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Chapter 1

Topology

1.1 Metric Spaces and Normed Vector Spaces

Most spaces that we consider have a topological structure
given by a metric or a norm, and we first review these
notions.

We begin with metric spaces.

Recall that R+ = {x 2 R | x � 0}.
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Definition 1.1. A metric space is a set E together
with a function d : E ⇥ E ! R+, called a metric, or
distance, assigning a nonnegative real number d(x, y)
to any two points x, y 2 E, and satisfying the follow-
ing conditions for all x, y, z 2 E:

(D1) d(x, y) = d(y, x). (symmetry)

(D2) d(x, y) � 0, and d(x, y) = 0 i↵ x = y. (positivity)

(D3) d(x, z)  d(x, y) + d(y, z). (triangle inequality)

Geometrically, condition (D3) expresses the fact that in
a triangle with vertices x, y, z, the length of any side is
bounded by the sum of the lengths of the other two sides.

From (D3), we immediately get

|d(x, y)� d(y, z)|  d(x, z).
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Let us give some examples of metric spaces. Recall that
the absolute value |x| of a real number x 2 R is defined
such that |x| = x if x � 0, |x| = �x if x < 0, and for a
complex number x = a + ib, by |x| =

p
a2 + b2.

Example 1.1.

1. Let E = R, and d(x, y) = |x � y|, the absolute
value of x�y. This is the so-called natural metric
on R.

2. Let E = Rn (or E = Cn). We have the Euclidean
metric

d2(x, y) =
�
|x1 � y1|

2 + · · · + |xn � yn|
2
�1
2 ,

the distance between the points (x1, . . . , xn) and
(y1, . . . , yn).

3. For every set E, we can define the discrete metric,
defined such that d(x, y) = 1 i↵ x 6= y, and
d(x, x) = 0.
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4. For any a, b 2 R such that a < b, we define the
following sets:

[a, b] = {x 2 R | a  x  b}, (closed interval)

(a, b) = {x 2 R | a < x < b}, (open interval)

[a, b) = {x 2 R | a  x < b}, (interval closed on
the left, open on the right)

(a, b] = {x 2 R | a < x  b}, (interval open on
the left, closed on the right)

Let E = [a, b], and d(x, y) = |x � y|. Then,
([a, b], d) is a metric space.
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We will need to define the notion of proximity in order to
define convergence of limits and continuity of functions.
For this, we introduce some standard “small neighbor-
hoods.”

Definition 1.2. Given a metric space E with metric
d, for every a 2 E, for every ⇢ 2 R, with ⇢ > 0, the
set

B(a, ⇢) = {x 2 E | d(a, x)  ⇢}

is called the closed ball of center a and radius ⇢, the
set

B0(a, ⇢) = {x 2 E | d(a, x) < ⇢}

is called the open ball of center a and radius ⇢, and
the set

S(a, ⇢) = {x 2 E | d(a, x) = ⇢}

is called the sphere of center a and radius ⇢. It should
be noted that ⇢ is finite (i.e., not +1). A subset X
of a metric space E is bounded if there is a closed ball
B(a, ⇢) such that X ✓ B(a, ⇢).

Clearly, B(a, ⇢) = B0(a, ⇢) [ S(a, ⇢).
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Example 1.2.

1. In E = R with the distance |x � y|, an open ball
of center a and radius ⇢ is the open interval (a �
⇢, a + ⇢).

2. In E = R2 with the Euclidean metric, an open ball
of center a and radius ⇢ is the set of points inside
the disk of center a and radius ⇢, excluding the
boundary points on the circle.

3. In E = R3 with the Euclidean metric, an open ball
of center a and radius ⇢ is the set of points inside
the sphere of center a and radius ⇢, excluding the
boundary points on the sphere.
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One should be aware that intuition can be misleading in
forming a geometric image of a closed (or open) ball.

For example, if d is the discrete metric, a closed ball of
center a and radius ⇢ < 1 consists only of its center a,
and a closed ball of center a and radius ⇢ � 1 consists of
the entire space!

� If E = [a, b], and d(x, y) = |x�y|, as in Example 1.1,
an open ball B0(a, ⇢), with ⇢ < b � a, is in fact the

interval [a, a + ⇢), which is closed on the left.

We now consider a very important special case of metric
spaces, normed vector spaces.
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Definition 1.3. Let E be a vector space over a field
K, where K is either the field R of reals, or the field
C of complex numbers. A norm on E is a function
k k : E ! R+, assigning a nonnegative real number
kuk to any vector u 2 E, and satisfying the following
conditions for all x, y 2 E:

(N1) kxk � 0, and kxk = 0 i↵ x = 0. (positivity)

(N2) k�xk = |�| kxk. (scaling)

(N3) kx + yk  kxk + kyk. (convexity inequality)

A vector space E together with a norm k k is called a
normed vector space.

