
Chapter 9

The Dual Space, Duality

9.1 The Dual Space E⇤ and Linear Forms

In Section 1.7 we defined linear forms, the dual space
E⇤ = Hom(E, K) of a vector space E, and showed the
existence of dual bases for vector spaces of finite dimen-
sion.

In this chapter, we take a deeper look at the connection
between a space E and its dual space E⇤.

As we will see shortly, every linear map f : E ! F gives
rise to a linear map f> : F ⇤ ! E⇤, and it turns out that
in a suitable basis, the matrix of f> is the transpose of
the matrix of f .
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Thus, the notion of dual space provides a conceptual ex-
planation of the phenomena associated with transposi-
tion.

But it does more, because it allows us to view subspaces
as solutions of sets of linear equations and vice-versa.

Consider the following set of two “linear equations” in
R3,

x � y + z = 0

x � y � z = 0,

and let us find out what is their set V of common solutions
(x, y, z) 2 R3.

By subtracting the second equation from the first, we get
2z = 0, and by adding the two equations, we find that
2(x � y) = 0, so the set V of solutions is given by

y = x

z = 0.
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This is a one dimensional subspace of R3. Geometrically,
this is the line of equation y = x in the plane z = 0.

Now, why did we say that the above equations are linear?

This is because, as functions of (x, y, z), both maps
f1 : (x, y, z) 7! x � y + z and f2 : (x, y, z) 7! x � y � z
are linear.

The set of all such linear functions fromR3 toR is a vector
space; we used this fact to form linear combinations of the
“equations” f1 and f2.

Observe that the dimension of the subspace V is 1.

The ambient space has dimension n = 3 and there are
two “independent” equations f1, f2, so it appears that
the dimension dim(V ) of the subspace V defined by m
independent equations is

dim(V ) = n � m,

which is indeed a general fact (proved in Theorem 9.1).
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More generally, in Rn, a linear equation is determined by
an n-tuple (a1, . . . , an) 2 Rn, and the solutions of this
linear equation are given by the n-tuples (x1, . . . , xn) 2
Rn such that

a1x1 + · · · + anxn = 0;

these solutions constitute the kernel of the linear map
(x1, . . . , xn) 7! a1x1 + · · · + anxn.

The above considerations assume that we are working in
the canonical basis (e1, . . . , en) of Rn, but we can define
“linear equations” independently of bases and in any di-
mension, by viewing them as elements of the vector space
Hom(E, K) of linear maps from E to the field K.
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Definition 9.1. Given a vector space E, the vector
space Hom(E, K) of linear maps from E to K is called
the dual space (or dual) of E. The space Hom(E, K) is
also denoted by E⇤, and the linear maps in E⇤ are called
the linear forms , or covectors . The dual space E⇤⇤ of
the space E⇤ is called the bidual of E.

As a matter of notation, linear forms f : E ! K will also
be denoted by starred symbol, such as u⇤, x⇤, etc.
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9.2 Pairing and Duality Between E and E⇤

Given a linear form u⇤ 2 E⇤ and a vector v 2 E, the
result u⇤(v) of applying u⇤ to v is also denoted by hu⇤, vi.

This defines a binary operation h�, �i : E⇤ ⇥ E ! K
satisfying the following properties:

hu⇤
1 + u⇤

2, vi = hu⇤
1, vi + hu⇤

2, vi
hu⇤, v1 + v2i = hu⇤, v1i + hu⇤, v2i

h�u⇤, vi = �hu⇤, vi
hu⇤, �vi = �hu⇤, vi.

The above identities mean that h�, �i is a bilinear map,
since it is linear in each argument.

It is often called the canonical pairing between E⇤ and
E.
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In view of the above identities, given any fixed vector v 2
E, the map evalv : E⇤ ! K (evaluation at v) defined
such that

evalv(u
⇤) = hu⇤, vi = u⇤(v) for every u⇤ 2 E⇤

is a linear map from E⇤ to K, that is, evalv is a linear
form in E⇤⇤.

