
Chapter 12

Hermitian Spaces

12.1 Sesquilinear Forms, Hermitian Forms, Hermitian
Spaces, Pre-Hilbert Spaces

In this chapter, we generalize the basic results of Eu-
clidean geometry presented in Chapter 10 to vector spaces
over the complex numbers .

Some complications arise, due to complex conjugation .

Recall that for any complex number z 2 C, if z = x+ iy
where x, y 2 R, we let <z = x, the real part of z, and
=z = y, the imaginary part of z.

We also denote the conjugate of z = x+iy as z = x�iy,
and the absolute value (or length, or modulus) of z as |z|.
Recall that |z|2 = zz = x2 + y2.
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There are many natural situations where a map
' : E ⇥ E ! C is linear in its first argument and only
semilinear in its second argument.

For example, the natural inner product to deal with func-
tions f : R ! C, especially Fourier series, is

hf, gi =
Z ⇡

�⇡
f (x)g(x)dx,

which is semilinear (but not linear) in g.

Definition 12.1.Given two vector spaces E and F over
the complex field C, a function f : E ! F is semilinear
if

f (u + v) = f (u) + f (v),

f (�u) = �f (u),

for all u, v 2 E and all � 2 C.
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Remark : Instead of defining semilinear maps, we could
have defined the vector space E as the vector space with
the same carrier set E, whose addition is the same as that
of E, but whose multiplication by a complex number is
given by

(�, u) 7! �u.

Then, it is easy to check that a function f : E ! C is
semilinear i↵ f : E ! C is linear.

We can now define sesquilinear forms and Hermitian forms.
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Definition 12.2. Given a complex vector space E, a
function ' : E ⇥ E ! C is a sesquilinear form i↵ it is
linear in its first argument and semilinear in its second
argument, which means that

'(u1 + u2, v) = '(u1, v) + '(u2, v),

'(u, v1 + v2) = '(u, v1) + '(u, v2),

'(�u, v) = �'(u, v),

'(u, µv) = µ'(u, v),

for all u, v, u1, u2, v1, v2 2 E, and all �, µ 2 C. A
function ' : E ⇥ E ! C is a Hermitian form i↵ it is
sesquilinear and if

'(v, u) = '(u, v)

for all all u, v 2 E.

Obviously, '(0, v) = '(u, 0) = 0.
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Also note that if ' : E ⇥ E ! C is sesquilinear, we have

'(�u + µv, �u + µv) = |�|2'(u, u) + �µ'(u, v)

+ �µ'(v, u) + |µ|2'(v, v),

and if ' : E ⇥ E ! C is Hermitian, we have

'(�u + µv, �u + µv)

= |�|2'(u, u) + 2<(�µ'(u, v)) + |µ|2'(v, v).

Note that restricted to real coe�cients, a sesquilinear
form is bilinear (we sometimes say R-bilinear).

The function� : E ! C defined such that�(u) = '(u, u)
for all u 2 E is called the quadratic form associated with
'.
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The standard example of a Hermitian form on Cn is the
map ' defined such that

'((x1, . . . , xn), (y1, . . . , yn)) = x1y1 + x2y2 + · · ·+ xnyn.

This map is also positive definite, but before dealing with
these issues, we show the following useful proposition.

Proposition 12.1. Given a complex vector space E,
the following properties hold:

(1) A sesquilinear form ' : E ⇥E ! C is a Hermitian
form i↵ '(u, u) 2 R for all u 2 E.

(2) If ' : E ⇥ E ! C is a sesquilinear form, then

4'(u, v) = '(u + v, u + v) � '(u � v, u � v)

+ i'(u + iv, u + iv) � i'(u � iv, u � iv),

and

2'(u, v) = (1 + i)('(u, u) + '(v, v))

� '(u � v, u � v) � i'(u � iv, u � iv).

These are called polarization identities.
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Proposition 12.1 shows that a sesquilinear form is com-
pletely determined by the quadratic form �(u) = '(u, u),
even if ' is not Hermitian.

This is false for a real bilinear form, unless it is symmetric.

For example, the bilinear form ' : R2 ⇥ R2 ! R defined
such that

'((x1, y1), (x2, y2)) = x1y2 � x2y1

is not identically zero, and yet, it is null on the diagonal.

