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Chapter 1

Vector Spaces, Bases, Linear Maps

1.1 Motivations: Linear Combinations, Linear Inde-
pendence and Rank

Consider the problem of solving the following system of
three linear equations in the three variables
x1, x2, x3 2 R:

x1 + 2x2 � x3 = 1

2x1 + x2 + x3 = 2

x1 � 2x2 � 2x3 = 3.

One way to approach this problem is introduce some
“column vectors.”

11



12 CHAPTER 1. VECTOR SPACES, BASES, LINEAR MAPS

Let u, v, w, and b, be the vectors given by

u =

0

@
1
2
1

1

A v =

0

@
2
1

�2

1

A w =

0

@
�1
1

�2

1

A b =

0

@
1
2
3

1

A

and write our linear system as

x1u + x2v + x3w = b.

In the above equation, we used implicitly the fact that a
vector z can be multiplied by a scalar � 2 R, where

�z = �

0

@
z1

z2

z3

1

A =

0

@
�z1

�z2

�z3

1

A ,

and two vectors y and and z can be added, where

y + z =

0

@
y1

y2

y3

1

A +

0

@
z1

z2

z3

1

A =

0

@
y1 + z1

y2 + z2

y3 + z3

1

A .
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The set of all vectors with three components is denoted
by R3⇥1.

The reason for using the notation R3⇥1 rather than the
more conventional notation R3 is that the elements of
R3⇥1 are column vectors ; they consist of three rows and
a single column, which explains the superscript 3 ⇥ 1.

On the other hand, R3 = R⇥R⇥R consists of all triples
of the form (x1, x2, x3), with x1, x2, x3 2 R, and these
are row vectors .

For the sake of clarity, in this introduction, we will denote
the set of column vectors with n components by Rn⇥1.

An expression such as

x1u + x2v + x3w

where u, v, w are vectors and the xis are scalars (in R) is
called a linear combination .
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Using this notion, the problem of solving our linear sys-
tem

x1u + x2v + x3w = b

is equivalent to

determining whether b can be expressed as a linear
combination of u, v, w.

Now, if the vectors u, v, w are linearly independent ,
which means that there is no triple (x1, x2, x3) 6= (0, 0, 0)
such that

x1u + x2v + x3w = 03,

it can be shown that every vector in R3⇥1 can be written
as a linear combination of u, v, w.

Here, 03 is the zero vector

03 =

0

@
0
0
0

1

A .
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It is customary to abuse notation and to write 0 instead
of 03. This rarely causes a problem because in most cases,
whether 0 denotes the scalar zero or the zero vector can
be inferred from the context.

In fact, every vector z 2 R3⇥1 can be written in a unique
way as a linear combination

z = x1u + x2v + x3w.

Then, our equation

x1u + x2v + x3w = b

has a unique solution , and indeed, we can check that

x1 = 1.4

x2 = �0.4

x3 = �0.4

is the solution.

But then, how do we determine that some vectors are
linearly independent?

One answer is to compute the determinant det(u, v, w),
and to check that it is nonzero.
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In our case,

det(u, v, w) =

������

1 2 �1
2 1 1
1 �2 �2

������
= 15,

which confirms that u, v, w are linearly independent.

Other methods consist of computing an LU-decomposition
or a QR-decomposition, or an SVD of the matrix con-
sisting of the three columns u, v, w,

A =
�
u v w

�
=

0

@
1 2 �1
2 1 1
1 �2 �2

1

A .

If we form the vector of unknowns

x =

0

@
x1

x2

x3

1

A ,

then our linear combination x1u + x2v + x3w can be
written in matrix form as
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x1u + x2v + x3w =

0

@
1 2 �1
2 1 1
1 �2 �2

1

A

0

@
x1

x2

x3

1

A .

So, our linear system is expressed by
0

@
1 2 �1
2 1 1
1 �2 �2

1

A

0

@
x1

x2

x3

1

A =

0

@
1
2
3

1

A ,

or more concisely as

Ax = b.

Now, what if the vectors u, v, w are
linearly dependent?
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For example, if we consider the vectors

u =

0

@
1
2
1

1

A v =

0

@
2
1

�1

1

A w =

0

@
�1
1
2

1

A ,

we see that
u � v = w,

a nontrivial linear dependence .

It can be verified that u and v are still linearly indepen-
dent.

Now, for our problem

x1u + x2v + x3w = b

to have a solution, it must be the case that b can be
expressed as linear combination of u and v.

However, it turns out that u, v, b are linearly independent
(because det(u, v, b) = �6), so b cannot be expressed as
a linear combination of u and v and thus, our system has
no solution.
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If we change the vector b to

b =

0

@
3
3
0

1

A ,

then
b = u + v,

and so the system

x1u + x2v + x3w = b

has the solution

x1 = 1, x2 = 1, x3 = 0.

Actually, since w = u�v, the above system is equivalent
to

(x1 + x3)u + (x2 � x3)v = b,

and because u and v are linearly independent, the unique
solution in x1 + x3 and x2 � x3 is

x1 + x3 = 1

x2 � x3 = 1,

which yields an infinite number of solutions parameter-
ized by x3, namely

x1 = 1 � x3

x2 = 1 + x3.
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In summary, a 3 ⇥ 3 linear system may have a unique
solution, no solution, or an infinite number of solutions,
depending on the linear independence (and dependence)
or the vectors u, v, w, b.

This situation can be generalized to any n⇥n system, and
even to any n ⇥ m system (n equations in m variables),
as we will see later.

The point of view where our linear system is expressed
in matrix form as Ax = b stresses the fact that the map
x 7! Ax is a linear transformation .

This means that

A(�x) = �(Ax)

for all x 2 R3⇥1 and all � 2 R, and that

A(u + v) = Au + Av,

for all u, v 2 R3⇥1.



1.1. MOTIVATIONS: LINEAR COMBINATIONS, LINEAR INDEPENDENCE, RANK21

I'lr- ONL"( Hl::, c.oULQ IN 
ABs-H2.A'-'\ -"{"f::.RlV\s.'"  Reproduced by special permission 01 Playboy Ma\ 

Copyright © January 1970 by Playboy. 

Figure 1.1: The power of abstraction
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We can view the matrix A as a way of expressing a linear
map from R3⇥1 to R3⇥1 and solving the system Ax = b
amounts to determining whether b belongs to the image
(or range) of this linear map.

Yet another fruitful way of interpreting the resolution of
the system Ax = b is to view this problem as an
intersection problem .

