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One should realize that Property (2) of Proposition 2.4
fails for nonunitary representations. For example, the
map

U : x 7!
✓
1 x
0 1

◆

is a representation of R in C
2, but the only nontrivial in-

variant subspace is the subspace spanned by (1, 0), which
is one-dimensional.

The problem is that because R is not compact, there is
no way to define an inner product on C

2 invariant under
U .

However, using the Haar measure, Vol I, Theorem @@@8.36
shows that if H is a finite-dimensional hermitian space,
then there is an inner-product on H for which the linear
maps U(s) are unitary.
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Theorem 2.5. (Complete Reducibility) Let
U : G ! GL(H) be a linear representation of a com-
pact group G in a Hermitian space H of dimension
n � 1.

There is a hermitian inner product h�,�i on H such
that U : G ! U(H) is a unitary representation of G in
the hermitian space (H, h�,�i). The representation
U is the direct sum of a finite number of irreducible
unitary representations.

Theorem 2.5 is very significant because it shows that the
study of arbitrary finite-dimensional representations of
a compact groupG reduces to the study of the irreducible
unitary (finite-dimensional) representations of G.
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Example 2.7. The regular representation
⇢R : S3 ! GL(C6) of S3 from Example 2.2 is obviously
unitary.

Theorem 2.5 tells us that ⇢R is the direct sum of irre-
ducible representations, and in Example 2.6 we already
found two irreducible representations which are
one-dimensional.

The discussion before Example 2.6 also shows that the
standard representation (see Example 2.5) must occur in
the representation ⇢R, and if there are h irreducible rep-
resentations, the equation n2

1
+ · · · + n2

h = g = 6 implies
that 1+1+22+ · · ·+n2

h = 6, so h = 3 and the standard
representation occurs twice.
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Therefore the orthogonal complement V3 of the direct sum
V1 � V2 given by the equations

x1 + x4 + x5 = 0

x2 + x3 + x6 = 0

must be the direct sum of 2 two-dimensional invariant
subspaces.

With a little help from Matlab we find that the subspace
V 3

1
spanned by the vectors

e1 + e2 � e3 � e4, e3 + e4 � e5 � e6

is invariant under ⇢R, the subspace V 3

2
spanned by the

vectors

e1 � e3 � e4 + e6, e2 + e4 � e5 � e6,

is also invariant under ⇢R, both V 3

1
and V 3

2
are orthogonal

to V1 � V2, and

C
6 = V1 � V2 � V 3

1
� V 3

2
.
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To show that V 3

1
is invariant we observe that V 3

1
is also

spanned by

e1 + e2 � e3 � e4, e3 + e4 � e5 � e6, e1 + e2 � e5 � e6,

and the action of ⇢R(⇡i) is to permute these vectors, pos-
sibly flipping signs, and similarly V 3

2
is also spanned by

e1 � e3 � e4 + e6, e2 + e4 � e5 � e6, e1 + e2 � e3 � e5,

and the action of ⇢R(⇡i) is also to permute these vectors,
possibly flipping signs.

According to our previous discussion these two
sub-representations of S3 in V 3

1
and V 3

2
are equivalent to

the standard representation given in Example 2.5.

Thus we identified explicitly the three irreducible rep-
resentations of S3 as subrepresentations of the regular
representation.
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Proposition 2.6. Let U : G ! U(H) be a unitary
representation of G in H. A closed subspace E of
H is invariant under U i↵ PEU(g) = U(g)PE for all
g 2 G, in other words, PE 2 C(U) = HomG(U,U),
where PE : H ! E is the orthogonal projection of H
onto E.

Proposition 2.6 it yields a method for proving that a uni-
tary representation U : G ! U(H) is irreducible.

Indeed, if U is reducible, then there is some nonzero
G-map ' 2 HomG(U,U) which is not invertible .

Thus, if every nonzero G-map in HomG(U,U) is in-
vertible, then U must be irreducible .

This technique is illustrated in the next example.
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Example 2.8. Recall the representations
Um : SU(2) ! GL(PC

m(2)) from Example 2.3, where
PC

m(2) denotes the vector space of complex homogeneous
polynomials

P (z1, z2) =
mX

k=0

ckz
k
1
zm�k
2

of degree m (ci 2 C).

