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3.3 K-Way Clustering Using Normalized Cuts

We now consider the general case in which K � 3.

Two crucial issues need to be addressed (to the best of
our knowledge, these points are not clearly articulated in
the literature).

1. The choice of a matrix representation for partitions
on the set of vertices.

It is important that such a representation be scale-
invariant.

It is also necessary to state necessary and su�cient
conditions for such matrices to represent a partition.
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2. The choice of a metric to compare solutions.

We describe a partition (A
1

, . . . , AK) of the set of nodes
V by an N ⇥K matrix X = [X1 · · ·XK] whose columns
X1, . . . , XK are indicator vectors of the partition (A

1

, . . .,
AK).

Inspired by what we did in Section 3.2, we assume that
the vector Xj is of the form

Xj = (xj
1

, . . . , xj
N),

where xj
i 2 {aj, bj} for j = 1, . . . , K and i = 1, . . . , N ,

and where aj, bj are any two distinct real numbers.

The vector Xj is an indicator vector for Aj in the sense
that, for i = 1, . . . , N ,

xj
i =

(

aj if vi 2 Aj

bj if vi /2 Aj.
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When {aj, bj} = {0, 1} for j = 1, . . . , K, such a matrix
is called a partition matrix by Yu and Shi.

However, such a choice is premature, since it is better to
have a scale-invariant representation to make the denom-
inators of the Rayleigh ratios go away.

Since the partition (A
1

, . . . , AK) consists of nonempty
pairwise disjoint blocks whose union is V , some conditions
on X are required to reflect these properties, but we will
worry about this later.

As in Section 3.2, we seek conditions on the ajs and the bjs
in order to express the normalized cut Ncut(A

1

, . . . , AK)
as a sum of Rayleigh ratios.

Then, we reformulate our optimization problem in a more
convenient form, by chasing the denominators in the
Rayleigh ratios, and by expressing the objective function
in terms of the trace of a certain matrix.
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This will reveal the important fact that the solutions of
the relaxed problem are right-invariant under multiplica-
tion by a K ⇥ K orthogonal matrix.

Let d = 1>D1 and ↵j = vol(Aj), so that ↵
1

+· · ·+↵K =
d.

Then, vol(Aj) = d � ↵j, and as in Section 3.2, we have

(Xj)>LXj = (aj � bj)
2 cut(Aj, Aj),

(Xj)>DXj = ↵ja
2

j + (d � ↵j)b
2

j .
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When K � 3, unlike the case K = 2, in general we have
cut(Aj, Aj) 6= cut(Ak, Ak) if j 6= k, and since

Ncut(A
1

, . . . , AK) =
K
X

j=1

cut(Aj, Aj)

vol(Aj)
,

we would like to choose aj, bj so that

cut(Aj, Aj)

vol(Aj)
=

(Xj)>LXj

(Xj)>DXj
j = 1, . . . , K,

because this implies that

µ(X) = Ncut(A
1

, . . . , AK) =
K
X

j=1

cut(Aj, Aj)

vol(Aj)

=
K
X

j=1

(Xj)>LXj

(Xj)>DXj
.
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We find the condition

2↵jbj(bj � aj) = db2

j.

The above equation is trivially satisfied if bj = 0.

If bj 6= 0, then

aj =
2↵j � d

2↵j
bj.

This choice seems more complicated that the choice bj =
0, so we will opt for the choice bj = 0, j = 1, . . . , K.

With this choice, we get

(Xj)>DXj = ↵ja
2

j .
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Thus, it makes sense to pick

aj =
1

p
↵j

=
1

p

vol(Aj)
, j = 1, . . . , K,

which is the solution presented in von Luxburg [15]. This
choice also corresponds to the scaled partition matrix
used in Yu [16] and Yu and Shi [17].

When N = 10 and K = 4, an example of a matrix X
representing the partition of V = {v

1

, v
2

, . . . , v
10

} into
the four blocks
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{A
1

, A
2

, A
3

, A
4

} =

{{v
2

, v
4

, v
6

}, {v
1

, v
5

}, {v
3

, v
8

, v
10

}, {v
7

, v
9

}},

is shown below:

X =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 a
2

0 0
a

1

0 0 0
0 0 a

3

0
a

1

0 0 0
0 a

2

0 0
a

1

0 0 0
0 0 0 a

4

0 0 a
3

0
0 0 0 a

4

0 0 a
3

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

Let us now consider the problem of finding necessary and
su�cient conditions for a matrix X to represent a parti-
tion of V .

