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Ridge Regression for an Affine Function
It is easy to adapt the above method to learn an affine function
f(x) = x⊤w + b instead of a linear function f(x) = x⊤w, where b ∈ R. We
have the following optimization program

Program (RR3):

minimize ξ⊤ξ + Kw⊤w
subject to

y − Xw − b1 = ξ,

with y, ξ,1 ∈ Rm and w ∈ Rn. Note that in Program (RR3) minimization is
performed over ξ, w and b, but b is not penalized in the objective function.



Ridge Regression: Program (RR3) Solution

The objective function is convex.

The Lagrangian associated with this program is

L(ξ,w, b, λ) = ξ⊤ξ + Kw⊤w − w⊤X⊤λ− ξ⊤λ− b1⊤λ+ λ⊤y.

Since L is convex as a function of ξ, b,w, it has a minimum iff ∇Lξ,b,w = 0.



Ridge Regression: Dual Function of (RR3)
We get

λ = 2ξ

1⊤λ = 0

w =
1

2KX⊤λ = X⊤ ξ

K .

As before, if we set ξ = Kα, we obtain λ = 2Kα, w = X⊤α, and

G(α) = −Kα⊤(XX⊤ + KIm)α + 2Kα⊤y.



Ridge Regression: Dual Program of (RR3)

Since K > 0 and λ = 2Kα, the dual to ridge regression is the following
program

Program (DRR3):

minimize α⊤(XX⊤ + KIm)α− 2α⊤y
subject to

1⊤α = 0,

where the minimization is over α.



Ridge Regression: Solution to (DRR3)

Observe that up to the factor 1/2, this problem satisfies the conditions of a
previous proposition from the first lesson of the quadratic optimization lesson
with

A = (XX⊤ + KIm)−1

b = y
B = 1m

f = 0,

and x renamed as α.



Ridge Regression: Solution to (DRR3)

Therefore, it has a unique solution (α, µ) (beware that λ = 2Kα is not the λ
used before, which we rename as µ), which is the unique solution of the
KKT-equations (

XX⊤ + KIm 1m
1⊤

m 0

)(
α
µ

)
=

(
y
0

)
.



Ridge Regression: Solution to (DRR3)
Since the solution is

µ = (B⊤AB)−1(B⊤Ab − f), α = A(b − Bµ),

we get

µ = (1⊤(XX⊤ + KIm)−11)−11⊤(XX⊤ + KIm)−1y
α = (XX⊤ + KIm)−1(y − µ1).



Ridge Regression: Solution to (DRR3)

Interestingly b = µ, which is not obvious a priori.

Proposition. We have b = µ.



Ridge Regression: Program (RR3) Solution

In summary the KKT-equations determine both α and µ, and so w = X⊤α
and b as well.



Ridge Regression: Averaging Formula for b

There is also a useful expression of b as an average. We have

b = y −
n∑

j=1

Xjwj = y − (X1 · · · Xn)w,

where y is the mean of y and Xj is the mean of the jth column of X.



Ridge Regression: Affine Case Reduction

It can be shown that solving the Dual (DRR3) for α and obtaining w = X⊤α
is equivalent to solving our previous ridge regression Problem (RR2) applied
to the centered data ŷ = y − y1m and X̂ = X − X, where X is the m × n
matrix whose jth column is Xj1m, the vector whose coordinates are all equal to
the mean Xj of the jth column Xj of X.



Ridge Regression: Program (RR6)

Program (RR6) is equivalent to ridge regression without an intercept term
applied to the centered data ŷ = y − y1 and X̂ = X − X,
Program (RR6):

minimize ξ⊤ξ + Kw⊤w
subject to

ŷ − X̂w = ξ,

minimizing over ξ and w.



Ridge Regression: Program (RR6) Solution

If ŵ is the optimal solution of this program given by

ŵ = X̂⊤(X̂X̂⊤ + KIm)−1ŷ, (∗w6)

then b is given by
b = y − (X1 · · · Xn)ŵ.



Ridge Regression: Learning an Affine
Function

In practice Program (RR6) involving the centered data appears to be the
preferred one.



Ridge Regression: Illustrated Example
Example. Consider the data set (X, y1) with

X =



−10 11
−6 5
−2 4
0 0
1 2
2 −5
6 −4
10 −6


, y1 =



0
−2.5
0.5
−2
2.5
−4.2
1
4


as illustrated in Figure 1.



Ridge Regression: Illustrated Example
We find that y = −0.0875 and (X1,X2) = (0.125, 0.875). For the value
K = 5, we obtain

w =

(
0.9207
0.8677

)
, b = −0.9618,

for K = 0.1, we obtain

w =

(
1.1651
1.1341

)
, b = −1.2255,

and for K = 0.01,
w =

(
1.1709
1.1405

)
, b = −1.2318.

See Figure 2.



Ridge Regression: Illustrated Example
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Figure 1: The data set (X, y1).



Ridge Regression: Illustrated Example

Figure 2: The graph of the plane f(x, y) = 1.1709x+1.1405y− 1.2318 as an approximate fit
to the data (X, y1).



Ridge Regression: Illustrated Example

We conclude that the points (Xi, yi) (where Xi is the ith row of X) almost lie
on the plane of equation

x + y − z − 1 = 0,

and that f is almost the function given by f(x, y) = 1.1x + 1.1y − 1.2. See
Figures 3 and 4.



Ridge Regression: Illustrated Example

Figure 3: The graph of the plane f(x, y) = 1.1x + 1.1y − 1.2 as an approximate fit to the
data (X, y1).



Ridge Regression: Illustrated Example

Figure 4: A comparison of how the graphs of the planes corresponding to K = 1, 0.1, 0.01
and the salmon plane of equation f(x, y) = 1.1x + 1.1y − 1.2 approximate the data (X, y1).



Ridge Regression: Illustrated Example
If we change y1 to

y2 =
(
0 −2 1 −1 2 −4 1 3

)⊤
,

as evidenced by Figure 5, the exact solution is

w =

(
1
1

)
, b = −1,

and for K = 0.01, we find that

w =

(
0.9999
0.9999

)
, b = −0.9999.



Ridge Regression: Illustrated Example

Figure 5: The data (X, y2) is contained within the graph of the plane f(x, y) = x + y − 1.



Ridge Regression: Learning an Affine
Function

We can see how the choice of K affects the quality of the solution (w, b) by
computing the norm ∥ξ∥2 of the error vector ξ = ŷ − X̂w. We notice that the
smaller K is, the smaller is this norm.

As a least squares problem, the solution is given in terms of the pseudo-inverse
[X 1]+ of [X 1] by (

w
b

)
= [X 1]+y.


