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Abstract. This paper presents a kinematic model of the human arm in which the workspace

of the elbow is modeled as a triangular B�ezier spline surface. It is also explained how this

model is used for solving forward and inverse kinematics in computer animation systems.

In order to solve inverse kinematics problems, it is necessary to �nd a curve on the surface

modeling the elbow workspace. This curve is obtained as the intersection of the surface and

a sphere. We present an algorithm for computing this curve, using the fact that triangular

B�ezier patch can be e�ciently subdivided, and using an oct-tree data structure that prunes

the search space e�ciently.
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1 Introduction

This paper presents a new kinematic model of the human arm in which the workspace of the

elbow is modeled as a triangular B�ezier spline surface. It is also explained how this model is

used for solving forward and inverse kinematics in computer animation systems. In order to

solve inverse kinematics problems, it is necessary to �nd a curve on the surface modeling the

elbow workspace. This curve is obtained as the intersection of the surface and a sphere. We

present an algorithm for computing this curve, using the fact that triangular B�ezier patch

can be e�ciently subdivided, and using an oct-tree data structure that prunes the search

space e�ciently.

1. Most of our algorithms are repeatable, in that the solution does not depend upon the

starting posture of the arm. Repeatibility is a signi�cant issue in interactive appli-

cations where a user spends a great deal of time manipulating the solver into �nding

a satisfactory �nal posture. In these cases, it is very important to the user that the

solver behave consistently and not be sensitive to minor perturbations of the starting

state.

2. We use a parametric surface to accurately model the workspace of the elbow (the tip of

the humerus). In a �rst step, we use motion capture to obtain a set of points modeling

the workspace of the tip of the humerus (see Section 2). In a second step, we interpolate

this set of points using a triangular B�ezier spline surface with C

1

-continuity (see Section

3). This approach allows us to construct a model based purely on experimental data,

and it guarantees that the end e�ector behavior will be consistent with empirical

observations.

3. Our model automatically enforces complex joint limits and couplings that are di�-

cult to characterize using traditional methods. Additionally, our model permits both

forward and inverse kinematics analysis.

4. Obviously, there is a tradeo� between obtaining an accurate kinematic model of the

body and computational expense. One of our goals is to �nd a suitable balance between

these two objectives so that visually acceptable results can be obtained in real time.

Advantages of our model are that it encodes both positional and orientation information,

transforms a system described by many coupled degrees of freedom into one described by a

smaller set of independent variables, and produces an accurate simulation of the reachable

workspace. However, the surface-based model is subject to the same computational ine�cien-

cies and problems of other numerical approaches to inverse kinematics. Another limitation,

though not necessarily a disadvantage, is that the model is speci�c for an individual and is

not readily adapted to handle �gures with di�erent anthropometries.

In order to solve inverse kinematics problems, it is necessary to �nd a curve on the surface

modeling the elbow workspace. This curve is obtained as the intersection of the surface and
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a sphere. In Section 4, we present an algorithm for computing this curve using the fact that

a triangular B�ezier patch can be e�ciently subdivided and using an oct-tree data structure

that prunes the search space e�ciently. The resulting algorithm is interesting in itself, and

proves to be very e�cient in practice.

The paper is organized as follows. A model of the arm based on empirical data is

presented in Section 2. In Section 3, we explain how the elbow workspace is modeled using

a triangular B�ezier spline surface. The use of an interpolating triangular spline surface with

C

1

-continuity is novel. Methods for solving direct and inverse kinematics problems using

this new model are presented in Section 4. In particular, we present an e�cient algorithm

for computing the interection curve of the modeling surface with a sphere. We conclude

this Section by discussing other types of problems amenable to our methods, as well as the

limitations of our methods. Section 5 is an Appendix devoted to a review of basics on B�ezier

curves and (triangular) B�ezier surfaces, including subdivision.

2 A Model of the Arm Based on Empirical Data

2.1 Introduction

Many of the joints in the human body act together as functional units rather than indepen-

dently. For example, the motions of the shoulder, scapula, and clavicle act in a concerted

fashion to move the humerus. An even more extreme example is the spine which consists of

twenty four joints whose motions are tightly coupled. The motions of these joints are further

complicated by the fact that their mobility is restricted not just by mechanical limits on the

joints but also by the surrounding muscle mass and soft tissue. It is virtually impossible to

accurately model the workspace of the shoulder or spine using a conventional robotics model.

If the joints are treated as independent degrees of freedom the model will have too much

redundancy. Additionally, imposing simple linear inequality limits on the degrees of freedom

does not realistically simulate the complex anatomical coupling between these joints.

We seek a compromise scheme that allows a realistic kinematic model while still per-

mitting su�cient computational simplicity so that forward and inverse kinematics can be

computed quickly. Several authors have attempted to model the behavior of complex joints

such as the shoulder and spine. Otani [16] devised a formula for distributing elevation, ab-

duction, and twist of the humerus into joint angles for the shoulder and clavicle. Monheit

and Badler [14] have developed a model of the human spine that translates gross motions of

the torso into individual degrees of freedom at the spine joints. Our work is distinguished

from previous work in that our model is based purely on empirical data and does not rely

on a detailed understanding of how the biokinematic structures actually work. Moreover,

our model will guarantee that the end e�ector behavior is always consistent with the data,

at the possible expense of less than perfect behavior at the joint level.

In our approach, we record position and orientation data of the elbow end e�ector to

construct the boundary of the shoulder and upper arm workspace. Such data can be obtained
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through a motion capture system and from biomechanical studies. We use a piecewise

parametric surface to interpolate the data to construct the reachable workspace of the end

e�ector. We want to emphasize the di�erence between our scheme and another interpolation

scheme that is used in some animation systems. Wiley and Hahn [19] have developed a

system that prerecords inverse kinematics solutions by storing a table of predetermined

joint angles indexed by the cartesian coordinates of the desired goal. The data is obtained

by motion capture studies of a subject and is speci�c for that individual. To solve an

arbitrary inverse kinematics problem the system �nds the nearest neighboring grid points to

the desired goal and performs interpolation on the corresponding set of joint angles to obtain

an approximate solution. Although this method may produce \natural" looking solutions, it

has several signi�cant drawbacks. Because the system uses interpolation to obtain an answer

the method is not accurate unless a large number of data points are used. If m is the number

of joints and n is the number of grid points the scheme requires O(m�n

3

) storage if position

information is used and O(m � n

6

) storage if both position and orientation constraints are

required. For example, if the workspace is a 100cm cube and we represent orientation as

Euler angles then with 1cm position and 5 degree orientation sampling this approach would

require 100

3

�

 

360

5

!

3

data points. Not only are the storage requirements expensive, but it

is also tedious and impractical to collect such a large data sample. By contrast, our method

requires only linear storage in terms of the number of sample points. In our approach, we are

sampling achievable end e�ector positions and orientations rather than desired goal states.

Since the data lies on a constraint surface rather than in a volume only 100{200 points are

required to produce a reasonable surface model. Wiley's interpolation system only gives

one solution to an inverse kinematics problem. Moreover, unless the goal coincides with

a grid point, joint angles from neighboring grid points must be interpolated to obtain an

approximate answer. By contrast, the approach that we will describe generates an accurate

answer and also allows the user to �nd all possible solutions. Other relevant related work

includes Aydin and Nakajima [1] and Multon et al [15].

In our approach, the skeleton is still modeled as a system of rigid links connected by

rotating joints. However, the joints are not independent but coupled by the fact that the

end e�ector is constrained to lie on the surface. The forward and inverse kinematics are

performed in terms of the surface parameters rather than the joint angles. We will illustrate

these ideas in more detail in subsequent sections. In this section we describe our experiments

for determining the reachable workspace of the arm.