However, a real symmetric bilinear form is indeed deter-
mined by its values on the diagonal, as we saw in Chapter
10.

As in the Euclidean case, Hermitian forms for which
'(u, u) � 0 play an important role.
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Definition 12.3. Given a complex vector space E, a
Hermitian form ' : E⇥E ! C is positive i↵ '(u, u) � 0
for all u 2 E, and positive definite i↵ '(u, u) > 0 for all
u 6= 0. A pair hE, 'i where E is a complex vector space
and ' is a Hermitian form on E is called a pre-Hilbert
space if ' is positive, and a Hermitian (or unitary)
space if ' is positive definite.

We warn our readers that some authors, such as Lang
[24], define a pre-Hilbert space as what we define to be a
Hermitian space.

We prefer following the terminology used in Schwartz [28]
and Bourbaki [7].

The quantity '(u, v) is usually called theHermitian prod-
uct of u and v. We will occasionally call it the inner
product of u and v.
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Given a pre-Hilbert space hE, 'i, as in the case of a Eu-
clidean space, we also denote '(u, v) as

u · v, or hu, vi, or (u|v),

and
p

�(u) as kuk.

Example 1. The complex vector space Cn under the
Hermitian form

'((x1, . . . , xn), (y1, . . . , yn)) = x1y1 + x2y2 + · · · + xnyn

is a Hermitian space.

Example 2. Let l2 denote the set of all countably in-
finite sequences x = (xi)i2N of complex numbers such
that

P1
i=0 |xi|2 is defined (i.e. the sequence

Pn
i=0 |xi|2

converges as n ! 1).

It can be shown that the map ' : l2 ⇥ l2 ! C defined
such that

' ((xi)i2N, (yi)i2N) =
1X

i=0

xiyi

is well defined, and l2 is a Hermitian space under '. Ac-
tually, l2 is even a Hilbert space.
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Example 3. Consider the set Cpiece[a, b] of piecewise bounded
continuous functions f : [a, b] ! C under the Hermitian
form

hf, gi =
Z b

a
f (x)g(x)dx.

It is easy to check that this Hermitian form is positive,
but it is not definite. Thus, under this Hermitian form,
Cpiece[a, b] is only a pre-Hilbert space.

Example 4. Let C[a, b] be the set of complex-valued
continuous functions f : [a, b] ! C under the Hermitian
form

hf, gi =
Z b

a
f (x)g(x)dx.

It is easy to check that this Hermitian form is positive
definite. Thus, C[a, b] is a Hermitian space.
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Example 5. Let E = Mn(C) be the vector space of
complex n⇥n matrices. We define the Hermitian product
of two matrices A, B 2 Mn(C) as

hA, Bi =
nX

i,j=1

aijbij,

which can be conveniently written as

hA, Bi = tr(A>B) = tr(B⇤A).

Since this can be viewed as the standard Hermitian prod-
uct on Cn2

, it is a Hermitian product on Mn(C). The
corresponding norm

kAkF =
p
tr(A⇤A)

is the Frobenius norm (see Section 7.2).
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If E is finite-dimensional and if ' : E ⇥ E ! R is a
sequilinear form on E, given any basis (e1, . . . , en) of E,
we can write x =

Pn
i=1 xiei and y =

Pn
j=1 yjej, and we

have

'(x, y) =
nX

i,j=1

xiyj'(ei, ej).

If we let G = (gij) be the matrix given by gij = '(ej, ei),
and if x and y are the column vectors associated with
(x1, . . . , xn) and (y1, . . . , yn), then we can write

'(x, y) = x>G> y = y⇤Gx,

where y corresponds to (y1, . . . , yn).
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As in Section 10.1, we are committing the slight abuse of
notation of letting x denote both the vector x =

Pn
i=1 xiei

and the column vector associated with (x1, . . . , xn) (and
similarly for y). The “correct” expression for '(x, y) is

'(x, y) = y⇤Gx = x>G>y.

� Observe that in '(x, y) = y⇤Gx, the matrix involved
is the transpose of the matrix ('(ei, ej)). The reason

for this is that we want G to be positive definite when '
is positive definite, not G>.

