CIS 515

Fundamentals of Linear Algebra and Optimization Jean Gallier

Project 3: Curve Interpolation

The purpose of this project is to solve a curve interpolation problem using cubic splines. This type of problem arises frequently in computer graphics and in robotics (path planning).

Recall from Project 1 that polynomial curves of degree $\leq m$ can be defined in terms of control points and the Bézier polynomials. Cubic Bézier curves are often used because they are cheap to implement and give more flexibility than quadratic Bézier curves.

A cubic Bézier curve $C(t)$ (in \mathbb{R}^{2} or \mathbb{R}^{3}) is specified by a list of four control points $\left(b_{0}, b_{2}, b_{2}, b_{3}\right)$ and is given parametrically by the equation

$$
C(t)=(1-t)^{3} b_{0}+3(1-t)^{2} t b_{1}+3(1-t) t^{2} b_{2}+t^{3} b_{3} .
$$

Clearly, $C(0)=b_{0}, C(1)=b_{3}$, and for $t \in[0,1]$, the point $C(t)$ belongs to the convex hull of the control points $b_{0}, b_{1}, b_{2}, b_{3}$.

Interpolation problems require finding curves passing through some given data points and possibly satisfying some extra constraints.

It is known that Lagrange interpolation is not very satisfactory when $N \geq 5$ since Lagrange interpolants tend to oscillate in an undesirable manner. Thus, we turn to Bézier spline curves.

A Bézier spline curve F is a curve which is made up of curve segments which are Bézier curves, say $C_{1}, \ldots, C_{m}(m \geq 2)$. We will assume that F is defined on $[0, m]$, so that for $i=1, \ldots, m$,

$$
F(t)=C_{i}(t-i+1), \quad i-1 \leq t \leq i .
$$

Typically, some smoothness is required between any two junction points, that is, between any two points $C_{i}(1)$ and $C_{i+1}(0)$, for $i=1, \ldots, m-1$. We require that $C_{i}(1)=C_{i+1}(0)$ (C^{0}-continuity), and typically that the derivatives of C_{i} at 1 and of C_{i+1} at 0 agree up to second order derivatives. This is called C^{2}-continuity, and it ensures that the tangents agree as well as the curvatures.

There are a number of interpolation problems, and we consider one of the most common problems which can be stated as follows:

Problem: Given $N+1$ data points x_{0}, \ldots, x_{N}, find a C^{2} cubic spline curve F, such that $F(i)=x_{i}$, for all $i, 0 \leq i \leq N(N \geq 2)$.

Figure 1: A C^{2} cubic interpolation spline curve passing through the points $x_{0}, x_{1}, x_{2}, x_{3}$, $x_{4}, x_{5}, x_{6}, x_{7}$

A way to solve this problem is to find $N+3$ auxiliary points d_{-1}, \ldots, d_{N+1} called de Boor control points from which N Bézier curves can be found. Actually,

$$
d_{-1}=x_{0} \quad \text { and } \quad d_{N+1}=x_{N}
$$

so we only need to find $N+1$ points d_{0}, \ldots, d_{N} (See figure 2).
It turns out that the C^{2}-continuity constraints on the N Bézier curves yield only $N-1$ equations, so d_{0} and d_{N} can be chosen arbitrarily. In practice, d_{0} and d_{N} are chosen according to various "end conditions," such as prescribed velocities at x_{0} and x_{N}. For the time being, we will assume that d_{0} and d_{N} are given.

Figures 1 and 2 illustrates an interpolation problem involving $N+1=7+1=8$ data points. The control points d_{0} and d_{7} were chosen arbitrarily.

It can be shown that d_{1}, \ldots, d_{N-1} are given by the linear system

$$
\left(\begin{array}{ccccc}
\frac{7}{2} & 1 & & & \tag{1}\\
1 & 4 & 1 & & 0 \\
& \ddots & \ddots & \ddots & \\
0 & & 1 & 4 & 1 \\
& & & 1 & \frac{7}{2}
\end{array}\right)\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{N-2} \\
d_{N-1}
\end{array}\right)=\left(\begin{array}{c}
6 x_{1}-\frac{3}{2} d_{0} \\
6 x_{2} \\
\vdots \\
6 x_{N-2} \\
6 x_{N-1}-\frac{3}{2} d_{N}
\end{array}\right) .
$$

Figure 2: Figure 1 with color coding added and the Bezier control points plotted
The derivation of the above system assumes that $N \geq 4$. If $N=3$, this system reduces to

$$
\left(\begin{array}{ll}
\frac{7}{2} & 1 \tag{2}\\
1 & \frac{7}{2}
\end{array}\right)\binom{d_{1}}{d_{2}}=\binom{6 x_{1}-\frac{3}{2} d_{0}}{6 x_{2}-\frac{3}{2} d_{3}}
$$

When $N=2$, it can be shown that d_{1} is given by

$$
\begin{equation*}
d_{1}=2 x_{1}-\frac{1}{2} d_{0}-\frac{1}{2} d_{2} \tag{3}
\end{equation*}
$$

