1

Statistical Computations on Grassmann and
Stiefel manifolds for Image and Video-Based

Recognition

Pavan TuragaStudent Member, IEEE, Ashok Veeraraghavamlember, |EEE,
Anuj SrivastavaSenior Member, |IEEE, and Rama Chellapp&ellow, IEEE

Abstract

In this paper, we examine image and video based recognifiplications where the underlying
models have a special structure — the linear subspace weudtVe discuss how commonly used
parametric models for videos and image-sets can be dedargieg the unified framework of Grassmann
and Stiefel manifolds. We first show that the parametersnefdi dynamic models are finite dimensional
linear subspaces of appropriate dimensions. Unorderegersats as samples from a finite-dimensional
linear subspace naturally fall under this framework. Wevshtiwat the study of inference over subspaces
can be naturally cast as an inference problem on the Grassmanifold.

To perform recognition using subspace-based models, wetnets from the Riemannian geometry
of the Grassmann manifold. This involves a study of the geamproperties of the space, appropriate
definitions of Riemannian metrics, and definition of geodeskurther, we derive statistical modeling
of inter- and intra-class variations that respect the gegnuf the space. We apply techniques such as
intrinsic and extrinsic statistics, to enable maximunelikood classification. We also provide algorithms
for unsupervised clustering derived from the geometry &f thanifold. Finally, we demonstrate the

improved performance of these methods in a wide variety efowi applications such as activity
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recognition, video-based face recognition, object re@@nfrom image-sets, and activity-based video

clustering.

Index Terms

Image and Video Models, Feature Representation, Statisfiodels, Manifolds, Stiefel, Grassmann

I. INTRODUCTION

Many applications in computer vision such as dynamic tegu?],[3], human activity mod-
eling and recognition [4],[5], video-based face recogmiti6], shape analysis [7],[8] involve
learning and recognition of patterns from exemplars whibbyocertain constraints. To enable
this study, we often make simplifying assumptions of thegeéormation process such as a pin-
hole camera model or the Lambertian reflectance model. Taesemptions lead to constraints
on the set of images thus obtained. A classic example of swmnstraint is that images of a
convex object under all possible illumination conditionsmh a ‘cone’ in image-space [9]. Once
the underlying assumptions and constraints are well uta=is the next important step is to
design inference algorithms that are consistent with theltah and/or geometry of the constraint
set. In this paper, we shall examine image and video basedm&mn applications where the
models have a special structure — the linear subspacest&uct

In many of these applications, given a database of exampl@sauery, the following two
guestions are to be addressed — a) what is the ‘closest’ dgampghe query in the database
? b) what is the ‘most probable’ class to which the query bgdo® A systematic solution to
these problems involves a study of the underlying condsdirat the data obeys. The answer to
the first question involves a study of the geometric propsrtif the space, which then leads to
appropriate definitions of Riemannian metrics and furtbethe definition of geodesics etc. The
answer to the second question involves statistical mogladininter- and intra-class variations.
It is well-known that the space of linear subspaces can b&edeas a Riemannian manifold
[10], [11]. More formally, the space af-dimensional subspaces R is called the Grassmann
manifold. On a related note, the Stiefel manifold is the spafa orthonormal vectors ifR". The
study of these manifolds has important consequences fdicappns such as dynamic textures

[2], [3], human activity modeling and recognition [4], [Slideo-based face recognition [6] and
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shape analysis [7], [8] where data naturally lies eitherranStiefel or the Grassmann manifold.
Estimating linear models of data is standard methodologynamy applications and manifests
in various forms such as linear regression, linear classifin, linear subspace estimation etc.
However, comparatively less attention has been devotethtstscal inference on the space of

linear subspaces.

A. Prior Work

The Grassmann manifold’s geometric properties have bakredtin certain vision problems
involving subspace constraints. Examples include, [12ictvideals with optimization over the
Grassmann manifold for obtaining informative projectiombe Grassmann manifold structure
of the affine shape space is also exploited in [13] to perfdfmeainvariant clustering of shapes.
[14] performs discriminative classification over subspafme object recognition tasks by using
Mercer kernels on the Grassmann manifold. In [15], a facegamand its perturbations due to
registration errors are approximated as a linear subsperee are embedded as points on a
Grassmann manifold. Most of these methods do not emplagtitaton the Grassmann manifold,
or are tuned to specific domains lacking generality. [16]@ixgd the geometry of the Grassmann
manifold for subspace tracking in array signal processipglieations. On a related note, the
geometry of the related Stiefel manifold has been found taudeful in applications where in
addition to the subspace structure, the specific choice 6 b&ctors is also important [17]. The
methods that we present in this paper form a comprehensoteefthaustive) set of tools that
draw upon the Riemannian geometry of the Grassmann manidichg with the mathematical
formulations, we also present efficient algorithms to penféthese computations.

The geometric properties of general Riemannian manifads$ the subject matter of differ-
ential geometry; a good introduction can be found in [184tiStical methods on manifolds have
been studied for several years in the statistics commuBdyne of the landmark papers in this
area include [19], [20], [21], however an exhaustive suligdyeyond the scope of this paper. The
geometric properties of the Stiefel and Grassmann mamifodve received significant attention.
A good introduction to the geometry of the Stiefel and Gramsmmanifolds can be found in
[10] who introduced gradient methods on these manifoldeéncontext of eigenvalue problems.
These problems mainly involved optimization of cost fuans with orthogonality constraints.

A compilation of techniques for solving optimization prebis with such matrix manifolds is
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provided in [22]. Algorithmic computations of the geometdperations in such problems were
discussed in [11]. A compilation of research results onigteal analysis on the Stiefel and
Grassmann manifolds can be found in [23].

In addition to the Grassmann manifold, general Riemannianifolds have found important
applications in the vision community. A recently develogednulation of using the covariance
of features in image-patches has found several appliasoch as texture classification [24],
pedestrian detection [25], and tracking [26]. The Riemanrgeometry of covariance matrices
was exploited effectively in all these applications to desstate-of-the-art algorithms. More
recently, [27] provides an extension of Euclidean meart shistering to the case of Riemannian
manifolds.

Shape analysis is another application area where stat@iiRiemannian manifolds have found
wide applicability. Theoretical foundations for manifeldased shape analysis were described in
[7], [8]. Statistical learning of shape classes using noadr shape manifolds was presented in
[28] where statistics are learnt on the manifold’s tang@aice. Using a similar formulation, the
variations due to execution rate changes in human acsviienodeled as a distribution over
time-warp functions, which are considered as points on &rsgdd manifold in [29]. This was
used for execution rate-invariant recognition of humarvaigs.