2.2 Experimental Procedure

We used the Flock of Birds

TM

(FOB) position and orientation measurement system by

Ascension Technologies to obtain experimental data for our model. The FOB system is a six

degree-of-freedom measuring device that can track the position and orientation of multiple

receivers by a transmitter. A transmitter generates a magnetic �eld that is measured by

each receiver which in turn computes its position and orientation.
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Female Male

Distance from clavicle to shoulder 10 cm 15 cm

Distance from shoulder to elbow 26 cm 31 cm

Average distance of elbow to clavicle 29 cm 35 cm

Shortest distance of elbow to clavicle 20 cm 21 cm

Furthest distance of elbow to clavicle 35 cm 46 cm

Standard deviation 3.9 cm 6.5 cm

Table 1: Link lengths and distances of elbow to clavicle for both subjects.

Sensors were attached on the right arm at locations roughly corresponding to the joint

centers of the shoulder, clavicle, elbow and wrist. Each subject moved his/her arm along

longitudinal and latitudinal directions tracing the workspace of the elbow relative to the

clavicle. To measure twist each subject kept his/her elbow �xed and rotated the lower arm

about the axis of the upper arm with the elbow joint 
exed at approximately ninety degrees.

The range of twist was recorded for a variety of arm elevations. Two subjects, one female

and one male, were used.

2.3 Experimental Results

In order to describe our results, we will use the following terminology. The rest position of

the arm is de�ned as the arm fully extended with the �ngers pointing downwards and the

palms facing the body. The frontal plane is the plane that divides the body into posterior

and anterior sections. The sagittal plane divides the body bilaterally into two symmetrical

halves. The transverse plane passes through the clavicle and is perpendicular to the other

two planes.

Our experiments indicate that the workspace traced by the tip of the humerus is crudely a

hemisphere on one side of the sagittal plane with the center located at the clavicle. However,

the radius of the surface varies greatly throughout the range of the workspace. For both

subjects, the distance from the humerus to the clavicle reaches its minimum value when

the elbow is close to the sagittal plane, is in front of the frontal plane and slightly above

the transverse plane. Likewise, in both subjects the distance is maximized when the elbow

is close to the sagittal plane, is behind the frontal plane and slightly below the transverse

plane.

Figures 1, 2, 3, 4, show the density distribution of the distance of the elbow to the

clavicle. The male subject results appear on the left column and the female subject results

are shown on the right. Fig. 1 shows all of the data collected. Fig. 2 shows the third of the

data that is closest to the clavicle. Fig. 3 and 4 show the third of the data in the middle

and furthest most ranges from the clavicle, respectively. It is apparent that the distance of

the tip of the humerus from the clavicle is more dependent on the amount of frontal plane
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abduction than it is on elevation. It is also clear that as the arm abducts behind the frontal

plane the distance from the humerus to the clavicle increases.

Figure 1: Distance of the elbow from the humerus, �rst data range.

Figure 2: Distance of the elbow from the humerus, second data range.

Figure 3: Distance of the elbow from the humerus, third data range.
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Figure 4: Distance of the elbow from the humerus, fourth data range.

Additionally, in both subjects, the elbow traces a sharp corner in the region behind the

frontal plane and beneath the transverse plane. Despite the di�erence in link lengths between

the two subjects, our results suggest that the general shape and properties of their workspaces

are similar, but clearly a larger sample size is necessary before any general conclusions about

the nature of the arm workspace can be reached.

Twist was di�cult to measure precisely because it is not possible for the subject to keep

his/her elbow perfectly still while twisting. However, the experiments also revealed that both

subjects have substantially more available twist near the rest position than when the arm is

fully elevated. Figures 5 and 6 shows the linear and quadratic least squares �t showing the

relationship between the range of available twist and the elevation of the elbow.
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Figure 5: Linear Least Squares �t of range of twist versus elbow elevation.
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Figure 6: Quadratic Least Squares �t of range of twist versus elbow elevation.

2.4 Caveats

It should be noted that the experiments cannot be performed with great precision. A small

amount of noise in any motion tracking system is inevitable. Additionally, it is impossible to

place the sensors precisely on the joint centers and the sensors will tend to shift as the skin

and tissue stretch. Thus, the distances from the shoulder to the clavicle sensors and from the

elbow to the shoulder sensors are not constant. This may cause problems when we attempt

to �t these results to an underlying model that uses a rigid skeleton that assumes �xed link

lengths. Additionally, it is di�cult to obtain a uniform distribution of data, and some areas

of the workspace are clearly undersampled relative to other regions. Oversampling is not

a signi�cant problem since excess data can be decimated. However, insu�cient data can

produce poor interpolation in the undersampled regions as we observe in section 3.

3 Workspace Surface Interpolation

The shoulder girdle consists of the clavicle and scapula which move in a closed-loop about

the sternum and rib cage. Additionally, the humerus can also move as an open chain about

the scapula and clavicle frame. Altogether, the shoulder complex consists of twelve interde-

pendent degrees-of-freedom, distributed across one open and one closed kinematic loop.
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It is di�cult to model the workspace of the shoulder complex using conventional robotics

models. For example, if a spherical joint is used with linear joint limits, the traced workspace

is a spherical rectangle with uniform radius and uniform twist. Alternatively, if we model

the shoulder complex as a more complex series of joints coupled by nonlinear constraints, it

is very di�cult to devise a set of constraints that compel the end e�ector to trace the shape

of the workspace and satisfy the valid twist ranges.

3.1 Triangular B�ezier Patches for Surface Interpolation

Although it is di�cult to construct a mathematical model of the shoulder workspace that is

empirically correct, it is relatively easy to �t an interpolatory surface through the workspace

data and then to solve for an appropriate set of joint angles using a relatively simple kinematic

model for the clavicle and shoulder. Imagine a surface that encodes the locations of four

points, s(u; v), e(u; v), w

0

(u; v), and w

1

(u; v), all measured relative to the clavicle. The

variables s and e denote the shoulder and elbow sensors; w

0

and w

1

are the positions of

the wrist with the elbow 
exed at approximately ninety degrees at the extreme twist ranges

of the upper arm. Using this information, a forward and inverse kinematics model of the

shoulder complex can be devised based on empirical data rather than a hypothetical model

of the joint behavior.

3.2 Why use Triangular B�ezier Patches ?

Many surface �tting techniques are possible, and perhaps, the choice of a surface interpola-

tion technique is ultimately not important, provided a good �t can be obtained. However,

we chose to use piecewise triangular cubic C

1

-B�ezier polynomial patches for the following

reasons:

1. Polynomial surface interpolation leads to a well behaved linear system of equations.

By contrast, rational surface interpolation, while more accurate and possessing extra

degrees of freedom, results in nonlinear systems of equations that may in practice be

much more di�cult to solve. We use cubic surfaces because cubics are the lowest possi-

ble degree that permit us to guarantee C

1

-continuity while giving us enough remaining

degrees of freedom to do useful interpolation.

2. Triangles are a more natural domain for interpolating a spherical data point set than

rectangles. If rectangular control patches are used, then some control points must be

duplicated to collapse a degenerate edge to a single vertex, or it is necessary to use

multiple rectangular patches to cover regions that can be represented by a single trian-

gular patch. Additionally, triangular patches have lower total degree than rectangular

patches. For example, a tensor product surface that is cubic in both of its arguments

has total degree six compared to three for its triangular counterpart. We would like

to keep the total degree of the surface as low as possible to minimize computational

expense and the number of control points. Moreover, the intersection algorithm we
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use in section 4 requires subdivision of the surface into polygonal segments that are in-

tersected with a sphere. Subdividing a tensor product surface produces quadrilaterals

which are generally non-planar thereby complicating the intersection routine.

