CIS 515

Fundamentals of Linear Algebra and Optimization Jean Gallier

Project 2: Drawing Cubic Bézier Spline Curves More Details

The purpose of this project is to design a Matlab program to plot a cubic Bézier spline curve given by a sequence of N + 1 de Boor control points $(N \ge 4)$.

The cases N = 4, 5, 6 require special handling. We also explain how to consolidate some of the cases to simplify the computations.

Recall that a *cubic Bézier spline* F(t) (in \mathbb{R}^2 or \mathbb{R}^3) is specified by a list of *de Boor* control points (d_0, d_1, \ldots, d_N) , with $N \geq 7$, and consists of N - 2 Bézier cubic segments C_1, \ldots, C_{N-2} , such that if the control points of C_i are $(b_0^i, b_1^i, b_2^i, b_3^i)$, then they are determined by the following equations:

For C_1 , we have

$$b_0^1 = d_0$$

$$b_1^1 = d_1$$

$$b_2^1 = \frac{1}{2}d_1 + \frac{1}{2}d_2$$

$$b_3^1 = \frac{1}{2}b_2^1 + \frac{1}{2}b_1^2 = \frac{1}{4}d_1 + \frac{7}{12}d_2 + \frac{1}{6}d_3.$$

The curve segment C_2 is given by

$$b_0^2 = \frac{1}{2}b_2^1 + \frac{1}{2}b_1^2 = \frac{1}{4}d_1 + \frac{7}{12}d_2 + \frac{1}{6}d_3$$

$$b_1^2 = \frac{2}{3}d_2 + \frac{1}{3}d_3$$

$$b_2^2 = \frac{1}{3}d_2 + \frac{2}{3}d_3$$

$$b_3^2 = \frac{1}{2}b_2^2 + \frac{1}{2}b_1^3 = \frac{1}{6}d_2 + \frac{4}{6}d_3 + \frac{1}{6}d_4.$$

For i = 3, ..., N - 4, the curve segment C_i is specified by the "one third two third rule:"

$$b_0^i = \frac{1}{2}b_2^{i-1} + \frac{1}{2}b_1^i = \frac{1}{6}d_{i-1} + \frac{4}{6}d_i + \frac{1}{6}d_{i+1}$$

$$b_1^i = \frac{2}{3}d_i + \frac{1}{3}d_{i+1}$$

$$b_2^i = \frac{1}{3}d_i + \frac{2}{3}d_{i+1}$$

$$b_3^i = \frac{1}{2}b_2^i + \frac{1}{2}b_1^{i+1} = \frac{1}{6}d_i + \frac{4}{6}d_{i+1} + \frac{1}{6}d_{i+2}.$$

This generic case is illustrated in Figure 1.

Figure 1: Computing Bézier control points from de Boor control points

The curve segment C_{N-3} is given by

$$\begin{split} b_0^{N-3} &= \frac{1}{2} b_2^{N-4} + \frac{1}{2} b_1^{N-3} = \frac{1}{6} d_{N-4} + \frac{4}{6} d_{N-3} + \frac{1}{6} d_{N-2} \\ b_1^{N-3} &= \frac{2}{3} d_{N-3} + \frac{1}{3} d_{N-2} \\ b_2^{N-3} &= \frac{1}{3} d_{N-3} + \frac{2}{3} d_{N-2} \\ b_3^{N-3} &= \frac{1}{2} b_2^{N-3} + \frac{1}{2} b_1^{N-2} = \frac{1}{6} d_{N-3} + \frac{7}{12} d_{N-2} + \frac{1}{4} d_{N-1}. \end{split}$$

Finally, C_{N-2} is specified by

$$b_0^{N-2} = \frac{1}{2}b_2^{N-3} + \frac{1}{2}b_1^{N-2} = \frac{1}{6}d_{N-3} + \frac{7}{12}d_{N-2} + \frac{1}{4}d_{N-1}$$

$$b_1^{N-2} = \frac{1}{2}d_{N-2} + \frac{1}{2}d_{N-1}$$

$$b_2^{N-2} = d_{N-1}$$

$$b_3^{N-2} = d_N$$

Observe that

$$b_0^{i+1} = b_3^i, \quad 1 \le i \le N - 3.$$

Also observe that when $N \ge 6$, the formulae for i = 2 and $3 \le i \le N - 4$ can be written as a single formula taking advantage of $b_0^{i+1} = b_3^i$, $1 \le i \le N - 3$.

If $2 \le i \le N - 4$ and $N \ge 6$, then

$$\begin{split} b_0^i &= b_3^{i-1} \\ b_1^i &= \frac{2}{3}d_i + \frac{1}{3}d_{i+1} \\ b_2^i &= \frac{1}{3}d_i + \frac{2}{3}d_{i+1} \\ b_3^i &= \frac{1}{2}b_2^i + \frac{1}{2}b_1^{i+1} = \frac{1}{6}d_i + \frac{4}{6}d_{i+1} + \frac{1}{6}d_{i+2}. \end{split}$$

The case N = 5 is exceptional and the above formula needs to be modified if i = 2.