A preliminary version of this paper was presented in [1], ahhused extrinsic methods for
statistical modeling on the Grassmann manifold. This pgperides a mathematically well
grounded basis for these methods, where the specific chbibe method in [1] is interpreted as
a special case of using a non-parametric density estimatbran extrinsic divergence measure.
In this paper, we provide more detailed analysis and show tooexploit the geometry of the
manifold to derive intrinsic statistical models. This pides a more consistent approach than
the extrinsic methods of [1]. Further, the dimensionalifyttee manifold presents a significant
road-block for computer implementation of Riemannian catapons. Straightforward imple-
mentation of formulas for geodesic distances, exponeatidlinverse-exponential maps given in
earlier work such as [10], [11], [27] is computationally pioitive for large dimensions. This is
especially true of our applications where we deal with highahsional image and video-data.
Toward this end, we also employ numerically efficient vemnsiof these computations.

Contributions. We first show how a large class of problems drawn from facayiggtand

object recognition can be recast as statistical inferenakl@ms on the Stiefel and/or Grassmann
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manifolds. Then, we present methods to solve these problesig the Riemannian geometry
of the manifolds. We also discuss some recently proposethsixt approaches to statistical
modeling on the Grassmann manifold. We present a wide rahg&perimental evaluation to
demonstrate the effectiveness of these approaches andi@m@weomprehensive comparison.
Organization of the paper: In section Il, we discuss parametric subspace-based models

of image-sets and videos and show how the study of these sodgalbe recast as a study of
the Grassmann manifold. Section Ill introduces the spemitlogonal group and its quotient
spaces — the Stiefel and the Grassmann manifolds. Sectiaistisses statistical methods that
follow from the quotient interpretation of these manifaltis section V, we develop supervised
and unsupervised learning algorithms. Complexity issnesramerically efficient algorithms for
performing Riemannian computations are discussed inagewti. In section VII, we demonstrate
the strength of the framework for several applicationsudtig activity recognition, video-based
face recognition, object matching, and activity-basedtelung. Finally, concluding remarks are

presented in section VIII.

[I. MODELS FORVIDEOS AND IMAGES
A. Spatio-temporal dynamical models and the ARMA model

A wide variety of spatio-temporal data have often been nextlak realizations of dynamical
models. Examples include dynamic textures [2], human jngle trajectories [4] and silhouettes
[5]. A well-known dynamical model for such time-series detdhe autoregressive and moving
average (ARMA) model. Linear dynamical systems representaas of parametric models
for time-series. A wide variety of time series data such asadyic textures, human joint
angle trajectories, shape sequences, video-based faogniton etc are frequently modeled
as autoregressive and moving average (ARMA) models [2], [E]} [6]. The ARMA model
equations are given by

f(t) =Cz(t) +w(t) wi(t)~N(O,R) 1)
2(t+1) = Az(t) +v(t) Vv(t) ~N(0,Q) @)

where,z € RY is the hidden state vectoA € R9%9 the transition matrix andC € RP*9 the
measurement matrixX. € RP represents the observed features whilendv are noise components

modeled as normal with 0 mean and covariarResRP*P andQ € R9*9, respectively.
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For the ARMA model, closed form solutions for learning the dabparameters have been
proposed in [30], [2] and are widely used. For high-dimenalotime-series data (dynamic
textures etc), the most common approach is to first learn @rloimensional embedding of
the observations via PCA, and learn the temporal dynamidhenlower-dimensional space.
Let observationsf (1), f(2),...f(1), represent the features for the time indice®,1.7. Let
[f(1),f(2),...f(1)] =UZVT be the singular value decomposition of the data. TheaU,A =

0 0 li_1 O
SVTDV(VTD,V) 151, whereD; = andDp= |
li_1 O 0 0

The model paramete(#\,C) do not lie in a vector space. The transition matiis constrained
to be stable with eigenvalues inside the unit circle. Theeoleion matrixC is constrained to
be an orthonormal matrix. For comparison of models, the rnostmonly used distance metric
is based on subspace angles between column-spaces of #reaibkty matrices [31]. For the
ARMA model of (2), starting from an initial conditioa(0), it can be easily shown that the

expected observation sequence is given by [32]

£(0) c
f(1) CA
E| f2) | = | cA? | 20)=0u(M)Z0) 3)

Thus, the expected observation sequence generated by-mtiar&nt modeM = (A,C) lies in
the column space of the extendsisbervability matrix given byOl, = [CT, (CA)T, (CA®)T,...(CAMT .. ].
In experimental implementations, we approximate the ele¢drobservability matrix by the finite
observability matrix as is commonly done [3%, = [CT,(CA)T,(CA?)T,...(CA™1)T]. The
size of this matrix ismp x d. The column space of this matrix iscadimensional subspace of
R™P, whered is the dimension of the state-spar@ (2). d is typically of the order of 5-10.

Thus, given a database of videos, we estimate the model pteesras described above for
each video. The finite observability matrix is computed néwrtrepresent the subspace spanned
by the columns of this matrix, we storan orthonormal basis computed by Gram-Schmidt
orthonormalization. Since, a subspace is a point @rassmann manifold, a linear dynamical
system can be alternately identified as a point on the Grassmmanifold corresponding to the

column space of the observability matrix.
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B. Image Sets as collections of subspaces

In image and object recognition, recent methods have facoseutilizing multiple images
of the same object, taken under varying viewpoints or vayillumination conditions, for
recognition [34], [14], [35], [36]. e.g. It was shown by Jacoet al that the illumination cone
of a convex Lambertian surface can be approximated by a @lianal linear subspace [37].
Motivated by this, the set of face images of the same persdarurarying illumination conditions
is frequently modeled as a linear subspace of 9-dimensisis [

Given a large set of images indexed by, say, the pose or vipamngle of the camera, we
estimate multiple subspaces — one for each view — as the nuddatbject appearance. The
subspaces can be estimated by straightforward principapooent analysis. Given another set
of images during testing, we would like to compute the likebd of it coming from a specific
class. In the training phase, given a set of these subspacesdiven class, we would like to
compute their class-conditional densities. During tegtwe are given a set of images taken
under approximately the same viewing angle which allowsousnaddel the set using a subspace.
Then, the maximum likelihood classification can be perfadrfoe each test instance using these
class conditional distributions. However, since subspace viewed as elements of a Grassmann
manifold, the goal is to learn a probability distributionesvthe Grassmann manifold from the

given image data.