Again from the above identities, the map
evalE : E ! E⇤⇤, defined such that

evalE(v) = evalv for every v 2 E,

is a linear map.

We shall see that it is injective, and that it is an isomor-
phism when E has finite dimension.



470 CHAPTER 9. THE DUAL SPACE, DUALITY

We now formalize the notion of the set V 0 of linear equa-
tions vanishing on all vectors in a given subspace V ✓ E,
and the notion of the set U 0 of common solutions of a
given set U ✓ E⇤ of linear equations.

The duality theorem (Theorem 9.1) shows that the di-
mensions of V and V 0, and the dimensions of U and U 0,
are related in a crucial way.

It also shows that, in finite dimension, the maps V 7! V 0

and U 7! U 0 are inverse bijections from subspaces of E
to subspaces of E⇤.
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Definition 9.2.Given a vector space E and its dual E⇤,
we say that a vector v 2 E and a linear form u⇤ 2 E⇤

are orthogonal i↵ hu⇤, vi = 0. Given a subspace V of
E and a subspace U of E⇤, we say that V and U are
orthogonal i↵ hu⇤, vi = 0 for every u⇤ 2 U and every
v 2 V . Given a subset V of E (resp. a subset U of E⇤),
the orthogonal V 0 of V is the subspace V 0 of E⇤ defined
such that

V 0 = {u⇤ 2 E⇤ | hu⇤, vi = 0, for every v 2 V }

(resp. the orthogonal U 0 of U is the subspace U 0 of E
defined such that

U 0 = {v 2 E | hu⇤, vi = 0, for every u⇤ 2 U}).

The subspace V 0 ✓ E⇤ is also called the annihilator of
V .
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The subspace U 0 ✓ E annihilated by U ✓ E⇤ does not
have a special name. It seems reasonable to call it the
linear subspace (or linear variety) defined by U .

Informally, V 0 is the set of linear equations that vanish
on V , and U 0 is the set of common zeros of all linear
equations in U . We can also define V 0 by

V 0 = {u⇤ 2 E⇤ | V ✓ Keru⇤}

and U 0 by

U 0 =
\

u⇤2U

Keru⇤.

Observe that E0 = {0} = (0), and {0}0 = E⇤.

Furthermore, if V1 ✓ V2 ✓ E, then V 0
2 ✓ V 0

1 ✓ E⇤, and
if U1 ✓ U2 ✓ E⇤, then U 0

2 ✓ U 0
1 ✓ E.
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It can also be shown that that V ✓ V 00 for every sub-
space V of E, and that U ✓ U 00 for every subspace U of
E⇤.

We will see shortly that in finite dimension, we have

V = V 00 and U = U 00.

Here are some examples. Let E = M2(R), the space of
real 2 ⇥ 2 matrices, and let V be the subspace of M2(R)
spanned by the matrices

✓
0 1
1 0

◆
,

✓
1 0
0 0

◆
,

✓
0 0
0 1

◆
.

We check immediately that the subspace V consists of all
matrices of the form

✓
b a
a c

◆
,

that is, all symmetric matrices.
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The matrices
✓

a11 a12

a21 a22

◆

in V satisfy the equation

a12 � a21 = 0,

and all scalar multiples of these equations, so V 0 is the
subspace of E⇤ spanned by the linear form given by

u⇤(a11, a12, a21, a22) = a12 � a21.

By the duality theorem (Theorem 9.1) we have

dim(V 0) = dim(E) � dim(V ) = 4 � 3 = 1.

The above example generalizes to E = Mn(R) for any
n � 1, but this time, consider the space U of linear forms
asserting that a matrix A is symmetric; these are the
linear forms spanned by the n(n � 1)/2 equations

aij � aji = 0, 1  i < j  n;
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Note there are no constraints on diagonal entries, and half
of the equations

aij � aji = 0, 1  i 6= j  n

are redundant. It is easy to check that the equations
(linear forms) for which i < j are linearly independent.

