
Chapter 17

Applications of SVD and
Pseudo-inverses

De tous les principes qu’on peut proposer pour cet objet, je pense qu’il n’en est pas de
plus général, de plus exact, ni d’une application plus facile, que celui dont nous avons
fait usage dans les recherches précédentes, et qui consiste à rendre minimum la somme
des carrés des erreurs. Par ce moyen il s’établit entre les erreurs une sorte d’équilibre
qui, empêchant les extrêmes de prévaloir, est très propre à faire connaitre l’état du
système le plus proche de la vérité.

—Legendre, 1805, Nouvelles Méthodes pour la détermination des Orbites des

Comètes

17.1 Least Squares Problems and the Pseudo-inverse

The method of least squares is a way of “solving” an
overdetermined system of linear equations

Ax = b,

i.e., a system in which A is a rectangular m ⇥ n matrix
with more equations than unknowns (when m > n).
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Historically, the method of least squares was used by
Gauss and Legendre to solve problems in astronomy and
geodesy.

The method was first published by Legendre in 1805 in a
paper on methods for determining the orbits of comets.

However, Gauss had already used the method of least
squares as early as 1801 to determine the orbit of the
asteroid Ceres, and he published a paper about it in 1810
after the discovery of the asteroid Pallas.

Incidentally, it is in that same paper that Gaussian elim-
ination using pivots is introduced.

The reason why more equations than unknowns arise in
such problems is that repeated measurements are taken
to minimize errors.
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This produces an overdetermined and often inconsistent
system of linear equations.

For example, Gauss solved a system of eleven equations
in six unknowns to determine the orbit of the asteroid
Pallas.

As a concrete illustration, suppose that we observe the
motion of a small object, assimilated to a point, in the
plane.

From our observations, we suspect that this point moves
along a straight line, say of equation y = dx + c.

Suppose that we observed the moving point at three dif-
ferent locations (x1, y1), (x2, y2), and (x3, y3).
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Then we should have

c + dx1 = y1,

c + dx2 = y2,

c + dx3 = y3.

If there were no errors in our measurements, these equa-
tions would be compatible, and c and d would be deter-
mined by only two of the equations.

However, in the presence of errors, the system may be
inconsistent. Yet we would like to find c and d!

The idea of the method of least squares is to determine
(c, d) such that it minimizes the sum of the squares of
the errors , namely,

(c + dx1 � y1)
2 + (c + dx2 � y2)

2 + (c + dx3 � y3)
2.
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In general, for an overdetermined m ⇥ n system Ax = b,
what Gauss and Legendre discovered is that there are
solutions x minimizing

kAx � bk2
2

and that these solutions are given by the square n ⇥ n
system

A>Ax = A>b,

called the normal equations .

Furthermore, when the columns of A are linearly inde-
pendent, it turns out that A>A is invertible, and so x is
unique and given by

x = (A>A)�1A>b.
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Note that A>A is a symmetric matrix, one of the nice
features of the normal equations of a least squares prob-
lem.

For instance, the normal equations for the above problem
are

✓
3 x1 + x2 + x3

x1 + x2 + x3 x2
1 + x2

2 + x2
3

◆✓
c
d

◆

=

✓
y1 + y2 + y3

x1y1 + x2y2 + x3y3

◆
.

In fact, given any real m ⇥ n matrix A, there is always a
unique x+ of minimum norm that minimizes kAx � bk2

2,
even when the columns of A are linearly dependent. How
do we prove this, and how do we find x+?
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Theorem 17.1. Every linear system Ax = b, where A
is an m⇥n matrix, has a unique least squares solution
x+ of smallest norm.

The proof also shows that x minimizes kAx � bk2
2 i↵

A>(b � Ax) = 0, i.e., A>Ax = A>b.