3. The surface should be visually smooth and hence the tangent planes should be con-

tinuous across patch boundaries. Ideally, only geometric or G

1

-continuity is required.

Ironically, even though G

1

-continuity is less restrictive than C

1

-continuity, enforcing

G

1

-continuity results in a nonlinear system of equations that are more di�cult to solve

than the C

1

-constraints. We therefore use the C

1

-conditions even though they impose

more conditions on the surface than are necessary for our application.

4. Subdivision surfaces have undergone a recent resurgence in popularity in computer

graphics. Unlike B�ezier and other parametric surfaces, a subdivision surface cannot

be explicitly evaluated from u; v-coordinates, but instead, are generated recursively by

subdividing a polyhedral mesh. A subdivision surface is produced in two steps. In the

splitting phase, a set of additional vertices are generated by taking the midpoints of

all edges in the current mesh. In the averaging phase, the new values of all the vertices

are computed as a�ne combinations of their neighbors. This process is performed

recursively, and in the limit, produces a C

1

-surface. Subdivision methods can be

de�ned for either triangular or rectangular patches; additionally, either interpolatory

and approximating schemes can be used [17]. There are compelling reasons to use

subdivision surfaces. One of their principal virtues is they can be used on meshes of

arbitrary topology. Additionally, if an interpolatory scheme is used, the subdivision

surface can interpolate all the data points. However, subdivision surfaces have some

properties that are problematic for this particular application. Because subdivision

algorithms work by re�ning a polyhedral mesh, the collected data points must �rst

be triangulated. In general, the problem of triangulating a set of arbitrary three

dimensional points is not trivial and is an active area of research [2]. Additionally,

with a subdivision approach, one has the option of using either an approximating

or an interpolating method. The disadvantage of using an approximating method is

that an approximating subdivision surface, like a uniform B-spline surface, does not

interpolate the exterior vertices. Thus the resulting surface is smaller than the surface

spanned by the original set of data points and a substantial fraction of the workspace

is lost. On the other hand, if the data is noisy, then an interpolatory scheme will

incorporate the noise rather than smoothing out perturbations in the surface caused

by errors. Finally, in a subdivision surface, there is no convenient way to associate

points with explicit coordinates. As we shall see, this does not present a problem

for using the surface in inverse kinematics, but it does pose a di�culty in forward

kinematics where it is necessary to parameterize the joint angles in terms of explicit

coordinates.
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3.3 Solving the Interpolation Problem

The next step is to determine the number of patches and their layout. After experimenting

with several schemes, we chose a hexagonal network consisting of six patches as shown in

�gure 7.

Figure 7: A hexagonal triangular patch con�guration.

The hexagonal layout was chosen since it establishes an approximate match between the

parameter shape and the object shape. In principle, we could construct more elaborate

hexagons with a larger number of patches to obtain a closer correspondence to the surface

if greater accuracy is desired.

3.4 Formulating the Constraints

Referring to section 5.8, the C

1

-conditions impose the following constraints on the control

points:
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:

Since B�ezier patches automatically interpolate their corner control points, we choose to

specify the seven corner points x

0

;x

3

;x

15

;x

18

;x

21

;x

33

; and x

36

: Additionally, it also seems

to make sense to specify interior points corresponding to [u; v; w]

T

coordinates of

"

1

3

;

1

3

;

1

3

#

for each patch. Enumerating the patches starting from the bottom triangle and winding

counterclockwise, we designate these points as p

0

;p

1

; :::;p

5

. The requirement that the ith

patch interpolates p

i

at

"

1

3

;

1

3

;

1

3

#

yields the additional six equations:

p

0
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1
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!
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6
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!
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):

Finally, we presume that we have six additional points q

0

; :::;q

5

that we would like

the surface to interpolate along the middle of the outer edges of the patch boundaries

corresponding to barycentric coordinates of

 

u = v =

1

2

; w = 0

!

;

 

u = w =

1

2

; v = 0

!

, or

 

v = w =

1

2

; u = 0

!

. The equations relating these points to the control points are given by:
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0

):

We cannot assume that all the constraint equations are independent and consistent. To

make sure that the problem is well posed, we �rst write the thirty equations into matrix

form Ax=b, where x is a vector of the unknown control points [x

1

; x

2

; x

4

; x

5

; :::; x

35

] ; A is a

coe�cient matrix of constants, and b is a vector consisting of constants, the corner control

points [x

0

; x

3

; x

15

; x

18;

x

21

; x

33;

x

36

], and the speci�ed interpolation points q

i

and p

i

: Forming

the augmented matrix [Ajb] and performing Gaussian elimination yields two zero rows and

one equation of the form

15

32

(x

0

+ x

3

+ x

15

+ x

18

+ x

21

+ x

33

+ x

36

) +

27

32

7

X

i=0

p

i

�

7

X

i=0

q

i

= 0:

This indicates that two of the equations are redundant, and also that the system is

inconsistent since the equation violates our assumption that we are free to choose the corner

and central control points and p

i

and q

i

: The redundancy arises from the fact that only four

of the six C

1

-continuity constraint equations around the point x

18

are independent. For a

proof of this see Gallier [8].

In order to generate a consistent system of equations, we must relax the restriction that

the surface interpolates the q

i

precisely. If the corner control points are speci�ed, it is not

possible to interpolate all the q's and p's without breaking the C

1

-continuity conditions.

Although is possible to interpolate a subset of the q's and p's, we choose to eliminate

the constraints on q

i

altogether. Eliminating the appropriate equations from our original

system and performing Gaussian elimination again gives a new constraint matrix. Let

^

A

and

^

b denote the matrix and right hand side of the new augmented matrix after Gaussian

elimination and after the zero rows have been removed. The system is consistent and

^

A

is of rank twenty two, indicating that we have a total of 37 - 7 - 22 = 8 extra degrees of

freedom. Since it is not possible to distribute these extra degrees of freedom symmetrically
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over six patches by de�ning constraints on the control points, we resolve the redundancy

by specifying a quadratic objective function that should be minimized subject to the C

1

-

constraints and to the interpolation constraints. Let f(x) = x

T

Qx denote such a function

where Q is a positive de�nite symmetric matrix. Forming the Lagrangian

L = x

T

Qx + �

T

(

^

Ax�

^

b)

and setting the partial derivatives to zero gives

Qx+

^

A

T

� = 0

^

Ax =

^

b

or

"

Q

^

A

T

^

A 0

# "

x

�

#

=

"

0

^

b

#

(1)

which can be solved for x and �. For the objective function we use

f(x) =

5

X

i=0

h

2

i

+ �

X

i2f5;6;7;10;11;12;13;16;17;19;20;22;23;24;25;26;28;29;30;31g

x

2

i

(2)

where � is a positive scalar value and

h

0

= q

0

�

1

8

(x

0

+ 3x

1

+ 3x

2

+ x

3

)

h

1

= q

1

�

1

8

(x

3

+ 3x

8

+ 3x

14

+ x

21

)

h

2

= q

2

�

1

8

(x

21

+ 3x

27

+ 3x

32

+ x

36

)

h

3

= q

3

�

1

8

(x

36

+ 3x

35

+ 3x

34

+ x

33

)

h

4

= q

4

�

1

8

(x

33

+ 3x

28

+ 3x

22

+ x

15

)

h

5

= q

5

�

1

8

(x

15

+ 3x

9

+ 3x

4

+ x

0

):

The �rst summation tends to keep the surface as close as possible to the desired inter-

polation points q

i

, and the terms in the second summation are needed to ensure that Q is

full rank. Figures 8, 9, and 10, show the results obtained using this interpolation scheme on

two sets of data.
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Figure 8: Front of a B�ezier surface �t for the male (left) and female (right) subjects.

