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Abstract

In this paper, we examine image and video based recognition applications where the underlying

models have a special structure – the linear subspace structure. We discuss how commonly used

parametric models for videos and image-sets can be described using the unified framework of Grassmann

and Stiefel manifolds. We first show that the parameters of linear dynamic models are finite dimensional

linear subspaces of appropriate dimensions. Unordered image-sets as samples from a finite-dimensional

linear subspace naturally fall under this framework. We show that the study of inference over subspaces

can be naturally cast as an inference problem on the Grassmann manifold.

To perform recognition using subspace-based models, we need tools from the Riemannian geometry

of the Grassmann manifold. This involves a study of the geometric properties of the space, appropriate

definitions of Riemannian metrics, and definition of geodesics. Further, we derive statistical modeling

of inter- and intra-class variations that respect the geometry of the space. We apply techniques such as

intrinsic and extrinsic statistics, to enable maximum-likelihood classification. We also provide algorithms

for unsupervised clustering derived from the geometry of the manifold. Finally, we demonstrate the

improved performance of these methods in a wide variety of vision applications such as activity
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recognition, video-based face recognition, object recognition from image-sets, and activity-based video

clustering.

Index Terms

Image and Video Models, Feature Representation, Statistical Models, Manifolds, Stiefel, Grassmann

I. INTRODUCTION

Many applications in computer vision such as dynamic textures [2],[3], human activity mod-

eling and recognition [4],[5], video-based face recognition [6], shape analysis [7],[8] involve

learning and recognition of patterns from exemplars which obey certain constraints. To enable

this study, we often make simplifying assumptions of the image-formation process such as a pin-

hole camera model or the Lambertian reflectance model. Theseassumptions lead to constraints

on the set of images thus obtained. A classic example of such aconstraint is that images of a

convex object under all possible illumination conditions form a ‘cone’ in image-space [9]. Once

the underlying assumptions and constraints are well understood, the next important step is to

design inference algorithms that are consistent with the algebra and/or geometry of the constraint

set. In this paper, we shall examine image and video based recognition applications where the

models have a special structure – the linear subspace structure.

In many of these applications, given a database of examples and a query, the following two

questions are to be addressed – a) what is the ‘closest’ example to the query in the database

? b) what is the ‘most probable’ class to which the query belongs ? A systematic solution to

these problems involves a study of the underlying constraints that the data obeys. The answer to

the first question involves a study of the geometric properties of the space, which then leads to

appropriate definitions of Riemannian metrics and further to the definition of geodesics etc. The

answer to the second question involves statistical modeling of inter- and intra-class variations.

It is well-known that the space of linear subspaces can be viewed as a Riemannian manifold

[10], [11]. More formally, the space ofd-dimensional subspaces inRn is called the Grassmann

manifold. On a related note, the Stiefel manifold is the space of d orthonormal vectors inRn. The

study of these manifolds has important consequences for applications such as dynamic textures

[2], [3], human activity modeling and recognition [4], [5],video-based face recognition [6] and
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shape analysis [7], [8] where data naturally lies either on the Stiefel or the Grassmann manifold.

Estimating linear models of data is standard methodology inmany applications and manifests

in various forms such as linear regression, linear classification, linear subspace estimation etc.

However, comparatively less attention has been devoted to statistical inference on the space of

linear subspaces.

A. Prior Work

The Grassmann manifold’s geometric properties have been utilized in certain vision problems

involving subspace constraints. Examples include, [12] which deals with optimization over the

Grassmann manifold for obtaining informative projections. The Grassmann manifold structure

of the affine shape space is also exploited in [13] to perform affine invariant clustering of shapes.

[14] performs discriminative classification over subspaces for object recognition tasks by using

Mercer kernels on the Grassmann manifold. In [15], a face image and its perturbations due to

registration errors are approximated as a linear subspace,hence are embedded as points on a

Grassmann manifold. Most of these methods do not employ statistics on the Grassmann manifold,

or are tuned to specific domains lacking generality. [16] exploited the geometry of the Grassmann

manifold for subspace tracking in array signal processing applications. On a related note, the

geometry of the related Stiefel manifold has been found to beuseful in applications where in

addition to the subspace structure, the specific choice of basis vectors is also important [17]. The

methods that we present in this paper form a comprehensive (not exhaustive) set of tools that

draw upon the Riemannian geometry of the Grassmann manifold. Along with the mathematical

formulations, we also present efficient algorithms to perform these computations.

The geometric properties of general Riemannian manifolds forms the subject matter of differ-

ential geometry; a good introduction can be found in [18]. Statistical methods on manifolds have

been studied for several years in the statistics community.Some of the landmark papers in this

area include [19], [20], [21], however an exhaustive surveyis beyond the scope of this paper. The

geometric properties of the Stiefel and Grassmann manifolds have received significant attention.

A good introduction to the geometry of the Stiefel and Grassmann manifolds can be found in

[10] who introduced gradient methods on these manifolds in the context of eigenvalue problems.

These problems mainly involved optimization of cost functions with orthogonality constraints.

A compilation of techniques for solving optimization problems with such matrix manifolds is
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provided in [22]. Algorithmic computations of the geometric operations in such problems were

discussed in [11]. A compilation of research results on statistical analysis on the Stiefel and

Grassmann manifolds can be found in [23].

In addition to the Grassmann manifold, general Riemannian manifolds have found important

applications in the vision community. A recently developedformulation of using the covariance

of features in image-patches has found several applications such as texture classification [24],

pedestrian detection [25], and tracking [26]. The Riemannian geometry of covariance matrices

was exploited effectively in all these applications to design state-of-the-art algorithms. More

recently, [27] provides an extension of Euclidean mean shift clustering to the case of Riemannian

manifolds.

Shape analysis is another application area where statistics on Riemannian manifolds have found

wide applicability. Theoretical foundations for manifolds based shape analysis were described in

[7], [8]. Statistical learning of shape classes using non-linear shape manifolds was presented in

[28] where statistics are learnt on the manifold’s tangent space. Using a similar formulation, the

variations due to execution rate changes in human activities is modeled as a distribution over

time-warp functions, which are considered as points on a spherical manifold in [29]. This was

used for execution rate-invariant recognition of human activities.

A preliminary version of this paper was presented in [1], which used extrinsic methods for

statistical modeling on the Grassmann manifold. This paperprovides a mathematically well

grounded basis for these methods, where the specific choice of the method in [1] is interpreted as

a special case of using a non-parametric density estimator with an extrinsic divergence measure.

In this paper, we provide more detailed analysis and show howto exploit the geometry of the

manifold to derive intrinsic statistical models. This provides a more consistent approach than

the extrinsic methods of [1]. Further, the dimensionality of the manifold presents a significant

road-block for computer implementation of Riemannian computations. Straightforward imple-

mentation of formulas for geodesic distances, exponentialand inverse-exponential maps given in

earlier work such as [10], [11], [27] is computationally prohibitive for large dimensions. This is

especially true of our applications where we deal with high dimensional image and video-data.

