CIS 515

Fundamentals of Linear Algebra and Optimization Jean Gallier

Project 2: Drawing Cubic Bézier Spline Curves

The purpose of this project is to design a Matlab program to plot a cubic Bézier spline curve given by a sequence of de Boor control points.

Recall that a cubic Bézier spline $F(t)$ (in \mathbb{R}^{2} or \mathbb{R}^{3}) is specified by a list of de Boor control points $\left(d_{0}, d_{1}, \ldots, d_{N}\right)$, with $N \geq 7$, and consists of $N-2$ Bézier cubic segments C_{1}, \ldots, C_{N-2}, such that if the control points of C_{i} are $\left(b_{0}^{i}, b_{1}^{i}, b_{2}^{i}, b_{3}^{i}\right)$, then they are determined by the following equations:

For C_{1}, we have

$$
\begin{aligned}
& b_{0}^{1}=d_{0} \\
& b_{1}^{1}=d_{1} \\
& b_{2}^{1}=\frac{1}{2} d_{1}+\frac{1}{2} d_{2} \\
& b_{3}^{1}=\frac{1}{2} b_{2}^{1}+\frac{1}{2} b_{1}^{2}=\frac{1}{4} d_{1}+\frac{7}{12} d_{2}+\frac{1}{6} d_{3} .
\end{aligned}
$$

The curve segment C_{2} is given by

$$
\begin{aligned}
& b_{0}^{2}=\frac{1}{2} b_{2}^{1}+\frac{1}{2} b_{1}^{2}=\frac{1}{4} d_{1}+\frac{7}{12} d_{2}+\frac{1}{6} d_{3} \\
& b_{1}^{2}=\frac{2}{3} d_{2}+\frac{1}{3} d_{3} \\
& b_{2}^{2}=\frac{1}{3} d_{2}+\frac{2}{3} d_{3} \\
& b_{3}^{2}=\frac{1}{2} b_{2}^{2}+\frac{1}{2} b_{1}^{3}=\frac{1}{6} d_{2}+\frac{4}{6} d_{3}+\frac{1}{6} d_{4} .
\end{aligned}
$$

For $i=3, \ldots, N-4$, the curve segment C_{i} is specified by the "one third two third rule:"

$$
\begin{aligned}
& b_{0}^{i}=\frac{1}{2} b_{2}^{i-1}+\frac{1}{2} b_{1}^{i}=\frac{1}{6} d_{i-1}+\frac{4}{6} d_{i}+\frac{1}{6} d_{i+1} \\
& b_{1}^{i}=\frac{2}{3} d_{i}+\frac{1}{3} d_{i+1} \\
& b_{2}^{i}=\frac{1}{3} d_{i}+\frac{2}{3} d_{i+1} \\
& b_{3}^{i}=\frac{1}{2} b_{2}^{i}+\frac{1}{2} b_{1}^{i+1}=\frac{1}{6} d_{i}+\frac{4}{6} d_{i+1}+\frac{1}{6} d_{i+2} .
\end{aligned}
$$

Figure 1: Computing Bézier control points from de Boor control points

This generic case is illustrated in Figure 1.
The curve segment C_{N-3} is given by

$$
\begin{aligned}
& b_{0}^{N-3}=\frac{1}{2} b_{2}^{N-4}+\frac{1}{2} b_{1}^{N-3}=\frac{1}{6} d_{N-4}+\frac{4}{6} d_{N-3}+\frac{1}{6} d_{N-2} \\
& b_{1}^{N-3}=\frac{2}{3} d_{N-3}+\frac{1}{3} d_{N-2} \\
& b_{2}^{N-3}=\frac{1}{3} d_{N-3}+\frac{2}{3} d_{N-2} \\
& b_{3}^{N-3}=\frac{1}{2} b_{2}^{N-3}+\frac{1}{2} b_{1}^{N-2}=\frac{1}{6} d_{N-3}+\frac{7}{12} d_{N-2}+\frac{1}{4} d_{N-1} .
\end{aligned}
$$

Finally, C_{N-2} is specified by

$$
\begin{aligned}
& b_{0}^{N-2}=\frac{1}{2} b_{2}^{N-3}+\frac{1}{2} b_{1}^{N-2}=\frac{1}{6} d_{N-3}+\frac{7}{12} d_{N-2}+\frac{1}{4} d_{N-1} \\
& b_{1}^{N-2}=\frac{1}{2} d_{N-2}+\frac{1}{2} d_{N-1} \\
& b_{2}^{N-2}=d_{N-1} \\
& b_{3}^{N-2}=d_{N}
\end{aligned}
$$