Furthermore, observe that ' is Hermitian i↵ G = G⇤, and
' is positive definite i↵ the matrix G is positive definite,
that is,

(Gx)>x = x⇤Gx > 0 for all x 2 Cn, x 6= 0.

The matrix G associated with a Hermitian product is
called the Gram matrix of the Hermitian product with
respect to the basis (e1, . . . , en).
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Proposition 12.2. Let E be a finite-dimensional vec-
tor space, and let (e1, . . . , en) be a basis of E.

1. For any Hermitian inner product h�, �i on E, if
G = (gij) with gij = hej, eii is the Gram matrix
of the Hermitian product h�, �i w.r.t. the basis
(e1, . . . , en), then G is Hermitian positive definite.

2. For any change of basis matrix P , the Gram ma-
trix of h�, �i with respect to the new basis is P ⇤GP .

3. If A is any n ⇥ n Hermitian positive definite ma-
trix, then

hx, yi = y⇤Ax

is a Hermitian product on E.

The following result reminiscent of the first polarization
identity of Proposition 12.1 can be used to prove that two
linear maps are identical.



12.1. SESQUILINEAR FORMS, HERMITIAN FORMS 621

Proposition 12.3.Given any Hermitian space E with
Hermitian product h�, �i, for any linear map f : E !
E, if hf (x), xi = 0 for all x 2 E, then f = 0.

One should be careful not to apply Proposition 12.3 to a
linear map on a real Euclidean space, because it is false!
The reader should find a counterexample.

The Cauchy-Schwarz inequality and the Minkowski in-
equalities extend to pre-Hilbert spaces and to Hermitian
spaces.
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Proposition 12.4. Let hE, 'i be a pre-Hilbert space
with associated quadratic form �. For all u, v 2 E,
we have the Cauchy-Schwarz inequality:

|'(u, v)| 
p

�(u)
p
�(v).

Furthermore, if hE, 'i is a Hermitian space, the equal-
ity holds i↵ u and v are linearly dependent.

We also have the Minkovski inequality:
p
�(u + v) 

p
�(u) +

p
�(v).

Furthermore, if hE, 'i is a Hermitian space, the equal-
ity holds i↵ u and v are linearly dependent, where in
addition, if u 6= 0 and v 6= 0, then u = �v for some
real � such that � > 0.

As in the Euclidean case, if hE, 'i is a Hermitian space,
the Minkovski inequality

p
�(u + v) 

p
�(u) +

p
�(v)

shows that the map u 7!
p
�(u) is a norm on E.



12.1. SESQUILINEAR FORMS, HERMITIAN FORMS 623

The norm induced by ' is called the Hermitian norm
induced by '.

We usually denote
p
�(u) as kuk, and the Cauchy-Schwarz

inequality is written as

|u · v|  kuk kvk .

Since a Hermitian space is a normed vector space, it is
a topological space under the topology induced by the
norm (a basis for this topology is given by the open balls
B0(u, ⇢) of center u and radius ⇢ > 0, where

B0(u, ⇢) = {v 2 E | kv � uk < ⇢}.

If E has finite dimension, every linear map is continuous.
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Remark: As in the case of real vector spaces, a norm
on a complex vector space is induced by some positive
definite Hermitian product h�, �i i↵ it satisfies the par-
allelogram law :

ku + vk2 + ku � vk2 = 2(kuk2 + kvk2).

This time, the Hermitian product is recovered using the
polarization identity from Proposition 12.1:

4hu, vi = ku + vk2�ku � vk2+i ku + ivk2�i ku � ivk2 .
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The Cauchy-Schwarz inequality

|u · v|  kuk kvk

shows that ' : E ⇥ E ! C is continuous, and thus, that
k k is continuous.

If hE, 'i is only pre-Hilbertian, kuk is called a semi-
norm .

In this case, the condition

kuk = 0 implies u = 0

is not necessarily true.

However, the Cauchy-Schwarz inequality shows that if
kuk = 0, then u · v = 0 for all v 2 E.