Figure 9: Side of a B�ezier surface �t.

Figure 10: Rear views of a B�ezier surface �t.
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There is one caveat that should be mentioned. Strictly speaking, we have only guaranteed

C

1

-continuity on the interior of the surface. It is possible for C

1

-continuity to be violated

at a corner vertex connecting two exterior edges. In order to guarantee continuity at these

corners, it is necessary for the B�ezier curves de�ning the edges to be piecewise continuous.

This in turn requires that the two neighboring control points and the common vertex of

the B�ezier curves are all collinear, and introduces six extra constraint equations into our

system. Unfortunately, we have found that adding these additional equations interferes with

the other interpolation objectives. Relaxing these conditions seems like a justi�able sacri�ce

since C

1

-continuity is only violated at six extreme points on the surface.

3.5 Adding an Extra Patch

After preliminary attempts at �tting the data, we found that for both subjects, better

interpolation could be achieved by adding one extra patch attached to P

5

, as shown in �gure

11.

Figure 11: Adding an extra patch.

This patch is used to capture a sharp corner of the workspace located behind the frontal

plane and beneath the transverse plane. Denote the control points of this patch by y

0

; :::; y

9

.

The C

0

and C

1

-continuity constraints completely determine y

0

; :::; y

6

:

y

0

= x

0

y

1

= x

4

y

2

= x

9

y

3

= x

15

y

6

= x

15

+ x

9

� x

16

y

5

= x

4

+ x

9

� x

10

y

4

= x

0

+ x

4

� x

5

:

This leaves three extra degrees of freedom in y

7;

y

8;

and y

9

. Let R

0

; R

1

; R

2

denote three

additional points to interpolate along the two edges and at the corner respectively. Since the
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patch interpolates its corners, we can choose y

9

= R

2

. Along each edge, the surface becomes

a cubic B�ezier curve of the form

(1� t)

3

y

9

+ 3(1� t)

2

ty

7

+ 3(1� t)t

2

y

4

+ t

3

y

0

or

(1� t)

3

y

9

+ 3(1� t)

2

ty

8

+ 3(1� t)t

2

y

6

+ t

3

y

3

:

If we arbitrarily set t =

1

3

, we can solve for y

7

and y

8

y

7

=

9

4

 

R

0

�

8

27

y

9

�

2

9

y

4

�

1

27

y

0

!

y

8

=

9

4

 

R

1

�

8

27

y

9

�

2

9

y

6

�

1

27

y

3

!

:

3.6 Results

The �tted surfaces for both subjects are shown in Figs. 8, 9, and 10. The three viewpoints

are in front of the frontal plane, to the right of the sagittal plane, and behind the frontal

plane. The surface �tting procedure is imperfect, some of the points on the boundary of the

workspace are not included in the surface, and the surface tends to have sharp corners at

some of the control vertices. Error was measured by calculating the minimum distance of

each data point from the surface. For the male subject, the average error of a point was 1.64

cm and the maximum error was 5.32cm. For the female subject, the average error was 1.34

cm and the maximum error was 4.42cm. However, the severity of the error is exaggerated

by a handful of data points around the exterior of the surface. It is unclear if these points

are signi�cant or merely noise. In addition to errors in interpolating individual points, the

global shape of the surface is slightly more concave than the actual workspace. This is most

noticeable at the sharp corner behind the frontal plane where the curvature of the workspace

changes rapidly. We believe that most of these di�culties can be overcome easily by adding

more degrees of freedom to the surface. For example, we could replace one or more of the

triangular patches with four smaller patches of equal degree. This would introduce additional

interior control points that can be used to interpolate more data points. Another alternative

is to use higher order patches for the entire surface. Using a hexagonal pattern of quartic

patches gives us sixty three control vertices and only twenty two independent C

1

-constraints,

giving us thirty four extra degrees of freedom for interpolation even after the seven corner

control points are chosen. A quintic surface gives ninety one control vertices and only twenty

eight independent C

1

-constraints for a total of 91-28-7=56 extra degrees of freedom.

Another problem is that quality of the �t is highly dependent upon the choice of inter-

polation points and some regions are undersampled, making it di�cult to select appropriate

interpolation values for portions of the workspace. Here, the solution is clearly to obtain

more data.
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Our objective is not to obtain the best possible surface, but to demonstrate that an

adequate �t can be obtained and improved if necessary. As noted in the previous section,

the data itself is not completely reliable and it is di�cult to determine whether the error

introduced by the surface approximation is actually much worse than errors caused by im-

precise measurements. At some point, it is possible that producing a better \�tting" surface

actually incorporates error rather than eliminating it.

3.7 A Comparison with a Biomechanical Model

Much of the existing research on the arm focuses on individual joints rather than the behavior

of the entire shoulder complex. Additionally, most of the work is descriptive in nature

and is not useful for building a predictive or mathematical model of the arm. Using sonic

emitters, Engin and Chen [3] [4] collected statistical data for ten male subjects of ages 18

to 32 measuring the behavior of the composite shoulder complex sinus. Based on the data

collected from this study, Engin and Tumer [5] [6] developed a kinematic model consisting of

three two degree-of-freedom univeral joints located at the sternoclavicular, claviscapular, and

the glenohumeral joints and two one degree-of-freedom sleeve (twisting) joints. Since their

model is redundant, an optimization procedure is used to determine suitable joint angles.

Inman et al [12] studied the concerted movement of the humerus, scapula, and clavicle.

They observed that beyond a setting phase of approximately thirty degrees of abduction or

sixty degrees of 
exion, the humerus, scapula, and clavicle move in concert. The ratio of

glenohumeral to scapular rotation is approximately two to one, although the relationship

is not linear. The glenohumeral rotation predominates primarily at the beginning and at

the end of arm elevation. Otani [16] developed a kinematic model of the arm based on the

Inman study.

In this section, we compare our empirical results with those predicted by Otani's model

[16]. Otani viewed the motion of the arm as three abstract degrees of freedom: elevation,

abduction, and twist, which he termed the group joints. In his model, the group joints

are physically realized by �ve internal joints in the clavicle and the shoulder. Based on

clinical data, he obtained the following formula for distributing elevation and abduction to

the shoulder and clavicle:

'

c

= cos(�)�

1

+ (1� cos(�))�

2

� 90

�

c

= :2�

'

s

= '� '

c

�

s

= � � �

c

�

1

=

(

.2514'+ 91:076 for 0 � ' � 131:4

-.035'+ 128:7 for ' > 131:4

�

2

=

(

.21066'+ 92:348 for 0 � ' � 130

120 for ' > 130
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where ' and � are the total elevation and abduction of the shoulder-clavicle complex and

the subscripts c and s denote the contributions by the clavicle and the shoulder respectively.

The model assumes a constant range of twist of approximately two hundred degrees and a

default twist posture for each ('; �):

Figures 12, 13, 14, show how the empirical data matches the surface predicted by Otani's

shoulder model using the lengths of the shoulder and clavicle links of the female test subject.

Figure 12: Workspace of the female subject compared to workspace predicted by Otani's

model, front.