The m + 1 monomials Pk = zk
1
zm�k
2

(0  k  m) form
a basis of PC

m(2).

In the physics literature, it is customary to index homo-
geneous polynomials in terms of ` = m/2, which is an
integer when m is even but a half integer when m is odd.

In this context, the number ` = m/2 is the spin of a
particle.
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In terms of ` = m/2, a homogeneous polynomial is writ-
ten as

P (z1, z2) =
X̀

k=�`

ckz
`�k
1

z`+k
2

,

where it is assumed that ` + k = j where j takes the
integral values j = 0, 1, . . . , 2` = m, so that
`� k = 2`� (` + k) = 2`� j takes the values
2`, 2`� 1, . . . , 0.

Note that k = j�` = j�m/2 with j = 0, 1, . . . , 2` = m,
so k is an integer only if m is even.
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If m is odd, say m = 2h+ 1, then ` = h+ 1

2
and k takes

the 2` + 1 = m + 1 values

�h� 1

2
, �(h� 1)� 1

2
, . . . ,�1

2
,
1

2
, 1 +

1

2
, . . . , h +

1

2
,

and so k 6= 0.

If m is even, say m = 2h, then ` = h and k takes the
2` + 1 = m + 1 values

�h, �(h� 1), . . . ,�1, 0, 1, . . . , h� 1, h.

For example, if ` = 3

2
, then k takes the four values

�3

2
, �1

2
,
1

2
,
3

2
,

and if ` = 2, then k takes the five values

�2, �1, 0, 1, 2.

The representing space is then PC

2`(2) and it has dimen-
sion 2` + 1.
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The physics notation makes it easier to make the connec-
tion between the matrix expression of the representations
Um (renamed as U`) and the special functions expressed
in terms of Jacobi polynomials; see Vilenkin [16] (Chapter
III, Sections 2 and 3).

For every matrix S 2 SU(2), with

S =

✓
↵ �
�� ↵

◆
, ↵↵ + �� = 1,

for every homogeneous polynomial P 2 PC

m(2),
Um(S)(P (z1, z2)) is defined by

Um(S)(P (z1, z2)) = P (↵z1 � �z2, �z1 + ↵z2). (Um)

As defined, the representations Um are not unitary, but
since SU(2) is compact, we can apply Theorem 2.5 to
find an invariant inner product on PC

m(2).

This can actually be done quite explicitly; we will come
back to this point later.
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Proposition 2.7. The representations
Um : SU(2) ! GL(PC

m(2)) are irreducible.

Proof. To prove that the representations Um are irre-
ducible, it su�ces to prove that every nonzero equivariant
map A in HomSU(2)(Um, Um) is invertible.

Actually, we will prove that A = �id, with � 2 C,� 6= 0.

A nice and rather short proof is given in Bröcker and tom
Dieck [2], Chapter 2, Proposition 5.1.

The trick is to consider the matrices

rx(') =

✓
ei' 0
0 e�i'

◆
, 0 < ' < ⇡.
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Plugging the matrix rx(') and P = Pk = zk
1
zm�k
2

in
Equation (Um) yields

Um(rx('))(Pk) = (e�i'z1)
k(ei'z2)

m�k

= ei(m�2k)'zk
1
zm�k
2

= ei(m�2k)'Pk.

Therefore, (P0, . . . , Pm) is a basis (in fact, orthogonal) of
eigenvectors of Um(rx(')) for the eigenvalues

(eim', ei(m�2)', . . . , e�im').

We can pick ' such that these eigenvalues are all dis-
tinct, for example ' = 2⇡/m.
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Now if A 2 HomSU(2)(Um, Um) is equivariant, then

Um(rx('))A = AUm(rx(')),

so for k = 0, . . . ,m we have

Um(rx('))APk = AUm(rx('))Pk

= Aei(m�2k)'Pk = ei(m�2k)'APk.

