
Chapter 3

Graph Clustering

3.1 Graph Clustering Using Normalized Cuts

Given a set of data, the goal of clustering is to partition
the data into di↵erent groups according to their similari-
ties.

When the data is given in terms of a similarity graph G,
where the weight wi j between two nodes vi and vj is a
measure of similarity of vi and vj, the problem can be
stated as follows:
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Find a partition (A
1

, . . . , AK) of the set of nodes V into
di↵erent groups such that the edges between di↵erent
groups have very low weight (which indicates that the
points in di↵erent clusters are dissimilar), and the
edges within a group have high weight (which indicates
that points within the same cluster are similar).

The above graph clustering problem can be formalized as
an optimization problem, using the notion of cut men-
tioned at the end of Section 1.1.

Given a subset A of the set of vertices V , we define cut(A)
by

cut(A) = links(A, A) =
X

vi2A,vj2A

wi j.
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If we want to partition V into K clusters, we can do so
by finding a partition (A

1

, . . . , AK) that minimizes the
quantity

cut(A
1

, . . . , AK) =
1

2

K
X

i=1

cut(Ai).

For K = 2, the mincut problem is a classical problem
that can be solved e�ciently, but in practice, it does not
yield satisfactory partitions.

Indeed, in many cases, the mincut solution separates one
vertex from the rest of the graph.

What we need is to design our cost function in such a way
that it keeps the subsets Ai “reasonably large” (reason-
ably balanced).
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An example of a weighted graph and a partition of its
nodes into two clusters is shown in Figure 3.1.

15

Encode Pairwise Relationships as a Weighted Graph

16

Cut the graph into two pieces 

Figure 3.1: A weighted graph and its partition into two clusters.

A way to get around this problem is to normalize the
cuts by dividing by some measure of each subset Ai.

One possibility is to use the size (the number of elements)
of Ai.

Another is to use the volume vol(Ai) of Ai.
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A solution using the second measure (the volume) (for
K = 2) was proposed and investigated in a seminal paper
of Shi and Malik [13].

Subsequently, Yu (in her dissertation [16]) and Yu and
Shi [17] extended the method to K > 2 clusters.

The idea is to minimize the cost function

Ncut(A
1

, . . . , AK) =
K
X

i=1

links(Ai, Ai)

vol(Ai)
=

K
X

i=1

cut(Ai, Ai)

vol(Ai)
.

We begin with the case K = 2, which is easier to handle.
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3.2 Special Case: 2-Way Clustering Using Normalized

Cuts

Our goal is to express our optimization problem in matrix
form.

In the case of two clusters, a single vector X can be used
to describe the partition (A

1

, A
2

) = (A, A).

We need to choose the structure of this vector in such a
way that Ncut(A, A) is equal to the Rayleigh ratio

X>LX

X>DX
.

It is also important to pick a vector representation which
is invariant under multiplication by a nonzero scalar,
because the Rayleigh ratio is scale-invariant, and it is
crucial to take advantage of this fact to make the denom-
inator go away.
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Let N = |V | be the number of nodes in the graph G.

In view of the desire for a scale-invariant representation,
it is natural to assume that the vector X is of the form

X = (x
1

, . . . , xN),

where xi 2 {a, b} for i = 1, . . . , N , for any two distinct
real numbers a, b.

This is an indicator vector in the sense that, for i =
1, . . . , N ,

xi =

(

a if vi 2 A

b if vi /2 A.
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The correct interpretation is really to view X as a repre-
sentative of a point in the real projective space RPN�1,
namely the point P(X) of homogeneous coordinates
(x

1

: · · · : xN).

Therefore, from now on, we viewX as a vector of homoge-
neous coordinates representing the point P(X) 2 RPN�1.

Let d = 1>D1 and ↵ = vol(A). Then, vol(A) = d � ↵.

Using Proposition 1.4, we have

X>LX = (a � b)2 cut(A, A)

X>DX = ↵a2 + (d � ↵)b2.
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We obtain

Ncut(A, A) =
d

↵(d � ↵)
cut(A, A)

and

X>LX

X>DX
=

(a � b)2

↵a2 + (d � ↵)b2

cut(A, A).

In order to have

Ncut(A, A) =
X>LX

X>DX
,

we need to find a and b so that

(a � b)2

↵a2 + (d � ↵)b2

=
d

↵(d � ↵)
.
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We find the condition

a↵ + b(d � ↵) = 0. (†)

Note that condition (†) applied to a vector X whose com-
ponents are a or b is equivalent to the fact that X is
orthogonal to D1.

Various choices for a choice of scale factor appear in the
literature.

von Luxburg [15] picks

a =

r

d � ↵

↵
, b = �

r

↵

d � ↵
.
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Shi and Malik [13] use

a = 1, b = � ↵

d � ↵
= � k

1� k
,

with

k =
↵

d
.

Belkin and Niyogi [2] use

a =
1

↵
, b = � 1

d � ↵
.

However, there is no need to restrict solutions to be of
either of these forms.
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So, let

X =
�

(x
1

, . . . , xN) | xi 2 {a, b}, a, b 2 R, a, b 6= 0
 

,

so that our solution set is

K =
�

X 2 X | X>D1 = 0
 

,

Actually, to be perfectly rigorous, we are looking for so-
lutions in RPN�1, so our solution set is really

P(K) =
�

(x
1

: · · · : xN) 2 RPN�1 | (x
1

, . . . , xN) 2 K
 

.

Consequently, our minimization problem can be stated as
follows:
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Problem PNC1

minimize
X>LX

X>DX
subject to X>D1 = 0, X 2 X .

