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1. Motivations

Two central problems in machine learning are

(1.) Data fitting (or learning a function).
(2.) Data classification.

For this introduction we focus on the more classical problem of data fitting.
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Fitting Points in the Plane

Assume we have some data points in the plane given as a list of m coordinates

((x1, y1), . . . , (xm, ym)), xi, yi ∈ R.

The figure on the next slide shows an example of 100 points in the plane.
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Fitting Points in the Plane

Figure 1: A data set of 100 points in the plane.
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Learning an Affine Map
We are looking for a function f : R → R such that f(xi) = yi for i = 1, . . . , 100.

The simplest kind of function is an affine map, that is, a map of the form

f(x) = wx + b,

for some real numbers w, b. The number w is called a weight.
The numbers w and b must satisfy the 100 (affine) equations

yi = f(xi) = wxi + b.
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Learning an Affine Map

In general, unless all the points lie on the same line, the above linear system
has no solution.

We are asking for too much. A more promising approach is to minimize the
error.
But what is the error?
Gauss and Legendre proposed a method over 200 years ago: the least squares
method.
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What is the Error?

Every equation yi = wxi + b can be written as

yi − wxi − b = 0.

Think of yi − wxi − b as an error.

In the method of least squares, the error (or loss) is the sum of the squares of
the errors:

100∑
i=1

(yi − wxi − b)2.
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Least Squares Solution
Here the least squares solution for our data set of 100 points.
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Figure 2: The least squares best fit.
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Fitting Points in Rn

We can generalize the problem to data in Rn.

Assume we have some data given as a list of m pairs

((x1, y1), . . . , (xm, ym)), xi ∈ Rn, yi ∈ R.

We wish to learn an affine map f : Rn → R of the form

f(z) = w1z1 + · · ·+ wnzn + b,

with z = (z1, . . . , zn) and where w1, . . . ,wn ∈ R are weights.
It is convenient to denote the quantity w1z1 + · · ·+ wnzn (an inner product)
as z⊤w.
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The Euclidean Norm (or ℓ2-Norm)
The Euclidean norm (or ℓ2-norm) of a vector z = (z1, . . . , zn) ∈ Rn is defined
as

‖z‖2 = (z21 + · · ·+ z2n)1/2 = (z⊤z)1/2.

The least squares problem is find w ∈ Rn that minimizes

‖ξ‖22 ,

where ξ = (ξ1, . . . , ξm) is the vector given by

ξi = yi − x⊤i w − b.
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Pseudo-Inverse
It turns out that there is a unique solution

(w
b
)+ of least ℓ2-norm.

Furthermore, this solution
(w

b
)+ is expressed in terms of something called a

pseudo-inverse.
In our case (

w
b

)+

= A+y,

where A+ is the pseudo-inverse of the matrix

A =

x⊤1 1
... ...

x⊤m 1

 .
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Pseudo-Inverse

The pseudo-inverse of a matrix A can be computed in terms of its singular
value decomposition (or SVD).

The SVD and the pseudo-inverse will be discussed extensively later.

The solution given by the pseudo-inverse is not always desirable or too
expensive to compute.

Another method is to penalize the ℓ2-norm of w.
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Ridge Regression

The problem to solve is the following minimization problem known as ridge
regression:

minimize ‖ξ‖22 + K ‖w‖22
subject to

yi − x⊤i w − b = ξi, i = 1, . . . ,m

where K is positive constant.
This time there is a unique solution given in terms of the matrix X whose rows
are the (row) vectors x⊤i . For simplicity assume b = 0.
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Ridge Regression

The unique minimizer is given by the expression

w = X⊤(XX⊤ + KIm)−1y.

The matrix
XX⊤ + KIm

is particularly nice because it is symmetric positive definite. There are more
efficient methods for solving linear system involving SPD matrices. We will
study such matrices extensively.
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ℓ1-Norm and Lasso Regression
One of the weak points of ridge regression is that when the dimension n of the
data is relatively large, the weight vector w is not sparse, which means that
very few weights wi are close to zero.

A remedy to this problem is to penalize the ℓ1-norm ‖w‖1 of w instead of its
ℓ2-norm ‖w‖22.

The ℓ1-norm of a vector z = (z1, . . . , zn) ∈ Rn is defined as

‖z‖1 = |z1|+ · · ·+ |zn|.
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Lasso Regression

Lasso regression is the following minimization problem:

minimize ‖ξ‖22 + τ ‖w‖1
subject to

yi − x⊤i w − b = ξi, i = 1, . . . ,m

where τ is positive constant.
This time, there is no closed-form solution. However a solution can be
computed using an iterative process (ADMM) which solves a sequence of
linear systems involving SPD matrices.
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Elastic Net Regression
There are still undesirable features of lasso, especially when the dimension n of
the data is much larger than the number m of data.

A way to retain the best features of ridge regression and lasso is to penalize
both the ℓ1-norm and the ℓ2-norm of w.
Elastic net regression is the following minimization problem:

minimize ‖ξ‖22 + K ‖w‖22 + τ ‖w‖1
subject to

yi − x⊤i w − b = ξi, i = 1, . . . ,m

where K and τ are positive constants.
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Elastic Net Regression

Elastic net can also be solved using an iterative process (ADMM) which solves
linear systems involving SPD matrices.

When m is much larger than n, elastic net is much slower than lasso,
especially for small K.
Remarkably, least squares, ridge regression, lasso, and elastic net, all rely on
solving linear systems involving SPD matrices.
This is why most of this course will be devoted to these topics! The notion of
orthogonality also play a crucial role.
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2. Extrema of Real-Valued Functions
In most optimization problems we need to find necessary conditions for a
function J : Ω → R to have a local extremum with respect to a subset U of Ω
(where Ω is open). This can be done in two cases:

(1) The set U is defined by a set of equations,

U = {x ∈ Ω | φi(x) = 0, 1 ≤ i ≤ m},

where the functions φi : Ω → R are continuous and differentiable.
(2) The set U is defined by a set of inequalities,

U = {x ∈ Ω | φi(x) ≤ 0, 1 ≤ i ≤ m},

where the functions φi : Ω → R are continuous and differentiable.
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Equality Constraints

In (1), the equations φi(x) = 0 are called equality constraints, and in (2), the
inequalities φi(x) ≤ 0 are called inequality constraints. The case of equality
constraints is much easier to deal with and is treated next.

In the case of equality constraints, a necessary condition for a local extremum
with respect to U can be given in terms of Lagrange multipliers. In the case of
inequality constraints, there is also a necessary condition for a local extremum
with respect to U in terms of generalized Lagrange multipliers and the
Karush–Kuhn–Tucker conditions.



. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .

Equality Constraints

In (1), the equations φi(x) = 0 are called equality constraints, and in (2), the
inequalities φi(x) ≤ 0 are called inequality constraints. The case of equality
constraints is much easier to deal with and is treated next.

In the case of equality constraints, a necessary condition for a local extremum
with respect to U can be given in terms of Lagrange multipliers. In the case of
inequality constraints, there is also a necessary condition for a local extremum
with respect to U in terms of generalized Lagrange multipliers and the
Karush–Kuhn–Tucker conditions.



. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .

Definition of a Local Minimum

Let J : E → R be a real-valued function defined on a normed vector space E.
Ideally we would like to find where the function J reaches a minimum or a
maximum value, at least locally.