We will now basically mirror the presentation of Euclidean
geometry given in Chapter 10 rather quickly, leaving out
most proofs, except when they need to be seriously amended.
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12.2 Orthogonality, Duality, Adjoint of A Linear Map

In this section, we assume that we are dealing with Her-
mitian spaces. We denote the Hermitian inner product
as u · v or hu, vi.

The concepts of orthogonality, orthogonal family of vec-
tors, orthonormal family of vectors, and orthogonal com-
plement of a set of vectors, are unchanged from the Eu-
clidean case (Definition 10.2).

For example, the set C[�⇡, ⇡] of continuous functions
f : [�⇡, ⇡] ! C is a Hermitian space under the product

hf, gi =
Z ⇡

�⇡
f (x)g(x)dx,

and the family (eikx)k2Z is orthogonal.
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Proposition 10.3 and 10.4 hold without any changes.

It is easy to show that
�����

nX

i=1

ui

�����

2

=
nX

i=1

kuik2 +
X

1i<jn

2<(ui · uj).

Analogously to the case of Euclidean spaces of finite di-
mension, the Hermitian product induces a canonical bi-
jection (i.e., independent of the choice of bases) between
the vector space E and the space E⇤.

This is one of the places where conjugation shows up, but
in this case, troubles are minor.
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Given a Hermitian space E, for any vector u 2 E, let
'l

u : E ! C be the map defined such that

'l
u(v) = u · v, for all v 2 E.

Similarly, for any vector v 2 E, let 'r
v : E ! C be the

map defined such that

'r
v(u) = u · v, for all u 2 E.

Since the Hermitian product is linear in its first argument
u, the map 'r

v is a linear form in E⇤, and since it is
semilinear in its second argument v, the map 'l

u is also a
linear form in E⇤.
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Thus, we have two maps [l : E ! E⇤ and [r : E ! E⇤,
defined such that

[l(u) = 'l
u, and [r(v) = 'r

v.

Actually, it is easy to show that 'l
u = 'r

u and [l = [r.

Therefore, we use the notation 'u for both 'l
u and 'r

u,
and [ for both [l and [r.

Theorem 12.5. let E be a Hermitian space E. The
map [ : E ! E⇤ defined such that

[(u) = 'l
u = 'r

u for all u 2 E

is semilinear and injective. When E is also of finite
dimension, the map [ : E ! E⇤ is a canonical iso-
morphism.
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The inverse of the isomorphism [ : E ! E⇤ is denoted
by ] : E⇤ ! E.

As a corollary of the isomorphism [ : E ! E⇤, if E is
a Hermitian space of finite dimension, then every linear
form f 2 E⇤ corresponds to a unique v 2 E, such that

f (u) = u · v, for every u 2 E.

In particular, if f is not the null form, the kernel of f ,
which is a hyperplane H , is precisely the set of vectors
that are orthogonal to v.

Remark . The “musical map” [ : E ! E⇤ is not surjec-
tive when E has infinite dimension.

This result will be salvaged by restricting our attention to
continuous linear maps, and by assuming that the vector
space E is a Hilbert space .
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The existence of the isomorphism [ : E ! E⇤ is crucial
to the existence of adjoint maps.

Indeed, Theorem 12.5 allows us to define the adjoint of a
linear map on a Hermitian space.

Let E be a Hermitian space of finite dimension n, and let
f : E ! E be a linear map.

For every u 2 E, the map

v 7! u · f (v)

is clearly a linear form in E⇤, and by Theorem 12.5, there
is a unique vector in E denoted by f ⇤(u), such that

f ⇤(u) · v = u · f (v),

that is,

f ⇤(u) · v = u · f (v), for every v 2 E.
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Proposition 12.6. Given a Hermitian space E of fi-
nite dimension, for every linear map f : E ! E, there
is a unique linear map f ⇤ : E ! E, such that

f ⇤(u) · v = u · f (v),

for all u, v 2 E. The map f ⇤ is called the adjoint of
f (w.r.t. to the Hermitian product).

