
Fundamentals of Linear Algebra
and Optimization
Ridge Regression

Jean Gallier and Jocelyn Quaintance

CIS Department
University of Pennsylvania

jean@cis.upenn.edu

May 7, 2020

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Ridge Regression
The problem of solving an overdetermined or underdetermined linear system
Aw = y, where A is an m × n matrix, arises as a “learning problem” in which
we observe a sequence of data ((a1, y1), . . . , (am, ym)), viewed as input-output
pairs of some unknown function f that we are trying to infer, where the ai are
the rows of the matrix A and yi ∈ R.

The values yi are sometimes called labels or responses.

The simplest kind of function is a linear function f(x) = x⊤w, where w ∈ Rn is
a vector of coefficients usually called a weight vector, or sometimes an
estimator.
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The problem of solving an overdetermined or underdetermined linear system
Aw = y, where A is an m × n matrix, arises as a “learning problem” in which
we observe a sequence of data ((a1, y1), . . . , (am, ym)), viewed as input-output
pairs of some unknown function f that we are trying to infer, where the ai are
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Ridge Regression: Least-Squares Solution

Since the problem is overdetermined and since our observations may be subject
to errors, we can’t solve for w exactly as the solution of the system Aw = y,
so instead we solve the least-square problem of minimizing ∥Aw − y∥22.

In an earlier module we showed that this problem can be solved using the
pseudo-inverse.

We know that the minimizers w are solutions of the normal equations
A⊤Aw = A⊤y, but when A⊤A is not invertible, such a solution is not unique
so some criterion has to be used to choose among these solutions.
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to errors, we can’t solve for w exactly as the solution of the system Aw = y,
so instead we solve the least-square problem of minimizing ∥Aw − y∥22.
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Ridge Regression: Least-Squares Solutions

One solution is to pick the unique vector w+ of smallest Euclidean norm
∥w+∥2 that minimizes ∥Aw − y∥22.

The solution w+ is given by w+ = A+y, where A+ is the pseudo-inverse of A.

The matrix A+ is obtained from an SVD of A, say A = VΣU⊤.

Namely, A+ = UΣ+V⊤, where Σ+ is the matrix obtained from Σ by replacing
every nonzero singular value σi in Σ by σ−1

i , leaving all zeros in place, and
then transposing.
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Ridge Regression: Regularization Term

The difficulty with this approach is that it requires knowing whether a singular
value is zero or very small but nonzero.

A very small nonzero singular value σ in Σ yields a very large value σ−1 in Σ+,
but σ = 0 remains 0 in Σ+.

This discontinuity phenomenon is not desirable and another way is to control
the size of w by adding a regularization term to ∥Aw − y∥2, and a natural
candidate is ∥w∥2.
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.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Ridge Regression: Notational Convention

It is customary to rename each column vector a⊤i as xi (where xi ∈ Rn) and to
rename the input data matrix A as X, so that the row vector x⊤i are the rows
of the m × n matrix X

X =

x⊤1...
x⊤m

 .
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Ridge Regression: Program (RR1)

Our optimization problem, called ridge regression, is

Program (RR1):

minimize ∥y − Xw∥2 + K ∥w∥2 ,

which by introducing the new variable ξ = y − Xw can be rewritten as
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Our optimization problem, called ridge regression, is

Program (RR1):
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which by introducing the new variable ξ = y − Xw can be rewritten as
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Ridge Regression: Program (RR2)

Program (RR2):

minimize ξ⊤ξ + Kw⊤w
subject to

y − Xw = ξ,

where K > 0 is some constant determining the influence of the regularizing
term w⊤w, and we minimize over ξ and w.
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Ridge Regression: Program (RR1) Solution
The objective function of the first version of our minimization problem can be
expressed as

J(w) = ∥y − Xw∥2 + K ∥w∥2

= w⊤(X⊤X + KIn)w − 2w⊤X⊤y + y⊤y.

