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3.4 Finding a Discrete Solution Close to a Continuous

Approximation

The next step is to find an exact solution
(P(X1), . . . ,P(XK)) 2 P(K) which is the closest (in a
suitable sense) to our approximate solution (Z1, . . . , ZK).

Recall from Section 3.3 that every solution Z of problem
(⇤

2

) yields a family of solutions of problem (⇤
1

); namely,
all matrices of the form ZQ, where Q is a K ⇥K matrix
with nonzero and pairwise orthogonal columns.

Since the solutions ZQ of (⇤
1

) are all equivalent (they
yield the same minimum for the normalized cut), it makes
sense to look for a discrete solution X closest to one of
these ZQ.

We view K as a subset of (RPN�1)K.
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Because K is closed under the antipodal map, it can be
shown that for every j (1  j  K), minimizing the dis-
tance d(P(Xj),P(Zj)) on RPN�1 is equivalent to mini-
mizing

�

�Xj � Zj
�

�

2

, whereXj and Zj are representatives
of P(Xj) and P(Zj) on the unit sphere (if we use the
Riemannian metric on RPN�1 induced by the Euclidean
metric on RN).

Then, if we use the product distance on (RPN�1)K given
by

d
�

(P(X1), . . . ,P(XK)), (P(Z1), . . . ,P(ZK))
�

=
K
X

j=1

d(P(Xj),P(Zj)),

minimizing the distance
d
�

(P(X1), . . . ,P(XK)), (P(Z1), . . . ,P(ZK))
�

in (RPN�1)K

is equivalent to minimizing

K
X

j=1

�

�Xj � Zj
�

�

2

, subject to

�

�Xj
�

�

2

=
�

�Zj
�

�

2

(j = 1, . . . , K).
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We are not aware of any optimization method to solve
the above problem, which seems di�cult to tackle due to
constraints

�

�Xj
�

�

2

=
�

�Zj
�

�

2

(j = 1, . . . , K).

Therefore, we drop these constraints and attempt to min-
imize

kX � Zk2

F =
K
X

j=1

�

�Xj � Zj
�

�

2

2

,

the Frobenius norm of X�Z. This is implicitly the choice
made by Yu.

Inspired by Yu [16] and the previous discussion, given a
solution Z of problem (⇤

2

), we look for pairs (X, Q) with
X 2 X and where Q is a K ⇥ K matrix with nonzero
and pairwise orthogonal columns, with kXkF = kZkF ,
that minimize

'(X, Q) = kX � ZQkF .
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Yu [16] and Yu and Shi [17] consider the special case
where Q 2 O(K).

We consider the more general case where Q = R⇤, with
R 2 O(K) and ⇤ is a diagonal invertible matrix.

The key to minimizing kX � ZQkF rests on the following
result:

kX � ZQk2

F = kXk2

F � 2tr(Q>Z>X) + tr(Z>ZQQ>).

Therefore, since kXkF = kZkF is fixed, minimizing
kX � ZQk2

F is equivalent to
minimizing �2tr(Q>Z>X) + tr(Z>ZQQ>).

This is a hard problem because it is a nonlinear opti-
mization problem involving two matrix unknowns X and
Q.
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To simplify the problem, we proceed by alternating steps
during which weminimize '(X, Q) = kX � ZQkF with
respect to X holding Q fixed, and steps during which
we minimize '(X, Q) = kX � ZQkF with respect to
Q holding X fixed.

This second step in which X is held fixed has been
studied, but it is still a hard problem for which no closed–
form solution is known.

Consequently, we further simplify the problem.

Since Q is of the form Q = R⇤ where R 2 O(K) and ⇤ is
a diagonal invertible matrix, we minimize kX � ZR⇤kF

in two stages.

1. We set ⇤ = I and find R 2 O(K) that minimizes
kX � ZRkF .

2. Given X , Z, and R, find a diagonal invertible matrix
⇤ that minimizes kX � ZR⇤kF .
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The matrix R⇤ is not a minimizer of kX � ZR⇤kF in
general, but it is an improvement on R alone, and both
stages can be solved quite easily.

In stage 1, the matrix Q = R is orthogonal, so QQ> = I ,
and since Z and X are given, the problem reduces to min-
imizing�2tr(Q>Z>X); that is,maximizing tr(Q>Z>X).

To solve this problem, we need the following proposition.