The fact that
v · u = u · v

implies that the adjoint f ⇤ of f is also characterized by

f (u) · v = u · f ⇤(v),

for all u, v 2 E. It is also obvious that f ⇤⇤ = f .
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Given two Hermitian spaces E and F , where the Hermi-
tian product on E is denoted as h�, �i1 and the Hermi-
tian product on F is denoted as h�, �i2, given any linear
map f : E ! F , it is immediately verified that the proof
of Proposition 12.6 can be adapted to show that there is
a unique linear map f ⇤ : F ! E such that

hf (u), vi2 = hu, f ⇤(v)i1

for all u 2 E and all v 2 F . The linear map f ⇤ is also
called the adjoint of f .

As in the Euclidean case, a linear map f : E ! E (where
E is a finite-dimensional Hermitian space) is self-adjoint
if f = f ⇤. The map f is positive semidefinite i↵

hf (x), xi � 0 all x 2 E;

positive definite i↵

hf (x), xi > 0 all x 2 E, x 6= 0.
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An interesting corollary of Proposition 12.3 is that a pos-
itive semidefinite linear map must be self-adjoint. In fact,
we can prove a slightly more general result.

Proposition 12.7.Given any finite-dimensional Her-
mitian space E with Hermitian product h�, �i, for
any linear map f : E ! E, if hf (x), xi 2 R for all
x 2 E, then f is self-adjoint. In particular, any posi-
tive semidefinite linear map f : E ! E is self-adjoint.

As in the Euclidean case, Theorem 12.5 can be used to
show that any Hermitian space of finite dimension has an
orthonormal basis. The proof is unchanged.
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Proposition 12.8. Given any nontrivial Hermitian
space E of finite dimension n � 1, there is an or-
thonormal basis (u1, . . . , un) for E.

The Gram–Schmidt orthonormalization procedure also
applies to Hermitian spaces of finite dimension, without
any changes from the Euclidean case!

Proposition 12.9. Given any nontrivial Hermitian
space E of finite dimension n � 1, from any basis
(e1, . . . , en) for E, we can construct an orthonormal
basis (u1, . . . , un) for E, with the property that for
every k, 1  k  n, the families (e1, . . . , ek) and
(u1, . . . , uk) generate the same subspace.

Remarks : The remarks made after Proposition 10.8 also
apply here, except that in the QR-decomposition, Q is a
unitary matrix.
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As a consequence of Proposition 10.7 (or Proposition 12.9),
given any Hermitian space of finite dimension n, if (e1, . . . ,
en) is an orthonormal basis for E, then for any two vec-
tors u = u1e1+ · · ·+unen and v = v1e1+ · · ·+ vnen, the
Hermitian product u · v is expressed as

u ·v = (u1e1+ · · ·+unen) · (v1e1+ · · ·+vnen) =
nX

i=1

uivi,

and the norm kuk as

kuk = ku1e1 + · · · + unenk =

vuut
nX

i=1

|ui|2.

Proposition 10.9 also holds unchanged.

Proposition 12.10. Given any nontrivial Hermitian
space E of finite dimension n � 1, for any subspace F
of dimension k, the orthogonal complement F? of F
has dimension n�k, and E = F �F?. Furthermore,
we have F?? = F .
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12.3 Linear Isometries (also called Unitary Transfor-
mations)

In this section, we consider linear maps between Hermi-
tian spaces that preserve the Hermitian norm.

All definitions given for Euclidean spaces in Section 10.5
extend to Hermitian spaces, except that orthogonal trans-
formations are called unitary transformation , but Propo-
sition 10.10 only extends with a modified condition (2).

Indeed, the old proof that (2) implies (3) does not work,
and the implication is in fact false! It can be repaired by
strengthening condition (2). For the sake of completeness,
we state the Hermitian version of Definition 10.3.

Definition 12.4. Given any two nontrivial Hermitian
spaces E and F of the same finite dimension n, a function
f : E ! F is a unitary transformation, or a linear
isometry i↵ it is linear and

kf (u)k = kuk ,

for all u 2 E.
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Proposition 10.10 can be salvaged by strengthening con-
dition (2).

Proposition 12.11. Given any two nontrivial Her-
mitian space E and F of the same finite dimension
n, for every function f : E ! F , the following prop-
erties are equivalent:

(1) f is a linear map and kf (u)k = kuk, for all u 2 E;

(2) kf (v) � f (u)k = kv � uk and f (iu) = if (u), for
all u, v 2 E;

(3) f (u) · f (v) = u · v, for all u, v 2 E.