Indeed, each of the equations

x1 + 2x2 � x3 = 1

2x1 + x2 + x3 = 2

x1 � 2x2 � 2x3 = 3

defines a subset of R3 which is actually a plane .
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The first equation

x1 + 2x2 � x3 = 1

defines the plane H1 passing through the three points
(1, 0, 0), (0, 1/2, 0), (0, 0, �1), on the coordinate axes, the
second equation

2x1 + x2 + x3 = 2

defines the plane H2 passing through the three points
(1, 0, 0), (0, 2, 0), (0, 0, 2), on the coordinate axes, and the
third equation

x1 � 2x2 � 2x3 = 3

defines the plane H3 passing through the three points
(3, 0, 0), (0, �3/2, 0), (0, 0, �3/2), on the coordinate axes.

The intersection Hi \ Hj of any two distinct planes Hi

and Hj is a line, and the intersection H1 \H2 \H3 of the
three planes consists of the single point (1.4, �0.4, �0.4).
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Under this interpretation, observe that we are focusing
on the rows of the matrix A, rather than on its columns ,
as in the previous interpretations.

£lrJSTE/N'S 
,_F/RS, 

Figure 1.2: Linear Equations
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Another great example of a real-world problem where lin-
ear algebra proves to be very e↵ective is the problem of
data compression, that is, of representing a very large
data set using a much smaller amount of storage.

Typically the data set is represented as an m ⇥ n matrix
A where each row corresponds to an n-dimensional data
point and typically, m � n.

In most applications, the data are not independent so
the rank of A is a lot smaller than min{m, n}, and the
the goal of low-rank decomposition is to factor A as the
product of two matrices B and C, where B is a m ⇥ k
matrix and C is a k ⇥ n matrix, with k ⌧ min{m, n}
(here, ⌧ means “much smaller than”):
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0

BBBBBBBB@

A
m ⇥ n

1

CCCCCCCCA

=

0

BBBBBBBB@

B
m ⇥ k

1

CCCCCCCCA

0

@ C
k ⇥ n

1

A

Now, it is generally too costly to find an exact factoriza-
tion as above, so we look for a low-rank matrix A0 which
is a “good” approximation of A.

In order to make this statement precise, we need to define
a mechanism to determine how close two matrices are.
This can be done usingmatrix norms , a notion discussed
in Chapter 7.

The norm of a matrix A is a nonnegative real number
kAk which behaves a lot like the absolute value |x| of a
real number x.
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Then, our goal is to find some low-rank matrix A0 that
minimizes the norm

kA � A0k2 ,

over all matrices A0 of rank at most k, for some given
k ⌧ min{m, n}.

Some advantages of a low-rank approximation are:

1. Fewer elements are required to represent A; namely,
k(m+ n) instead of mn. Thus less storage and fewer
operations are needed to reconstruct A.

2. Often, the process for obtaining the decomposition
exposes the underlying structure of the data. Thus, it
may turn out that “most” of the significant data are
concentrated along some directions called principal
directions .
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Low-rank decompositions of a set of data have a multi-
tude of applications in engineering, including computer
science (especially computer vision), statistics, and ma-
chine learning.

As we will see later in Chapter 17, the singular value de-
composition (SVD) provides a very satisfactory solution
to the low-rank approximation problem.

Still, in many cases, the data sets are so large that another
ingredient is needed: randomization . However, as a first
step, linear algebra often yields a good initial solution.

We will now be more precise as to what kinds of opera-
tions are allowed on vectors.

In the early 1900, the notion of a vector space emerged
as a convenient and unifying framework for working with
“linear” objects.
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1.2 Vector Spaces

A (real) vector space is a set E together with two op-
erations, +: E ⇥ E ! E and · : R ⇥ E ! E, called
addition and scalar multiplication, that satisfy some
simple properties.

First of all, E under addition has to be a commutative
(or abelian) group, a notion that we review next.

However, keep in mind that vector spaces are not just
algebraic objects; they are also geometric objects.
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Definition 1.1. A group is a set G equipped with a bi-
nary operation · : G⇥G ! G that associates an element
a · b 2 G to every pair of elements a, b 2 G, and having
the following properties: · is associative , has an identity
element e 2 G, and every element in G is invertible
(w.r.t. ·).

More explicitly, this means that the following equations
hold for all a, b, c 2 G:

(G1) a · (b · c) = (a · b) · c. (associativity);

(G2) a · e = e · a = a. (identity);

(G3) For every a 2 G, there is some a�1 2 G such that
a · a�1 = a�1 · a = e (inverse).

A group G is abelian (or commutative) if

a · b = b · a

for all a, b 2 G.

A set M together with an operation · : M ⇥M ! M and
an element e satisfying only conditions (G1) and (G2) is
called a monoid .
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For example, the set N = {0, 1, . . . , n, . . .} of natu-
ral numbers is a (commutative) monoid under addition.
However, it is not a group.

Example 1.1.

1. The set Z = {. . . , �n, . . . ,�1, 0, 1, . . . , n, . . .} of
integers is a group under addition, with identity ele-
ment 0. However, Z⇤ = Z� {0} is not a group under
multiplication.

2. The set Q of rational numbers (fractions p/q with
p, q 2 Z and q 6= 0) is a group under addition, with
identity element 0. The set Q⇤ = Q � {0} is also a
group under multiplication, with identity element 1.

3. Similarly, the sets R of real numbers and C of com-
plex numbers are groups under addition (with iden-
tity element 0), and R⇤ = R�{0} and C⇤ = C�{0}
are groups under multiplication (with identity element
1).
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4. The sets Rn and Cn of n-tuples of real or complex
numbers are groups under componentwise addition:

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn),

with identity element (0, . . . , 0). All these groups are
abelian.

5. Given any nonempty set S, the set of bijections
f : S ! S, also called permutations of S, is a group
under function composition (i.e., the multiplication
of f and g is the composition g � f ), with identity
element the identity function idS. This group is not
abelian as soon as S has more than two elements.

6. The set of n ⇥ n matrices with real (or complex) co-
e�cients is a group under addition of matrices, with
identity element the null matrix. It is denoted by
Mn(R) (or Mn(C)).

7. The set R[X ] of all polynomials in one variable with
real coe�cients is a group under addition of polyno-
mials.
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8. The set of n ⇥ n invertible matrices with real (or
complex) coe�cients is a group under matrix mul-
tiplication, with identity element the identity matrix
In. This group is called the general linear group and
is usually denoted by GL(n,R) (or GL(n,C)).

9. The set of n⇥n invertible matrices with real (or com-
plex) coe�cients and determinant +1 is a group un-
der matrix multiplication, with identity element the
identity matrix In. This group is called the special
linear group and is usually denoted by SL(n,R) (or
SL(n,C)).

