Chapter 5

Graph Clustering Using Ratio Cuts

In this short chapter, we consider the alternative to normalized cut, *called ratio cut*, and show that the methods of Chapters 3 and 4 can be trivially adapted to solve the clustering problem using ratio cuts.

All that needs to be done is to replace the normalized Laplacian L_{sym} by the unormalized Laplacian L, and omit the step of considering Problem (**₂).

In particular, there is no need to multiply the continuous solution Y by $D^{-1/2}$.

The idea of ratio cut is to replace the volume $vol(A_j)$ of each block A_j of the partition by its size $|A_j|$ (the number of nodes in A_j).

First, we deal with unsigned graphs, the case where the entries in the symmetric weight matrix W are nonnegative.

Definition 5.1. The *ratio cut* $\operatorname{Rcut}(A_1, \ldots, A_K)$ of the partition (A_1, \ldots, A_K) is defined as

$$\operatorname{Rcut}(A_1,\ldots,A_K) = \sum_{i=1}^K \frac{\operatorname{cut}(A_j,\overline{A}_j)}{|A_j|}.$$

As in Section 3.3, given a partition of V into K clusters (A_1, \ldots, A_K) , if we represent the *j*th block of this partition by a vector X^j such that

$$X_i^j = \begin{cases} a_j & \text{if } v_i \in A_j \\ 0 & \text{if } v_i \notin A_j, \end{cases}$$

for some $a_j \neq 0$, then

$$(X^j)^{\top} L X^j = a_j^2(\operatorname{cut}(A_j, \overline{A_j}))$$
$$(X^j)^{\top} X^j = a_j^2 |A_j|.$$

Consequently, we have

$$\operatorname{Rcut}(A_1, \dots, A_K) = \sum_{i=1}^K \frac{\operatorname{cut}(A_j, \overline{A}_j)}{|A_j|}$$
$$= \sum_{i=1}^K \frac{(X^j)^\top L X^j}{(X^j)^\top X^j}.$$

On the other hand, the normalized cut is given by

Ncut
$$(A_1, \ldots, A_K) = \sum_{i=1}^K \frac{\operatorname{cut}(A_j, \overline{A}_j)}{\operatorname{vol}(A_j)}$$
$$= \sum_{i=1}^K \frac{(X^j)^\top L X^j}{(X^j)^\top D X^j}.$$

Therefore, ratio cut is the special case of normalized cut where D = I.

If we let

$$\mathcal{X} = \left\{ [X^1 \dots X^K] \mid X^j = a_j(x_1^j, \dots, x_N^j), x_i^j \in \{1, 0\}, a_j \in \mathbb{R}, \ X^j \neq 0 \right\}$$

(note that the condition $X^j \neq 0$ implies that $a_j \neq 0$), then the set of matrices representing partitions of V into K blocks is

$$\mathcal{K} = \left\{ X = \begin{bmatrix} X^1 \cdots X^K \end{bmatrix} \mid X \in \mathcal{X}, \\ (X^i)^\top X^j = 0, \\ 1 \le i, j \le K, \ i \ne j \right\}.$$

Here is our first formulation of K-way clustering of a graph using ratio cuts, called problem PRC1 :

K-way Clustering of a graph using Ratio Cut, Version 1: Problem PRC1

minimize
$$\sum_{j=1}^{K} \frac{(X^j)^\top L X^j}{(X^j)^\top X^j}$$
subject to $(X^i)^\top X^j = 0, \quad 1 \le i, j \le K, \ i \ne j, X \in \mathcal{X}.$

The solutions that we are seeking are K-tuples $(\mathbb{P}(X^1), \ldots, \mathbb{P}(X^K))$ of points in \mathbb{RP}^{N-1} determined by their homogeneous coordinates X^1, \ldots, X^K .

As in Chapter 3, chasing denominators and introducing a trace, we obtain the following formulation of our minimization problem:

K-way Clustering of a graph using Ratio Cut, Version 2: Problem PRC2

minimize	$\operatorname{tr}(X^{\top}LX)$
subject to	$X^{\top}X = I,$
	$X \in \mathcal{X}.$

The natural relaxation of problem PRC2 is to drop the condition that $X \in \mathcal{X}$, and we obtain the

Problem $(R*_2)$

minimize
$$\operatorname{tr}(X^\top LX)$$
subject to $X^\top X = I.$

This time, since the normalization condition is $X^{\top}X = I$, we can use the eigenvalues and the eigenvectors of L, and by Proposition A.2, the minimum is achieved by any Kunit eigenvectors (u_1, \ldots, u_K) associated with the smallest K eigenvalues

$$0 = \lambda_1 \le \lambda_2 \le \ldots \le \lambda_K$$

of L.

The matrix $Z = Y = [u_1, \ldots, u_K]$ yields a minimum of our relaxed problem $(R*_2)$.

The rest of the algorithm is as before; we try to find $Q = R\Lambda$ with $R \in \mathbf{O}(K)$, Λ diagonal invertible, and $X \in \mathcal{X}$ such that ||X - ZQ|| is minimum.

In the case of signed graphs, we define the *signed ratio* cut sRcut (A_1, \ldots, A_K) of the partition (A_1, \ldots, A_K) as

$$\operatorname{sRcut}(A_1, \dots, A_K) = \sum_{j=1}^K \frac{\operatorname{cut}(A_j, \overline{A_j})}{|A_j|} + 2\sum_{j=1}^K \frac{\operatorname{links}^-(A_j, A_j)}{|A_j|}.$$

Since we still have

$$(X^j)^{\top}\overline{L}X^j = a_j^2(\operatorname{cut}(A_j, \overline{A_j}) + 2\operatorname{links}^-(A_j, A_j)),$$

we obtain

$$\operatorname{sRcut}(A_1,\ldots,A_K) = \sum_{j=1}^K \frac{(X^j)^\top \overline{L} X^j}{(X^j)^\top X^j}.$$

Therefore, this is similar to the case of unsigned graphs, with L replaced with \overline{L} .

The same algorithm applies, but as in Chapter 4, the signed Laplacian \overline{L} is positive definite iff G is unbalanced.

Modifying the computer program implementing normalized cuts to deal with ratio cuts is trivial (use \overline{L} instead of $\overline{L}_{\text{sym}}$ and don't multiply Y by $\overline{D}^{-1/2}$).

Generally, normalized cut seems to yield "better clusters," but this is not a very satisfactory statement since we haven't defined precisely in which sense a clustering is better than another.

We leave this point as further research.