Toward this end, we also employ numerically efficient versions of these computations.

Contributions: We first show how a large class of problems drawn from face, activity, and

object recognition can be recast as statistical inference problems on the Stiefel and/or Grassmann
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manifolds. Then, we present methods to solve these problemsusing the Riemannian geometry

of the manifolds. We also discuss some recently proposed extrinsic approaches to statistical

modeling on the Grassmann manifold. We present a wide range of experimental evaluation to

demonstrate the effectiveness of these approaches and provide a comprehensive comparison.

Organization of the paper: In section II, we discuss parametric subspace-based models

of image-sets and videos and show how the study of these models can be recast as a study of

the Grassmann manifold. Section III introduces the specialorthogonal group and its quotient

spaces – the Stiefel and the Grassmann manifolds. Section IVdiscusses statistical methods that

follow from the quotient interpretation of these manifolds. In section V, we develop supervised

and unsupervised learning algorithms. Complexity issues and numerically efficient algorithms for

performing Riemannian computations are discussed in section VI. In section VII, we demonstrate

the strength of the framework for several applications including activity recognition, video-based

face recognition, object matching, and activity-based clustering. Finally, concluding remarks are

presented in section VIII.

II. M ODELS FORV IDEOS AND IMAGES

A. Spatio-temporal dynamical models and the ARMA model

A wide variety of spatio-temporal data have often been modeled as realizations of dynamical

models. Examples include dynamic textures [2], human jointangle trajectories [4] and silhouettes

[5]. A well-known dynamical model for such time-series datais the autoregressive and moving

average (ARMA) model. Linear dynamical systems represent aclass of parametric models

for time-series. A wide variety of time series data such as dynamic textures, human joint

angle trajectories, shape sequences, video-based face recognition etc are frequently modeled

as autoregressive and moving average (ARMA) models [2], [4], [5], [6]. The ARMA model

equations are given by

f (t) =Cz(t)+w(t) w(t)∼ N(0,R) (1)

z(t +1) = Az(t)+ v(t) v(t)∼ N(0,Q) (2)

where, z ∈ Rd is the hidden state vector,A ∈ Rd×d the transition matrix andC ∈ Rp×d the

measurement matrix.f ∈Rp represents the observed features whilew andv are noise components

modeled as normal with 0 mean and covariancesR ∈ Rp×p andQ ∈ Rd×d , respectively.
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For the ARMA model, closed form solutions for learning the model parameters have been

proposed in [30], [2] and are widely used. For high-dimensional time-series data (dynamic

textures etc), the most common approach is to first learn a lower-dimensional embedding of

the observations via PCA, and learn the temporal dynamics inthe lower-dimensional space.

Let observationsf (1), f (2), . . . f (τ), represent the features for the time indices 1,2, ...τ. Let

[ f (1), f (2), . . . f (τ)] = UΣV T be the singular value decomposition of the data. ThenĈ =U, Â =

ΣV T D1V (V T D2V )−1Σ−1, whereD1 =





0 0

Iτ−1 0



 andD2 =





Iτ−1 0

0 0



.

The model parameters(A,C) do not lie in a vector space. The transition matrixA is constrained

to be stable with eigenvalues inside the unit circle. The observation matrixC is constrained to

be an orthonormal matrix. For comparison of models, the mostcommonly used distance metric

is based on subspace angles between column-spaces of the observability matrices [31]. For the

ARMA model of (2), starting from an initial conditionz(0), it can be easily shown that the

expected observation sequence is given by [32]

E
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


















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





















z(0) = O∞(M)z(0) (3)

Thus, the expected observation sequence generated by a time-invariant modelM = (A,C) lies in

the column space of the extendedobservability matrix given byOT
∞ =

[

CT ,(CA)T ,(CA2)T , . . .(CAn)T . . .
]

.

In experimental implementations, we approximate the extended observability matrix by the finite

observability matrix as is commonly done [33],OT
m =

[

CT ,(CA)T ,(CA2)T , . . .(CAm−1)T
]

. The

size of this matrix ismp×d. The column space of this matrix is ad-dimensional subspace of

Rmp, whered is the dimension of the state-spacez in (2). d is typically of the order of 5-10.

Thus, given a database of videos, we estimate the model parameters as described above for

each video. The finite observability matrix is computed next. To represent the subspace spanned

by the columns of this matrix, we storean orthonormal basis computed by Gram-Schmidt

orthonormalization. Since, a subspace is a point on aGrassmann manifold, a linear dynamical

system can be alternately identified as a point on the Grassmann manifold corresponding to the

column space of the observability matrix.
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B. Image Sets as collections of subspaces

In image and object recognition, recent methods have focused on utilizing multiple images

of the same object, taken under varying viewpoints or varying illumination conditions, for

recognition [34], [14], [35], [36]. e.g. It was shown by Jacobs et al that the illumination cone

of a convex Lambertian surface can be approximated by a 9-dimensional linear subspace [37].

Motivated by this, the set of face images of the same person under varying illumination conditions

is frequently modeled as a linear subspace of 9-dimensions [38].

Given a large set of images indexed by, say, the pose or viewing angle of the camera, we

estimate multiple subspaces – one for each view – as the modelof object appearance. The

subspaces can be estimated by straightforward principal component analysis. Given another set

of images during testing, we would like to compute the likelihood of it coming from a specific

class. In the training phase, given a set of these subspaces for a given class, we would like to

compute their class-conditional densities. During testing, we are given a set of images taken

under approximately the same viewing angle which allows us to model the set using a subspace.

Then, the maximum likelihood classification can be performed for each test instance using these

class conditional distributions. However, since subspaces are viewed as elements of a Grassmann

manifold, the goal is to learn a probability distribution over the Grassmann manifold from the

given image data.

C. Overall Approach

The set of alld-dimensional linear subspaces ofRn is called the Grassmann manifold which

will be denoted asGn,d. The set of alln×d orthonormal matrices is called the Stiefel manifold

and shall be denoted asSn,d . As discussed in the applications above, we are interested in

computing statistical models over the Grassmann manifold.Let U1 U2, . . . ,Uk be some points

on Sn,d and we seek their sample mean, an average, for defining a probability model onSn,d .

Recall that theseUis are tall, orthogonal matrices. It is easy to see that the Euclidean sample

mean 1
k ∑k

i=1Ui is not a valid operation, because the resultant mean does nothave the property

of orthonormality. This is becauseSn,d is not a vector space. Similarly, many of the standard

tools in estimation and modeling theory do not directly apply to such spaces but can be adapted

by accounting for the underlying nonlinear geometry.
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On a computer, a subspace is stored as an orthonormal matrix which forms a basis for

the subspace. As mentioned earlier, orthonormal matrices are points on the Stiefel manifold.

