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Chapter 1

Graphs and Graph Laplacians

1.1 Directed Graphs, Undirected Graphs, Incidence

Matrices, Adjacency Matrices, Weighted Graphs

Definition 1.1. A directed graph is a pair G = (V, E),
where V = {v

1

, . . . , vm} is a set of nodes or vertices ,
and E ✓ V ⇥V is a set of ordered pairs of distinct nodes
(that is, pairs (u, v) 2 V ⇥ V with u 6= v), called edges .
Given any edge e = (u, v), we let s(e) = u be the source
of e and t(e) = v be the target of e.

Remark: Since an edge is a pair (u, v) with u 6= v,
self-loops are not allowed.

Also, there is at most one edge from a node u to a node
v. Such graphs are sometimes called simple graphs .
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Figure 1.1: Graph G1.

For every node v 2 V , the degree d(v) of v is the number
of edges leaving or entering v:

d(v) = |{u 2 V | (v, u) 2 E or (u, v) 2 E}|.
We abbreviate d(vi) as di. The degree matrix D(G), is
the diagonal matrix

D(G) = diag(d
1

, . . . , dm).

For example, for graph G
1

, we have

D(G
1

) =

0

B

B

B

B

@

2 0 0 0 0
0 4 0 0 0
0 0 3 0 0
0 0 0 3 0
0 0 0 0 2

1

C

C

C

C

A

.

Unless confusion arises, we write D instead of D(G).
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Definition 1.2.Given a directed graph G = (V, E), for
any two nodes u, v 2 V , a path from u to v is a sequence
of nodes (v

0

, v
1

, . . . , vk) such that v
0

= u, vk = v, and
(vi, vi+1

) is an edge in E for all i with 0  i  k � 1.
The integer k is the length of the path. A path is closed
if u = v. The graph G is strongly connected if for any
two distinct node u, v 2 V , there is a path from u to v
and there is a path from v to u.

Remark: The terminology walk is often used instead of
path , the word path being reserved to the case where the
nodes vi are all distinct, except that v

0

= vk when the
path is closed.

The binary relation on V ⇥V defined so that u and v are
related i↵ there is a path from u to v and there is a path
from v to u is an equivalence relation whose equivalence
classes are called the strongly connected components of
G.
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Definition 1.3. Given a directed graph G = (V, E),
with V = {v

1

, . . . , vm}, if E = {e
1

, . . . , en}, then the
incidence matrix B(G) of G is the m⇥n matrix whose
entries bi j are given by

bi j =

8

>

<

>

:

+1 if s(ej) = vi

�1 if t(ej) = vi

0 otherwise.

Here is the incidence matrix of the graph G
1

:

B =

0

B

B

B

B

@

1 1 0 0 0 0 0
�1 0 �1 �1 1 0 0
0 �1 1 0 0 0 1
0 0 0 1 0 �1 �1
0 0 0 0 �1 1 0

1

C

C

C

C

A

.

Again, unless confusion arises, we write B instead of
B(G).

Remark: Some authors adopt the opposite convention
of sign in defining the incidence matrix, which means that
their incidence matrix is �B.



1.1. DIRECTED, UNDIRECTED, AND WEIGHTED GRAPHS 9

1

v4

v5

v1 v2

v3

a

g

b c d

e

f

Figure 1.2: The undirected graph G2.

Undirected graphs are obtained from directed graphs by
forgetting the orientation of the edges.

Definition 1.4.A graph (or undirected graph) is a pair
G = (V, E), where V = {v

1

, . . . , vm} is a set of nodes
or vertices , and E is a set of two-element subsets of V
(that is, subsets {u, v}, with u, v 2 V and u 6= v), called
edges .

Remark: Since an edge is a set {u, v}, we have u 6= v,
so self-loops are not allowed. Also, for every set of nodes
{u, v}, there is at most one edge between u and v.

As in the case of directed graphs, such graphs are some-
times called simple graphs .
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For every node v 2 V , the degree d(v) of v is the number
of edges incident to v:

d(v) = |{u 2 V | {u, v} 2 E}|.