C. Overall Approach

The set of alld-dimensional linear subspaces®f is called the Grassmann manifold which
will be denoted a%, 4. The set of alln x d orthonormal matrices is called the Stiefel manifold
and shall be denoted a$;4. As discussed in the applications above, we are interested i
computing statistical models over the Grassmann maniloé.U, Uy,...,Ux be some points
on .%h 4 and we seek their sample mean, an average, for defining alpligbanodel on.#, 4.
Recall that thesdJjs are tall, orthogonal matrices. It is easy to see that thdidaan sample
mean%z}‘zlui is not a valid operation, because the resultant mean doelsavetthe property
of orthonormality. This is becausé’, q is not a vector space. Similarly, many of the standard
tools in estimation and modeling theory do not directly gpl such spaces but can be adapted

by accounting for the underlying nonlinear geometry.
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On a computer, a subspace is stored as an orthonormal mahichworms a basis for
the subspace. As mentioned earlier, orthonormal matricespaints on the Stiefel manifold.
However, since the choice of basis for a subspace is not anigy notion of distance and
statistics should be invariant to this choice. This requius to interpret each point on the
Grassmann manifold as an equivalence of points on the Biiefeifold, where all orthonormal
matrices that span the same subspace are considered equivBhis interpretation is more
formally described as aguotient interpretation i.e. the Grassmann manifold is considered a
guotient space of the Stiefel manifold. Quotient intergtiens allow us to extend the results of
the base manifold such as tangent spaces, geodesics ete tuokient space. In our case, it
turns out that the Stiefel manifold itself can be interptdeds a quotient of a more basic manifold
- the special orthogonal grodfD(n). A quotient of Stiefel is thus a quotient &(n) as well.
Thus, we shall study the Grassmann as a quotieSOgh). Hence, first we recapitulate relevant
results ofSO(n), then review the required concepts from differential getwynthat enable us to

derive distances and statistical models on the specialfoidsi

Ill. PRELIMINARIES: THE SPECIAL ORTHOGONAL GROUP SO(N) AND ITS QUOTIENTS

Let GL(n) be the generalized linear group pfx n nonsingular matrices. It is not a vector
space but a differentiable manifold, i.e., it can be localbproximated by subsets of a Euclidean
space. The dual properties of being a group and a diffefdatrmanifold make it d.ie group. If
we consider the subset of all orthogonal matrices, anddurtstrict to the ones with determinant
+1, we obtain a subgroufO(n), called thespecial orthogonal group. It can be shown that this
is a submanifold ofGL(n) and is also a group by itself; it possesses the Lie group tsimeic
Since it hasn® elements andh+n(n—1)/2 constraints (unit length columns n constraints
and perpendicular columns n(n—1)/2 constraints), it is an(n— 1) /2-dimensional Lie group.
To perform differential calculus on a manifold, one needspgecify its tangent spaces. For the
n x n identity matrix|, an element oB8O(n), the tangent spac& (SO(n)) is the set of allnxn
skew-symmetirc matrices ([18]). For an arbitrary podte SO(n), the tangent space at that
point is obtained by a simple rotation ®f(SO(n)): To(SO(n)) = {OX|X € T (SO(n))}. Define
an inner product for any, Z € To(SO(n)) by (Y,Z) =trace(YZT), wheretrace denotes the sum
of diagonal elements. With this metr&(n) becomes a Riemannian manifold.

Using the Riemannian structure, it becomes possible to eléfimgths of paths on a manifold.
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Tangent plane T},

Pole P

1

Tangent vector
s V,at P,
Y

i |
'Geodesic in

' the direction of V,

Fig. 1. lllustration of tangent spaces, tangent vectors, and gecgl® andP» are points on the manifoldp, and
Tp, are the tangent spaces at these points. Note that there isj@edocal mapping between the manifold and the
tangent plane and this local mapping depends upon the peledésics paths are constant velocity curves on the

manifold. Tangent vectors correspond to velocities of eargn the manifold.

Let a : [0,1] — SO(n) be a parameterized path @D(n) that is differentiable everywhere on
[0,1]. Then %—‘f, the velocity vector at, is an element of the tangent spakgy) (SO(n)). For
any two pointsO;, 0, € SO(n), one can define a distance between them as the infimum of the

lengths of all smooth paths d80(n) which start atO; and end aOy:

. 1 //daf(t) da(t)>
d(0y,0y) = f / , dt
(01,02) {a:[o71]—>30(n)|::n(0):ol7a(1):oz} 0 \/< dt dt

A path & which achieves the above minimum, if it exists, ige@desic betweenO; and O, on

(4)

SO(n). Geodesics o180(n) can be written explicitly using the matrix exponential [18br an
nxn matrix A, define its matrix exponential by: e¢p) = | + % + ’é\—f + é—? +.... Itis easy to
show that given any skew-symmetric matix exp(X) € SO(n). Now we can define geodesics
on SO(n) as follows: for anyO € SO(n) and any skew-symmetric matriX, a(t) = Oexp(tX),

is the unique geodesic iBO(n) passing througt® with velocity vectorOX att = 0. 1

An important tool in statistics on a manifold is an exponanthap. If M is a Riemannian

Iwe note here the distinction betweemendesic and thegeodesic distance. The geodesic passing through a point is simply
a constant speed curve specified by its initial velocity, he thegeodesic distance between two points is the length of the
shortest constant speed curve passing through both pBimtsa point and a tangent vector on a Riemannian manifold,ame ¢

construct a geodesic path whose initial point and the vlarie same as the given pair.
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Tangent plane T,

_Pole P

Tangents V, and V,
along the same direction

Exp,,(VI)Q‘-.____ ‘\‘

|
| Exponential map wraps them
. * back onto the same geodesic

Fig. 2. lllustration of exponential maps. The exponential map igall:back’ map which takes points on the
tangent plane and pulls them onto the manifold in a manndrpieserves distances. As an example, shown are
two pointsV; andV, on the tangent space at pd¥e Both points lie along the same tangent vector. The expalent
map will map them onto the same geodesic. In a local neighldmaththe geodesic distance between the pole and
the obtained points will be the same as the Euclidean distéwetween the pole and the tangent vectors on the

tangent plane.

manifold andp € M, the exponential map exp, : T,(M) — M, is defined by exp(v) = ay(1)
where ay is a constant speed geodesic startingpatnd with the initial velocityv. In case of
SO(n), the exponential map eyp To(SO(n)) — SO(N) is given by exp(X) = Oexp(X), where
the exponential on the right side is actually the matrix exdial. To help visualize these ideas,
we illustrate the notions of tangent planes, geodesics urdid. We illustrate the notions of the

exponential map in figure 2.

A. Stiefel and Grassmann Manifolds as Quotients of SO(n)

A quotient of a group results from equivalence relationsvMeen points in the space. If one
wants to identify certain elements of a set, using an eqei relation, then the set of such
equivalent classes forms a quotient space. This framevgoxleny useful in understanding the
geometry of. 4,4 and 4,4 by viewing them as quotient spaces, using different eqend
relations, ofSO(n).

