Fundamentals of Linear Algebra and Optimization Lasso Regression: Learning an Affine Function

Jean Gallier and Jocelyn Quaintance

CIS Department University of Pennsylvania

jean@cis.upenn.edu

May 7, 2020

To learn an affine function $f(x) = x^{\top}w + b$, we solve the following optimization problem

To learn an affine function $f(x) = x^{\top}w + b$, we solve the following optimization problem

Program (lasso3):

minimize
$$\frac{1}{2}\xi^{\top}\xi + \tau \mathbf{1}_{n}^{\top}\epsilon$$

subject to
$$y - Xw - b\mathbf{1}_{m} = \xi$$
$$w \leq \epsilon$$
$$-w \leq \epsilon.$$

Observe that as in the case of ridge regression, minimization is performed over ξ , w, ϵ and b, but b is *not* penalized in the objective function.

Observe that as in the case of ridge regression, minimization is performed over ξ , w, ϵ and b, but b is *not* penalized in the objective function.

Once $\lambda = \xi$ and *w* are determined, we obtain *b* using the equation

$$b\mathbf{1}_m = y - Xw - \xi_z$$

and since $\mathbf{1}_m^{\top} \mathbf{1}_m = m$ and $\mathbf{1}_m^{\top} \xi = \mathbf{1}_m^{\top} \lambda = 0$, the above yields

$$b=\overline{y}-\sum_{j=1}^n\overline{X^j}w_j,$$

where \overline{y} is the mean of y and $\overline{X^{j}}$ is the mean of the *j*th column of X.

Lasso Regression: Affine Reduction

The equation

$$b = \widehat{b} + \overline{y} - \sum_{j=1}^{n} \overline{X^{j}} w_{j} = \widehat{b} + \overline{y} - (\overline{X^{1}} \cdots \overline{X^{n}}) w,$$

can be used as in ridge regression to show that the Program (lasso3) is equivalent to applying lasso regression (lasso2) without an intercept term to the centered data, by replacing y by $\hat{y} = y - \bar{y}\mathbf{1}$ and X by $\hat{X} = X - \bar{X}$.

Lasso Regression: Affine Reduction

The equation

$$b = \widehat{b} + \overline{y} - \sum_{j=1}^{n} \overline{X^{j}} w_{j} = \widehat{b} + \overline{y} - (\overline{X^{1}} \cdots \overline{X^{n}}) w,$$

can be used as in ridge regression to show that the Program (lasso3) is *equivalent* to applying lasso regression (lasso2) without an intercept term to the centered data, by replacing y by $\hat{y} = y - \bar{y}\mathbf{1}$ and X by $\hat{X} = X - \bar{X}$.

This is the method described by Hastie, Tibshirani, and Wainwright (Section 2.2).

Example. We can create a data set (X, y) where X a 100×5 matrix and y is a 100×1 vector using the following Matlab program in which the command randn creates an array of normally distributed numbers.

```
X = randn(100,5);
ww = [0; 2; 0; -3; 0];
y = X*ww + randn(100,1)*0.1;
```

The purpose of the third line is to add some small noise to the "output" X * ww.

The first five rows of X are

1	-1.1658	-0.0679	-1.6118	0.3199	0.4400
	-1.1480	-0.1952	-0.0245	-0.5583	-0.6169
	0.1049	-0.2176	-1.9488	-0.3114	0.2748
	0.7223	-0.3031	1.0205	-0.5700	0.6011
	2.5855	0.0230	0.8617	-1.0257	0.0923

and the first five rows of y are

$$y = \begin{pmatrix} -1.0965\\ 1.2155\\ 0.4324\\ 1.1902\\ 3.1346 \end{pmatrix}$$

.

・ロット (四)・ (目)・ (日)・ (日)

We ran the program for lasso using ADMM with various values of ρ and τ , including $\rho=1$ and $\rho=10.$

We ran the program for lasso using ADMM with various values of ρ and τ , including $\rho = 1$ and $\rho = 10$.

We observed that the program converges a lot faster for $\rho=10$ than for $\rho=1.$

We ran the program for lasso using ADMM with various values of ρ and τ , including $\rho = 1$ and $\rho = 10$.