Proposition 3.2. For any n ⇥ n matrix A and any
orthogonal matrix Q, we have

max{tr(QA) | Q 2 O(n)} = �
1

+ · · · + �n,

where �
1

� · · · � �n are the singular values of A.
Furthermore, this maximum is achieved by Q = V U>,
where A = U⌃V > is any SVD for A.
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As a corollary of Proposition 3.2 (with A = Z>X and
Q = R>), we get the following result (see Golub and Van
Loan [8], Section 12.4.1):

Proposition 3.3. For any two fixed N ⇥K matrices
X and Z, the minimum of the set

{kX � ZRkF | R 2 O(K)}

is achieved by R = UV >, for any SVD decomposition
U⌃V > = Z>X of Z>X.

The following proposition takes care of stage 2.

Proposition 3.4. For any two fixed N ⇥ K matri-
ces X and Z, where Z has no zero column, there is
a unique diagonal matrix ⇤ = diag(�

1

, . . . , �K) mini-
mizing kX � Z⇤kF given by

�j =
(Z>X)jj

kZjk2

2

j = 1, . . . , K.
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It should be noted that Proposition 3.4 does not guaran-
tee that ⇤ is invertible. For example, for

X =

0

@

1 0
0 1
1 0

1

A , Z =

0

@

1 1
1 0
1 �1

1

A ,

we have

Z>X =

✓

1 1 1
1 0 �1

◆

0

@

1 0
0 1
1 0

1

A =

✓

2 1
0 0

◆

,

so �
2

= 0. When Proposition 3.4 yields a singular matrix,
we skip stage 2 (we set ⇤ = I).
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We now deal with step 1, where Q = R⇤ is held fixed.

For fixed Z and Q, we would like to find some X 2 K
with kXkF = kZkF so that kX � ZQkF is minimal.

Without loss of generality, we may assume that the entries
a

1

, . . . , aK occurring in the matrix X are positive and all
equal to some common value a 6= 0.

Recall that a matrix X 2 X has the property that every
row contains exactly one nonzero entry, and that every
column is nonzero.

To find X 2 K, first we find the shape bX of X , which is
the matrix obtained from X by rescaling the columns of
X so that bX has entries +1, 0.

The problem is to decide for each row, which column
contains the nonzero entry.
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After having found bX , we rescale its columns so that
kXkF = kZkF .

Since

kX � ZQk2

F = kXk2

F � 2tr(Q>Z>X) + tr(Z>ZQQ>),

minimizing kX � ZQkF is equivalent to maximizing

tr(Q>Z>X) = tr((ZQ)>X) = tr(X(ZQ)>),

and since the ith row of X contains a single nonzero entry
a in column ji (1  ji  K), if we write Y = ZQ, then

tr(XY >) = a

N
X

i=1

yi ji. (⇤)

By (⇤), since a > 0, the quantity tr(XY >) is maximized
i↵ yiji is maximized for i = 1, . . . , N ; this is achieved if
for the ith row of X, we pick a column index ` such
that yi` is maximum.
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To find the shape bX of X , we first find a matrix X by
chosing a single nonzero entry xij = 1 on row i in such
a way that yij is maximum according to the following
method.

If we let

µi = max
1jK

yij

Ji = {j 2 {1, . . . , K} | yij = µi},

for i = 1, . . . , N , then

xij =

(

+1 for some chosen j 2 Ji,

0 otherwise.

Of course, a single column index is chosen for each row.
In our implementation, we pick the smallest index in Ji.
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Unfortunately, the matrix X may not be a correct solu-
tion, because the above prescription does not guarantee
that every column of X is nonzero.

When this happens, we reassign certain nonzero en-
tries in columns having “many” nonzero entries to
zero columns, so that we get a matrix in K.

Suppose column j is zero. Then, we pick the leftmost
index k of a column with a maximum number of 1, and
if i the smallest index for which Xik = 1, then we set
Xik = 0 and Xij = 1.

We repeat this reallocation scheme until every column is
nonzero.

We obtain a new matrix bX in X , and finally we normalize
bX to obtain X , so that kXkF = kZkF .
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The above method is essentially the method described in
Yu [16] and Yu and Shi [17].

The fact that X may have zero columns is not addressed
by Yu.

Furthermore, it is important to make sure that X has
the same norm as Z, but this normalization step is not
performed in the above works.

On the other hand, the rows of Z are normalized and the
resulting matrix may no longer be a correct solution of
the relaxed problem.

In practice, it appears to be a good approximation of a
discrete solution; see option (3) of the initialization meth-
ods for Z described below.
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Any matrix obtained by flipping the signs of some of the
columns of a solution ZR of problem (⇤

2

) is still a solu-
tion.