Stiefel Manifold: A Stiefel manifold is the set of alb-dimensional orthonormal bases &f
for 1 <d < n. Since each orthonormal basis can be identified witmand matrix, a Stiefel
manifold is also a set afi x d matrices with orthonormal columns. More interestingis 4 can

be viewed as a quotient space 3D(n) as follows. Consider the subgroup of smaller rotations
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O(n—d) as a subgroup oBO(n) using the embeddingp, : SO(n—d) — SO(n), defined by

lg O
0OV

P(V) = [ e SO(n) . (5)

Now define two element®;, O, € SO(n) to be equivalent, i.e0; ~4 Oy, if O1 = O (V) for
someV € SO(n—d). (The subscript is used to distinguish it from another equivalence relation
used later for studying/, 4.) Note that@,(SO(n—d)) consists of those rotations 80(n) that
rotate only the lastn—d) components irR", leaving the firstd unchanged. Henc&; ~ O,

if and only if their firstd columns are identical, irrespective of the remaining calamThe
resulting equivalence classes af@j; = {Og(V)|V € SO(n—d)}. Since all elements 0fO],
have the same firgl columns, we will use that submatrix € R™9 to represenfOla. /g is
now viewed as the set of all such equivalence classes andaatesimply bySO(n)/SO(n—d).
Grassmann Manifold: A Grassmann manifold is the set of ald-dimensional subspaces of
R". Here we are interested ohdimensional subspaces and not in a particular basis. lerdeod
obtain a quotient space structure fd{q, let SO(d) x SO(n—d) be a subgroup o80(n) using
the embeddingg, : (SO(d) x SO(n—d)) — SO(n):

Vi O

] € SO(n). (6)
0 W

W (V1, Vo) = [

Define an equivalence relation &(n) according tdO; ~p Oy if O1 = O, (V4, Vo) for some
V; € 0(d) andV, € SO(n—d). In other words©O; andO; are equivalent if the firstl columns
of O, are rotations of the firs columns ofO, and the las{n—d) columns ofO; are rotations

of the lastn—d columns ofO,. An equivalence class is given by:
[Olp = {O@(V1,V2)|V1 € SO(d), Vo € SO(N—d)} ,

and the set of all such equivalence classe%ig. Notationally,%, 4 can also be denoted as
simply SO(n)/(S0(d) x SO(n—d)). For efficiency, we often denote the $&i, by [U] = {UV; €
R™9v; € SO(d)}, whereU denotes the firstl columns ofO. Another way to express is OJ
whereJ is the matrix of the firsd columns ofl,,.

1) Tangent Structures via the Quotient Interpretation: As noted earlier, for anyD € SO(n),
a geodesic flow in a tangent direction, s@/,A, is given byyio(A,t) = OT exp(tA) where exp

is the matrix exponential. This is a one-parameter curvé wis the parameter. From this one
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can deduce that, in case of, 4 and%, 4 a geodesic flow starting from a poidt= OlJe “nd

is of the type:

t— O exp(tA)J (7)
. . C -B
Here, the skew-symmetric matriX is either of the type T for 4, of the type
B" O
0 -B .
T for 4,4. In general the tangent vectors ot} 4 or %, 4 can be written a®©TAl.
B" O ’ ’

Tangent Structure of ., 4: It can be shown that the tangent structuresgfy is given as
C dxd dx (n—d)
Ti(“nd) ={ T |IC € R™*" skew-symm,B € R }. (8)
B

For any other poinU € .}, 4, let O € SO(n) be a matrix that rotates the columnslfto align
with the columns of], i.e. letU = O J. Note that the choice dD is not unique. It follows that
the tangent space &k is given by: Ty (%h4) = {OTG|G € T3(Fhd)}-

Tangent Structure of ¢, 4: The tangent space @] € %4 is:
0 dx (n—d)
Ty (%ha) = { ot | BER } 9)

For any other poinfU] € ¢, 4, let O € SO(n) be a matrix such that = O"J. Then, the tangent
space afU] is given byTjy)(%q) = {O"G|G € Ty (%ha)}-

On 4 and%, 4, the exponential map is given by:
C
BT

where A takes an appropriate structure for each case. The expne&gionverse exponential

o' =0'AJ— O exp(A)J ,

map is not available analytically for these manifolds andamputed numerically as described

later in section VI.

IV. USING GEOMETRY TO COMPUTESAMPLE STATISTICS ON THE GRASSMANN MANIFOLD

The first question that we consider is: What is a suitableomotif a mean on the Riemannian
manifold .#Z ? A popular method for defining a mean on a manifold was prapbgeKarcher

[39] who used the centroid of a density as its mean.
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Karcher Mean [39] The Karcher meam of a probability density functiorf on ./ is defined

as a local minimizer of the cost functiop:: .# — R, where
p(p) = [ dip.f(@) da. (10)

dq denotes the reference measure used in defining the prapatehsity f on .#. The value

of the functionp at the Karcher mean is called thearcher variance. How does the definition
of the Karcher mean adapt to a sample set, i.e. a finite setinfspdrawn from an underlying
probability distribution ? Letyy,qp,...,0x be independent random samples from the denkity

Then, the sample Karcher mean of these points is defined tdddotal minimizer of the

function: px(p) = % Zrzld(p, Gi)?.

Algorithm 1 Algorithm for computing the sample Karcher mean.
1. Given a set ok points{qg;} on the manifold.

2. Let g be an initial estimate of the Karcher mean, usually obtaimegdicking one element ofq;} at random.
Setj =0.

3. For each =1,...,k, compute the inverse exponential mamf g; about the current estimate of the mean i.e.
v, = exp;,jl(qi).

4. Compute the average tangent vectes %_zik:lvi.

5. If ||v]] is small, then stop. Else, moyg in the average tangent direction usiag, 1 = expy, (ev), wheree >0

is small step size, typically.B.

6. Setj = j+1 and return to Step 3. Continue tiflu; does not change anymore or till maximum iterations are

exceeded.

An iterative algorithm is employed for computing the samilrcher mean as summarized
in Algorithm 1. It can be shown that this algorithm convergesa local minimum of the cost
function given in the definition oft [40]. Depending upon the initial valugy and the step size

€, the algorithm converges to a local minimum.

V. SUPERVISED ANDUNSUPERVISEDLEARNING ALGORITHMS FOR THEGRASSMANNIAN

Many of the image and video-based analysis tasks involveobmeo tasks a) recognition of
an input video as one of several classes or b) finding unaerlyiructural similarities in a large
collection of videos. e.g. Given videos of activities, thRMA model parameters! = (A,C) are
estimated using the methods described in section Il. Sulesely, the finite observability matrix

Om(M) is computed. Then for each observability matrix, an ortliorad basis is computed using
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(a) Karcher Mean lllustration (b) HNlustration of Wrapped Gaussian

Fig. 3. In R? the set of all axes (lines passing through the origin) is tr@sémann manifold with =2 andd = 1.