10. The set of n ⇥ n invertible matrices with real coe�-
cients such that RR> = In and of determinant +1 is a
group called the special orthogonal group and is usu-
ally denoted by SO(n) (where R> is the transpose
of the matrix R, i.e., the rows of R> are the columns
of R). It corresponds to the rotations in Rn.
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11. Given an open interval (a, b), the set C((a, b)) of con-
tinuous functions f : (a, b) ! R is a group under the
operation f + g defined such that

(f + g)(x) = f (x) + g(x)

for all x 2 (a, b).

It is customary to denote the operation of an abelian
group G by +, in which case the inverse a�1 of an element
a 2 G is denoted by �a.

Vector spaces are defined as follows.
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Definition 1.2. A real vector space is a set E (of vec-
tors) together with two operations +: E⇥E ! E (called
vector addition)1 and · : R ⇥ E ! E (called scalar
multiplication) satisfying the following conditions for all
↵, � 2 R and all u, v 2 E;

(V0) E is an abelian group w.r.t. +, with identity element
0;2

(V1) ↵ · (u + v) = (↵ · u) + (↵ · v);

(V2) (↵ + �) · u = (↵ · u) + (� · u);

(V3) (↵ ⇤ �) · u = ↵ · (� · u);

(V4) 1 · u = u.

In (V3), ⇤ denotes multiplication in R.

Given ↵ 2 R and v 2 E, the element ↵ ·v is also denoted
by ↵v. The field R is often called the field of scalars.

In definition 1.2, the field R may be replaced by the field
of complex numbers C, in which case we have a complex
vector space.

1The symbol + is overloaded, since it denotes both addition in the field R and addition of vectors in E.
It is usually clear from the context which + is intended.

2The symbol 0 is also overloaded, since it represents both the zero in R (a scalar) and the identity element
of E (the zero vector). Confusion rarely arises, but one may prefer using 0 for the zero vector.
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It is even possible to replace R by the field of rational
numbers Q or by any other field K (for example Z/pZ,
where p is a prime number), in which case we have a
K-vector space (in (V3), ⇤ denotes multiplication in the
field K).

In most cases, the field K will be the field R of reals.

From (V0), a vector space always contains the null vector
0, and thus is nonempty.

From (V1), we get ↵ · 0 = 0, and ↵ · (�v) = �(↵ · v).

From (V2), we get 0 · v = 0, and (�↵) · v = �(↵ · v).

Another important consequence of the axioms is the fol-
lowing fact: For any u 2 E and any � 2 R, if � 6= 0 and
� · u = 0, then u = 0.

The field R itself can be viewed as a vector space over
itself, addition of vectors being addition in the field, and
multiplication by a scalar being multiplication in the field.
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Example 1.2.

1. The fields R and C are vector spaces over R.
2. The groups Rn and Cn are vector spaces over R, and
Cn is a vector space over C.

3. The ring R[X ]n of polynomials of degree at most n
with real coe�cients is a vector space over R, and the
ring C[X ]n of polynomials of degree at most n with
complex coe�cients is a vector space over C.

4. The ring R[X ] of all polynomials with real coe�cients
is a vector space over R, and the ring C[X ] of all
polynomials with complex coe�cients is a vector space
over C.

5. The ring of n ⇥ n matrices Mn(R) is a vector space
over R.

6. The ring of m⇥n matrices Mm,n(R) is a vector space
over R.

7. The ring C((a, b)) of continuous functions f : (a, b) !
R is a vector space over R.
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Let E be a vector space. We would like to define the
important notions of linear combination and linear inde-
pendence.

These notions can be defined for sets of vectors in E, but
it will turn out to be more convenient to define them for
families (vi)i2I , where I is any arbitrary index set.
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1.3 Linear Independence, Subspaces

One of the most useful properties of vector spaces is that
there possess bases.

What this means is that in every vector space, E, there is
some set of vectors, {e1, . . . , en}, such that every vector
v 2 E can be written as a linear combination,

v = �1e1 + · · · + �nen,

of the ei, for some scalars, �1, . . . , �n 2 R.

Furthermore, the n-tuple, (�1, . . . , �n), as above is unique .

This description is fine when E has a finite basis,
{e1, . . . , en}, but this is not always the case!

For example, the vector space of real polynomials, R[X ],
does not have a finite basis but instead it has an infinite
basis, namely

1, X, X2, . . . , Xn, . . .
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For simplicity, in this chapter, we will restrict our atten-
tion to vector spaces that have a finite basis (we say that
they are finite-dimensional).

Given a set A, an I-indexed family (ai)i2I of elements
of A (for short, a family) is simply a function a : I ! A,
or equivalently a set of pairs {(i, ai) | i 2 I}.

We agree that when I = ;, (ai)i2I = ;. A family (ai)i2I

is finite if I is finite.

Remark: When considering a family (ai)i2I , there is no
reason to assume that I is ordered.

The crucial point is that every element of the family is
uniquely indexed by an element of I .

Thus, unless specified otherwise, we do not assume that
the elements of an index set are ordered.
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Given a family (ui)i2I and any element v, we denote by

(ui)i2I [k (v)

the family (wi)i2I[{k} defined such that, wi = ui if i 2 I ,
and wk = v, where k is any index such that k /2 I .

Given a family (ui)i2I , a subfamily of (ui)i2I is a family
(uj)j2J where J is any subset of I .

In this chapter, unless specified otherwise, it is assumed
that all families of scalars are finite (i.e., their index set
is finite).
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Definition 1.3. Let E be a vector space. A vector
v 2 E is a linear combination of a family (ui)i2I of
elements of E i↵ there is a family (�i)i2I of scalars in R
such that

v =
X

i2I

�iui.

When I = ;, we stipulate that v = 0.

We say that a family (ui)i2I is linearly independent i↵
for every family (�i)i2I of scalars in R,

X

i2I

�iui = 0 implies that �i = 0 for all i 2 I.

Equivalently, a family (ui)i2I is linearly dependent i↵
there is some family (�i)i2I of scalars in R such that

X

i2I

�iui = 0 and �j 6= 0 for some j 2 I.

We agree that when I = ;, the family ; is linearly inde-
pendent.

A family (ui)i2I is linearly independent i↵ either I = ;,
or I consists of a single element i and ui 6= 0, or |I| � 2
and no vector uj in the family can be expressed as a linear
combination of the other vectors in the family.
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A family (ui)i2I is linearly dependent i↵ either I consists
of a single element, say i, and ui = 0, or |I| � 2 and some
uj in the family can be expressed as a linear combination
of the other vectors in the family.

When I is nonempty, if the family (ui)i2I is linearly in-
dependent, then ui 6= 0 for all i 2 I . Furthermore, if
|I| � 2, then ui 6= uj for all i, j 2 I with i 6= j.