Finally, it turns out that the minimum norm least squares
solution x+ can be found in terms of the pseudo-inverse
A+ of A, which is itself obtained from any SVD of A.
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Definition 17.1. Given any nonzero m ⇥ n matrix A
of rank r, if A = V DU> is an SVD of A such that

D =

✓
⇤ 0r,n�r

0m�r,r 0m�r,n�r

◆
,

with
⇤ = diag(�1, . . . , �r)

an r⇥r diagonal matrix consisting of the nonzero singular
values of A, then if we let D+ be the n ⇥ m matrix

D+ =

✓
⇤�1 0r,m�r

0n�r,r 0n�r,m�r

◆
,

with
⇤�1 = diag(1/�1, . . . , 1/�r),

the pseudo-inverse of A is defined by

A+ = UD+V >.

If A = 0m,n is the zero matrix, we set A+ = 0n,m.
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Observe that D+ is obtained from D by inverting the
nonzero diagonal entries of D, leaving all zeros in place,
and then transposing the matrix.

The pseudo-inverse of a matrix is also known as theMoore–
Penrose pseudo-inverse .

Actually, it seems that A+ depends on the specific choice
of U and V in an SVD (U, D, V ) for A, but the next
theorem shows that this is not so.

Theorem 17.2.The least squares solution of smallest
norm of the linear system Ax = b, where A is an m⇥n
matrix, is given by

x+ = A+b = UD+V >b.

By Proposition 17.2 and Theorem 17.1, A+b is uniquely
defined by every b, and thus A+ depends only on A.
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17.2 Properties of the Pseudo-Inverse

We begin this section with a proposition which provides
a way to calculate the pseudo-inverse of an m⇥n matrix
A without first determining an SVD factorization.

Proposition 17.3.When A has full rank, the pseudo-
inverse A+ can be expressed as A+ = (A>A)�1A>

when m � n, and as A+ = A>(AA>)�1 when n � m.
In the first case (m � n), observe that A+A = I, so
A+ is a left inverse of A; in the second case (n � m),
we have AA+ = I, so A+ is a right inverse of A.

Let A = U⌃V > be an SVD for A. It is easy to check
that

AA+A = A,

A+AA+ = A+,

and both AA+ and A+A are symmetric matrices. In fact,

AA+ = U

✓
Ir 0
0 0m�r

◆
U>

and

A+A = V

✓
Ir 0
0 0n�r

◆
V >.
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We immediately get

(AA+)2 = AA+,

(A+A)2 = A+A,

so both AA+ and A+A are orthogonal projections (since
they are both symmetric).

Proposition 17.4.The matrix AA+ is the orthogonal
projection onto the range of A and A+A is the orthog-
onal projection onto Ker(A)? = Im(A>), the range of
A>.

Proposition 17.5. The set range(A) = range(AA+)
consists of all vectors y 2 Rm such that

V >y =

✓
z
0

◆
,

with z 2 Rr.
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Similarly, we have the following result.

Proposition 17.6. The set range(A+A) = Ker(A)?

consists of all vectors y 2 Rn such that

U>y =

✓
z
0

◆
,

with z 2 Rr.

If A is a normal matrix, which means that AA> = A>A,
then there is an intimate relationship between SVD’s of
A and block diagonalizations of A.

If A is a (real) normal matrix, then we know from Theo-
rem 14.18 that A can be block diagonalized with respect
to an orthogonal matrix U as

A = U⇤U>,

where ⇤ is the (real) block diagonal matrix

⇤ = diag(B1, . . . , Bn),

consisting either of 2 ⇥ 2 blocks of the form

Bj =

✓
�j �µj

µj �j

◆

with µj 6= 0, or of one-dimensional blocks Bk = (�k).
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Proposition 17.7. For any (real) normal matrix A
and any block diagonalization A = U⇤U> of A as
above, the pseudo-inverse of A is given by

A+ = U⇤+U>,

where ⇤+ is the pseudo-inverse of ⇤. Furthermore, if

⇤ =

✓
⇤r 0
0 0

◆
,

where ⇤r has rank r, then

⇤+ =

✓
⇤�1

r 0
0 0

◆
.
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The following properties, due to Penrose, characterize the
pseudo-inverse of a matrix.