Definition. If J : E → R is a real-valued function defined on a normed
vector space E, we say that J has a local minimum (or relative minimum) at
the point u ∈ E if there is some open subset W ⊆ E containing u such that

J(u) ≤ J(w) for all w ∈ W.
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Definition of a Local Maximum

Similarly, we say that J has a local maximum (or relative maximum) at the
point u ∈ E if there is some open subset W ⊆ E containing u such that
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In either case, we say that J has a local extremum (or relative extremum) at
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Definition of a Local Maximum

Similarly, we say that J has a local maximum (or relative maximum) at the
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In either case, we say that J has a local extremum (or relative extremum) at
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Necessary Condition for Local Extrema

We begin with a necessary condition for a local extremum.

Proposition. Let E be a normed vector space and let J : Ω → R be a
function, with Ω some open subset of E. If the function J has a local
extremum at some point u ∈ Ω and if J is differentiable at u, then

dJu = J′(u) = 0.
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Critical Point
Definition. A point u ∈ Ω such that J′(u) = 0 is called a critical point of J.

If E = Rn, then the condition dJu = 0 is equivalent to the system

∂J
∂x1

(u1, . . . , un) = 0

...
∂J
∂xn

(u1, . . . , un) = 0.
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Necessary Condition for Local Extrema

� The condition of the preceding proposition is only a necessary condi-
tion for the existence of an extremum, but not a sufficient condition.

Here are some counter-examples.
If f : R → R is the function given by f(x) = x3, since f′(x) = 3x2, we have
f′(0) = 0, but 0 is neither a minimum nor a maximum of f as evidenced by the
graph shown in Figure 3.
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Illustration of a Cubic Curve

Figure 3: The graph of f(x) = x3. Note that x = 0 is a saddle point and not a local
extremum.
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Necessary Condition for Local Extrema

If g : R2 → R is the function given by g(x, y) = x2 − y2, then
g′(x,y) = (2x − 2y), so g′(0,0) = (0 0), yet near (0, 0) the function g takes
negative and positive values. See Figure 4.
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Illustration of a Hyperbolic Paraboloid

Figure 4: The graph of g(x, y) = x2 − y2. Note that (0, 0) is a saddle point and not a local
extremum.
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Necessary Condition for Local Extrema

� It is very important to note that the hypothesis that Ω is open is
crucial for the validity of the preceding proposition.

For example, if J is the identity function on R and U = [0, 1], a closed subset,
then J′(x) = 1 for all x ∈ [0, 1], even though J has a minimum at x = 0 and a
maximum at x = 1.



. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .

Necessary Condition for Local Extrema

� It is very important to note that the hypothesis that Ω is open is
crucial for the validity of the preceding proposition.

For example, if J is the identity function on R and U = [0, 1], a closed subset,
then J′(x) = 1 for all x ∈ [0, 1], even though J has a minimum at x = 0 and a
maximum at x = 1.



. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .

3. Constrained Optimization

In many practical situations, we need to look for local extrema of a function J
under additional constraints. This situation can be formalized conveniently as
follows. We have a function J : Ω → R defined on some open subset Ω of a
normed vector space, but we also have some subset U of Ω, and we are
looking for the local extrema of J with respect to the set U.

The elements u ∈ U are often called feasible solutions of the optimization
problem consisting in finding the local extrema of some objective function J
with respect to some subset U of Ω defined by a set of constraints. Note that
in most cases, U is not open. In fact, U is usually closed.
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Equality Constraints

In order to find necessary conditions for a function J : Ω → R to have a local
extremum with respect to a subset U of Ω (where Ω is open), we need to
incorporate the definition of U into these conditions. This can be done when
the set U is defined by a set of equations,

U = {x ∈ Ω | φi(x) = 0, 1 ≤ i ≤ m},

where the functions φi : Ω → R are continuous (and usually differentiable).

The equations φi(x) = 0 are called equality constraints.
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The equations φi(x) = 0 are called equality constraints.



. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .

Necessary Condition for Constrained
Extrema

In the case of equality constraints, a necessary condition for a local extremum
with respect to U can be given in terms of Lagrange multipliers.
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Necessary Condition for Constrained
Extrema

Theorem (Necessary condition for a constrained extremum in terms of
Lagrange multipliers). Let Ω be an open subset of Rn, consider m
C1-functions φi : Ω → R (with 1 ≤ m < n), let

U = {v ∈ Ω | φi(v) = 0, 1 ≤ i ≤ m},

and let u ∈ U be a point such that the derivatives dφi(u) ∈ L(Rn;R) are
linearly independent; equivalently, assume that the m × n matrix(
(∂φi/∂xj)(u)

)
has rank m.
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Necessary Condition for Constrained
Extrema
If J : Ω → R is a function which is differentiable at u ∈ U and if J has a local
constrained extremum at u, then there exist m numbers λi(u) ∈ R, uniquely
defined, such that

dJ(u) + λ1(u)dφ1(u) + · · ·+ λm(u)dφm(u) = 0;

or equivalently,

∇J(u) + λ1(u)∇φ1(u) + · · ·+ λm(u)∇φm(u) = 0.
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Lagrange Multipliers

Definition. The numbers λi(u) involved in the preceding theorem are called
the Lagrange multipliers associated with the constrained extremum u.

The linear independence of the linear forms dφi(u) is equivalent to the fact
that the Jacobian matrix

(
(∂φi/∂xj)(u)

)
of φ = (φ1, . . . , φm) at u has rank

m. If m = 1, the linear independence of the dφi(u) reduces to the condition
∇φ1(u) 6= 0.



. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .

Lagrange Multipliers

Definition. The numbers λi(u) involved in the preceding theorem are called
the Lagrange multipliers associated with the constrained extremum u.

The linear independence of the linear forms dφi(u) is equivalent to the fact
that the Jacobian matrix

(
(∂φi/∂xj)(u)

)
of φ = (φ1, . . . , φm) at u has rank

m. If m = 1, the linear independence of the dφi(u) reduces to the condition
∇φ1(u) 6= 0.



. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .

The Lagrangian

A fruitful way to reformulate the use of Lagrange multipliers is to introduce the
notion of the Lagrangian associated with our constrained extremum problem.

Definition. The Lagrangian associated with our constrained extremum
problem is the function L : Ω× Rm → R given by

L(v, λ) = J(v) + λ1φ1(v) + · · ·+ λmφm(v),

with λ = (λ1, . . . , λm).
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Critical Point of the Lagrangian

Proposition. There exists some µ = (µ1, . . . , µm) and some u ∈ U such
that

dJ(u) + µ1dφ1(u) + · · ·+ µmdφm(u) = 0

if and only if
dL(u, µ) = 0,

or equivalently
∇L(u, µ) = 0;

that is, iff (u, µ) is a critical point of the Lagrangian L.
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The Lagrangian Technique

The beauty of the Lagrangian is that the constraints {φi(v) = 0} have been
incorporated into the function L(v, λ), and that the necessary condition for the
existence of a constrained local extremum of J is reduced to the necessary
condition for the existence of a local extremum of the unconstrained L.
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Lagrangian Technique Example

Example. Let us apply the above method to the following example in which
E1 = R, E2 = R, Ω = R2, and

J(x1, x2) = −x2
φ(x1, x2) = x21 + x22 − 1.
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Lagrangian Techique Example

Observe that
U = {(x1, x2) ∈ R2 | x21 + x22 = 1}

is the unit circle, and since

∇φ(x1, x2) =
(
2x1
2x2

)
,

it is clear that ∇φ(x1, x2) 6= 0 for every point = (x1, x2) on the unit circle.
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Lagrangian Technique Example
If we form the Lagrangian

L(x1, x2, λ) = −x2 + λ(x21 + x22 − 1),

a necessary condition for J to have a constrained local extremum is that
∇L(x1, x2, λ) = 0,

so the following equations must hold:

2λx1 = 0

−1 + 2λx2 = 0

x21 + x22 = 1.
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Lagrangian Technique Example

The second equation implies that λ 6= 0, and then the first yields x1 = 0, so
the third yields x2 = ±1, and we get two solutions:

λ =
1

2
, (x1, x2) = (0, 1)

λ = −1

2
, (x′1, x′2) = (0,−1).