Observe that when $N \geq 3$, the above matrix is strictly diagonally dominant, so it is invertible. Actually, the above system needs to be solved for the x-coordinates and for the y-coordinates of the $d_{i} \mathrm{~s}$ (and also for the z-coordinates, if the points are in \mathbb{R}^{3}). Once the above system is solved, the Bézier cubics C_{1}, \ldots, C_{N} are determined as follows (we assume $N \geq 2)$: For $2 \leq i \leq N-1$, the control points $\left(b_{0}^{i}, b_{1}^{i}, b_{2}^{i}, b_{3}^{i}\right)$ of C_{i} are given by

$$
\begin{align*}
b_{0}^{i} & =x_{i-1} \\
b_{1}^{i} & =\frac{2}{3} d_{i-1}+\frac{1}{3} d_{i} \\
b_{2}^{i} & =\frac{1}{3} d_{i-1}+\frac{2}{3} d_{i} \\
b_{3}^{i} & =x_{i} . \tag{4}
\end{align*}
$$

The control points $\left(b_{0}^{1}, b_{1}^{1}, b_{2}^{1}, b_{3}^{1}\right)$ of C_{1} are given by

$$
\begin{align*}
b_{0}^{1} & =x_{0} \\
b_{1}^{1} & =d_{0} \\
b_{2}^{1} & =\frac{1}{2} d_{0}+\frac{1}{2} d_{1} \\
b_{3}^{1} & =x_{1}, \tag{5}
\end{align*}
$$

and the control points $\left(b_{0}^{N}, b_{1}^{N}, b_{2}^{N}, b_{3}^{N}\right)$ of C_{N} are given by

$$
\begin{align*}
b_{0}^{N} & =x_{N-1} \\
b_{1}^{N} & =\frac{1}{2} d_{N-1}+\frac{1}{2} d_{N} \\
b_{2}^{N} & =d_{N} \\
b_{3}^{N} & =x_{N} . \tag{6}
\end{align*}
$$

See figure 2 for an illustration of these points.
It is easy to show that the tangent vectors m_{0} at x_{0} and m_{N} at x_{N} are given by

$$
\begin{align*}
m_{0} & =3\left(d_{0}-x_{0}\right) \\
m_{N} & =3\left(x_{N}-d_{N}\right) . \tag{7}
\end{align*}
$$

End Conditions.

One method to determine the points d_{0} and d_{N} is the natural end condition, which consists in setting the second derivatives at x_{0} and at x_{N} to be zero, that is,

$$
C_{1}^{\prime \prime}(0)=0, \quad C_{N}^{\prime \prime}(1)=0 .
$$

(Part 1) (20 points) Prove that the second derivative at b_{0} of a Bézier cubic specified by the control points $\left(b_{0}, b_{1}, b_{2}, b_{3}\right)$ is

$$
6\left(b_{0}-2 b_{1}+b_{2}\right)
$$

and the second derivative at b_{3} is

$$
6\left(b_{1}-2 b_{2}+b_{3}\right)
$$

Prove that our system becomes

$$
\left(\begin{array}{ccccc}
4 & 1 & & & \\
1 & 4 & 1 & & 0 \\
& \ddots & \ddots & \ddots & \\
0 & & 1 & 4 & 1 \\
& & & 1 & 4
\end{array}\right)\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{N-2} \\
d_{N-1}
\end{array}\right)=\left(\begin{array}{c}
6 x_{1}-x_{0} \\
6 x_{2} \\
\vdots \\
6 x_{N-2} \\
6 x_{N-1}-x_{N}
\end{array}\right)
$$

where d_{0}, d_{N} are given by

$$
\begin{aligned}
d_{0} & =\frac{2}{3} x_{0}+\frac{1}{3} d_{1} \\
d_{N} & =\frac{1}{3} d_{N-1}+\frac{2}{3} x_{N} .
\end{aligned}
$$

Note that d_{0} is on the line segment $\left(x_{0}, d_{1}\right)\left(1 / 3\right.$ of the way from $\left.x_{0}\right)$ and d_{N} is on the line segment $\left(d_{N-1}, x_{N}\right)\left(1 / 3\right.$ of the way from $\left.x_{N}\right)$. For this proof, you may use Equation (1).

