
Chapter 4

Signed Graphs

4.1 Signed Graphs and Signed Laplacians

Intuitively, in a weighted graph, an edge with a positive
weight denotes similarity or proximity of its endpoints.

For many reasons, it is desirable to allow edges labeled
with negative weights, the intuition being that a nega-
tive weight indicates dissimilarity or distance.

Weighted graphs for which the weight matrix is a sym-
metric matrix in which negative and positive entries are
allowed are called signed graphs .
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Such graphs (with weights (�1, 0,+1)) were introduced
as early as 1953 by Harary [9], to model social relations
involving disliking, indi↵erence, and liking.

The problem of clustering the nodes of a signed graph
arises naturally as a generalization of the clustering prob-
lem for weighted graphs.

From our perspective, we would like to know whether
clustering using normalized cuts can be extended to signed
graphs.

Given a signed graph G = (V, W ) (where W is a sym-
metric matrix with zero diagonal entries), the underlying
graph of G is the graph with node set V and set of (undi-
rected) edges E = {{vi, vj} | wij 6= 0}.
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The first obstacle is that the degree matrix may now con-
tain zero or negative entries.

As a consequence, the Laplacian L may no longer be
positive semidefinite, and worse, D�1/2 may not exist.

A simple remedy is to use the absolute values of the
weights in the degree matrix!

This idea applied to signed graph with weights (�1, 0, 1)
occurs in Hou [10]. Kolluri, Shewchuk and O’Brien [11]
take the natural step of using absolute values of weights
in the degree matrix in their original work on surface
reconstruction from noisy point clouds.

Kunegis et al. [12] appear to be the first to make a system-
atic study of spectral methods applied to signed graphs.
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In fact, many results in this section originate from Kunegis
et al. [12].

However, it should be noted that only 2-clustering is con-
sidered in the above papers.

As we will see, the trick of using absolute values of weights
in the degree matrix allows the whole machinery that
we have presented to be used to attack the problem of
clustering signed graphs using normalized cuts.

This requires a modification of the notion of normalized
cut.

This new notion it is quite reasonable, as we will see
shortly.
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If (V, W ) is a signed graph, where W is an m ⇥ m sym-
metric matrix with zero diagonal entries and with the
other entries wij 2 R arbitrary, for any node vi 2 V , the
signed degree of vi is defined as

di = d(vi) =
m
X

j=1

|wij|,

and the signed degree matrix D as

D = diag(d(v
1

), . . . , d(vm)).

For any subset A of the set of nodes V , let

vol(A) =
X

vi2A

di =
X

vi2A

m
X

j=1

|wij|.
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For any two subsets A and B of V , define links+(A, B),
links�(A, B), and cut(A, A) by

links+(A, B) =
X

vi2A,vj2B
wij>0

wij

links�(A, B) =
X

vi2A,vj2B
wij<0

�wij

cut(A, A) =
X

vi2A,vj2A
wij 6=0

|wij|.

Note that links+(A, B) = links+(B, A),
links�(A, B) = links�(B, A), and

cut(A, A) = links+(A, A) + links�(A, A).
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Then, the signed Laplacian L is defined by

L = D � W,

and its normalized version L
sym

by

L
sym

= D
�1/2

L D
�1/2

= I � D
�1/2

WD
�1/2

.

For a graph without isolated vertices, we have d(vi) > 0

for i = 1, . . . , m, so D
�1/2

is well defined.

The signed Laplacian is symmetric positive semidefinite.
As for the Laplacian of a weight matrix (with nonnegative
entries), this can be shown in two ways.

The first method consists in defining a notion of incidence
matrix for a signed graph, and appears in Hou [10].
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Definition 4.1.Given a signed graph G = (V, W ), with
V = {v

1

, . . . , vm}, if {e1

, . . . , en} are the edges of the
underlying graph of G (recall that {vi, vj} is an edge
of this graph i↵ wij 6= 0), for any oriented graph G�

obtained by giving an orientation to the underlying graph
of G, the incidence matrix B� of G� is the m⇥n matrix
whose entries bi j are given by

bi j =

8

>

>

>

>

<

>

>

>

>

:

+
p

wij if wij > 0 and s(ej) = vi

�p
wij if wij > 0 and t(ej) = vip�wij if wij < 0 and (s(ej) = vi or t(ej) = vi)

0 otherwise.