When bj = 0, the pairwise disjointness of the Ai is cap-
tured by the orthogonality of the Xi:

(Xi)>Xj = 0, 1  i, j  K, i 6= j. (⇤)
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When we formulate our minimization problem in terms of
Rayleigh ratios, conditions on the quantities (Xi)>DXi

show up, and it is more convenient to express the or-
thogonality conditions using the quantities (Xi)>DXj

instead of the (Xi)>Xj, because these various conditions
can be combined into a single condition involving the ma-
trix X>DX .

Now, because D is a diagonal matrix with positive entries
and because the nonzero entries in each column of X have
the same sign, for any i 6= j, the condition

(Xi)>Xj = 0

is equivalent to

(Xi)>DXj = 0. (⇤⇤)
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Observe that the orthogonality conditions (⇤) (and (⇤⇤))
are equivalent to the fact that every row of X has at most
one nonzero entry.

Each Aj is nonempty i↵ Xj 6= 0, and the fact that the
union of the Aj is V is captured by the fact that each
row of X must have some nonzero entry (every vertex
appears in some block).

It is not immediately obvious how to state conveniently
this condition in matrix form.

Since every row of any matrix X representing a partition
has a single nonzero entry aj, we have

X>X = diag
�

n
1

a2

1

, . . . , nKa2

K

�

,

where nj is the number of elements in Aj, the jth block
of the partition.
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Therefore, the condition for the columns ofX to be nonzero
is

det(X>X) 6= 0.

Another condition which does not involve explicitly a de-
terminant and is scale-invariant stems from the observa-
tion that not only

X>X = diag
�

n
1

a2

1

, . . . , nKa2

K

�

,

but

X>1N =

0

@

n
1

a
1

...
nKaK

1

A ,
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and these equations imply that

(X>X)�1X>1N =

0

B

@

1

a
1...
1

aK

1

C

A

,

and thus
X(X>X)�1X>1N = 1N. (†)

Note that because the columns of X are linearly indepen-
dent, (X>X)�1X> is the pseudo-inverse X+ of X .

Consequently, if X>X is invertible, condition (†) can also
be written as

XX+1N = 1N.
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However, it is well known that XX+ is the orthogonal
projection of RK onto the range of X (see Gallier [6],
Section 14.1), so the condition XX+1N = 1N is equiva-
lent to the fact that 1N belongs to the range of X .

In retrospect, this should have been obvious since the
columns of a solution X satisfy the equation

a�1

1

X1 + · · · + a�1

K XK = 1N.

We emphasize that it is important to use conditions that
are invariant under multiplication by a nonzero scalar, be-
cause the Rayleigh ratio is scale-invariant, and it is crucial
to take advantage of this fact to make the denominators
go away.
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If we let

X =
n

[X1 . . . XK] | Xj = aj(x
j
1

, . . . , xj
N), x

j
i 2 {1, 0},

aj 2 R, Xj 6= 0
o

(note that the condition Xj 6= 0 implies that aj 6= 0),
then the set of matrices representing partitions of V into
K blocks is

K =
n

X = [X1 · · · XK] | X 2 X ,

(Xi)>DXj = 0,

1  i, j  K, i 6= j,

X(X>X)�1X>1 = 1
o

.
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As in the case K = 2, to be rigorous, the solution are
really K-tuples of points in RPN�1, so our solution set is
really

P(K) =
n

(P(X1), . . . ,P(XK)) | [X1 · · · XK] 2 K
o

.

In view of the above, we have our first formulation of K-
way clustering of a graph using normalized cuts, called
problem PNC1 (the notation PNCX is used in Yu [16],
Section 2.1):
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K-way Clustering of a graph using Normalized
Cut, Version 1:
Problem PNC1

minimize
K
X

j=1

(Xj)>LXj

(Xj)>DXj

subject to (Xi)>DXj = 0, 1  i, j  K, i 6= j,

X(X>X)�1X>1 = 1,

X 2 X .

