Fundamentals of Linear Algebra and Optimization Ridge Regression

Jean Gallier and Jocelyn Quaintance

CIS Department
University of Pennsylvania
jean@cis.upenn.edu
May 7, 2020

Ridge Regression

The problem of solving an overdetermined or underdetermined linear system $A w=y$, where A is an $m \times n$ matrix, arises as a "learning problem" in which we observe a sequence of data $\left(\left(a_{1}, y_{1}\right), \ldots,\left(a_{m}, y_{m}\right)\right)$, viewed as input-output pairs of some unknown function f that we are trying to infer, where the a_{i} are the rows of the matrix A and $y_{i} \in \mathbb{R}$.

Ridge Regression

The problem of solving an overdetermined or underdetermined linear system $A w=y$, where A is an $m \times n$ matrix, arises as a "learning problem" in which we observe a sequence of data $\left(\left(a_{1}, y_{1}\right), \ldots,\left(a_{m}, y_{m}\right)\right)$, viewed as input-output pairs of some unknown function f that we are trying to infer, where the a_{i} are the rows of the matrix A and $y_{i} \in \mathbb{R}$.

The values y_{i} are sometimes called labels or responses.

Ridge Regression

The problem of solving an overdetermined or underdetermined linear system $A w=y$, where A is an $m \times n$ matrix, arises as a "learning problem" in which we observe a sequence of data $\left(\left(a_{1}, y_{1}\right), \ldots,\left(a_{m}, y_{m}\right)\right)$, viewed as input-output pairs of some unknown function f that we are trying to infer, where the a_{i} are the rows of the matrix A and $y_{i} \in \mathbb{R}$.

The values y_{i} are sometimes called labels or responses.
The simplest kind of function is a linear function $f(x)=x^{\top} w$, where $w \in \mathbb{R}^{n}$ is a vector of coefficients usually called a weight vector, or sometimes an estimator.

Ridge Regression: Least-Squares Solution

Since the problem is overdetermined and since our observations may be subject to errors, we can't solve for w exactly as the solution of the system $A w=y$, so instead we solve the least-square problem of minimizing $\|A w-y\|_{2}^{2}$.

Ridge Regression: Least-Squares Solution

Since the problem is overdetermined and since our observations may be subject to errors, we can't solve for w exactly as the solution of the system $A w=y$, so instead we solve the least-square problem of minimizing $\|A w-y\|_{2}^{2}$.

In an earlier module we showed that this problem can be solved using the pseudo-inverse.

Ridge Regression: Least-Squares Solution

Since the problem is overdetermined and since our observations may be subject to errors, we can't solve for w exactly as the solution of the system $A w=y$, so instead we solve the least-square problem of minimizing $\|A w-y\|_{2}^{2}$.

In an earlier module we showed that this problem can be solved using the pseudo-inverse.

We know that the minimizers w are solutions of the normal equations $A^{\top} A w=A^{\top} y$, but when $A^{\top} A$ is not invertible, such a solution is not unique so some criterion has to be used to choose among these solutions.

Ridge Regression: Least-Squares Solutions

One solution is to pick the unique vector w^{+}of smallest Euclidean norm $\left\|w^{+}\right\|_{2}$ that minimizes $\|A w-y\|_{2}^{2}$.

Ridge Regression: Least-Squares Solutions

One solution is to pick the unique vector w^{+}of smallest Euclidean norm $\left\|w^{+}\right\|_{2}$ that minimizes $\|A w-y\|_{2}^{2}$.

The solution w^{+}is given by $w^{+}=A^{+} y$, where A^{+}is the pseudo-inverse of A.

Ridge Regression: Least-Squares Solutions

One solution is to pick the unique vector w^{+}of smallest Euclidean norm $\left\|w^{+}\right\|_{2}$ that minimizes $\|A w-y\|_{2}^{2}$.

The solution w^{+}is given by $w^{+}=A^{+} y$, where A^{+}is the pseudo-inverse of A.
The matrix A^{+}is obtained from an SVD of A, say $A=V \Sigma U^{\top}$.

Ridge Regression: Least-Squares Solutions

One solution is to pick the unique vector w^{+}of smallest Euclidean norm $\left\|w^{+}\right\|_{2}$ that minimizes $\|A w-y\|_{2}^{2}$.

The solution w^{+}is given by $w^{+}=A^{+} y$, where A^{+}is the pseudo-inverse of A.

The matrix A^{+}is obtained from an SVD of A, say $A=V \Sigma U^{\top}$.

Namely, $A^{+}=U \Sigma^{+} V^{\top}$, where Σ^{+}is the matrix obtained from Σ by replacing every nonzero singular value σ_{i} in Σ by σ_{i}^{-1}, leaving all zeros in place, and then transposing.

Ridge Regression: Regularization Term

The difficulty with this approach is that it requires knowing whether a singular value is zero or very small but nonzero.

Ridge Regression: Regularization Term

The difficulty with this approach is that it requires knowing whether a singular value is zero or very small but nonzero.

A very small nonzero singular value σ in Σ yields a very large value σ^{-1} in Σ^{+}, but $\sigma=0$ remains 0 in Σ^{+}.