Figure 13: Workspace of the female subject compared to workspace predicted by Otani's

model, side.
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Figure 14: Workspace of the female subject compared to workspace predicted by Otani's

model, rear.

There is clearly a great deal of discrepancy between Otani's model and the physical data.

In particular, the model seems to exaggerate the contribution of the clavicle, predicting a

greater displacement of the elbow than actually occurs; this is particularly noticeable when

the arm is fully elevated.

Additionally, Otani's model fails to cover a substantial fraction of the workspace located

behind the frontal plane. Finally, Otani's model predicts a uniform range of twist regardless

of the arm elevation, and practical experience indicates that this is clearly not the case.

We reiterate our belief that it is di�cult to �nd a mathematical model of the arm that is

kinematically correct and feel that surface interpolation of the data is a more promising

technique for building an accurate model.

4 Forward and Inverse Kinematics for B�ezier Patch

Models

Most animation systems still model the skeleton of an articulated �gure as a chain of rigid

links connected by rotating joints. In order for our model to be useful to such a system, we

must be able to relate points on the surface to joint angles of an underlying skeleton. We use

a simple linkage to represent the shoulder complex in which the clavicle and the shoulder are

treated as two and three degree of freedom joints connected in a serial chain. However, these

joints are not independent but constrained by restrictions on the position and orientation of

the humerus as de�ned by a B�ezier patch surface. At each point on the surface, the humerus

can twist about its longitudinal axis. In the previous section we described how to construct

a surface

B(u; v; w) = [s(u; v; w); e(u; v; w);w

0

(u; v; w);w

1

(u; v; w)]

T

;

where s denotes the position of the shoulder, e the position of the elbow, and w

0

and w

1

the positions of the wrist at con�gurations of minimum and maximum twist with the elbow
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bent at approximately ninety degrees. We now describe a forward and inverse kinematics

scheme based on the B�ezier patch surface representation of the arm's workspace.

4.1 Forward Kinematics

Ideally, the user would like to think of the forward kinematics of the arm in terms of abstract

degrees of freedom representing the elevation, abduction, and twist of the arm. The internal

representation of a point in the workspace as (u; v; w)-coordinates on a B�ezier patch is

unintuitive for a user and should be concealed. The elevation and abduction parameters can

be interpreted as spherical coordinates for a point on a unit hemisphere. These coordinates

can in turn be projected onto a point on the unit disc, and it is easy to devise a mapping

from a point on the disc to barycentric coordinates of a point on a corresponding triangle

in the parameter space of the surface. This establishes a simple mapping from the user's

abstract degrees of freedom to a patch and its corresponding (u; v; w) values. We represent

twist by a fourth parameter �, where 0 < � < 1, and where � = 0 and � = 1 represent

con�gurations of the arm corresponding to w

0

and w

1

.

Of course, the B�ezier surface point s(u; v; w) does not necessarily satisfy the constraint

that the distance of the shoulder to the clavicle is constant. We therefore take the actual

position of the shoulder s

�

relative to the clavicle as

s

�

(u; v; w) = L

s(u; v; w)

ks(u; v; w)k

;(3)

where L is the distance from the clavicle to the shoulder sensor.

For each (u; v; w; �), we can �nd a transformation matrix E that relates the position and

orientation of the end e�ector to the clavicle frame

E =

"

x̂(u; v; w) ŷ(u; v; w) ẑ(u; v; w) s

�

(u; v; w)

0 0 0 1

#

(4)

As a convention, we assume take the ẑ axis as the twist axis and set it equal to the unit

vector along the shaft of the upper arm

ẑ(u; v; w) =

�!

s

�

e(u; v; w)










�!

s

�

e(u; v; w)










:(5)

To de�ne the range of twist, it is also necessary to �nd an expression for the x̂ axis as

a function of �: We de�ne x̂

0

and x̂

1

as the unitized projections of

��!

ew

0

and

��!

ew

1

onto the

plane perpendicular to ẑ(u; v; w)

x̂

i

=

��!

ew

i

� (

��!

ew

i

� ẑ)ẑ

k

��!

ew

i

� (

��!

ew

i

� ẑ)ẑk

i = 0; 1
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and set x̂(�) = cos(��)x̂

0

+ sin(��) (ẑ� x̂

0

), where � is the angle between x̂

0

and x̂

1

in the

direction of ẑ.

In principle, only the surface model is needed to describe the forward kinematics of the

shoulder-clavicle complex. If we are interested in only the position of the humerus with re-

spect to the clavicle, then no other information is required. However, for most applications,

the skeleton is associated with a set of polygonal segments that de�ne the surface of the arm,

and in order to draw these segments, it is necessary to determine the rigid body transforma-

tions associated with each joint. In order to determine a set of appropriate transformations,

we also utilize an underlying rigid body model for the clavicle-shoulder complex as shown in

�gure 15.

Figure 15: A model of the shoulder clavicle complex.

The forward kinematics equation for the tip of the humerus can be written as

T

1

(�

1

; �

2

)AT

2

(�

3

; �

4

; �

5

)B;(6)

where T

1

=

"

R

1

(�

1

; �

2

) 0

0 1

#

and T

2

=

"

R

2

(�

3

; �

4

; �

5

) 0

0 1

#

are the rotation matrices in-

duced by the clavicle and shoulder joints and A =

"

R

a

t

a

0 1

#

and B =

"

R

b

t

b

0 1

#

are

constant rigid body transformations from the clavicle to the shoulder frame and from the

shoulder frame to the tip of the humerus respectively.
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Given a quadruple (u; v; w; �), the corresponding joint angles �

1

and �

2

can be determined

by solving the equation

R

1

(�

1

; �

2

)t

a

= s

�

(u; v; w):(7)

Finally, �

3

; �

4

; �

5

can be obtained by applying Euler extraction to the right hand side of the

equation below

R

2

(�

3

; �

4

; �

5

) = (R

1

R

a

)

�1

h

x̂(u; v; w; �); ẑ(u; v; w)� x̂(u; v; w; �); ẑ(u; v; w)

i

B

�1

:(8)

4.2 Inverse Kinematics

The system has one extra degree of freedom determined by the elbow position. Since the

elbow workspace is modeled as a surface that is nonspherical, the elbow does not move on a

circle corresponding to the intersection of two spheres, (as in the kinematic model described

in Tolani [18]). Instead, the elbow moves about a nonplanar curve corresponding to the

intersection of the surface with a sphere centered at the goal and whose radius is equal to

the length of the lower arm. The �rst step in devising an inverse kinematics algorithm is to

�nd a parametric representation for the elbow position curve.

4.3 Intersection Computation

One approach to determining the intersection curve is to directly substitute the equation

of the sphere into the parametric equation of the spline surface. This leads to an implicit

equation of total degree 6 in terms of u; v; and w: Ideally, the equation should be in parametric

rather than implicit form as our approach requires a parameterization of the elbow position.

In general, it is impossible to convert an implicit curve into parametric form. One could

pretend the implicit equation is parametric in terms of one of u; v; and w, and to trace the

curve by iterating over this parameter and solving for the other two unknowns, but this

approach is not practical since we are only interested in real values of u; v; and w: Moreover,

there is no general purpose closed form solution to a polynomial equation of degree greater

than four, which means that a slow and potentially unreliable numerical solver must be

utilized.