Example 1.3.

1. Any two distinct scalars �, µ 6= 0 in R are linearly
dependent.

2. In R3, the vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) are
linearly independent.

3. In R4, the vectors (1, 1, 1, 1), (0, 1, 1, 1), (0, 0, 1, 1),
and (0, 0, 0, 1) are linearly independent.

4. InR2, the vectors u = (1, 1), v = (0, 1) andw = (2, 3)
are linearly dependent, since

w = 2u + v.
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When I is finite, we often assume that it is the set I =
{1, 2, . . . , n}. In this case, we denote the family (ui)i2I

as (u1, . . . , un).

The notion of a subspace of a vector space is defined as
follows.

Definition 1.4.Given a vector space E, a subset F of E
is a linear subspace (or subspace) of E i↵ F is nonempty
and �u + µv 2 F for all u, v 2 F , and all �, µ 2 R.

It is easy to see that a subspace F of E is indeed a vector
space.

It is also easy to see that any intersection of subspaces
is a subspace.

Every subspace contains the vector 0.

For any nonempty finite index set I , one can show by
induction on the cardinality of I that if (ui)i2I is any
family of vectors ui 2 F and (�i)i2I is any family of
scalars, then

P
i2I �iui 2 F .
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The subspace {0} will be denoted by (0), or even 0 (with
a mild abuse of notation).

Example 1.4.

1. In R2, the set of vectors u = (x, y) such that

x + y = 0

is a subspace.

2. In R3, the set of vectors u = (x, y, z) such that

x + y + z = 0

is a subspace.

3. For any n � 0, the set of polynomials f (X) 2 R[X ]
of degree at most n is a subspace of R[X ].

4. The set of upper triangular n ⇥ n matrices is a sub-
space of the space of n ⇥ n matrices.

Proposition 1.1. Given any vector space E, if S is
any nonempty subset of E, then the smallest subspace
hSi (or Span(S)) of E containing S is the set of all
(finite) linear combinations of elements from S.
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One might wonder what happens if we add extra condi-
tions to the coe�cients involved in forming linear combi-
nations.

Here are three natural restrictions which turn out to be
important (as usual, we assume that our index sets are
finite):

(1) Consider combinations
P

i2I �iui for which
X

i2I

�i = 1.

These are called a�ne combinations .

One should realize that every linear combinationP
i2I �iui can be viewed as an a�ne combination.

However, we get new spaces. For example, in R3,
the set of all a�ne combinations of the three vectors
e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1), is the
plane passing through these three points.

Since it does not contain 0 = (0, 0, 0), it is not a linear
subspace.
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(2) Consider combinations
P

i2I �iui for which

�i � 0, for all i 2 I.

These are called positive (or conic) combinations .

It turns out that positive combinations of families of
vectors are cones . They show up naturally in convex
optimization.

(3) Consider combinations
P

i2I �iui for which we require
(1) and (2), that is

X

i2I

�i = 1, and �i � 0 for all i 2 I.

These are called convex combinations .

Given any finite family of vectors, the set of all convex
combinations of these vectors is a convex polyhedron .

Convex polyhedra play a very important role in
convex optimization .
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----
,- I 

Figure 1.3: The right Tech
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1.4 Bases of a Vector Space

Definition 1.5. Given a vector space E and a subspace
V of E, a family (vi)i2I of vectors vi 2 V spans V or
generates V i↵ for every v 2 V , there is some family
(�i)i2I of scalars in R such that

v =
X

i2I

�ivi.

We also say that the elements of (vi)i2I are generators
of V and that V is spanned by (vi)i2I , or generated by
(vi)i2I .

If a subspace V of E is generated by a finite family (vi)i2I ,
we say that V is finitely generated .

A family (ui)i2I that spans V and is linearly independent
is called a basis of V .
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Example 1.5.

1. In R3, the vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) form
a basis.

2. The vectors (1, 1, 1, 1), (1, 1, �1, �1), (1, �1, 0, 0),
(0, 0, 1, �1) form a basis of R4 known as the Haar
basis . This basis and its generalization to dimension
2n are crucial in wavelet theory.

3. In the subspace of polynomials in R[X ] of degree at
most n, the polynomials 1, X, X2, . . . , Xn form a ba-
sis.

4. The Bernstein polynomials

✓
n
k

◆
(1 � X)n�kXk for

k = 0, . . . , n, also form a basis of that space. These
polynomials play a major role in the theory of spline
curves .

It is a standard result of linear algebra that every vector
space E has a basis, and that for any two bases (ui)i2I

and (vj)j2J , I and J have the same cardinality.

In particular, if E has a finite basis of n elements, every
basis of E has n elements, and the integer n is called the
dimension of the vector space E.
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We begin with a crucial lemma.

Lemma 1.2.Given a linearly independent family (ui)i2I

of elements of a vector space E, if v 2 E is not a lin-
ear combination of (ui)i2I, then the family (ui)i2I[k(v)
obtained by adding v to the family (ui)i2I is linearly
independent (where k /2 I).

The next theorem holds in general, but the proof is more
sophisticated for vector spaces that do not have a finite
set of generators.

Theorem 1.3. Given any finite family S = (ui)i2I

generating a vector space E and any linearly indepen-
dent subfamily L = (uj)j2J of S (where J ✓ I), there
is a basis B of E such that L ✓ B ✓ S.

Let (vi)i2I be a family of vectors in E. We say that
(vi)i2I a maximal linearly independent family of E if it
is linearly independent, and if for any vector w 2 E, the
family (vi)i2I [k {w} obtained by adding w to the family
(vi)i2I is linearly dependent.
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We say that (vi)i2I a minimal generating family of E
if it spans E, and if for any index p 2 I , the fam-
ily (vi)i2I�{p} obtained by removing vp from the family
(vi)i2I does not span E.

The following proposition giving useful properties char-
acterizing a basis is an immediate consequence of Lemma
1.2.

Proposition 1.4. Given a vector space E, for any
family B = (vi)i2I of vectors of E, the following prop-
erties are equivalent:

(1) B is a basis of E.

(2) B is a maximal linearly independent family of E.

(3) B is a minimal generating family of E.

The following replacement lemma due to Steinitz shows
the relationship between finite linearly independent fam-
ilies and finite families of generators of a vector space.
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We begin with a version of the lemma which is a bit
informal, but easier to understand than the precise and
more formal formulation given in Proposition 1.6. The
technical di�culty has to do with the fact that some of
the indices need to be renamed.