We can check immediately that the first solution is a minimum and the second
is a maximum.
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4. The Objective of Optimization Theory

The main goal of optimization theory is to construct algorithms to find
solutions (often approximate) of problems of the form

find u
such that u ∈ U and J(u) = inf

v∈U
J(v),

where U is a given subset of a (real) vector space V (possibly infinite
dimensional) and J : Ω → R is a function defined on some open subset Ω of V
such that U ⊆ Ω.
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Restated Objective of Optimization Theory

The minimization problem

find u
such that u ∈ U and J(u) = inf

v∈U
J(v)

is often presented in the following more informal way:

minimize J(v)
subject to v ∈ U. (Problem M)
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Minimizer of the Optimization Problem

A vector u ∈ U such that J(u) = infv∈U J(v) is often called a minimizer of J
over U.

Some authors denote the set of minimizers of J over U by argminv∈UJ(v) and
write

u ∈ argminv∈UJ(v)
to express that u is such a minimizer.
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Constraints and Functional of the
Optimization Problem

In most cases, U is defined as the set of solutions of a finite sets of
constraints, either equality constraints φi(v) = 0, or inequality constraints
φi(v) ≤ 0, where the φi : Ω → R are some given functions.

The function J is often called the functional of the optimization problem.
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Optimization Problems: Equality
Constraints

Earlier we investigated the problem of determining when a function J : Ω → R
defined on some open subset Ω of a normed vector space E has a local
extremum in a subset U of Ω defined by equational constraints, namely

U = {x ∈ Ω | φi(x) = 0, 1 ≤ i ≤ m},

where the functions φi : Ω → R are continuous (and usually differentiable).

We gave a necessary condition in terms of the Lagrange multipliers.
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Optimization Problems: Inequality
Constraints

Our goal is to find a necessary criterion for a function J : Ω → R to have a
minimum on a subset U defined by inequality constraints φi(x) ≤ 0, where the
functions φi are convex.

There is a necessary condition for a function J to have a minimum on a subset
U defined by qualified inequality constraints in terms of the
Karush–Kuhn–Tucker conditions (for short KKT conditions), which involve
nonnegative Lagrange multipliers.
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Optimization Problems: Inequality
Constraints

In general, the KKT conditions are useless unless the constraints are convex.

Furthermore, if J is also convex and if the KKT conditions hold, then J has a
global minimum.
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Equality Constraints as Inequalities

From now on we assume that U is defined by a set of inequalities, that is

U = {x ∈ Ω | φi(x) ≤ 0, 1 ≤ i ≤ m},

where the functions φi : Ω → R are continuous (and usually differentiable).

An equality constraint φi(x) = 0 is treated as the conjunction of the two
inequalities φi(x) ≤ 0 and −φi(x) ≤ 0.
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5. Role of Convexity in Optimization

Since the astute reader will notice the word convex has appeared numerous
times we need to first define the notion of a convex function.
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Definition of a Convex Set
Definition. Given any real vector space E, we say that a subset C of E is
convex if either C = ∅ or if for every pair of points u, v ∈ C, the line segment
connecting u and v is contained in C, i.e.,

(1− λ)u + λv ∈ C for all λ ∈ R such that 0 ≤ λ ≤ 1.

Given any two points u, v ∈ E, the line segment [u, v] is the set

[u, v] = {(1− λ)u + λv ∈ E | λ ∈ R, 0 ≤ λ ≤ 1}.

Clearly, a nonempty set C is convex iff [u, v] ⊆ C whenever u, v ∈ C.
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Illustration of a Convex Set

(a) (b)

u

v

u

v

Figure 5: Figure (a) shows that a sphere is not convex in R3 since the dashed green line
does not lie on its surface. Figure (b) shows that a solid ball is convex in R3.
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Definition of a Convex Function

Definition. If C is a nonempty convex subset of E, a function f : C → R is
convex (on C) if for every pair of points u, v ∈ C,

f((1− λ)u + λv) ≤ (1− λ)f(u) + λf(v) for all λ ∈ R such that 0 ≤ λ ≤ 1;

the function f is strictly convex (on C) if for every pair of distinct points
u, v ∈ C (u 6= v),

f((1− λ)u + λv) < (1− λ)f(u) + λf(v) for all λ ∈ R such that 0 < λ < 1.
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Illustration of a Convex Function

u v

l = (1-λ)f(u) + λf(v)

f
(a)

u v

l = (1-λ)f(u) + λf(v)

f(b)

Figure 6: Figures (a) and (b) are the graphs of real valued functions. Figure (a) is the
graph of convex function since the blue line lies above the graph of f. Figure (b) shows the
graph of a function which is not convex.
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Examples of Convex Sets
Example. Here are some common examples of convex sets.

▶ Subspaces V ⊆ E of a vector space E are convex.
▶ Affine subspaces, that is, sets of the form u + V, where V is a subspace of

E and u ∈ E, are convex.
▶ Balls (open or closed) are convex. Given any linear form φ : E → R, for

any scalar c ∈ R, the closed half–spaces

H+
φ,c = {u ∈ E | φ(u) ≥ c}, H−

φ,c = {u ∈ E | φ(u) ≤ c},

are convex.
▶ Any intersection of half–spaces is convex.
▶ More generally, any intersection of convex sets is convex.
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Examples of Convex Functions
Example. Here are some common examples of convex and concave
functions.

▶ Linear forms are convex functions (but not strictly convex).
▶ Any norm ‖ ‖ : E → R+ is a convex function.
▶ The max function,

max(x1, . . . , xn) = max{x1, . . . , xn}

is convex on Rn.
▶ The exponential x 7→ ecx is strictly convex for any c 6= 0 (c ∈ R).
▶ The logarithm function is concave on R+ − {0}.
▶ The log-determinant function log det is concave on the set of symmetric

positive definite matrices. This function plays an important role in convex
optimization.
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6. Optimization with Convex Constraints

If the domain U is defined by convex inequality constraints satisfying mild
differentiability conditions and if the constraints at u are qualified, then there
is a necessary condition for the function J to have a local minimum at u ∈ U
involving generalized Lagrange multipliers.
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Optimization with Convex Constraints

We have the following theorem.

Theorem. Let φi : Ω → R be m convex constraints defined on some open
convex subset Ω of a finite-dimensional Euclidean vector space V (more
generally, a real Hilbert space V), let J : Ω → R be some function, let U be
given by

U = {x ∈ Ω | φi(x) ≤ 0, 1 ≤ i ≤ m},

and let u ∈ U be any point such that the functions φi and J are differentiable
at u.
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Necessary Condition for Minimization with
Convex Constraints
(1) If J has a local minimum at u with respect to U, and if the constraints are

qualified, then there exist some scalars λi(u) ∈ R, such that the KKT
condition hold:

Ju
′ +

m∑
i=1

λi(u)(φ′
i)u = 0

and m∑
i=1

λi(u)φi(u) = 0, λi(u) ≥ 0, i = 1, . . . ,m.
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Necessary Condition for Minimization with
Convex Constraints

Equivalently, in terms of gradients, the above conditions are expressed as

∇Ju +
m∑

i=1

λi(u)∇(φi)u = 0,

and m∑
i=1

λi(u)φi(u) = 0, λi(u) ≥ 0, i = 1, . . . ,m.
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Sufficient Condition for Minimization with
Convex Constraints

(2) Conversely, if the restriction of J to U is convex and if there exist scalars
(λ1, . . . , λm) ∈ Rm

+ such that the KKT conditions hold, then the function
J has a (global) minimum at u with respect to U.