We observed that the program converges a lot faster for $\rho=10$ than for $\rho=1.$

We plotted the values of the five components of $w(\tau)$ for values of τ from $\tau = 0$ to $\tau = 0.5$ by increment of 0.02, and observed that the first, third, and fifth coordinate drop basically linearly to zero (a value less that 10^{-4}) around $\tau = 0.2$. See Figures 1, 2, and 3.

We ran the program for lasso using ADMM with various values of ρ and τ , including $\rho = 1$ and $\rho = 10$.

We observed that the program converges a lot faster for $\rho=10$ than for $\rho=1.$

We plotted the values of the five components of $w(\tau)$ for values of τ from $\tau = 0$ to $\tau = 0.5$ by increment of 0.02, and observed that the first, third, and fifth coordinate drop basically linearly to zero (a value less that 10^{-4}) around $\tau = 0.2$. See Figures 1, 2, and 3.

This behavior is also observed in Hastie, Tibshirani, and Wainwright.

Figure 1: First and second component of w.

Figure 2: Third and fourth component of w.

Figure 3: Fifth component of w.

For $\tau = 0.02$, we have

$$w = \begin{pmatrix} 0.00003\\ 2.01056\\ -0.00004\\ -2.99821\\ 0.00000 \end{pmatrix}, \quad b = 0.00135.$$

(ロ)、(同)、(目)、(目)、(目)、(の)へ()

This weight vector w is very close to the original vector ww = [0; 2; 0; -3; 0] that we used to create y.

This weight vector w is very close to the original vector ww = [0; 2; 0; -3; 0] that we used to create y.

For large values of τ , the weight vector is essentially the zero vector. This happens for $\tau = 235$, where every component of w is less than 10^{-5} .

It is interesting to compare the behavior of the methods:

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ ∃ りゅつ

It is interesting to compare the behavior of the methods:

1. Ridge regression $(\mathbf{RR6})$ (which is equivalent to $(\mathbf{RR3})$).

It is interesting to compare the behavior of the methods:

- 1. Ridge regression $(\mathbf{RR6})$ (which is equivalent to $(\mathbf{RR3})$).
- 2. Ridge regression $(\mathbf{RR3}b)$, with *b* penalized (by adding the term Kb^2 to the objective function).

It is interesting to compare the behavior of the methods:

- 1. Ridge regression $(\mathbf{RR6})$ (which is equivalent to $(\mathbf{RR3})$).
- 2. Ridge regression $(\mathbf{RR3}b)$, with *b* penalized (by adding the term Kb^2 to the objective function).

3. Least squares applied to $[X \ 1]$.

It is interesting to compare the behavior of the methods:

- 1. Ridge regression $(\mathbf{RR6})$ (which is equivalent to $(\mathbf{RR3})$).
- 2. Ridge regression $(\mathbf{RR3}b)$, with *b* penalized (by adding the term Kb^2 to the objective function).

- 3. Least squares applied to $[X \ 1]$.
- 4. (lasso3).

When $n \leq 2$ and K and τ are small and of the same order of magnitude, say 0.1 or 0.01, there is no noticeable difference.

We ran out programs on the data set of $200~{\rm points}$ generated by the following Matlab program:

```
X14 = 15*randn(200,1);
ww14 = 1;
y14 = X14*ww14 + 10*randn(200,1) + 20;
```

・ロト・日本・山田・ 山田・ 山口・

The result is shown in Figure 4, with the following colors: Method (1) in magenta, Method (2) in red, Method (3) in blue, and Method (4) in cyan. All four lines are identical.

Figure 4: Comparison of the four methods with $K = \tau = 0.1$.

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶

In order to see a difference we also ran our programs with K = 1000 and $\tau = 10000$; see Figure 5.

Figure 5: Comparison of the four methods with $K = 1000, \tau = 10000$.

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ ∃ りゅつ

As expected, due to the penalization of *b*, Method (3) yields a significantly lower line (in red), and due to the large value of τ , the line corresponding to lasso (in cyan) has a smaller slope.

As expected, due to the penalization of *b*, Method (3) yields a significantly lower line (in red), and due to the large value of τ , the line corresponding to lasso (in cyan) has a smaller slope.

Method (1) (in magenta) also has a smaller slope but still does not deviate that much from least squares (in blue). It is also interesting to experiment on data sets where n is larger (say 20, 50).