Observe that

$$
b_{0}^{i+1}=b_{3}^{i}, \quad 1 \leq i \leq N-3 .
$$

Using the above equations, the cases $N=5,6$ are easily adapted from the general case: compute the control points for $C_{1}, C_{2}, \ldots, C_{N-4}, C_{N-2}$, and C_{N-3}. When $N=4$, use the formulae for C_{1} and $C_{N-2}=C_{2}$ with

$$
b_{3}^{1}=b_{0}^{2}=\frac{1}{4} d_{1}+\frac{1}{2} d_{2}+\frac{1}{4} d_{3} .
$$

(Part 1) (50 points) Implement a Matlab program to compute the Bézier control points of the Bézier segments C_{1}, \ldots, C_{N-2} constituting the spline specified by a sequence of de Boor control points $d_{0}, d_{1}, \ldots, d_{N}$ (for $N \geq 4$). The input to your program should be two column vectors $d x$ and $d y$ of dimension $N+1$ consisting of the x-coordinates and the y coordinates of the $N+1$ de Boor control points $d_{0}, d_{1}, \ldots, d_{N}$. The output should be two $(N-2) \times 4$ matrices $B x$ and $B y$ where $B x(i,:)$ consists of the x-coordinates the control points of the Bézier segment C_{i} and $B y(i,:)$ consists of the y-coordinates the control points of the Bézier segment $C_{i}(i=1, \ldots, N-2)$. For example, on input

```
dx = [4.2173; 1.5849; 2.1301; 4.7625; 7.7531; 8.3606; 5.4322]
dy = [1.8424; 3.2603; 6.0028; 7.6446; 6.3013; 2.5886; 4.0065]
```

(seven de Boor control points, $N=6$) we get

$\mathrm{Bx}=$			
4.2173	1.5849	1.8575	2.4325
2.4325	3.0075	3.8850	4.8222
4.8222	5.7593	6.7562	7.4065
7.4065	8.0569	8.3606	5.4322
By $=$			
1.8424	3.2603	4.6315	5.5908
5.5908	6.5501	7.0973	7.1471
7.1471	7.1968	6.7491	5.5970
5.5970	4.4450	2.5886	4.0065

See Figures 2 and 3.
Use the function show_bspline2b (shown in figure 6), in which you need to supply the function bspline2b (shown in figure 7 and also in project zip file).

The function bspline2b computes the $(N-2) \times 4$ matrices $B x$ and $B y$ specified above.

Figure 2: Figure 1 is the polygonal curve determined by the seven de Boor control points of $d x$ and $d y$. Figure 2 applies the "one third two third rule" and plots the following six points from $B x$ and $B y:[1.8575,4.6315]$, [3.0075, 6.5501], [3.8850, 7.0973], [5.7593, 7.1968], [6.7562, 6.7491], [8.0569, 4.4450]. Figure 3 connects the adjacent points found in Step 2 via blue line segments. Step 4 computes the midpoint of these blue line segment to get the remaining three points of $B x$ and $B y$ with coordinates [2.4325, 5.5908], [4.8222, 7.1471], [7.4065, 5.5970].

Figure 3: A continuation of the example illustrated by Figure 2 in which we color code how the points of $B x$ and $B y$ form four Bézier control polygons.

In the output script the following control points will be tested:

$$
\begin{aligned}
\mathrm{dx} 1= & {[3.6942 ; 1.3690 ; 2.9865 ; 5.8509 ; 8.1929 ; 8.2098 ; 6.8281] } \\
\mathrm{dy} 1= & {[1.2144 ; 3.5925 ; 7.3933 ; 7.9217 ; 6.9665 ; 4.0396 ; 1.5600] } \\
\mathrm{dx} 2= & {[3.9806 ; 2.2789 ; 3.6942 ; 6.8618 ; 7.1820] } \\
\mathrm{dy} 2= & {[2.1087 ; 4.2429 ; 7.0884 ; 6.9461 ; 4.3852] } \\
\mathrm{dx} 3= & {[4.2334 ; 1.0826 ; 1.3016 ; 4.9579 ; 8.2435 ; 4.8062] } \\
\mathrm{dy} 3= & {[1.0315 ; 3.6941 ; 5.6250 ; 7.9624 ; 5.5640 ; 5.8486] } \\
\mathrm{dx} 4= & {[4.6040 ; 2.2283 ; 3.3741 ; 2.1609 ; 7.2494 ; 6.8955 ; 9.1702] } \\
\mathrm{dy} 4= & {[1.3364 ; 1.6616 ; 3.5722 ; 6.8242 ; 8.6535 ; 3.7957 ; 2.8608] } \\
\mathrm{dx} 5= & {[5.4297 ; 5.2275 ; 2.9865 ; 1.4532 ; 2.1778 ; 3.2898 ; 6.8113 ;} \\
& 9.0691 ; 7.2999 ; 7.2157 ; 9.2713 ; 7.4853 ; 6.4575] \\
\mathrm{dy} 5= & {[4.6494 ; 1.9055 ; 1.7429 ; 3.8974 ; 8.0030 ; 6.7429 ; 9.1209} \\
& 7.2917 ; 6.4380 ; 2.8404 ; 2.7795 ; 0.9502 ; 1.3974]
\end{aligned}
$$

(These are also in written the output script).
(Part 2) (20 points) Use your program for drawing a Bézier curve (see Project 1A) to display the Bézier segments C_{1}, \ldots, C_{N-2} computed in Part (1) subdivided 6 times. To achieve this, modify the function bspline2b (see figure 7) so that it calls a function drawbezier_dc to display each spline segment C_{i} using the subdivision version of the de Casteljau algorithm from Project 1A. (The code is in the project zip file as well)

For example, running the de Casteljau subdivision algorithm (with $n n=6$) on each of the four Bézier segments specified by

Bx =			
4.2173	1.5849	1.8575	2.4325
2.4325	3.0075	3.8850	4.8222
4.8222	5.7593	6.7562	7.4065
7.4065	8.0569	8.3606	5.4322
$\mathrm{By}=$			
1.8424	3.2603	4.6315	5.5908
5.5908	6.5501	7.0973	7.1471
7.1471	7.1968	6.7491	5.5970
5.5970	4.4450	2.5886	4.0065

you get the spline shown in Figure 4.

Figure 4: A continuation of Figure 3 in which we illustrate the cubic spline specified by its Boor control points. The coloring coding in the spline curve reflects the color coding of the four Bézier control polygons of Figure 3.

Observe that the control polygons and the Bézier control points of the cubic Bézier segments are also drawn (as red line segments and red +). In drawbezier_dc, this corresponds to setting drawb $=1$.

Figure 5 shows the same curve with its de Boor control polygon and the Bézier control points, but this time the control polygons of the cubic Bézier segments are not displayed. The Bézier control points of the cubic Bézier segments are shown as red +. In drawbezier_dc, this corresponds to setting drawb $\neq 1$.

Figure 5: The curve of Figure 4, without displaying the Bézier control polygons.
(Part 3) (10 points) Finally make use of the function getpoints to specify the control points by clicking on the mouse (screen input). This is done when you run the output script, make sure the images are saved properly.

Total number of points: 80.

```
function [Bx, By] = show_bspline2b2(dx,dy)
%
% This is an auxilary function designed to output Bx and By
% for the version that uses dx and dy as input instead of
%
% drawb = 1, shows Bezier control polygons
%
% nn = subdivision level for de Casteljau
nn = 6;
N = size(dx,1)-1;
fprintf('N = %d \n', N)
drawb = 1;
[Bx, By] = bspline2b(dx,dy,N);
hold off
end
```

Figure 6: Code for function show_bspline2b2

```
function [Bx, By] = bspline2b(dx,dy,N,nn,drawb)
% Works if N >= 4.
%These will hold the four control points for each segment
Bx = zeros(N-2,4);
By = zeros(N-2,4);
%
% Code to compute the Bezier control points of the
% cuve segments C_1, ..., C_{N-2} from Part (1).
%
dim_data = 2;
B = zeros(dim_data,4);
plot(dx,dy,'or-'); % plots d's as red circles
hold on;
for i = 1:N-2
    B(1,:) = Bx(i,:); B(2,:) = By(i,:);
    drawbezier_dc(B,nn,drawb);
end
% hold off;
end
```

Figure 7: Code for function (bspline2b)