The degree matrix D is defined as before.

Definition 1.5.Given a (undirected) graphG = (V, E),
for any two nodes u, v 2 V , a path from u to v is a se-
quence of nodes (v

0

, v
1

, . . . , vk) such that v
0

= u, vk = v,
and {vi, vi+1

} is an edge in E for all i with 0  i  k�1.
The integer k is the length of the path. A path is closed
if u = v. The graph G is connected if for any two distinct
node u, v 2 V , there is a path from u to v.

Remark: The terminology walk or chain is often used
instead of path , the word path being reserved to the case
where the nodes vi are all distinct, except that v

0

= vk

when the path is closed.

The binary relation on V ⇥V defined so that u and v are
related i↵ there is a path from u to v is an equivalence re-
lation whose equivalence classes are called the connected
components of G.



1.1. DIRECTED, UNDIRECTED, AND WEIGHTED GRAPHS 11

The notion of incidence matrix for an undirected graph
is not as useful as in the case of directed graphs

Definition 1.6. Given a graph G = (V, E), with V =
{v

1

, . . . , vm}, if E = {e
1

, . . . , en}, then the incidence
matrix B(G) of G is the m⇥n matrix whose entries bi j

are given by

bi j =

(

+1 if ej = {vi, vk} for some k

0 otherwise.

Unlike the case of directed graphs, the entries in the
incidence matrix of a graph (undirected) are nonnegative.
We usually write B instead of B(G).

The notion of adjacency matrix is basically the same for
directed or undirected graphs.
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Definition 1.7. Given a directed or undirected graph
G = (V, E), with V = {v

1

, . . . , vm}, the adjacency ma-
trix A(G) of G is the symmetric m ⇥ m matrix (ai j)
such that

(1) If G is directed, then

ai j =

8

>

<

>

:

1 if there is some edge (vi, vj) 2 E

or some edge (vj, vi) 2 E

0 otherwise.

(2) Else if G is undirected, then

ai j =

(

1 if there is some edge {vi, vj} 2 E

0 otherwise.

As usual, unless confusion arises, we write A instead of
A(G).

Here is the adjacency matrix of both graphs G
1

and G
2

:

A =

0

B

B

B

B

@

0 1 1 0 0
1 0 1 1 1
1 1 0 1 0
0 1 1 0 1
0 1 0 1 0

1

C

C

C

C

A

.
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If G = (V, E) is a directed or an undirected graph, given
a node u 2 V , any node v 2 V such that there is an edge
(u, v) in the directed case or {u, v} in the undirected case
is called adjacent to v, and we often use the notation

u ⇠ v.

Observe that the binary relation ⇠ is symmetric when G
is an undirected graph, but in general it is not symmetric
when G is a directed graph.

If G = (V, E) is an undirected graph, the adjacency ma-
trix A of G can be viewed as a linear map from RV to
RV , such that for all x 2 Rm, we have

(Ax)i =
X

j⇠i

xj;

that is, the value of Ax at vi is the sum of the values of
x at the nodes vj adjacent to vi.



14 CHAPTER 1. GRAPHS AND GRAPH LAPLACIANS

The adjacency matrix can be viewed as a di↵usion op-
erator .

This observation yields a geometric interpretation of what
it means for a vector x 2 Rm to be an eigenvector of A
associated with some eigenvalue �; we must have

�xi =
X

j⇠i

xj, i = 1, . . . , m,

which means that the the sum of the values of x assigned
to the nodes vj adjacent to vi is equal to � times the value
of x at vi.

Definition 1.8.Given any undirected graphG = (V, E),
an orientation of G is a function � : E ! V ⇥V assign-
ing a source and a target to every edge in E, which means
that for every edge {u, v} 2 E, either �({u, v}) = (u, v)
or �({u, v}) = (v, u). The oriented graph G� obtained
fromG by applying the orientation � is the directed graph
G� = (V, E�), with E� = �(E).
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Proposition 1.1. Let G = (V, E) be any undirected
graph with m vertices, n edges, and c connected com-
ponents. For any orientation � of G, if B is the in-
cidence matrix of the oriented graph G�, then c =
dim(Ker (B>)), and B has rank m � c. Furthermore,
the nullspace of B> has a basis consisting of indica-
tor vectors of the connected components of G; that is,
vectors (z

1

, . . . , zm) such that zj = 1 i↵ vj is in the ith
component Ki of G, and zj = 0 otherwise.