(a) Blue dotted lines represent individual points on thes@msann manifold. The bold red line is the Karcher mean
of this set. The Karcher mean corresponds to the notion of annagis. (b) Wrapped Normal class conditional-
densities of two classes on the Grassmann manifold. Easls édashown in a different color. The mean of each
class is shown in bold lines. The wrapped standard-dewditi@s are shown in dashed lines for each class.
standard SVD-based algorithms. So, we now have a set of aoéspor in other words a point
cloud on the Grassmann manifold. In recognition problens,also have corresponding class
labels provided in the training-set. In this section, wellspeovide methods that follow from

the theory described above to solve the supervised and enssgd learning problems.

A. Learning with Parametric class conditional densities

In addition to sample statistics such as the mean and coxajat is possible to define
probability density functions (pdfs) on manifolds for usennodeling random quantities. Similar
to the Euclidean spaces, we have a choice between pararaettinonparametric probability
models. While parametric models are typically more effiti¢he nonparametric models often
require fewer assumptions. For nonlinear manifolds, omeatso have a choice between extrinsic
and intrinsic probability models. The extrinsic modelsuteBom embedding nonlinear manifolds
in higher dimensional Euclidean spaces and defining modetisase larger spaces. In contrast,
the intrinsic models are completely restricted to the n@dd themselves and do not rely on any
Euclidean embedding. In view of the efficient nature of pasaim models and the independence
of intrinsic models from a need for Euclidean embedding, wi pursue intrinsic parametric
models. The general idea here is to define a pdf on the tangact sof the manifold, and
then ‘wrap’ the distribution back onto the manifold. Thisoals us to draw upon the wealth of

methods available from classical multi-variate statssfrr the problem at hand.
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Suppose, we have sample points, given by, dz,...q, from a manifold.#Z. Then, we first
compute their Karcher meaq as discussed before. The next step is to define and compute a
sample covariance for the observg. The key idea here is to use the fact that the tangent
spacelg(.# ) is a vector space. Forgxdimensional manifold, the tangent space at a point is also
d dimensional. Using a finite-dimensional approximatiory, ¥aC Tq(.# ), we can use classical
multivariate statistics for this purpose. We can estimh&epgarameters of a family of pdfs such
as Gaussian, or mixtures of Gaussian and then use the exadmeap to wrap these parameters
back onto the manifold.

Truncation of domains: The exponential map: exp Tg(.#) — .# proves useful to map
estimated pdfs back to the manifald’, giving rise to wrapped-densities [40], [28]. In general,
one can define arbitrary pdfs on the tangent plane such asimeixbf Gaussian, Laplace etc
and wrap it back to the manifold via the exponential map. H@xuefor manifolds of interest
in this paper, the exponential map is a bijection only if itsrdin is restricted. Otherwise,
any tangent line, being of infinite length, can be wrappediadothese compact manifolds
infinitely many times. Consequently, if one is interestedi@miving an explicit expression for a
wrapped density on#, the resulting expression will have infinite sums and willngdicate the
derivations. Truncating the the domain of density funddiamthe spacég(.#) such that exp
is a bijection is one solution. This would require truncativeyond a radius oft in Tg(.#).

The main modification required is that for the multivariaenslity inTg{.# ), the normalization
constant changes. It gets scaled down depending on how nfutie @robability mass is left
out of the truncation region. This can be evaluated emplyiday drawing a large number of
samplesN from the estimated density and counting the numbigt, of them that are within a
radius of it from the origin inTg(.# ). Then, the normalization constant needs to be multiplied
by the effective fraction of samples within this radius Ngs+ = Ny/N.

In experiments, we employ wrapped Gaussians in two wayshmwe denote as common-
pole and class-specific pole wrapped Gaussians. In the corpole case, given points on the
manifold with class labels, we compute the mean of the e@taset without regard to class
labels. This dataset mean is referred to as the common-poés, class conditional densities are
estimated in this tangent space. In the class-specific @de, ave compute the Karcher mean
for each class. Separate tangent spaces are consideredcforckass at the class-mean. The

class conditionals are estimated in these individual tangpaces. Algorithms for estimating
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class-conditionals for both these cases are shown in #igor2 and 3.

Algorithm 2 Truncated Wrapped Gaussian using common pole
1. Given a set of points with class labés= {(U;,l;)} on the manifold, and number of clasd€s

2. Compute the Karcher meanof the entire dataset without regards to class labels.

3. For each point;, compute the inverse exponential map about the dataset meaexp‘jl(ui) and associate
with the corresponding class labgl giving rise to a set of tupleg = {(v;,l;)}.

4. For each class fit a Gaussian distribution in the tangemtesp,(.#).

5. For each class, sample a large numiesf points from the estimated Gaussian distribution.

6. Count the number of point$;; which lie within a distancet from the origin ofT, (.#)(origin here corresponds

to expljl(u)). Compute multiplication factoNess = Ni/N and adjust the normalization factor.

Algorithm 3 Truncated Wrapped Gaussian using class-specific pole
1. Given a set of points with class labés= {(U;,l;)} on the manifold, and number of clasd€s

fori=1,...K do

Compute the Karcher mean of theit" class using algorithm 1.

For all points{U;j} of the current class, compute the inverse exponential maptahe class meamn; =
exp,t(U)).

Fit a Gaussian distribution for th&' class in the tangent spadg, (.#).

Sample a large numb&t of points from the estimated Gaussian distribution.

Count the number of points; which lie within a distancer from the origin ofTy, (.#') (origin here corresponds
to (’Xpﬁil(ﬂi))- Compute multiplication factoNes = N;;/N and adjust the normalization factor for th& class
conditional density.

end for

1) Synthetic Examples: In this section, we illustrate the concepts of sample Karchean
and wrapped densities on a Grassmann manifold. To help liatian, we choos&s, 4 with
n=2 andd =1 i.e. 1-dimensional subspacesRA. This is the set of all lines passing through of
the origin on the X-Y plane. Lines on a plane can be paranegtrizy their principal angle with
the X-axis. Using this parameterization, in the first expemt we randomly sample directions
centered aroun@ = 11/3 with variance inf set to 0.2. A set of such samples in shown in figure
3 (a) with dotted blue lines. The Karcher mean of this set maghas a red line in figure 3

(a). As can be seen, the Karcher mean corresponds well todth@nrof a ‘mean-axis’ in this
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case. In figure 3(b) we illustrate the concept of estimatheywrapped normal distribution. In
this experiment, we generated samples from two classes eemered aP = 0 and the other
centered aB = /2. Points from each class are shown in different colors. Thecker mean
of the whole dataset was taken as the pole to compute thertbmgetors for the points. Each
of the classes was parameterized by a mgaand standard-deviatioo on the tangent plane.
The points corresponding to and andu 4+ o were then wrapped back onto the manifold. The
mean and standard-deviation axes for each of the classeshawn as bold and dashed lines
respectively.