In the above derivation we assumed that $N \geq 4$. If $N=3$, show that this system reduces to

$$
\left(\begin{array}{ll}
4 & 1 \\
1 & 4
\end{array}\right)\binom{d_{1}}{d_{2}}=\binom{6 x_{1}-x_{0}}{6 x_{2}-x_{3}} .
$$

(2) Given a sequence of data points x_{0}, \ldots, x_{N}, compute the de Boor control points d_{1}, \ldots, d_{N-1} by solving the linear system in (1) using the Matlab command \backslash. Then use your program from Project 2 to compute the control points for the Bézier curves C_{1}, \ldots, C_{N} and to plot these Bézier segments (for $t \in[0,1]$) to visualize the interpolating spline. More specifically perform the following steps.
(Part 2)(i) (50 points) Code a first version that takes as input two column vectors x and y of dimension $N+1$ containing the x and y coordinates of the $N+1$ data points $x_{0}, x_{1}, \ldots, x_{N}(N \geq 2)$. The ouput should be two column vectors $d x$ and $d y$ of dimension $N+3$ consisting of the de Boor control points obtained by solving the linear system

$$
\left(\begin{array}{ccccc}
4 & 1 & & & \\
1 & 4 & 1 & & 0 \\
& \ddots & \ddots & \ddots & \\
0 & & 1 & 4 & 1 \\
& & & 1 & 4
\end{array}\right)\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{N-2} \\
d_{N-1}
\end{array}\right)=\left(\begin{array}{c}
6 x_{1}-x_{0} \\
6 x_{2} \\
\vdots \\
6 x_{N-2} \\
6 x_{N-1}-x_{N}
\end{array}\right)
$$

with $d_{-1}=x_{0}, d_{N+1}=x_{N}$, and

$$
\begin{aligned}
d_{0} & =\frac{2}{3} x_{0}+\frac{1}{3} d_{1} \\
d_{N} & =\frac{1}{3} d_{N-1}+\frac{2}{3} x_{N}
\end{aligned}
$$

This should be a function of the form:
function [dx, dy] = interpnatxy(x,y)
(provided in project zip file).
(Part 2)(ii) ($\mathbf{2 0}$ points) Compute the x and the y coordinates $B x$ and $B y$ of the N Bézier segments C_{1}, \ldots, C_{N} computed by the method of Project 2 , as $N \times 4$ matrices. For visual
correctness, also plot the curve. To achieve this, code the function interpnatxy modified from 2(i) to make use of the function bspline2b from Project 2.

Run your program on the sequences of data points given by their x and y coordinates as the column vector x and y specified below:

$$
\begin{aligned}
\mathrm{x} 1= & {[3.6942 ; 1.3690 ; 2.9865 ; 5.8509 ; 8.1929 ; 8.2098 ; 6.8281] } \\
\mathrm{y} 1= & {[1.2144 ; 3.5925 ; 7.3933 ; 7.9217 ; 6.9665 ; 4.0396 ; 1.5600] } \\
\mathrm{x} 2= & {[3.9806 ; 2.2789 ; 3.6942 ; 6.8618 ; 7.1820] } \\
\mathrm{y} 2= & {[2.1087 ; 4.2429 ; 7.0884 ; 6.9461 ; 4.3852] } \\
\mathrm{x} 3= & {[4.2334 ; 1.0826 ; 1.3016 ; 4.9579 ; 8.2435 ; 4.8062] } \\
\mathrm{y} 3= & {[1.0315 ; 3.6941 ; 5.6250 ; 7.9624 ; 5.5640 ; 5.8486] } \\
\mathrm{x} 4= & {[4.6040 ; 2.2283 ; 3.3741 ; 2.1609 ; 7.2494 ; 6.8955 ; 9.1702] } \\
\mathrm{y} 4= & {[1.3364 ; 1.6616 ; 3.5722 ; 6.8242 ; 8.6535 ; 3.7957 ; 2.8608] } \\
\mathrm{x} 5= & {[5.4297 ; 5.2275 ; 2.9865 ; 1.4532 ; 2.1778 ; 3.2898 ; 6.8113 ;} \\
& 9.0691 ; 7.2999 ; 7.2157 ; 9.2713 ; 7.4853 ; 6.4575] \\
\mathrm{y} 5= & {[4.6494 ; 1.9055 ; 1.7429 ; 3.8974 ; 8.0030 ; 6.7429 ; 9.1209 ;} \\
& 7.2917 ; 6.4380 ; 2.8404 ; 2.7795 ; 0.9502 ; 1.3974]
\end{aligned}
$$

Running your program on the data points

$$
\begin{aligned}
\mathrm{x} 6= & {[2.7310 ; 1.3599 ; 1.1662 ; 1.9709 ; 4.7876 ; 7.0827 ; 6.2630 ;} \\
& 4.2809 ; 3.9232 ; 4.9367 ; 8.3048 ; 9.0052 ; 7.6639] \\
\mathrm{y} 6= & {[1.1106 ; 2.4716 ; 5.3639 ; 7.3677 ; 8.3129 ; 7.6134 ; 5.3072 ;} \\
& 5.0614 ; 2.8875 ; 1.0539 ; 0.8648 ; 2.5095 ; 3.7760]
\end{aligned}
$$

specified by $x 6$ and $y 6$ you should get the interpolating curve shown in Figure 3.
(Part 2)(iii) ($\mathbf{1 0}$ points) Then code a second version that takes the data points x_{0}, \ldots, x_{N} as sceen input using the function getpoints of Project 2. This version does not need to output $d x, d y, B x$ and $B y$, but should plot the interpolating curve.

Total number of points: $20+80=100$.

Figure 3: The interpolating curve specified by $x 6$ and $y 6$.