We have already proved that the pseudo-inverse satisfies
these equations. For a proof of the converse, see Kincaid
and Cheney [22].

Proposition 17.8. Given any m ⇥ n matrix A (real
or complex), the pseudo-inverse A+ of A is the unique
n ⇥ m matrix satisfying the following properties:

AA+A = A,

A+AA+ = A+,

(AA+)> = AA+,

(A+A)> = A+A.
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17.3 Data Compression and SVD

Among the many applications of SVD, a very useful one
is data compression , notably for images.

In order to make precise the notion of closeness of matri-
ces, we use the notion of matrix norm . This concept is
defined in Chapter 7 and the reader may want to review
it before reading any further.

Given an m ⇥ n matrix of rank r, we would like to find
a best approximation of A by a matrix B of rank k  r
(actually, k < r) so that kA � Bk2 (or kA � BkF ) is
minimized.
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Proposition 17.9. (Eckart–Young) Let A be an m⇥
n matrix of rank r and let V DU> = A be an SVD for
A. Write ui for the columns of U , vi for the columns
of V , and �1 � �2 � · · · � �p for the singular values
of A (p = min(m, n)). Then a matrix of rank k < r
closest to A (in the k k2 norm) is given by

Ak =
kX

i=1

�iviu
>
i = V diag(�1, . . . , �k, 0, . . . , 0)U

>

and kA � Akk2 = �k+1.

Note that Ak can be stored using (m+n)k entries, as op-
posed to mn entries. When k ⌧ m, this is a substantial
gain.

A nice example of the use of Proposition 17.9 in image
compression is given in Demmel [11], Chapter 3, Section
3.2.3, pages 113–115; see the Matlab demo.
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An interesting topic that we have not addressed is the
actual computation of an SVD.

This is a very interesting but tricky subject.

Most methods reduce the computation of an SVD to the
diagonalization of a well-chosen symmetric matrix (which
is not A>A).

Interested readers should read Section 5.4 of Demmel’s
excellent book [11], which contains an overview of most
known methods and an extensive list of references.
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17.4 Principal Components Analysis (PCA)

Suppose we have a set of data consisting of n points
X1, . . . , Xn, with each Xi 2 Rd viewed as a row vec-
tor .

Think of the Xi’s as persons, and if Xi = (xi 1, . . . , xi d),
each xi j is the value of some feature (or attribute) of
that person.

For example, the Xi’s could be mathematicians, d = 2,
and the first component, xi 1, of Xi could be the year that
Xi was born, and the second component, xi 2, the length
of the beard of Xi in centimeters.

Here is a small data set:
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Name year length
Carl Friedrich Gauss 1777 0
Camille Jordan 1838 12
Adrien-Marie Legendre 1752 0
Bernhard Riemann 1826 15
David Hilbert 1862 2
Henri Poincaré 1854 5
Emmy Noether 1882 0
Karl Weierstrass 1815 0
Eugenio Beltrami 1835 2
Hermann Schwarz 1843 20

We usually form the n ⇥ d matrix X whose ith row is
Xi, with 1  i  n.

Then the jth column is denoted by Cj (1  j  d). It is
sometimes called a feature vector , but this terminology
is far from being universally accepted.

The purpose of principal components analysis , for short
PCA, is to identify patterns in data and understand the
variance–covariance structure of the data.
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This is useful for the following tasks:

1. Data reduction: Often much of the variability of the
data can be accounted for by a smaller number of
principal components .

2. Interpretation: PCA can show relationships that were
not previously suspected.

Given a vector (a sample of measurements)
x = (x1, . . . , xn) 2 Rn, recall that themean (or average)
x of x is given by

x =

Pn
i=1 xi

n
.