Then, we have the following proposition whose proof is
easily adapted from the proof of Proposition 1.2.
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Proposition 4.1.Given any signed graph G = (V, W )
with V = {v

1

, . . . , vm}, if B� is the incidence matrix
of any oriented graph G� obtained from the underly-
ing graph of G and D is the signed degree matrix of
W , then

B�(B�)> = D � W = L.

Consequently, B�(B�)> is independent of the orien-
tation of the underlying graph of G and L = D � W
is symmetric and positive semidefinite; that is, the
eigenvalues of L = D � W are real and nonnegative.

Another way to prove that L is positive semidefinite is to
evaluate the quadratic form x>Lx.

We will need this computation to figure out what is the
new notion of normalized cut.
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For any real � 2 R, define sgn(�) by

sgn(�) =

8

>

<

>

:

+1 if � > 0

�1 if � < 0

0 if � = 0.

Proposition 4.2. For any m ⇥ m symmetric matrix
W = (wij), if we let L = D�W where D is the signed
degree matrix associated with W , then we have

x>Lx =
1

2

m
X

i,j=1

|wij|(xi � sgn(wij)xj)
2 for all x 2 Rm.

Consequently, L is positive semidefinite.
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4.2 Signed Normalized Cuts

As in Section 3.3, given a partition of V into K clus-
ters (A

1

, . . . , AK), if we represent the jth block of this
partition by a vector Xj such that

Xj
i =

(

aj if vi 2 Aj

0 if vi /2 Aj,

for some aj 6= 0, then we have the following result.

Proposition 4.3. For any vector Xj representing the
jth block of a partition (A

1

, . . . , AK) of V , we have

(Xj)>LXj = a2

j(cut(Aj, Aj) + 2links�(Aj, Aj)).
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Since with the revised definition of vol(Aj), we also have

(Xj)>DXj = a2

j

X

vi2Aj

di = a2

jvol(Aj),

we deduce that

(Xj)>LXj

(Xj)>DXj
=

cut(Aj, Aj) + 2links�(Aj, Aj)

vol(Aj)
.

The calculations of the previous paragraph suggest the
following definition.



4.2. SIGNED NORMALIZED CUTS 171

Definition 4.2. The signed normalized cut
sNcut(A

1

, . . . , AK) of the partition (A
1

, . . . , AK) is de-
fined as

sNcut(A
1

, . . . , AK) =
K
X

j=1

cut(Aj, Aj)

vol(Aj)

+ 2
K
X

j=1

links�(Aj, Aj)

vol(Aj)
.

Remark: Kunegis et al. [12] deal with a di↵erent notion
of cut, namely ratio cut (in which vol(A) is replaced by
the size |A| of A), and only for two clusters.

In this case, by a clever choice of indicator vector, they
obtain a notion of signed cut that only takes into account
the positive edges between A and A, and the negative
edges among nodes in A and nodes in A.
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This trick does not seem to generalize to more than two
clusters, and this is why we use our representation for par-
titions. Our definition of a signed normalized cut appears
to be novel.

Based on previous computations, we have

sNcut(A
1

, . . . , AK) =
K
X

j=1

(Xj)>LXj

(Xj)>DXj
.

where X is the N ⇥ K matrix whose jth column is Xj.

Therefore, this is the same problem as in Chapter 3, with
L replaced by L and D replaced by D.
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Observe that minimizing sNcut(A
1

, . . . , AK) amounts to
minimizing the number of positive and negative edges be-
tween clusters, and also minimizing the number of nega-
tive edges within clusters.

This second minimization captures the intuition that nodes
connected by a negative edge should not be together
(they do not “like” each other; they should be far from
each other).

The K-clustering problem for signed graphs is related but
not equivalent to another problem known as correlation
clustering .

In correlation clustering, in our terminology and notation,
given a graph G = (V, W ) with positively and negatively
weighted edges, one seeks a clustering of V that minimizes
the sum links�(Aj, Aj) of the absolute values of the neg-
ative weights of the edges within each cluster Aj, and
minimizes the sum links+(Aj, Aj) of the positive weights
of the edges between distinct clusters.
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In contrast to K-clustering, the number K of clusters is
not given in advance, and there is no normalization with
respect to size of volume.

