
Chapter 4

Direct Sums, A�ne Maps

4.1 Direct Products

There are some useful ways of forming new vector spaces
from older ones.

Definition 4.1. Given p � 2 vector spaces E1, . . . , Ep,
the product F = E1⇥ · · ·⇥Ep can be made into a vector
space by defining addition and scalar multiplication as
follows:

(u1, . . . , up) + (v1, . . . , vp) = (u1 + v1, . . . , up + vp)

�(u1, . . . , up) = (�u1, . . . , �up),

for all ui, vi 2 Ei and all � 2 R.

With the above addition and multiplication, the vector
space F = E1 ⇥ · · · ⇥ Ep is called the direct product of
the vector spaces E1, . . . , Ep.
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The projection maps pri : E1 ⇥ · · · ⇥ Ep ! Ei given by

pri(u1, . . . , up) = ui

are clearly linear.

Similarly, the maps ini : Ei ! E1 ⇥ · · · ⇥ Ep given by

ini(ui) = (0, . . . , 0, ui, 0, . . . , 0)

are injective and linear.

It can be shown (using bases) that

dim(E1 ⇥ · · · ⇥ Ep) = dim(E1) + · · · + dim(Ep).
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4.2 Sums, and Direct Sums

Let us now consider a vector space E and p subspaces
U1, . . . , Up of E.

We have a map

a : U1 ⇥ · · · ⇥ Up ! E

given by
a(u1, . . . , up) = u1 + · · · + up,

with ui 2 Ui for i = 1, . . . , p.
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It is clear that this map is linear, and so its image is a
subspace of E denoted by

U1 + · · · + Up

and called the sum of the subspaces U1, . . . , Up.

By definition,

U1 + · · · + Up = {u1 + · · · + up | ui 2 Ui, 1  i  p},

and it is immediately verified that U1 + · · · + Up is the
smallest subspace of E containing U1, . . . , Up.

If the map a is injective, then Ker a = {( 0, . . . , 0| {z }
p

)},

which means that if ui 2 Ui for i = 1, . . . , p and if

u1 + · · · + up = 0

then u1 = 0, . . . , up = 0.

In this case, every u 2 U1 + · · · + Up has a unique ex-
pression as a sum

u = u1 + · · · + up,

with ui 2 Ui, for i = 1, . . . , p.
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It is also clear that for any p nonzero vectors ui 2 Ui,
u1, . . . , up are linearly independent.

Definition 4.2. For any vector space E and any p � 2
subspaces U1, . . . , Up of E, if the map a defined above is
injective, then the sum U1 + · · · + Up is called a direct
sum and it is denoted by

U1 � · · · � Up.

The space E is the direct sum of the subspaces Ui if

E = U1 � · · · � Up.

Observe that when the map a is injective, then it is a
linear isomorphism between U1 ⇥ · · · ⇥ Up and
U1 � · · · � Up.

The di↵erence is that U1 ⇥ · · · ⇥ Up is defined even if
the spaces Ui are not assumed to be subspaces of some
common space.

There are natural injections from each Ui to E denoted
by ini : Ui ! E.
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Now, if p = 2, it is easy to determine the kernel of the
map a : U1 ⇥ U2 ! E. We have

a(u1, u2) = u1 + u2 = 0 i↵ u1 = �u2, u1 2 U1, u2 2 U2,

which implies that

Ker a = {(u, �u) | u 2 U1 \ U2}.

Now, U1 \ U2 is a subspace of E and the linear map
u 7! (u, �u) is clearly an isomorphism between U1 \ U2

and Ker a, so Ker a is isomorphic to U1 \ U2.

As a consequence, we get the following result:

Proposition 4.1. Given any vector space E and any
two subspaces U1 and U2, the sum U1 + U2 is a direct
sum i↵ U1 \ U2 = (0).
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Recall that an n ⇥ n matrix A 2 Mn is symmetric if
A> = A, skew -symmetric if A> = �A. It is clear that

S(n) = {A 2 Mn | A> = A}
Skew(n) = {A 2 Mn | A> = �A}

are subspaces of Mn, and that S(n) \ Skew(n) = (0).