Furthermore, such a map is bijective.

Observe that from f (iu) = if (u), for u = 0, we get
f (0) = if (0), which implies that f (0) = 0.
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Remarks : (i) In the Euclidean case, we proved that the
assumption

(2’) kf (v) � f (u)k = kv � uk, for all u, v 2 E, and
f (0) = 0;

implies (3). For this, we used the polarization identity

2u · v = kuk2 + kvk2 � ku � vk2 .

In the Hermitian case, the polarization identity involves
the complex number i.

In fact, the implication (2’) implies (3) is false in the
Hermitian case! Conjugation z 7! z satifies (2’) since

|z2 � z1| = |z2 � z1| = |z2 � z1|,

and yet, it is not linear!
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(ii) If we modify (2) by changing the second condition by
now requiring that there is some ⌧ 2 E such that

f (⌧ + iu) = f (⌧ ) + i(f (⌧ + u) � f (⌧ ))

for all u 2 E, then the function g : E ! E defined such
that

g(u) = f (⌧ + u) � f (⌧ )

satisfies the old conditions of (2), and the implications
(2) ! (3) and (3) ! (1) prove that g is linear, and thus
that f is a�ne.

In view of the first remark, some condition involving i is
needed on f , in addition to the fact that f is distance-
preserving.

We are now going to take a closer look at the isometries
f : E ! E of a Hermitian space of finite dimension.
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12.4 The Unitary Group, Unitary Matrices

In this section, as a mirror image of our treatment of
the isometries of a Euclidean space, we explore some of
the fundamental properties of the unitary group and of
unitary matrices.

Definition 12.5. Given a complex m ⇥ n matrix A,
the transpose A> of A is the n ⇥ m matrix A> = (a>

i j)
defined such that

a>
i j = aj i

and the conjugate A of A is the m⇥n matrix A = (bi j)
defined such that

bi j = ai j

for all i, j, 1  i  m, 1  j  n. The adjoint A⇤ of A
is the matrix defined such that

A⇤ = (A>) = (A)>.
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Proposition 12.12. Let E be any Hermitian space of
finite dimension n, and let f : E ! E be any linear
map. The following properties hold:

(1) The linear map f : E ! E is an isometry i↵

f � f ⇤ = f ⇤ � f = id.

(2) For every orthonormal basis (e1, . . . , en) of E, if
the matrix of f is A, then the matrix of f ⇤ is the
adjoint A⇤ of A, and f is an isometry i↵ A satisfies
the idendities

A A⇤ = A⇤A = In,

where In denotes the identity matrix of order n,
i↵ the columns of A form an orthonormal basis of
Cn, i↵ the rows of A form an orthonormal basis of
Cn.

Proposition 10.12 also motivates the following definition.
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Definition 12.6. A complex n ⇥ n matrix is a unitary
matrix i↵

A A⇤ = A⇤A = In.

Remarks : The conditions A A⇤ = In, A⇤A = In, and
A�1 = A⇤, are equivalent.

Given any two orthonormal bases (u1, . . . , un) and
(v1, . . . , vn), if P is the change of basis matrix from
(u1, . . . , un) to (v1, . . . , vn), it is easy to show that the
matrix P is unitary.

The proof of Proposition 12.11 (3) also shows that if f is
an isometry, then the image of an orthonormal basis
(u1, . . . , un) is an orthonormal basis.

If f is a unitary transformation and A is its matrix with
respect to any orthonormal basis, we have | det(A)| = 1.
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Definition 12.7. Given a Hermitian space E of dimen-
sion n, the set of isometries f : E ! E forms a subgroup
of GL(E,C) denoted as U(E), or U(n) when E = Cn,
called the unitary group (of E). For every isometry,
f , we have | det(f )| = 1, where det(f ) denotes the de-
terminant of f . The isometries such that det(f ) = 1
are called rotations, or proper isometries, or proper
unitary transformations , and they form a subgroup of
the special linear group SL(E,C) (and of U(E)), de-
noted as SU(E), or SU(n) when E = Cn, called the
special unitary group (of E). The isometries such that
det(f ) 6= 1 are called improper isometries, or improper
unitary transformations, or flip transformations .