The scalars λi(u) are often called generalized Lagrange multipliers.
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The Lagrangian
The above theorem suggests introducing the function L : Ω× Rm

+ → R given
by

L(v, λ) = J(v) +
m∑

i=1

λiφi(v),

with λ = (λ1, . . . , λm).

The function L is called the Lagrangian of the Minimization Problem (P):

minimize J(v)
subject to φi(v) ≤ 0, i = 1, . . . ,m.
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The Lagrangian and the KKT Conditions
The KKT conditions of the preceding theorem imply that for any u ∈ U, if the
vector λ = (λ1, . . . , λm) is known and if u is a minimum of J on U, then

∂L
∂u(u) = 0

J(u) = L(u, λ).

The Lagrangian technique “absorbs” the constraints into the new objective
function L and reduces the problem of finding a constrained minimum of the
function J, to the problem of finding an unconstrained minimum of the
function L(v, λ).
This is the main point of Lagrangian duality which will be treated next.
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7. Primal and Dual Minimization
Problems
In this section we investigate methods to solve the Primal Minimization
Problem (P):

minimize J(v)
subject to φi(v) ≤ 0, i = 1, . . . ,m.

It turns out that under certain conditions the original Problem (P), called
primal problem, can be solved in two stages with the help another Problem
(D), called the dual problem.
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Dual Problem

The Dual Problem (D) is a maximization problem involving a function G,
called the Lagrangian dual, and it is obtained by minimizing the Lagrangian
L(v, µ) of Problem (P) over the variable v ∈ Rn, holding µ fixed, where
L : Ω× Rm

+ → R is given by

L(v, µ) = J(v) +
m∑

i=1

µiφi(v),

with µ ∈ Rm
+.
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Duality Method for Solving Problem (P)

The two steps of the method are:

(1) Find the dual function µ 7→ G(µ) explicitly by solving the minimization
problem of finding the minimum of L(v, µ) with respect to v ∈ Ω, holding
µ fixed. This is an unconstrained minimization problem (with v ∈ Ω). If
we are lucky, a unique minimizer uµ such that G(µ) = L(uµ, µ) can be
found.

(2) Solve the maximization problem of finding the maximum of the function
µ 7→ G(µ) over all µ ∈ Rm

+. This is basically an unconstrained problem,
except for the fact that µ ∈ Rm

+.
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Duality Method for Solving Problem (P)
If Steps (1) and (2) are successful, under some suitable conditions on the
function J and the constraints φi (for example, if they are convex), for any
solution λ ∈ Rm

+ obtained in Step (2), the vector uλ obtained in Step (1) is an
optimal solution of Problem (P).

The local minima of a function J : Ω → R over a domain U defined by
inequality constraints are saddle points of the Lagrangian L(v, µ) associated
with J and the constraints φi.

In this presentation we do not discuss saddle points since this would take too
much time.
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Primal Minimization Problem

We now return to our main Minimization Problem (P):

minimize J(v)
subject to φi(v) ≤ 0, i = 1, . . . ,m,

where J : Ω → R and the constraints φi : Ω → R are some functions defined
on some open subset Ω of some finite-dimensional Euclidean vector space V
(more generally, a real Hilbert space V).
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Lagrangian of the Minimization Problem

Definition. The Lagrangian of the Minimization Problem (P) defined above
is the function L : Ω× Rm

+ → R given by

L(v, µ) = J(v) +
m∑

i=1

µiφi(v),

with µ = (µ1, . . . , µm). The numbers µi are called generalized Lagrange
multipliers.
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Lagrangian Duality
Definition. Given the Minimization Problem (P)

minimize J(v)
subject to φi(v) ≤ 0, i = 1, . . . ,m,

where J : Ω → R and the constraints φi : Ω → R are some functions defined
on some open subset Ω of some finite-dimensional Euclidean vector space V
(more generally, a real Hilbert space V), the function G : Rm

+ → R given by

G(µ) = inf
v∈Ω

L(v, µ) µ ∈ Rm
+,

is called the Lagrange dual function (or simply dual function).
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Lagrange Dual Problem

Problem (D)

maximize G(µ)
subject to µ ∈ Rm

+

is called the Lagrange dual problem.

Problem (P) is often called the primal problem, and (D) is the dual problem.
The variable µ is called the dual variable.
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Dual as a Convex Optimization Problem
Since

L(v, µ) = J(v) +
m∑

i=1

µiφi(v),

the function G(µ) = infv∈Ω L(v, µ) is the pointwise infimum of some affine
functions of µ, so it is concave, even if the φi are not convex.

One of the main advantages of the dual problem over the primal problem is
that it is a convex optimization problem, since we wish to maximize a concave
objective function G (thus minimize −G, a convex function), and the
constraints µ ≥ 0 are convex. In a number of practical situations, the dual
function G can indeed be computed.
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Dual as a Partial Function

To be perfectly rigorous, we should mention that the dual function G is
actually a partial function, because it takes the value −∞ when the map
v 7→ L(v, µ) is unbounded below.
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Dual Bounds Primal Problem (P)

Another important property of the dual function G is that it provides a lower
bound on the value of the objective function J.

If the Primal Problem (P) has a minimum denoted p∗ and the Dual Problem
(D) has a maximum denoted d∗, then

d∗ ≤ p∗ (†w)

known as weak duality.
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Strong Duality

Definition. The difference p∗ − d∗ ≥ 0 is called the optimal duality gap. If
the duality gap is zero, that is, p∗ = d∗, then we say that strong duality holds.

Even when the duality gap is strictly positive, the inequality (†w) can be
helpful to find a lower bound on the optimal value of a primal problem that is
difficult to solve, since the dual problem is always convex.

If the primal problem and the dual problem are feasible and if the optimal
values p∗ and d∗ are finite and p∗ = d∗ (no duality gap), then the
complementary slackness conditions hold for the inequality constraints.
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Complementary Slackness Conditions
Proposition (complementary slackness). Given the Minimization Problem
(P)

minimize J(v)
subject to φi(v) ≤ 0, i = 1, . . . ,m,

and its Dual Problem (D)

maximize G(µ)
subject to µ ∈ Rm

+,
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Complementary Slackness Conditions

if both (P) and (D) are feasible, u ∈ U is an optimal solution of (P), λ ∈ Rm
+

is an optimal solution of (D), and J(u) = G(λ), then
m∑

i=1

λiφi(u) = 0.

In other words, if the constraint φi is inactive at u, then λi = 0.



. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .

8. Ridge Regression

Given a set of training data {(x1, y1), . . . , (xm, ym)}, with xi ∈ Rn and yi ∈ R,
if X is the m × n matrix

X =

x⊤1...
x⊤m

 ,

in which the row vectors x⊤i are the rows of X, then ridge regression is the
following optimization problem.
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Ridge Regression: Program (RR3)

Program (RR3):

minimize ξ⊤ξ + Kw⊤w
subject to

y − Xw − b1 = ξ,

with y, ξ, 1 ∈ Rm and w ∈ Rn. Note that in Program (RR3) minimization is
performed over ξ, w and b, but b is not penalized in the objective function.



. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .

Ridge Regression: Program (RR3) Solution

The objective function is strictly convex.

The Lagrangian associated with this program is

L(ξ,w, b, λ) = ξ⊤ξ + Kw⊤w − w⊤X⊤λ− ξ⊤λ− b1⊤λ+ λ⊤y.

Since L is (strictly) convex as a function of ξ, b,w, it has a minimum iff
∇Lξ,b,w = 0.
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Ridge Regression: Dual Function of (RR3)
We get

λ = 2ξ

1⊤λ = 0

w =
1

2KX⊤λ = X⊤ ξ

K .

If we set ξ = Kα, we obtain λ = 2Kα, w = X⊤α, and

G(α) = −Kα⊤(XX⊤ + KIm)α + 2Kα⊤y.
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Ridge Regression: Dual Program of (RR3)

Since K > 0 and λ = 2Kα, the dual to ridge regression is the following
program

Program (DRR3):

minimize α⊤(XX⊤ + KIm)α− 2α⊤y
subject to

1⊤α = 0,

where the minimization is over α.
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Ridge Regression: Solution to (DRR3)

Since K > 0 the matrix XX⊤ + KIm is SPD.

This implies that the minimization problem has a unique solution obtained by
solving the KKT-equations(

XX⊤ + KIm 1m
1⊤m 0

)(
α
µ

)
=

(
y
0

)
.
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Ridge Regression: Solution to (DRR3)

We get

µ = (1⊤(XX⊤ + KIm)−11)−11⊤(XX⊤ + KIm)−1y
α = (XX⊤ + KIm)−1(y − µ1).

Interestingly b = µ, which is not obvious a priori.

Proposition. We have b = µ.
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Ridge Regression: Program (RR3) Solution

In summary the KKT-equations determine both α and µ, and so w = X⊤α
and b as well.
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Ridge Regression: Averaging Formula for b

There is also a useful expression of b as an average. We have

b = y −
n∑

j=1

Xjwj = y − (X1 · · · Xn)w,

where y is the mean of y and Xj is the mean of the jth column of X.
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Ridge Regression: Illustrated Example
Example. Consider the data set (X, y1) with

X =



−10 11
−6 5
−2 4
0 0
1 2
2 −5
6 −4
10 −6


, y1 =



0
−2.5
0.5
−2
2.5
−4.2
1
4


as illustrated in Figure 7.
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Ridge Regression: Illustrated Example
We find that y = −0.0875 and (X1,X2) = (0.125, 0.875). For the value
K = 5, we obtain

w =

(
0.9207
0.8677

)
, b = −0.9618,

for K = 0.1, we obtain

w =

(
1.1651
1.1341

)
, b = −1.2255,

and for K = 0.01,
w =

(
1.1709
1.1405

)
, b = −1.2318.

See Figure 8.
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Ridge Regression: Illustrated Example
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Figure 7: The data set (X, y1).
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Ridge Regression: Illustrated Example

Figure 8: The graph of the plane f(x, y) = 1.1709x+1.1405y− 1.2318 as an approximate fit
to the data (X, y1).
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Ridge Regression: Illustrated Example

We conclude that the points (Xi, yi) (where Xi is the ith row of X) almost lie
on the plane of equation

x + y − z − 1 = 0,

and that f is almost the function given by f(x, y) = 1.1x + 1.1y − 1.2. See
Figures 9 and 10.
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Ridge Regression: Illustrated Example

Figure 9: The graph of the plane f(x, y) = 1.1x + 1.1y − 1.2 as an approximate fit to the
data (X, y1).
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Ridge Regression: Illustrated Example

Figure 10: A comparison of how the graphs of the planes corresponding to K = 1, 0.1, 0.01
and the salmon plane of equation f(x, y) = 1.1x + 1.1y − 1.2 approximate the data (X, y1).
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Ridge Regression: Illustrated Example
If we change y1 to

y2 =
(
0 −2 1 −1 2 −4 1 3

)⊤
,

as evidenced by Figure 11, the exact solution is

w =

(
1
1

)
, b = −1,

and for K = 0.01, we find that

w =

(
0.9999
0.9999

)
, b = −0.9999.
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Ridge Regression: Illustrated Example

Figure 11: The data (X, y2) is contained within the graph of the plane f(x, y) = x + y − 1.
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Ridge Regression: Learning an Affine
Function

We can see how the choice of K affects the quality of the solution (w, b) by
computing the norm ‖ξ‖2 of the error vector. We notice that the smaller K is,
the smaller is this norm.

As a least squares problem, the solution is given in terms of the pseudo-inverse
[X 1]+ of [X 1] by (

w
b

)
= [X 1]+y.
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9. Lasso Regression

The main weakness of ridge regression is that the estimated weight vector w
usually has many nonzero coefficients.

As a consequence, ridge regression does not scale up well.

In practice we need methods capable of handling millions of parameters, or
more.
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more.
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Lasso Regression

A way to encourage sparsity of the vector w, which means that many
coordinates of w are zero, is to replace the quadratic penalty function
τw⊤w = τ ‖w‖22 by the penalty function τ ‖w‖1, with the ℓ2-norm replaced by
the ℓ1-norm.

This method was first proposed by Tibshirani around 1996, under the name
lasso, which stands for “least absolute selection and shrinkage operator.”

This method is also known as ℓ1-regularized regression, but this is not as cute
as “lasso,” which is used predominantly.
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Lasso Regression: Notational Convention

Given a set of training data {(x1, y1), . . . , (xm, ym)}, with xi ∈ Rn and yi ∈ R,
if X is the m × n matrix

X =

x⊤1...
x⊤m

 ,

in which the row vectors x⊤i are the rows of X, then lasso regression is the
following optimization problem.
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Lasso Regression: Problem (lasso1)

Program (lasso1):

minimize 1

2
ξ⊤ξ + τ ‖w‖1

subject to
y − Xw = ξ,

minimizing over ξ and w, where τ > 0 is some constant determining the
influence of the regularizing term ‖w‖1.
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Lasso Regression: (lasso1) Reduction
The difficulty with the regularizing term ‖w‖1 = |w1|+ · · ·+ |wn| is that the
map w 7→ ‖w‖1 is not differentiable for all w.

This difficulty can be overcome by using subgradients, but the dual of the
above program can also be obtained in an elementary fashion by using a trick,
which is that if x ∈ R, then

|x| = max{x,−x}.

Using this trick, by introducing a vector ϵ ∈ Rn of nonnegative variables, we
can rewrite lasso minimization as follows:



. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .

Lasso Regression: (lasso1) Reduction
The difficulty with the regularizing term ‖w‖1 = |w1|+ · · ·+ |wn| is that the
map w 7→ ‖w‖1 is not differentiable for all w.

This difficulty can be overcome by using subgradients, but the dual of the
above program can also be obtained in an elementary fashion by using a trick,
which is that if x ∈ R, then

|x| = max{x,−x}.

Using this trick, by introducing a vector ϵ ∈ Rn of nonnegative variables, we
can rewrite lasso minimization as follows:



. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .

Lasso Regression: (lasso1) Reduction
The difficulty with the regularizing term ‖w‖1 = |w1|+ · · ·+ |wn| is that the
map w 7→ ‖w‖1 is not differentiable for all w.

This difficulty can be overcome by using subgradients, but the dual of the
above program can also be obtained in an elementary fashion by using a trick,
which is that if x ∈ R, then

|x| = max{x,−x}.