As in the case K = 2, the solutions that we are seeking
are K-tuples (P(X1), . . . ,P(XK)) of points inRPN�1 de-
termined by their homogeneous coordinates X1, . . . , XK.
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Remark:

Because

(Xj)>LXj = (Xj)>DXj � (Xj)>WXj

= vol(Aj)� (Xj)>WXj,

Instead of minimizing

µ(X1, . . . , XK) =
K
X

j=1

(Xj)>LXj

(Xj)>DXj
,

we can maximize

✏(X1, . . . , XK) =
K
X

j=1

(Xj)>WXj

(Xj)>DXj
,

since

✏(X1, . . . , XK) = K � µ(X1, . . . , XK).
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Theoretically, minimizing µ(X1, . . . , XK) is equivalent to
maximizing ✏(X1, . . . , XK), but from a practical point of
view, it is preferable to maximize ✏(X1, . . . , XK).

This is because minimizing solutions of µ are obtained
from (unit) eigenvectors corresponding to the K small-
est eigenvalues of L

sym

= D�1/2LD�1/2 (by multiplying
these eigenvectors by D1/2).

However, numerical methods for computing eigenvalues
and eigenvectors of a symmetric matrix do much better
at computing largest eigenvalues.

Since L
sym

= I �D�1/2WD�1/2, the eigenvalues of L
sym

listed in increasing order correspond to the eigenvalues of
I � L

sym

= D�1/2WD�1/2 listed in decreasing order.
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Furthermore, v is an eigenvector of L
sym

for the ith small-
est eigenvalue ⌫i i↵ v is an eigenvector of I �L

sym

for the
(N + 1� i)th largest eigenvalue ⌫i.

Therefore, it is preferable to find the largest eigenvalues
of I � L

sym

= D�1/2WD�1/2 and their eigenvectors.

In fact, since the eigenvalues of L
sym

are in the range
[0, 2], the eigenvalues of 2I � L

sym

= I + D�1/2WD�1/2

are also in the range [0, 2] (that is, I + D�1/2WD�1/2 is
positive semidefinite).

Let us now show how our original formulation (PNC1) can
be converted to a more convenient form, by chasing the
denominators in the Rayleigh ratios, and by expressing
the objective function in terms of the trace of a certain
matrix.
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Proposition 3.1. For any orthogonal K ⇥K matrix
R, any symmetric N ⇥ N matrix A, and any N ⇥ K
matrix X = [X1 · · ·XK], the following properties hold:

(1) µ(X) = tr(⇤�1X>LX), where

⇤ = diag((X1)>DX1, . . . , (XK)>DXK).

(2) If (X1)>DX1 = · · · = (XK)>DXK = ↵2, then

µ(X) = µ(XR) =
1

↵2

tr(X>LX).

(3) The condition X>AX = ↵2I is preserved if X is
replaced by XR.

(4) The condition X(X>X)�1X>1 = 1 is preserved if
X is replaced by XR.

Now, by Proposition 3.1(1) and the fact that the con-
ditions in PNC1 are scale-invariant, we are led to the
following formulation of our problem:
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minimize tr(X>LX)

subject to (Xi)>DXj = 0, 1  i, j  K, i 6= j,

(Xj)>DXj = 1, 1  j  K,

X(X>X)�1X>1 = 1,

X 2 X .

Conditions on lines 2 and 3 can be combined in the equa-
tion

X>DX = I,

and, we obtain the following formulation of our minimiza-
tion problem:
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K-way Clustering of a graph using Normalized
Cut, Version 2:
Problem PNC2

minimize tr(X>LX)

subject to X>DX = I,

X(X>X)�1X>1 = 1, X 2 X .

Because problem PNC2 requires the constraintX>DX =
I to be satisfied, it does not have the same set of solutions
as problem PNC1.
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Nevertherless, problem PNC2 is equivalent to problem
PNC1, in the sense that for every minimal solution
(X1, . . . , XK) of PNC1,
(((X1)>DX1)�1/2X1, . . . , ((XK)>DXK)�1/2XK) is a
minimal solution of PNC2 (with the same minimum for
the objective functions), and that for every minimal solu-
tion (Z1, . . . , Zk) of PNC2, (�

1

Z1, . . . , �KZK) is a min-
imal solution of PNC1, for all �i 6= 0, i = 1, . . . , K (with
the same minimum for the objective functions).

In other words, problems PNC1 and PNC2 have the same
set of minimal solutions as K-tuples of points
(P(X1), . . . ,P(XK)) in RPN�1 determined by their ho-
mogeneous coordinates X1, . . . , XK.
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Formulation PNC2 reveals that finding a minimum nor-
malized cut has a geometric interpretation in terms of the
graph drawings discussed in Section 2.1.