From (N3), we easily get

|kxk � kyk|  kx� yk.
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Given a normed vector space E, if we define d such that

d(x, y) = kx� yk,

it is easily seen that d is a metric. Thus, every normed
vector space is immediately a metric space.

Note that the metric associated with a norm is invariant
under translation, that is,

d(x + u, y + u) = d(x, y).

For this reason, we can restrict ourselves to open or closed
balls of center 0.

Let us give some examples of normed vector spaces.
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Example 1.3.

1. Let E = R, and kxk = |x|, the absolute value of
x. The associated metric is |x� y|, as in Example
1.1.

2. Let E = Rn (or E = Cn). There are three standard
norms. For every (x1, . . . , xn) 2 E, we have the
norm kxk1, defined such that,

kxk1 = |x1| + · · · + |xn|,

we have the Euclidean norm kxk2, defined such
that,

kxk2 =
�
|x1|

2 + · · · + |xn|
2
�1
2 ,

and the sup-norm kxk1, defined such that,

kxk1 = max{|xi| | 1  i  n}.

Some work is required to show the convexity inequality
for the Euclidean norm, but this can be found in any
standard text.
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Note that the Euclidean distance is the distance associ-
ated with the Euclidean norm.

One should work out what are the open balls in R2 for
k k1 and k k1. The following proposition is easy to show.

Proposition 1.1. The following inequalities hold for
all x 2 Rn (or x 2 Cn):

kxk1  kxk1  nkxk1,

kxk1  kxk2 
p
nkxk1,

kxk2  kxk1 
p
nkxk2.

In a normed vector space, we define a closed ball or an
open ball of radius ⇢ as a closed ball or an open ball of
center 0. We may use the notation B(⇢) and B0(⇢).
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We will now define the crucial notions of open sets and
closed sets, and of a topological space.

Definition 1.4. Let E be a metric space with metric
d. A subset U ✓ E is an open set in E if either
U = ;, or for every a 2 U , there is some open ball
B0(a, ⇢) such that, B0(a, ⇢) ✓ U .1 A subset F ✓ E is
a closed set in E if its complement E � F is open in
E.

The set E itself is open, since for every a 2 E, every
open ball of center a is contained in E.

In E = Rn, given n intervals [ai, bi], with ai < bi, it is
easy to show that the open n-cube

{(x1, . . . , xn) 2 E | ai < xi < bi, 1  i  n}

is an open set.

1
Recall that ⇢ > 0.
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In fact, it is possible to find a metric for which such open
n-cubes are open balls!

Similarly, we can define the closed n-cube

{(x1, . . . , xn) 2 E | ai  xi  bi, 1  i  n},

which is a closed set.

The open sets satisfy some important properties that lead
to the definition of a topological space.
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Proposition 1.2.Given a metric space E with metric
d, the family O of all open sets defined in Definition
1.4 satisfies the following properties:

(O1) For every finite family (Ui)1in of sets Ui 2 O,
we have U1 \ · · ·\Un 2 O, i.e., O is closed under
finite intersections.

(O2) For every arbitrary family (Ui)i2I of sets Ui 2 O,
we have

S
i2I Ui 2 O, i.e., O is closed under arbi-

trary unions.

(O3) ; 2 O, and E 2 O, i.e., ; and E belong to O.

Furthermore, for any two distinct points a 6= b in E,
there exist two open sets Ua and Ub such that, a 2 Ua,
b 2 Ub, and Ua \ Ub = ;.
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The above proposition leads to the very general concept
of a topological space.

� One should be careful that, in general, the family of
open sets is not closed under infinite intersections.

For example, in R under the metric |x� y|, letting Un =
(�1/n, +1/n), each Un is open, but

T
n Un = {0}, which

is not open.
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1.2 Topological Spaces

Definition 1.5. Given a set E, a topology on E (or
a topological structure on E), is defined as a family
O of subsets of E called open sets, and satisfying the
following three properties:

(1) For every finite family (Ui)1in of sets Ui 2 O,
we have U1 \ · · ·\Un 2 O, i.e., O is closed under
finite intersections.

(2) For every arbitrary family (Ui)i2I of sets Ui 2 O,
we have

S
i2I Ui 2 O, i.e., O is closed under arbi-

trary unions.

(3) ; 2 O, and E 2 O, i.e., ; and E belong to O.

A set E together with a topology O on E is called a
topological space. Given a topological space (E,O), a
subset F of E is a closed set if F = E � U for some
open set U 2 O, i.e., F is the complement of some
open set.
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� It is possible that an open set is also a closed set.
For example, ; and E are both open and closed.

When a topological space contains a proper nonempty
subset U which is both open and closed, the space E
is said to be disconnected.