Moreover, all entries in X are nonnegative. It follows
that a “good” solution ZQp (that is, close to a discrete
solution) should have the property that the average of
each of its column is nonnegative.

We found that the following heuristic is quite helpful in
finding a better discrete solution X .

Given a solution ZR of problem (⇤
2

), we compute ZQp,
defined such that if the average of column (ZR)j is neg-
ative, then (ZQp)j = �(ZR)j, else
(ZQp)j = (ZR)j.
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It follows that the average of every column in ZQp is
nonnegative. Then, we apply the above procedure to
find discrete solutions X and Xp closest to ZR and ZQp

respectively, and we pick the solution corresponding to
min{kX � ZRkF , kXp � ZQpkF}.

Flipping signs of columns of ZR correspond to a diag-
onal matrix Rp with entries ±1, a very special kind of
orthogonal matrix.

In summary, the procedure for finding a discrete X close
to a continuous ZR also updates R to Qp = RRp.

This step appears to be very e↵ective for finding a good
initial X .
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The method due to Yu and Shi (see Yu [16] and Yu and
Shi [17]) to find X 2 K and Q = R⇤ with R 2 O(K)
and ⇤ diagonal invertible that minimize
'(X, Q) = kX � ZQkF is to alternate steps during
which either Q is held fixed (step PODX) or X is held
fixed (step PODR), except that Yu and Shi consider the
special case where ⇤ = I .

(1) In step PODX, the next discrete solution X⇤ is ob-
tained fom the previous pair (Q⇤, Z) by computing X

and then X⇤ = bX from Y = ZQ⇤, as just explained
above.

(2) In step PODR, the next matrix Q⇤ = R⇤ is obtained
from the previous pair (X⇤, Z) by first computing

R = UV >,

for any SVD decomposition U⌃V > of Z>X⇤, and
then computing ⇤ from X⇤ and ZR using Proposition
3.4. If ⇤ is singular, then set ⇤ = I .
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We keep track of the progress of the procedure by com-
puting '(X⇤, Q⇤) = kX⇤ � ZQ⇤kF after every step and
checking that X⇤ or '(X⇤, Q⇤) stops changing, whichever
comes first.

We observed that after a small number of steps, up to
machine precision, '(X⇤, Q⇤) stops decreasing, and when
this occurs the procedure halts (we also set a maximum
number of steps in case '(X⇤, Q⇤) decreases for a very
long time).

Moreover, looking for Q = R⇤ where R 2 O(K) and ⇤
is obtained using the method of Proposition 3.4 speeds
up the convergence and yields a better discrete solution
X .

The process of searching for X and Q has an illuminating
geometric interpretation in terms of graph drawings.
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We may assume that the entries in the discrete solution
X are 0 or 1.

Then the rows of the discrete solutions X correspond to
the tips of the unit vectors along the coordinate axes in
RK.

Every axis contains at least such a point, and the mul-
tiplicity of the point along the jth axis is the number of
nodes in the jth block of the partition.

Similarly, the rows of Z are the nodes of a graph drawing
of the weighted graph (V, W ).

Multiplying Z on the right by a K ⇥ K matrix Q (ob-
taining ZQ) is equivalent to multiplying Z> on the left
by Q> (obtaining Q>Z>).
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This means that the points in RK representing the rows
of ZQ are obtained by applying the linear transformation
Q> to the columns of Z>.

Thus, ZR amounts to applying the rigid motion R> to
the graph drawing Z, and Z⇤ (where ⇤ is a diagonal
invertible matrix) amounts to stretching or shrinking the
graph drawing Z in the directions of the axes.

Then, in step 2 (PODR), we are trying to deform the
graph drawing given by Z using a linear map (R⇤)>, so
that the deformed graph drawing ZR⇤ is as close as pos-
sible to X (in the sense that kX � ZR⇤kF is minimized).

In step 1 (PODX), we are trying to approximate the de-
formed graph drawing ZR⇤ by a discrete graph drawing
X (whose nodes are the tips of the unit vectors), so that
kX � ZR⇤kF is minimized.
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If we are willing to give up the requirement that the de-
formed Z is still a solution of problem (⇤

1

), we have quite
a bit of freedom in step 2.

For example, we may allow normalizing the rows.

This seems reasonable to obtain an initial transformation
Q.