However, since the choice of basis for a subspace is not unique, any notion of distance and

statistics should be invariant to this choice. This requires us to interpret each point on the

Grassmann manifold as an equivalence of points on the Stiefel manifold, where all orthonormal

matrices that span the same subspace are considered equivalent. This interpretation is more

formally described as aquotient interpretation i.e. the Grassmann manifold is considered a

quotient space of the Stiefel manifold. Quotient interpretations allow us to extend the results of

the base manifold such as tangent spaces, geodesics etc to the quotient space. In our case, it

turns out that the Stiefel manifold itself can be interpreted as a quotient of a more basic manifold

- the special orthogonal groupSO(n). A quotient of Stiefel is thus a quotient ofSO(n) as well.

Thus, we shall study the Grassmann as a quotient ofSO(n). Hence, first we recapitulate relevant

results ofSO(n), then review the required concepts from differential geometry that enable us to

derive distances and statistical models on the special manifolds.

III. PRELIMINARIES: THE SPECIAL ORTHOGONAL GROUP SO(N) AND ITS QUOTIENTS

Let GL(n) be the generalized linear group ofn× n nonsingular matrices. It is not a vector

space but a differentiable manifold, i.e., it can be locallyapproximated by subsets of a Euclidean

space. The dual properties of being a group and a differentiable manifold make it aLie group. If

we consider the subset of all orthogonal matrices, and further restrict to the ones with determinant

+1, we obtain a subgroupSO(n), called thespecial orthogonal group. It can be shown that this

is a submanifold ofGL(n) and is also a group by itself; it possesses the Lie group structure.

Since it hasn2 elements andn+ n(n−1)/2 constraints (unit length columns→ n constraints

and perpendicular columns→ n(n−1)/2 constraints), it is ann(n−1)/2-dimensional Lie group.

To perform differential calculus on a manifold, one needs tospecify its tangent spaces. For the

n×n identity matrix I, an element ofSO(n), the tangent spaceTI(SO(n)) is the set of alln×n

skew-symmetirc matrices ([18]). For an arbitrary pointO ∈ SO(n), the tangent space at that

point is obtained by a simple rotation ofTI(SO(n)): TO(SO(n)) = {OX |X ∈ TI(SO(n))}. Define

an inner product for anyY,Z ∈ TO(SO(n)) by 〈Y,Z〉= trace(YZT ), wheretrace denotes the sum

of diagonal elements. With this metricSO(n) becomes a Riemannian manifold.

Using the Riemannian structure, it becomes possible to define lengths of paths on a manifold.
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Fig. 1. Illustration of tangent spaces, tangent vectors, and geodesics.P1 andP2 are points on the manifold.TP1 and

TP2 are the tangent spaces at these points. Note that there is a unique local mapping between the manifold and the

tangent plane and this local mapping depends upon the pole. Geodesics paths are constant velocity curves on the

manifold. Tangent vectors correspond to velocities of curves on the manifold.

Let α : [0,1]→ SO(n) be a parameterized path onSO(n) that is differentiable everywhere on

[0,1]. Then dα
dt , the velocity vector att, is an element of the tangent spaceTα(t)(SO(n)). For

any two pointsO1,O2 ∈ SO(n), one can define a distance between them as the infimum of the

lengths of all smooth paths onSO(n) which start atO1 and end atO2:

d(O1,O2) = inf
{α:[0,1]→SO(n)|α(0)=O1,α(1)=O2}

(

∫ 1

0

√

〈

dα(t)
dt

,
dα(t)

dt

〉

dt

)

(4)

A path α̂ which achieves the above minimum, if it exists, is ageodesic betweenO1 andO2 on

SO(n). Geodesics onSO(n) can be written explicitly using the matrix exponential [10]. For an

n× n matrix A, define its matrix exponential by: exp(A) = I + A
1! +

A2

2! +
A3

3! + . . . . It is easy to

show that given any skew-symmetric matrixX , exp(X) ∈ SO(n). Now we can define geodesics

on SO(n) as follows: for anyO ∈ SO(n) and any skew-symmetric matrixX , α(t)≡ Oexp(tX),

is the unique geodesic inSO(n) passing throughO with velocity vectorOX at t = 0. 1

An important tool in statistics on a manifold is an exponential map. If M is a Riemannian

1We note here the distinction between ageodesic and thegeodesic distance. The geodesic passing through a point is simply

a constant speed curve specified by its initial velocity, whereas thegeodesic distance between two points is the length of the

shortest constant speed curve passing through both points.For a point and a tangent vector on a Riemannian manifold, we can

construct a geodesic path whose initial point and the velocity are same as the given pair.
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Fig. 2. Illustration of exponential maps. The exponential map is a ‘pull-back’ map which takes points on the

tangent plane and pulls them onto the manifold in a manner that preserves distances. As an example, shown are

two pointsV1 andV2 on the tangent space at poleP. Both points lie along the same tangent vector. The exponential

map will map them onto the same geodesic. In a local neighborhood, the geodesic distance between the pole and

the obtained points will be the same as the Euclidean distance between the pole and the tangent vectors on the

tangent plane.

manifold andp ∈ M, the exponential map expp : Tp(M)→ M, is defined by expp(v) = αv(1)

whereαv is a constant speed geodesic starting atp and with the initial velocityv. In case of

SO(n), the exponential map expO : TO(SO(n))→ SO(n) is given by expO(X) = Oexp(X), where

the exponential on the right side is actually the matrix exponential. To help visualize these ideas,

we illustrate the notions of tangent planes, geodesics in figure 1. We illustrate the notions of the

exponential map in figure 2.

A. Stiefel and Grassmann Manifolds as Quotients of SO(n)

A quotient of a group results from equivalence relations between points in the space. If one

wants to identify certain elements of a set, using an equivalence relation, then the set of such

equivalent classes forms a quotient space. This framework is very useful in understanding the

geometry ofSn,d and Gn,d by viewing them as quotient spaces, using different equivalence

relations, ofSO(n).

Stiefel Manifold: A Stiefel manifold is the set of alld-dimensional orthonormal bases ofRn

for 1 ≤ d ≤ n. Since each orthonormal basis can be identified with ann× d matrix, a Stiefel

manifold is also a set ofn×d matrices with orthonormal columns. More interestingly,Sn,d can

be viewed as a quotient space ofSO(n) as follows. Consider the subgroup of smaller rotations
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SO(n−d) as a subgroup ofSO(n) using the embedding:φa : SO(n−d)→ SO(n), defined by

φa(V ) =





Id 0

0 V



 ∈ SO(n) . (5)

Now define two elementsO1, O2 ∈ SO(n) to be equivalent, i.e.O1 ∼a O2, if O1 = O2φa(V ) for

someV ∈ SO(n−d). (The subscripta is used to distinguish it from another equivalence relation

used later for studyingGn,d.) Note thatφa(SO(n−d)) consists of those rotations inSO(n) that

rotate only the last(n−d) components inRn, leaving the firstd unchanged. Hence,O1 ∼ O2

if and only if their first d columns are identical, irrespective of the remaining columns. The

resulting equivalence classes are:[O]a = {Oφa(V )|V ∈ SO(n− d)}. Since all elements of[O]a

have the same firstd columns, we will use that submatrixU ∈ Rn×d to represent[O]a. Sn,d is

now viewed as the set of all such equivalence classes and is denoted simply bySO(n)/SO(n−d).