We let x � x denote the centered data point

x � x = (x1 � x, . . . , xn � x).

In order to measure the spread of the xi’s around the
mean, we define the sample variance (for short, vari-
ance) var(x) (or s2) of the sample x by

var(x) =

Pn
i=1(xi � x)2

n � 1
.
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There is a reason for using n � 1 instead of n.

The above definition makes var(x) an unbiased estimator
of the variance of the random variable being sampled.
However, we don’t need to worry about this.

Given two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn),
the sample covariance (for short, covariance) of x and
y is given by

cov(x, y) =

Pn
i=1(xi � x)(yi � y)

n � 1
.

The covariance of x and y measures how x and y vary
from the mean with respect to each other .

Obviously, cov(x, y) = cov(y, x) and cov(x, x) = var(x).

Note that

cov(x, y) =
(x � x)>(y � y)

n � 1
.
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We say that x and y are uncorrelated i↵ cov(x, y) = 0.

Finally, given an n ⇥ d matrix X of n points Xi, for
PCA to be meaningful, it will be necessary to translate
the origin to the centroid (or center of gravity) µ of the
Xi’s, defined by

µ =
1

n
(X1 + · · · + Xn).

Observe that if µ = (µ1, . . . , µd), then µj is the mean of
the vector Cj (the jth column of X).

We let X � µ denote the matrix whose ith row is the
centered data point Xi � µ (1  i  n).

Then, the sample covariance matrix (for short, covari-
ance matrix ) of X is the d ⇥ d symmetric matrix

⌃ =
1

n � 1
(X � µ)>(X � µ) = (cov(Ci, Cj)).

Remark: The factor 1
n�1 is irrelevant for our purposes

and can be ignored.



17.4. PRINCIPAL COMPONENTS ANALYSIS (PCA) 841

Here is the matrix X � µ in the case of our bearded
mathematicians: Since

µ1 = 1828.4, µ2 = 5.6,

we get

Name year length
Carl Friedrich Gauss �51.4 �5.6
Camille Jordan 9.6 6.4
Adrien-Marie Legendre �76.4 �5.6
Bernhard Riemann �2.4 9.4
David Hilbert 33.6 �3.6
Henri Poincaré 25.6 �0.6
Emmy Noether 53.6 �5.6
Karl Weierstrass 13.4 �5.6
Eugenio Beltrami 6.6 �3.6
Hermann Schwarz 14.6 14.4

We can think of the vector Cj as representing the fea-
tures of X in the direction ej (the jth canonical basis
vector in Rd).



842 CHAPTER 17. APPLICATIONS OF SVD AND PSEUDO-INVERSES

If v 2 Rd is a unit vector, we wish to consider the projec-
tion of the data points X1, . . . , Xn onto the line spanned
by v.

Recall from Euclidean geometry that if x 2 Rd is any
vector and v 2 Rd is a unit vector, the projection of x
onto the line spanned by v is

hx, viv.

Thus, with respect to the basis v, the projection of x has
coordinate hx, vi.

If x is represented by a row vector and v by a column
vector, then

hx, vi = xv.

Therefore, the vector Y 2 Rn consisting of the coor-
dinates of the projections of X1, . . . , Xn onto the line
spanned by v is given by Y = Xv, and this is the linear
combination

Xv = v1C1 + · · · + vdCd

of the columns of X (with v = (v1, . . . , vd)).
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Observe that because µj is the mean of the vector Cj (the
jth column of X), the centered point Y � Y is given by

Y � Y = (X � µ)v.

Furthermore, if Y = Xv and Z = Xw, then

cov(Y, Z) =
((X � µ)v)>(X � µ)w

n � 1

= v> 1

n � 1
(X � µ)>(X � µ)w

= v>⌃w,

where

⌃ =
1

n � 1
(X � µ)>(X � µ)

is the covariance matrix of X . Since Y � Y has zero
mean, we have

var(Y ) = var(Y � Y ) = v> 1

n � 1
(X � µ)>(X � µ)v.
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The above suggests that we should move the origin to the
centroid µ of the Xi’s and consider the matrix X � µ of
the centered data points Xi � µ.