To be more precise, let U be the space of linear forms in
E⇤ spanned by the linear forms

u⇤
ij(a11, . . . , a1n, a21, . . . , a2n, . . . , an1, . . . , ann)

= aij � aji, 1  i < j  n.

The dimension of U is n(n � 1)/2. Then, the set U 0 of
common solutions of these equations is the space S(n) of
symmetric matrices.

By the duality theorem (Theorem 9.1), this space has
dimension

n(n + 1)

2
= n2 � n(n � 1)

2
.
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If E = Mn(R), consider the subspace U of linear forms
in E⇤ spanned by the linear forms

u⇤
ij(a11, . . . , a1n, a21, . . . , a2n, . . . , an1, . . . , ann)

= aij + aji, 1  i < j  n

u⇤
ii(a11, . . . , a1n, a21, . . . , a2n, . . . , an1, . . . , ann)

= aii, 1  i  n.

It is easy to see that these linear forms are linearly inde-
pendent, so dim(U) = n(n + 1)/2.

The space U 0 of matrices A 2 Mn(R) satifying all of the
above equations is clearly the space Skew(n) of skew-
symmetric matrices.

By the duality theorem (Theorem 9.1), the dimension of
U 0 is

n(n � 1)

2
= n2 � n(n + 1)

2
.
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For yet another example with E = Mn(R), for any A 2
Mn(R), consider the linear form in E⇤ given by

tr(A) = a11 + a22 + · · · + ann,

called the trace of A.

The subspace U 0 of E consisting of all matrices A such
that tr(A) = 0 is a space of dimension n2 � 1.

The dimension equations

dim(V ) + dim(V 0) = dim(E)

dim(U) + dim(U 0) = dim(E)

are always true (if E is finite-dimensional). This is part
of the duality theorem (Theorem 9.1).

In constrast with the previous examples, given a matrix
A 2 Mn(R), the equations asserting that A>A = I are
not linear constraints.
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For example, for n = 2, we have

a2
11 + a2

21 = 1

a2
21 + a2

22 = 1

a11a12 + a21a22 = 0.

Given a vector space E and any basis (ui)i2I for E, we
can associate to each ui a linear form u⇤

i 2 E⇤, and the
u⇤

i have some remarkable properties.

Definition 9.3. Given a vector space E and any basis
(ui)i2I for E, by Proposition 1.11, for every i 2 I , there
is a unique linear form u⇤

i such that

u⇤
i (uj) =

⇢
1 if i = j
0 if i 6= j,

for every j 2 I . The linear form u⇤
i is called the coordi-

nate form of index i w.r.t. the basis (ui)i2I .
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The reason for the terminology coordinate form was ex-
plained in Section 1.7.

We proved in Theorem 1.14 that if (u1, . . . , un) is a basis
of E, then (u⇤

1, . . . , u
⇤
n) is a basis of E⇤ called the dual

basis .

If (u1, . . . , un) is a basis of Rn (more generally Kn), it
is possible to find explicitly the dual basis (u⇤

1, . . . , u
⇤
n),

where each u⇤
i is represented by a row vector.
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For example, consider the columns of the Bézier matrix

B4 =

0

BB@

1 �3 3 �1
0 3 �6 3
0 0 3 �3
0 0 0 1

1

CCA .

The form u⇤
1 is represented by a row vector (�1 �2 �3 �4)

such that

�
�1 �2 �3 �4

�

0

BB@

1 �3 3 �1
0 3 �6 3
0 0 3 �3
0 0 0 1

1

CCA =
�
1 0 0 0

�
.

This implies that u⇤
1 is the first row of the inverse of B4.
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Since

B�1
4 =

0

BB@

1 1 1 1
0 1/3 2/3 1
0 0 1/3 1
0 0 0 1

1

CCA ,

the linear forms (u⇤
1, u

⇤
2, u

⇤
3, u

⇤
4) correspond to the rows of

B�1
4 .

In particular, u⇤
1 is represented by (1 1 1 1).