Using this trick, by introducing a vector ϵ ∈ Rn of nonnegative variables, we
can rewrite lasso minimization as follows:



. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .

Lasso Regression: Program (lasso2)
Program lasso regularization (lasso2):

minimize 1

2
ξ⊤ξ + τ1⊤n ϵ

subject to
y − Xw = ξ

w ≤ ϵ

− w ≤ ϵ.

minimizing over ξ,w and ϵ, with y, ξ ∈ Rm, and w, ϵ, 1n ∈ Rn.

The constraints w ≤ ϵ and −w ≤ ϵ are equivalent to |wi| ≤ ϵi for i = 1, . . . , n,
so for an optimal solution we must have ϵ ≥ 0 and |wi| = ϵi, that is,
‖w‖1 = ϵ1 + · · ·+ ϵn.
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10. Alternating Direction Method of
Multipliers
The alternating direction method of multipliers, for short ADMM, is the best
method known for solving optimization problems for which the function J to
be optimized can be split into two independent parts, as J(x, z) = f(x) + g(z),
and to consider the Minimization Problem (Padmm),

minimize f(x) + g(z)
subject to Ax + Bz = c,

for some p × n matrix A, some p × m matrix B, and with x ∈ Rn, z ∈ Rm, and
c ∈ Rp. We also assume that f and g are convex.
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Iterative Steps of ADMM
The above problem can be solved using an iterative process applying to the
augmented Lagrangian

Lρ(x, z, λ) = f(x) + g(z) + λ⊤(Ax + Bz − c) + (ρ/2) ‖Ax + Bz − c‖22 ,
with λ ∈ Rp and for some ρ > 0.

Given some initial values (z0, λ0), the ADMM method consists of the following
iterative steps:

xk+1 = arg min
x

Lρ(x, zk, λk)

zk+1 = arg min
z

Lρ(xk+1, z, λk)

λk+1 = λk + ρ(Axk+1 + Bzk+1 − c).
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ADMM Methodology of Sequential Updates

Instead of performing a minimization step jointly over x and z, as the step

(xk+1, zk+1) = arg min
x,z

Lρ(x, z, λk),

ADMM first performs an x-minimization step, and then a z-minimization step.
Thus x and z are updated in an alternating or sequential fashion, which
accounts for the term alternating direction.
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Specializing ADMM to Quadratic Programs

We specialize ADMM to quadratic programs of the following form:

minimize 1

2
x⊤Px + q⊤x + r

subject to Ax = b, x ≥ 0,

where P is an n × n symmetric positive semidefinite matrix, q ∈ Rn, r ∈ R,
and A is an m × n matrix of rank m.
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Specializing ADMM to Quadratic Programs
The above program is converted in ADMM form as follows:

minimize f(x) + g(z)
subject to x − z = 0,

with
f(x) = 1

2
x⊤Px + q⊤x + r, dom(f) = {x ∈ Rn | Ax = b},

and
g = IRn

+
,

the indicator function of the positive orthant Rn
+.
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Specializing ADMM to Quadratic Programs
Then ADMM consists of the following steps:

xk+1 = arg min
x

(
f(x) + (ρ/2)

∥∥x − zk + uk∥∥2
2

)
zk+1 = (xk+1 + uk)+

uk+1 = uk + xk+1 − zk+1,

where uk = λk/ρ (this is the scaled version of ADMM). Here, v+ is the vector
obtained by setting the negative components of v to zero.

The x-update
involves solving the KKT equations(

P + ρI A⊤

A 0

)(
xk+1

y

)
=

(
−q + ρ(zk − uk)

b

)
.
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Lasso Regression: Program (lasso1)
Solution
The best way to solve lasso minimization is to use ADMM.

Lasso minimization can be stated as the following optimization problem:

minimize (1/2) ‖Ax − b‖22 + τ ‖x‖1 ,

with A = X, b = y and x = w, to conform with our original formulation.
The lasso minimization is converted to the following problem in ADMM form:

minimize ‖Ax − b‖22 + τ ‖z‖1
subject to x − z = 0.
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Lasso Regression: ADMM Solution

Then the ADMM procedure is

xk+1 = (A⊤A + ρI)−1(A⊤b + ρ(zk − uk))

zk+1 = Sτ/ρ(xk+1 + uk)

uk+1 = uk + xk+1 − zk+1

where ρ > 0 is some given constant.

Since ρ > 0, the matrix A⊤A+ ρI is symmetric positive definite. Note that the
x-update looks like a ridge regression step.
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Soft Thresholding Operator

In the above procedure, the function Sc known as a soft thresholding operator.
If v ∈ R it is given by

Sc(v) =


v − c if v > c
0 if |v| ≤ c
v + c if v < −c.
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Soft Thresholding Operator

Figure 12: The graph of Sc (when c = 2).
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Soft Thresholding Operator

The operator Sc is extended to vectors in Rn component wise, that is, if
x = (x1, . . . , xn), then

Sc(x) = (Sc(x1), . . . , Sc(xn)).

The soft thresholding operator is one of the built-in functions in Matlab.
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11. Classification/Separation Problem

In this section we describe the following classification problem, or perhaps
more accurately, separation problem (into two classes).

Suppose we have two nonempty disjoint finite sets of p blue points {ui}p
i=1

and q red points {vj}q
j=1 in Rn

Our goal is to find a hyperplane H of equation w⊤x − b = 0 (where w ∈ Rn is
a nonzero vector and b ∈ R), such that all the blue points ui are in one of the
two open half-spaces determined by H, and all the red points vj are in the
other open half-space determined by H.
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Classification/Separation Problem
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Figure 13: Two examples of the SVM separation problem. The left figure is SVM in R2,
while the right figure is SVM in R3.
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Classification/Separation Problem

Without loss of generality, we may assume that

w⊤ui − b > 0 for i = 1, . . . , p
w⊤vj − b < 0 for j = 1, . . . , q.
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Classification/Separation Problem

Of course, separating the blue and the red points may be impossible, as we
will see in the next figure for four points where the line segments (u1, u2) and
(v1, v2) intersect.

If a hyperplane separating the two subsets of blue and red points exists, we
say that they are linearly separable.
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Example of An Inseparable Problem
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Figure 14: Two examples in which it is impossible to find purple hyperplanes which separate
the red and blue points.
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Choosing the Hyperplane

Consider our two subsets of p blue points {ui}p
i=1 and q red points {vj}q

j=1.

Since there are infinitely many hyperplanes separating the two subsets (if
indeed the two subsets are linearly separable), we would like to come up with a
“good” criterion for choosing such a hyperplane.
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Hard Margin Support Vector Machine

The idea that was advocated by Vapnik is to consider the distances d(ui,H)
and d(vj,H) from all the points to the hyperplane H, and to pick a hyperplane
H that maximizes the smallest of these distances.

In machine learning this strategy is called finding a maximal margin
hyperplane, or hard margin support vector machine.
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Distance from Point to Hyperplane

Since the distance from a point x to the hyperplane H of equation
w⊤x − b = 0 is

d(x,H) = |w⊤x − b|
‖w‖ ,

(where ‖w‖ =
√

w⊤w is the Euclidean norm of w), it is convenient to
temporarily assume that ‖w‖ = 1, so that

d(x,H) = |w⊤x − b|.