From now on, beware that we denote the columns ofX�µ
by C1, . . . , Cd and that Y denotes the centered point
Y = (X � µ)v =

Pd
j=1 vjCj, where v is a unit vector.

Basic idea of PCA: The principal components of X
are uncorrelated projections Y of the data points X1,
. . ., Xn onto some directions v (where the v’s are unit
vectors) such that var(Y ) is maximal.

This suggests the following definition:
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Definition 17.2. Given an n ⇥ d matrix X of data
points X1, . . . , Xn, if µ is the centroid of the Xi’s, then a
first principal component of X (first PC) is a centered
point Y1 = (X �µ)v1, the projection of X1, . . . , Xn onto
a direction v1 such that var(Y1) is maximized, where v1

is a unit vector (recall that Y1 = (X � µ)v1 is a linear
combination of the Cj’s, the columns of X � µ).

More generally, if Y1, . . . , Yk are k principal components
of X along some unit vectors v1, . . . , vk, where 1  k <
d, a (k+1)th principal component of X ((k+1)th PC)
is a centered point Yk+1 = (X �µ)vk+1, the projection of
X1, . . . , Xn onto some direction vk+1 such that var(Yk+1)
is maximized, subject to cov(Yh, Yk+1) = 0 for all h with
1  h  k, and where vk+1 is a unit vector (recall that
Yh = (X �µ)vh is a linear combination of the Cj’s). The
vh are called principal directions .

The following proposition is the key to the main result
about PCA:
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Proposition 17.10. If A is a symmetric d ⇥ d ma-
trix with eigenvalues �1 � �2 � · · · � �d and if
(u1, . . . , ud) is any orthonormal basis of eigenvectors
of A, where ui is a unit eigenvector associated with
�i, then

max
x 6=0

x>Ax

x>x
= �1

(with the maximum attained for x = u1) and

max
x 6=0,x2{u1,...,uk}?

x>Ax

x>x
= �k+1

(with the maximum attained for x = uk+1), where
1  k  d � 1.

The quantity

x>Ax

x>x

is known as the Rayleigh–Ritz ratio and Proposition
17.10 is often known as part of the Rayleigh–Ritz theo-
rem .
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Proposition 17.10 also holds if A is a Hermitian matrix
and if we replace x>Ax by x⇤Ax and x>x by x⇤x.

Theorem 17.11. (SVD yields PCA) Let X be an n⇥
d matrix of data points X1, . . . , Xn, and let µ be the
centroid of the Xi’s. If X � µ = V DU> is an SVD
decomposition of X � µ and if the main diagonal of
D consists of the singular values �1 � �2 � · · · � �d,
then the centered points Y1, . . . , Yd, where

Yk = (X � µ)uk = kth column of V D

and uk is the kth column of U , are d principal com-
ponents of X. Furthermore,

var(Yk) =
�2

k

n � 1

and cov(Yh, Yk) = 0, whenever h 6= k and 1  k, h  d.

The d columns u1, . . . , ud of U are usually called the
principal directions of X � µ (and X).
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We note that not only do we have cov(Yh, Yk) = 0 when-
ever h 6= k, but the directions u1, . . . , ud along which the
data are projected are mutually orthogonal.

We know from our study of SVD that �2
1, . . . , �

2
d are the

eigenvalues of the symmetric positive semidefinite matrix
(X � µ)>(X � µ) and that u1, . . . , ud are corresponding
eigenvectors.

Numerically, it is preferable to use SVD on X � µ rather
than to compute explicitly (X � µ)>(X � µ) and then
diagonalize it.

Indeed, the explicit computation of A>A from a matrix
A can be numerically quite unstable, and good SVD al-
gorithms avoid computing A>A explicitly.

