Fundamentals of Linear Algebra and Optimization Solving SVM Using ADMM

Jean Gallier and Jocelyn Quaintance

CIS Department
University of Pennsylvania
jean@cis.upenn.edu
June 5, 2020

Alternating Direction Method of Multipliers

The alternating direction method of multipliers, for short ADMM, is the best method known for solving optimization problems for which the function J to be optimized can be split into two independent parts, as $J(x, z)=f(x)+g(z)$, and to consider the Minimization Problem ($P_{\text {admm }}$),

$$
\begin{array}{ll}
\operatorname{minimize} & f(x)+g(z) \\
\text { subject to } & A x+B z=c
\end{array}
$$

for some $p \times n$ matrix A, some $p \times m$ matrix B, and with $x \in \mathbb{R}^{n}, z \in \mathbb{R}^{m}$, and $c \in \mathbb{R}^{p}$. We also assume that f and g are convex.

Iterative Steps of ADMM

The above problem can be solved using an iterative process applying to the augmented Lagrangian

$$
L_{\rho}(x, z, \lambda)=f(x)+g(z)+\lambda^{\top}(A x+B z-c)+(\rho / 2)\|A x+B z-c\|_{2}^{2},
$$

with $\lambda \in \mathbb{R}^{p}$ and for some $\rho>0$.

Iterative Steps of ADMM

The above problem can be solved using an iterative process applying to the augmented Lagrangian

$$
L_{\rho}(x, z, \lambda)=f(x)+g(z)+\lambda^{\top}(A x+B z-c)+(\rho / 2)\|A x+B z-c\|_{2}^{2},
$$

with $\lambda \in \mathbb{R}^{p}$ and for some $\rho>0$.
Given some initial values $\left(z^{0}, \lambda^{0}\right)$, the $A D M M$ method consists of the following iterative steps:

$$
\begin{aligned}
x^{k+1} & =\underset{x}{\arg \min } L_{\rho}\left(x, z^{k}, \lambda^{k}\right) \\
z^{k+1} & =\underset{z}{\arg \min } L_{\rho}\left(x^{k+1}, z, \lambda^{k}\right) \\
\lambda^{k+1} & =\lambda^{k}+\rho\left(A x^{k+1}+B z^{k+1}-c\right)
\end{aligned}
$$

ADMM Methodology of Sequential Updates

Instead of performing a minimization step jointly over x and z, as the step

$$
\left(x^{k+1}, z^{k+1}\right)=\underset{x, z}{\arg \min } L_{\rho}\left(x, z, \lambda^{k}\right),
$$

ADMM first performs an x-minimization step, and then a z-minimization step. Thus x and z are updated in an alternating or sequential fashion, which accounts for the term alternating direction.

Specializing ADMM to Quadratic Programs

We specialize ADMM to quadratic programs of the following form:

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2} x^{\top} P x+q^{\top} x+r \\
\text { subject to } & A x=b, x \geq 0
\end{array}
$$

where P is an $n \times n$ symmetric positive semidefinite matrix, $q \in \mathbb{R}^{n}, r \in \mathbb{R}$, and A is an $m \times n$ matrix of rank m.

Specializing ADMM to Quadratic Programs

The above program is converted in ADMM form as follows:

$$
\begin{array}{ll}
\text { minimize } & f(x)+g(z) \\
\text { subject to } & x-z=0,
\end{array}
$$

Specializing ADMM to Quadratic Programs

The above program is converted in ADMM form as follows:

$$
\begin{array}{ll}
\text { minimize } & f(x)+g(z) \\
\text { subject to } & x-z=0,
\end{array}
$$

with

$$
f(x)=\frac{1}{2} x^{\top} P x+q^{\top} x+r, \quad \operatorname{dom}(f)=\left\{x \in \mathbb{R}^{n} \mid A x=b\right\}
$$

Specializing ADMM to Quadratic Programs

The above program is converted in ADMM form as follows:

$$
\begin{array}{ll}
\text { minimize } & f(x)+g(z) \\
\text { subject to } & x-z=0,
\end{array}
$$

with

$$
f(x)=\frac{1}{2} x^{\top} P x+q^{\top} x+r, \quad \operatorname{dom}(f)=\left\{x \in \mathbb{R}^{n} \mid A x=b\right\},
$$

and

$$
g=I_{\mathbb{R}_{+}^{n}},
$$

the indicator function of the positive orthant \mathbb{R}_{+}^{n}.