However, we feel uncomfortable in allowing intermediate
deformed Z that are not solutions of (⇤

1

) during the it-
eration process.

This point should be investigated further.

In some sense, we have less freedom in step 1, since the
ith row of ZR⇤ is assigned to the jth unit vector i↵ the
index of the leftmost largest coordinate of this row is j.
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If some axis has not been assigned any row of R, then we
reallocate one of the points on an axis with a maximum
number of points.

Figure 3.5 shows a graph (on the left) and the graph
drawings X and Z ⇤R obtained by applying our method
for three clusters.

The rows of X are represented by the red points along
the axes, and the rows of Z ⇤ R by the green points (on
the right).

The original vertices corresponding to the rows of Z are
represented in blue.
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We can see how the two red points correspond to an edge,
the three red points correspond to a triangle, and the four
red points to a quadrangle.

These constitute the clusters.
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Xc and Rc after step 1

Figure 3.5: A graph and its drawing to find 3 clusters.
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It remains to initialize Q⇤ to start the process, and then
steps (1) and (2) are iterated, starting with step (1).

Actually, what we really need is a “good” initial X⇤, but
to find it, we need an initial R⇤.

Method 1. One method is to use an orthogonal matrix
denoted R

1

, such that distinct columns of ZR
1

are si-
multaneously orthogonal and D-orthogonal.

The matrix R
1

can be found by diagonalizing Z>Z as
Z>Z = R

1

⌃R>
1

, as we explained at the end of Section
3.3. We write Z

2

= ZR
1

.

Method 2. The method advocated by Yu [16] is to pick
K rows of Z that are as orthogonal to each other as
possible and to make a matrix R whose columns consist
of these rows normalized to have unit length.
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The intuition behind this method is that if a continuous
solution Z can be sent close to a discrete solution X by
a rigid motion, then many rows of Z viewed as vectors in
RK should be nearly orthogonal.

This way, ZR should contain at least K rows well aligned
with the canonical basis vectors, and these rows are good
candidates for some of the rows of the discrete solution
X .

The algorithm given in Yu [16] needs a small correction,
because rows are not removed from Z when they are
added to R, which may cause the same row to be added
several times to R.
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Given the N ⇥K matrix Z (whose columns all have the
same norm), we compute a matrix R whose columns are
certain rows of Z.

We use a vector c 2 RN to keep track of the inner prod-
ucts of all rows of Z with the columns R1, . . . , Rk�1 that
have been constructed so far, and initially when k = 1,
we set c = 0.

The first column R1 of R is any chosen row of Z.

Next, for k = 2, . . . , K, we compute all the inner prod-
ucts of Rk�1 with all rows in Z, which are recorded in
the vector ZRk�1, and we update c as follows:

c = c + abs(ZRk�1).

We take the absolute values of the entries in ZRk�1 so
that the ith entry in c is a score of how orthogonal is the
ith row of Z to R1, . . . , Rk�1.
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Then, we choose Rk as any row Zi of Z for which ci is
minimal (the customary (and ambiguous) i = argmin c),
and we delete this row from Z. The process is repeated
(with the updated Z) until k = K.

At the end of the above process, we normalize the columns
of R, to obtain a matrix that we denote R

2

.

After some experimentation, we found that to obtain a
better initial X⇤, it is may desirable to start from a vari-
ant of the continuous solution Z obtained by solving prob-
lem (⇤

2

).

We have implemented three methods.
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1. We attempt to rescale the columns of Z by some diag-
onal invertible matrix ⇤ = diag(�

1

, . . . , �K), so that
the rows of Z⇤ sum to 1 as much as possible in the
least-squares sense.

Since the vector of sums of rows ofZ⇤ isZ⇤1K = Z�,
with �> = (�

1

, . . . , �K), the least-squares problem is
to minimize

kZ� � 1Nk2

2

,

and since Z has rank K, the solution is
� = (Z>Z)�1Z>1N , and thus,

⇤ = diag((Z>Z)�1Z>1N).

The matrix ⇤ is singular if some of the columns of Z
sum to 0.
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This happens for regular graphs, where the degree
matrix is a multiple of the identity.

There are also cases where some of the �j are very
small, so we use a tolerance factor to prevent this,
and in case of failure, we set ⇤ = I .

In case of failure, we may also use ZR
1

instead of Z,
where R

1

is the orthogonal matrix that makes ZR
1

both D-orthogonal and orthogonal.
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2. We attempt to rescale the columns of Z by some diag-
onal invertible matrix ⇤ = diag(�

1

, . . . , �K), so that
the rows of Z⇤ have unit length as much as possible
in the least-squares sense.