A topological space (E,O) is said to satisfy the
Hausdor↵ separation axiom (or T2-separation axiom)
if for any two distinct points a 6= b in E, there exist
two open sets Ua and Ub such that, a 2 Ua, b 2 Ub,
and Ua \ Ub = ;. When the T2-separation axiom is
satisfied, we also say that (E,O) is a Hausdor↵ space.

Sometimes, it is more convenient to define a topology in
terms of its closed sets .

As shown by Proposition 1.2, any metric space is a topo-
logical Hausdor↵ space, the family of open sets being in
fact the family of arbitrary unions of open balls.
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Similarly, any normed vector space is a topological Haus-
dor↵ space, the family of open sets being the family of
arbitrary unions of open balls. The topology O consist-
ing of all subsets of E is called the discrete topology .

Remark: Most (if not all) spaces used in analysis are
Hausdor↵ spaces. Intuitively, the Hausdor↵ separation
axiom says that there are enough “small” open sets.

Without this axiom, some counter-intuitive behaviors may
arise. For example, a sequence may have more than one
limit point (or a compact set may not be closed).

Nevertheless, non-Hausdor↵ topological spaces arise nat-
urally in algebraic geometry. In the Zariski topology , the
closed sets are the zero loci of sets of algebraic equations.
But even there, some substitute for separation is used.
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One of the reasons why topological spaces are important
is that the definition of a topology only involves a certain
family O of sets, and not how such family is generated
from a metric or a norm.

For example, di↵erent metrics or di↵erent norms can de-
fine the same family of open sets. Many topological prop-
erties only depend on the familyO and not on the specific
metric or norm.

But the fact that a topology is definable from a metric
or a norm is important, because it usually implies nice
properties of a space.

All our examples will be spaces whose topology is defined
by a metric or a norm.
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By taking complements, we can state properties of the
closed sets dual to those of Definition 1.5. Thus, ; and E
are closed sets, and the closed sets are closed under finite
unions and arbitrary intersections.

It is also worth noting that the Hausdor↵ separation ax-
iom implies that for every a 2 E, the set {a} is closed.

Given a topological space (E,O), given any subset A of
E, since E 2 O and E is a closed set, the family

CA = {F | A ✓ F, F a closed set}

of closed sets containing A is nonempty, and since any
arbitrary intersection of closed sets is a closed set, the in-
tersection

T
CA of the sets in the family CA is the smallest

closed set containing A.

By a similar reasoning, the union of all the open subsets
contained in A is the largest open set contained in A.
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Definition 1.6.Given a topological space (E,O), given
any subset A of E, the smallest closed set contain-
ing A is denoted by A, and is called the closure, or
adherence of A. A subset A of E is dense in E if
A = E. The largest open set contained in A is de-

noted by
�

A, and is called the interior of A. The set
FrA = A \E � A is called the boundary (or frontier)
of A. We also denote the boundary of A by @A.

Remark: The notation A for the closure of a subset A
of E is somewhat unfortunate, since A is often used to
denote the set complement of A in E.

Still, we prefer it to more cumbersome notations such
as clo(A), and we denote the complement of A in E by
E � A (or sometimes, Ac).
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By definition, it is clear that a subset A of E is closed i↵
A = A. The set Q of rationals is dense in R.

It is easily shown that A =
�

A [ @A and
�

A \ @A = ;. Another useful characterization of A is
given by the following proposition.

Proposition 1.3. Given a topological space (E,O),
given any subset A of E, the closure A of A is the
set of all points x 2 E such that for every open set U
containing x, then U \ A 6= ;.

Often, it is necessary to consider a subset A of a topolog-
ical space E, and to view the subset A as a topological
space. The following proposition shows how to define a
topology on a subset.
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Proposition 1.4. Given a topological space (E,O),
given any subset A of E, let

U = {U \ A | U 2 O}

be the family of all subsets of A obtained as the inter-
section of any open set in O with A. The following
properties hold.

(1) The space (A,U) is a topological space.

(2) If E is a metric space with metric d, then the re-
striction dA : A ⇥ A ! R+ of the metric d to A
defines a metric space. Furthermore, the topology
induced by the metric dA agrees with the topology
defined by U , as above.

Proposition 1.4 suggests the following definition.
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Definition 1.7.Given a topological space (E,O), given
any subset A of E, the subspace topology on A induced
by O is the family U of open sets defined such that

U = {U \ A | U 2 O}

is the family of all subsets of A obtained as the in-
tersection of any open set in O with A. We say that
(A,U) has the subspace topology. If (E, d) is a metric
space, the restriction dA : A ⇥ A ! R+ of the metric
d to A is called the subspace metric.

For example, if E = Rn and d is the Euclidean metric,
we obtain the subspace topology on the closed n-cube

{(x1, . . . , xn) 2 E | ai  xi  bi, 1  i  n}.