Observe that for any matrix A 2 Mn, the matrix H(A) =
(A + A>)/2 is symmetric and the matrix
S(A) = (A � A>)/2 is skew-symmetric. Since

A = H(A) + S(A) =
A + A>

2
+

A � A>

2
,

we have the direct sum

Mn = S(n) � Skew(n).
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Proposition 4.2. Given any vector space E and any
p � 2 subspaces U1, . . . , Up, the following properties
are equivalent:

(1) The sum U1 + · · · + Up is a direct sum.

(2) We have

Ui \
✓ pX

j=1,j 6=i

Uj

◆
= (0), i = 1, . . . , p.

(3) We have

Ui \
✓ i�1X

j=1

Uj

◆
= (0), i = 2, . . . , p.

The isomorphism U1 ⇥ · · · ⇥ Up ⇡ U1 � · · · � Up implies

Proposition 4.3. If E is any vector space, for any
(finite-dimensional) subspaces U1, . . ., Up of E, we
have

dim(U1 � · · · � Up) = dim(U1) + · · · + dim(Up).
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If E is a direct sum

E = U1 � · · · � Up,

since every u 2 E can be written in a unique way as

u = u1 + · · · + up

for some ui 2 Ui for i = 1 . . . , p, we can define the maps
⇡i : E ! Ui, called projections , by

⇡i(u) = ⇡i(u1 + · · · + up) = ui.

It is easy to check that these maps are linear and satisfy
the following properties:

⇡j � ⇡i =

(
⇡i if i = j

0 if i 6= j,

⇡1 + · · · + ⇡p = idE.
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For example, in the case of the direct sum

Mn = S(n) � Skew(n),

the projection onto S(n) is given by

⇡1(A) = H(A) =
A + A>

2
,

and the projection onto Skew(n) is given by

⇡2(A) = S(A) =
A � A>

2
.

Clearly, H(A) + S(A) = A, H(H(A)) = H(A),
S(S(A)) = S(A), and H(S(A)) = S(H(A)) = 0.

A function f such that f�f = f is said to be idempotent .
Thus, the projections ⇡i are idempotent.

Conversely, the following proposition can be shown:
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Proposition 4.4. Let E be a vector space. For any
p � 2 linear maps fi : E ! E, if

fj � fi =

(
fi if i = j

0 if i 6= j,

f1 + · · · + fp = idE,

then if we let Ui = fi(E), we have a direct sum

E = U1 � · · · � Up.

We also have the following proposition characterizing idem-
potent linear maps whose proof is also left as an exercise.

Proposition 4.5. For every vector space E, if
f : E ! E is an idempotent linear map, i.e., f�f = f ,
then we have a direct sum

E = Ker f � Im f,

so that f is the projection onto its image Im f .

We are now ready to prove a very crucial result relating
the rank and the dimension of the kernel of a linear map.
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4.3 The Rank-Nullity Theorem; Grassmann’s Relations

Theorem 4.6. Let f : E ! F be a linear map. For
any choice of a basis (f1, . . . , fr) of Im f , let (u1, . . . , ur)
be any vectors in E such that fi = f (ui), for i =
1, . . . , r. If s : Im f ! E is the unique linear map de-
fined by s(fi) = ui, for i = 1, . . . , r, then f � s = id,
s is injective, and we have a direct sum

E = Ker f � Im s

as illustrated by the following diagram:

Ker f // E = Ker f � Im s
f
//

Im f ✓ F.
s
oo

As a consequence,

dim(E) = dim(Ker f )+dim(Im f ) = dim(Ker f )+rk(f ).

Remark: The dimension dim(Ker f ) of the kernel of a
linear map f is often called the nullity of f .

We now derive some important results using Theorem 4.6.
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Proposition 4.7. Given a vector space E, if U and
V are any two subspaces of E, then

dim(U) + dim(V ) = dim(U + V ) + dim(U \ V ),

an equation known as Grassmann’s relation.

The Grassmann relation can be very useful to figure out
whether two subspace have a nontrivial intersection in
spaces of dimension > 3.