Furthermore, in correlation clustering, only the contribu-
tion links+(Aj, Aj) of positively weighted edges is mini-
mized, but our method only allows us to minimize
cut(Aj, Aj), which also takes into account negatively
weighted edges between distinct clusters.

Correlation clustering was first introduced and studied
for complete graphs by Bansal, Blum and Chawla [1].

They prove that this problem is NP-complete and give
several approximation algorithms, including a PTAS for
maximizing agreement.
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Demaine and Immorlica [4] consider the same problem
for arbitrary weighted graphs, and they give an O(log n)-
approximation algorithm based on linear programming.

Since correlation clustering does not assume that K is
given and not not include nomalization by size or vol-
ume, it is not clear whether algorithms for correlation
clustering can be applied to normalized K-clustering, and
conversely.
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4.3 Balanced Graphs

Since

sNcut(A
1

, . . . , AK) =
K
X

j=1

(Xj)>LXj

(Xj)>DXj
,

the whole machinery of Sections 3.3 and 3.4 can be ap-
plied with D replaced by D and L replaced by L.

However, there is a new phenomenon, which is that L
blue may be positive definite.

As a consequence, 1 is not always an eigenvector of L.

As observed by Kunegis et al. [12], it is also possible to
characterize for which signed graphs the Laplacian L is
positive definite.
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Such graphs are “cousins” of bipartite graphs and were
introduced by Harary [9].

Since a graph is the union of its connected components,
we restrict ourselves to connected graphs.

Definition 4.3.Given a signed graph G = (V, W ) with
negative weights whose underlying graph is connected, we
say that G is balanced if there is a partition of its set of
nodes V into two blocks V

1

and V
2

such that all positive
edges connect nodes within V

1

or V
2

, and negative edges
connect nodes between V

1

and V
2

.
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An example of a balanced graph is shown in Figure 4.1
on the left, in which positive edges are colored green and
negative edges are colored red.

This graph admits the partition

({v
1

, v
2

, v
4

, v
7

, v
8

}, {v
3

, v
5

, v
6

, v
9

}).

On the other hand, the graph shown on the right con-
tains the cycle (v

2

, v
3

, v
6

, v
5

, v
4

, v
2

) with an odd number
of negative edges (3), and thus is not balanced.

v1

v2

v3

v4 v5

v6

v7

v8 v9

v1

v2

v3

v4 v5

v6

v7

v8 v9

Figure 4.1: A balanced signed graph G1 (left). An unbalanced signed graph G2 (right).

Observe that if we delete all positive edges in a balanced
graph, then the resulting graph is bipartite.
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Then, it is not surprising that connected balanced graphs
can be characterized as signed graphs in which every cycle
has an even number of negative edges.

This is analogous to the characterization of a connected
bipartite graph as a graph in which every cycle has even
length.

The following proposition was first proved by Harary [9].

Proposition 4.4. If G = (V, W ) is a connected signed
graph with negative weights, then G is balanced i↵ ev-
ery cycle contains an even number of negative edges.

We can also detect whether a connected signed graph is
balanced in terms of the kernel of the transpose of any of
its incidence matrices.
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Proposition 4.5. If G = (V, W ) is a connected signed
graph with negative weights and with m nodes, for any
orientation of its underlying graph, let B be the cor-
responding incidence matrix. The underlying graph of
G is balanced i↵ rank(B) = m� 1. Furthermore, if G
is balanced, then there is a vector u with ui 2 {�1, 1}
such that B>u = 0, and the sets of nodes
V

1

= {vi | ui = �1} and V
2

= {vi | ui = +1} form a
partition of V for which G is balanced.

Remark: A simple modification of the proof of Propo-
sition 4.5 shows that if there are c

1

components contain-
ing only positive edges, c

2

components that are balanced
graphs, and c

3

components that are not balanced (and
contain some negative edge), then

c
1

+ c
2

= m � rank(B).
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Since by Proposition 4.1 we have L = BB> for any in-
cidence matrix B associated with an orientation of the
underlying graph of G, we obtain the following impor-
tant result (which is proved di↵erently in Kunegis et al.
[12]).