Traditionally, surface intersection algorithms were based on divide and conquer methods

that use polyhedral subdivision and approximation. For example, the intersection of two

curves can be determined with a recursive algorithm where bounding boxes are used to ap-

proximate the curves. If the bounding boxes of two curves intersect, then each bounding

box is in turn broken into two or more smaller boxes, and the process is repeated until a nu-

merical threshold has been reached. Lasser [13] developed an intersection scheme for B�ezier

rectangular patches based on approximating the B�ezier surface with its subdivided control

mesh, reducing the problem into a polygon intersection problem. More recent surface inter-

section algorithms used in commercial CAD systems are based on curve-tracing techniques

[10]. These algorithms �rst �nd an initial point on the curve, and by stepping along the
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curve tangent, they obtain a crude guess for the next point. The point is then re�ned so

that it actually lies on the intersection curve, and the procedure is repeated.

Our approach to solving the intersection problem is similar to Lasser's method, except

that we use B�ezier triangles instead of rectangular patches, and only one of the two surfaces

is subdivided. As a result, our algorithm produces piecewise circular arcs rather than line

segment approximations to the intersection curve. These approximations can be easily pa-

rameterized and re�ned to an arbitrary degree of accuracy. It is well known that successively

subdividing a B�ezier control mesh produces a new set of control meshes that converges in

the limit to the surface. The rate of convergence is very rapid, which makes subdivision a

practical and e�cient method for drawing or approximating the surface with a control mesh.

We take advantage of this fact to approximate the intersection curve by subdividing the

surface into a set of triangular control polygons and then by stitching together the circular

arcs of all triangles that intersect the sphere.

It is clearly impractical to test all of the triangles for intersection, and in order to make

this approach practical, it is necessary to use a data structure that prunes the search space

e�ciently. As a �rst step, we use a variation of an oct-tree [7] to store the triangles approx-

imating the surface. The basic idea behind an oct-tree is to surround a set of spatial data

with a bounding cube. Each cube is in turn subdivided into eight disjoint subcubes whose

union forms the original cube. This process continues recursively until a cube has reached a

minimum size. In our scheme, every triangle is stored into the smallest cube that is capable

of accommodating it. To determine which triangles are potential intersection candidates, we

�rst determine whether the parent cube intersects the sphere. If the sphere intersects the

cube, we test all triangles inside the cube for intersection and recursively test all of the sub-

cubes. As a further enhancement, every triangle has an associated bounding sphere which

can be used as a quick test for potential intersection. Finally, we can further increase the

speed of the intersection procedure by noting that the surface tends to intersect the sphere

in only one curve. In other words, if the surface intersects a triangle, there is a very high

likelihood that it intersects one or more of the triangle's neighbors. This suggests that an

e�ective approach would be to start by traversing the oct-tree until the �rst intersection

with a triangle occurs. Rather than using the oct-tree to determine additional intersect-

ing triangles, the neighbors of the �rst intersecting triangle are then recursively checked for

intersection until no more neighboring triangles intersect the surface.

To test for intersection between a cube and a sphere we �rst �nd the point on the cube

that is closest to the center of the sphere. The coordinates of this point P are given by

P

i

=

8

>

<

>

:

B

min

i

C

i

< B

min

i

B

max

i

C

i

> B

max

i

C

i

otherwise

(9)

for i = 1::3 and C is the center of the sphere and B

min

and B

max

are the corner points of

the cube. Obviously, intersection or inclusion occurs if (P�C)

2

is less than the square of

the radius.
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To compute the intersection of a triangle with a sphere, we determine the distance of

the center of the sphere to the plane containing the triangle. If the distance is less than

the radius of the sphere, then no further testing is required. Otherwise, we project the

sphere onto the plane containing the triangle and perform the equivalent two dimensional

intersection problem of a circle with a triangle on a plane. In general, the circle will lie

outside the triangle or intersect in two points. It is theoretically possible for the circle to

be completely contained within the triangle or for the triangle to intersect in other than

two intersection points, but in practice, these cases do not occur unless the circle is small

compared to the size of the triangle. On the rare occasions where these degenerate situations

arise, the intersection algorithm can be repeated with a �ner subdivision level.

The result of the intersection procedure is a list of piecewise circular arcs that approximate

the actual intersection of the sphere with the surface traced by the elbow. Additionally, we

also need to obtain curves that correspond to the shoulder and the wrist positions. Consider

a circular arc segment with center C

0

and radius R. Let a,b,c be the coordinates of the

intersecting triangle and let P

0

and P

1

denote the two intersection points of the triangle with

the sphere. The equation of the elbow e(t) can be obtained using a rational parameterization.

First, perform a suitable coordinate transformation that maps C

0

onto the origin, the circle

onto the xy plane, and

���!

C

0

P

0










���!

C

0

P

0










onto the x axis. Let s be the y intercept of the line segment

(�1; 0) through P

1

(�gure 16).

Co

P0

P1

a

b

c

s

Figure 16: Obtaining a rational parameterization.

Then the equation of the elbow arc in this coordinate system is

e(t) = R

"

(1� t

2

)

(1 + t

2

)

;

2t

(1 + t

2

)

; 0

#

T
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0 < t < s:

To obtain s(t);w

0

(t);w

1

(t), we �rst obtain the barycentric coordinates of e(t) with respect

to the triangle �abc: The barycentric coordinates of e(t), (u(t); v(t); w(t)) can be computed

in closed form as

u(t) =

�(e(t);b; c)

�(a;b; c)

v(t) =

�(a; e(t); c)

�(a;b; c)

w(t) = 1� u(t)� v(t);

where �(a;b; c) =

�

�

�

�

�

�

�

a

x

b

x

c

x

a

y

b

y

c

y

1 1 1

�

�

�

�

�

�

�

:

The resulting expressions for u(t); v(t); and w(t) are quadratic rationals in t. The triangle

points a,b, and c, correspond to control points of one of the B�ezier patches. Let a

s

;b

s

; c

s

denote the s components of these B�ezier control points. The point s(t) is obtained by taking

the barycentric combinations of these points:

s(t) = u(t)a

s

+ v(t)b

s

+ (1� u(t)� v(t))c

s

:(10)

The points w

0

(t) and w

1

(t) are obtained analogously.

At this point, one might ask why we bother to use B�ezier surfaces at all. If the in-

tersections are performed on triangles rather than the surface, then all that is needed is a

triangularization of the data. B�ezier surfaces are still preferable for a number of reasons.

Obtaining a triangularization of irregularly spaced random data is a di�cult problem. Addi-

tionally, all the triangles must be small to ensure accuracy. This means that the data must

be carefully collected to be uniformly and �nely sampled. B�ezier surfaces solve both these

problems for free. Moreover, B�ezier surfaces are more compact than storing the entire data

set and they allow the surface to be re�ned to whatever level of accuracy is required by the

application. By contrast, a triangularization must always be stored at the �nest level of

accuracy that can be requested.