Indeed, PNC2 has the following equivalent formulation:
Find a minimal energy graph drawing X in RK of the
weighted graph G = (V, W ) such that:

1. The matrix X is orthogonal with respect to the inner
product h�,�iD in RN induced by D, with

hx, yiD = x>Dy, x, y 2 RN.

2. The rows of X are nonzero; this means that no vertex
vi 2 V is assigned to the origin of RK (the zero vector
0K).

3. Every vertex vi is assigned a point of the form (0, . . . , 0,
aj, 0, . . . , 0) on some axis (in RK).

4. Every axis in RK is assigned at least some vertex.
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Condition 1 can be reduced to the standard condition
for graph drawings (R>R = I) by making the change
of variable Y = D1/2X or equivalently X = D�1/2Y .
Indeed,

tr(X>LX) = tr(Y >D�1/2LD�1/2Y ),

so we use the normalized Laplacian L
sym

= D�1/2LD�1/2

instead of L,

X>DX = Y >Y = I,

and conditions (2), (3), (4) are preserved under the change
of variable Y = D1/2X , since D1/2 is invertible.

However, conditions (2), (3), (4) are “hard” constraints,
especially condition (3).
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In fact, condition (3) implies that the columns of X are
orthogonal with respect to both the Euclidean inner prod-
uct and the inner product h�,�iD, so condition (1) is re-
dundant, except for the fact that it prescribes the norm of
the columns, but this is not essential due to the projective
nature of the solutions.

The main problem in finding a good relaxation of problem
PNC2 is that it is very di�cult to enforce the condition
X 2 X .

Also, the solutions X are not preserved under arbitrary
rotations, but only by very special rotations which leave
X invariant (they exchange the axes).
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The first natural relaxation of problem PNC2 is to drop
the condition that X 2 X , and we obtain the

Problem (⇤
2

)

minimize tr(X>LX)

subject to X>DX = I,

X(X>X)�1X>1 = 1.

Actually, since the discrete solutions X 2 X that we
are ultimately seeking are solutions of problem PNC1,
the preferred relaxation is the one obtained from problem
PNC1 by dropping the condition X 2 X , and simply
requiring that Xj 6= 0, for j = 1, . . . , K:
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Problem (⇤
1

)

minimize
K
X

j=1

(Xj)>LXj

(Xj)>DXj

subject to (Xi)>DXj = 0, Xj 6= 0 1  i, j  K, i 6= j,

X(X>X)�1X>1 = 1.

Now that we dropped the condition X 2 X , it is not
clear that X>X is invertible in (⇤

1

) and (⇤
2

).

However, since the columns of X are nonzero and D-
orthogonal, they must be linearly independent, so X has
rank K and and X>X is invertible.
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As we explained before, every solution Z = [Z1, . . . , ZK]
of problem (⇤

1

) yields a solution of problem (⇤
2

) by nor-
malizing each Zj by ((Zj)>DZj)1/2, and conversely for
every solution Z = [Z1, . . . , ZK] of problem (⇤

2

), the
K-tuple [�

1

Z1, . . . , �KZK] is a solution of problem (⇤
1

),
where �j 6= 0 for j = 1, . . . , K.

Furthermore, by Proposition 3.1, for every orthogonal
matrix R 2 O(K) and for every solution X of (⇤

2

), the
matrix XR is also a solution of (⇤

2

).

Since Proposition 3.1(2) requires that all (Xj)>DXj have
the same value in order to have µ(X) = µ(XR), in gen-
eral, if X is a solution of (⇤

1

), the matrix XR is not
necessarily a solution of (⇤

1

).
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However, every solutionX of (⇤
2

) is also a solution of (⇤
1

),
for every R 2 O(K), XR is a solution of both (⇤

2

) and
(⇤

1

), and since (⇤
1

) is scale-invariant, for every diagonal
invertible matrix ⇤, the matrix XR⇤ is a solution of (⇤

1

).

In summary, every solution Z of problem (⇤
2

) yields a
family of solutions of problem (⇤

1

); namely, all matrices
of the form ZR⇤, where R 2 O(K) and ⇤ is a diagonal
invertible matrix.

We will take advantage of this fact in looking for a discrete
solution X “close” to a solution Z of the relaxed problem
(⇤

2

).