Ridge Regression: Regularization Term

The difficulty with this approach is that it requires knowing whether a singular value is zero or very small but nonzero.

A very small nonzero singular value σ in Σ yields a very large value σ^{-1} in Σ^{+}, but $\sigma=0$ remains 0 in Σ^{+}.

This discontinuity phenomenon is not desirable and another way is to control the size of w by adding a regularization term to $\|A w-y\|^{2}$, and a natural candidate is $\|w\|^{2}$.

Ridge Regression: Notational Convention

It is customary to rename each column vector a_{i}^{\top} as $x_{i}\left(\right.$ where $x_{i} \in \mathbb{R}^{n}$) and to rename the input data matrix A as X, so that the row vector x_{i}^{\top} are the rows of the $m \times n$ matrix X

$$
X=\left(\begin{array}{c}
x_{1}^{\top} \\
\vdots \\
x_{m}^{\top}
\end{array}\right) .
$$

Ridge Regression: Program (RR1)

Our optimization problem, called ridge regression, is

Ridge Regression: Program (RR1)

Our optimization problem, called ridge regression, is
Program (RR1):

$$
\operatorname{minimize} \quad\|y-X w\|^{2}+K\|w\|^{2},
$$

Ridge Regression: Program (RR1)

Our optimization problem, called ridge regression, is
Program (RR1):

$$
\operatorname{minimize} \quad\|y-X w\|^{2}+K\|w\|^{2},
$$

which by introducing the new variable $\xi=y-X w$ can be rewritten as

Ridge Regression: Program (RR2)

Program (RR2):

$$
\begin{array}{ll}
\operatorname{minimize} & \xi^{\top} \xi+K w^{\top} w \\
\text { subject to } \\
& y-X w=\xi
\end{array}
$$

where $K>0$ is some constant determining the influence of the regularizing term $w^{\top} w$, and we minimize over ξ and w.

Ridge Regression: Program (RR1) Solution

The objective function of the first version of our minimization problem can be expressed as

$$
\begin{aligned}
J(w) & =\|y-X w\|^{2}+K\|w\|^{2} \\
& =w^{\top}\left(X^{\top} X+K I_{n}\right) w-2 w^{\top} X^{\top} y+y^{\top} y .
\end{aligned}
$$

Ridge Regression: Program (RR1) Solution

The objective function of the first version of our minimization problem can be expressed as

$$
\begin{aligned}
J(w) & =\|y-X w\|^{2}+K\|w\|^{2} \\
& =w^{\top}\left(X^{\top} X+K I_{n}\right) w-2 w^{\top} X^{\top} y+y^{\top} y .
\end{aligned}
$$

The matrix $X^{\top} X$ is symmetric positive semidefinite and $K>0$, so the matrix $X^{\top} X+K I_{n}$ is positive definite.

Ridge Regression: Program (RR1) Solution

The objective function of the first version of our minimization problem can be expressed as

$$
\begin{aligned}
J(w) & =\|y-X w\|^{2}+K\|w\|^{2} \\
& =w^{\top}\left(X^{\top} X+K I_{n}\right) w-2 w^{\top} X^{\top} y+y^{\top} y .
\end{aligned}
$$

The matrix $X^{\top} X$ is symmetric positive semidefinite and $K>0$, so the matrix $X^{\top} X+K I_{n}$ is positive definite.

It follows that J is strictly convex, so by a previous theorem it has a unique minimum iff $\nabla J_{w}=0$.

Ridge Regression: Program (RR1) Solution

Since

$$
\nabla J_{w}=2\left(X^{\top} X+K I_{n}\right) w-2 X^{\top} y,
$$

we deduce that

$$
\begin{equation*}
w=\left(X^{\top} X+K I_{n}\right)^{-1} X^{\top} y . \tag{wp}
\end{equation*}
$$

Ridge Regression: Program (RR1) Solution

Since

$$
\nabla J_{w}=2\left(X^{\top} X+K I_{n}\right) w-2 X^{\top} y,
$$

we deduce that

$$
\begin{equation*}
w=\left(X^{\top} X+K I_{n}\right)^{-1} X^{\top} y . \tag{wp}
\end{equation*}
$$

There is an interesting connection between the matrix $\left(X^{\top} X+K I_{n}\right)^{-1} X^{\top}$ and the pseudo-inverse X^{+}of X.

Ridge Regression: Program (RR1) Solution

Since

$$
\nabla J_{w}=2\left(X^{\top} X+K I_{n}\right) w-2 X^{\top} y,
$$

we deduce that

$$
\begin{equation*}
w=\left(X^{\top} X+K I_{n}\right)^{-1} X^{\top} y . \tag{wp}
\end{equation*}
$$

There is an interesting connection between the matrix $\left(X^{\top} X+K I_{n}\right)^{-1} X^{\top}$ and the pseudo-inverse X^{+}of X.

Proposition. The limit of the matrix $\left(X^{\top} X+K I_{n}\right)^{-1} X^{\top}$ when $K>0$ goes to zero is the pseudo-inverse X^{+}of X.