Grassmann Manifold: A Grassmann manifold is the set of alld-dimensional subspaces of

Rn. Here we are interested ind-dimensional subspaces and not in a particular basis. In order to

obtain a quotient space structure forGn,d, let SO(d)×SO(n−d) be a subgroup ofSO(n) using

the embeddingφb : (SO(d)×SO(n−d))→ SO(n):

φb(V1,V2) =





V1 0

0 V2



 ∈ SO(n). (6)

Define an equivalence relation onSO(n) according toO1 ∼b O2 if O1 = O2φb(V1,V2) for some

V1 ∈ SO(d) andV2 ∈ SO(n−d). In other words,O1 andO2 are equivalent if the firstd columns

of O1 are rotations of the firstd columns ofO2 and the last(n−d) columns ofO1 are rotations

of the lastn−d columns ofO2. An equivalence class is given by:

[O]b = {Oφb(V1,V2)|V1 ∈ SO(d), V2 ∈ SO(n−d)} ,

and the set of all such equivalence classes isGn,d. Notationally,Gn,d can also be denoted as

simply SO(n)/(SO(d)×SO(n−d)). For efficiency, we often denote the set[O]b by [U ] = {UV1∈

R
n×d |V1 ∈ SO(d)}, whereU denotes the firstd columns ofO. Another way to expressU is OJ

whereJ is the matrix of the firstd columns ofIn.

1) Tangent Structures via the Quotient Interpretation: As noted earlier, for anyO ∈ SO(n),

a geodesic flow in a tangent direction, say,OT A, is given byψO(A, t) = OT exp(tA) where exp

is the matrix exponential. This is a one-parameter curve with t as the parameter. From this one

December 1, 2010 DRAFT



12

can deduce that, in case ofSn,d andGn,d a geodesic flow starting from a pointU = OT J ∈Sn,d

is of the type:

t 7→ OT exp(tA)J (7)

Here, the skew-symmetric matrixA is either of the type





C −B

BT 0



 for Sn,d , of the type





0 −B

BT 0



 for Gn,d. In general the tangent vectors onSn,d or Gn,d can be written asOT AJ.

Tangent Structure of Sn,d : It can be shown that the tangent structure ofSn,d is given as

TJ(Sn,d) = {





C

BT



 |C ∈ R
d×d skew-symm,B ∈ R

d×(n−d)} . (8)

For any other pointU ∈ Sn,d , let O ∈ SO(n) be a matrix that rotates the columns ofU to align

with the columns ofJ, i.e. letU = OT J. Note that the choice ofO is not unique. It follows that

the tangent space atU is given by:TU(Sn,d) = {OT G|G ∈ TJ(Sn,d)}.

Tangent Structure of Gn,d: The tangent space at[J] ∈ Gn,d is:

T[J](Gn,d) = {





0

BT



 | B ∈ R
d×(n−d)} (9)

For any other point[U ] ∈ Gn,d, let O ∈ SO(n) be a matrix such thatU = OT J. Then, the tangent

space at[U ] is given byT[U ](Gn,d) = {OT G|G ∈ T[J](Gn,d)}.

On Sn,d andGn,d, the exponential map is given by:

OT





C

BT



≡ OT AJ 7→ OT exp(A)J ,

where A takes an appropriate structure for each case. The expression for inverse exponential

map is not available analytically for these manifolds and iscomputed numerically as described

later in section VI.

IV. USING GEOMETRY TO COMPUTESAMPLE STATISTICS ON THE GRASSMANN MANIFOLD

The first question that we consider is: What is a suitable notion of a mean on the Riemannian

manifold M ? A popular method for defining a mean on a manifold was proposed by Karcher

[39] who used the centroid of a density as its mean.
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Karcher Mean [39] The Karcher meanµ of a probability density functionf on M is defined

as a local minimizer of the cost function:ρ : M → R≥0, where

ρ(p) =
∫

M

d(p,q)2 f (q) dq . (10)

dq denotes the reference measure used in defining the probability density f on M . The value

of the functionρ at the Karcher mean is called theKarcher variance. How does the definition

of the Karcher mean adapt to a sample set, i.e. a finite set of points drawn from an underlying

probability distribution ? Letq1,q2, . . . ,qk be independent random samples from the densityf .

Then, the sample Karcher mean of these points is defined to be the local minimizer of the

function: ρk(p) = 1
k ∑k

i=1d(p,qi)
2.

Algorithm 1 Algorithm for computing the sample Karcher mean.
1. Given a set ofk points{qi} on the manifold.

2. Let µ0 be an initial estimate of the Karcher mean, usually obtainedby picking one element of{qi} at random.

Set j = 0.

3. For eachi = 1, . . . ,k, compute the inverse exponential mapvi of qi about the current estimate of the mean i.e.

vi = exp−1
µ j
(qi).

4. Compute the average tangent vector ¯v = 1
k ∑k

i=1 vi.

5. If ‖v̄‖ is small, then stop. Else, moveµ j in the average tangent direction usingµ j+1 = expµ j
(ε v̄), whereε > 0

is small step size, typically 0.5.

6. Set j = j+1 and return to Step 3. Continue tillmu j does not change anymore or till maximum iterations are

exceeded.

An iterative algorithm is employed for computing the sampleKarcher mean as summarized

in Algorithm 1. It can be shown that this algorithm convergesto a local minimum of the cost

function given in the definition ofµ [40]. Depending upon the initial valueµ0 and the step size

ε, the algorithm converges to a local minimum.

V. SUPERVISED AND UNSUPERVISEDLEARNING ALGORITHMS FOR THEGRASSMANNIAN

Many of the image and video-based analysis tasks involve oneof two tasks a) recognition of

an input video as one of several classes or b) finding underlying structural similarities in a large

collection of videos. e.g. Given videos of activities, the ARMA model parametersM = (A,C) are

estimated using the methods described in section II. Subsequently, the finite observability matrix

Om(M) is computed. Then for each observability matrix, an orthonormal basis is computed using
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(a) Karcher Mean Illustration
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(b) Illustration of Wrapped Gaussian

Fig. 3. In R2 the set of all axes (lines passing through the origin) is the Grassmann manifold withn = 2 andd = 1.

(a) Blue dotted lines represent individual points on the Grassmann manifold. The bold red line is the Karcher mean

of this set. The Karcher mean corresponds to the notion of a mean axis. (b) Wrapped Normal class conditional-

densities of two classes on the Grassmann manifold. Each class is shown in a different color. The mean of each

class is shown in bold lines. The wrapped standard-deviation lines are shown in dashed lines for each class.

standard SVD-based algorithms. So, we now have a set of subspaces, or in other words a point

cloud on the Grassmann manifold. In recognition problems, we also have corresponding class

labels provided in the training-set. In this section, we shall provide methods that follow from

the theory described above to solve the supervised and unsupervised learning problems.