An earlier paper [1] used extrinsic nonparametric modeisiimilar purposes and in this paper
we will compare them with our current approach. Recall that Karcher mean computation is
an iterative procedure. In recent years the Procrustesauetproposed by [23] have become
popular for non-iterative density estimation as an alte&wea However, it requires a choice of
parameters (kernel-width) whose optimal value is not knawadvance. Given several examples
from a class(Uy,Uy,...,Uy) on the Grassmann manifold, the class conditional densigyvisn
by [23] as

f(u;m) ZK 20, —uTuuTu)M 1?2 (11)
whereK(T) is the kernel functionM is ad x d positive definite matrix which plays the role
of the kernel width or a smoothing parame®(M) is a normalizing factor chosen so that the
estimated density integrates to unity. The matrix valueshéefunctionK(T) can be chosen in

several ways. We have us&dT) = exp(—tr(T)) in all the experiments reported in this paper.

B. Unsupervised Clustering

The statistical tools that have been described in the pusvéections can be used for un-
supervised learning tasks such as clustering of data. Uiam, it is possible to estimate
clusters in an intrinsic manner. Let us assume that we haet af pointsD = (U1,U>,...,Up)
on the Grassmann manifold. We seek to estimatmustersC = (C1,Cy,...,Cy) with cluster
centers(uy, o, ..., Ux) So that the sum of geodesic-distance squazésl Sujec d 2(Uj, ), is
minimized. Hered?(Uj, 1) = ‘expHi (Uj)) As is the case with standard k-means, we can solve
this problem using an EM-based approach. We initialize tgeraghm with a random selection
of k points as the cluster centers. In the E-step, we assign daitte points of the dataséd

to the nearest cluster center. Then in the M-step, we rectamihe cluster centers using the
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Karcher mean computation algorithm described in sectionTiMe procedure is summarized in

algorithm 4.

Algorithm 4 Intrinsic K-means clustering algorithm on Riemannian rfalds.
1. Given set of point® = (U1,Uy,...,Un) on the Grassmann manifold, number of clustérsnaximum iteration

Nrmax-
2. Initialize cluster centersuf)),ué()),...,;1&0)) randomly.
while (i < Nmax) do

2
Assign each point to nearest cluster center by compui?r@gj,uk) = ‘expﬁkl(uj)‘
Recompute cluster cente(ﬂf),ug),...,up) using algorithm 1.

i=i+1

end while

VI. Size OF PROBLEMS AND METHODS FOREFFICIENT RIEMANNIAN COMPUTATIONS

As described in section 1, the finite observability matsbgiven byO[, = [CT, (CA)T, (CA?)T,... (CA™1)T].
The size of this matrix isnp x d. The column space of this matrix isdadimensional subspace
of R™P. d is typically of the order of 5-10, and we chooseto be the same ad. However,
p is the dimension of the feature vectors, and this in genemalle quite large. Typical image
sequences used for, say, video-based face recognitiol ireguages of size 10@ 100 resulting
in p= 10" Similarly, in the case of modeling image-sets, the PCA $astctors are stored as
p x d matrices, where is the size of raw images ardlis the subspace dimension (typically
small). Due to the large size of these matrices, straigivdicdl implementation of Riemannian
computations is non-trivial. The computation of the gedwlé3’ exp(tA)J in the direct form
implies a complexity ofO(n®), wheren = mp for the observability matrix, and = p for the
case of PCA basis vectors. By exploiting the special strectii the matrixA, it is possible to
reduce the complexity of these operations to no more ®@mu?) and O(d®) which represents
a significant reduction. These efficient methods were firsppsed by Gallivan et al [41]. For
a self-contained treatment, here we summarize the keytsethat will be used in this paper in

the appendix

VII. APPLICATIONS AND EXPERIMENTS

In this section, we show the utility of the methods discussedar on several image and

video-based recognition tasks. We shall show 4 differeptiegtions:
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1) Activity recognition on INRIA iXMAS data [42].

2) Video-based Face recognition on NIST-MBGC data [43].

3) Face Recognition from Image Sets on CMU-PIE data [44].

4) Video Clustering on SFU figure skating data [45].

In all these applications, we show that subspace matchisgsanaturally. We compare with
other related methods that involve subspace matching,laow that statistical modeling of class-
conditionals using Riemannian geometry demonstrategrptrformance over other simpler
methods.

I mplementation details: For parametric class-conditional densities, as desciibsdction V-A
we consider two versions of wrapped Gaussians - commongmaleclass-specific poles. In the
common-pole case, the tangent plane is constructed at theghétamean of the entire training
dataset (Algorithm 2). In the class-specific pole case, westtact a class-specific tangent plane
at the Karcher mean of each of the classes (Algorithm 3). Tamseconditional for thé" class

is completely specified by the tup@ = {pi, Vi, %}, wherep; is the pole about whose tangent-
space the density is defineg,is the mean irf, (.#), andZ; the covariance matrix iy (.#).

In the common-pole case, gli’'s are set to the dataset mean. In class-specific pole case, th
pi’s are set to individual class-means. To evaluateithelass conditional density at a test-point,
one merely evaluates the truncated Gaussian by mappingsh@dint to the tangent-space at
pi. Then, the point is classified into the class that has thedsiglikelihood. In our experiments,
we have restricted; to be a diagonal matrix instead of a full covariance matrig.mentioned

in section V-A, to evaluate the class conditional probapilising truncated wrapped Gaussians,
we also need to adjust the normalizing constant of each @awuds is our experience that the
appearance/activity models on Stiefel and Grassmann oldsiére rather clustered around their
class-mean and rarely are some points so far away from tha toaaecessitate truncation. So,

we ignore this minor adjustment.

A. Activity Recognition
We performed a recognition experiment on the publicly adé INRIA dataset [42]. The
dataset consists of 10 actors performing 11 actions, eatbnaexecuted 3 times at varying

rates while freely changing orientation. We used the vievaiiant representation and features

as proposed in [42]. Specifically, we used thex185 x 16 circular FFT features proposed by
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Activity Dim. Red. [42] 16° | Best Dim. Red. [42] | Subspace Angles 163 | NN-Procrust 16° vol-
volume 64° volume volume ume [1]

Check Watch 76.67 86.66 93.33 90
Cross Arms 100 100 100 96.67
Scratch Head 80 93.33 76.67 90

Sit Down 96.67 93.33 93.33 93.33
Get Up 93.33 93.33 86.67 80
Turn Around 96.67 96.67 100 100
Walk 100 100 100 100
Wave Hand 73.33 80 93.33 90
Punch 83.33 96.66 93.33 83.33
Kick 90 96.66 100 100
Pick Up 86.67 90 96.67 96.67
Average 88.78 93.33 93.93 92.72

TABLE |

COMPARISON OF VIEW INVARIANT RECOGNITION OF ACTIVITIES IN THE INRIA DATASET USING A) BEST
DIMRED [42] ON 16 x 16 x 16 FEATURES B) BESTDIM. RED. [42] ON 64 x 64 x 64FEATURES C) NEAREST
NEIGHBOR USINGARMA MODEL DISTANCE, D) PROCRUSTES DISTANCHREPORTED IN[1].)

