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Scaling Ridge Regression

The main weakness of ridge regression is that the estimated weight vector w
usually has many nonzero coefficients.

As a consequence, ridge regression does not scale up well.

In practice we need methods capable of handling millions of parameters, or
more.
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Scaling Ridge Regression

The main weakness of ridge regression is that the estimated weight vector w
usually has many nonzero coefficients.

As a consequence, ridge regression does not scale up well.

In practice we need methods capable of handling millions of parameters, or
more.
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Lasso Regression

A way to encourage sparsity of the vector w, which means that many
coordinates of w are zero, is to replace the quadratic penalty function
τw⊤w = τ ∥w∥22 by the penalty function τ ∥w∥1, with the ℓ2-norm replaced by
the ℓ1-norm.

This method was first proposed by Tibshirani arround 1996, under the name
lasso, which stands for “least absolute selection and shrinkage operator.”

This method is also known as ℓ1-regularized regression, but this is not as cute
as “lasso,” which is used predominantly.
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A way to encourage sparsity of the vector w, which means that many
coordinates of w are zero, is to replace the quadratic penalty function
τw⊤w = τ ∥w∥22 by the penalty function τ ∥w∥1, with the ℓ2-norm replaced by
the ℓ1-norm.

This method was first proposed by Tibshirani arround 1996, under the name
lasso, which stands for “least absolute selection and shrinkage operator.”

This method is also known as ℓ1-regularized regression, but this is not as cute
as “lasso,” which is used predominantly.
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Lasso Regression: Notational Convention

Given a set of training data {(x1, y1), . . . , (xm, ym)}, with xi ∈ Rn and yi ∈ R,
if X is the m × n matrix

X =

x⊤1...
x⊤m

 ,

in which the row vectors x⊤i are the rows of X, then lasso regression is the
following optimization problem
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Lasso Regression: Problem (lasso1)

Program (lasso1):

minimize 1

2
ξ⊤ξ + τ ∥w∥1

subject to
y − Xw = ξ,

minimizing over ξ and w, where τ > 0 is some constant determining the
influence of the regularizing term ∥w∥1.
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Lasso Regression: (lasso1) Reduction
The difficulty with the regularizing term ∥w∥1 = |w1|+ · · ·+ |wn| is that the
map w 7→ ∥w∥1 is not differentiable for all w.

This difficulty can be overcome by using subgradients, but the dual of the
above program can also be obtained in an elementary fashion by using a trick,
which is that if x ∈ R, then

|x| = max{x,−x}.

Using this trick, by introducing a vector ϵ ∈ Rn of nonnegative variables, we
can rewrite lasso minimization as follows:
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Lasso Regression: (lasso1) Reduction
The difficulty with the regularizing term ∥w∥1 = |w1|+ · · ·+ |wn| is that the
map w 7→ ∥w∥1 is not differentiable for all w.

This difficulty can be overcome by using subgradients, but the dual of the
above program can also be obtained in an elementary fashion by using a trick,
which is that if x ∈ R, then

|x| = max{x,−x}.
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can rewrite lasso minimization as follows:
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Lasso Regression: Program (lasso2)
Program lasso regularization (lasso2):

minimize 1

2
ξ⊤ξ + τ1⊤

n ϵ

subject to
y − Xw = ξ

w ≤ ϵ

− w ≤ ϵ.

minimizing over ξ,w and ϵ, with y, ξ ∈ Rm, and w, ϵ,1n ∈ Rn.

The constraints w ≤ ϵ and −w ≤ ϵ are equivalent to |wi| ≤ ϵi for i = 1, . . . , n,
so for an optimal solution we must have ϵ ≥ 0 and |wi| = ϵi, that is,
∥w∥1 = ϵ1 + · · ·+ ϵn.
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Lasso Regression: Program (lasso2)
Program lasso regularization (lasso2):

minimize 1

2
ξ⊤ξ + τ1⊤

n ϵ

subject to
y − Xw = ξ

w ≤ ϵ

− w ≤ ϵ.

minimizing over ξ,w and ϵ, with y, ξ ∈ Rm, and w, ϵ,1n ∈ Rn.
The constraints w ≤ ϵ and −w ≤ ϵ are equivalent to |wi| ≤ ϵi for i = 1, . . . , n,
so for an optimal solution we must have ϵ ≥ 0 and |wi| = ϵi, that is,
∥w∥1 = ϵ1 + · · ·+ ϵn.
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Lasso Regression: Program (lasso1)
Solution
The best way to solve lasso minimization is to use ADMM.

Lasso minimization can be stated as the following optimization problem:

minimize (1/2) ∥Ax − b∥22 + τ ∥x∥1 ,

with A = X, b = y and x = w, to conform with our original formulation.
The lasso minimization is converted to the following problem in ADMM form:

minimize 1

2
∥Ax − b∥22 + τ ∥z∥1

subject to x − z = 0.
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subject to x − z = 0.
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Solution
The best way to solve lasso minimization is to use ADMM.
Lasso minimization can be stated as the following optimization problem:
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with A = X, b = y and x = w, to conform with our original formulation.
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subject to x − z = 0.
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Lasso Regression: ADMM Solution

Then the ADMM procedure is

xk+1 = (A⊤A + ρI)−1(A⊤b + ρ(zk − uk))

zk+1 = Sτ/ρ(xk+1 + uk)

uk+1 = uk + xk+1 − zk+1

where ρ > 0 is some given constant.

Since ρ > 0, the matrix A⊤A+ ρI is symmetric positive definite. Note that the
x-update looks like a ridge regression step.
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Lasso Regression: ADMM Solution

Then the ADMM procedure is

xk+1 = (A⊤A + ρI)−1(A⊤b + ρ(zk − uk))

zk+1 = Sτ/ρ(xk+1 + uk)

uk+1 = uk + xk+1 − zk+1

where ρ > 0 is some given constant.
Since ρ > 0, the matrix A⊤A+ ρI is symmetric positive definite. Note that the
x-update looks like a ridge regression step.
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Soft Thresholding Operator

In the above procedure, the function Sc known as a soft thresholding operator.
If v ∈ R it is given by

Sc(v) =


v − c if v > c
0 if |v| ≤ c
v + c if v < −c.
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Soft Thresholding Operator

Figure 1: The graph of Sc (when c = 2).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Soft Thresholding Operator

The operator Sc is extended to vectors in Rn component wise, that is, if
x = (x1, . . . , xn), then

Sc(x) = (Sc(x1), . . . , Sc(xn)).

The soft thresholding operator is one of the built-in functions in Matlab.
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Soft Thresholding Operator

The operator Sc is extended to vectors in Rn component wise, that is, if
x = (x1, . . . , xn), then

Sc(x) = (Sc(x1), . . . , Sc(xn)).

The soft thresholding operator is one of the built-in functions in Matlab.