A. Learning with Parametric class conditional densities

In addition to sample statistics such as the mean and covariance, it is possible to define

probability density functions (pdfs) on manifolds for use in modeling random quantities. Similar

to the Euclidean spaces, we have a choice between parametricand nonparametric probability

models. While parametric models are typically more efficient, the nonparametric models often

require fewer assumptions. For nonlinear manifolds, one can also have a choice between extrinsic

and intrinsic probability models. The extrinsic models result from embedding nonlinear manifolds

in higher dimensional Euclidean spaces and defining models in those larger spaces. In contrast,

the intrinsic models are completely restricted to the manifolds themselves and do not rely on any

Euclidean embedding. In view of the efficient nature of parametric models and the independence

of intrinsic models from a need for Euclidean embedding, we will pursue intrinsic parametric

models. The general idea here is to define a pdf on the tangent space of the manifold, and

then ‘wrap’ the distribution back onto the manifold. This allows us to draw upon the wealth of

methods available from classical multi-variate statistics for the problem at hand.
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Suppose, we haven sample points, given byq1,q2, ...qn from a manifoldM . Then, we first

compute their Karcher mean ¯q as discussed before. The next step is to define and compute a

sample covariance for the observedqi’s. The key idea here is to use the fact that the tangent

spaceTq̄(M ) is a vector space. For ad-dimensional manifold, the tangent space at a point is also

d dimensional. Using a finite-dimensional approximation, say V ⊂ Tq̄(M ), we can use classical

multivariate statistics for this purpose. We can estimate the parameters of a family of pdfs such

as Gaussian, or mixtures of Gaussian and then use the exponential map to wrap these parameters

back onto the manifold.

Truncation of domains: The exponential map: expq̄ : Tq̄(M ) → M proves useful to map

estimated pdfs back to the manifoldM , giving rise to wrapped-densities [40], [28]. In general,

one can define arbitrary pdfs on the tangent plane such as mixtures of Gaussian, Laplace etc

and wrap it back to the manifold via the exponential map. However, for manifolds of interest

in this paper, the exponential map is a bijection only if its domain is restricted. Otherwise,

any tangent line, being of infinite length, can be wrapped around these compact manifolds

infinitely many times. Consequently, if one is interested inderiving an explicit expression for a

wrapped density onM , the resulting expression will have infinite sums and will complicate the

derivations. Truncating the the domain of density functions in the spaceTq̄(M ) such that exp̄q

is a bijection is one solution. This would require truncation beyond a radius ofπ in Tq̄(M ).

The main modification required is that for the multivariate density inTq̄(M ), the normalization

constant changes. It gets scaled down depending on how much of the probability mass is left

out of the truncation region. This can be evaluated empirically by drawing a large number of

samplesN from the estimated density and counting the number,Nπ , of them that are within a

radius ofπ from the origin inTq̄(M ). Then, the normalization constant needs to be multiplied

by the effective fraction of samples within this radius i.e.Ne f f = Nπ/N.

In experiments, we employ wrapped Gaussians in two ways which we denote as common-

pole and class-specific pole wrapped Gaussians. In the common-pole case, given points on the

manifold with class labels, we compute the mean of the entiredataset without regard to class

labels. This dataset mean is referred to as the common-pole.Then, class conditional densities are

estimated in this tangent space. In the class-specific pole case, we compute the Karcher mean

for each class. Separate tangent spaces are considered for each class at the class-mean. The

class conditionals are estimated in these individual tangent spaces. Algorithms for estimating
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class-conditionals for both these cases are shown in algorithm 2 and 3.

Algorithm 2 Truncated Wrapped Gaussian using common pole
1. Given a set of points with class labelsD = {(Ui, li)} on the manifold, and number of classesK.

2. Compute the Karcher meanµ of the entire dataset without regards to class labels.

3. For each pointUi, compute the inverse exponential map about the dataset meanvi = exp−1
µ (Ui) and associate

with the corresponding class labelli, giving rise to a set of tuplesV = {(vi, li)}.

4. For each class fit a Gaussian distribution in the tangent spaceTµ(M ).

5. For each class, sample a large numberN of points from the estimated Gaussian distribution.

6. Count the number of pointsNπ which lie within a distanceπ from the origin ofTµ(M )(origin here corresponds

to exp−1
µ (µ)). Compute multiplication factorNe f f = Nπ/N and adjust the normalization factor.

Algorithm 3 Truncated Wrapped Gaussian using class-specific pole
1. Given a set of points with class labelsD = {(Ui, li)} on the manifold, and number of classesK.

for i = 1, . . .K do

Compute the Karcher meanµi of the ith class using algorithm 1.

For all points{U j} of the current class, compute the inverse exponential map about the class meanv j =

exp−1
µi
(U j).

Fit a Gaussian distribution for theith class in the tangent spaceTµi(M ).

Sample a large numberN of points from the estimated Gaussian distribution.

Count the number of pointsNπ which lie within a distanceπ from the origin ofTµi(M ) (origin here corresponds

to exp−1
µi
(µi)). Compute multiplication factorNe f f = Nπ/N and adjust the normalization factor for theith class

conditional density.

end for

1) Synthetic Examples: In this section, we illustrate the concepts of sample Karcher mean

and wrapped densities on a Grassmann manifold. To help visualization, we chooseGn,d with

n = 2 andd = 1 i.e. 1-dimensional subspaces ofR
2. This is the set of all lines passing through of

the origin on the X-Y plane. Lines on a plane can be parametrized by their principal angle with

the X-axis. Using this parameterization, in the first experiment we randomly sample directions

centered aroundθ = π/3 with variance inθ set to 0.2. A set of such samples in shown in figure

3 (a) with dotted blue lines. The Karcher mean of this set is shown as a red line in figure 3

(a). As can be seen, the Karcher mean corresponds well to the notion of a ‘mean-axis’ in this
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case. In figure 3(b) we illustrate the concept of estimating the wrapped normal distribution. In

this experiment, we generated samples from two classes - onecentered atθ = 0 and the other

centered atθ = π/2. Points from each class are shown in different colors. The Karcher mean

of the whole dataset was taken as the pole to compute the tangent vectors for the points. Each

of the classes was parameterized by a meanµ and standard-deviationσ on the tangent plane.

The points corresponding toµ and andµ ±σ were then wrapped back onto the manifold. The

mean and standard-deviation axes for each of the classes areshown as bold and dashed lines

respectively.

An earlier paper [1] used extrinsic nonparametric models for similar purposes and in this paper

we will compare them with our current approach. Recall that the Karcher mean computation is

an iterative procedure. In recent years the Procrustes methods proposed by [23] have become

popular for non-iterative density estimation as an alternative. However, it requires a choice of

parameters (kernel-width) whose optimal value is not knownin advance. Given several examples

from a class(U1,U2, . . . ,Un) on the Grassmann manifold, the class conditional density isgiven

by [23] as
f̂ (U ;M) =

1
n

C(M)
n

∑
i=1

K[M−1/2(Ik −UT
i UUTUi)M

−1/2] (11)

whereK(T ) is the kernel function,M is a d ×d positive definite matrix which plays the role

of the kernel width or a smoothing parameter.C(M) is a normalizing factor chosen so that the

estimated density integrates to unity. The matrix valued kernel functionK(T ) can be chosen in

several ways. We have usedK(T ) = exp(−tr(T )) in all the experiments reported in this paper.

