
Chapter 5

Graph Clustering Using Ratio Cuts

In this short chapter, we consider the alternative to nor-
malized cut, called ratio cut, and show that the methods
of Chapters 3 and 4 can be trivially adapted to solve the
clustering problem using ratio cuts.

All that needs to be done is to replace the normalized
Laplacian L

sym

by the unormalized Laplacian L, and omit
the step of considering Problem (⇤⇤

2

).

In particular, there is no need to multiply the continuous
solution Y by D�1/2.
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The idea of ratio cut is to replace the volume vol(Aj)
of each block Aj of the partition by its size |Aj| (the
number of nodes in Aj).

First, we deal with unsigned graphs, the case where the
entries in the symmetric weight matrix W are nonnega-
tive.

Definition 5.1. The ratio cut Rcut(A
1

, . . . , AK) of the
partition (A

1

, . . . , AK) is defined as

Rcut(A
1

, . . . , AK) =
K
X

i=1

cut(Aj, Aj)

|Aj|
.
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As in Section 3.3, given a partition of V into K clus-
ters (A

1

, . . . , AK), if we represent the jth block of this
partition by a vector Xj such that

Xj
i =

(

aj if vi 2 Aj

0 if vi /2 Aj,

for some aj 6= 0, then

(Xj)>LXj = a2

j(cut(Aj, Aj)

(Xj)>Xj = a2

j|Aj|.

Consequently, we have

Rcut(A
1

, . . . , AK) =
K
X

i=1

cut(Aj, Aj)

|Aj|

=
K
X

i=1

(Xj)>LXj

(Xj)>Xj
.
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On the other hand, the normalized cut is given by

Ncut(A
1

, . . . , AK) =
K
X

i=1

cut(Aj, Aj)

vol(Aj)

=
K
X

i=1

(Xj)>LXj

(Xj)>DXj
.

Therefore, ratio cut is the special case of normalized cut
where D = I .

If we let

X =
n

[X1 . . . XK] | Xj = aj(x
j
1

, . . . , xj
N), x

j
i 2 {1, 0},

aj 2 R, Xj 6= 0
o

(note that the condition Xj 6= 0 implies that aj 6= 0),
then the set of matrices representing partitions of V into
K blocks is
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K =
n

X = [X1 · · · XK] | X 2 X ,

(Xi)>Xj = 0,

1  i, j  K, i 6= j
o

.

Here is our first formulation of K-way clustering of a
graph using ratio cuts, called problem PRC1 :

K-way Clustering of a graph using Ratio Cut,
Version 1:
Problem PRC1

minimize
K
X

j=1

(Xj)>LXj

(Xj)>Xj

subject to (Xi)>Xj = 0, 1  i, j  K, i 6= j,

X 2 X .
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The solutions that we are seeking are K-tuples
(P(X1), . . . ,P(XK)) of points in RPN�1 determined by
their homogeneous coordinates X1, . . . , XK.

As in Chapter 3, chasing denominators and introducing
a trace, we obtain the following formulation of our mini-
mization problem:

K-way Clustering of a graph using Ratio Cut,
Version 2:
Problem PRC2

minimize tr(X>LX)

subject to X>X = I,

X 2 X .



207

The natural relaxation of problem PRC2 is to drop the
condition that X 2 X , and we obtain the

Problem (R⇤
2

)

minimize tr(X>LX)

subject to X>X = I.

This time, since the normalization condition isX>X = I ,
we can use the eigenvalues and the eigenvectors of L, and
by Proposition A.2, the minimum is achieved by any K
unit eigenvectors (u

1

, . . . , uK) associated with the small-
est K eigenvalues

0 = �
1

 �
2

 . . .  �K

of L.
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The matrix Z = Y = [u
1

, . . . , uK] yields a minimum of
our relaxed problem (R⇤

2

).

The rest of the algorithm is as before; we try to find
Q = R⇤ with R 2 O(K), ⇤ diagonal invertible, and
X 2 X such that kX � ZQk is minimum.

In the case of signed graphs, we define the signed ratio
cut sRcut(A

1

, . . . , AK) of the partition (A
1

, . . . , AK) as

sRcut(A
1

, . . . , AK) =
K
X

j=1

cut(Aj, Aj)

|Aj|

+ 2
K
X

j=1

links�(Aj, Aj)

|Aj|
.
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Since we still have

(Xj)>LXj = a2

j(cut(Aj, Aj) + 2links�(Aj, Aj)),

we obtain

sRcut(A
1

, . . . , AK) =
K
X

j=1

(Xj)>LXj

(Xj)>Xj
.

Therefore, this is similar to the case of unsigned graphs,
with L replaced with L.

The same algorithm applies, but as in Chapter 4, the
signed Laplacian L is positive definite i↵ G is unbalanced.
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Modifying the computer program implementing normal-
ized cuts to deal with ratio cuts is trivial (use L instead

of L
sym

and don’t multiply Y by D
�1/2

).

Generally, normalized cut seems to yield “better clus-
ters,” but this is not a very satisfactory statement since
we haven’t defined precisely in which sense a clustering is
better than another.

We leave this point as further research.