The above method works for any n. Given any basis
(u1, . . . , un) of Rn, if P is the n ⇥ n matrix whose jth
column is uj, then the dual form u⇤

i is given by the ith
row of the matrix P�1.

We have the following important duality theorem adapted
from E. Artin.
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9.3 The Duality Theorem

Theorem 9.1. (Duality theorem) Let E be a vector
space of dimension n. The following properties hold:

(a) For every basis (u1, . . . , un) of E, the family of co-
ordinate forms (u⇤

1, . . . , u
⇤
n) is a basis of E⇤.

(b) For every subspace V of E, we have V 00 = V .

(c) For every pair of subspaces V and W of E such
that E = V �W , with V of dimension m, for every
basis (u1, . . . , un) of E such that (u1, . . . , um) is a
basis of V and (um+1, . . . , un) is a basis of W , the
family (u⇤

1, . . . , u
⇤
m) is a basis of the orthogonal W 0

of W in E⇤. Furthermore, we have W 00 = W , and

dim(W ) + dim(W 0) = dim(E).

(d) For every subspace U of E⇤, we have

dim(U) + dim(U 0) = dim(E),

where U 0 is the orthogonal of U in E, and
U 00 = U .
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Part (a) of Theorem 9.1 shows that

dim(E) = dim(E⇤),

and if (u1, . . . , un) is a basis of E, then (u⇤
1, . . . , u

⇤
n) is

a basis of the dual space E⇤ called the dual basis of
(u1, . . . , un).

Define the function E (E for equations) from subspaces
of E to subspaces of E⇤ and the function Z (Z for zeros)
from subspaces of E⇤ to subspaces of E by

E(V ) = V 0, V ✓ E

Z(U) = U 0, U ✓ E⇤.

By part (c) and (d) of theorem 9.1,

(Z � E)(V ) = V 00 = V

(E � Z)(U) = U 00 = U,

so Z �E = id and E �Z = id, and the maps E and V are
inverse bijections.
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These maps set up a duality between subspaces of E, and
subspaces of E⇤.

� One should be careful that this bijection does not hold
if E has infinite dimension. Some restrictions on the

dimensions of U and V are needed.

Suppose that V is a subspace of Rn of dimension m and
that (v1, . . . , vm) is a basis of V .

To find a basis of V 0, we first extend (v1, . . . , vm) to a
basis (v1, . . . , vn) of Rn, and then by part (c) of Theorem
9.1, we know that (v⇤

m+1, . . . , v
⇤
n) is a basis of V 0.

For example, suppose that V is the subspace ofR4 spanned
by the two linearly independent vectors

v1 =

0

BB@

1
1
1
1

1

CCA v2 =

0

BB@

1
1

�1
�1

1

CCA ,

the first two vectors of the Haar basis in R4.
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The four columns of the Haar matrix

W =

0

BB@

1 1 1 0
1 1 �1 0
1 �1 0 1
1 �1 0 �1

1

CCA

form a basis of R4, and the inverse of W is given by

W�1 =

0

BB@

1/4 1/4 1/4 1/4
1/4 1/4 �1/4 �1/4
1/2 �1/2 0 0
0 0 1/2 �1/2

1

CCA .

Since the dual basis (v⇤
1, v

⇤
2, v

⇤
3, v

⇤
4) is given by the row of

W�1, the last two rows of W�1,
✓
1/2 �1/2 0 0
0 0 1/2 �1/2

◆
,

form a basis of V 0.
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We also obtain a basis by rescaling by the factor 1/2, so
the linear forms given by the row vectors

✓
1 �1 0 0
0 0 1 �1

◆

form a basis of V 0, the space of linear forms (linear equa-
tions) that vanish on the subspace V .

The method that we described to find V 0 requires first
extending a basis of V and then inverting a matrix, but
there is a more direct method.
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Indeed, let A be the n ⇥ m matrix whose columns are
the basis vectors (v1, . . . , vm) of V . Then, a linear form
u represented by a row vector belongs to V 0 i↵ uvi = 0
for i = 1, . . . , m i↵

uA = 0

i↵

A>u> = 0.