If $N \geq 5$, the last curve segment C_{N-2} is always given by the equations

$$b_0^{N-2} = \frac{1}{2}b_2^{N-3} + \frac{1}{2}b_1^{N-2} = \frac{1}{6}d_{N-3} + \frac{7}{12}d_{N-2} + \frac{1}{4}d_{N-1}$$

$$b_1^{N-2} = \frac{1}{2}d_{N-2} + \frac{1}{2}d_{N-1}$$

$$b_2^{N-2} = d_{N-1}$$

$$b_3^{N-2} = d_N$$

Generally, if $N \ge 5$, having C_{N-4} and C_{N-2} , the curve C_{N-3} is given by

$$b_0^{N-3} = b_3^{N-4}$$

$$b_1^{N-3} = \frac{2}{3}d_{N-3} + \frac{1}{3}d_{N-2}$$

$$b_2^{N-3} = \frac{1}{3}d_{N-3} + \frac{2}{3}d_{N-2}$$

$$b_3^{N-3} = b_0^{N-2}.$$

Thus it is preferable to compute the control points for $C_1, C_2, \ldots, C_{N-4}, C_{N-2}$, and C_{N-3} last.

Using the above equations, the cases N = 5, 6 are easily adapted from the general case.

When N = 5, there are three Bézier curves defined as follows. C_1 and C_3 are given by the above formulae, namely C_1 is given by

$$b_0^1 = d_0$$

$$b_1^1 = d_1$$

$$b_2^1 = \frac{1}{2}d_1 + \frac{1}{2}d_2$$

$$b_3^1 = \frac{1}{4}d_1 + \frac{7}{12}d_2 + \frac{1}{6}d_3,$$

 C_3 is given by

$$b_0^3 = \frac{1}{6}d_2 + \frac{7}{12}d_3 + \frac{1}{4}d_4$$

$$b_1^3 = \frac{1}{2}d_3 + \frac{1}{2}d_4$$

$$b_2^3 = d_4$$

$$b_3^3 = d_5,$$

and C_2 is given by

$$b_0^2 = b_3^1$$

$$b_1^2 = \frac{2}{3}d_2 + \frac{1}{3}d_3$$

$$b_2^2 = \frac{1}{3}d_2 + \frac{2}{3}d_3$$

$$b_3^2 = b_0^3.$$

Note that C_3 should be computed before C_2 .

When N = 6, there are four Bézier curves defined as follows. C_1 , C_2 and C_4 are given by the above formulae, namely C_1 is given by

$$b_0^1 = d_0$$

$$b_1^1 = d_1$$

$$b_2^1 = \frac{1}{2}d_1 + \frac{1}{2}d_2$$

$$b_3^1 = \frac{1}{4}d_1 + \frac{7}{12}d_2 + \frac{1}{6}d_3,$$

 C_2 is given by

$$\begin{split} b_0^2 &= b_3^1 \\ b_1^2 &= \frac{2}{3}d_2 + \frac{1}{3}d_3 \\ b_2^2 &= \frac{1}{3}d_2 + \frac{2}{3}d_3 \\ b_3^2 &= \frac{1}{6}d_2 + \frac{4}{6}d_3 + \frac{1}{6}d_4, \end{split}$$

and C_4 is given by

$$b_0^4 = \frac{1}{6}d_3 + \frac{7}{12}d_4 + \frac{1}{4}d_5$$

$$b_1^4 = \frac{1}{2}d_4 + \frac{1}{2}d_5$$

$$b_2^4 = d_5$$

$$b_3^4 = d_6,$$

Then C_3 is given by

$$b_0^3 = b_3^2$$

$$b_1^3 = \frac{2}{3}d_3 + \frac{1}{3}d_4$$

$$b_2^3 = \frac{1}{3}d_3 + \frac{2}{3}d_4$$

$$b_3^3 = b_0^4.$$

Note that C_4 should be computed before C_3 .

When N = 4, use the formulae for C_1 and $C_{N-2} = C_2$ with

$$b_3^1 = b_0^2 = \frac{1}{4}d_1 + \frac{1}{2}d_2 + \frac{1}{4}d_3.$$

Thus C_1 is given by

$$\begin{split} b_0^1 &= d_0 \\ b_1^1 &= d_1 \\ b_2^1 &= \frac{1}{2}d_1 + \frac{1}{2}d_2 \\ b_3^1 &= \frac{1}{4}d_1 + \frac{1}{2}d_2 + \frac{1}{4}d_3, \end{split}$$

and C_2 is given by

$$b_0^2 = b_3^1 = \frac{1}{4}d_1 + \frac{1}{2}d_2 + \frac{1}{4}d_3$$

$$b_1^2 = \frac{1}{2}d_2 + \frac{1}{2}d_3$$

$$b_2^2 = d_3$$

$$b_3^2 = d_4.$$