Specializing ADMM to Quadratic Programs

Then ADMM consists of the following steps:

$$
\begin{aligned}
& x^{k+1}=\underset{x}{\arg \min }\left(f(x)+(\rho / 2)\left\|x-z^{k}+u^{k}\right\|_{2}^{2}\right) \\
& z^{k+1}=\left(x^{k+1}+u^{k}\right)_{+} \\
& u^{k+1}=u^{k}+x^{k+1}-z^{k+1}
\end{aligned}
$$

where $u^{k}=\lambda^{k} / \rho$ (this is the scaled version of ADMM). Here, v_{+}is the vector obtained by setting the negative components of v to zero.

Specializing ADMM to Quadratic Programs

 Then ADMM consists of the following steps:$$
\begin{aligned}
& x^{k+1}=\underset{x}{\arg \min }\left(f(x)+(\rho / 2)\left\|x-z^{k}+u^{k}\right\|_{2}^{2}\right) \\
& z^{k+1}=\left(x^{k+1}+u^{k}\right)_{+} \\
& u^{k+1}=u^{k}+x^{k+1}-z^{k+1}
\end{aligned}
$$

where $u^{k}=\lambda^{k} / \rho$ (this is the scaled version of ADMM). Here, v_{+}is the vector obtained by setting the negative components of v to zero. The x-update involves solving the KKT equations

$$
\left(\begin{array}{cc}
P+\rho l & A^{\top} \\
A & 0
\end{array}\right)\binom{x^{k+1}}{y}=\binom{-q+\rho\left(z^{k}-u^{k}\right)}{b} .
$$

Solving $\left(\mathrm{SVM}_{\text {s2 }^{2}}\right)$ Using $A D M M$

In order to solve $\left(\mathrm{SVM}_{52^{\prime}}\right)$ using ADMM we need to write the matrix corresponding to the constraints in equational form,

$$
\begin{aligned}
\sum_{i=1}^{p} \lambda_{i}-\sum_{j=1}^{q} \mu_{j} & =0 \\
\sum_{i=1}^{p} \lambda_{i}+\sum_{j=1}^{q} \mu_{j}-\gamma & =K_{m} \\
\lambda_{i}+\alpha_{i} & =K_{s}, \quad i=1, \ldots, p \\
\mu_{j}+\beta_{j} & =K_{s}, \quad j=1, \ldots, q,
\end{aligned}
$$

with $K_{m}=(p+q) K_{s} \nu$.

Constraint Matrix for the Dual of $\left(\mathrm{SVM}_{\mathrm{s}^{\prime}}\right)$

This is the $(p+q+2) \times(2(p+q)+1)$ matrix A given by

$$
A=\left(\begin{array}{ccccc}
\mathbf{1}_{p}^{\top} & -\mathbf{1}_{q}^{\top} & 0_{p}^{\top} & 0_{q}^{\top} & 0 \\
\mathbf{1}_{p}^{\top} & \mathbf{1}_{q}^{\top} & 0_{p}^{\top} & 0_{q}^{\top} & -1 \\
I_{p} & 0_{p, q} & I_{p} & 0_{p, q} & 0_{p} \\
0_{q, p} & I_{q} & 0_{q, p} & I_{q} & 0_{q}
\end{array}\right)
$$

Constraint Matrix for the Dual of $\left(\mathrm{SVM}_{\mathrm{s}^{\prime}}\right)$