Therefore, all we need to do is to find a basis of the
nullspace of A>.

This can be done quite e↵ectively using the reduction of
a matrix to reduced row echelon form (rref); see Section
6.9.
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Here is another example illustrating the power of Theo-
rem 9.1.

Let E = Mn(R), and consider the equations asserting
that the sum of the entries in every row of a matrix A 2
Mn(R) is equal to the same number.

We have n � 1 equations

nX

j=1

(aij � ai+1j) = 0, 1  i  n � 1,

and it is easy to see that they are linearly independent.

Therefore, the space U of linear forms in E⇤ spanned by
the above linear forms (equations) has dimension n � 1,
and the space U 0 of matrices sastisfying all these equa-
tions has dimension n2 � n + 1.

It is not so obvious to find a basis for this space.
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When E is of finite dimension n and (u1, . . . , un) is a
basis of E, we noted that the family (u⇤

1, . . . , u
⇤
n) is a

basis of the dual space E⇤,

Let us see how the coordinates of a linear form '⇤ 2 E⇤

over the basis (u⇤
1, . . . , u

⇤
n) vary under a change of basis.

Let (u1, . . . , un) and (v1, . . . , vn) be two bases of E, and
let P = (ai j) be the change of basis matrix from (u1, . . . , un)
to (v1, . . . , vn), so that

vj =
nX

i=1

ai jui.

If

'⇤ =
nX

i=1

'iu
⇤
i =

nX

i=1

'0
iv

⇤
i ,

after some algebra, we get

'0
j =

nX

i=1

ai j'i.
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Comparing with the change of basis

vj =
nX

i=1

ai jui,

we note that this time, the coordinates ('i) of the linear
form '⇤ change in the same direction as the change of
basis.

For this reason, we say that the coordinates of linear forms
are covariant .

By abuse of language, it is often said that linear forms
are covariant , which explains why the term covector is
also used for a linear form.

Observe that if (e1, . . . , en) is a basis of the vector space
E, then, as a linear map from E to K, every linear form
f 2 E⇤ is represented by a 1 ⇥ n matrix, that is, by a
row vector

(�1 · · · �n),

with respect to the basis (e1, . . . , en) of E, and 1 of K,
where f (ei) = �i.
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A vector u =
Pn

i=1 uiei 2 E is represented by a n ⇥ 1
matrix, that is, by a column vector

0

@
u1
...

un

1

A ,

and the action of f on u, namely f (u), is represented by
the matrix product

�
�1 · · · �n

�
0

@
u1
...

un

1

A = �1u1 + · · · + �nun.

On the other hand, with respect to the dual basis (e⇤
1, . . . , e

⇤
n)

of E⇤, the linear form f is represented by the column vec-
tor

0

@
�1
...

�n

1

A .
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We will now pin down the relationship between a vector
space E and its bidual E⇤⇤.

Proposition 9.2. Let E be a vector space. The fol-
lowing properties hold:

(a) The linear map evalE : E ! E⇤⇤ defined such that

evalE(v) = evalv, for all v 2 E,

that is, evalE(v)(u⇤) = hu⇤, vi = u⇤(v) for every
u⇤ 2 E⇤, is injective.

(b) When E is of finite dimension n, the linear map
evalE : E ! E⇤⇤ is an isomorphism (called the
canonical isomorphism).

When E is of finite dimension and (u1, . . . , un) is a basis
of E, in view of the canonical isomorphism
evalE : E ! E⇤⇤, the basis (u⇤⇤

1 , . . . , u⇤⇤
n ) of the bidual is

identified with (u1, . . . , un).

Proposition 9.2 can be reformulated very fruitfully in
terms of pairings.
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Definition 9.4. Given two vector spaces E and F over
K, a pairing between E and F is a bilinear map
' : E ⇥ F ! K. Such a pairing is nondegenerate i↵

(1) for every u 2 E, if '(u, v) = 0 for all v 2 F , then
u = 0, and

(2) for every v 2 F , if '(u, v) = 0 for all u 2 E, then
v = 0.