B. Unsupervised Clustering

The statistical tools that have been described in the previous sections can be used for un-

supervised learning tasks such as clustering of data. Usingthem, it is possible to estimate

clusters in an intrinsic manner. Let us assume that we have a set of pointsD = (U1,U2, . . . ,Un)

on the Grassmann manifold. We seek to estimatek clustersC = (C1,C2, . . . ,Ck) with cluster

centers(µ1,µ2, . . . ,µk) so that the sum of geodesic-distance squares,∑k
i=1∑U j∈Ci

d2(U j,µi), is

minimized. Hered2(U j,µi) =
∣

∣

∣
exp−1

µi
(U j)

∣

∣

∣

2
. As is the case with standard k-means, we can solve

this problem using an EM-based approach. We initialize the algorithm with a random selection

of k points as the cluster centers. In the E-step, we assign each of the points of the datasetD

to the nearest cluster center. Then in the M-step, we recompute the cluster centers using the
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Karcher mean computation algorithm described in section IV. The procedure is summarized in

algorithm 4.

Algorithm 4 Intrinsic K-means clustering algorithm on Riemannian manifolds.
1. Given set of pointsD = (U1,U2, . . . ,Un) on the Grassmann manifold, number of clustersK, maximum iteration

Nmax.

2. Initialize cluster centers(µ (0)
1 ,µ (0)

2 , . . . ,µ (0)
k ) randomly.

while (i ≤ Nmax) do

Assign each point to nearest cluster center by computingd2(U j,µk) =
∣

∣

∣exp−1
µk
(U j)

∣

∣

∣

2
.

Recompute cluster centers(µ (i)
1 ,µ (i)

2 , . . . ,µ (i)
k ) using algorithm 1.

i = i+1

end while

VI. SIZE OF PROBLEMS AND METHODS FOREFFICIENT RIEMANNIAN COMPUTATIONS

As described in section II, the finite observability matrix is given byOT
m =

[

CT ,(CA)T ,(CA2)T , . . .(CAm−1)T
]

.

The size of this matrix ismp×d. The column space of this matrix is ad-dimensional subspace

of Rmp. d is typically of the order of 5-10, and we choosem to be the same asd. However,

p is the dimension of the feature vectors, and this in general can be quite large. Typical image

sequences used for, say, video-based face recognition result in images of size 100×100 resulting

in p = 104. Similarly, in the case of modeling image-sets, the PCA basis vectors are stored as

p×d matrices, wherep is the size of raw images andd is the subspace dimension (typically

small). Due to the large size of these matrices, straightforward implementation of Riemannian

computations is non-trivial. The computation of the geodesic OT exp(tA)J in the direct form

implies a complexity ofO(n3), wheren = mp for the observability matrix, andn = p for the

case of PCA basis vectors. By exploiting the special structure of the matrixA, it is possible to

reduce the complexity of these operations to no more thanO(nd2) andO(d3) which represents

a significant reduction. These efficient methods were first proposed by Gallivan et al [41]. For

a self-contained treatment, here we summarize the key results that will be used in this paper in

the appendix

VII. A PPLICATIONS AND EXPERIMENTS

In this section, we show the utility of the methods discussedso far on several image and

video-based recognition tasks. We shall show 4 different applications:
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1) Activity recognition on INRIA iXMAS data [42].

2) Video-based Face recognition on NIST-MBGC data [43].

3) Face Recognition from Image Sets on CMU-PIE data [44].

4) Video Clustering on SFU figure skating data [45].

In all these applications, we show that subspace matching arises naturally. We compare with

other related methods that involve subspace matching, and show that statistical modeling of class-

conditionals using Riemannian geometry demonstrates better performance over other simpler

methods.

Implementation details: For parametric class-conditional densities, as describedin section V-A

we consider two versions of wrapped Gaussians - common-poleand class-specific poles. In the

common-pole case, the tangent plane is constructed at the Karcher mean of the entire training

dataset (Algorithm 2). In the class-specific pole case, we construct a class-specific tangent plane

at the Karcher mean of each of the classes (Algorithm 3). The class-conditional for theith class

is completely specified by the tupleCi = {pi, v̄i,Σi}, wherepi is the pole about whose tangent-

space the density is defined, ¯vi is the mean inTpi(M ), andΣi the covariance matrix inTpi(M ).

In the common-pole case, allpi’s are set to the dataset mean. In class-specific pole case, the

pi’s are set to individual class-means. To evaluate theith class conditional density at a test-point,

one merely evaluates the truncated Gaussian by mapping the test-point to the tangent-space at

pi. Then, the point is classified into the class that has the highest likelihood. In our experiments,

we have restrictedΣi to be a diagonal matrix instead of a full covariance matrix. As mentioned

in section V-A, to evaluate the class conditional probability using truncated wrapped Gaussians,

we also need to adjust the normalizing constant of each Gaussian. It is our experience that the

appearance/activity models on Stiefel and Grassmann manifolds are rather clustered around their

class-mean and rarely are some points so far away from the mean to necessitate truncation. So,

we ignore this minor adjustment.

A. Activity Recognition

We performed a recognition experiment on the publicly available INRIA dataset [42]. The

dataset consists of 10 actors performing 11 actions, each action executed 3 times at varying

rates while freely changing orientation. We used the view-invariant representation and features

as proposed in [42]. Specifically, we used the 16×16×16 circular FFT features proposed by

December 1, 2010 DRAFT



20

Activity Dim. Red. [42] 163

volume

Best Dim. Red. [42]

643 volume

Subspace Angles 163

volume

NN-Procrust 163 vol-

ume [1]

Check Watch 76.67 86.66 93.33 90

Cross Arms 100 100 100 96.67

Scratch Head 80 93.33 76.67 90

Sit Down 96.67 93.33 93.33 93.33

Get Up 93.33 93.33 86.67 80

Turn Around 96.67 96.67 100 100

Walk 100 100 100 100

Wave Hand 73.33 80 93.33 90

Punch 83.33 96.66 93.33 83.33

Kick 90 96.66 100 100

Pick Up 86.67 90 96.67 96.67

Average 88.78 93.33 93.93 92.72

TABLE I

COMPARISON OF VIEW INVARIANT RECOGNITION OF ACTIVITIES IN THE INRIA DATASET USING A) BEST

DIM RED [42] ON 16×16×16FEATURES, B) BEST DIM . RED. [42] ON 64×64×64FEATURES, C) NEAREST

NEIGHBOR USINGARMA MODEL DISTANCE, D) PROCRUSTES DISTANCE(REPORTED IN[1].)

