Fundamentals of Linear Algebra and Optimization Lasso Regression

Jean Gallier and Jocelyn Quaintance

CIS Department University of Pennsylvania jean@cis.upenn.edu

April 18, 2022

◆□→ ◆□→ ◆注→ ◆注→ 注

Scaling Ridge Regression

The main weakness of ridge regression is that the estimated weight vector w usually has many nonzero coefficients.

Scaling Ridge Regression

The main weakness of ridge regression is that the estimated weight vector *w* usually has many nonzero coefficients.

As a consequence, ridge regression does not scale up well.

Scaling Ridge Regression

The main weakness of ridge regression is that the estimated weight vector *w* usually has many nonzero coefficients.

As a consequence, ridge regression does not scale up well.

In practice we need methods capable of handling millions of parameters, or more.

Lasso Regression

A way to encourage sparsity of the vector w, which means that many coordinates of w are zero, is to replace the quadratic penalty function $\tau w^{\top} w = \tau ||w||_2^2$ by the penalty function $\tau ||w||_1$, with the ℓ^2 -norm replaced by the ℓ^1 -norm.

Lasso Regression

A way to encourage sparsity of the vector w, which means that many coordinates of w are zero, is to replace the quadratic penalty function $\tau w^{\top} w = \tau ||w||_2^2$ by the penalty function $\tau ||w||_1$, with the ℓ^2 -norm replaced by the ℓ^1 -norm.

This method was first proposed by Tibshirani arround 1996, under the name *lasso*, which stands for "least absolute selection and shrinkage operator."

Lasso Regression

A way to encourage sparsity of the vector w, which means that many coordinates of w are zero, is to replace the quadratic penalty function $\tau w^{\top} w = \tau ||w||_2^2$ by the penalty function $\tau ||w||_1$, with the ℓ^2 -norm replaced by the ℓ^1 -norm.

This method was first proposed by Tibshirani arround 1996, under the name *lasso*, which stands for "least absolute selection and shrinkage operator."

This method is also known as ℓ^1 -regularized regression, but this is not as cute as "lasso," which is used predominantly.

Lasso Regression: Notational Convention

Given a set of training data $\{(x_1, y_1), \ldots, (x_m, y_m)\}$, with $x_i \in \mathbb{R}^n$ and $y_i \in \mathbb{R}$, if X is the $m \times n$ matrix

$$X = \begin{pmatrix} x_1^{\dagger} \\ \vdots \\ x_m^{\top} \end{pmatrix},$$

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ ∃ りゅつ

in which the row vectors x_i^{\top} are the rows of X, then *lasso regression* is the following optimization problem

Lasso Regression: Problem (lasso1)

Program (lasso1):

$$\begin{array}{ll} \text{minimize} & \frac{1}{2} \boldsymbol{\xi}^\top \boldsymbol{\xi} + \boldsymbol{\tau} \| \boldsymbol{w} \|_1 \\ \text{subject to} & \\ & \boldsymbol{y} - \boldsymbol{X} \boldsymbol{w} = \boldsymbol{\xi}, \end{array}$$

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ ∃ りゅつ

minimizing over ξ and w, where $\tau > 0$ is some constant determining the influence of the regularizing term $||w||_1$.

Lasso Regression: (lasso1) Reduction

The difficulty with the regularizing term $||w||_1 = |w_1| + \cdots + |w_n|$ is that the map $w \mapsto ||w||_1$ is **not** differentiable for all w.

Lasso Regression: (lasso1) Reduction

The difficulty with the regularizing term $||w||_1 = |w_1| + \cdots + |w_n|$ is that the map $w \mapsto ||w||_1$ is **not** differentiable for all w.

This difficulty can be overcome by using subgradients, but the dual of the above program can also be obtained in an elementary fashion by using a trick, which is that if $x \in \mathbb{R}$, then

$$|x| = \max\{x, -x\}.$$

Lasso Regression: (lasso1) Reduction

The difficulty with the regularizing term $||w||_1 = |w_1| + \cdots + |w_n|$ is that the map $w \mapsto ||w||_1$ is **not** differentiable for all w.

This difficulty can be overcome by using subgradients, but the dual of the above program can also be obtained in an elementary fashion by using a trick, which is that if $x \in \mathbb{R}$, then

$$|x| = \max\{x, -x\}.$$

Using this trick, by introducing a vector $\epsilon \in \mathbb{R}^n$ of *nonnegative* variables, we can rewrite lasso minimization as follows:

Lasso Regression: Program (lasso2) Program lasso regularization (lasso2):

minimize $\frac{1}{2}\xi^{\top}\xi + \tau \mathbf{1}_{n}^{\top}\epsilon$
subject to
 $y - Xw = \xi$
 $w \le \epsilon$
 $-w \le \epsilon.$

minimizing over ξ , w and ϵ , with $y, \xi \in \mathbb{R}^m$, and $w, \epsilon, \mathbf{1}_n \in \mathbb{R}^n$.