A pairing ' : E ⇥ F ! K is often denoted by
h�, �i : E ⇥ F ! K.

For example, the map h�, �i : E⇤ ⇥ E ! K defined
earlier is a nondegenerate pairing (use the proof of (a) in
Proposition 9.2).

Given a pairing ' : E ⇥F ! K, we can define two maps
l' : E ! F ⇤ and r' : F ! E⇤ as follows:
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For every u 2 E, we define the linear form l'(u) in F ⇤

such that

l'(u)(y) = '(u, y) for every y 2 F ,

and for every v 2 F , we define the linear form r'(v) in
E⇤ such that

r'(v)(x) = '(x, v) for every x 2 E.

Proposition 9.3. Given two vector spaces E and F
over K, for every nondegenerate pairing
' : E ⇥ F ! K between E and F , the maps
l' : E ! F ⇤ and r' : F ! E⇤ are linear and injec-
tive. Furthermore, if E and F have finite dimension,
then this dimension is the same and l' : E ! F ⇤ and
r' : F ! E⇤ are bijections.

When E has finite dimension, the nondegenerate pair-
ing h�, �i : E⇤ ⇥ E ! K yields another proof of the
existence of a natural isomorphism between E and E⇤⇤.

Interesting nondegenerate pairings arise in exterior alge-
bra.
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ME,-rt< Ie. C l-OCK 

Figure 9.1: Metric Clock
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9.4 Hyperplanes and Linear Forms

Actually, Proposition 9.4 below follows from parts (c) and
(d) of Theorem 9.1, but we feel that it is also interesting
to give a more direct proof.

Proposition 9.4. Let E be a vector space. The fol-
lowing properties hold:

(a) Given any nonnull linear form f ⇤ 2 E⇤, its kernel
H = Ker f ⇤ is a hyperplane.

(b) For any hyperplane H in E, there is a (nonnull)
linear form f ⇤ 2 E⇤ such that H = Ker f ⇤.

(c) Given any hyperplane H in E and any (nonnull)
linear form f ⇤ 2 E⇤ such that H = Ker f ⇤, for
every linear form g⇤ 2 E⇤, H = Ker g⇤ i↵ g⇤ = �f ⇤

for some � 6= 0 in K.

We leave as an exercise the fact that every subspace
V 6= E of a vector space E, is the intersection of all
hyperplanes that contain V .

We now consider the notion of transpose of a linear map
and of a matrix.
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9.5 Transpose of a Linear Map and of a Matrix

Given a linear map f : E ! F , it is possible to define a
map f> : F ⇤ ! E⇤ which has some interesting proper-
ties.

Definition 9.5. Given a linear map f : E ! F , the
transpose f> : F ⇤ ! E⇤ of f is the linear map defined
such that

f>(v⇤) = v⇤ � f,

for every v⇤ 2 F ⇤, as shown in the diagram below:

E f
//

f>(v⇤) !!

CC
CC

CC
CC

F
v⇤
✏✏

K.

Equivalently, the linear map f> : F ⇤ ! E⇤ is defined
such that

hv⇤, f (u)i = hf>(v⇤), ui,

for all u 2 E and all v⇤ 2 F ⇤.
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It is easy to verify that the following properties hold:

(f + g)> = f> + g>

(g � f )> = f> � g>

id>
E = idE⇤.

� Note the reversal of composition on the right-hand side
of (g � f )> = f> � g>.

The equation (g � f )> = f> � g> implies the following
useful proposition.

Proposition 9.5. If f : E ! F is any linear map,
then the following properties hold:

(1) If f is injective, then f> is surjective.

(2) If f is surjective, then f> is injective.
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We also have the following property showing the natural-
ity of the eval map.