Proposition 1.5. (Replacement lemma, version 1)
Given a vector space E, let (u1, . . . , um) be any finite
linearly independent family in E, and let (v1, . . . , vn)
be any finite family such that every ui is a linear com-
bination of (v1, . . . , vn). Then, we must have m  n,
and there is a replacement of m of the vectors vj by
(u1, . . . , um), such that after renaming some of the in-
dices of the vs, the families (u1, . . . , um, vm+1, . . . , vn)
and (v1, . . . , vn) generate the same subspace of E.

The idea is that m of the vectors vj can be replaced by
the linearly independent ui’s in such a way that the same
subspace is still generated.
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Proposition 1.6. (Replacement lemma, version 2)
Given a vector space E, let (ui)i2I be any finite lin-
early independent family in E, where |I| = m, and
let (vj)j2J be any finite family such that every ui is a
linear combination of (vj)j2J, where |J | = n. Then,
there exists a set L and an injection ⇢ : L ! J (a re-
labeling function) such that L \ I = ;, |L| = n � m,
and the families (ui)i2I [(v⇢(l))l2L and (vj)j2J generate
the same subspace of E. In particular, m  n.

The purpose of the function ⇢ : L ! J is to pick n�m el-
ements j1, . . . , jn�m of J and to relabel them l1, . . . , ln�m

in such a way that these new indices do not clash with the
indices in I ; this way, the vectors vj1, . . . , vjn�m who “sur-
vive” (i.e. are not replaced) are relabeled vl1, . . . , vln�m,
and the other m vectors vj with j 2 J � {j1, . . . , jn�m}
are replaced by the ui. The index set of this new family
is I [ L.
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Actually, one can prove that Proposition 1.6 implies The-
orem 1.3 when the vector space is finitely generated.

Putting Theorem 1.3 and Proposition 1.6 together, we
obtain the following fundamental theorem.

Theorem 1.7. Let E be a finitely generated vector
space. Any family (ui)i2I generating E contains a
subfamily (uj)j2J which is a basis of E. Any linearly
independent family (ui)i2I can be extended to a family
(uj)j2J which is a basis of E (with I ✓ J). Further-
more, for every two bases (ui)i2I and (vj)j2J of E, we
have |I| = |J | = n for some fixed integer n � 0.

Remark: Theorem 1.7 also holds for vector spaces that
are not finitely generated.

When E is not finitely generated, we say that E is of
infinite dimension .

The dimension of a finitely generated vector space E is
the common dimension n of all of its bases and is denoted
by dim(E).
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Clearly, if the field R itself is viewed as a vector space,
then every family (a) where a 2 R and a 6= 0 is a basis.
Thus dim(R) = 1.

Note that dim({0}) = 0.

If E is a vector space of dimension n � 1, for any sub-
space U of E,

if dim(U) = 1, then U is called a line ;

if dim(U) = 2, then U is called a plane ;

if dim(U) = n � 1, then U is called a hyperplane .

If dim(U) = k, then U is sometimes called a k-plane .

Let (ui)i2I be a basis of a vector space E.

For any vector v 2 E, since the family (ui)i2I generates
E, there is a family (�i)i2I of scalars in R, such that

v =
X

i2I

�iui.
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A very important fact is that the family (�i)i2I is unique.

Proposition 1.8. Given a vector space E, let (ui)i2I

be a family of vectors in E. Let v 2 E, and assume
that v =

P
i2I �iui. Then, the family (�i)i2I of scalars

such that v =
P

i2I �iui is unique i↵ (ui)i2I is linearly
independent.

If (ui)i2I is a basis of a vector space E, for any vector
v 2 E, if (xi)i2I is the unique family of scalars in R such
that

v =
X

i2I

xiui,

each xi is called the component (or coordinate) of index
i of v with respect to the basis (ui)i2I .

Many interesting mathematical structures are vector spaces.

A very important example is the set of linear maps be-
tween two vector spaces to be defined in the next section.
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Here is an example that will prepare us for the vector
space of linear maps.

Example 1.6. Let X be any nonempty set and let E
be a vector space. The set of all functions f : X ! E
can be made into a vector space as follows: Given any
two functions f : X ! E and g : X ! E, let
(f + g) : X ! E be defined such that

(f + g)(x) = f (x) + g(x)

for all x 2 X , and for every � 2 R, let �f : X ! E be
defined such that

(�f )(x) = �f (x)

for all x 2 X .

The axioms of a vector space are easily verified.
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Figure 1.4: Early Traveling
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1.5 Matrices

In Section 1.1 we introduced informally the notion of a
matrix.

In this section we define matrices precisely, and also in-
troduce some operations on matrices.

It turns out that matrices form a vector space equipped
with a multiplication operation which is associative, but
noncommutative.

We will explain in Section 2.1 how matrices can be used
to represent linear maps, defined in the next section.
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Definition 1.6. If K = R or K = C, an m⇥n-matrix
over K is a family (ai j)1im, 1jn of scalars in K, rep-
resented by an array

0

BB@

a1 1 a1 2 . . . a1 n

a2 1 a2 2 . . . a2 n
... ... . . . ...

am 1 am 2 . . . am n

1

CCA

In the special case where m = 1, we have a row vector ,
represented by

(a1 1 · · · a1 n)

and in the special case where n = 1, we have a column
vector , represented by

0

@
a1 1
...

am 1

1

A

In these last two cases, we usually omit the constant index
1 (first index in case of a row, second index in case of a
column).
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The set of all m ⇥ n-matrices is denoted by Mm,n(K) or
Mm,n.

An n⇥n-matrix is called a square matrix of dimension
n.

The set of all square matrices of dimension n is denoted
by Mn(K), or Mn.

Remark: As defined, a matrix A = (ai j)1im, 1jn

is a family , that is, a function from {1, 2, . . . , m} ⇥
{1, 2, . . . , n} to K.

As such, there is no reason to assume an ordering on the
indices. Thus, the matrix A can be represented in many
di↵erent ways as an array, by adopting di↵erent orders
for the rows or the columns.

However, it is customary (and usually convenient) to as-
sume the natural ordering on the sets {1, 2, . . . , m} and
{1, 2, . . . , n}, and to represent A as an array according
to this ordering of the rows and columns.
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We also define some operations on matrices as follows.

Definition 1.7. Given two m ⇥ n matrices A = (ai j)
and B = (bi j), we define their sum A+B as the matrix
C = (ci j) such that ci j = ai j + bi j; that is,

0

BB@

a1 1 a1 2 . . . a1 n

a2 1 a2 2 . . . a2 n
... ... . . . ...

am 1 am 2 . . . am n

1

CCA +

0

BB@

b1 1 b1 2 . . . b1 n

b2 1 b2 2 . . . b2 n
... ... . . . ...

bm 1 bm 2 . . . bm n

1

CCA

=

0

BB@

a1 1 + b1 1 a1 2 + b1 2 . . . a1 n + b1 n

a2 1 + b2 1 a2 2 + b2 2 . . . a2 n + b2 n
... ... . . . ...

am 1 + bm 1 am 2 + bm 2 . . . am n + bm n

1

CCA .