4.4 Computing joint angles

For a desired goal position g, the intersection algorithm produces a curve

[e(t); s(t);w

0

(t);w

1

(t)]

T

:

e(t) represents all possible locations of the elbow such that the distance of the elbow to

the goal is equal to the length of the lower arm. The variable s(t) encodes the location of

the shoulder given by equation 10. Finally, w

0

(t) and w

1

(t) give the limits on the range of

twist rotation about the upper arm. We assume that the elbow joint �

6

is a revolute joint
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about the y-axis, and the wrist joints �

7

; �

8

; and �

9

are spherical joints. We also assume that

the minimum and maximum limits for these joints are constant. The clavicle joints �

1

and

�

2

can be computed using equation 7, and �

6

is determined by Euler angle extraction (for

details, see Tolani [18]). For simplicity, assume that the rotations �

3

; �

4

; �

5

are about the

x; y; and z axes respectively and that R

b

= I and t

b

= [0; 0; L

2

]

T

, where L

2

is the length

of the upper arm. It is not necessary to infer joint limits for �

1

; �

2

; �

3

; and �

4

, as they are

automatically satis�ed by the requirements that the elbow position lies on the surface and

that the shoulder position is given by equation 10. Since �

5

does not a�ect the position of

e, �

3

and �

4

can be calculated by solving

R

x

(�

3

)R

y

(�

4

)[0; 0; L

2

]

T

= R

T

1

R

a

e�R

T

1

t

a

:

The variable �

5

is not arbitrary but constrained by w

0

(t) and w

1

(t): To determine the joint

limits �

min

5

(t) and �

max

5

(t), construct the matrices E

0

and E

1

representing the transformation

matrices associated with w

0

(t) and w

1

(t), as described in section 4.1. Let R

E

0

and R

E

1

denote the rotational components of E

0

and E

1

. To calculate the value of �

min

5

associated

with w

0

, we note that

R

z

(�

5

) = (R

1

R

A

R

x

(�

3

)R

y

(�

4

))

T

R

E

0

= S;

which implies that �

min

5

= a tan 2(S

01

;S

11

): The value of �

max

5

can be obtained analogously.

For the time being, assume there are no constraints on the joint limits. Let C =

"

R

c

t

c

0 1

#

denote the rigid body transformation from the distal frame of the elbow to the

proximal frame of the wrist. To obtain �

5

for a given goal g and value of t, we solve

R

z

(�

5

)(t

b

+R

y

(�

6

)t

c

) = (R

1

R

A

R

x

(�

3

)R

y

(�

4

))

T

g �R

1

t

a

for �

5

: The wrist angles are obtained by performing Euler angle extraction on the matrix

(R

1

R

A

R

x

(�

3

)R

y

(�

4

)R

z

(�

5

)R

y

(�

6

)R

c

)

T

G:(11)

Of course, it is useful to automatically determine a suitable value for t that satis�es the

joint limits on �

5

; �

7;

�

8;

and �

9

: One approach is to optimize a penalty function such that the

objective is positive when a joint limit is violated and zero when all joint limits are satis�ed.

A simple example is

f(t) =

X

i2f5;7;8;9g

r

i

g

2

i

(�

i

(t))

where r

i

are positive scale factors that weight the relative importance of each joint limit and

g

i

(�

i

(t)) = max(0; �

i

� �

max

i

) + max(0; �

min

i

� �

i

)

is zero whenever �

i

obeys the joint limits and is positive otherwise. Obtaining a minimum

of f(t) can be solved as a root �nding problem or an optimization problem in one variable.
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Although the derivatives of �

i

can be computed analytically with the assistance of a sym-

bolics mathematics package, the closed formulas for the derivatives are quite complex and

expensive to compute. From a practical point of view, it is simpler and faster to approxi-

mate the derivatives using a �nite di�erence approximation since the function itself can be

evaluated e�ciently. It is known that a �nite di�erence approximation works particularly

well with Newton's method in systems with a small number of variables. Additionally, since

the problem only involves one variable, a number of search based techniques that do not

require derivatives can be used. The most popular is quadratic �tting where the function is

sampled at three points about a starting position and �tted with an interpolating quadratic

approximation. The minimum of the quadratic is computed and used as the next guess

iteratively.

Unfortunately, successfully �nding a minimum of f(t) does not necessarily guarantee that

the joint limits will always be enforced. For example, if the goal lies outside the reachable

workspace, then no value of t will satisfy all the joint limits. However, in general, the

position constraints on an arbitrary goal can usually be solved provided that the goal does

not extend beyond the length of the arm. Therefore, it seems to make sense to �nd a solution

that satis�es the position constraint while minimizing the orientation error. One method is

to treat the wrist angles as independent variables from t. This allows us to obtain solutions

for the wrist angles that no longer are forced to obey orientation constraints which cannot

be enforced. We �rst minimize r

5

g

2

5

(�

5

(t)) to obtain a solution for �

5

that tends to minimize

the position error while satisfying the joint limits. To solve for the wrist angles, we solve

another optimization problem

f(�

7

; �

8

; �

9

) = kx(�

7

; �

8

; �

9

)� x

g

k+ ky(�

7

; �

8

; �

9

)� y

g

k ;

subject to the inequality constraints on the wrist joints. The variables x(�

7

; �

8

; �

9

) and

y(�

7

; �

8

; �

9

) are the x and y columns of the rotation matrix induced by the wrist angles and

x

g

and y

g

are the corresponding columns of the matrix of equation 11.

4.5 Conclusion

The surface-based model can also be used to solve problems involving partial orientation

and aiming (for details, see Tolani [18]). A partial orientation problem introduces an extra

degree-of-freedom  . The goal position is independent of  , so �

5

can be computed as before.

However, the wrist angles and the corresponding optimization function are now functions of

both t and  .

Aiming constraints also introduce one extra degree of freedom r, which parameterizes the

distance of the goal to the tip of the elbow. Although we have not addressed this problem,

it is probably not di�cult to derive the required hand position and �

5

for given values of r

and t. However, it is not wise to attempt to optimize the objective function with respect to

r, since the relationship between r and the elbow curve is complex and requires a surface

intersection computation. Instead it seems best to require the user to prescribe a given r

and to treat the problem as a one dimensional optimization problem in terms of t.
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Our work has demonstrated the feasibility of computing arm trajectories (in both position

and orientation) customized to a particular individual's anatomical structure from sparsely

sample motions. The method is geometrically formulated as a triangular Bezier surface

intersection problem and is solved by repeatable, consistent, and analytic techniques.

5 Appendix: B�ezier Curves and B�ezier Triangles

5.1 B�ezier Curves

In this section, we provide a brief and informal review of polynomial curves and surfaces. We

only cover the minimal amount of material necessary to understand the surface interpolation

scheme used in section 4, and make no attempt to be rigorous or exhaustive. We refer the

reader to Gallier [8] and Hoschek [11] for a comprehensive survey of this area.

5.2 The de Castlejau Algorithm

We can connect two points p

0

and p

1

with a line segment using linear interpolation, getting

F (u) = (1� u)p

0

+ up

1

;

where 0 � u � 1. Similarly, given three points p

0

;p

1

, and p

2

, we can construct a quadratic

curve connecting p

0

and p

2

by successive linear interpolants as shown in �gure 17.

p0

p1

p2

p(u)

(1-u)p0 + up1 (1-u)p1+up2

Figure 17: Evaluating a quadratic B�ezier curve.

p

1

0

= (1� u)p

0

+ up

1

29



p

1

1

= (1� u)p

1

+ up

0

F (u) = (1� u)p

1

0

+ up

1

1

:

In general, this idea can be generalized to n points using the de Castlejau algorithm:

deCastlejau(p[0],...,p[n], u)

for i=0 to n

for j=0 to n-1

p[j] = (1-u)p[j] + u*p[j+1]

end

end

return p[0]

The polynomial curve of degree n formed by applying de Castlejau's algorithm is called a

B�ezier curve, and p

0

; :::;p

n

are called the control points. A B�ezier curve can also be written

in closed form as

B(u) =

n

X

i=0

 

n

i

!

(1� u)

n�i

u

i

p

i

:(12)

5.3 Blossoms

Given any polynomial curve F (u) of degree d and an integer n � d, there exists a unique n-

variable polynomial function f(u

1

; :::; u

n

) called the blossom or polar form of F that satis�es

the following properties:

1. f is n-a�ne: f(:::; �s+ �t; ::::) = �f(::::; s; :::) + �f(:::; t; :::), if �+ � = 1.