� One should realize that every open set U 2 O which
is entirely contained in A is also in the family U , but

U may contain open sets that are not in O.
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For example, if E = R with |x� y|, and A = [a, b], then
sets of the form [a, c), with a < c < b belong to U , but
they are not open sets for R under |x � y|. However,
there is agreement in the following situation.

Proposition 1.5. Given a topological space (E,O),
given any subset A of E, if U is the subspace topology,
then the following properties hold.

(1) If A is an open set A 2 O, then every open set
U 2 U is an open set U 2 O.

(2) If A is a closed set in E, then every closed set
w.r.t. the subspace topology is a closed set w.r.t.
O.

The concept of product topology is also useful. We have
the following proposition.
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Proposition 1.6.Given n topological spaces (Ei,Oi),
let B be the family of subsets of E1⇥ · · ·⇥En defined
as follows:

B = {U1 ⇥ · · ·⇥ Un | Ui 2 Oi, 1  i  n},

and let P be the family consisting of arbitrary unions
of sets in B, including ;. Then, P is a topology on
E1 ⇥ · · ·⇥ En.

Definition 1.8. Given n topological spaces (Ei,Oi),
the product topology on E1 ⇥ · · ·⇥En is the family P

of subsets of E1 ⇥ · · ·⇥ En defined as follows: if

B = {U1 ⇥ · · ·⇥ Un | Ui 2 Oi, 1  i  n},

then P is the family consisting of arbitrary unions of
sets in B, including ;.
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If each (Ei, kki) is a normed vector space, there are three
natural norms that can be defined on E1 ⇥ · · ·⇥ En:

k(x1, . . . , xn)k1 = kx1k1 + · · · + kxnkn,

k(x1, . . . , xn)k2 =
⇣
kx1k

2
1 + · · · + kxnk

2
n

⌘1
2
,

k(x1, . . . , xn)k1 = max {kx1k1, . . . , kxnkn} .

It is easy to show that they all define the same topology,
which is the product topology.

It can also be verified that when Ei = R, with the stan-
dard topology induced by |x � y|, the topology product
on Rn is the standard topology induced by the Euclidean
norm.

Definition 1.9. Two metrics d and d0 on a space E
are equivalent if they induce the same topology O on
E (i.e., they define the same family O of open sets).
Similarly, two norms k k and k k

0 on a space E are
equivalent if they induce the same topology O on E.
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Remark: Given a topological space (E,O), it is often
useful, as in Proposition 1.6, to define the topology O in
terms of a subfamily B of subsets of E.

We say that a family B of subsets of E is a basis for the
topology O, if B is a subset of O, and if every open set
U in O can be obtained as some union (possibly infinite)
of sets in B (agreeing that the empty union is the empty
set).

A subbasis for O is a family S of subsets of E, such
that the family B of all finite intersections of sets in S

(including E itself, in case of the empty intersection) is a
basis of O.

We now consider the fundamental property of continuity.
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1.3 Continuous Functions, Limits

Definition 1.10. Let (E,OE) and (F,OF ) be topolog-
ical spaces, and let f : E ! F be a function. For every
a 2 E, we say that f is continuous at a, if for every
open set V 2 OF containing f (a), there is some open
set U 2 OE containing a, such that, f (U) ✓ V . We
say that f is continuous if it is continuous at every
a 2 E.

Define a neighborhood of a 2 E as any subset N of E
containing some open set O 2 O such that a 2 O.

Now, if f is continuous at a and N is any neighborhood
of f (a), there is some open set V ✓ N containing f (a),
and since f is continuous at a, there is some open set U
containing a, such that f (U) ✓ V .

Since V ✓ N , the open set U is a subset of f�1(N)
containing a, and f�1(N) is a neighborhood of a.



32 CHAPTER 1. TOPOLOGY

Conversely, if f�1(N) is a neighborhood of a whenever
N is any neighborhood of f (a), it is immediate that f is
continuous at a.

It is easy to see that Definition 1.10 is equivalent to the
following statements.

Proposition 1.7. Let (E,OE) and (F,OF ) be topo-
logical spaces, and let f : E ! F be a function. For
every a 2 E, the function f is continuous at a 2 E i↵
for every neighborhood N of f (a) 2 F , then f�1(N)
is a neighborhood of a. The function f is continuous
on E i↵ f�1(V ) is an open set in OE for every open
set V 2 OF .
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If E and F are metric spaces defined by metrics dE and
dF , we can show easily that f is continuous at a i↵

for every ✏ > 0, there is some ⌘ > 0, such that, for every
x 2 E,

if dE(a, x)  ⌘, then dF (f (a), f (x))  ✏.

Similarly, if E and F are normed vector spaces defined
by norms k kE and k kF , we can show easily that f is
continuous at a i↵

for every ✏ > 0, there is some ⌘ > 0, such that, for every
x 2 E,

if kx� akE  ⌘, then kf (x)� f (a)kF  ✏.