We define the matrix �A as the matrix (�ai j).

Given a scalar � 2 K, we define the matrix �A as the
matrix C = (ci j) such that ci j = �ai j; that is

�

0

BB@

a1 1 a1 2 . . . a1 n

a2 1 a2 2 . . . a2 n
... ... . . . ...

am 1 am 2 . . . am n

1

CCA =

0

BB@

�a1 1 �a1 2 . . . �a1 n

�a2 1 �a2 2 . . . �a2 n
... ... . . . ...

�am 1 �am 2 . . . �am n

1

CCA .
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Given an m⇥n matrices A = (ai k) and an n⇥p matrices
B = (bk j), we define their product AB as the m ⇥ p
matrix C = (ci j) such that

ci j =
nX

k=1

ai kbk j,

for 1  i  m, and 1  j  p. In the product AB = C
shown below

0

BB@

a1 1 a1 2 . . . a1 n

a2 1 a2 2 . . . a2 n
... ... . . . ...

am 1 am 2 . . . am n

1

CCA

0

BB@

b1 1 b1 2 . . . b1 p

b2 1 b2 2 . . . b2 p
... ... . . . ...

bn 1 bn 2 . . . bn p

1

CCA

=

0

BB@

c1 1 c1 2 . . . c1 p

c2 1 c2 2 . . . c2 p
... ... . . . ...

cm 1 cm 2 . . . cm p

1

CCA
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note that the entry of index i and j of the matrix AB ob-
tained by multiplying the matrices A and B can be iden-
tified with the product of the row matrix corresponding
to the i-th row of A with the column matrix corre-
sponding to the j-column of B:

(ai 1 · · · ai n)

0

@
b1 j
...

bn j

1

A =
nX

k=1

ai kbk j.

The square matrix In of dimension n containing 1 on
the diagonal and 0 everywhere else is called the identity
matrix . It is denoted by

In =

0

BB@

1 0 . . . 0
0 1 . . . 0
... ... . . . ...
0 0 . . . 1

1

CCA

Definition 1.8. Given an m ⇥ n matrix A = (ai j), its
transpose A> = (a>

j i), is the n ⇥ m-matrix such that
a>

j i = ai j, for all i, 1  i  m, and all j, 1  j  n.

The transpose of a matrix A is sometimes denoted by At,
or even by tA.
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Note that the transpose A> of a matrix A has the prop-
erty that the j-th row of A> is the j-th column of A.

In other words, transposition exchanges the rows and the
columns of a matrix.

The following observation will be useful later on when we
discuss the SVD. Given any m⇥n matrix A and any n⇥p
matrix B, if we denote the columns of A by A1, . . . , An

and the rows of B by B1, . . . , Bn, then we have

AB = A1B1 + · · · + AnBn.

For every square matrix A of dimension n, it is immedi-
ately verified that AIn = InA = A.

Definition 1.9. For any n ⇥ n square matrix A, if a
matrix B such that AB = BA = In exists, then it is
unique, and it is called the inverse of A. The matrix B
is also denoted by A�1. An invertible matrix is also called
a nonsingular matrix, and a matrix that is not invertible
is called a singular matrix.



1.5. MATRICES 67

Proposition 1.9. If a square matrix A 2 Mn(K) has
a left inverse, that is a matrix B such that BA =
In, or a right inverse, that is a matrix C such that
AC = In, then A is actually invertible. Furthermore,
B = A�1 and C = A�1.

If A and B are two n ⇥ n invertible matrices, then AB
is also invertible and (AB)�1 = B�1A�1.

An important criterion for a square matrix to be invert-
ible is stated next.

Proposition 1.10. A square matrix A 2 Mn(K) is
invertible i↵ its columns (A1, . . . , An) are linearly in-
dependent.

Another useful criterion for a square matrix to be in-
vertible is stated next.

Proposition 1.11. A square matrix A 2 Mn(K) is
invertible i↵ for any x 2 Kn, the equation Ax = 0
implies that x = 0.
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It is immediately verified that the set Mm,n(K) of m ⇥ n
matrices is a vector space under addition of matrices and
multiplication of a matrix by a scalar.

Consider the m ⇥ n-matrices Ei,j = (eh k), defined such
that ei j = 1, and eh k = 0, if h 6= i or k 6= j.

Here are the Eij matrices for m = 2 and n = 3:

E11 =

✓
1 0 0
0 0 0

◆
, E12 =

✓
0 1 0
0 0 0

◆
, E13 =

✓
0 0 1
0 0 0

◆

E21 =

✓
0 0 0
1 0 0

◆
, E22 =

✓
0 0 0
0 1 0

◆
, E23 =

✓
0 0 0
0 0 1

◆
.

It is clear that every matrix A = (ai j) 2 Mm,n(K) can
be written in a unique way as

A =
mX

i=1

nX

j=1

ai jEi,j.

Thus, the family (Ei,j)1im,1jn is a basis of the vector
space Mm,n(K), which has dimension mn.
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The properties listed in Proposition 1.12 are easily veri-
fied, although some of the computations are a bit tedious.
A more conceptual proof is given in Proposition 2.1.

Proposition 1.12.

(1) Given any matrices A 2 Mm,n(K), B 2 Mn,p(K),
and C 2 Mp,q(K), we have

(AB)C = A(BC);

that is, matrix multiplication is associative.

(2) Given any matrices A, B 2 Mm,n(K), and C, D 2
Mn,p(K), for all � 2 K, we have

(A + B)C = AC + BC

A(C + D) = AC + AD

(�A)C = �(AC)

A(�C) = �(AC),

so that matrix multiplication · : Mm,n(K)⇥Mn,p(K) !
Mm,p(K) is bilinear.
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The properties of Proposition 1.12 together with the fact
that AIn = InA = A for all square n ⇥ n matrices show
that Mn(K) is a ring with unit In (in fact, an associative
algebra).

This is a noncommutative ring with zero divisors, as shown
by the following Example.

Square matrices provide a natural example of a noncom-
mutative ring with zero divisors.

Example 1.7. For example, letting A, B be the 2 ⇥ 2-
matrices

A =

✓
1 0
0 0

◆
, B =

✓
0 0
1 0

◆
,

then

AB =

✓
1 0
0 0

◆✓
0 0
1 0

◆
=

✓
0 0
0 0

◆
,

and

BA =

✓
0 0
1 0

◆✓
1 0
0 0

◆
=

✓
0 0
1 0

◆
.

