Fundamentals of Linear Algebra and Optimization
 Ridge Regression: Learning an Affine Function

Jean Gallier and Jocelyn Quaintance

CIS Department
University of Pennsylvania
jean@cis.upenn.edu
April 13, 2022

Ridge Regression for an Affine Function

It is easy to adapt the above method to learn an affine function $f(x)=x^{\top} w+b$ instead of a linear function $f(x)=x^{\top} w$, where $b \in \mathbb{R}$. We have the following optimization program

Program (RR3):

$$
\begin{array}{ll}
\operatorname{minimize} & \xi^{\top} \xi+K w^{\top} w \\
\text { subject to } \\
& y-X w-b 1=\xi,
\end{array}
$$

with $y, \xi, \mathbf{1} \in \mathbb{R}^{m}$ and $w \in \mathbb{R}^{n}$. Note that in Program (RR3) minimization is performed over ξ, w and b, but b is not penalized in the objective function.

Ridge Regression: Program (RR3) Solution

The objective function is convex.
The Lagrangian associated with this program is

$$
L(\xi, w, b, \lambda)=\xi^{\top} \xi+K w^{\top} w-w^{\top} X^{\top} \lambda-\xi^{\top} \lambda-b \mathbf{1}^{\top} \lambda+\lambda^{\top} y .
$$

Since L is convex as a function of ξ, b, w, it has a minimum iff $\nabla L_{\xi, b, w}=0$.

Ridge Regression: Dual Function of (RR3)

We get

$$
\begin{aligned}
\lambda & =2 \xi \\
\mathbf{1}^{\top} \lambda & =0 \\
w & =\frac{1}{2 K} X^{\top} \lambda=X^{\top} \frac{\xi}{K} .
\end{aligned}
$$

As before, if we set $\xi=K \alpha$, we obtain $\lambda=2 K \alpha, w=X^{\top} \alpha$, and

$$
G(\alpha)=-K \alpha^{\top}\left(X X^{\top}+K I_{m}\right) \alpha+2 K \alpha^{\top} y .
$$

Ridge Regression: Dual Program of (RR3)

Since $K>0$ and $\lambda=2 K \alpha$, the dual to ridge regression is the following program

Program (DRR3):

$$
\begin{array}{ll}
\operatorname{minimize} & \alpha^{\top}\left(X X^{\top}+K I_{m}\right) \alpha-2 \alpha^{\top} y \\
\text { subject to } \\
& \mathbf{1}^{\top} \alpha=0,
\end{array}
$$

where the minimization is over α.

Ridge Regression: Solution to (DRR3)

Observe that up to the factor $1 / 2$, this problem satisfies the conditions of a previous proposition from the first lesson of the quadratic optimization lesson with

$$
\begin{aligned}
A & =\left(X X^{\top}+K I_{m}\right)^{-1} \\
b & =y \\
B & =\mathbf{1}_{m} \\
f & =0,
\end{aligned}
$$

and x renamed as α.

Ridge Regression: Solution to (DRR3)

Therefore, it has a unique solution (α, μ) (beware that $\lambda=2 K \alpha$ is not the λ used before, which we rename as μ), which is the unique solution of the KKT-equations

$$
\left(\begin{array}{cc}
X X^{\top}+K I_{m} & \mathbf{1}_{m} \\
\mathbf{1}_{m}^{\top} & 0
\end{array}\right)\binom{\alpha}{\mu}=\binom{y}{0} .
$$

Ridge Regression: Solution to (DRR3)

Since the solution is

$$
\mu=\left(B^{\top} A B\right)^{-1}\left(B^{\top} A b-f\right), \quad \alpha=A(b-B \mu),
$$

we get

$$
\begin{aligned}
& \mu=\left(\mathbf{1}^{\top}\left(X X^{\top}+K I_{m}\right)^{-1} \mathbf{1}\right)^{-1} \mathbf{1}^{\top}\left(X X^{\top}+K I_{m}\right)^{-1} y \\
& \alpha=\left(X X^{\top}+K I_{m}\right)^{-1}(y-\mu \mathbf{1}) .
\end{aligned}
$$

Ridge Regression: Solution to (DRR3)

Interestingly $b=\mu$, which is not obvious a priori.
Proposition. We have $b=\mu$.

Ridge Regression: Program (RR3) Solution

In summary the KKT-equations determine both α and μ, and so $w=X^{\top} \alpha$ and b as well.

Ridge Regression: Averaging Formula for b

There is also a useful expression of b as an average. We have

$$
b=\bar{y}-\sum_{j=1}^{n} \overline{X^{j}} w_{j}=\bar{y}-\left(\overline{X^{1}} \ldots \overline{X^{n}}\right) w,
$$

where \bar{y} is the mean of y and $\overline{X^{j}}$ is the mean of the j th column of X.