◆□ → ◆□ → ◆三 → ▲□ → ◆□ →

Lasso Regression: Program (lasso2) Program lasso regularization (lasso2):

minimize $\frac{1}{2}\xi^{\top}\xi + \tau \mathbf{1}_{n}^{\top}\epsilon$
subject to $y - Xw = \xi$
 $w \le \epsilon$
 $-w \le \epsilon.$

minimizing over ξ , w and ϵ , with $y, \xi \in \mathbb{R}^m$, and $w, \epsilon, \mathbf{1}_n \in \mathbb{R}^n$. The constraints $w \leq \epsilon$ and $-w \leq \epsilon$ are equivalent to $|w_i| \leq \epsilon_i$ for i = 1, ..., n, so for an optimal solution we must have $\epsilon \geq 0$ and $|w_i| = \epsilon_i$, that is, $||w||_1 = \epsilon_1 + \cdots + \epsilon_n$.

Lasso Regression: Program (lasso1) Solution

The best way to solve lasso minimization is to use ADMM.

Lasso Regression: Program (lasso1) Solution

The best way to solve lasso minimization is to use ADMM. Lasso minimization can be stated as the following optimization problem:

minimize
$$(1/2) \|Ax - b\|_2^2 + \tau \|x\|_1$$
,

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ ∃ りゅつ

with A = X, b = y and x = w, to conform with our original formulation.

Lasso Regression: Program (lasso1) Solution

The best way to solve lasso minimization is to use ADMM. Lasso minimization can be stated as the following optimization problem:

minimize
$$(1/2) \|Ax - b\|_2^2 + \tau \|x\|_1$$
,

with A = X, b = y and x = w, to conform with our original formulation.

The lasso minimization is converted to the following problem in ADMM form:

minimize
$$\frac{1}{2} \|Ax - b\|_2^2 + \tau \|z\|_1$$

subject to $x - z = 0$.

・ロト・西ト・モート ヨー シタウ

Lasso Regression: ADMM Solution

Then the ADMM procedure is

$$x^{k+1} = (A^{\top}A + \rho I)^{-1}(A^{\top}b + \rho(z^k - u^k))$$
$$z^{k+1} = S_{\tau/\rho}(x^{k+1} + u^k)$$
$$u^{k+1} = u^k + x^{k+1} - z^{k+1}$$

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ ∃ りゅつ

where $\rho > 0$ is some given constant.

Lasso Regression: ADMM Solution

Then the ADMM procedure is

$$\begin{aligned} x^{k+1} &= (A^{\top}A + \rho I)^{-1} (A^{\top}b + \rho(z^k - u^k)) \\ z^{k+1} &= S_{\tau/\rho} (x^{k+1} + u^k) \\ u^{k+1} &= u^k + x^{k+1} - z^{k+1} \end{aligned}$$

where $\rho > 0$ is some given constant.

Since $\rho > 0$, the matrix $A^{\top}A + \rho I$ is symmetric positive definite. Note that the *x*-update looks like a *ridge regression step*.

In the above procedure, the function S_c known as a *soft thresholding operator*. If $v \in \mathbb{R}$ it is given by

$$S_c(\mathbf{v}) = \begin{cases} \mathbf{v} - \mathbf{c} & \text{if } \mathbf{v} > \mathbf{c} \\ 0 & \text{if } |\mathbf{v}| \le \mathbf{c} \\ \mathbf{v} + \mathbf{c} & \text{if } \mathbf{v} < -\mathbf{c}. \end{cases}$$

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ ∃ りゅつ

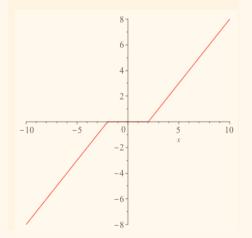


Figure 1: The graph of S_c (when c = 2).

The operator S_c is extended to vectors in \mathbb{R}^n component wise, that is, if $x = (x_1, \ldots, x_n)$, then

$$S_c(x) = (S_c(x_1), \ldots, S_c(x_n)).$$

The operator S_c is extended to vectors in \mathbb{R}^n component wise, that is, if $x = (x_1, \ldots, x_n)$, then

$$S_c(x) = (S_c(x_1), \ldots, S_c(x_n)).$$

The soft thresholding operator is one of the built-in functions in Matlab.