2. f is symmetric: f(u

1

; :::; u

n

) = f(u

�(1)

; :::; u

�(n)

), for every permutation �.

3. f agrees with F along the diagonal: f(u; :::; u) = F (u), for all u 2 <.

As a notational convenience, we will use u

n

to denote u repeated n times. Given the

blossom b(u

1

; :::; u

n

) of a B�ezier curve B(u), we can �nd the B�ezier control points by taking

advantage of the a�ne properties of b:

B(u) = (1� u)b(0; u

n�1

) + ub(1; u

n�1

):

If we repeat this process we obtain the equation

B(u) =

n

X

i=0

 

n

i

!

(1� u)

n�i

u

i

b(0

n�i

; 1

i

);

which reveals that the B�ezier control points p

i

are given by

p

i

= b(0

n�i

; 1

i

):
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Blossoms are an extremely powerful tool for analyzing polynomial curves and surfaces.

They provide a unifying framework for studying curve and surface evaluation, derivatives,

subdivision, reparameterization, basis conversion, degree raising, knot insertion, and inter-

polation. Moreover, generalizations of the de Castlejau algorithm can be used in conjunction

with blossom values to provide numerically stable and straightforward procedures for solving

these problems. For example, it is frequenly useful to subdivide a B�ezier curve B(u) into

two subcurves whose union is equivalent to the original curve. To split B(u) at a parametric

value s, we only need to �nd two curves whose control points are given by b(0

n�i

; s

i

) and

b (s

n�i

; 1

i

) respectively.

5.4 Triangular B�ezier Patches

Blossoms and B�ezier curves can also be extended to surfaces. The two most popular paramet-

ric surface schemes are tensor-product surfaces de�ned over rectangular control patches and

B�ezier triangles which are de�ned over triangular patches. We only discuss B�ezier triangles

which are the most natural generalization of B�ezier curves to surfaces.

5.5 Barycentric Coordinates

Given a reference triangle de�ned by three points a,b, and c, we can write any point p on

the plane containing the triangle as a barycentric combination of a,b,c,

p = ua+ vb+ wc

where

u+ v + w = 1:

The components of the vector u=[u; v; w]

T

are called the barycentric coordinates of p with

respect to a;b; c:

Using barycentric coordinates, the de Castlejau algorithm can be generalized to triangular

control meshes to form surfaces. It is easiest to describe the algorithm using an example,

and the extension to the general case is straightforward. Consider a quadratic control net

with the following control points

b

200

b

101

b

110

b

002

b

011

b

020

To evaluate the surface at a point [u; v; w]

T

, where u+v+w = 1, we �rst form an intermediate

subtriangle consisting of points b

1

001

;b

1

010

; and b

1

100

b

1

100

b

1

001

b

1

010
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b

1

001

= ub

101

+ vb

011

+ wb

002

b

1

010

= ub

110

+ vb

020

+ wb

011

b

1

100

= ub

200

+ vb

110

+ wb

101

:

Finally, the point on the curve is determined by evaluating the barycentric coordinates with

respect to b

1

001

;b

1

010

; and b

1

100

:

b

2

000

= ub

1

100

+ vb

1

010

+ wb

1

001

:

The general de Castlejau algorithm for a triangular patch is as follows:

b

r

i

(u) =ub

r�1

i+e1

(u) + vb

r�1

i+e2

(u) + wb

r�1

i+e3

(u);

where

e

1

= [1; 0; 0]

T

; e

2

= [0; 1; 0]

T

; e

3

= [0; 0; 1]

T

r = 1:::n

jij = n� r;

and b

0

i

are the control points and b

n

ooo

(u) is the point on the B�ezier triangle evaluated at

parameter value u.

5.6 Triangular Blossoms

In the case of surfaces de�ned by triangular control meshes, the domain parameter is allowed

to range over <

2

instead of <. For every bivariate polynomialB(u) of degree n, where u 2 <

2

,

there exists a unique blossom b(u

1

; :::;u

n

) that is symmetric, multia�ne, and agrees with B

on the diagonal. As in the case of curves, it can be shown that the control point b

ijk

of a

B�ezier triangle B(u) are given by the blossom values b(e

i

1

; e

j

2

; e

k

3

), where i + j + k = n.

5.7 Subdivision

Subdivision of B�ezier triangles follows naturally from blossoming. Evaluating a B�ezier patch

whose domain triangle is given by 4uvw at t generates a set of intermediate control points

that break the surface into three pieces about t, de�ned by domain triangles 4uvt;4tvw;

4utw. In general, many subdivision schemes are possible, but perhaps the most natural

subdivision method is to use a regular partition of a triangle patch into four subpieces. We

illustrate this scheme with the following example. Consider a quadratic patch de�ned over

the triangle 4uvw =((1; 0; 0); (0; 1; 0); (0; 0; 1)), with control points

(b(w;w); b(v; w); b(v; v); b(u; w); b(u; v); b(u; u)) :
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We can split the patch into four subtriangles 4tsw, 4str, 4uvs, and 4urt, where

r =

 

1

2

;

1

2

; 0

!

, s =

 

0;

1

2

;

1

2

!

, and t =

 

1

2

; 0;

1

2

!

, by evaluating the appropriate blossom

points as shown in �gure 18. Gallier [9] shows how to implement this subdivision scheme

using only four calls to the de Castlejau algorithm.

f(t,t)                                          f(s,t)                                       f(s,s)                                      

f(t,r)                                              f(r,s)

f(r,r)

f(r,r)

f(w,r)                  f(u,r)

     f(w,w)             f(w,u)               f(u,u)

f(w,t)                  f(w,v)            f(u,v)                  f(u,s)

f(t,t)                f(t,v)                f(v,v)               f(v,s)                f(s,s)

Figure 18: Dividing a B�ezier Triangle.

5.8 C

1

-Continuity between Triangular Patches

It is frequently necessary to construct a surface out of several patches that are stitched

together. In order to ensure that the patches join smoothly, various conditions on the

control points must be satis�ed. In this section, we only summarize the conditions necessary

for C

0

and C

1

-continuity. Let A = 4prs and B = 4qrs be two triangles in parametric

space sharing the edge rs: Let B

A

and B

B

represent two corresponding surfaces of degree m

for A and B with blossom forms b

A

and b

B

. The C

0

-continuity conditions require that

b

A

�

r

k

; s

m�k

�

= b

B

(r

k

; s

m�k

)

0 � k � m:

This condition states that B

A

and B

B

share the same control points along the edge rs:

Suppose q = up+ vr+ ws. For C

1

-continuity, we must also have

b

B

(q; r

k

; s

m�k�1

) = ub

A

(p; r

k

; s

m�k

) +

vb

A

(r

k

; s

m�k

) +

wb

A

(r

k+1

; s

m�k�1

):
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Parameter Space

Object Space

Figure 19: C

1

-continuity conditions for triangular patches.

In the special case where the domain triangles are equilateral, then

p+ q = r+ s;

and the midpoints of the line segments (b

A

(pr

k

s

m�k�1

), b

A

(r

k+1

; s

m�k�1

)), and

(b

A

(p; r

k

, s

m�k�1

); b

A

(r

k

; s

m�k

)), are equal (�gure 20). Higher degree continuity places fur-

ther restrictions on the control points. The reader is referred to Gallier [8] for proofs and a

treatment of the general case.

a

b c

d

a+d=b+c

Object SpaceParameter Space

Figure 20: C

1

-continuity when the parameter triangles are equilateral.
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