Theorem 4.6.The signed Laplacian L of a connected
signed graph G is positive definite i↵ G is not balanced
(possesses some cycle with an odd number of negative
edges).

If G = (V, W ) is a balanced graph, then there is a par-
tition (V

1

, V
2

) of V such that for every edge {vi, vj}, if
wij > 0, then vi, vj 2 V

1

or vi, vj 2 V
2

, and if wij < 0,
then vi 2 V

1

and vj 2 V
2

.

It follows that if we define the vector x such that xi = +1
i↵ vi 2 V

1

and xi = �1 i↵ vi 2 V
2

, then for every edge
{vi, vj} we have

sgn(wij) = xixj.
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We call x a bipartition of V .

The signed Laplacian of the balanced graph G
1

is given
by

L
1

=

0

B

B

B

B

B

B

B

B

B

B

B

B

@

2 �1 0 �1 0 0 0 0 0
�1 5 1 �1 1 0 0 �1 0
0 1 3 0 �1 �1 0 0 0
�1 �1 0 5 1 0 �1 �1 0
0 1 �1 1 6 �1 0 1 �1
0 0 �1 0 �1 4 0 1 �1
0 0 0 �1 0 0 2 �1 0
0 �1 0 �1 1 1 �1 6 1
0 0 0 0 �1 �1 0 1 3

1

C

C

C

C

C

C

C

C

C

C

C

C

A

Using Matlab, we find that its eigenvalues are

0, 1.4790, 1.7513, 2.7883, 4.3570, 4.8815, 6.2158,

7.2159, 7.3112.
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The eigenvector corresponding to the eigenvalue 0 is

(0.3333, 0.3333, �0.3333, 0.3333, �0.3333,

� 0.3333, 0.3333, 0.3333, �0.3333)

It gives us the bipartition

({v
1

, v
2

, v
4

, v
7

, v
8

}, {v
3

, v
5

, v
6

, v
9

}),

as guaranteed by Proposition 4.5.
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The signed Laplacian of the unbalanced graph G
2

is given
by

L
2

=

0

B

B

B

B

B

B

B

B

B

B

B

B

@

2 �1 0 �1 0 0 0 0 0
�1 5 1 1 �1 0 0 �1 0
0 1 3 0 �1 �1 0 0 0
�1 1 0 5 1 0 �1 �1 0
0 �1 �1 1 6 �1 0 1 �1
0 0 �1 0 �1 4 0 1 �1
0 0 0 �1 0 0 2 �1 0
0 �1 0 �1 1 1 �1 6 1
0 0 0 0 �1 �1 0 1 3

1

C

C

C

C

C

C

C

C

C

C

C

C

A

The eigenvalues of L
2

are

0.5175, 1.5016, 1.7029, 2.7058, 3.7284, 4.9604, 5.6026,

7.0888, 8.1921.

The matrix L
2

is indeed positive definite (since G
2

is
unbalanced).
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Hou [10] gives bounds on the smallest eigenvalue of an
unbalanced graph. The lower bound involves a measure
of how unbalanced the graph is (see Theorem 3.4 in Hou
[10]).

Following Kunegis et al., we can prove the following result
showing that the eigenvalues and the eigenvectors of L
and its unsigned counterpart L are strongly related.

Given a symmetric signed matrix W , we define the un-
signed matrix W such that Wij = |wij| (1  i, j  m).
We let L be the Laplacian associated with W .

Note that

L = D �W .

The following proposition is shown in Kunegis et al. [12]).
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Proposition 4.7. Let G = (V, W ) be a signed graph
and let W be the unsigned matrix associated with W .
If G is balanced, and x is a bipartition of V , then for
any diagonalization L = P⇤P> of L, where P is an
orthogonal matrix of eigenvectors of L, if we define
the matrix P so that

Pi = xiPi,

where Pi is the ith row of P and Pi is the ith row of
P , then P is orthogonal and

L = P⇤P>

is a diagonalization of L. In particular, L and L have
the same eigenvalues with the same multiplicities.
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4.4 K-Way Clustering of Signed Graphs

Using the signed Laplacians L and L
sym

, we can define the
optimization problems as in Section 3.3 and solve them
as in Section 3.4, except that we drop the constraint

X(X>X)�1X>1 = 1,

since 1 is not necessarily an eigenvector of L.

