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Weakness of Lasso Regression

The lasso method is unsatisfactory when n (the dimension of the data) is
much larger than the number m of data, because it only selects m coordinates
and sets the others to values close to zero.

It also has problems with groups of highly correlated variables.

A way to overcome this problem is to add a “ridge-like” term (1/2)Kw⊤w to
the objective function.



Elastic Net Regression
This way we obtain a hybrid of lasso and ridge regression called the elastic net
method and defined as follows:

Program (elastic net):

minimize 1

2
ξ⊤ξ +

1

2
Kw⊤w + τ1⊤

n ϵ

subject to
y − Xw − b1m = ξ

w ≤ ϵ

− w ≤ ϵ,



Elastic Net Regression

Some of the literature denotes K by λ2 and τ by λ1, but we prefer not to
adopt this notation since we use λ, µ etc. to denote Lagrange multipliers.

Observe that as in the case of ridge regression, minimization is performed over
ξ, w, ϵ and b, but b is not penalized in the objective function.

The objective function is strictly convex so if an optimal solution exists, then
it is unique.



Elastic Net Regression: Lagrange
Multipliers

Let λ ∈ Rm be the Lagrange multipliers associated with the equation
y − Xw − b1m = ξ, let α+ ∈ Rn

+ be the Lagrange multipliers associated with
the inequalities w ≤ ϵ, and let α− ∈ Rn

+ be the Lagrange multipliers
associated with the inequalities −w ≤ ϵ.



Elastic Net Regression: Lagrangian
The Lagrangian associated with this optimization problem is

L(ξ,w, ϵ, b, λ, α+, α−) =
1

2
ξ⊤ξ − ξ⊤λ+ λ⊤y − b1⊤

mλ

+ ϵ⊤(τ1n − α+ − α−) + w⊤(α+ − α− − X⊤λ) +
1

2
Kw⊤w,

so by setting the gradient ∇Lξ,w,ϵ,b to zero we obtain the equations

ξ = λ

Kw = −(α+ − α− − X⊤λ) (∗w)
α+ + α− − τ1n = 0

1⊤
mλ = 0.



Elastic Net Regression: Dual Function
We find that (∗w) determines w.

Using these equations, we can find the dual function but in order to solve the
dual using ADMM, since λ ∈ Rm, it is more convenient to write λ = λ+ − λ−,
with λ+, λ− ∈ Rm

+ (recall that α+, α− ∈ Rn
+).

As in the derivation of the dual of ridge regression, we rescale our variables by
defining β+, β−, µ+, µ− such that

α+ = Kβ+, α− = Kβ−, λ+ = Kµ+, λ− = Kµ−.

We also let µ = µ+ − µ− so that λ = Kµ.



Elastic Net Regression: Dual Program
After some algebra we find that the dual of elastic net is equivalent to
Program (Dual Elastic Net):

minimize 1

2

(
β⊤
+ β⊤

− µ⊤
+ µ⊤

−
)

P


β+
β−
µ+

µ−

+ q⊤


β+
β−
µ+

µ−


subject to

A


β+
β−
µ+

µ−

 = c, β+, β− ∈ Rn
+, µ+, µ− ∈ Rm

+,



Elastic Net Regression: Dual Program
with

P =


In −In −X⊤ X⊤

−In In X⊤ −X⊤

−X X XX⊤ + KIm −XX⊤ − KIm
X −X −XX⊤ − KIm XX⊤ + KIm

 ,

q =


0n
0n
−y
y

 .



Elastic Net Regression: Dual Program

and with
A =

(
In In 0n,m 0n,m
0⊤n 0⊤n 1⊤

m −1⊤
m

)
and

c =

(
τ
K1n
0

)
.



Solution to Elastic Net Regression
Once ξ = Kµ = K(µ+ − µ−) and w are determined by (∗w), we obtain b using
the equation

b1m = y − Xw − ξ,

which yields

b = y −
n∑

j=1

Xjwj,

where y is the mean of y and Xj is the mean of the jth column of X.

We leave it as an easy exercise to show that A has rank n + 1. Then we can
solve the dual program using ADMM.



Elastic Net Regression

Observe that when τ = 0, the elastic net method reduces to ridge regression.

As K tends to 0 the elastic net method tends to lasso, but K = 0 is not an
allowable value since τ/0 is undefined. Anyway, if we get rid of the constraint

β+ + β− =
τ

K1n

the corresponding optimization program not does determine w.



Elastic Net Regression

Experimenting with our program we found that convergence becomes very
slow for K < 10−3.
What we can do if K is small, say K < 10−3, is to run lasso.
A nice way to “blend” ridge regression and lasso is to call the elastic net
method with K = C(1− θ) and τ = Cθ, where 0 ≤ θ < 1 and C > 0.
Running the elastic net method on the data set (X14, y14) of the previous
section with K = τ = 0.5 shows absolutely no difference, but the reader
should conduct more experiments to see how elastic net behaves as K and τ
are varied (the best way to do this is to use θ as explained above).



Elastic Net Regression

We have observed that lasso seems to converge much faster than elastic net
when K < 10−3.

We observed that the larger K is the faster is the convergence. This could be
attributed to the fact that the matrix P becomes more “positive definite.”

Another factor is that ADMM for lasso solves an n × n linear system, but
ADMM for elastic net solves a 2(n + m)× 2(n + m) linear system.



Elastic Net Regression

So even though elastic net does not suffer from some of the undesirable
properties of ridge regression and lasso, it appears to have a slower
convergence rate, in fact much slower when K is small (say K < 10−3).

It also appears that elastic net may be too expensive a choice if m is much
larger than n.