This is the $(p+q+2) \times(2(p+q)+1)$ matrix A given by

$$
A=\left(\begin{array}{ccccc}
\mathbf{1}_{p}^{\top} & -\mathbf{1}_{q}^{\top} & 0_{p}^{\top} & 0_{q}^{\top} & 0 \\
\mathbf{1}_{p}^{\top} & \mathbf{1}_{q}^{\top} & 0_{p}^{\top} & 0_{q}^{\top} & -1 \\
I_{p} & 0_{p, q} & I_{p} & 0_{p, q} & 0_{p} \\
0_{q, p} & I_{q} & 0_{q, p} & I_{q} & 0_{q}
\end{array}\right) .
$$

We leave it as an exercise to prove that A has rank $p+q+2$. The right-hand side is

$$
c=\left(\begin{array}{c}
0 \\
K_{m} \\
K_{s} 1_{p+q}
\end{array}\right) .
$$

Solving $\left(\mathrm{SVM}_{\text {s2 }^{2}}\right)$ Using $A D M M$

The symmetric positive semidefinite $(p+q) \times(p+q)$ matrix P defining the quadratic functional is

$$
P=X^{\top} X, \quad \text { with } \quad X=\left(\begin{array}{llllll}
-u_{1} & \cdots & -u_{p} & v_{1} & \cdots & v_{q}
\end{array}\right),
$$

and

$$
q=0_{p+q} .
$$

Solving $\left(\mathrm{SVM}_{\text {s2 }^{2}}\right)$ Using $A D M M$

Since there are $2(p+q)+1$ Lagrange multipliers $(\lambda, \mu, \alpha, \beta, \gamma)$, the $(p+q) \times(p+q)$ matrix $X^{\top} X$ must be augmented with zero's to make it a $(2(p+q)+1) \times(2(p+q)+1)$ matrix P_{a} given by

$$
P_{a}=\left(\begin{array}{cc}
X^{\top} X & 0_{p+q, p+q+1} \\
0_{p+q+1, p+q} & 0_{p+q+1, p+q+1}
\end{array}\right),
$$

and similarly q is augmented with zeros as the vector $q_{a}=0_{2(p+q)+1}$.

Simplification of the Dual Constraints

Using the fact that the duality gap is zero it can be shown that if the primal problem ($\mathrm{SVM}_{52^{\prime}}$) has an optimal solution with $w \neq 0$, then $\eta \geq 0$.

Simplification of the Dual Constraints

Using the fact that the duality gap is zero it can be shown that if the primal problem ($\mathrm{SVM}_{52^{\prime}}$) has an optimal solution with $w \neq 0$, then $\eta \geq 0$.

Consequently we can drop the constraint $\eta \geq 0$ from the primal problem.

Simplification of the Dual Constraints

In this case there are $2(p+q)$ Lagrange multipliers $(\lambda, \mu, \alpha, \beta)$. It is easy to see that the objective function of the dual is unchanged and the set of constraints is

Simplification of the Dual Constraints

In this case there are $2(p+q)$ Lagrange multipliers $(\lambda, \mu, \alpha, \beta)$. It is easy to see that the objective function of the dual is unchanged and the set of constraints is

$$
\begin{aligned}
\sum_{i=1}^{p} \lambda_{i}-\sum_{j=1}^{q} \mu_{j} & =0 \\
\sum_{i=1}^{p} \lambda_{i}+\sum_{j=1}^{q} \mu_{j} & =K_{m} \\
\lambda_{i}+\alpha_{i} & =K_{s}, \quad i=1, \ldots, p \\
\mu_{j}+\beta_{j} & =K_{s}, \quad j=1, \ldots, q
\end{aligned}
$$

with $K_{m}=(p+q) K_{s} \nu$.

