
CIS 515

Fundamentals of Linear Algebra and Optimization
Jean Gallier

Project 3: Curve Interpolation

The purpose of this project is to solve a curve interpolation problem using cubic splines.
This type of problem arises frequently in computer graphics and in robotics (path planning).

Recall from Project 1 that polynomial curves of degree ≤ m can be defined in terms of
control points and the Bézier polynomials. Cubic Bézier curves are often used because they
are cheap to implement and give more flexibility than quadratic Bézier curves.

A cubic Bézier curve C(t) (in R2 or R3) is specified by a list of four control points
(b0, b2, b2, b3) and is given parametrically by the equation

C(t) = (1− t)3 b0 + 3(1− t)2t b1 + 3(1− t)t2 b2 + t3 b3.

Clearly, C(0) = b0, C(1) = b3, and for t ∈ [0, 1], the point C(t) belongs to the convex
hull of the control points b0, b1, b2, b3.

Interpolation problems require finding curves passing through some given data points and
possibly satisfying some extra constraints.

It is known that Lagrange interpolation is not very satisfactory when N ≥ 5 since La-
grange interpolants tend to oscillate in an undesirable manner. Thus, we turn to Bézier
spline curves.

A Bézier spline curve F is a curve which is made up of curve segments which are Bézier
curves, say C1, . . . , Cm (m ≥ 2). We will assume that F is defined on [0,m], so that for
i = 1, . . . ,m,

F (t) = Ci(t− i + 1), i− 1 ≤ t ≤ i.

Typically, some smoothness is required between any two junction points, that is, between
any two points Ci(1) and Ci+1(0), for i = 1, . . . ,m − 1. We require that Ci(1) = Ci+1(0)
(C0-continuity), and typically that the derivatives of Ci at 1 and of Ci+1 at 0 agree up to
second order derivatives. This is called C2-continuity , and it ensures that the tangents agree
as well as the curvatures.

There are a number of interpolation problems, and we consider one of the most common
problems which can be stated as follows:

Problem: Given N + 1 data points x0, . . . , xN , find a C2 cubic spline curve F , such that
F (i) = xi, for all i, 0 ≤ i ≤ N (N ≥ 2).

1

x0 = d−1

x1

x2

x3

x4

x5

x6

x7 = d8

d0

d1

d2

d3

d4

d5

d6

d7

Figure 1: A C2 cubic interpolation spline curve passing through the points x0, x1, x2, x3,
x4, x5, x6, x7

A way to solve this problem is to find N +3 auxiliary points d−1, . . . , dN+1 called de Boor
control points from which N Bézier curves can be found. Actually,

d−1 = x0 and dN+1 = xN

so we only need to find N + 1 points d0, . . . , dN (See figure 2).

It turns out that the C2-continuity constraints on the N Bézier curves yield only N − 1
equations, so d0 and dN can be chosen arbitrarily. In practice, d0 and dN are chosen according
to various “end conditions,” such as prescribed velocities at x0 and xN . For the time being,
we will assume that d0 and dN are given.

Figures 1 and 2 illustrates an interpolation problem involving N + 1 = 7 + 1 = 8 data
points. The control points d0 and d7 were chosen arbitrarily.

It can be shown that d1, . . . , dN−1 are given by the linear system
7
2

1
1 4 1 0

.

0 1 4 1
1 7

2




d1
d2
...

dN−2
dN−1

 =


6x1 − 3

2
d0

6x2
...

6xN−2
6xN−1 − 3

2
dN

 . (1)

2

x0 = d

x1

x2

x3

x4

x5

x6

x7 = d8

d0

d1

d2

d3

d4

d5

d6

d7

1
1b =

1
2b

b
2
1

b
2
2

b

b1
3

b2
3

b1
4

b2
4

b1
5

b2
5

b1
6

b2
6

1
7

b
7
2=

-1

Figure 2: Figure 1 with color coding added and the Bezier control points plotted

The derivation of the above system assumes that N ≥ 4. If N = 3, this system reduces
to (

7
2

1

1 7
2

)(
d1

d2

)
=

(
6x1 − 3

2
d0

6x2 − 3
2
d3

)
(2)

When N = 2, it can be shown that d1 is given by

d1 = 2x1 −
1

2
d0 −

1

2
d2. (3)

Observe that when N ≥ 3, the above matrix is strictly diagonally dominant, so it is
invertible. Actually, the above system needs to be solved for the x-coordinates and for the
y-coordinates of the dis (and also for the z-coordinates, if the points are in R3). Once the
above system is solved, the Bézier cubics C1, . . . , CN are determined as follows (we assume
N ≥ 2): For 2 ≤ i ≤ N − 1, the control points (bi0, b

i
1, b

i
2, b

i
3) of Ci are given by

bi0 = xi−1

bi1 =
2

3
di−1 +

1

3
di

bi2 =
1

3
di−1 +

2

3
di

bi3 = xi. (4)

3

The control points (b10, b
1
1, b

1
2, b

1
3) of C1 are given by

b10 = x0

b11 = d0

b12 =
1

2
d0 +

1

2
d1

b13 = x1, (5)

and the control points (bN0 , b
N
1 , b

N
2 , b

N
3) of CN are given by

bN0 = xN−1

bN1 =
1

2
dN−1 +

1

2
dN

bN2 = dN

bN3 = xN . (6)

See figure 2 for an illustration of these points.