It is worth noting that continuity is a topological notion,
in the sense that equivalent metrics (or equivalent norms)
define exactly the same notion of continuity.
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If (E,OE) and (F,OF ) are topological spaces, and
f : E ! F is a function, for every nonempty subset
A ✓ E of E, we say that f is continuous on A if the
restriction of f to A is continuous with respect to (A,U)
and (F,OF ), where U is the subspace topology induced
by OE on A.

Given a product E1 ⇥ · · ·⇥ En of topological spaces, as
usual, we let ⇡i : E1 ⇥ · · · ⇥ En ! Ei be the projection
function such that, ⇡i(x1, . . . , xn) = xi. It is immediately
verified that each ⇡i is continuous.

Given a topological space (E,O), we say that a point
a 2 E is isolated if {a} is an open set in O.

Then, if (E,OE) and (F,OF ) are topological spaces, any
function f : E ! F is continuous at every isolated point
a 2 E. In the discrete topology, every point is isolated.
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In a nontrivial normed vector space (E, k k) (with
E 6= {0}), no point is isolated.

The following proposition is easily shown.

Proposition 1.8. Given topological spaces (E,OE),
(F,OF ), and (G,OG), and two functions f : E ! F
and g : F ! G, if f is continuous at a 2 E and
g is continuous at f (a) 2 F , then g � f : E ! G
is continuous at a 2 E. Given n topological spaces
(Fi,Oi), for every function f : E ! F1 ⇥ · · · ⇥ Fn,
then f is continuous at a 2 E i↵ every fi : E ! Fi is
continuous at a, where fi = ⇡i � f .

One can also show that in a metric space (E, d), the
metric d : E ⇥ E ! R is continuous, where E ⇥ E has
the product topology, and that for a normed vector space
(E, k k), the norm k k : E ! R is continuous.
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Given a function f : E1⇥ · · ·⇥En ! F , we can fix n�1
of the arguments, say a1, . . . , ai�1, ai+1, . . . , an, and view
f as a function of the remaining argument,

xi 7! f (a1, . . . , ai�1, xi, ai+1, . . . , an),

where xi 2 Ei. If f is continuous, it is clear that each fi
is continuous.

� One should be careful that the converse is false! For
example, consider the function f : R⇥R ! R, defined

such that,

f (x, y) =
xy

x2 + y2
if (x, y) 6= (0, 0), and f (0, 0) = 0.

The function f is continuous on R⇥R�{(0, 0)}, but on
the line y = mx, with m 6= 0, we have f (x, y) = m

1+m2 6=
0, and thus, on this line, f (x, y) does not approach 0
when (x, y) approaches (0, 0).
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The following proposition is useful for showing that real-
valued functions are continuous.

Proposition 1.9. If E is a topological space, and
(R, |x� y|) the reals under the standard topology, for
any two functions f : E ! R and g : E ! R, for any
a 2 E, for any � 2 R, if f and g are continuous at a,
then f + g, �f , f · g, are continuous at a, and f/g is
continuous at a if g(a) 6= 0.

Using Proposition 1.9, we can show easily that every real
polynomial function is continuous.

The notion of isomorphism of topological spaces is defined
as follows.

Definition 1.11. Let (E,OE) and (F,OF ) be topolog-
ical spaces, and let f : E ! F be a function. We say
that f is a homeomorphism between E and F if f is
bijective, and both f : E ! F and f�1 : F ! E are
continuous.
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� One should be careful that a bijective continuous func-
tion f : E ! F is not necessarily an homeomorphism.

For example, if E = R with the discrete topology, and
F = R with the standard topology, the identity is not a
homeomorphism.

Another interesting example involving a parametric curve
is given below. Let L : R ! R2 be the function, defined
such that,

L1(t) =
t(1 + t2)

1 + t4
,

L2(t) =
t(1� t2)

1 + t4
.

If we think of (x(t), y(t)) = (L1(t), L2(t)) as a geometric
point in R2, the set of points (x(t), y(t)) obtained by
letting t vary in R from �1 to +1, defines a curve
having the shape of a “figure eight”, with self-intersection
at the origin, called the “lemniscate of Bernoulli.”
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The map L is continuous, and in fact bijective, but its
inverse L�1 is not continuous.

Indeed, when we approach the origin on the branch of the
curve in the upper left quadrant (i.e., points such that,
x  0, y � 0), then t goes to�1, and when we approach
the origin on the branch of the curve in the lower right
quadrant (i.e., points such that, x � 0, y  0), then t
goes to +1.

We also review the concept of limit of a sequence. Given
any set E, a sequence is any function x : N ! E, usually
denoted by (xn)n2N, or (xn)n�0, or even by (xn).