Observe that a matrix is of the form R⇤ with R 2 O(K)
and ⇤ a diagonal invertible matrix i↵ its columns are
nonzero and pairwise orthogonal.
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Recall that if X>X is invertible (which is the case), con-
dition X(X>X)�1X>1 = 1 is equivalent to XX+1 = 1,
which is also equivalent to the fact that 1 is in the range
of X .

If we make the change of variable Y = D1/2X or equiva-
lently X = D�1/2Y , the condition that 1 is in the range
of X becomes the condition that D1/21 is in the range of
Y , which is equivalent to

Y Y +D1/21 = D1/21.

However, since Y >Y = I , we have

Y + = Y >,

so we get the equivalent problem
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Problem (⇤⇤
2

)

minimize tr(Y >D�1/2LD�1/2Y )

subject to Y >Y = I,

Y Y >D1/21 = D1/21.

We pass from a solution Y of problem (⇤⇤
2

) to a solution
Z of problem (⇤

2

) by Z = D�1/2Y .

It is not a priori obvious that the minimum of tr(Y >L
sym

Y )
over all N ⇥ K matrices Y satisfying Y >Y = I is equal
to the sum ⌫

1

+ · · · + ⌫K of the first K eigenvalues of
L

sym

= D�1/2LD�1/2.
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Fortunately, the Poincaré separation theorem (Proposi-
tion A.3) guarantees that the sum of theK smallest eigen-
values of L

sym

is a lower bound for tr(Y >L
sym

Y ).

Furthermore, if we temporarily ignore the second con-
straint, the minimum of problem (⇤⇤

2

) is achieved by
any K unit eigenvectors (u

1

, . . . , uK) associated with the
smallest eigenvalues

0 = ⌫
1

 ⌫
2

 . . .  ⌫K

of L
sym

.

We may assume that ⌫
2

> 0, namely that the underlying
graph is connected (otherwise, we work with each con-
nected component), in which case Y 1 = D1/21/

�

�D1/21
�

�

2

,
because 1 is in the nullspace of L.
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Since Y 1 = D1/21/
�

�D1/21
�

�

2

, the vector D1/21 is in the
range of Y , so the condition

Y Y >D1/21 = D1/21

is also satisfied. Then, Z = D�1/2Y with Y = [u
1

. . . uK]
yields a minimum of our relaxed problem (⇤

2

) (the second
constraint is satisfied because 1 is in the range of Z).

By Proposition 1.6, the vectors Zj are eigenvectors of L
rw

associated with the eigenvalues 0 = ⌫
1

 ⌫
2

 . . .  ⌫K.

Recall that 1 is an eigenvector for the eigenvalue ⌫
1

= 0,
and Z1 = 1/

�

�D1/21
�

�

2

.
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Because, (Y i)>Y j = 0 whenever i 6= j, we have

(Zi)>DZj = 0, whenever i 6= j.

This implies that Z2, . . . , ZK are all orthogonal to D1,
and thus, that each Zj has both some positive and some
negative coordinate, for j = 2, . . . , K.

The conditions (Zi)>DZj = 0 do not necessarily imply
that Zi and Zj are orthogonal (w.r.t. the Euclidean inner
product), but we can obtain a solution of Problems (⇤

2

)
and (⇤

1

) achieving the same minimum for which distinct
columns Zi and Zj are simultaneously orthogonal and D-
orthogonal, by multiplying Z by some K⇥K orthogonal
matrix R on the right.
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Indeed, if Z is a solution of (⇤
2

) obtained as above, the
K ⇥ K symmetric matrix Z>Z can be diagonalized by
some orthogonal K ⇥ K matrix R as

Z>Z = R⌃R>,

where ⌃ is a diagonal matrix, and thus,

R>Z>ZR = (ZR)>ZR = ⌃,

which shows that the columns of ZR are orthogonal.

By Proposition 3.1, ZR also satisfies the constraints of
(⇤

2

) and (⇤
1

), and tr((ZR)>L(ZR)) = tr(Z>LZ).
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Remark: Since Y has linearly independent columns (in
fact, orthogonal) and since Z = D�1/2Y , the matrix Z
also has linearly independent columns, so Z>Z is positive
definite and the entries in ⌃ are all positive.

Also, instead of computing Z>Z explicitly and diagonal-
izing it, the matrix R can be found by computing an SVD
of Z.