For example, it is easy to see that in R5, there are sub-
spaces U and V with dim(U) = 3 and dim(V ) = 2 such
that U \ V = (0).

However, we can show that if dim(U) = 3 and dim(V ) =
3, then dim(U \ V ) � 1.

As another consequence of Proposition 4.7, if U and V
are two hyperplanes in a vector space of dimension n, so
that dim(U) = n � 1 and dim(V ) = n � 1, we have

dim(U \ V ) � n � 2,

and so, if U 6= V , then

dim(U \ V ) = n � 2.
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Proposition 4.8. If U1, . . . , Up are any subspaces of
a finite dimensional vector space E, then

dim(U1 + · · · + Up)  dim(U1) + · · · + dim(Up),

and

dim(U1 + · · · + Up) = dim(U1) + · · · + dim(Up)

i↵ the Uis form a direct sum U1 � · · · � Up.

Another important corollary of Theorem 4.6 is the fol-
lowing result:

Proposition 4.9. Let E and F be two vector spaces
with the same finite dimension dim(E) = dim(F ) =
n. For every linear map f : E ! F , the following
properties are equivalent:

(a) f is bijective.

(b) f is surjective.

(c) f is injective.

(d) Ker f = (0).
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One should be warned that Proposition 4.9 fails in infinite
dimension.

We also have the following basic proposition about injec-
tive or surjective linear maps.

Proposition 4.10. Let E and F be vector spaces, and
let f : E ! F be a linear map. If f : E ! F is
injective, then there is a surjective linear map r : F !
E called a retraction, such that r�f = idE. If f : E !
F is surjective, then there is an injective linear map
s : F ! E called a section, such that f � s = idF .

The notion of rank of a linear map or of a matrix impor-
tant, both theoretically and practically, since it is the key
to the solvability of linear equations.

Proposition 4.11. Given a linear map f : E ! F ,
the following properties hold:

(i) rk(f ) + dim(Ker f ) = dim(E).

(ii) rk(f )  min(dim(E), dim(F )).



186 CHAPTER 4. DIRECT SUMS, AFFINE MAPS

The rank of a matrix is defined as follows.

Definition 4.3. Given a m ⇥ n-matrix A = (ai j), the
rank rk(A) of the matrix A is the maximum number of
linearly independent columns of A (viewed as vectors in
Rm).

In view of Proposition 1.4, the rank of a matrix A is
the dimension of the subspace of Rm generated by the
columns of A.

Let E and F be two vector spaces, and let (u1, . . . , un) be
a basis of E, and (v1, . . . , vm) a basis of F . Let f : E !
F be a linear map, and let M(f ) be its matrix w.r.t. the
bases (u1, . . . , un) and (v1, . . . , vm).
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Since the rank rk(f ) of f is the dimension of Im f , which
is generated by (f (u1), . . . , f (un)), the rank of f is the
maximum number of linearly independent vectors in
(f (u1), . . . , f (un)), which is equal to the number of lin-
early independent columns of M(f ), since F and Rm are
isomorphic.

Thus, we have rk(f ) = rk(M(f )), for every matrix rep-
resenting f .

We will see later, using duality, that the rank of a ma-
trix A is also equal to the maximal number of linearly
independent rows of A.
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Figure 4.1: How did Newton start a business
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4.4 A�ne Maps

We showed in Section 1.6 that every linear map f must
send the zero vector to the zero vector, that is,

f (0) = 0.

Yet, for any fixed nonzero vector u 2 E (where E is any
vector space), the function tu given by

tu(x) = x + u, for all x 2 E

shows up in pratice (for example, in robotics).

Functions of this type are called translations . They are
not linear for u 6= 0, since tu(0) = 0 + u = u.

More generally, functions combining linear maps and trans-
lations occur naturally in many applications (robotics,
computer vision, etc.), so it is necessary to understand
some basic properties of these functions.
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For this, the notion of a�ne combination turns out to
play a key role.

Recall from Section 1.6 that for any vector space E, given
any family (ui)i2I of vectors ui 2 E, an a�ne combina-
tion of the family (ui)i2I is an expression of the form

X

i2I

�iui with
X

i2I

�i = 1,

where (�i)i2I is a family of scalars.

