Fundamentals of Linear Algebra and Optimization Lasso Regression

Jean Gallier and Jocelyn Quaintance

CIS Department
University of Pennsylvania
jean@cis.upenn.edu
April 18, 2022

Scaling Ridge Regression

The main weakness of ridge regression is that the estimated weight vector w usually has many nonzero coefficients.

Scaling Ridge Regression

The main weakness of ridge regression is that the estimated weight vector w usually has many nonzero coefficients.

As a consequence, ridge regression does not scale up well.

Scaling Ridge Regression

The main weakness of ridge regression is that the estimated weight vector w usually has many nonzero coefficients.

As a consequence, ridge regression does not scale up well.
In practice we need methods capable of handling millions of parameters, or more.

Lasso Regression

A way to encourage sparsity of the vector w, which means that many coordinates of w are zero, is to replace the quadratic penalty function $\tau w^{\top} w=\tau\|w\|_{2}^{2}$ by the penalty function $\tau\|w\|_{1}$, with the ℓ^{2}-norm replaced by the ℓ^{1}-norm.

Lasso Regression

A way to encourage sparsity of the vector w, which means that many coordinates of w are zero, is to replace the quadratic penalty function $\tau w^{\top} w=\tau\|w\|_{2}^{2}$ by the penalty function $\tau\|w\|_{1}$, with the ℓ^{2}-norm replaced by the ℓ^{1}-norm.

This method was first proposed by Tibshirani arround 1996, under the name lasso, which stands for "least absolute selection and shrinkage operator."

Lasso Regression

A way to encourage sparsity of the vector w, which means that many coordinates of w are zero, is to replace the quadratic penalty function $\tau w^{\top} w=\tau\|w\|_{2}^{2}$ by the penalty function $\tau\|w\|_{1}$, with the ℓ^{2}-norm replaced by the ℓ^{1}-norm.

This method was first proposed by Tibshirani arround 1996, under the name lasso, which stands for "least absolute selection and shrinkage operator."

This method is also known as ℓ^{1}-regularized regression, but this is not as cute as "lasso," which is used predominantly.

Lasso Regression: Notational Convention

Given a set of training data $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\right\}$, with $x_{i} \in \mathbb{R}^{n}$ and $y_{i} \in \mathbb{R}$, if X is the $m \times n$ matrix

$$
X=\left(\begin{array}{c}
x_{1}^{\top} \\
\vdots \\
x_{m}^{\top}
\end{array}\right),
$$

in which the row vectors x_{i}^{\top} are the rows of X, then lasso regression is the following optimization problem

Lasso Regression: Problem (lasso1)

Program (lasso1):

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2} \xi^{\top} \xi+\tau\|w\|_{1} \\
\text { subject to } & \\
& y-X w=\xi,
\end{array}
$$

minimizing over ξ and w, where $\tau>0$ is some constant determining the influence of the regularizing term $\|w\|_{1}$.

Lasso Regression: (lasso1) Reduction

The difficulty with the regularizing term $\|w\|_{1}=\left|w_{1}\right|+\cdots+\left|w_{n}\right|$ is that the map $w \mapsto\|w\|_{1}$ is not differentiable for all w.

Lasso Regression: (lasso1) Reduction

The difficulty with the regularizing term $\|w\|_{1}=\left|w_{1}\right|+\cdots+\left|w_{n}\right|$ is that the map $w \mapsto\|w\|_{1}$ is not differentiable for all w.

This difficulty can be overcome by using subgradients, but the dual of the above program can also be obtained in an elementary fashion by using a trick, which is that if $x \in \mathbb{R}$, then

$$
|x|=\max \{x,-x\} .
$$

Lasso Regression: (lasso1) Reduction

The difficulty with the regularizing term $\|w\|_{1}=\left|w_{1}\right|+\cdots+\left|w_{n}\right|$ is that the map $w \mapsto\|w\|_{1}$ is not differentiable for all w.

This difficulty can be overcome by using subgradients, but the dual of the above program can also be obtained in an elementary fashion by using a trick, which is that if $x \in \mathbb{R}$, then

$$
|x|=\max \{x,-x\}
$$

Using this trick, by introducing a vector $\epsilon \in \mathbb{R}^{n}$ of nonnegative variables, we can rewrite lasso minimization as follows:

Lasso Regression: Program (lasso2)

Program lasso regularization (lasso2):

$$
\begin{aligned}
& \text { minimize } \frac{1}{2} \xi^{\top} \xi+\tau \mathbf{1}_{n}^{\top} \epsilon \\
& \text { subject to }
\end{aligned}
$$

$$
\begin{array}{r}
y-X w=\xi \\
w \leq \epsilon \\
-w \leq \epsilon .
\end{array}
$$

minimizing over ξ, w and ϵ, with $y, \xi \in \mathbb{R}^{m}$, and $w, \epsilon, \mathbf{1}_{n} \in \mathbb{R}^{n}$.