Simplifying the Constraint Matrix

The constraint matrix corresponding to this system of equations is the $(p+q+2) \times 2(p+q)$ matrix A_{2} given by

$$
A_{2}=\left(\begin{array}{cccc}
\mathbf{1}_{p}^{\top} & -\mathbf{1}_{q}^{\top} & 0_{p}^{\top} & 0_{q}^{\top} \\
\mathbf{1}_{p}^{\top} & \mathbf{1}_{q}^{\top} & 0_{p}^{\top} & 0_{q}^{\top} \\
I_{p} & 0_{p, q} & I_{p} & 0_{p, q} \\
0_{q, p} & I_{q} & 0_{q, p} & I_{q}
\end{array}\right) .
$$

Simplifying the Constraint Matrix

The constraint matrix corresponding to this system of equations is the $(p+q+2) \times 2(p+q)$ matrix A_{2} given by

$$
A_{2}=\left(\begin{array}{cccc}
\mathbf{1}_{p}^{\top} & -\mathbf{1}_{q}^{\top} & 0_{p}^{\top} & 0_{q}^{\top} \\
\mathbf{1}_{p}^{\top} & \mathbf{1}_{q}^{\top} & 0_{p}^{\top} & 0_{q}^{\top} \\
\boldsymbol{I}_{p} & 0_{p, q} & I_{p} & 0_{p, q} \\
0_{q, p} & I_{q} & 0_{q, p} & I_{q}
\end{array}\right) .
$$

We leave it as an exercise to prove that A_{2} has rank $p+q+2$. The right-hand side is

$$
c_{2}=\left(\begin{array}{c}
0 \\
K_{m} \\
K_{s} 1_{p+q}
\end{array}\right) .
$$

Solving $\left(\mathrm{SVM}_{\text {s2 }^{2}}\right)$ Using $A D M M$

The symmetric positive semidefinite $(p+q) \times(p+q)$ matrix P is

$$
P=X^{\top} X, \quad \text { with } \quad X=\left(\begin{array}{llllll}
-u_{1} & \cdots & -u_{p} & v_{1} & \cdots & v_{q}
\end{array}\right),
$$

and $q=0_{p+q}$.

Solving $\left(\mathrm{SVM}_{\text {s2 }^{2}}\right)$ Using ADMM

The symmetric positive semidefinite $(p+q) \times(p+q)$ matrix P is

$$
P=X^{\top} X, \quad \text { with } \quad X=\left(\begin{array}{llllll}
-u_{1} & \cdots & -u_{p} & v_{1} & \cdots & v_{q}
\end{array}\right),
$$

and $q=0_{p+q}$.
Since there are $2(p+q)$ Lagrange multipliers, the $(p+q) \times(p+q)$ matrix $X^{\top} X$ must be augmented with zero's to make it a $2(p+q) \times 2(p+q)$ matrix $P_{2 a}$ given by

$$
P_{2 a}=\left(\begin{array}{cc}
X^{\top} X & 0_{p+q, p+q} \\
0_{p+q, p+q} & 0_{p+q, p+q}
\end{array}\right),
$$

and similarly q is augmented with zeros as the vector $q_{2 a}=0_{2(p+q)}$.

Matlab Illustrations of ADMM Solutions

The above method was implemented in Matlab with $\rho=10$.
We ran our program on two sets of 30 points each generated at random using the following code which calls the function runSVMs 2 pbv3:

```
rho = 10;
u16 = 10.1*randn(2,30)+7 ;
v16 = -10.1*randn (2,30)-7;
[~,~,~,~,~,~,w3] = runSVMs2pbv3(0.37,rho,u16,v16,1/60)
```


Matlab Illustrations of ADMM Solutions

We picked $K_{s}=1 / 60$ and various values of ν starting with $\nu=0.37$, which appears to be the smallest value for which the method converges; see Figure 1.

Matlab Illustrations of ADMM Solutions

We picked $K_{s}=1 / 60$ and various values of ν starting with $\nu=0.37$, which appears to be the smallest value for which the method converges; see Figure 1.

Reducing ν below $\nu=0.37$ has the effect that $p_{f}, q_{f}, p_{m}, q_{m}$ decrease but the following situation arises. Shrinking η a little bit has the effect that $p_{f}=9, q_{f}=10, p_{m}=10, q_{m}=11$.