In general, since an SVD of X is not unique, the principal
directions u1, . . . , ud are not unique .

This can happen when a data set has some rotational
symmetries , and in such a case, PCA is not a very good
method for analyzing the data set.
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17.5 Best A�ne Approximation

A problem very close to PCA (and based on least squares)
is to best approximate a data set of n points X1, . . . , Xn,
with Xi 2 Rd, by a p-dimensional a�ne subspace A
of Rd, with 1  p  d � 1 (the terminology rank d � p
is also used).

First, consider p = d � 1. Then A = A1 is an a�ne
hyperplane (in Rd), and it is given by an equation of the
form

a1x1 + · · · + adxd + c = 0.

By best approximation , we mean that (a1, . . . , ad, c) solves
the homogeneous linear system

0

@
x1 1 · · · x1 d 1
... ... ... ...

xn 1 · · · xn d 1

1

A

0

BB@

a1
...
ad

c

1

CCA =

0

BB@

0
...
0
0

1

CCA

in the least squares sense, subject to the condition that
a = (a1, . . . , ad) is a unit vector , that is, a>a = 1, where
Xi = (xi 1, · · · , xi d).
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If we form the symmetric matrix

0

@
x1 1 · · · x1 d 1
... ... ... ...

xn 1 · · · xn d 1

1

A
> 0

@
x1 1 · · · x1 d 1
... ... ... ...

xn 1 · · · xn d 1

1

A

involved in the normal equations, we see that the bottom
row (and last column) of that matrix is

nµ1 · · · nµd n,

where nµj =
Pn

i=1 xi j is n times the mean of the column
Cj of X .

Therefore, if (a1, . . . , ad, c) is a least squares solution,
that is, a solution of the normal equations, we must have

nµ1a1 + · · · + nµdad + nc = 0,

that is,

a1µ1 + · · · + adµd + c = 0,

which means that the hyperplane A1 must pass through
the centroid µ of the data points X1, . . . , Xn.
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Then we can rewrite the original system with respect to
the centered data Xi � µ, and we find that the variable
c drops out and we get the system

(X � µ)a = 0,

where a = (a1, . . . , ad).

Thus, we are looking for a unit vector a solving
(X � µ)a = 0 in the least squares sense, that is, some a
such that a>a = 1 minimizing

a>(X � µ)>(X � µ)a.

Compute some SVD V DU> of X � µ, where the main
diagonal of D consists of the singular values
�1 � �2 � · · · � �d of X � µ arranged in descending
order.

Then

a>(X � µ)>(X � µ)a = a>UD2U>a,

where D2 = diag(�2
1, . . . , �

2
d) is a diagonal matrix, so

pick a to be the last column in U (corresponding to the
smallest eigenvalue �2

d of (X � µ)>(X � µ)).
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This is a solution to our best fit problem.

Therefore, if Ud�1 is the linear hyperplane defined by a,
that is,

Ud�1 = {u 2 Rd | hu, ai = 0},

where a is the last column in U for some SVD V DU>

of X � µ, we have shown that the a�ne hyperplane
A1 = µ + Ud�1 is a best approximation of the data set
X1, . . . , Xn in the least squares sense.

Is is easy to show that this hyperplane A1 = µ + Ud�1

minimizes the sum of the square distances of each Xi to
its orthogonal projection onto A1.

Also, since Ud�1 is the orthogonal complement of a, the
last column of U , we see that Ud�1 is spanned by the
first d � 1 columns of U , that is, the first d � 1 principal
directions of X � µ.
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All this can be generalized to a best (d�k)-dimensional
a�ne subspace Ak approximating X1, . . . , Xn in the
least squares sense (1  k  d � 1).

Such an a�ne subspace Ak is cut out by k independent
hyperplanes Hi (with 1  i  k), each given by some
equation

ai 1x1 + · · · + ai dxd + ci = 0.