A linear combination places no restriction on the scalars
involved, but an a�ne combination is a linear combina-
tion, with the restriction that the scalars �i must add
up to 1. Nevertheless, a linear combination can always
be viewed as an a�ne combination, using 0 with the co-
e�cient 1 �

P
i2I �i.

A�ne combinations are also called barycentric combina-
tions .

Although this is not obvious at first glance, the condi-
tion that the scalars �i add up to 1 ensures that a�ne
combinations are preserved under translations.
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To make this precise, consider functions f : E ! F ,
where E and F are two vector spaces, such that there
is some linear map h : E ! F and some fixed vector
b 2 F (a translation vector ), such that

f (x) = h(x) + b, for all x 2 E.

The map f given by
✓

x1

x2

◆
7!

✓
8/5 �6/5
3/10 2/5

◆✓
x1

x2

◆
+

✓
1
1

◆

is an example of the composition of a linear map with a
translation.

We claim that functions of this type preserve a�ne com-
binations.
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Proposition 4.12. For any two vector spaces E and
F , given any function f : E ! F defined such that

f (x) = h(x) + b, for all x 2 E,

where h : E ! F is a linear map and b is some fixed
vector in F , for every a�ne combination

P
i2I �iui

(with
P

i2I �i = 1), we have

f

✓X

i2I

�iui

◆
=
X

i2I

�if (ui).

In other words, f preserves a�ne combinations.

Surprisingly, the converse of Proposition 4.12 also holds.
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Proposition 4.13. For any two vector spaces E and
F , let f : E ! F be any function that preserves a�ne
combinations, i.e., for every a�ne combinationP

i2I �iui (with
P

i2I �i = 1), we have

f

✓X

i2I

�iui

◆
=
X

i2I

�if (ui).

Then, for any a 2 E, the function h : E ! F given
by

h(x) = f (a + x) � f (a)

is a linear map independent of a, and

f (a + x) = f (a) + h(x), for all x 2 E.

In particular, for a = 0, if we let c = f (0), then

f (x) = h(x) + c, for all x 2 E.
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We should think of a as a chosen origin in E.

The function f maps the origin a in E to the origin f (a)
in F .

Proposition 4.13 shows that the definition of h does not
depend on the origin chosen in E. Also, since

f (x) = h(x) + c, for all x 2 E

for some fixed vector c 2 F , we see that f is the com-
position of the linear map h with the translation tc (in
F ).

The unique linear map h as above is called the linear
map associated with f and it is sometimes denoted by
�!
f .

Observe that the linear map associated with a pure trans-
lation is the identity.

In view of Propositions 4.12 and 4.13, it is natural to
make the following definition.
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Definition 4.4. For any two vector spaces E and F , a
function f : E ! F is an a�ne map if f preserves a�ne
combinations, i.e., for every a�ne combination

P
i2I �iui

(with
P

i2I �i = 1), we have

f

✓X

i2I

�iui

◆
=
X

i2I

�if (ui).

Equivalently, a function f : E ! F is an a�ne map if

there is some linear map h : E ! F (also denoted by
�!
f )

and some fixed vector c 2 F such that

f (x) = h(x) + c, for all x 2 E.

Note that a linear map always maps the standard origin
0 in E to the standard origin 0 in F .

However an a�ne map usually maps 0 to a nonzero vector
c = f (0). This is the “translation component” of the
a�ne map.
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When we deal with a�ne maps, it is often fruitful to think
of the elements of E and F not only as vectors but also
as points .

In this point of view, points can only be combined using
a�ne combinations , but vectors can be combined in an
unrestricted fashion using linear combinations.

We can also think of u + v as the result of translating
the point u by the translation tv.

These ideas lead to the definition of a�ne spaces , but
this would lead us too far afield, and for our purposes, it
is enough to stick to vector spaces.

Still, one should be aware that a�ne combinations really
apply to points, and that points are not vectors!

If E and F are finite dimensional vector spaces, with
dim(E) = n and dim(F ) = m, then it is useful to repre-
sent an a�ne map with respect to bases in E in F .