Lasso Regression: Program (lasso2)

Program lasso regularization (lasso2):

$$
\begin{aligned}
& \text { minimize } \frac{1}{2} \xi^{\top} \xi+\tau \mathbf{1}_{n}^{\top} \epsilon \\
& \text { subject to }
\end{aligned}
$$

$$
\begin{array}{r}
y-X w=\xi \\
w \leq \epsilon \\
-w \leq \epsilon .
\end{array}
$$

minimizing over ξ, w and ϵ, with $y, \xi \in \mathbb{R}^{m}$, and $w, \epsilon, \mathbf{1}_{n} \in \mathbb{R}^{n}$.
The constraints $w \leq \epsilon$ and $-w \leq \epsilon$ are equivalent to $\left|w_{i}\right| \leq \epsilon_{i}$ for $i=1, \ldots, n$, so for an optimal solution we must have $\epsilon \geq 0$ and $\left|w_{i}\right|=\epsilon_{i}$, that is, $\|w\|_{1}=\epsilon_{1}+\cdots+\epsilon_{n}$.

Lasso Regression: Program (lasso1) Solution

The best way to solve lasso minimization is to use ADMM.

Lasso Regression: Program (lasso1) Solution

The best way to solve lasso minimization is to use ADMM.
Lasso minimization can be stated as the following optimization problem:

$$
\operatorname{minimize}(1 / 2)\|A x-b\|_{2}^{2}+\tau\|x\|_{1},
$$

with $A=X, b=y$ and $x=w$, to conform with our original formulation.

Lasso Regression: Program (lasso1) Solution

The best way to solve lasso minimization is to use ADMM. Lasso minimization can be stated as the following optimization problem:

$$
\operatorname{minimize}(1 / 2)\|A x-b\|_{2}^{2}+\tau\|x\|_{1},
$$

with $A=X, b=y$ and $x=w$, to conform with our original formulation.
The lasso minimization is converted to the following problem in ADMM form:

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2}\|A x-b\|_{2}^{2}+\tau\|z\|_{1} \\
\text { subject to } & x-z=0
\end{array}
$$

Lasso Regression: ADMM Solution

Then the ADMM procedure is

$$
\begin{aligned}
x^{k+1} & =\left(A^{\top} A+\rho I\right)^{-1}\left(A^{\top} b+\rho\left(z^{k}-u^{k}\right)\right) \\
z^{k+1} & =S_{\tau / \rho}\left(x^{k+1}+u^{k}\right) \\
u^{k+1} & =u^{k}+x^{k+1}-z^{k+1}
\end{aligned}
$$

where $\rho>0$ is some given constant.

Lasso Regression: ADMM Solution

Then the ADMM procedure is

$$
\begin{aligned}
x^{k+1} & =\left(A^{\top} A+\rho I\right)^{-1}\left(A^{\top} b+\rho\left(z^{k}-u^{k}\right)\right) \\
z^{k+1} & =S_{\tau / \rho}\left(x^{k+1}+u^{k}\right) \\
u^{k+1} & =u^{k}+x^{k+1}-z^{k+1}
\end{aligned}
$$

where $\rho>0$ is some given constant.
Since $\rho>0$, the matrix $A^{\top} A+\rho l$ is symmetric positive definite. Note that the x-update looks like a ridge regression step.

Soft Thresholding Operator

In the above procedure, the function S_{c} known as a soft thresholding operator. If $v \in \mathbb{R}$ it is given by

$$
S_{c}(v)= \begin{cases}v-c & \text { if } v>c \\ 0 & \text { if }|v| \leq c \\ v+c & \text { if } v<-c .\end{cases}
$$

Soft Thresholding Operator

Figure 1: The graph of $S_{c}($ when $c=2)$.

Soft Thresholding Operator

The operator S_{c} is extended to vectors in \mathbb{R}^{n} component wise, that is, if $x=\left(x_{1}, \ldots, x_{n}\right)$, then

$$
S_{c}(x)=\left(S_{c}\left(x_{1}\right), \ldots, S_{c}\left(x_{n}\right)\right) .
$$

Soft Thresholding Operator

The operator S_{c} is extended to vectors in \mathbb{R}^{n} component wise, that is, if $x=\left(x_{1}, \ldots, x_{n}\right)$, then

$$
S_{c}(x)=\left(S_{c}\left(x_{1}\right), \ldots, S_{c}\left(x_{n}\right)\right) .
$$

The soft thresholding operator is one of the built-in functions in Matlab.