The matrix X⊤X is symmetric positive semidefinite and K > 0, so the matrix
X⊤X + KIn is positive definite.

It follows that J is strictly convex, so by a previous theorem it has a unique
minimum iff ∇Jw = 0.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Ridge Regression: Program (RR1) Solution
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Ridge Regression: Program (RR1) Solution
Since

∇Jw = 2(X⊤X + KIn)w − 2X⊤y,
we deduce that

w = (X⊤X + KIn)−1X⊤y. (∗wp)

There is an interesting connection between the matrix (X⊤X + KIn)−1X⊤ and
the pseudo-inverse X+ of X.

Proposition. The limit of the matrix (X⊤X + KIn)−1X⊤ when K > 0 goes
to zero is the pseudo-inverse X+ of X.
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Ridge Regression: Program (RR1) Solution
Since
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we deduce that

w = (X⊤X + KIn)−1X⊤y. (∗wp)

There is an interesting connection between the matrix (X⊤X + KIn)−1X⊤ and
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Ridge Regression: Program (RR2) Solution
The dual function of the first formulation of our problem is a constant
function (with value the minimum of J) so it is not useful, but the second
formulation of our problem yields an interesting dual problem.

The Lagrangian is

L(ξ,w, λ) = ξ⊤ξ + Kw⊤w + (y − Xw − ξ)⊤λ

= ξ⊤ξ + Kw⊤w − w⊤X⊤λ− ξ⊤λ+ λ⊤y,

with λ, ξ, y ∈ Rm.
The Lagrangian L(ξ,w, λ), as a function of ξ and w with λ held fixed, is
obviously convex, in fact strictly convex.
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Ridge Regression: Dual Function of (RR2)

To derive the dual function G(λ) we minimize L(ξ,w, λ) with respect to ξ and
w.

Since L(ξ,w, λ) is (strictly) convex as a function of ξ and w, by a previous
theorem it has a minimum iff its gradient ∇Lξ,w is zero.
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theorem it has a minimum iff its gradient ∇Lξ,w is zero.
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Ridge Regression: Dual Function of (RR2)

Since
∇Lξ,w =

(
2ξ − λ

2Kw − X⊤λ

)
,

we get

λ = 2ξ

w =
1

2KX⊤λ = X⊤ ξ

K .
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Ridge Regression: Dual Function of (RR2)

The above suggests defining the variable α so that ξ = Kα, so we have
λ = 2Kα and w = X⊤α.

Then we obtain the dual function as a function of α by substituting the above
values of ξ, λ and w back in the Lagrangian, and we get

G(α) = −Kα⊤(XX⊤ + KIm)α + 2Kα⊤y.
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Ridge Regression: Problem (RR2) Solution

This is a strictly concave function so by a previous theorem its maximum is
achieved iff ∇Gα = 0, that is,

2K(XX⊤ + KIm)α = 2Ky,

which yields
α = (XX⊤ + KIm)−1y.
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Ridge Regression: Solution Comparison

Putting everything together we obtain

α = (XX⊤ + KIm)−1y
w = X⊤α

ξ = Kα,

which yields
w = X⊤(XX⊤ + KIm)−1y. (∗wd)
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Ridge Regression

Earlier in (∗wp) we found that

w = (X⊤X + KIn)−1X⊤y,

and it is easy to check that

(X⊤X + KIn)−1X⊤ = X⊤(XX⊤ + KIm)−1.

If n < m it is cheaper to use the formula on the left-hand side, but if m < n it
is cheaper to use the formula on the right-hand side.
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Ridge Regression

Earlier in (∗wp) we found that

w = (X⊤X + KIn)−1X⊤y,

and it is easy to check that

(X⊤X + KIn)−1X⊤ = X⊤(XX⊤ + KIm)−1.

If n < m it is cheaper to use the formula on the left-hand side, but if m < n it
is cheaper to use the formula on the right-hand side.