[42]. Instead of modeling each segment of activity as a simgbtion history volume as in [42],
we build a time series of motion history volumes using smiadirsg windows. This allows us to
build a dynamic model for each segment. We use the segmamtasults used in [42]. Using
these features, we first performed a recognition experiraerthe provided data.

To perform recognition, firstly each activity was modeledaasARMA model given in (2).
The state-space dimensionwas chosen to be 5. Model fitting was performed as described in
section II. After this, finite the observability matri®n(M) is computed, and an orthonormal
basis corresponding to its column space is stored. Testasyperformed using a round-robin
(leave-one-person-out) experiment where activity modedse learnt using 9 actors and tested
on 1 actor. For fitting the ARMA model we used %616 x 16 = 4096 dimensional features,
chose state-space dimensidia=5 and truncated the observability matrixrat=d = 5. Thus,
in this case, the Grassmann maniféfgly corresponds tm = mp = 20480, andd = 5.

In Table I, we show the recognition results obtained using feaseline methods that do not
require any statistical modeling. The first column showsésellts obtained using dimensionality
reduction approaches of [42] on %616 x 16 features. [42] reports recognition results using a

variety of dimensionality reduction techniques (PCA, LDMahalanobis) and here we choose

December 1, 2010 DRAFT



21

the row-wise best performance from their experiments (tzh@Best Dim. Red.’) which were
obtained using 64 64 x 64 circular FFT features. The third column corresponds éontethod

of using subspace angles based distance between dynamickdlsn31]. This is based on
on computing the angles between subspageand measuring the distance usiggsinz(e.).
Column 4 shows the nearest-neighbor classifier performasic®y Procrustes distance measure
(16x 16x 16 features). We see that the manifold Procrustes distaarterms as well as ARMA
model distance [31].

In Table Il we show results of statistical modeling using gmaetric and non-parametric
methods. As can be seen in the results in Table II, statistcaleling of class conditional
densities leads to a significant improvement in recogniperformance over simpler methods
shown in Table I. We also present the results of non-paraeriegrnel density estimator reported
in [1]. Note that even though the manifold approaches ptesehere use only 16 16 x 16
features they outperform other approaches that use higisefution (64x 64 x 64 features) as

shown in Table I.

Activity Wrapped Normal: Common-Polé Wrapped Normal: Class-specific Procrustes Kernel
(Algorithm 2) Pole (Algorithm 3) M=1[1]
Check Watch 96.67 100 100
Cross Arms 93.33 100 100
Scratch Head 93.33 90 96.67
Sit Down 90 96.67 93.33
Get Up 100 96.67 96.67
Turn Around 96.67 100 100
Walk 93.33 90 100
Wave Hand 86.67 93.33 100
Punch 90 100 100
Kick 93.33 100 100
Pick Up 93.33 100 100
Average 93.33 96.06 98.78
TABLE I

STATISTICAL MODELING FOR RECOGNITION OF ACTIVITIES IN THEINRIA DATASET USING A) COMMON-POLE
WRAPPEDNORMAL B) CLASS-SPECIFIC POLEWRAPPEDNORMAL C) KERNEL DENSITY (FIRST REPORTED IN

[1D).

As mentioned before, for the non-parametric case, an apgptejpchoice of the kernel width
M has to be made. In general, cross-validation is suggestestitnate the optimal kernel width.

Different classes may have a different optimal kernel widdence, cross-validation requires a
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lengthy training phase. A sub-optimal choice can often lEag@oor performance. This is one
of the significant drawbacks of non-parametric methods. él@r addressing this formally is

beyond the scope of the current paper.

B. Video-Based Face Recognition

Video-based face recognition (FR) by modeling the ‘cropypiddo’ either as dynamical models
([6]) or as a collection of PCA subspaces [46] have recendiyped popularity because of their
ability to recognize faces from low resolution videos. Giva video, we estimate the a low-
dimensional subspace from the sequence of frames usindasthi?CA. The subspace is then
considered as a point on the Grassmann manifold.

We performed a recognition experiment on the NIST’s Muétiiometric Grand Challenge
(MBGC) dataset. The MBGC Video Challenge dataset consists large number of subjects
walking towards a camera in a variety of illumination comatis. Face regions are manually
tracked and a sequence of cropped images is obtained. Theeesamotal of 143 subjects with
the number of videos per subject ranging from 1 to 5. In oureerpents we took subsets of
the dataset which contained at least 2 sequences per pezaoted asS,, at least 3 sequences
per person denoted & etc. Each of the face-images was first preprocessed to zean-rand
unity variance and scaled to 18000. For each subject a PCA basis is estimated of dimension
d =5. Thus, in this cas&, 4 corresponds ton = 1000Qd = 5. In each of these subsets, we
performed a leave-one-out testing. The results of the leaeout testing are shown in Table
lll. In the comparisons, we show results using the ‘arc-tehgetric between subspaces [10].
This metric computes the subspace angles between two sigsspad takes the L-2 norm of
the angles as a distance measure [10]. We also show commakisth the Procrustes measure,
the Kernel density estimate withl =1 and a wrapped normal density with the Karcher mean
of the entire dataset as the pole given in algorithm 2.

As can be seen, statistical methods outperform neareghio@i based approaches. As one
would expect, the results improve when more examples pss @ee available. Since the optimal
kernel-width is not known in advance, this might explain tekatively poor performance of the

kernel density method.
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Subset || Distinct Total Se- | Arc-length | Procrustes| Kernel Wrapped Gaussian
Subjects | quences Metric Metric density Common Pole
S 143 395 38.48 43.79 39.74 63.79
S 55 219 48.85 53.88 50.22 74.88
S 54 216 48.61 53.70 50.46 75
Avg. 45.31% 50.45% 46.80% 71.22%
TABLE Il

COMPARISON RECOGNITION ACCURACIES OF VIDEO BASED FACE RECOGTION USING SUBSPACEBASED
APPROACHES A) SUBSPACEANGLES+ ARC-LENGTH METRIC, B) PROCRUSTESDISTANCE, C) KERNEL
DENSITY, D) WRAPPEDNORMAL USING A COMMON POLE FOR ALL CLASSEJALGORITHM 2).