See the following figure.
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Distance from Point to Hyperplane
x

H

x0

d(x, H) w

proj   
x - x0
w

Figure 15: In R3, the distance from a point to the plane w⊤x − b = 0 is given by the
projection onto the normal w.
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Hard Margin Support Vector Machine

Then with our sign convention, we have

d(ui,H) = w⊤ui − b i = 1, . . . , p
d(vj,H) = −w⊤vj + b j = 1, . . . , q.
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Hard Margin Support Vector Machine

If we let
δ = min{d(ui,H), d(vj,H) | 1 ≤ i ≤ p, 1 ≤ j ≤ q},

then the hyperplane H should be chosen so that

w⊤ui − b ≥ δ i = 1, . . . , p
−w⊤vj + b ≥ δ j = 1, . . . , q,

and such that δ > 0 is maximal.

The distance δ is called the margin associated with the hyperplane H.
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Formulating the Separation Problem SVMh1
This is indeed one way of formulating the two-class separation problem as an
optimization problem with a linear objective function J(δ,w, b) = δ, and affine
and quadratic constraints (SVMh1):

maximize δ

subject to
w⊤ui − b ≥ δ i = 1, . . . , p

− w⊤vj + b ≥ δ j = 1, . . . , q
‖w‖ ≤ 1.

This problem has an optimal solution δ > 0 iff the two subsets are linearly
separable.
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The Optimal Solution for SVMh1

We used the constraint ‖w‖ ≤ 1 rather than ‖w‖ = 1 because the former is
qualified, whereas the latter is not. But if (w, b, δ) is an optimal solution, then
‖w‖ = 1, as shown in the following proposition.

Proposition. If (w, b, δ) is an optimal solution of Problem (SVMh1), so in
particular δ > 0, then we must have ‖w‖ = 1.
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The Optimal Solution for SVMh1

Vapnik proved that if the two subsets are linearly separable, then Problem
(SVMh1) has a unique optimal solution.

Theorem. If two disjoint subsets of p blue points {ui}p
i=1 and q red points

{vj}q
j=1 are linearly separable, then Problem (SVMh1) has a unique optimal

solution consisting of a hyperplane of equation w⊤x − b = 0 separating the
two subsets with maximum margin δ.
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12. Converting from Affine to Quadratic
Functional

Since δ > 0 (otherwise the data would not be separable into two disjoint sets),
we can divide the affine constraints by δ to obtain

w′⊤ui − b′ ≥ 1 i = 1, . . . , p
−w′⊤vj + b′ ≥ 1 j = 1, . . . , q,

except that now, w′ is not necessarily a unit vector.
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Converting from Affine to Quadratic
Functional
To obtain the distances to the hyperplane H, we need to divide by ‖w′‖ and
then we have

w′⊤ui − b′
‖w′‖

≥ 1

‖w′‖
i = 1, . . . , p

−w′⊤vj + b′
‖w′‖

≥ 1

‖w′‖
j = 1, . . . , q,

which means that the shortest distance from the data points to the
hyperplane is δ = 1/ ‖w′‖.
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The Optimization Problem (SVMh2)

Therefore, we wish to maximize 1/ ‖w′‖, that is, to minimize ‖w′‖, so we
obtain the following optimization Problem (SVMh2):

Hard margin SVM (SVMh2):

minimize 1

2
‖w‖2

subject to
w⊤ui − b ≥ 1 i = 1, . . . , p

− w⊤vj + b ≥ 1 j = 1, . . . , q.
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Solving (SVMh2) Via the KKT Conditions
The objective function J(w) = 1/2 ‖w‖2 is convex, so the last proposition of
the KKT lesson applies and gives us a necessary and sufficient condition for
having a minimum in terms of the KKT conditions.

Observe that the trivial solution w = 0 is impossible, because the blue
constraints would be

−b ≥ 1,

that is b ≤ −1, and the red constraints would be

b ≥ 1,

but these are contradictory.
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Solving (SVMh2) via the Lagrangian

Our goal is to find w and b, and optionally, δ = 1/ ‖w‖. In theory this
can be done using the KKT conditions but in the present case it is much more
efficient to solve the dual.
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13. Solving Hard Margin SVM Problem
(SVMh2)

Recall the Hard margin SVM problem (SVMh2):

minimize 1

2
‖w‖2 , w ∈ Rn

subject to
w⊤ui − b ≥ 1 i = 1, . . . , p

− w⊤vj + b ≥ 1 j = 1, . . . , q.

We need to find the dual program.
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Lagrangian of Hard Margin (SVMh2)
Step 1. Write the Lagrangian in matrix form.

Let X be the n × (p + q) matrix given by
X =

(
−u1 · · · −up v1 · · · vq

)
.

We obtain the Lagrangian

L(w, b, λ, µ) =1

2

(
w⊤ b

)( In 0n
0⊤n 0

)(
w
b

)
+

(
w⊤ b

) X
(
λ
µ

)
1⊤p λ −1⊤q µ

+
(
λ⊤ µ⊤) 1p+q.



. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .

Lagrangian of Hard Margin (SVMh2)
Step 1. Write the Lagrangian in matrix form.
Let X be the n × (p + q) matrix given by

X =
(
−u1 · · · −up v1 · · · vq

)
.

We obtain the Lagrangian

L(w, b, λ, µ) =1

2

(
w⊤ b

)( In 0n
0⊤n 0

)(
w
b

)
+

(
w⊤ b

) X
(
λ
µ

)
1⊤p λ −1⊤q µ

+
(
λ⊤ µ⊤) 1p+q.



. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .

Lagrangian of Hard Margin (SVMh2)
Step 1. Write the Lagrangian in matrix form.
Let X be the n × (p + q) matrix given by

X =
(
−u1 · · · −up v1 · · · vq

)
.

We obtain the Lagrangian

L(w, b, λ, µ) =1

2

(
w⊤ b

)( In 0n
0⊤n 0

)(
w
b

)
+

(
w⊤ b

) X
(
λ
µ

)
1⊤p λ −1⊤q µ

+
(
λ⊤ µ⊤) 1p+q.



. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .

Dual Function of Hard Margin (SVMh2)

Step 2. Find the dual function G(λ, µ).

In order to find the dual function G(λ, µ), we need to minimize L(w, b, λ, µ)
with respect to w and b and for this, since the objective function J is convex
and since Rn+1 is convex and open, a necessary and sufficient condition for a
minimum is that ∇Lw,b = 0, where ∇Lw,b is the gradient of L(w, b, λ, µ).
We have

∇Lw,b =

 w + X
(
λ
µ

)
1⊤p λ −1⊤q µ

 .
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Dual Function of Hard Margin (SVMh2)

The necessary and sufficient condition for a minimum is

∇Lw,b = 0,

which yields
w = −X

(
λ
µ

)
(∗1)

and
1⊤p λ− 1⊤q µ = 0. (∗2)
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Dual Function of Hard Margin (SVMh2)
Step 3. Write the dual as a minimization problem.

Maximizing the dual function G(λ, µ) over its domain of definition is
equivalent to maximizing

Ĝ(λ, µ) = −1

2

(
λ⊤ µ⊤)X⊤X

(
λ
µ

)
+
(
λ⊤ µ⊤) 1p+q

subject to the constraint
p∑

i=1

λi −
q∑

j=1

µj = 0,
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Convert Dual to a Minimization Problem
so we formulate the dual program as,

maximize − 1

2

(
λ⊤ µ⊤)X⊤X

(
λ
µ

)
+
(
λ⊤ µ⊤) 1p+q

subject to
p∑

i=1

λi −
q∑

j=1

µj = 0

λ ≥ 0, µ ≥ 0,
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Dual Function of Hard Margin (SVMh2)

or equivalently, Dual of the Hard margin SVM (SVMh2):

minimize 1

2

(
λ⊤ µ⊤)X⊤X

(
λ
µ

)
−
(
λ⊤ µ⊤) 1p+q

subject to
p∑

i=1

λi −
q∑

j=1

µj = 0

λ ≥ 0, µ ≥ 0.
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Solving the Dual Program of (SVMh2)

Step 4. Solve the dual program.