Following common practice, we denote by 1 the (column)
vector whose components are all equal to 1. Observe that

B>1 = 0.

According to Proposition 1.1, the graph G is connected
i↵ B has rank m � 1 i↵ the nullspace of B> is the one-
dimensional space spanned by 1.

In many applications, the notion of graph needs to be
generalized to capture the intuitive idea that two nodes u
and v are linked with a degree of certainty (or strength).
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Thus, we assign a nonnegative weight wi j to an edge
{vi, vj}; the smaller wi j is, the weaker is the link (or
similarity) between vi and vj, and the greater wi j is, the
stronger is the link (or similarity) between vi and vj.

Definition 1.9.A weighted graph is a pairG = (V, W ),
where V = {v

1

, . . . , vm} is a set of nodes or vertices , and
W is a symmetric matrix called the weight matrix , such
that wi j � 0 for all i, j 2 {1, . . . , m}, and wi i = 0 for
i = 1, . . . , m. We say that a set {vi, vj} is an edge i↵
wi j > 0. The corresponding (undirected) graph (V, E)
with E = {{vi, vj} | wi j > 0}, is called the underlying
graph of G.

Remark: Sincewi i = 0, these graphs have no self-loops.
We can think of the matrix W as a generalized adjacency
matrix. The case where wi j 2 {0, 1} is equivalent to the
notion of a graph as in Definition 1.4.

We can think of the weight wi j of an edge {vi, vj} as a
degree of similarity (or a�nity) in an image, or a cost in
a network.

An example of a weighted graph is shown in Figure 1.3.
The thickness of an edge corresponds to the magnitude
of its weight.
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15

Encode Pairwise Relationships as a Weighted Graph

Figure 1.3: A weighted graph.

For every node vi 2 V , the degree d(vi) of vi is the sum
of the weights of the edges adjacent to vi:

d(vi) =
m
X

j=1

wi j.

Note that in the above sum, only nodes vj such that there
is an edge {vi, vj} have a nonzero contribution. Such
nodes are said to be adjacent to vi, and we write vi ⇠ vj.

The degree matrix D is defined as before, namely by D =
diag(d(v

1

), . . . , d(vm)).
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The weight matrix W can be viewed as a linear map from
RV to itself. For all x 2 Rm, we have

(Wx)i =
X

j⇠i

wijxj;

that is, the value of Wx at vi is the weighted sum of the
values of x at the nodes vj adjacent to vi.

Observe thatW1 is the (column) vector (d(v
1

), . . . , d(vm))
consisting of the degrees of the nodes of the graph.
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Given any subset of nodes A ✓ V , we define the volume
vol(A) of A as the sum of the weights of all edges adjacent
to nodes in A:

vol(A) =
X

vi2A

d(vi) =
X

vi2A

m
X

j=1

wi j.

18

Degree of a node:
di = ¦j Wi,j

Degree matrix:
Dii = ¦j Wi,j

Figure 1.4: Degree and volume.

Observe that vol(A) = 0 if A consists of isolated vertices,
that is, if wi j = 0 for all vi 2 A. Thus, it is best to
assume that G does not have isolated vertices.
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Given any two subset A, B ✓ V (not necessarily dis-
tinct), we define links(A, B) by

links(A, B) =
X

vi2A,vj2B

wi j.

Since the matrix W is symmetric, we have

links(A, B) = links(B, A),

and observe that vol(A) = links(A, V ).

The quantity links(A, A) = links(A, A), where A = V �
A denotes the complement of A in V , measures how
many links escape from A (and A), and the quantity
links(A, A) measures how many links stay within A it-
self.



