Fundamentals of Linear Algebra and Optimization Classification of the Data Points in Terms of nu

Jean Gallier and Jocelyn Quaintance

CIS Department University of Pennsylvania

jean@cis.upenn.edu

May 6, 2020

For a finer classification of the points it turns out to be convenient to consider the ratio

$$\nu = \frac{K_m}{(p+q)K_s}.$$

First note that in order for the constraints to be satisfied, *some* relationship between K_s and K_m must hold. In addition to the constraints

$$0 \leq \lambda_i \leq K_s, \quad 0 \leq \mu_j \leq K_s,$$

we also have the constraints

$$\sum_{i=1}^{p} \lambda_{i} = \sum_{j=1}^{q} \mu_{j}$$
$$\sum_{i=1}^{p} \lambda_{i} + \sum_{j=1}^{q} \mu_{j} \ge K_{m},$$

which imply that

$$\sum_{i=1}^p \lambda_i \geq \frac{\mathcal{K}_m}{2} \quad \text{and} \quad \sum_{j=1}^q \mu_j \geq \frac{\mathcal{K}_m}{2}.$$

(†)

Relationship Between K_s and K_m

Since λ, μ are all nonnegative, if $\lambda_i = K_s$ for all *i* and if $\mu_j = K_s$ for all *j*, then

$$rac{\mathcal{K}_m}{2} \leq \sum_{i=1}^p \lambda_i \leq p\mathcal{K}_s \quad ext{and} \quad rac{\mathcal{K}_m}{2} \leq \sum_{j=1}^q \mu_j \leq q\mathcal{K}_s,$$

so these constraints are not satisfied unless $K_m \leq \min\{2pK_s, 2qK_s\}$, so we assume that $K_m \leq \min\{2pK_s, 2qK_s\}$.

Definition of ν for $(SVM_{s2'})$

The equations in (†) also imply that there is some i_0 such that $\lambda_{i_0} > 0$ and some j_0 such that $\mu_{j_0} > 0$, and so $p_m \ge 1$ and $q_m \ge 1$.

For a finer classification of the points we find it convenient to define $\nu>0$ such that

$$\nu = \frac{K_m}{(p+q)K_s},$$

so that the objective function $J(w, \epsilon, \xi, b, \eta)$ is given by

$$J(\boldsymbol{w},\epsilon,\xi,\boldsymbol{b},\eta) = \frac{1}{2}\boldsymbol{w}^{\top}\boldsymbol{w} + (\boldsymbol{p}+\boldsymbol{q})\boldsymbol{K}_{\boldsymbol{s}}\left(-\nu\eta + \frac{1}{\boldsymbol{p}+\boldsymbol{q}}\begin{pmatrix}\epsilon^{\top} & \xi^{\top}\end{pmatrix}\mathbf{1}_{\boldsymbol{p}+\boldsymbol{q}}\right).$$

Normalization of ν for $(SVM_{s2'})$

Observe that the condition $K_m \leq \min\{2pK_s, 2qK_s\}$ is equivalent to

$$\nu \leq \min\left\{\frac{2p}{p+q}, \frac{2q}{p+q}
ight\} \leq 1.$$

Since we obtain an equivalent problem by rescaling by a common positive factor, theoretically it is convenient to normalize K_s as

$$K_{s} = \frac{1}{p+q}$$

in which case $K_m = \nu$.

This method is called the ν -support vector machine.

Actually, to program the method, it may be more convenient assume that K_s is arbitrary. This helps in avoiding λ_i and μ_j to become to small when p + q is relatively large.

The equations (\dagger) and the box inequalities

$$0 \le \lambda_i \le K_s, \quad 0 \le \mu_j \le K_s$$

also imply the following facts:

Proposition. If Problem (SVM_{s2'}) has an optimal solution with $w \neq 0$ and $\eta > 0$, then the following facts hold:

- (1) Let p_f be the number of points u_i such that $\lambda_i = K_s$, and let q_f the number of points v_j such that $\mu_j = K_s$. Then $p_f, q_f \leq \nu(p+q)/2$.
- (2) Let p_m be the number of points u_i such that $\lambda_i > 0$, and let q_m the number of points v_j such that $\mu_j > 0$. Then $p_m, q_m \ge \nu(p+q)/2$. We have $p_m \ge 1$ and $q_m \ge 1$.

(3) If
$$p_f \ge 1$$
 or $q_f \ge 1$, then $\nu \ge 2/(p+q)$.

Condition for Separablity of Data Points

Observe that $p_f = q_f = 0$ means that there are no points in the open slab containing the separating hyperplane, namely, the points u_i and the points v_j are separable.

So if the points u_i and the points v_j are not separable, then we must pick ν such that $2/(p+q) \le \nu \le \min\{2p/(p+q), 2q/(p+q)\}$ for the method to succeed. Otherwise, the method is trying to produce a solution where w = 0 and $\eta = 0$, and it does not converge (γ is nonzero).

Upper and Lower Bounds for ν of $(SVM_{s2'})$

Actually, above Proposition yields more accurate bounds on ν for the method to converge, namely

$$\max\left\{\frac{2p_f}{p+q},\frac{2q_f}{p+q}\right\} \le \nu \le \min\left\{\frac{2p_m}{p+q},\frac{2q_m}{p+q}\right\}.$$

By a previous remark, $p_f \leq p_m$ and $q_f \leq q_m$, the first inequality being strict if there is some *i* such that $0 < \lambda_i < K$, and the second inequality being strict if there is some *j* such that $0 < \mu_j < K$. This will be the case under the **Standard Margin Hypothesis.**

Value of ν Controls Width of Slab

Observe that a small value of ν keeps p_f and q_f small, which is achieved if the δ -slab is narrow (to avoid having points on the wrong sides of the margin hyperplanes).

A large value of ν allows p_m and q_m to be fairly large, which is achieved if the δ -slab is wide.

Thus the smaller ν is, the narrower the $\delta\mbox{-slab}$ is, and the larger ν is, the wider the $\delta\mbox{-slab}$ is.