This step involves using numerical procedures typically based on gradient
descent to find λ and µ, for example, ADMM.
Once λ and µ are determined, w is determined by (∗1), namely

w = −X
(
λ
µ

)
.

To determine b we use the KKT conditions.
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Using the KKT Conditions of (SVMh2)

Because the primal always has a solution, so does the dual, which implies that
there is at least some i0 such that λi0 > 0. But then the constraint∑p

i=1 λi −
∑q

j=1 µj = 0 implies that there is also some j0 such that µj0 > 0.

By the KKT conditions, since the corresponding constraints are active, we
have

w⊤ui0 − b = 1, −w⊤vj0 + b = 1,

so we obtain
b = w⊤(ui0 + vj0)/2.

The support vectors are those for which the constraints are active.
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14. SVM Soft Margin Problem

SVM picks a hyperplane which maximizes the minimum distance from these
points to the separating hyperplane.

We now consider the problem of separating two disjoint sets of points, {ui}p
i=1

and {vj}q
j=1, but this time we do not assume that these two sets are separable.

To cope with nonseparability, we allow points to invade the safety zone around
the separating hyperplane, and even points on the wrong side of the
hyperplane. Such a method is called soft margin support vector machine.
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Example of a soft SVM problem
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Figure 16: A soft SVM problem for two sets of 30 points.
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Soft Margin Support Vector Machines

It turns out that the soft margin SVM arising from Problem (SVMh1) has
some problem (a potential division by 0). Soft margin SVMs arising from
Problem (SVMh2) do not suffer from this problem.
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Soft Margin Support Vector Machines
If the sets of points {u1, . . . , up} and {v1, . . . , vq} are not linearly separable
(with ui, vj ∈ Rn), we can use a trick from linear programming which is to
introduce nonnegative “slack variables” ϵ = (ϵ1, . . . , ϵp) ∈ Rp and
ξ = (ξ1, . . . , ξq) ∈ Rq to relax the “hard” constraints

w⊤ui − b ≥ 1 i = 1, . . . , p
−w⊤vj + b ≥ 1 j = 1, . . . , q

of Problem (SVMh2) to the ”soft” constraints

w⊤ui − b ≥ 1− ϵi, ϵi ≥ 0 i = 1, . . . , p
−w⊤vj + b ≥ 1− ξj, ξj ≥ 0 j = 1, . . . , q.
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Soft Margin Support Vector Machines

If ϵi > 0, the point ui may be misclassified, in the sense that it can belong to
the margin (the slab), or even to the wrong half-space classifying the negative
(red) points.

If ϵ = 0 and ξ = 0, then we recover the original constraints. By making ϵ and
ξ large enough, these constraints can always be satisfied.
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Soft Margin Support Vector Machines

Ideally we would like to find a separating hyperplane that minimizes the
number of misclassified points, which means that the variables ϵi and ξj should
be as small as possible, but there is a trade-off in maximizing the margin (the
thickness of the slab), and minimizing the number of misclassified points.
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Soft Margin Support Vector Machines

This is reflected in the choice of the objective function, and there are several
options, depending on whether we minimize a linear function of the variables
ϵi and ξj, or a quadratic functions of these variables, or whether we include the
term (1/2)b2 in the objective function.

These methods are known as support vector classification algorithms (for short
SVC algorithms).
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Soft Margin Support Vector Machines

A more flexible problem is obtained by using the margin δ = η/ ‖w‖, where η
is some positive constant that we wish to maximize.

To do so, we add a term −Kmη to the objective function (1/2)w⊤w, as well
as the “regularizing term”

Ks

( p∑
i=1

ϵi +

q∑
j=1

ξj

)
whose purpose is to make ϵ and ξ sparse.
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Soft Margin Support Vector Machine
(SVMs2′)
We consider the following version of the soft margin support vector machine:

Soft margin SVM (SVMs2′):

minimize 1

2
w⊤w − Kmη + Ks

(
ϵ⊤ ξ⊤

)
1p+q

subject to
w⊤ui − b ≥ η − ϵi, ϵi ≥ 0 i = 1, . . . , p

− w⊤vj + b ≥ η − ξj, ξj ≥ 0 j = 1, . . . , q
η ≥ 0.
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Soft Margin Support Vector Machine
(SVMs2′)

This version of the SVM problem was first discussed in Schölkopf, Smola,
Williamson, and Bartlett under the name of ν-SVC (or ν-SVM), and also used
in Schölkopf, Platt, Shawe–Taylor, and Smola.

For this problem it is no longer clear that if (w, η, b, ϵ, ξ) is an optimal
solution, then w 6= 0 and η > 0.
In fact, if the sets of points are not linearly separable and if Ks is chosen too
big, Problem (SVMs2′) may fail to have an optimal solution.
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Dual Program of (SVMs2′)
Dual of Soft margin SVM (SVMs2′):

minimize 1

2

(
λ⊤ µ⊤)X⊤X

(
λ
µ

)
subject to

p∑
i=1

λi −
q∑

j=1

µj = 0

p∑
i=1

λi +

q∑
j=1

µj ≥ Km

0 ≤ λi ≤ Ks, i = 1, . . . , p
0 ≤ µj ≤ Ks, j = 1, . . . , q.
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Solving the Dual and Computing w
The dual program is solved using ADMM.

If the primal problem is solvable, this yields solutions for λ and µ. Once a
solution for λ and µ is obtained, we have

w = −X
(
λ
µ

)
=

p∑
i=1

λiui −
q∑

j=1

µjvj.

It remains to determine b, η, ϵ and ξ. The solution of the dual does not
determine b, η, ϵ, ξ directly, and we are not aware of necessary and sufficient
conditions that ensure that they can be determined.
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Computing Remaining (SVMs2′)
Parameters

The best we can do is to use the KKT conditions.

In order to determine b and η we assume the following condition:

Standard Margin Hypothesis for (SVMs2′): There is some i0 such that
0 < λi0 < Ks, and there is some µj0 such that 0 < µj0 < Ks.



. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .

Computing Remaining (SVMs2′)
Parameters

The best we can do is to use the KKT conditions.

In order to determine b and η we assume the following condition:

Standard Margin Hypothesis for (SVMs2′): There is some i0 such that
0 < λi0 < Ks, and there is some µj0 such that 0 < µj0 < Ks.



. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .

Computing Remaining (SVMs2′)
Parameters

Under the Standard Margin Hypothesis for (SVMs2′), there is some i0 such
that 0 < λi0 < Ks and some j0 such that 0 < µj0 < Ks, and by the
complementary slackness conditions ϵi0 = 0 and ξj0 = 0, so we have the two
active constraints

w⊤ui0 − b = η, −w⊤vj0 + b = η,
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Standard Margin Hypothesis

and we can solve for b and η and we get

b =
w⊤ui0 + w⊤vj0

2

η =
w⊤ui0 − w⊤vj0

2

δ =
η

‖w‖ .
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Conclusion
Standard problems in machine learning, such as
(1) Learning a function.
(2) Separation, Classification of Data.

Can be solved effectively using methods from linear algebra and (convex)
optimization.

Details can be found in
Linear Algebra and Optimization with Applications to Machine Learning, Vol I
and II, by Jean Gallier and Jocelyn Quaintance, World Scientific (2020).
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