Definition 1.12.Given a topological space (E,O), we
say that a sequence (xn)n2N converges to some a 2 E
if for every open set U containing a, there is some
n0 � 0, such that, xn 2 U , for all n � n0. We also
say that a is a limit of (xn)n2N.
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When E is a metric space with metric d, it is easy to
show that this is equivalent to the fact that,

for every ✏ > 0, there is some n0 � 0, such that,
d(xn, a)  ✏, for all n � n0.

When E is a normed vector space with norm k k, it is
easy to show that this is equivalent to the fact that,

for every ✏ > 0, there is some n0 � 0, such that,
kxn � ak  ✏, for all n � n0.

The following proposition shows the importance of the
Hausdor↵ separation axiom.

Proposition 1.10. Given a topological space (E,O),
if the Hausdor↵ separation axiom holds, then every
sequence has at most one limit.
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It is worth noting that the notion of limit is topological,
in the sense that a sequence converge to a limit b i↵ it
converges to the same limit b in any equivalent metric
(and similarly for equivalent norms).

We still need one more concept of limit for functions.

Definition 1.13. Let (E,OE) and (F,OF ) be topolog-
ical spaces, let A be some nonempty subset of E, and
let f : A ! F be a function. For any a 2 A and any
b 2 F , we say that f (x) approaches b as x approaches
a with values in A if for every open set V 2 OF con-
taining b, there is some open set U 2 OE containing
a, such that, f (U \ A) ✓ V . This is denoted by

lim
x!a,x2A

f (x) = b.

First, note that by Proposition 1.3, since a 2 A, for every
open set U containing a, we have U \ A 6= ;, and the
definition is nontrivial. Also, even if a 2 A, the value
f (a) of f at a plays no role in this definition.
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When E and F are metric space with metrics dE and dF ,
it can be shown easily that the definition can be stated
as follows:

For every ✏ > 0, there is some ⌘ > 0, such that, for every
x 2 A,

if dE(x, a)  ⌘, then dF (f (x), b)  ✏.

When E and F are normed vector spaces with norms kkE
and k kF , it can be shown easily that the definition can
be stated as follows:

For every ✏ > 0, there is some ⌘ > 0, such that, for every
x 2 A,

if kx� akE  ⌘, then kf (x)� bkF  ✏.
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We have the following result relating continuity at a point
and the previous notion.

Proposition 1.11. Let (E,OE) and (F,OF ) be two
topological spaces, and let f : E ! F be a function.
For any a 2 E, the function f is continuous at a
i↵ f (x) approaches f (a) when x approaches a (with
values in E).

Another important proposition relating the notion of con-
vergence of a sequence to continuity, is stated without
proof.

Proposition 1.12. Let (E,OE) and (F,OF ) be two
topological spaces, and let f : E ! F be a function.

(1) If f is continuous, then for every sequence (xn)n2N
in E, if (xn) converges to a, then (f (xn)) converges
to f (a).

(2) If E is a metric space, and (f (xn)) converges to
f (a) whenever (xn) converges to a, for every se-
quence (xn)n2N in E, then f is continuous.
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A special case of Definition 1.13 will be used when E and
F are (nontrivial) normed vector spaces with norms k k1
and k k2.

Let U be any nonempty open subset of E. We showed
earlier that E has no isolated points and that every set
{v} is closed, for every v 2 E.

SinceE is nontrivial, for every v 2 U , there is a nontrivial
open ball contained in U (an open ball not reduced to its
center).

Then, for every v 2 U , A = U � {v} is open and
nonempty, and clearly, v 2 A.

For any v 2 U , if f (x) approaches b when x approaches v
with values inA = U�{v}, we say that f (x) approaches
b when x approaches v with values 6= v in U .

This is denoted by

lim
x!v,x2U,x 6=v

f (x) = b.
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Remark: Variations of the above case show up in the
following case: E = R, and F is some arbitrary topolog-
ical space.

Let A be some nonempty subset of R, and let f : A ! F
be some function. For any a 2 A, we say that f is
continuous on the right at a if

lim
x!a,x2A\[a,+1)

f (x) = f (a).

We can define continuity on the left at a in a similar
fashion.

Let us consider another variation. LetA be some nonempty
subset of R, and let f : A ! F be some function.
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For any a 2 A, we say that f has a discontinuity of the
first kind at a if

lim
x!a,x2A\ (�1,a)

f (x) = f (a�)

and
lim

x!a,x2A\ (a,+1)
f (x) = f (a+)

both exist, and either f (a�) 6= f (a), or f (a+) 6= f (a).

Note that it is possible that f (a�) = f (a+), but f is still
discontinuous at a if this common value di↵ers from f (a).

Functions defined on a nonempty subset of R, and that
are continuous, except for some points of discontinuity of
the first kind, play an important role in analysis.
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In a metric space there is another important notion of
continuity, namely uniform continuity.

Definition 1.14. Given two metric spaces, (E, dE) and
(F, dF ), a function f : E ! F is uniformly continuous
if for every ✏ > 0, there is some ⌘ > 0, such that for all
a, b 2 E,

if dE(a, b)  ⌘ then dF (f (a), f (b))  ✏.