Proposition 9.6. For any linear map f : E ! F , we
have

f>> � evalE = evalF � f,

or equivalently, the following diagram commutes:

E⇤⇤ f>>
//F ⇤⇤

E

evalE

OO

f
//F.

evalF

OO
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If E and F are finite-dimensional, then evalE and evalF
are isomorphisms, so Proposition 9.6 shows that

f>> = eval�1
F � f � evalE. (⇤)

The above equation is often interpreted as follows: if we
identify E with its bidual E⇤⇤ and F with its bidual F ⇤⇤,
then f>> = f .

This is an abuse of notation; the rigorous statement is
(⇤).

Proposition 9.7.Given a linear map f : E ! F , for
any subspace V of E, we have

f (V )0 = (f>)�1(V 0) = {w⇤ 2 F ⇤ | f>(w⇤) 2 V 0}.

As a consequence,

Ker f> = (Im f )0 and Ker f = (Im f>)0.
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The following theorem shows the relationship between the
rank of f and the rank of f>.

Theorem 9.8. Given a linear map f : E ! F , the
following properties hold.

(a) The dual (Im f )⇤ of Im f is isomorphic to
Im f> = f>(F ⇤); that is,

(Im f )⇤ ⇡ Im f>.

(b) If F is finite dimensional, then rk(f ) = rk(f>).

The following proposition can be shown, but it requires a
generalization of the duality theorem.

Proposition 9.9. If f : E ! F is any linear map,
then the following identities hold:

Im f> = (Ker (f ))0

Ker (f>) = (Im f )0

Im f = (Ker (f>)0

Ker (f ) = (Im f>)0.



502 CHAPTER 9. THE DUAL SPACE, DUALITY

The following proposition shows the relationship between
the matrix representing a linear map f : E ! F and the
matrix representing its transpose f> : F ⇤ ! E⇤.

Proposition 9.10. Let E and F be two vector spaces,
and let (u1, . . . , un) be a basis for E, and (v1, . . . , vm)
be a basis for F . Given any linear map f : E ! F ,
if M(f ) is the m ⇥ n-matrix representing f w.r.t.
the bases (u1, . . . , un) and (v1, . . . , vm), the n ⇥ m-
matrix M(f>) representing f> : F ⇤ ! E⇤ w.r.t. the
dual bases (v⇤

1, . . . , v
⇤
m) and (u⇤

1, . . . , u
⇤
n) is the trans-

pose M(f )> of M(f ).

We now can give a very short proof of the fact that the
rank of a matrix is equal to the rank of its transpose.

Proposition 9.11. Given a m ⇥ n matrix A over a
field K, we have rk(A) = rk(A>).

Thus, given an m ⇥ n-matrix A, the maximum number
of linearly independent columns is equal to the maximum
number of linearly independent rows.
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Proposition 9.12.Given any m⇥n matrix A over a
field K (typically K = R or K = C), the rank of A is
the maximum natural number r such that there is an
invertible r ⇥ r submatrix of A obtained by selecting
r rows and r columns of A.

For example, the 3 ⇥ 2 matrix

A =

0

@
a11 a12

a21 a22

a31 a32

1

A

has rank 2 i↵ one of the three 2 ⇥ 2 matrices
✓

a11 a12

a21 a22

◆ ✓
a11 a12

a31 a32

◆ ✓
a21 a22

a31 a32

◆

is invertible. We saw in Chapter 5 that this is equivalent
to the fact the determinant of one of the above matrices
is nonzero.

This is not a very e�cient way of finding the rank of
a matrix. We will see that there are better ways using
various decompositions such as LU, QR, or SVD.
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Figure 9.2: Beauty
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9.6 The Four Fundamental Subspaces

Given a linear map f : E ! F (where E and F are
finite-dimensional), Proposition 9.7 revealed that the four
spaces

Im f, Im f>, Ker f, Ker f>

play a special role. They are often called the fundamental
subspaces associated with f .

These spaces are related in an intimate manner, since
Proposition 9.7 shows that

Ker f = (Im f>)0

Ker f> = (Im f )0,

and Theorem 9.8 shows that

rk(f ) = rk(f>).
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It is instructive to translate these relations in terms of
matrices (actually, certain linear algebra books make a
big deal about this!).