Since the square-norm of the ith row of Z⇤ is

K
X

j=1

z2

ij�
2

j ,

if we write Z �Z for the matrix (z2

ij) of square entries
of elements in Z (the Hadamard product of Z with
itself), the least-squares problem is to mimimize

�

�Z � Z�2 � 1N

�

�

2

2

,

where (�2)> = (�2

1

, . . . , �2

K).
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The matrix Z �Z may not have rank K, so the least-
squares solution for �2 is given by the pseudo-inverse
of Z � Z, as

�2 = (Z � Z)+1N.

There is no guarantee that the vector on the right-
hand side has all positive entries, so the method may
fail.

It may also fail when some of the �j are very small.

We use a tolerance factor to prevent this, and in case
of failure, we set ⇤ = I .
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3. We use a method more drastic than (2), which consists
in normalizing the rows of Z. Thus, we form the
matrix

NZ = diag((ZZ>)�1/2
11

, . . . , (ZZ>)�1/2
NN ),

and we return NZ ⇤ Z.

Unlike the methods used in (1) and (2), this method
does not guarantee that NZ ⇤Z is a solution of prob-
lem (⇤

1

).

However, since the rows of Z can be interpreted as
vectors in RK that should align as much as possible
with the canonical basis vectors of RK, this method
makes sense as a way to come closer to a discrete
solution.

In fact, we found that it does well in most cases.
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We implemented a computer program that prompts the
user for various options.

To avoid confusion, let us denote the original solution of
problem (⇤

2

) by Z
1

, and let Z
2

= Z
1

R
1

, as obtained by
initialization method 1.

The four options are:

1. Use the original solution Z
1

of problem (⇤
2

), as well
as Z

2

.

2. Apply method 1 to Z
1

and Z
2

.

3. Apply method 2 to Z
1

and Z
2

.

4. Apply method 3 to Z
1

and Z
2

.
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Then, for each of these options, if we denote by Zinit
1

and Zinit
2

the solutions returned by the method, our
program computes initial solutions X

1

, X
2

, X
3

, X
4

as fol-
lows:

1. Use Zinit
1

and R = I .

2. Use Zinit
1

and R = R2a, the matrix given by ini-
tialization method 2.

3. Use Zinit
2

and R = I .

4. Use Zinit
2

and R = R2b, the matrix given by initial-
ization method 2.

After this, the program picks the discrete solution X =
Xi which corresponds to the minimum of

kX1� Zinit1k , kX2� Zinit1 ⇤ R2ak ,

kX3� Zinit2k , kX4� Zinit2 ⇤ R2bk .
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Our experience is that options (3) and (4) tend to give
better results.

However, it is harder to say whether any of the Xi does
a better job than the others, although (2) and (4) seem
to do slightly better than (1) and (3).

We also give the user the option in step PODR to only
compute R and set ⇤ = I .

It appears that the more general method is hardly more
expansive (because finding ⇤ is cheap) and always gives
better results.

We also found that we obtain better results if we rescale
Z (and X) so thatkZkF = 100.
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If we apply the method (using method 3 to find the initial
R) to the graph associated with the the matrix W

1

shown
in Figure 3.6 for K = 4 clusters, the algorithm converges
in 3 steps and we find the clusters shown in Figure 3.7.

Figure 3.6: Underlying graph of the matrix W1.
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Figure 3.7: Four blocks of a normalized cut for the graph associated with W1 .
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The solution Z of the relaxed problem is

Z =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

�21.3146 �0.0000 19.4684 �15.4303
�4.1289 0.0000 16.7503 �15.4303
�21.3146 32.7327 �19.4684 �15.4303
�4.1289 �0.0000 16.7503 �15.4303
19.7150 0.0000 9.3547 �15.4303
�4.1289 23.1455 �16.7503 �15.4303
�21.3146 �32.7327 �19.4684 �15.4303
�4.1289 �23.1455 �16.7503 �15.4303
19.7150 �0.0000 �9.3547 �15.4303

1

C

C

C

C

C

C

C

C

C

C

C

C

A

.