It is easy to show that the tangent vectors m0 at x0 and mN at xN are given by

m0 = 3(d0 − x0)

mN = 3(xN − dN). (7)

End Conditions.

One method to determine the points d0 and dN is the natural end condition, which
consists in setting the second derivatives at x0 and at xN to be zero, that is,

C ′′1 (0) = 0, C ′′N(1) = 0.

(Part 1) (20 points) Prove that the second derivative at b0 of a Bézier cubic specified
by the control points (b0, b1, b2, b3) is

6(b0 − 2b1 + b2),

and the second derivative at b3 is

6(b1 − 2b2 + b3).

Prove that our system becomes
4 1
1 4 1 0

.

0 1 4 1
1 4




d1
d2
...

dN−2
dN−1

 =


6x1 − x0

6x2
...

6xN−2
6xN−1 − xN

 ,

4

where d0, dN are given by

d0 =
2

3
x0 +

1

3
d1

dN =
1

3
dN−1 +

2

3
xN .

Note that d0 is on the line segment (x0, d1) (1/3 of the way from x0) and dN is on the line
segment (dN−1, xN) (1/3 of the way from xN). For this proof, you may use Equation (1).

In the above derivation we assumed that N ≥ 4. If N = 3, show that this system reduces
to (

4 1
1 4

)(
d1
d2

)
=

(
6x1 − x0

6x2 − x3

)
.

(2) Given a sequence of data points x0, . . . , xN , compute the de Boor control points
d1, . . . , dN−1 by solving the linear system in (1) using the Matlab command \. Then use
your program from Project 2 to compute the control points for the Bézier curves C1, . . . , CN

and to plot these Bézier segments (for t ∈ [0, 1]) to visualize the interpolating spline. More
specifically perform the following steps.

(Part 2)(i) (50 points) Code a first version that takes as input two column vectors x
and y of dimension N + 1 containing the x and y coordinates of the N + 1 data points
x0, x1, . . . , xN (N ≥ 2). The ouput should be two column vectors dx and dy of dimension
N + 3 consisting of the de Boor control points obtained by solving the linear system

4 1
1 4 1 0

.

0 1 4 1
1 4




d1
d2
...

dN−2
dN−1

 =


6x1 − x0

6x2
...

6xN−2
6xN−1 − xN

 ,

with d−1 = x0, dN+1 = xN , and

d0 =
2

3
x0 +

1

3
d1

dN =
1

3
dN−1 +

2

3
xN .

This should be a function of the form:

function [dx, dy] = interpnatxy(x,y)

(provided in project zip file).

(Part 2)(ii) (20 points) Compute the x and the y coordinates Bx and By of the N Bézier
segments C1, . . . , CN computed by the method of Project 2, as N × 4 matrices. For visual

5

correctness, also plot the curve. To achieve this, code the function interpnatxy modified
from 2(i) to make use of the function bspline2b from Project 2.

Run your program on the sequences of data points given by their x and y coordinates as
the column vector x and y specified below:

x1 = [3.6942; 1.3690; 2.9865; 5.8509; 8.1929; 8.2098; 6.8281]

y1 = [1.2144; 3.5925; 7.3933; 7.9217; 6.9665; 4.0396; 1.5600]

x2 = [3.9806; 2.2789; 3.6942; 6.8618; 7.1820]

y2 = [2.1087; 4.2429; 7.0884; 6.9461; 4.3852]

x3 = [4.2334; 1.0826; 1.3016; 4.9579; 8.2435; 4.8062]

y3 = [1.0315; 3.6941; 5.6250; 7.9624; 5.5640; 5.8486]

x4 = [4.6040; 2.2283; 3.3741; 2.1609; 7.2494; 6.8955; 9.1702]

y4 = [1.3364; 1.6616; 3.5722; 6.8242; 8.6535; 3.7957; 2.8608]

x5 = [5.4297; 5.2275; 2.9865; 1.4532; 2.1778; 3.2898; 6.8113;

9.0691; 7.2999; 7.2157; 9.2713; 7.4853; 6.4575]

y5 = [4.6494; 1.9055; 1.7429; 3.8974; 8.0030; 6.7429; 9.1209;

7.2917; 6.4380; 2.8404; 2.7795; 0.9502; 1.3974]

Running your program on the data points

x6 = [2.7310; 1.3599; 1.1662; 1.9709; 4.7876; 7.0827; 6.2630;

4.2809; 3.9232; 4.9367; 8.3048; 9.0052; 7.6639]

y6 = [1.1106; 2.4716; 5.3639; 7.3677; 8.3129; 7.6134; 5.3072;

5.0614; 2.8875; 1.0539; 0.8648; 2.5095; 3.7760]

specified by x6 and y6 you should get the interpolating curve shown in Figure 3.

(Part 2)(iii) (10 points) Then code a second version that takes the data points x0, . . . , xN

as sceen input using the function getpoints of Project 2. This version does not need to
output dx, dy,Bx and By, but should plot the interpolating curve.

Total number of points: 20 + 80 = 100.

6

Figure 3: The interpolating curve specified by x6 and y6.

7