If dim(E) = n and dim(F ) = m, given any basis (u1, . . .,
un) of E and a basis (v1, . . . , vm) of F , we know that f is
represented by an m⇥n matrix A = (ai j), where the jth
column of A is equal to f (uj) over the basis (v1, . . . , vm).

Furthermore, the transpose map f> is represented by the
n ⇥ m matrix A> (with respect to the dual bases).

Consequently, the four fundamental spaces

Im f, Im f>, Ker f, Ker f>

correspond to
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(1) The column space of A, denoted by ImA or R(A);
this is the subspace of Rm spanned by the columns of
A, which corresponds to the image Im f of f .

(2) The kernel or nullspace of A, denoted by KerA or
N (A); this is the subspace of Rn consisting of all
vectors x 2 Rn such that Ax = 0.

(3) The row space of A, denoted by ImA> or R(A>);
this is the subspace of Rn spanned by the rows of A,
or equivalently, spanned by the columns of A>, which
corresponds to the image Im f> of f>.

(4) The left kernel or left nullspace of A denoted by
KerA> orN (A>); this is the kernel (nullspace) ofA>,
the subspace of Rm consisting of all vectors y 2 Rm

such that A>y = 0, or equivalently, y>A = 0.

Recall that the dimension r of Im f , which is also equal
to the dimension of the column space ImA = R(A), is
the rank of A (and f ).
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Then, some our previous results can be reformulated as
follows:

1. The column space R(A) of A has dimension r.

2. The nullspace N (A) of A has dimension n � r.

3. The row space R(A>) has dimension r.

4. The left nullspace N (A>) of A has dimension m � r.

The above statements constitute what Strang calls the
Fundamental Theorem of Linear Algebra, Part I (see
Strang [32]).
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The two statements

Ker f = (Im f>)0

Ker f> = (Im f )0

translate to

(1) The nullspace of A is the orthogonal of the row space
of A.

(2) The left nullspace of A is the orthogonal of the column
space of A.

The above statements constitute what Strang calls the
Fundamental Theorem of Linear Algebra, Part II (see
Strang [32]).

Since vectors are represented by column vectors and linear
forms by row vectors (over a basis in E or F ), a vector
x 2 Rn is orthogonal to a linear form y if

yx = 0.
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Then, a vector x 2 Rn is orthogonal to the row space of
A i↵ x is orthogonal to every row of A, namely
Ax = 0, which is equivalent to the fact that x belong to
the nullspace of A.

Similarly, the column vector y 2 Rm (representing a
linear form over the dual basis of F ⇤) belongs to the
nullspace of A> i↵ A>y = 0, i↵ y>A = 0, which means
that the linear form given by y> (over the basis in F ) is
orthogonal to the column space of A.

Since (2) is equivalent to the fact that the column space
of A is equal to the orthogonal of the left nullspace of
A, we get the following criterion for the solvability of an
equation of the form Ax = b:

The equation Ax = b has a solution i↵ for all y 2 Rm, if
A>y = 0, then y>b = 0.
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Indeed, the condition on the right-hand side says that b
is orthogonal to the left nullspace of A, that is, that b
belongs to the column space of A.

This criterion can be cheaper to check that checking di-
rectly that b is spanned by the columns of A. For exam-
ple, if we consider the system

x1 � x2 = b1

x2 � x3 = b2

x3 � x1 = b3

which, in matrix form, is written Ax = b as below:
0

@
1 �1 0
0 1 �1

�1 0 1

1

A

0

@
x1

x2

x3

1

A =

0

@
b1

b2

b3

1

A ,

we see that the rows of the matrix A add up to 0.
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In fact, it is easy to convince ourselves that the left nullspace
of A is spanned by y = (1, 1, 1), and so the system is solv-
able i↵ y>b = 0, namely

b1 + b2 + b3 = 0.

Note that the above criterion can also be stated negatively
as follows:

The equation Ax = b has no solution i↵ there is some
y 2 Rm such that A>y = 0 and y>b 6= 0.
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Figure 9.3: Brain Size?
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