C. Face Recognition from Image-sets

We consider the CMU-PIE face dataset which contains ima§&s8 gersons under varying
poses, illumination and expressions. For comparison, \eethus methods proposed in [14]. The
methods proposed in [14] involve discriminative approacbe the Grassmann manifold using
Mercer-kernels. In this approach, a Mercer-kernel is ddfioe the Grassmann manifold which
then enables using kernel versions of SVMs, Fisher Disoiami Analysis etc for classification.
In this experiment, we use the experimental protocol sugdes [47]. For each of the 68
subjects, 7 near frontal poses are used in the experimenedeh person under a fixed pose,
we approximate the variations due to expressions and ilatian as a linear subspace. Thus,
for each person we have a set of subspaces correspondinght@ese. This allows us to build
a statistical model on the Grassmann manifold for each pe&saound-robin (leave-one-pose-
out) experiment is performed in which 6 poses are used famitigi and the remaining pose is
used for testing. The results are shown in Table IV. The tesuding the other methods were
reported in [47].

As can be seen, the proposed statistical approaches comphreith the state of the art. In
particular, the kernel density method outperforms all & dther methods. The discriminative
approaches of [14] outperforms the wrapped normal apprddoiwvever, the variability of the
performance is high depending on what Mercer kernel is ahoBlee wrapped normal provides

consistent performance and beats most other methods.
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Subspace Dimension m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9
GDA (Proj) [14] 748 898 872 91.7 925 93.8 936 95.3
GDA (BC) [14] 714 825 648 586 475 431 399 363
MSM [48] 67.0 65.0 646 642 640 646 64.6 646
cMSM [49] 71.2 67.6 682 69.7 699 702 727 725
DCC [34] 789 665 638 646 676 676 676 65

69.95 76.89 69.74 77.73 79.83 79.20 80.46 76.26
69.95 76.89 70.16 77.31 8256 84.66 85.50 86.97
78.36 88.44 8991 93.69 9579 97.26 96.84 97.26

Wrapped Normal: Algorithm 2

Wrapped Normal: Algorithm 3

Grassmann Kernel Density: M =1

TABLE IV
CMU-PIE DATABASE: FACE IDENTIFICATION USING VARIOUS GRASSMANN STATISTICAL METHODS
PERFORMANCE OF VARIOUS METHODS IS COMPARED AS THE SUBSPACE MENSION IS VARIED.

D. Mideo Clustering

We performed a clustering experiment on the figure skatingsaa of [45]. These videos
are unconstrained and involve rapid motion of both the skael the camera. As reported in
[50] color models of the foreground and background are useskgyment the background and
foreground pixels. Median filtering followed by connectemimponent analysis is performed to
reject small isolated blobs. From the segmented resultsit\vaebounding box to the foreground
pixels by estimating the 2D mean and second order momentg akndy directions. We perform
temporal smoothing of the bounding box parameters to renjitiee effects. The final feature
is a rescaled binary image of size 19000 of the pixels inside the bounding box. We build
ARMA models for fixed length subsequences using sliding wmslas done in [50]. State-space
dimensiond = 5, and observability matrix is truncated mt= 5. Thus, we haves,q with n=
mp = 5000Qd = 5. Then, we used the intrinsic K-means clustering on the $anasn manifold
using Algorithm 4. In [50], the segments were treated as s@ada graph and normalized cuts
(N-cuts) was used for clustering. The cited reason was beaspace of ARMA models is not a
vector-space and it is not apparent how to perform k-mearstaring and thereby N-cuts is used
as an alternative. The approach that we use here, whilevéegisimilar results, is a principled
method to solve the video-clustering problem using ARMA eisdAs is the case with standard
k-means, it enjoys lower computational load compared todpectral clustering algorithms,

especially for long videos. We show some sample sequendég iobtained clusters in figure 4.
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We observe that the clusters correspond dominantly tang§itspins’, ‘Standing Spins’, ‘Camel
Spins’, and ‘Spirals’. There is a fifth cluster which corresds mainly to ‘Glides’ and has been

omitted due to space constraints.

VIII. CONCLUSION

We have shown that the Grassmann manifold arises naturattyany image and video based
classification problems. We have presented statisticaletimggl methods that are derived from
the Riemannian geometry of the manifold. We have shown tiigyudf the methods on several
applications such as activity recognition, video-baseck faecognition and recognition from
image-sets. In addition to definitions of distances andssied on manifolds, many interesting
problems such as interpolation, smoothing, and time-semedeling on these manifolds of
interest are potential directions of future work. Thesdégues can prove useful in applications
such as adapting appearance models for active vision agipls, or modeling time-varying

dynamic models for human activities [32].

IX. APPENDIX

We present the algorithms for computing the exponentialiamerse exponential maps here.
Moving along the Geodesic: Exponential Map Given a point on the Grassmann manifalg,
and a direction matriB, the one-parameter geodesic path emanating fdgrm this direction

is given by
a(t)=0 exp(tA) J (12)

where, O € SO(n) and O"Ug = J and J = [l4;0n_q 4]. GivenUg and A the steps involved in

samplinga (t) for various values of are given in Algorithm 5. Fot = 1, a(1) = expyy,(A).

Algorithm 5 Algorithm for computing the exponential map and samplingngl the geodesic.

0 BT
1. Given a point on the Grassmann manifblg, and a tangent vectok = ( 0 ) .
—-B

2. Compute then x n orthogonal completior@ of Ug.

3. Compute the compact SVD of the direction mafix= V,0V;.

4. Compute the diagonal matric€$t) and Z(t) such thaty (t) = cos(t6) and gi(t) = sin(t6;), where8’s are the diagonal elements 6
Vil (t)

5.C tea (t) =
omputea (t) = Q s

, for various values of € [0,1]. The value fort = 1 corresponds to thexpy, (A).
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Computing the Velocity Matrix: Inverse Exponential Map: Now, given two points on the manifold
Up andU;, we need an efficient way to compute the velocity paramBtsuch that traveling
in this direction fromUg leads toU; in unit-time. The steps involved in this computation are

outlined in Algorithm 6.

Algorithm 6 Algorithm for computing the inverse exponential map.

1. Given two points on the manifoldg andU;.

2. Compute then x n orthogonal completior© of Up.
3. Compute the thin CS decomposition [51]®@fU; given by

r
o [ X[\~ s |s- Vi 0 r() g

Y 0 VW 0 Y, —3(1)
4. Compute{8 } which are given by the arcsine and arcos theodia nal elengf ™ and X respectively. i.ey = cos(6) and g; = sin(6).
Form the diagonal matri® containing8’s on its diagonal.

5. ComputeA = \V,OV;.

Note that in both cases, we do not actually need to computestord the orthogonal com-
pletion O of Uy explicitly. Since eventually we only applY to another matrix, there are
implicit methods based on Givens rotations [51], [41] thatlde this operation efficiently.
These operations can be performedind?) vs O(n3) as implied by the equation (12). Further,
using Givens rotations [51] these operations can be intlyliperformed with complexity(d3).

The thin CS decomposition operations can be computed withpgaxity O(nk?).
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(d) Cluster 4: Spirals

Fig. 4. Shown here are a few sequences from each obtained clustérr&a in a cluster shows contiguous frames

of a sequence.
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