We find the following sequence for Q, Z ⇤ Q, X :

Q =

0

B

B

@

0 0.6109 �0.3446 �0.7128
�1.0000 0.0000 0.0000 �0.0000
0.0000 0.5724 0.8142 0.0969
�0.0000 0.5470 �0.4672 0.6947

1

C

C

A

,

which is the initial Q obtained by method 1;
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Z ⇤ Q =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

0.0000 �10.3162 30.4065 6.3600
0.0000 �1.3742 22.2703 �6.1531

�32.7327 �32.6044 �1.2967 2.5884
0.0000 �1.3742 22.2703 �6.1531
0.0000 8.9576 8.0309 �23.8653

�23.1455 �20.5505 �5.0065 �9.3982
32.7327 �32.6044 �1.2967 2.5884
23.1455 �20.5505 �5.0065 �9.3982
�0.0000 �1.7520 �7.2027 �25.6776

1

C

C

C

C

C

C

C

C

C

C

C

C

A

X =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 1 0
0 0 1 0
0 0 0 1
0 0 1 0
0 1 0 0
0 0 1 0
1 0 0 0
1 0 0 0
1 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

;

Q =

0

B

B

@

�0.0803 0.8633 �0.4518 �0.2102
�0.6485 0.1929 0.1482 0.7213
�0.5424 0.0876 0.5546 �0.6250
�0.5281 �0.4581 �0.6829 �0.2119

1

C

C

A
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Z ⇤ Q =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

�0.6994 �9.6267 30.9638 �4.4169
�0.6051 4.9713 21.6922 �6.3311
�0.8081 �6.7218 14.2223 43.5287
�0.6051 4.9713 21.6922 �6.3311
1.4913 24.9075 6.8186 �6.7218
2.5548 6.5028 6.5445 31.3015
41.6456 �19.3507 4.5190 �3.6915
32.5742 �2.4272 �0.3168 �2.0882
11.6387 23.2692 �3.5570 4.9716

1

C

C

C

C

C

C

C

C

C

C

C

C

A

X =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 1 0
0 0 1 0
0 0 0 1
0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0
1 0 0 0
0 1 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

;

Q =

0

B

B

@

�0.3201 0.7992 �0.3953 �0.3201
�0.7071 �0.0000 0.0000 0.7071
�0.4914 �0.0385 0.7181 �0.4914
�0.3951 �0.5998 �0.5728 �0.3951

1

C

C

A
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Z ⇤ Q =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

3.3532 �8.5296 31.2440 3.3532
�0.8129 5.3103 22.4987 �0.8129
�0.6599 �7.0310 3.2844 45.6311
�0.8129 5.3103 22.4987 �0.8129
�4.8123 24.6517 7.7629 �4.8123
�0.7181 6.5997 �1.5571 32.0146
45.6311 �7.0310 3.2844 �0.6599
32.0146 6.5997 �1.5571 �0.7181
4.3810 25.3718 �5.6719 4.3810

1

C

C

C

C

C

C

C

C

C

C

C

C

A

X =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 1 0
0 0 1 0
0 0 0 1
0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0
1 0 0 0
0 1 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

.

During the next round, the exact same matrices are ob-
tained and the algorithm stops.
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Comparison of the matrices Z ⇤ Q and X makes it clear
that X is obtained from Z ⇤ Q by retaining on every
row the leftmost largest value and setting the others to 0
(non-maximum supression).

In this example, the columns of all X were nonzero, but
this may happen, for example when we apply the algo-
rithm to the graph of Figure 3.6 to find K = 5 clusters
shown in Figure 3.8.
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1
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2.5

3

Figure 3.8: Five blocks of a normalized cut for the graph associated with W1 .
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We find that the initial value for Z ⇤ Q is

Z ⇤ Q =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

�5.7716 �27.5934 0.0000 �9.3618 �0.0000
5.5839 �20.2099 �29.7044 �1.2471 �0.0000
�2.3489 1.1767 �0.0000 �29.5880 �29.7044
5.5839 �20.2099 29.7044 �1.2471 0.0000
21.6574 �7.2879 0.0000 8.1289 0.0000
8.5287 4.5433 �0.0000 �18.6493 �21.0042
�2.3489 1.1767 �0.0000 �29.5880 29.7044
8.5287 4.5433 �0.0000 �18.6493 21.0042
23.3020 6.5363 �0.0000 �1.5900 �0.0000

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

The matrix X1 given by the above method in which we
pick the leftmost largest entry on every row has a fourth
row equal to 0.
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The matrix X1 is repaired by migrating a 1 from the sec-
ond entry of the first column, which contains the largest
number of 1’s, yielding the matrix X2; see below.

X1 =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 1 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 0 1
1 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

X2 =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 0 1
1 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

A
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