Ridge Regression: Program (RR2) Solution

The dual function of the first formulation of our problem is a constant function (with value the minimum of J) so it is not useful, but the second formulation of our problem yields an interesting dual problem.

Ridge Regression: Program (RR2) Solution

The dual function of the first formulation of our problem is a constant function (with value the minimum of J) so it is not useful, but the second formulation of our problem yields an interesting dual problem.

The Lagrangian is

$$
\begin{aligned}
L(\xi, w, \lambda) & =\xi^{\top} \xi+K w^{\top} w+(y-X w-\xi)^{\top} \lambda \\
& =\xi^{\top} \xi+K w^{\top} w-w^{\top} X^{\top} \lambda-\xi^{\top} \lambda+\lambda^{\top} y,
\end{aligned}
$$

with $\lambda, \xi, y \in \mathbb{R}^{m}$.

Ridge Regression: Program (RR2) Solution

The dual function of the first formulation of our problem is a constant function (with value the minimum of J) so it is not useful, but the second formulation of our problem yields an interesting dual problem.

The Lagrangian is

$$
\begin{aligned}
L(\xi, w, \lambda) & =\xi^{\top} \xi+K w^{\top} w+(y-X w-\xi)^{\top} \lambda \\
& =\xi^{\top} \xi+K w^{\top} w-w^{\top} X^{\top} \lambda-\xi^{\top} \lambda+\lambda^{\top} y,
\end{aligned}
$$

with $\lambda, \xi, y \in \mathbb{R}^{m}$.
The Lagrangian $L(\xi, w, \lambda)$, as a function of ξ and w with λ held fixed, is obviously convex, in fact strictly convex.

Ridge Regression: Dual Function of (RR2)

To derive the dual function $G(\lambda)$ we minimize $L(\xi, w, \lambda)$ with respect to ξ and w.

Ridge Regression: Dual Function of (RR2)

To derive the dual function $G(\lambda)$ we minimize $L(\xi, w, \lambda)$ with respect to ξ and w.

Since $L(\xi, w, \lambda)$ is (strictly) convex as a function of ξ and w, by a previous theorem it has a minimum iff its gradient $\nabla L_{\xi, w}$ is zero.

Ridge Regression: Dual Function of (RR2)

Since

$$
\nabla L_{\xi, w}=\binom{2 \xi-\lambda}{2 K w-X^{\top} \lambda},
$$

Ridge Regression: Dual Function of (RR2)

Since

$$
\nabla L_{\xi, w}=\binom{2 \xi-\lambda}{2 K w-X^{\top} \lambda},
$$

we get

$$
\begin{aligned}
\lambda & =2 \xi \\
w & =\frac{1}{2 K} X^{\top} \lambda=X^{\top} \frac{\xi}{K} .
\end{aligned}
$$

Ridge Regression: Dual Function of (RR2)

The above suggests defining the variable α so that $\xi=K \alpha$, so we have $\lambda=2 K \alpha$ and $w=X^{\top} \alpha$.

Ridge Regression: Dual Function of (RR2)

The above suggests defining the variable α so that $\xi=K \alpha$, so we have $\lambda=2 K \alpha$ and $w=X^{\top} \alpha$.

Then we obtain the dual function as a function of α by substituting the above values of ξ, λ and w back in the Lagrangian, and we get

$$
G(\alpha)=-K \alpha^{\top}\left(X X^{\top}+K I_{m}\right) \alpha+2 K \alpha^{\top} y .
$$

Ridge Regression: Problem (RR2) Solution

This is a strictly concave function so by a previous theorem its maximum is achieved iff $\nabla G_{\alpha}=0$, that is,

$$
2 K\left(X X^{\top}+K I_{m}\right) \alpha=2 K y,
$$

which yields

$$
\alpha=\left(X X^{\top}+K I_{m}\right)^{-1} y .
$$

Ridge Regression: Solution Comparison

Putting everything together we obtain

$$
\begin{aligned}
\alpha & =\left(X X^{\top}+K I_{m}\right)^{-1} y \\
w & =X^{\top} \alpha \\
\xi & =K \alpha,
\end{aligned}
$$

which yields

$$
w=X^{\top}\left(X X^{\top}+K I_{m}\right)^{-1} y .
$$

Ridge Regression

Earlier in ($*_{\text {wp }}$) we found that

$$
w=\left(X^{\top} X+K I_{n}\right)^{-1} X^{\top} y,
$$

and it is easy to check that

$$
\left(X^{\top} X+K I_{n}\right)^{-1} X^{\top}=X^{\top}\left(X X^{\top}+K I_{m}\right)^{-1}
$$

Ridge Regression

Earlier in ($*_{\text {wp }}$) we found that

$$
w=\left(X^{\top} X+K I_{n}\right)^{-1} X^{\top} y,
$$

and it is easy to check that

$$
\left(X^{\top} X+K I_{n}\right)^{-1} X^{\top}=X^{\top}\left(X X^{\top}+K I_{m}\right)^{-1}
$$

If $n<m$ it is cheaper to use the formula on the left-hand side, but if $m<n$ it is cheaper to use the formula on the right-hand side.