1.1. DIRECTED, UNDIRECTED, AND WEIGHTED GRAPHS 21

The quantity
cut(A) = links(A, A)

is often called the cut of A, and the quantity

assoc(A) = links(A, A)

is often called the association of A. Clearly,

cut(A) + assoc(A) = vol(A).

Figure 1.5: A Cut involving the set of nodes in the center and the nodes on the perimeter.

We now define the most important concept of these notes:
The Laplacian matrix of a graph. Actually, as we will see,
it comes in several flavors.
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1.2 Laplacian Matrices of Graphs

Let us begin with directed graphs, although as we will
see, graph Laplacians are fundamentally associated with
undirected graph.

The key proposition below shows how given an undirected
graph G, for any orientation � of G, B�(B�)> relates to
the adjacency matrix A (where B� is the incidence matrix
of the directed graph G�).

We reproduce the proof in Gallier [5] (see also Godsil and
Royle [7]).

Proposition 1.2. Given any undirected graph G, for
any orientation � of G, if B�is the incidence matrix
of the directed graph G�, A is the adjacency matrix of
G�, and D is the degree matrix such that Di i = d(vi),
then

B�(B�)> = D � A.

Consequently, L = B�(B�)> is independent of the ori-
entation � of G, and D�A is symmetric and positive
semidefinite; that is, the eigenvalues of D�A are real
and nonnegative.
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The matrix L = B�(B�)> = D � A is called the (un-
normalized) graph Laplacian of the graph G�.

For example, the graph Laplacian of graph G
1

is

L =

0

B

B

B

B

@

2 �1 �1 0 0
�1 4 �1 �1 �1
�1 �1 3 �1 0
0 �1 �1 3 �1
0 �1 0 �1 2

1

C

C

C

C

A

.

The (unnormalized) graph Laplacian of an undirected
graph G = (V, E) is defined by

L = D � A.

Observe that each row of L sums to zero (because
(B�)>1 = 0). Consequently, the vector 1 is in the nullspace
of L.
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Remark: With the unoriented version of the incidence
matrix (see Definition 1.6), it can be shown that

BB> = D + A.

The natural generalization of the notion of graph Lapla-
cian to weighted graphs is this:

Definition 1.10.Given any weighted graphG = (V, W )
with V = {v

1

, . . . , vm}, the (unnormalized) graph Lapla-
cian L(G) of G is defined by

L(G) = D(G)� W,

where D(G) = diag(d
1

, . . . , dm) is the degree matrix of
G (a diagonal matrix), with

di =
m
X

j=1

wi j.

As usual, unless confusion arises, we write L instead of
L(G).
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The graph Laplacian can be interpreted as a linear map
from RV to itself. For all x 2 RV , we have

(Lx)i =
X

j⇠i

wij(xi � xj).

It is clear that each row of L sums to 0, so the vector 1 is
the nullspace of L, but it is less obvious that L is positive
semidefinite. One way to prove it is to generalize slightly
the notion of incidence matrix.

Definition 1.11. Given a weighted graph G = (V, W ),
with V = {v

1

, . . . , vm}, if {e1

, . . . , en} are the edges of
the underlying graph of G (recall that {vi, vj} is an edge
of this graph i↵ wij > 0), for any oriented graph G�

obtained by giving an orientation to the underlying graph
of G, the incidence matrix B� of G� is the m⇥n matrix
whose entries bi j are given by

bi j =

8

>

<

>

:

+
p

wij if s(ej) = vi

�p
wij if t(ej) = vi

0 otherwise.
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For example, given the weight matrix

W =

0

B

B

@

0 3 6 3
3 0 0 3
6 0 0 3
3 3 3 0

1

C

C

A

,

the incidence matrix B corresponding to the orientation
of the underlying graph of W where an edge (i, j) is ori-
ented positively i↵ i < j is

B =

0

B

B

@

1.7321 2.4495 1.7321 0 0
�1.7321 0 0 1.7321 0

0 �2.4495 0 0 1.7321
0 0 �1.7321 �1.7321 �1.7321

1

C

C

A

.