4.4. AFFINE MAPS 197

However, the translation part c of the a�ne map must be
somewhow incorporated.

There is a standard trick to do this which amounts to
viewing an a�ne map as a linear map between spaces of
dimension n + 1 and m + 1.

We also have the extra flexibility of choosing origins,
a 2 E and b 2 F .

Let (u1, . . . , un) be a basis of E, (v1, . . . , vm) be a basis
of F , and let a 2 E and b 2 F be any two fixed vectors
viewed as origins .

Our a�ne map f has the property that if v = f (u), then

v � b = f (a + u � a) � b = f (a) � b + h(u � a).

So, if we let y = v� b, x = u�a, and d = f (a)� b, then

y = h(x) + d, x 2 E.
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Over the basis U = (u1, . . . , un), we write

x = x1u1 + · · · + xnun,

and over the basis V = (v1, . . . , vm), we write

y = y1v1 + · · · + ymvm,

d = d1v1 + · · · + dmvm.

Then, since
y = h(x) + d,

if we let A be the m ⇥ n matrix representing the linear
map h, that is, the jth column of A consists of the coor-
dinates of h(uj) over the basis (v1, . . . , vm), then we can
write

yV = AxU + dV .

where xU = (x1, . . . , xn)>, yV = (y1, . . . , ym)>, and
dV = (d1, . . . , dm)>.

This is the matrix representation of our a�ne map f .
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The reason for using the origins a and b is that it gives
us more flexibility.

In particular, when E = F , if there is some a 2 E such
that f (a) = a (a is a fixed point of f ), then we can pick
b = a.

Then, because f (a) = a, we get

v = f (u) = f (a+u�a) = f (a)+h(u�a) = a+h(u�a),

that is
v � a = h(u � a).

With respect to the new origin a, if we define x and y by

x = u � a

y = v � a,

then we get
y = h(x).

Then, f really behaves like a linear map, but with respect
to the new origin a (not the standard origin 0). This is
the case of a rotation around an axis that does not pass
through the origin.
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Remark: A pair (a, (u1, . . . , un)) where (u1, . . . , un) is
a basis of E and a is an origin chosen in E is called an
a�ne frame .

We now describe the trick which allows us to incorporate
the translation part d into the matrix A.

We define the (m+1)⇥(n+1) matrix A0 obtained by first
adding d as the (n + 1)th column, and then (0, . . . , 0| {z }

n

, 1)

as the (m + 1)th row:

A0 =

✓
A d
0n 1

◆
.

Then, it is clear that
✓

y
1

◆
=

✓
A d
0n 1

◆✓
x
1

◆

i↵

y = Ax + d.
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This amounts to considering a point x 2 Rn as a point
(x, 1) in the (a�ne) hyperplane Hn+1 in Rn+1 of equa-
tion xn+1 = 1.

Then, an a�ne map is the restriction to the hyperplane
Hn+1 of the linear map bf from Rn+1 to Rm+1 corre-
sponding to the matrix A0, which maps Hn+1 into Hm+1

( bf (Hn+1) ✓ Hm+1).

Figure 4.2 illustrates this process for n = 2.

x1

x2

x3

(x1, x2, 1)

H3 : x3 = 1

x = (x1, x2)

Figure 4.2: Viewing Rn as a hyperplane in Rn+1 (n = 2)
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For example, the map
✓

x1

x2

◆
7!

✓
1 1
1 3

◆✓
x1

x2

◆
+

✓
3
0

◆

defines an a�ne map f which is represented in R3 by
0

@
x1

x2

1

1

A 7!

0

@
1 1 3
1 3 0
0 0 1

1

A

0

@
x1

x2

1

1

A .

It is easy to check that the point a = (6, �3) is fixed
by f , which means that f (a) = a, so by translating the
coordinate frame to the origin a, the a�ne map behaves
like a linear map.

The idea of considering Rn as an hyperplane in Rn+1 can
be used to define projective maps .



4.4. AFFINE MAPS 203

Al\ cal<) have +,ov( lejs.
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Figure 4.3: Dog Logic
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