Matlab Illustrations of ADMM Solutions

Then $\max \left\{p_{f}, q_{f}\right\}=\min \left\{p_{m}, q_{m}\right\}=10$, so the only possible value for ν is $\nu=20 / 60=1 / 3=0.3333333 \cdots$.

Matlab Illustrations of ADMM Solutions

Then $\max \left\{p_{f}, q_{f}\right\}=\min \left\{p_{m}, q_{m}\right\}=10$, so the only possible value for ν is $\nu=20 / 60=1 / 3=0.3333333 \cdots$.

When we run our program with $\nu=1 / 3$, it returns a value of η less than 10^{-13} and a value of w whose components are also less than 10^{-13}. This is probably due to numerical precision. Values of ν less than $1 / 3$ cause the same problem. It appears that the geometry of the problem constrains the values of $p_{f}, q_{f}, p_{m}, q_{m}$ in such a way that it has no solution other than $w=0$ and $\eta=0$.

Solving $\left(\mathrm{SVM}_{\text {s2 }^{\prime}}\right)$ Using $A D M M$

Figure 1: Running $\left(\mathrm{SVM}_{s 2^{\prime}}\right)$ on two sets of 30 points; $\nu=0.37$.

Matlab Illustrations of ADMM Solutions

Figure 2 shows the result of running the program with $\nu=0.51$. We have $p_{f}=15, q_{f}=16, p_{m}=16, q_{m}=16$. Interestingly, for $\nu=0.5$, we run into the singular situation where there is only one support vector and $\nu=2 p_{f} /(p+q)$.

Solving $\left(\mathrm{SVM}_{\text {s2 }^{\prime}}\right)$ Using $A D M M$

Figure 2: Running $\left(\mathrm{SVM}_{s 2^{\prime}}\right)$ on two sets of 30 points; $\nu=0.51$.

Solving $\left(\mathrm{SVM}_{\text {s2 }^{\prime}}\right)$ Using $A D M M$

Figure 3: Running $\left(\mathrm{SVM}_{s 2^{\prime}}\right)$ on two sets of 30 points; $\nu=0.71$.

Matlab Illustrations of ADMM Solutions

Next Figure 3 shows the result of running the program with $\nu=0.71$. We have $p_{f}=21, q_{f}=21, p_{m}=22, q_{m}=23$. Interestingly, for $\nu=0.7$, we run into the singular situation where there are no support vectors.

Matlab Illustrations of ADMM Solutions

Next Figure 3 shows the result of running the program with $\nu=0.71$. We have $p_{f}=21, q_{f}=21, p_{m}=22, q_{m}=23$. Interestingly, for $\nu=0.7$, we run into the singular situation where there are no support vectors.

For our next to the last run, Figure 4 shows the result of running the program with $\nu=0.95$. We have $p_{f}=28, q_{f}=28, p_{m}=29, q_{m}=29$.

Solving $\left(\mathrm{SVM}_{\text {s2 }^{2}}\right)$ Using $A D M M$

Figure 4: Running $\left(\mathrm{SVM}_{s 2^{\prime}}\right)$ on two sets of 30 points; $\nu=0.95$.

Matlab Illustrations of ADMM Solutions

Figure 5 shows the result of running the program with $\nu=0.97$. We have $p_{f}=29, q_{f}=29, p_{m}=30, q_{m}=30$, which shows that the largest margin has been achieved.

Matlab Illustrations of ADMM Solutions

Figure 5 shows the result of running the program with $\nu=0.97$. We have $p_{f}=29, q_{f}=29, p_{m}=30, q_{m}=30$, which shows that the largest margin has been achieved.

However, after 80000 iterations the dual residual is less than 10^{-12} but the primal residual is approximately 10^{-4} (our tolerance for convergence is 10^{-10}, which is quite high). Nevertheless the result is visually very good.

Solving $\left(\mathrm{SVM}_{\text {s2 }^{\prime}}\right)$ Using $A D M M$

Figure 5: Running $\left(\mathrm{SVM}_{s 2^{\prime}}\right)$ on two sets of 30 points; $\nu=0.97$.