The Gram–Schmidt orthonormalization procedure imme-
diately yields the QR-decomposition for matrices.

Proposition 12.13.Given any n⇥n complex matrix
A, if A is invertible then there is a unitary matrix Q
and an upper triangular matrix R with positive diag-
onal entries such that A = QR.

The proof is absolutely the same as in the real case!
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We have the following version of the Hadamard inequality
for complex matrices.

Proposition 12.14. (Hadamard) For any complex
n ⇥ n matrix A = (aij), we have

| det(A)| 
nY

i=1

✓ nX

j=1

|aij|2
◆1/2

and | det(A)| 
nY

j=1

✓ nX

i=1

|aij|2
◆1/2

.

Moreover, equality holds i↵ either A has orthogonal
rows in the left inequality or orthogonal columns in
the right inequality.
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We also have the following version of Proposition 10.16
for Hermitian matrices.

Proposition 12.15. (Hadamard) For any complex
n ⇥ n matrix A = (aij), if A is Hermitian positive
semidefinite, then we have

det(A) 
nY

i=1

aii.

Moreover, if A is positive definite, then equality holds
i↵ A is a diagonal matrix.
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12.5 Orthogonal Projections and Involutions

In this section, we assume that the field K is not a field
of characteristic 2.

Recall that a linear map f : E ! E is an involution i↵
f 2 = id, and is idempotent i↵ f 2 = f . We know from
Proposition 4.5 that if f is idempotent, then

E = Im(f ) � Ker (f ),

and that the restriction of f to its image is the identity.

For this reason, a linear involution is called a projection .

Proposition 12.16. For any linear map f : E ! E,
we have f 2 = id i↵ 1

2(id�f ) is a projection i↵ 1
2(id+f )

is a projection; in this case, f is equal to the di↵erence
of the two projections 1

2(id + f ) and 1
2(id � f ).
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Let U+ = Ker (1
2(id � f )) and let U� = Im(1

2(id � f )).

If f 2 = id, then

(id � f ) � (id + f ) = id � f 2 = id � id = 0,

which implies that

Im

✓
1

2
(id + f )

◆
✓ Ker

✓
1

2
(id � f )

◆
.

Conversely, if u 2 Ker
�

1
2(id � f )

�
, then f (u) = u, so

1

2
(id + f )(u) =

1

2
(u + u) = u,

and thus

Ker

✓
1

2
(id � f )

◆
✓ Im

✓
1

2
(id + f )

◆
.

Therefore,

U+ = Ker

✓
1

2
(id � f )

◆
= Im

✓
1

2
(id + f )

◆
,

and so, f (u) = u on U+ and f (u) = �u on U�.
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The involutions of E that are unitary transformations are
characterized as follows.

Proposition 12.17. Let f 2 GL(E) be an involu-
tion. The following properties are equivalent:

(a) The map f is unitary; that is, f 2 U(E).

(b) The subspaces U� = Im(1
2(id � f )) and

U+ = Im(1
2(id + f )) are orthogonal.

Furthermore, if E is finite-dimensional, then (a)
and (b) are equivalent to

(c) The map is self-adjoint; that is, f = f ⇤.

A unitary involution is the identity on
U+ = Im(1

2(id + f )), and
f (v) = �v for all v 2 U� = Im(1

2(id � f )).

Furthermore, E is an orthogonal direct sum
E = U+ � U�.

We say that f is an orthogonal reflection about U+.
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In the special case where U+ is a hyperplane, we say
that f is a hyperplane reflection . We already studied
hyperplane reflections in the Euclidean case; see Chapter
11.

If f : E ! E is a projection (f 2 = f ), then

(id � 2f )2 = id � 4f + 4f 2 = id � 4f + 4f = id,

so id� 2f is an involution. As a consequence, we get the
following result.

Proposition 12.18. If f : E ! E is a projection
(f 2 = f), then Ker (f ) and Im(f ) are orthogonal i↵
f ⇤ = f .