Thus AB 6= BA and AB = 0, even though both A, B 6=
0.
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1.6 Linear Maps

A function between two vector spaces that preserves the
vector space structure is called a homomorphism of vector
spaces, or linear map.

Linear maps formalize the concept of linearity of a func-
tion.

Keep in mind that linear maps, which are
transformations of space, are usually far more

important than the spaces themselves.

In the rest of this section, we assume that all vector spaces
are real vector spaces.
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Definition 1.10. Given two vector spaces E and F , a
linear map between E and F is a function f : E ! F
satisfying the following two conditions:

f (x + y) = f (x) + f (y) for all x, y 2 E;

f (�x) = �f (x) for all � 2 R, x 2 E.

Setting x = y = 0 in the first identity, we get f (0) = 0.

The basic property of linear maps is that they transform
linear combinations into linear combinations.

Given any finite family (ui)i2I of vectors in E, given any
family (�i)i2I of scalars in R, we have

f (
X

i2I

�iui) =
X

i2I

�if (ui).

The above identity is shown by induction on |I| using the
properties of Definition 1.10.
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Example 1.8.

1. The map f : R2 ! R2 defined such that

x0 = x � y

y0 = x + y

is a linear map.

2. For any vector space E, the identity map id : E ! E
given by

id(u) = u for all u 2 E

is a linear map. When we want to be more precise,
we write idE instead of id.

3. The map D : R[X ] ! R[X ] defined such that

D(f (X)) = f 0(X),

where f 0(X) is the derivative of the polynomial f (X),
is a linear map.

4. The map � : C([a, b]) ! R given by

�(f ) =

Z b

a
f (t)dt,

where C([a, b]) is the set of continuous functions de-
fined on the interval [a, b], is a linear map.



74 CHAPTER 1. VECTOR SPACES, BASES, LINEAR MAPS

Definition 1.11. Given a linear map f : E ! F , we
define its image (or range) Im f = f (E), as the set

Im f = {y 2 F | (9x 2 E)(y = f (x))},

and its Kernel (or nullspace) Ker f = f�1(0), as the set

Ker f = {x 2 E | f (x) = 0}.

Proposition 1.13. Given a linear map f : E ! F ,
the set Im f is a subspace of F and the set Ker f is a
subspace of E. The linear map f : E ! F is injective
i↵ Ker f = (0) (where (0) is the trivial subspace {0}).

Since by Proposition 1.13, the image Im f of a linear map
f is a subspace of F , we can define the rank rk(f ) of f
as the dimension of Im f .
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A fundamental property of bases in a vector space is that
they allow the definition of linear maps as unique homo-
morphic extensions, as shown in the following proposi-
tion.

Proposition 1.14. Given any two vector spaces E
and F , given any basis (ui)i2I of E, given any other
family of vectors (vi)i2I in F , there is a unique linear
map f : E ! F such that f (ui) = vi for all i 2 I.

Furthermore, f is injective i↵ (vi)i2I is linearly inde-
pendent, and f is surjective i↵ (vi)i2I generates F .

In the special case where E = Kn and F = Km, there
is another proof of Proposition 1.14 in terms of matrices
using Proposition 1.10.



76 CHAPTER 1. VECTOR SPACES, BASES, LINEAR MAPS

In this case, the vectors u1, . . . , un in Kn define an n⇥n
matrix U = (u1 · · · un) whose j-th column is uj and
the vectors v1, . . . , vn in Km define an m ⇥ n matrix
V = (v1 · · · vn) whose j-th column is vj.

If A is the matrix of the linear map f : Kn ! Km (with
respect to the canonical bases of Kn and Km) which must
satisfy the conditions f (uj) = vj for j = 1, . . . , n, then
we must have

Auj = vj, 1  j  n,

which is equivalent to

AU = V,

and since (u1, . . . , un) are linearly independent, they form
a basis of Kn, so by Proposition 1.10 the matrix U is
invertible and we deduce that A is determined by the
equation

A = V U�1.
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By the second part of Proposition 1.14, an injective lin-
ear map f : E ! F sends a basis (ui)i2I to a linearly
independent family (f (ui))i2I of F , which is also a basis
when f is bijective.

Also, when E and F have the same finite dimension n,
(ui)i2I is a basis of E, and f : E ! F is injective, then
(f (ui))i2I is a basis of F (by Proposition 1.4).

The following simple proposition is also useful.

Proposition 1.15. Given any two vector spaces E
and F , with F nontrivial, given any family (ui)i2I of
vectors in E, the following properties hold:

(1) The family (ui)i2I generates E i↵ for every family
of vectors (vi)i2I in F , there is at most one linear
map f : E ! F such that f (ui) = vi for all i 2 I.

(2) The family (ui)i2I is linearly independent i↵ for
every family of vectors (vi)i2I in F , there is some
linear map f : E ! F such that f (ui) = vi for all
i 2 I.
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Given vector spaces E, F , and G, and linear maps
f : E ! F and g : F ! G, it is easily verified that the
composition g � f : E ! G of f and g is a linear map.

Definition 1.12. A linear map f : E ! F is an iso-
morphism i↵ there is a linear map g : F ! E, such that

g � f = idE and f � g = idF . (⇤)

It is immediately verified that such a map g is unique.
The map g is called the inverse of f and it is also denoted
by f�1.

Proposition 1.14 shows that if F = Rn, then we get an
isomorphism between any vector space E of dimension
|J | = n and Rn.

One can verify that if f : E ! F is a bijective linear
map, then its inverse f�1 : F ! E is also a linear
map, and thus f is an isomorphism .
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Another useful corollary of Proposition 1.14 is this:

Proposition 1.16. Let E be a vector space of finite
dimension n � 1 and let f : E ! E be any linear
map. The following properties hold:

(1) If f has a left inverse g, that is, if g is a linear
map such that g�f = id, then f is an isomorphism
and f�1 = g.

(2) If f has a right inverse h, that is, if h is a linear
map such that f �h = id, then f is an isomorphism
and f�1 = h.

Definition 1.13. The set of all linear maps between
two vector spaces E and F is denoted by Hom(E, F ) or
by L(E;F ) (the notation L(E;F ) is usually reserved to
the set of continuous linear maps, where E and F are
normed vector spaces). When we wish to be more precise
and specify the field K over which the vector spaces E
and F are defined we write HomK(E, F ).
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The set Hom(E, F ) is a vector space under the operations
defined at the end of Section 1.1, namely

(f + g)(x) = f (x) + g(x)

for all x 2 E, and

(�f )(x) = �f (x)

for all x 2 E.