The above implies that either APk = 0 or APk is an
eigenvector of Um(rx(')) for the eigenvalue ei(m�2k)'.
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Since ' was chosen so that the eigenvalues
(eim', . . . , ei(m�2)', . . . , e�im') are all distinct, each eigenspace
is one-dimensional, so APk = ckPk for some ck 2 C,
ck 6= 0.

In either case,

APk = ckPk

for some ck 2 C.

We will now prove that c0 = c1 = · · · = cm.

This shows that A = c0idm+1, and since A is not the zero
map, c0 6= 0, so A is invertible, as desired.
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To prove that the ck have the same value, we use the
matrices

ry(t) =

✓
cos t � sin t
sin t cos t

◆
, t 2 R.

Since A is equivariant,

AUm(ry(t)) = Um(ry(t))A,

so we need to computeAUm(ry(t))Pm andUm(ry(t))APm.

Since Pm = zm
1

and APk = ckPk, using Equation (Um)
we have

AUm(ry(t))Pm = A(z1 cos t + z2 sin t)
m

= A
mX

k=1

✓
m

k

◆
(cos t)k(sin t)m�kzk

1
zm�k
2

=
mX

k=1

✓
m

k

◆
(cos t)k(sin t)m�kAPk

=
mX

k=1

✓
m

k

◆
(cos t)k(sin t)m�kckPk.
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We also have

Um(ry(t))APm = Um(ry(t))cmPm = cmUm(ry(t))Pm

= cm(z1 cos t + z2 sin t)
m

=
mX

k=1

✓
m

k

◆
(cos t)k(sin t)m�kcmPk.

Since AUm(ry(t))Pm = Um(ry(t))APm, comparing coe�-
cients (since these equations hold for all t 2 R) we obtain

ck = cm, 0  k  m.

Therefore, on the basis (P0, . . . , Pm) we have APk =
c0Pk, which means that A = c0idm+1, as claimed.

Therefore, the representations Um : SU(2) ! GL(PC

m(2))
are irreducible unitary representations of SU(2).
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In fact, they constitute all of them up to equivalence,
but this is harder to prove.

A good strategy is to use properties of the characters of
compact groups; see Section 4.3.

Because there is a surjective homomorphism
⇢ : SU(2) ! SO(3) whose kernel is {�I, I}, the irre-
ducible representations of SO(3) can also be determined
(up to equivalence).

Example 2.9. If U : SO(3) ! U(H) is an irreducible
unitary representation of SO(3), then V = U �⇢ is a uni-
tary representation V : SU(2) ! U(H) of SU(2) which
must be irreducible, and V (�I) is the identity.

Conversely, an irreducible unitary representation
V : SU(2) ! U(H) of SU(2) descends to an irreducible
unitary representation U : SO(3) ! U(H) i↵
V (�I) = id.
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Now by definition of Um,

Um(�I)(Pk) = (�z1)
k(�z2)

m�k

= (�1)mzk
1
zm�k
2

= (�1)mPk.

Therefore, Um(�I) = idm+1 i↵ (�1)m = 1 i↵ m is even.
In summary we obtained the folowing result.

Proposition 2.8. The unitary representations
W` : SO(3) ! GL(PC

2`(2)) given by

W`(⇢q) = U2`(q) q 2 SU(2), ` � 0

are irreducible. Observe that PC

2`(2) has odd dimen-
sion 2` + 1.
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We will prove later that every irreducible unitary repre-
sentation of SU(2) is equivalent to some representa-
tion Um, and that every irreducible unitary represen-
tation of SO(3) is equivalent to some representation
W`; see Proposition ??.

We will also present a more pleasant description of the
irreducible unitary representation of SO(3) in terms of
spaces of harmonic polynomials.

Remark: The representations
Um : SL(2,C) ! GL(PC

m(2)) are not unitary, but they
are irreducible.

There is a generalization of Schur’s lemma to (complex)
unitary representations, which says that if a unitary rep-
resentation U : G ! U(H) is irreducible, then every G-
map in HomG(U,U) is of the form ↵ idH , for some ↵ 2 C.
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The proof requires much more machinery because a linear
map on an infinite-dimensional vector space may not have
eigenvectors!

It uses some results from the spectral theory of algebras,
in particular, the complement to Theorem ??.