Ridge Regression: Affine Case Reduction

It can be shown that solving the Dual (DRR3) for α and obtaining $w=X^{\top} \alpha$ is equivalent to solving our previous ridge regression Problem (RR2) applied to the centered data $\widehat{y}=y-\bar{y} 1_{m}$ and $\widehat{X}=X-\bar{X}$, where \bar{X} is the $m \times n$ matrix whose j th column is $\bar{X} 1_{m}$, the vector whose coordinates are all equal to the mean $\overline{X^{j}}$ of the j th column X^{j} of X.

Ridge Regression: Program (RR6)

Program (RR6) is equivalent to ridge regression without an intercept term applied to the centered data $\widehat{y}=y-\bar{y} 1$ and $\widehat{X}=X-\bar{X}$, Program (RR6):
minimize $\quad \xi^{\top} \xi+K w^{\top} w$
subject to

$$
\widehat{y}-\widehat{x}_{w}=\xi,
$$

minimizing over ξ and w.

Ridge Regression: Program (RR6) Solution

If \widehat{w} is the optimal solution of this program given by

$$
\begin{equation*}
\widehat{w}=\widehat{X}^{\top}\left(\widehat{X} \widehat{X}^{\top}+K I_{m}\right)^{-1} \widehat{y}, \tag{6}
\end{equation*}
$$

then b is given by

$$
b=\bar{y}-\left(\overline{X^{1}} \cdots \overline{X^{n}}\right) \widehat{w} .
$$

Ridge Regression: Learning an Affine Function

In practice Program (RR6) involving the centered data appears to be the preferred one.

Ridge Regression: Illustrated Example

Example. Consider the data set $\left(X, y_{1}\right)$ with

$$
X=\left(\begin{array}{cc}
-10 & 11 \\
-6 & 5 \\
-2 & 4 \\
0 & 0 \\
1 & 2 \\
2 & -5 \\
6 & -4 \\
10 & -6
\end{array}\right), \quad y_{1}=\left(\begin{array}{c}
0 \\
-2.5 \\
0.5 \\
-2 \\
2.5 \\
-4.2 \\
1 \\
4
\end{array}\right)
$$

as illustrated in Figure 1.

Ridge Regression: Illustrated Example

We find that $\bar{y}=-0.0875$ and $\left(\overline{X^{1}}, \overline{X^{2}}\right)=(0.125,0.875)$. For the value $K=5$, we obtain

$$
w=\binom{0.9207}{0.8677}, \quad b=-0.9618,
$$

for $K=0.1$, we obtain

$$
w=\binom{1.1651}{1.1341}, \quad b=-1.2255,
$$

and for $K=0.01$,

$$
w=\binom{1.1709}{1.1405}, \quad b=-1.2318
$$

See Figure 2.

Ridge Regression: Illustrated Example

Figure 1: The data set $\left(X, y_{1}\right)$.

Ridge Regression: Illustrated Example

Figure 2: The graph of the plane $f(x, y)=1.1709 x+1.1405 y-1.2318$ as an approximate fit to the data $\left(X, y_{1}\right)$.

Ridge Regression: Illustrated Example

We conclude that the points $\left(X_{i}, y_{i}\right)$ (where X_{i} is the ith row of X) almost lie on the plane of equation

$$
x+y-z-1=0,
$$

and that f is almost the function given by $f(x, y)=1.1 x+1.1 y-1.2$. See Figures 3 and 4.

Ridge Regression: Illustrated Example

Figure 3: The graph of the plane $f(x, y)=1.1 x+1.1 y-1.2$ as an approximate fit to the data $\left(X, y_{1}\right)$.

Ridge Regression: Illustrated Example

Figure 4: A comparison of how the graphs of the planes corresponding to $K=1,0.1,0.01$ and the salmon plane of equation $f(x, y)=1.1 x+1.1 y-1.2$ approximate the data $\left(X, y_{1}\right)$.

Ridge Regression: Illustrated Example

If we change y_{1} to

$$
y_{2}=\left(\begin{array}{llllllll}
0 & -2 & 1 & -1 & 2 & -4 & 1 & 3
\end{array}\right)^{\top},
$$

as evidenced by Figure 5, the exact solution is

$$
w=\binom{1}{1}, \quad b=-1,
$$

and for $K=0.01$, we find that

$$
w=\binom{0.9999}{0.9999}, \quad b=-0.9999 .
$$

Ridge Regression: Illustrated Example

Figure 5: The data $\left(X, y_{2}\right)$ is contained within the graph of the plane $f(x, y)=x+y-1$.

Ridge Regression: Learning an Affine Function

We can see how the choice of K affects the quality of the solution (w, b) by computing the norm $\|\xi\|_{2}$ of the error vector $\xi=\widehat{y}-\widehat{X} w$. We notice that the smaller K is, the smaller is this norm.

As a least squares problem, the solution is given in terms of the pseudo-inverse $[X 1]^{+}$of $[X 1]$ by

$$
\binom{w}{b}=\left[\begin{array}{ll}
X & 1
\end{array}\right]^{+} y .
$$