The reader should verify that BB> = D � W . This is
true in general, see Proposition 1.3.

It is easy to see that Proposition 1.1 applies to the un-
derlying graph of G.
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For any oriented graph G� obtained from the underlying
graph of G, the rank of the incidence matrix B� is equal
to m�c, where c is the number of connected components
of the underlying graph of G, and we have (B�)>1 = 0.

We also have the following version of Proposition 1.2
whose proof is immediately adapted.

Proposition 1.3.Given any weighted graph G = (V, W )
with V = {v

1

, . . . , vm}, if B� is the incidence matrix
of any oriented graph G� obtained from the underlying
graph of G and D is the degree matrix of W , then

B�(B�)> = D � W = L.

Consequently, B�(B�)> is independent of the orienta-
tion of the underlying graph of G and L = D � W is
symmetric, positive, semidefinite; that is, the eigen-
values of L = D � W are real and nonnegative.
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Another way to prove that L is positive semidefinite is to
evaluate the quadratic form x>Lx.

Proposition 1.4. For any m ⇥ m symmetric matrix
W = (wij), if we let L = D�W where D is the degree
matrix associated with W , then we have

x>Lx =
1

2

m
X

i,j=1

wi j(xi � xj)
2 for all x 2 Rm.

Consequently, x>Lx does not depend on the diagonal
entries in W , and if wi j � 0 for all i, j 2 {1, . . . , m},
then L is positive semidefinite.

Proposition 1.4 immediately implies the following facts:
For any weighted graph G = (V, W ),

1. The eigenvalues 0 = �
1

 �
2

 . . .  �m of L are
real and nonnegative, and there is an orthonormal
basis of eigenvectors of L.

2. The smallest eigenvalue �
1

of L is equal to 0, and 1
is a corresponding eigenvector.
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It turns out that the dimension of the nullspace of L
(the eigenspace of 0) is equal to the number of connected
components of the underlying graph of G. This is an im-
mediate consequence of Proposition Proposition 1.1 and
the fact that L = BB>.

Proposition 1.5. Let G = (V, W ) be a weighted graph.
The number c of connected components K

1

, . . ., Kc of
the underlying graph of G is equal to the dimension of
the nullspace of L, which is equal to the multiplicity
of the eigenvalue 0. Furthermore, the nullspace of L
has a basis consisting of indicator vectors of the con-
nected components of G, that is, vectors (f

1

, . . . , fm)
such that fj = 1 i↵ vj 2 Ki and fj = 0 otherwise.

Proposition 1.5 implies that if the underlying graph of G
is connected, then the second eigenvalue �

2

of L is strictly
positive.
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Remarkably, the eigenvalue �
2

contains a lot of informa-
tion about the graph G (assuming that G = (V, E) is an
undirected graph).

This was first discovered by Fiedler in 1973, and for this
reason, �

2

is often referred to as the Fiedler number .

For more on the properties of the Fiedler number, see
Godsil and Royle [7] (Chapter 13) and Chung [3].

More generally, the spectrum (0, �
2

, . . . , �m) of L con-
tains a lot of information about the combinatorial struc-
ture of the graph G. Leverage of this information is the
object of spectral graph theory .

It turns out that normalized variants of the graph Lapla-
cian are needed, especially in applications to graph clus-
tering.
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These variants make sense only if G has no isolated ver-
tices, which means that every row of W contains some
strictly positive entry.

In this case, the degree matrix D contains positive entries,
so it is invertible and D�1/2 makes sense; namely

D�1/2 = diag(d�1/2
1

, . . . , d�1/2
m ),

and similarly for any real exponent ↵.

Definition 1.12. Given any weighted directed graph
G = (V, W ) with no isolated vertex and with V =
{v

1

, . . . , vm}, the (normalized) graph Laplacians L
sym

and L
rw

of G are defined by

L
sym

= D�1/2LD�1/2 = I � D�1/2WD�1/2

L
rw

= D�1L = I � D�1W.