See Figures 1.1 and 1.2.
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Figure 1.1: The real valued function f(x) =
p
x is uniformly continuous over (0,1). Fix ✏.

If the x values lie within the rose colored ⌘ strip, the y values always lie within the peach ✏
strip.



48 CHAPTER 1. TOPOLOGY
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Figure 1.2: The real valued function f(x) = 1/x is not uniformly continuous over (0,1).
Fix ✏. In order for the y values to lie within the peach epsilon strip, the widths of the eta
strips decrease as x ! 0.

It is easily shown that the metric on a metric space is
uniformly continuous, and the norm on a normed metric
space is uniformly continuous.

Before considering di↵erentials, we need to look at the
continuity of linear maps.
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1.4 Continuous Linear and Multilinear Maps

If E and F are normed vector spaces, we first characterize
when a linear map f : E ! F is continuous.

Proposition 1.13. Given two normed vector spaces
E and F , for any linear map f : E ! F , the following
conditions are equivalent:

(1) The function f is continuous at 0.

(2) There is a constant k � 0 such that,

kf (u)k  k, for every u 2 E such that kuk  1.

(3) There is a constant k � 0 such that,

kf (u)k  kkuk, for every u 2 E.

(4) The function f is continuous at every point of E.
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Among other things, Proposition 1.13 shows that a linear
map is continuous i↵ the image of the unit (closed) ball
is bounded.

If E and F are normed vector spaces, the set of all con-
tinuous linear maps f : E ! F is denoted by L(E;F ).

Using Proposition 1.13, we can define a norm on L(E;F )
which makes it into a normed vector space.

Definition 1.15. Given two normed vector spaces E
and F , for every continuous linear map f : E ! F , we
define the (operator) norm kfk of f as

kfk = inf {k � 0 | kf (x)k  kkxk, for all x 2 E}

= sup {kf (x)k | kxk  1}

= sup {kf (x)k | kxk = 1} .
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From Definition 1.15, for every continuous linear map f 2

L(E;F ), we have

kf (x)k  kfkkxk,

for every x 2 E.

The above implies that a continuous linear map is actually
uniformly continuous .

It is easy to verify that L(E;F ) is a normed vector space
under the norm of Definition 1.15.

Furthermore, if E,F,G, are normed vector spaces, and
f : E ! F and g : F ! G are continuous linear maps,
we have

kg � fk  kgkkfk.
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We can now show that when E = Rn or E = Cn, with
any of the norms k k1, k k2, or k k1, then every linear
map f : E ! F is continuous.

Proposition 1.14. If E = Rn or E = Cn, with any
of the norms kk1, kk2, or kk1, and F is any normed
vector space, then every linear map f : E ! F is con-
tinuous.

Actually, it can be shown that if E is a vector space of
finite dimension, then any two norms define the same
topology. We say that any two norms are equivalent.

Proposition 1.15. If E is a vector space of finite
dimension (over R or C), then all norms are equiva-
lent (define the same topology). Furthermore, for any
normed vector space F , every linear map f : E ! F
is continuous.
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�� If E is a normed vector space of infinite dimension, a
linear map f : E ! F may not be continuous.

As an example, let E be the infinite vector space of all
polynomials over R. Let

kP (X)k = max
0x1

|P (x)|.

We leave as an exercise to show that this is indeed a norm.

Let F = R, and let f : E ! F be the map defined such
that, f (P (X)) = P (3). It is clear that f is linear.

Consider the sequence of polynomials

Pn(X) =

✓
X

2

◆n

.

It is clear that kPnk =
�
1
2

�n
, and thus, the sequence Pn

has the null polynomial as a limit.
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However, we have

f (Pn(X)) = Pn(3) =

✓
3

2

◆n

,

and the sequence f (Pn(X)) diverges to +1. Conse-
quently, in view of Proposition 1.12 (1), f is not con-
tinuous.

We now consider the continuity of multilinear maps. We
treat explicitly bilinear maps, the general case being a
straightforward extension.
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Proposition 1.16. Given normed vector spaces E,
F and G, for any bilinear map f : E ⇥ F ! G, the
following conditions are equivalent:

(1) The function f is continuous at h0, 0i.

(2) There is a constant k � 0 such that,

kf (u, v)k  k, for all u 2 E, v 2 F

such that kuk, kvk  1.

(3) There is a constant k � 0 such that,

kf (u, v)k  kkukkvk, for all u 2 E, v 2 F .

(4) The function f is continuous at every point of
E ⇥ F .

If E, F , and G, are normed vector spaces, we denote the
set of all continuous bilinear maps f : E ⇥ F ! G by
L2(E,F ;G).