By Proposition A.3, the sum of the K smallest eigen-
values of L

sym

is a lower bound for tr(Y >L
sym

Y ), and
the minimum of problem (⇤⇤

2

) is achieved by any K
unit eigenvectors (u

1

, . . . , uk) associated with the small-
est eigenvalues

0  ⌫
1

 ⌫
2

 . . .  ⌫K

of L
sym

.
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The di↵erence with unsigned graphs is that ⌫
1

may be
strictly positive.

Here is the result of applying this method to various ex-
amples.

First, we apply our algorithm to find three clusters for
the balanced graph G

1

.

The graph G
1

as outputted by the algorithm is shown in
Figure 4.2 and the three clusters are shown in Figure 4.3.

As desired, these clusters do not contain negative edges.

1 1.5 2 2.5 3

1

1.5

2

2.5

3

Figure 4.2: The balanced graph G1.
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1 1.5 2 2.5 3

1

1.5

2

2.5

3

1 1.5 2 2.5 3

1

1.5

2

2.5

3

Figure 4.3: Three blocks of a normalized cut for the graph associated with G1.

By the way, for two clusters, the algorithm finds the bi-
partition of G

1

, as desired.

Next, we apply our algorithm to find three clusters for the
unbalanced graph G

2

. The graph G
2

as outputted by the
algorithm is shown in Figure 4.2 and the three clusters
are shown in Figure 4.3.

As desired, these clusters do not contain negative edges.
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1 1.5 2 2.5 3

1

1.5

2

2.5

3

Figure 4.4: The unbalanced graph G2.
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1
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1 1.5 2 2.5 3

1
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2

2.5

3

Figure 4.5: Three blocks of a normalized cut for the graph associated with G2.

The algorithm finds the same clusters, but this is probably
due to the fact that G

1

and G
2

only di↵er by the signs of
two edges.
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4.5 Signed Graph Drawing

Following Kunegis et al. [12], if our goal is to draw a
signed graph G = (V, W ) with m nodes, a natural way
to interpret negative weights is to assume that the end-
points vi and vj of an edge with a negative weight should
be placed far apart, which can be achieved if instead of
assigning the point ⇢(vj) 2 Rn to vj, we assign the point
�⇢(vj).

Then, if R is the m ⇥ n matrix of a graph drawing of G
in Rn, the energy function E(R) is redefined to be

E(R) =
X

{vi,vj}2E

|wij| k⇢(vi)� sgn(wij)⇢(vj)k2 .

We obtain the following version of Proposition 2.1.



192 CHAPTER 4. SIGNED GRAPHS

Proposition 4.8. Let G = (V, W ) be a signed graph,
with |V | = m and with W a m⇥m symmetric matrix,
and let R be the matrix of a graph drawing ⇢ of G in
Rn (a m ⇥ n matrix). Then, we have

E(R) = tr(R>LR).

Then, as in Chapter 2, we look for a graph drawing R
that minimizes E(R) = tr(R>LR) subject to R>R = I .

The new ingredient is that L is positive definite i↵ G is
not a balanced graph.

Also, in the case of a signed graph, 1 does not belong
to the kernel of L, so we do not get a balanced graph
drawing.
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If G is a signed balanced graph, then KerL is nontrivial,
and if G is connected, then KerL is spanned by a vector
whose components are either +1 or �1.

Thus, if we use the first n unit eigenvectors (u
1

, u
2

, . . . , un)
associated with the n smallest eigenvalues 0 = �

1

< �
2


· · ·  �n of L, we obtain a drawing for which the nodes
are partitionned into two sets living in two hyperplanes
corresponding to the value of their first coordinate.

Let us call such a drawing a bipartite drawing .

However, if G is connected, the vector u
2

does not belong
to KerL, so if m � 3, it must have at least three coordi-
nates with distinct absolute values, and using (u

2

, . . . , un+1

)
we obtain a nonbipartite graph.