Observe that the Laplacian L
sym

= D�1/2LD�1/2 is a
symmetric matrix (because L and D�1/2 are symmetric)
and that

L
rw

= D�1/2L
sym

D1/2.
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The reason for the notation L
rw

is that this matrix is
closely related to a random walk on the graph G.

Since the unnormalized Laplacian L can be written as
L = BB>, where B is the incidence matrix of any ori-
ented graph obtained from the underlying graph of G =
(V, W ), if we let

B
sym

= D�1/2B,

we get

L
sym

= B
sym

B>
sym

.

In particular, for any singular decomposition B
sym

=
U⌃V > of B

sym

(with U an m ⇥ m orthogonal matrix,
⌃ a “diagonal” m ⇥ n matrix of singular values, and V
an n⇥ n orthogonal matrix), the eigenvalues of L

sym

are
the squares of the top m singular values of B

sym

, and the
vectors in U are orthonormal eigenvectors of L

sym

with
respect to these eigenvalues (the squares of the top m
diagonal entries of ⌃).

Computing the SVD of B
sym

generally yields more ac-
curate results than diagonalizing L

sym

, especially when
L

sym

has eigenvalues with high multiplicity.
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Proposition 1.6. Let G = (V, W ) be a weighted graph
without isolated vertices. The graph Laplacians, L, L

sym

,
and L

rw

satisfy the following properties:

(1) The matrix L
sym

is symmetric, positive, semidefi-
nite. In fact,

x>L
sym

x =
1

2

m
X

i,j=1

wi j

 

xip
di

� xj
p

dj

!

2

x 2 Rm.

(2) The normalized graph Laplacians L
sym

and L
rw

have
the same spectrum
(0 = ⌫

1

 ⌫
2

 . . .  ⌫m), and a vector u 6= 0 is an
eigenvector of L

rw

for � i↵ D1/2u is an eigenvector
of L

sym

for �.

(3) The graph Laplacians, L and L
sym

are symmetric,
positive, semidefinite.

(4) A vector u 6= 0 is a solution of the generalized
eigenvalue problem Lu = �Du i↵ D1/2u is an eigen-
vector of L

sym

for the eigenvalue � i↵ u is an eigen-
vector of L

rw

for the eigenvalue �.
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(5) The graph Laplacians, L and L
rw

have the same
nullspace. For any vector u, we have u 2 Ker (L)
i↵ D1/2u 2 Ker (L

sym

).

(6) The vector 1 is in the nullspace of L
rw

, and D1/21
is in the nullspace of L

sym

.

(7) For every eigenvalue ⌫i of the normalized graph
Laplacian L

sym

, we have 0  ⌫i  2. Furthermore,
⌫m = 2 i↵ the underlying graph of G contains a
nontrivial connected bipartite component.

(8) If m � 2 and if the underlying graph of G is not
a complete graph, then ⌫

2

 1. Furthermore the
underlying graph of G is a complete graph i↵ ⌫

2

=
m

m�1

.

(9) If m � 2 and if the underlying graph of G is con-
nected then ⌫

2

> 0.

(10) If m � 2 and if the underlying graph of G has no
isolated vertices, then ⌫m � m

m�1

.
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A version of Proposition 1.5 also holds for the graph
Laplacians L

sym

and L
rw

.

This follows easily from the fact that Proposition 1.1 ap-
plies to the underlying graph of a weighted graph. The
proof is left as an exercise.

Proposition 1.7. Let G = (V, W ) be a weighted graph.
The number c of connected components K

1

, . . ., Kc of
the underlying graph of G is equal to the dimension
of the nullspace of both L

sym

and L
rw

, which is equal
to the multiplicity of the eigenvalue 0. Furthermore,
the nullspace of L

rw

has a basis consisting of indica-
tor vectors of the connected components of G, that
is, vectors (f

1

, . . . , fm) such that fj = 1 i↵ vj 2 Ki

and fj = 0 otherwise. For L
sym

, a basis of the null-
pace is obtained by multiplying the above basis of the
nullspace of L

rw

by D1/2.
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