When E and F have finite dimensions, the vector space
Hom(E, F ) also has finite dimension, as we shall see
shortly.

Definition 1.14.When E = F , a linear map f : E !
E is also called an endomorphism . The space Hom(E, E)
is also denoted by End(E).
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It is also important to note that composition confers to
Hom(E, E) a ring structure.

Indeed, composition is an operation
� : Hom(E, E) ⇥ Hom(E, E) ! Hom(E, E), which is
associative and has an identity idE, and the distributivity
properties hold:

(g1 + g2) � f = g1 � f + g2 � f ;

g � (f1 + f2) = g � f1 + g � f2.

The ring Hom(E, E) is an example of a noncommutative
ring.

It is easily seen that the set of bijective linear maps
f : E ! E is a group under composition. Bijective linear
maps are also called automorphisms .

Definition 1.15. Bijective linear maps f : E ! E are
also called automorphisms . The group of automorphisms
of E is called the general linear group (of E), and it is
denoted by GL(E), or by Aut(E), or when E = Rn, by
GL(n,R), or even by GL(n).
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1.7 Linear Forms and the Dual Space

We already observed that the field K itself (K = R or
K = C) is a vector space (over itself).

The vector space Hom(E, K) of linear maps from E to
the field K, the linear forms , plays a particular role.

We take a quick look at the connection between E and
E⇤ = Hom(E, K), its dual space .

As we will see later, every linear map f : E ! F gives
rise to a linear map f> : F ⇤ ! E⇤, and it turns out that
in a suitable basis, the matrix of f> is the transpose of
the matrix of f .

Thus, the notion of dual space provides a conceptual ex-
planation of the phenomena associated with transposi-
tion.

But it does more, because it allows us to view subspaces
as solutions of sets of linear equations and vice-versa.
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Definition 1.16. Given a vector space E, the vector
space Hom(E, K) of linear maps from E to K is called
the dual space (or dual) of E. The space Hom(E, K) is
also denoted by E⇤, and the linear maps in E⇤ are called
the linear forms , or covectors . The dual space E⇤⇤ of
the space E⇤ is called the bidual of E.

As a matter of notation, linear forms f : E ! K will also
be denoted by starred symbol, such as u⇤, x⇤, etc.

IfE is a vector space of finite dimension n and (u1, . . . , un)
is a basis of E, for any linear form f ⇤ 2 E⇤, for every
x = x1u1 + · · · + xnun 2 E, by linearity we have

f ⇤(x) = f ⇤(u1)x1 + · · · + f ⇤(un)xn

= �1x1 + · · · + �nxn,

with �i = f ⇤(ui) 2 K for every i, 1  i  n.
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Thus, with respect to the basis (u1, . . . , un), the linear
form f ⇤ is represented by the row vector

(�1 · · · �n),

we have

f ⇤(x) =
�
�1 · · · �n

�
0

@
x1
...

xn

1

A ,

a linear combination of the coordinates of x, and we can
view the linear form f ⇤ as a linear equation .

If we decide to use a column vector of coe�cients

c =

0

@
c1
...
cn

1

A

instead of a row vector, then the linear form f ⇤ is defined
by

f ⇤(x) = c>x.

The above notation is often used in machine learning.
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Example 1.9. Given any di↵erentiable function
f : Rn ! R, by definition, for any x 2 Rn, the total
derivative dfx of f at x is the linear form dfx : Rn ! R
defined so that for all u = (u1, . . . , un) 2 Rn,

dfx(u) =

✓
@f

@x1
(x) · · · @f

@xn
(x)

◆0

@
u1
...

un

1

A =
nX

i=1

@f

@xi
(x)ui.

Example 1.10. Let C([0, 1]) be the vector space of con-
tinuous functions f : [0, 1] ! R. The map I : C([0, 1]) !
R given by

I(f ) =
Z 1

0
f (x)dx for any f 2 C([0, 1])

is a linear form (integration).
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Example 1.11. Consider the vector space Mn(R) of real
n⇥n matrices. Let tr : Mn(R) ! R be the function given
by

tr(A) = a11 + a22 + · · · + ann,

called the trace of A. It is a linear form.

Let s : Mn(R) ! R be the function given by

s(A) =
nX

i,j=1

aij,

where A = (aij). It is immediately verified that s is a
linear form.
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Given a vector space E and any basis (ui)i2I for E, we
can associate to each ui a linear form u⇤

i 2 E⇤, and the
u⇤

i have some remarkable properties.

Definition 1.17. Given a vector space E and any basis
(ui)i2I for E, by Proposition 1.14, for every i 2 I , there
is a unique linear form u⇤

i such that

u⇤
i (uj) =

⇢
1 if i = j
0 if i 6= j,

for every j 2 I . The linear form u⇤
i is called the coordi-

nate form of index i w.r.t. the basis (ui)i2I .
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Remark: Given an index set I , authors often define the
so called Kronecker symbol �i j, such that

�i j =

⇢
1 if i = j
0 if i 6= j,

for all i, j 2 I .

Then,
u⇤

i (uj) = �i j.

The reason for the terminology coordinate form is as
follows: If E has finite dimension and if (u1, . . . , un) is a
basis of E, for any vector

v = �1u1 + · · · + �nun,

we have

u⇤
i (v) = �i.

Therefore, u⇤
i is the linear function that returns the ith co-

ordinate of a vector expressed over the basis (u1, . . . , un).
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The following theorem shows that in finite-dimension, ev-
ery basis (u1, . . . , un) of a vector space E yields a basis
(u⇤

1, . . . , u
⇤
n) of the dual space E⇤, called a dual basis .

Theorem 1.17. (Existence of dual bases) Let E be a
vector space of dimension n. The following property
holds: For every basis (u1, . . . , un) of E, the family of
coordinate forms (u⇤

1, . . . , u
⇤
n) is a basis of E⇤ (called

the dual basis of (u1, . . . , un)).

In particular, Theorem 1.17 shows a finite-dimensional
vector space and its dual E⇤ have the same dimension.

We explained just after Definition 1.16 that if the space
E is finite-dimensional and has a finite basis (u1, . . . , un),
then a linear form f ⇤ : E ! K is represented by the row
vector of coe�cients

�
f ⇤(u1) · · · f ⇤(un)

�
. (1)
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The proof of Theorem 1.17 shows that over the dual basis
(u⇤

1, . . . , u
⇤
n) of E⇤, the linear form f ⇤ is represented by

the same coe�cients, but as the column vector
0

@
f ⇤(u1)

...
f ⇤(un)

1

A , (2)

which is the transpose of the row vector in (1).
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Figure 1.5: Hitting Power
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