Then, the following version of Theorem 2.2 is easily shown.
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Theorem 4.9. Let G = (V, W ) be a signed graph with
|V | = m � 3, assume that G has some negative edge
and is connected, and let L = D � W be the signed
Laplacian of G.

(1) If G is not balanced and if the eigenvalues of L are
0 < �

1

 �
2

 �
3

 . . .  �m, then the minimal
energy of any orthogonal graph drawing of G in
Rn is equal to �

1

+ · · · + �n The m ⇥ n matrix R
consisting of any unit eigenvectors u

1

, . . . , un as-
sociated with �

1

 . . .  �n yields an orthogonal
graph drawing of minimal energy.

(2) If G is balanced and if the eigenvalues of L are
0 = �

1

< �
2

 �
3

 . . .  �m, then the minimal
energy of any orthogonal nonbipartite graph draw-
ing of G in Rn is equal to �

2

+ · · ·+�n+1

(in partic-
ular, this implies that n < m). The m ⇥ n matrix
R consisting of any unit eigenvectors u

2

, . . . , un+1

associated with �
2

 . . .  �n+1

yields an orthogo-
nal nonbipartite graph drawing of minimal energy.
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(3) If G is balanced, for n = 2, a graph drawing of G as
a bipartite graph (with positive edges only withing
the two blocks of vertices) is obtained from the m⇥
2 matrix consisting of any two unit eigenvectors u

1

and u
2

associated with 0 and �
2

.

In all cases, the graph drawing R satisfies the condi-
tion R>R = I (it is an orthogonal graph drawing).

Our first example is the signed graph G4 defined by the
weight matrix given by the following Matlab program:

nn = 6; G3 = diag(ones(1,nn),1);

G3 = G3 + G3’;

G3(1,nn+1) = 1; G3(nn+1,1) = 1;

G4 = -G3;

All edges of this graph are negative. The graph obtained
by using G3 is shown on the left and the graph obtained
by using the signed Laplacian of G4 is shown on the right
in Figure 4.6.
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Figure 4.6: The signed graph G4.

The second example is the signed graph G5 obtained from
G3 by making a single edge negative:

G5 = G3; G5(1,2) = -1; G5(2,1) = -1;

The graph obtained by using G3 is shown on the left and
the graph obtained by using the signed Laplacian of G5
is shown on the right in Figure 4.7.

Positive edges are shown in blue and negative edges are
shown in red.
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Figure 4.7: The signed graph G5.

The third example is the signed graph G6 defined by the
weight matrix given by the following Matlab program:

nn = 24; G6 = diag(ones(1,nn),1);

G6 = G6 + G6’;

G6(1,nn+1) = 1; G6(nn+1,1) = 1;

G6(1,2) = -1; G6(2,1) = -1; G6(6,7) = -1;

G6(7,6) = -1; G6(11,12) = -1; G6(12,11) = -1;

G6(16,17) = -1; G6(17,16) = -1;

G6(21,22) = -1; G6(22,21) = -1;

The graph obtained by using absolute values in G6 is
shown on the left and the graph obtained by using the
signed Laplacian of G6 is shown on the right in Figure
4.8.
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Figure 4.8: The signed graph G6.

The fourth example is the signed graph G7 defined by the
weight matrix given by the following Matlab program:

nn = 26; G7 = diag(ones(1,nn),1);

G7 = G7 + G7’; G7(1,nn+1) = 1;

G7(nn+1,1) = 1; G7(1,2) = -1;

G7(2,1) = -1; G7(10,11) = -1;

G7(11,10) = -1; G7(19,20) = -1;

G7(20,19) = -1;

The graph obtained by using absolute values in G7 is
shown on the left and the graph obtained by using the
signed Laplacian of G7 is shown on the right in Figure
4.9.
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Figure 4.9: The signed graph G7.

These graphs are all unbalanced. As predicted, nodes
linked by negative edges are far from each other.

Our last example is the balanced graph G1 from Figure
4.1.

The graph obtained by using absolute values in G1 is
shown on the left and the bipartite graph obtained by
using the signed Laplacian of G1 is shown on the right in
Figure 4.10.
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Figure 4.10: The balanced graph G1.