[42]. Instead of modeling each segment of activity as a single motion history volume as in [42],

we build a time series of motion history volumes using small sliding windows. This allows us to

build a dynamic model for each segment. We use the segmentation results used in [42]. Using

these features, we first performed a recognition experimenton the provided data.

To perform recognition, firstly each activity was modeled asan ARMA model given in (2).

The state-space dimensiond was chosen to be 5. Model fitting was performed as described in

section II. After this, finite the observability matrixOm(M) is computed, and an orthonormal

basis corresponding to its column space is stored. Testing was performed using a round-robin

(leave-one-person-out) experiment where activity modelswere learnt using 9 actors and tested

on 1 actor. For fitting the ARMA model we used 16×16×16= 4096 dimensional features,

chose state-space dimensiond = 5 and truncated the observability matrix atm = d = 5. Thus,

in this case, the Grassmann manifoldGn,d corresponds ton = mp = 20480, andd = 5.

In Table I, we show the recognition results obtained using four baseline methods that do not

require any statistical modeling. The first column shows theresults obtained using dimensionality

reduction approaches of [42] on 16×16×16 features. [42] reports recognition results using a

variety of dimensionality reduction techniques (PCA, LDA,Mahalanobis) and here we choose
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the row-wise best performance from their experiments (denoted ‘Best Dim. Red.’) which were

obtained using 64×64×64 circular FFT features. The third column corresponds to the method

of using subspace angles based distance between dynamical models [31]. This is based on

on computing the angles between subspacesθi and measuring the distance using∑sin2(θi).

Column 4 shows the nearest-neighbor classifier performanceusing Procrustes distance measure

(16×16×16 features). We see that the manifold Procrustes distance performs as well as ARMA

model distance [31].

In Table II we show results of statistical modeling using parametric and non-parametric

methods. As can be seen in the results in Table II, statistical modeling of class conditional

densities leads to a significant improvement in recognitionperformance over simpler methods

shown in Table I. We also present the results of non-parametric kernel density estimator reported

in [1]. Note that even though the manifold approaches presented here use only 16×16×16

features they outperform other approaches that use higher resolution (64×64×64 features) as

shown in Table I.

Activity Wrapped Normal: Common-Pole

(Algorithm 2)

Wrapped Normal: Class-specific

Pole (Algorithm 3)

Procrustes Kernel

M = I [1]

Check Watch 96.67 100 100

Cross Arms 93.33 100 100

Scratch Head 93.33 90 96.67

Sit Down 90 96.67 93.33

Get Up 100 96.67 96.67

Turn Around 96.67 100 100

Walk 93.33 90 100

Wave Hand 86.67 93.33 100

Punch 90 100 100

Kick 93.33 100 100

Pick Up 93.33 100 100

Average 93.33 96.06 98.78

TABLE II

STATISTICAL MODELING FOR RECOGNITION OF ACTIVITIES IN THEINRIA DATASET USING A) COMMON-POLE

WRAPPEDNORMAL B) CLASS-SPECIFIC POLEWRAPPEDNORMAL C) KERNEL DENSITY (FIRST REPORTED IN

[1]).

As mentioned before, for the non-parametric case, an appropriate choice of the kernel width

M has to be made. In general, cross-validation is suggested toestimate the optimal kernel width.

Different classes may have a different optimal kernel width. Hence, cross-validation requires a
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lengthy training phase. A sub-optimal choice can often leadto poor performance. This is one

of the significant drawbacks of non-parametric methods. However, addressing this formally is

beyond the scope of the current paper.

B. Video-Based Face Recognition

Video-based face recognition (FR) by modeling the ‘croppedvideo’ either as dynamical models

([6]) or as a collection of PCA subspaces [46] have recently gained popularity because of their

ability to recognize faces from low resolution videos. Given a video, we estimate the a low-

dimensional subspace from the sequence of frames using standard PCA. The subspace is then

considered as a point on the Grassmann manifold.

We performed a recognition experiment on the NIST’s Multiple Biometric Grand Challenge

(MBGC) dataset. The MBGC Video Challenge dataset consists of a large number of subjects

walking towards a camera in a variety of illumination conditions. Face regions are manually

tracked and a sequence of cropped images is obtained. There were a total of 143 subjects with

the number of videos per subject ranging from 1 to 5. In our experiments we took subsets of

the dataset which contained at least 2 sequences per person denoted asS2, at least 3 sequences

per person denoted asS3 etc. Each of the face-images was first preprocessed to zero-mean and

unity variance and scaled to 100×100. For each subject a PCA basis is estimated of dimension

d = 5. Thus, in this caseGn,d corresponds ton = 10000,d = 5. In each of these subsets, we

performed a leave-one-out testing. The results of the leaveone out testing are shown in Table

III. In the comparisons, we show results using the ‘arc-length’ metric between subspaces [10].

This metric computes the subspace angles between two subspaces and takes the L-2 norm of

the angles as a distance measure [10]. We also show comparisons with the Procrustes measure,

the Kernel density estimate withM = I and a wrapped normal density with the Karcher mean

of the entire dataset as the pole given in algorithm 2.

As can be seen, statistical methods outperform nearest-neighbor based approaches. As one

would expect, the results improve when more examples per class are available. Since the optimal

kernel-width is not known in advance, this might explain therelatively poor performance of the

kernel density method.
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Subset Distinct

Subjects

Total Se-

quences

Arc-length

Metric

Procrustes

Metric

Kernel

density

Wrapped Gaussian

Common Pole

S2 143 395 38.48 43.79 39.74 63.79

S3 55 219 48.85 53.88 50.22 74.88

S4 54 216 48.61 53.70 50.46 75

Avg. 45.31% 50.45% 46.80% 71.22%

TABLE III

COMPARISON RECOGNITION ACCURACIES OF VIDEO BASED FACE RECOGNITION USING SUBSPACE-BASED

APPROACHES: A) SUBSPACEANGLES + ARC-LENGTH METRIC, B) PROCRUSTESDISTANCE, C) KERNEL

DENSITY, D) WRAPPEDNORMAL USING A COMMON POLE FOR ALL CLASSES(ALGORITHM 2).

C. Face Recognition from Image-sets

We consider the CMU-PIE face dataset which contains images of 68 persons under varying

poses, illumination and expressions. For comparison, we use the methods proposed in [14]. The

methods proposed in [14] involve discriminative approaches on the Grassmann manifold using

Mercer-kernels. In this approach, a Mercer-kernel is defined on the Grassmann manifold which

then enables using kernel versions of SVMs, Fisher Discriminant Analysis etc for classification.

In this experiment, we use the experimental protocol suggested in [47]. For each of the 68

subjects, 7 near frontal poses are used in the experiment. For each person under a fixed pose,

we approximate the variations due to expressions and illumination as a linear subspace. Thus,

for each person we have a set of subspaces corresponding to each pose. This allows us to build

a statistical model on the Grassmann manifold for each person. A round-robin (leave-one-pose-

out) experiment is performed in which 6 poses are used for training and the remaining pose is

used for testing. The results are shown in Table IV. The results using the other methods were

reported in [47].