Using Proposition 1.16, we can define a norm on
L2(E,F ;G) which makes it into a normed vector space.
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Definition 1.16. Given normed vector spaces E, F ,
andG, for every continuous bilinear map f : E⇥F ! G,
we define the (operator) norm kfk of f as

kfk = inf {k � 0 | kf (x, y)k  kkxkkyk, x 2 E, y 2 F}

= sup {kf (x, y)k | kxk, kyk  1}

= sup {kf (x, y)k | kxk = kyk = 1} .

From Definition 1.16, for every continuous bilinear map
f 2 L2(E,F ;G), we have

kf (x, y)k  kfkkxkkyk,

for all x 2 E, y 2 F .

It is easy to verify that L2(E,F ;G) is a normed vector
space under the norm of Definition 1.16.

� In contrast to continuous linear maps, which must be
uniformly continuous, nonzero continuous bilinear maps

are not uniformly continuous; see our book, Section 2.6,
Vol. II.
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Given a bilinear map f : E ⇥ F ! G, for every u 2 E,
we obtain a linear map denoted fu : F ! G, defined
such that, fu(v) = f (u, v).

Furthermore, since

kf (x, y)k  kfkkxkkyk,

it is clear that fu is continuous.

We can then consider the map ' : E ! L(F ;G), defined
such that, '(u) = fu, for any u 2 E, or equivalently,
such that,

'(u)(v) = f (u, v).

Actually, it is easy to show that ' is linear and continuous,
and that k'k = kfk.

Thus, f 7! ' defines a map from L2(E,F ;G) to
L(E;L(F ;G)). We can also go back fromL(E;L(F ;G))
to L2(E,F ;G).
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We summarize all this in the following proposition.

Proposition 1.17. Let E,F,G be normed vector spaces.
The map f 7! ', from L2(E,F ;G) to L(E;L(F ;G)),
defined such that, for every f 2 L2(E,F ;G),

'(u)(v) = f (u, v),

is an isomorphism of vector spaces, and furthermore,
k'k = kfk.

As a corollary of Proposition 1.17, we get the following
proposition which will be useful when we define second-
order derivatives.

Proposition 1.18. Let E,F be normed vector spaces.
The map app from L(E;F ) ⇥ E to F , defined such
that, for every f 2 L(E;F ), for every u 2 E,

app(f, u) = f (u),

is a continuous bilinear map.
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Remark: If E and F are nontrivial, it can be shown
that kappk = 1. It can also be shown that composition

� : L(E;F )⇥ L(F ;G) ! L(E;G),

is bilinear and continuous.

The above propositions and definition generalize to arbi-
trary n-multilinear maps, with n � 2.

Proposition 1.16 extends in the obvious way to any n-
multilinear map f : E1 ⇥ · · · ⇥ En ! F , but condition
(3) becomes:

There is a constant k � 0 such that,

kf (u1, . . . , un)k  kku1k · · · kunk,

for all u1 2 E1, . . . , un 2 En
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Definition 1.16 also extends easily to

kfk = min
n
k � 0 | kf (x1, . . . , xn)k  kkx1k · · · kxnk,

for all xi 2 Ei, 1  i  n
o

= sup {kf (x1, . . . , xn)k | kx1k, . . . , kxnk  1}

= sup {kf (x1, . . . , xn)k | kx1k = · · · = kxnk = 1} .

Proposition 1.17 is also easily extended, and we get an
isomorphism between continuous n-multilinear maps in
Ln(E1, . . . , En;F ), and continuous linear maps in

L(E1;L(E2; . . . ;L(En;F )))

An obvious extension of Proposition 1.18 also holds.
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For the sake of completeness, we include the definition of
Cauchy sequences.

Definition 1.17. Given a metric space (E, d), a se-
quence (xn)n2N in E is a Cauchy sequence if the fol-
lowing condition holds: For every ✏ > 0, there is some
p � 0, such that, for all m,n � p, then d(xm, xn)  ✏.

If every Cauchy sequence in (E, d) converges, we say that
(E, d) is a complete metric space . A normed vector
space (E, k k) over R (or C) which is a complete metric
space for the distance kv�uk, is called a Banach space .

The standard example of a complete metric space is the
set R of real numbers.

As a matter of fact, the set R can be defined as the “com-
pletion” of the set Q of rationals.
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The spaces Rn and Cn under their standard topology are
complete metric spaces.

It can be shown that every normed vector space of finite
dimension is a Banach space (is complete).

It can also be shown that if E and F are normed vec-
tor spaces, and F is a Banach space, then L(E;F ) is a
Banach space.

If E,F and G are normed vector spaces, and G is a
Banach space, then L2(E,F ;G) is a Banach space.

1.5 Futher Readings

A thorough treatment of general topology can be found
in Munkres [7, 6], Dixmier [3], Lang [5], Schwartz [10, 9],
Bredon [1] and the classic, Seifert and Threlfall [11].