If we write ai = (ai 1, · · · , ai d), to say that the Hi are
independent means that a1, . . . , ak are linearly indepen-
dent.

In fact, we may assume that a1, . . . , ak form an orthonor-
mal system .
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Then, finding a best (d � k)-dimensional a�ne subspace
Ak amounts to solving the homogeneous linear system

0

@
X 1 0 · · · 0 0 0
... ... ... . . . ... ... ...
0 0 0 · · · 0 X 1

1

A

0

BBBB@

a1

c1
...
ak

ck

1

CCCCA
=

0

@
0
...
0

1

A ,

in the least squares sense, subject to the conditions
a>

i aj = �i j, for all i, j with 1  i, j  k, where the
matrix of the system is a block diagonal matrix consisting
of k diagonal blocks (X,1), where 1 denotes the column
vector (1, . . . , 1) 2 Rn.

Again, it is easy to see that each hyperplane Hi must pass
through the centroid µ of X1, . . . , Xn, and by switching
to the centered data Xi � µ we get the system

0

@
X � µ 0 · · · 0

... ... . . . ...
0 0 · · · X � µ

1

A

0

@
a1
...
ak

1

A =

0

@
0
...
0

1

A ,

with a>
i aj = �i j for all i, j with 1  i, j  k.
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If V DU> = X �µ is an SVD decomposition, it is easy to
see that a least squares solution of this system is given by
the last k columns of U , assuming that the main diagonal
of D consists of the singular values �1 � �2 � · · · � �d

of X � µ arranged in descending order.

But now the (d � k)-dimensional subspace Ud�k cut out
by the hyperplanes defined by a1, . . . , ak is simply the
orthogonal complement of (a1, . . . , ak), which is the sub-
space spanned by the first d � k columns of U .

So the best (d � k)-dimensional a�ne subpsace Ak ap-
proximating X1, . . . , Xn in the least squares sense is

Ak = µ + Ud�k,

where Ud�k is the linear subspace spanned by the first
d�k principal directions of X �µ, that is, the first d�k
columns of U .
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Theorem 17.12. Let X be an n ⇥ d matrix of data
points X1, . . . , Xn, and let µ be the centroid of the
Xi’s. If X � µ = V DU> is an SVD decomposition of
X � µ and if the main diagonal of D consists of the
singular values �1 � �2 � · · · � �d, then a best (d�k)-
dimensional a�ne approximation Ak of X1, . . . , Xn in
the least squares sense is given by

Ak = µ + Ud�k,

where Ud�k is the linear subspace spanned by the first
d�k columns of U , the first d�k principal directions
of X � µ (1  k  d � 1).

There are many applications of PCA to data compression,
dimension reduction, and pattern analysis.

The basic idea is that in many cases, given a data set
X1, . . . , Xn, with Xi 2 Rd, only a “small” subset of
m < d of the features is needed to describe the data
set accurately.
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If u1, . . . , ud are the principal directions of X � µ, then
the first m projections of the data (the first m principal
components, i.e., the first m columns of V D) onto the
first m principal directions represent the data without
much loss of information.

Thus, instead of using the original data pointsX1, . . . , Xn,
with Xi 2 Rd, we can use their projections onto the first
m principal directions Y1, . . . , Ym, where Yi 2 Rm and
m < d, obtaining a compressed version of the original
data set.

For example, PCA is used in computer vision for face
recognition .
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Sirovitch and Kirby (1987) seem to be the first to have
had the idea of using PCA to compress facial images.
They introduced the term eigenpicture to refer to the
principal directions, ui.

However, an explicit face recognition algorithm was given
only later, by Turk and Pentland (1991). They renamed
eigenpictures as eigenfaces .

Another interesting application of PCA is to the recog-
nition of handwritten digits . Such an application is de-
scribed in Hastie, Tibshirani, and Friedman, [18] (Chap-
ter 14, Section 14.5.1).