As can be seen, the proposed statistical approaches comparewell with the state of the art. In

particular, the kernel density method outperforms all of the other methods. The discriminative

approaches of [14] outperforms the wrapped normal approach. However, the variability of the

performance is high depending on what Mercer kernel is chosen. The wrapped normal provides

consistent performance and beats most other methods.
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Subspace Dimension m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9

GDA (Proj) [14] 74.8 89.8 87.2 91.7 92.5 93.8 93.6 95.3

GDA (BC) [14] 71.4 82.5 64.8 58.6 47.5 43.1 39.9 36.3

MSM [48] 67.0 65.0 64.6 64.2 64.0 64.6 64.6 64.6

cMSM [49] 71.2 67.6 68.2 69.7 69.9 70.2 72.7 72.5

DCC [34] 78.9 66.5 63.8 64.6 67.6 67.6 67.6 65

Wrapped Normal: Algorithm 2 69.95 76.89 69.74 77.73 79.83 79.20 80.46 76.26

Wrapped Normal: Algorithm 3 69.95 76.89 70.16 77.31 82.56 84.66 85.50 86.97

Grassmann Kernel Density: M = I 78.36 88.44 89.91 93.69 95.79 97.26 96.84 97.26

TABLE IV

CMU-PIE DATABASE: FACE IDENTIFICATION USING VARIOUS GRASSMANN STATISTICAL METHODS.

PERFORMANCE OF VARIOUS METHODS IS COMPARED AS THE SUBSPACE DIMENSION IS VARIED.

D. Video Clustering

We performed a clustering experiment on the figure skating dataset of [45]. These videos

are unconstrained and involve rapid motion of both the skater and the camera. As reported in

[50] color models of the foreground and background are used to segment the background and

foreground pixels. Median filtering followed by connected component analysis is performed to

reject small isolated blobs. From the segmented results, wefit a bounding box to the foreground

pixels by estimating the 2D mean and second order moments alongx andy directions. We perform

temporal smoothing of the bounding box parameters to removejitter effects. The final feature

is a rescaled binary image of size 100×100 of the pixels inside the bounding box. We build

ARMA models for fixed length subsequences using sliding windows as done in [50]. State-space

dimensiond = 5, and observability matrix is truncated atm = 5. Thus, we haveGn,d with n =

mp = 50000,d = 5. Then, we used the intrinsic K-means clustering on the Grassmann manifold

using Algorithm 4. In [50], the segments were treated as nodes in a graph and normalized cuts

(N-cuts) was used for clustering. The cited reason was that the space of ARMA models is not a

vector-space and it is not apparent how to perform k-means clustering and thereby N-cuts is used

as an alternative. The approach that we use here, while achieving similar results, is a principled

method to solve the video-clustering problem using ARMA models. As is the case with standard

k-means, it enjoys lower computational load compared to thespectral clustering algorithms,

especially for long videos. We show some sample sequences inthe obtained clusters in figure 4.
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We observe that the clusters correspond dominantly to ‘Sitting Spins’, ‘Standing Spins’, ‘Camel

Spins’, and ‘Spirals’. There is a fifth cluster which corresponds mainly to ‘Glides’ and has been

omitted due to space constraints.

VIII. C ONCLUSION

We have shown that the Grassmann manifold arises naturally in many image and video based

classification problems. We have presented statistical modeling methods that are derived from

the Riemannian geometry of the manifold. We have shown the utility of the methods on several

applications such as activity recognition, video-based face recognition and recognition from

image-sets. In addition to definitions of distances and statistics on manifolds, many interesting

problems such as interpolation, smoothing, and time-series modeling on these manifolds of

interest are potential directions of future work. These techniques can prove useful in applications

such as adapting appearance models for active vision applications, or modeling time-varying

dynamic models for human activities [32].

IX. A PPENDIX

We present the algorithms for computing the exponential andinverse exponential maps here.

Moving along the Geodesic: Exponential Map Given a point on the Grassmann manifoldU0,

and a direction matrixB, the one-parameter geodesic path emanating fromU0 in this direction

is given by

α(t) = O exp(tA) J (12)

where, O ∈ SO(n) and OTU0 = J and J = [Id;0n−d,d ]. Given U0 and A the steps involved in

samplingα(t) for various values oft are given in Algorithm 5. Fort = 1, α(1) = exp[U0](A).

Algorithm 5 Algorithm for computing the exponential map and sampling along the geodesic.

1. Given a point on the Grassmann manifoldU0, and a tangent vectorA =





0 BT

−B 0



.

2. Compute then×n orthogonal completionQ of U0.

3. Compute the compact SVD of the direction matrixB = Ṽ2ΘV1.

4. Compute the diagonal matricesΓ(t) and Σ(t) such thatγi(t) = cos(tθi) and σi(t) = sin(tθi), whereθ ’s are the diagonal elements ofΘ.

5. Computeα(t) = Q





V1Γ(t)

−Ṽ2Σ(t)



, for various values oft ∈ [0,1]. The value fort = 1 corresponds to theexpU0(A).
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Computing the Velocity Matrix: Inverse Exponential Map: Now, given two points on the manifold

U0 andU1, we need an efficient way to compute the velocity parameterB such that traveling

in this direction fromU0 leads toU1 in unit-time. The steps involved in this computation are

outlined in Algorithm 6.

Algorithm 6 Algorithm for computing the inverse exponential map.
1. Given two points on the manifoldU0 andU1.

2. Compute then×n orthogonal completionO of U0.

3. Compute the thin CS decomposition [51] ofOT U1 given by

OT Y1 =





X

Y



=





V1 0

0 V2













Γ(1)

−Σ(1)

0









ST
1 =





V1 0

0 Ṽ2









Γ(1)

−Σ(1)



ST
1

4. Compute{θi} which are given by the arcsine and arcos of the diagonal elements of Γ andΣ respectively. i.e.γi = cos(θi) andσi = sin(θi).

Form the diagonal matrixΘ containingθ ’s on its diagonal.

5. ComputeA = Ṽ2ΘV1.

Note that in both cases, we do not actually need to compute andstore the orthogonal com-

pletion O of U0 explicitly. Since eventually we only applyO to another matrix, there are

implicit methods based on Givens rotations [51], [41] that enable this operation efficiently.

These operations can be performed inO(nd2) vs O(n3) as implied by the equation (12). Further,

using Givens rotations [51] these operations can be implicitly performed with complexityO(d3).

The thin CS decomposition operations can be computed with complexity O(nk2).
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(a) Cluster 1: Sit-spins

(b) Cluster 2: Stand-spins

(c) Cluster 3: Camel-spins

(d) Cluster 4: Spirals

Fig. 4. Shown here are a few sequences from each obtained cluster. Each row in a cluster shows contiguous frames

of a sequence.

December 1, 2010 DRAFT