It is understood that the solutions are points P(X) in
RPN�1.

Since the Rayleigh ratio and the constraints X>D1 = 0
and X 2 X are scale-invariant we are led to the following
formulation of our problem:
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Problem PNC2

minimize X>LX

subject to X>DX = 1, X>D1 = 0, X 2 X .

Problem PNC2 is equivalent to problem PNC1, in the
sense that if X is any minimal solution of PNC1, then
X/(X>DX)1/2 is a minimal solution of PNC2 (with the
same minimal value for the objective functions), and if
X is a minimal solution of PNC2, then �X is a minimal
solution for PNC1 for all � 6= 0 (with the same minimal
value for the objective functions).

Equivalently, problems PNC1 and PNC2 have the same
set of minimal solutions as points P(X) 2 RPN�1 given
by their homogeneous coordinates X .
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Unfortunately, this is an NP-complete problem, as shown
by Shi and Malik [13].

As often with hard combinatorial problems, we can look
for a relaxation of our problem, which means looking for
an optimum in a larger continuous domain.

After doing this, the problem is to find a discrete solution
which is close to a continuous optimum of the relaxed
problem.

The natural relaxation of this problem is to allow X to
be any nonzero vector in RN , and we get the problem:

minimize X>LX

subject to X>DX = 1, X>D1 = 0.
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In order to apply Proposition A.2, we make the change
of variable Y = D1/2X , so that X = D�1/2Y .

We obtain the problem:

minimize Y >D�1/2LD�1/2Y

subject to Y >Y = 1, Y >D1/21 = 0.

BecauseL1 = 0, the vectorD1/21 belongs to the nullspace
of the symmetric Laplacian L

sym

= D�1/2LD�1/2.

By Proposition A.2, minima are achieved by any unit
eigenvector Y of the second eigenvalue ⌫

2

> 0 of L
sym

.

Then, Z = D�1/2Y is a solution of our original relaxed
problem
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Note that because Z is nonzero and orthogonal to D1,
a vector with positive entries, it must have negative and
positive entries.

The next question is to figure how close is Z to an exact
solution in X .

Actually, because solutions are points in RPN�1, the cor-
rect statement of the question is: Find an exact solution
P(X) 2 P(X ) which is the closest (in a suitable sense) to
the approximate solution P(Z) 2 RPN�1.

However, because X is closed under the antipodal map, it
can be shown that minimizing the distance d(P(X),P(Z))
on RPN�1 is equivalent to minimizing the Euclidean dis-
tance kX � Zk

2

, where X and Z are representatives of
P(X) and P(Z) on the unit sphere (if we use the Rieman-
nian metric on RPN�1 induced by the Euclidean metric
on RN).
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We may assume b < 0, in which case a > 0.

If all entries in Z are nonzero, due to the projective nature
of the solution set, it seems reasonable to say that the
partition of V is defined by the signs of the entries in Z.

Thus, A will consist of nodes those vi for which xi > 0.

Elements corresponding to zero entries can be assigned to
either A or A, unless additional information is available.
In our implementation, they are assigned to A.

Here are some examples of normalized cuts found by a
fairly naive implementation of the method.
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The weight matrix of the first example is

W
1

=

0

B

B

B

B

B

B

B

B

B

B

B

B

@

0 1 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0 0
0 1 0 1 0 0 0 0 1
0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 1
0 0 0 0 1 1 0 1 0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

.

Its underlying graph has 9 nodes and 9 edges and is shown
in Figure 3.2 on the left.
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The normalized cut found by the algorithm is shown in
the middle; the edge of the cut is shown in magenta, and
the vertices of the blocks of the partition are shown in
blue and red.

The figure on the right shows the two disjoint subgraphs
obtained after deleting the cut edge.

Figure 3.2: Underlying graph of the matrix W1 (left); normalized cut (middle); blocks of the

cut (right).
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The weight matrix of the second example is

W
2

=

0

B

B

@

0 3 6 3
3 0 0 3
6 0 0 3
3 3 3 0

1

C

C

A

.

Its underlying graph has 4 nodes and 5 edges and is shown
in Figure 3.3 on the left.
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The normalized cut found by the algorithm is shown in
the middle; the edges of the cut are shown in magenta,
and the vertices of the blocks of the partition are shown
in blue and red.

The figure on the right shows the two disjoint subgraphs
obtained after deleting the cut edges.

Figure 3.3: Underlying graph of the matrix W2 (left); normalized cut (middle); blocks of the

cut (right).

The weight matrix W
3

of the third example is the adja-
cency matrix of the complete graph on 12 vertices.

All nondiagonal entries are equal to 1, and the diagonal
entries are equal to 0.
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This graph has 66 edges and is shown in Figure 3.4 on
the left.

Figure 3.4: Underlying graph of the matrix W3 (left); normalized cut (middle); blocks of the

cut (right).

The normalized cut found by the algorithm is shown in
the middle; the edges of the cut are shown in magenta,
and the vertices of the blocks of the partition are shown
in blue and red.

The figure on the right shows the two disjoint subgraphs
obtained after deleting the cut edges.
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Our naive algorithm treated zero as a positive entry. Now,
using the fact that

b = � ↵a

d � ↵
,

a better solution is to look for a vector X 2 RN withXi 2
{a, b} which is closest to a minimum Z of the relaxed
problem (in the sense that kX � Zk is minimized) and
with kXk = kZk.

I implemented such an algorithm, and it seems to do a god
job dealing with zero entries in the continuous solution Z.