Theorem 2.9. (Schur’s lemma for unitary represen-
tations) The following properties hold.

(1) A (complex) unitary representation U : G ! U(H)
is irreducible i↵ every G-map in C(U) = HomG(U,U)
is of the form ↵ idH, for some ↵ 2 C.

(2) Let U1 : G ! U(H1) and U2 : G ! U(H2) be two
complex unitary representations. If U1 and U2 are
equivalent, then HomG(U1, U2) is one-dimensional;
otherwise we have HomG(U1, U2) = (0).
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Proposition 2.10. Every complex irreducible unitary
representation U : G ! U(H) of a locally compact
abelian group G in a Hilbert space H is one-dimensional.

If the locally compact group G is abelian, then the fol-
lowing result shows that every irreducible unitary repre-
sentation of G is uniquely defined by a character of G,
as introduced in Vol I, Definition @@@10.1.

Proposition 2.11. Let G be a locally compact abelian
group. Every irreducible unitary representation
U : G ! U(1) of G is of the form

U(s)(z) = �(s)z, for all s 2 G and all z 2 C

for a unique character � 2 bG.
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Proof. If U : G ! U(1) is a unitary representation of G,
then U(s) is a unitary map of C for every s 2 G, which
means that there is a complex number of unit length, say
�(s) 2 T, such that

U(s)(z) = �(s)z, for all z 2 C,

and for all s1, s2 2 G we have

�(s1s2)z = U(s1s2)(z) = U(s1)(U(s2)(z)) = �(s1)�(s2)z

for all z 2 C,

which implies that

�(s1s2) = �(s1)�(s2).
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But then � : G ! T is a character of G, and so every
unitary representation U : G ! U(1) of G is of the form

U(s)(z) = �(s)z, for all s 2 G and all z 2 C

for a unique character � 2 bG.

As an application of Theorem 2.5, Proposition 2.10 and
Proposition 2.11, we describe all finite-dimensional uni-
tary representations of SO(2) ' U(1).

Here we use the isomorphism between SO(2) and U(1)
given by

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆
7! ei✓, ✓ 2 [0, 2⇡).
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Proposition 2.12. Every finite-dimensional unitary
representation U : SO(2) ! U(n) of SO(2) ' U(1)
(n � 1) is of the form

U(ei✓)(z) =

0

BB@

eik1✓ 0 . . . 0
0 eik2✓ . . . 0
... ... . . . ...
0 . . . . . . eikn✓

1

CCA

0

BB@

z1
z2
...
zn

1

CCA ,

z 2 C
n, 0  ✓ < 2⇡, for some k1, . . . , kn 2 Z.
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Proof. Since SO(2) ' U(1) is compact and abelian, by
Proposition 2.10, every irreducible unitary representation
of SO(2) ' U(1) is one-dimensional.

By Proposition 2.11, the irreducible unitary representa-
tions of SO(2) ' U(1) are determined by the characters
of U(1) = T.

By Vol I, Proposition @@@10.9(2), the characters ofU(1) =
T are of the form

�k(e
i✓) = eik✓,

for some k 2 Z.

Since SO(2) ' U(1) is compact, by Theorem 2.5, every
finite-dimensional unitary representation
U : SO(2) ! U(n) of SO(2) is the direct sum of n one-
dimensional unitary representations Uj : SO(2) ! U(1).
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But each representation Uj : SO(2) ! U(1) arises from
a character of U(1), and so is of the form

Uj(e
i✓)(y) = eikj✓y, y 2 C,

for some kj 2 Z.

The direct sum U of the representation
Uj : SO(2) ! U(1) acts on C

n as multiplication by a
unitary matrix, namely

U(ei✓) =

0

BB@

eik1✓ 0 . . . 0
0 eik2✓ . . . 0
... ... . . . ...
0 . . . . . . eikn✓

1

CCA ,

as claimed.
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Remark: Let Q be the n⇥ n matrix given by

Q =

0

BB@

ik1 0 . . . 0
0 ik2 . . . 0
... ... . . . ...
0 . . . . . . ikn

1

CCA .

Observe that Q is skew-symmetric, so that Q 2 u(n),
and we have

U(ei✓) = e✓Q.