A projection such that f = f ⇤ is called an orthogonal
projection .
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If (a1 . . . , ak) are k linearly independent vectors in Rn, let
us determine the matrix P of the orthogonal projection
onto the subspace of Rn spanned by (a1, . . . , ak).

Let A be the n ⇥ k matrix whose jth column consists of
the coordinates of the vector aj over the canonical basis
(e1, . . . , en).

The matrix P of the projection onto the subspace spanned
by (a1 . . . , ak) is given by

P = A(A>A)�1A>.

The reader should check that P 2 = P and P> = P .
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12.6 Dual Norms

If (E, k k) and (F, k k) are two normed vector spaces and
if we let L(E;F ) denote the set of all continuous (equiv-
alently, bounded) linear maps from E to F , then, we can
define the operator norm (or subordinate norm) k k on
L(E;F ) as follows: for every f 2 L(E;F ),

kfk = sup
x2E
x 6=0

kf (x)k
kxk = sup

x2E
kxk=1

kf (x)k .

In particular, if F = C, then L(E;F ) = E 0 is the dual
space of E, and we get the operator norm denoted by
k k⇤ given by

kfk⇤ = sup
x2E

kxk=1

|f (x)|.

The norm k k⇤ is called the dual norm of k k on E 0.
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Let us now assume that E is a finite-dimensional Hermi-
tian space, in which case E 0 = E⇤.

Theorem 12.5 implies that for every linear form f 2 E⇤,
there is a unique vector y 2 E so that

f (x) = hx, yi, for all x 2 E,

and so we can write

kfk⇤ = sup
x2E

kxk=1

|hx, yi|.

The above suggests defining a norm k kD on E.
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Definition 12.8. If E is a finite-dimensional Hermitian
space and k k is any norm on E, for any y 2 E we let

kykD = sup
x2E

kxk=1

|hx, yi|,

be the dual norm of k k (on E). If E is a real Euclidean
space, then the dual norm is defined by

kykD = sup
x2E

kxk=1

hx, yi

for all y 2 E.

Beware that k k is generally not the Hermitian norm as-
sociated with the Hermitian inner product.

The dual norm shows up in convex programming; see
Boyd and Vandenberghe [8], Chapters 2, 3, 6, 9.
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The fact that k kD is a norm follows from the fact that
k k⇤ is a norm and can also be checked directly.

It is worth noting that the triangle inequality for k kD

comes “for free,” in the sense that it holds for any function
p : E ! R.

If p : E ! R is a function such that

(1) p(x) � 0 for all x 2 E, and p(x) = 0 i↵ x = 0;

(2) p(�x) = |�|p(x), for all x 2 E and all � 2 C;
(3) p is continuous, in the sense that for some basis

(e1, . . . , en) of E, the function

(x1, . . . , xn) 7! p(x1e1 + · · · + xnen)

from Cn to R is continuous;

then we say that p is a pre-norm .
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Obviously, every norm is a pre-norm, but a pre-norm may
not satisfy the triangle inequality.

However, we just showed that the dual norm of any pre-
norm is actually a norm.

It is not hard to show that

kykD = sup
x2E

kxk=1

|hx, yi| = sup
x2E

kxk=1

<hx, yi.

Proposition 12.19. For all x, y 2 E, we have

|hx, yi|  kxk kykD

|hx, yi|  kxkD kyk .
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We can show that

kykD
1 = kyk1

kykD
1 = kyk1

kykD
2 = kyk2 .

Thus, the Euclidean norm is autodual. More generally, if
p, q � 1 and 1/p + 1/q = 1, we have

kykD
p = kykq .

It can also be shown that the dual of the spectral norm
is the trace norm (or nuclear norm) from Section 16.5.
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Theorem 12.20. If E is a finite-dimensional Hermi-
tian space, then for any norm k k on E, we have

kykDD = kyk

for all y 2 E.

The proof makes use of the fact that a nonempty, closed,
convex set has a supporting hyperplane through each
of its boundary points, a result known as Minkowski’s
lemma .

This result is a consequence of the Hahn–Banach theo-
rem ; see Gallier [14].

More details on dual norms and unitarily invariant norms
can be found in Horn and Johnson [19] (Chapters 5 and
7).


