Fundamentals of Linear Algebra and Optimization Classification of Data Points: Terminology

Jean Gallier and Jocelyn Quaintance

CIS Department University of Pennsylvania

jean@cis.upenn.edu

April 25, 2024

Classification of Data Points for $(SVM_{s2'})$

In this module we introduce the concepts necessary to discuss a classification of the points u_i and v_j in terms of Lagrange multipliers.

If $(w, \eta, \epsilon, \xi, b)$ is an optimal solution of Problem $(SVM_{s2'})$ with $w \neq 0$ and $\eta \neq 0$, then the complementary slackness conditions yield a classification of the points u_i and v_j in terms of the values of λ and μ .

Indeed, we have
$$\epsilon_i \alpha_i = 0$$
 for $i = 1, ..., p$ and $\xi_j \beta_j = 0$ for $j = 1, ..., q$.

Classification of Data Points for $(SVM_{s2'})$

Also, if $\lambda_i > 0$, then the corresponding constraint is active, and similarly if $\mu_j > 0$. Since $\lambda_i + \alpha_i = K_s$, it follows that $\epsilon_i \alpha_i = 0$ iff $\epsilon_i (K_s - \lambda_i) = 0$, and since $\mu_j + \beta_j = K_s$, we have $\xi_j \beta_j = 0$ iff $\xi_j (K_s - \mu_j) = 0$.

Thus if $\epsilon_i > 0$, then $\lambda_i = K_s$, and if $\xi_j > 0$, then $\mu_j = K_s$.

Also, if $\lambda_i < K_s$, then $\epsilon_i = 0$ and u_i is correctly classified, and similarly if $\mu_j < K_s$, then $\xi_j = 0$ and v_j is correctly classified.

Definition of Support Vectors

Definition. The vectors u_i on the blue margin $H_{w,b+\eta}$ and the vectors v_j on the red margin $H_{w,b-\eta}$ are called *support vectors*. Support vectors correspond to vectors u_i for which $w^{\top}u_i - b - \eta = 0$ (which implies $\epsilon_i = 0$), and vectors v_j for which $w^{\top}v_j - b + \eta = 0$ (which implies $\xi_j = 0$).

Support vectors u_i such that $0 < \lambda_i < K_s$ and support vectors v_j such that $0 < \mu_j < K_s$ are support vectors of type 1.

Support Vectors of Type 1 and Type 2

Support vectors of type 1 play a special role so we denote the sets of indices associated with them by

$$I_{\lambda} = \{ i \in \{1, \dots, p\} \mid 0 < \lambda_i < K_s \}$$
$$I_{\mu} = \{ j \in \{1, \dots, q\} \mid 0 < \mu_j < K_s \}.$$

We denote their cardinalities by $numsvl_1 = |I_{\lambda}|$ and $numsvm_1 = |I_{\mu}|$.

Support vectors u_i such that $\lambda_i = K_s$ and support vectors v_j such that $\mu_j = K_s$ are support vectors of type 2.

Exceptional Support Vectors; Failing the Margin

Support vectors u_i such that $\lambda_i = 0$ and support vectors v_j such that $\mu_j = 0$ are *exceptional support vectors*.

The vectors u_i for which $\lambda_i = K_s$ and the vectors v_j for which $\mu_j = K_s$ are said to *fail the margin*.

The sets of indices associated with the vectors failing the margin are denoted by

$$K_{\lambda} = \{i \in \{1, \dots, p\} \mid \lambda_i = K_s\}$$
$$K_{\mu} = \{j \in \{1, \dots, q\} \mid \mu_j = K_s\}.$$

We denote their cardinalities by $p_f = |K_\lambda|$ and $q_f = |K_\mu|$.

Definition of Margin at Most δ

Definition. Vectors u_i such that $\lambda_i > 0$ and vectors v_j such that $\mu_j > 0$ are said to *have margin at most* δ .

The sets of indices associated with these vectors are denoted by

$$I_{\lambda>0} = \{i \in \{1, \dots, p\} \mid \lambda_i > 0\}$$

$$I_{\mu>0} = \{j \in \{1, \dots, q\} \mid \mu_j > 0\}.$$

We denote their cardinalities by $p_m = |I_{\lambda>0}|$ and $q_m = |I_{\mu>0}|$.

Definition of Strictly Failing the Margin

Vectors u_i such that $\epsilon_i > 0$ and vectors v_j such that $\xi_j > 0$ are said to *strictly fail the margin*.

The corresponding sets of indices are denoted by

$$E_{\lambda} = \{i \in \{1, \dots, p\} \mid \epsilon_i > 0\} \\ E_{\mu} = \{j \in \{1, \dots, q\} \mid \xi_j > 0\}.$$

We write $p_{sf} = |E_{\lambda}|$ and $q_{sf} = |E_{\mu}|$.

Classification of the Points

We have the inclusions $E_{\lambda} \subseteq K_{\lambda}$ and $E_{\mu} \subseteq K_{\mu}$.

The difference between the first sets and the second sets is that the second sets may contain support vectors of type 1 such that $\lambda_i = K_s$ and $\epsilon_i = 0$, or $\mu_j = K_s$ and $\xi_j = 0$.

We also have the equations $I_{\lambda} \cup (K_{\lambda} - E_{\lambda}) \cup E_{\lambda} = I_{\lambda>0}$ and $I_{\mu} \cup (K_{\mu} - E_{\mu}) \cup E_{\mu} = I_{\mu>0}$, and the inequalities $p_{sf} \leq p_f \leq p_m$ and $q_{sf} \leq q_f \leq q_m$.

Classification of the Points

The blue points u_i of index $i \in I_{\lambda>0}$ are classified as follows:

(1) If i ∈ I_λ, then u_i is a support vector of type 1 (λ_i < K_s).
(2) If i ∈ K_λ - E_λ, then u_i is a support vector of type 2 (λ_i = K_s).
(3) If i ∈ E_λ, then u_i strictly fails the margin, that is ε_i > 0.

Similarly the red points v_j of index $j \in I_{\mu>0}$ are classified as follows:

(1) If j ∈ I_μ, then v_j is a support vector of type 1 (μ_j < K_s).
(2) If j ∈ K_μ − E_μ, then v_j is a support vector of type 2 (μ_j = K_s).
(3) If j ∈ E_μ, then v_j strictly fails the margin, that is ξ_j > 0.

Classification of the Points

Note that $p_m - p_f$ is the number of blue support vectors of type 1 and $q_m - q_f$ is the number of red support vectors of type 1.

The remaining blue points u_i for which $\lambda_i = 0$ are either exceptional support vectors or they are (strictly) in the open half-space corresponding to the blue side.

Similarly, the remaining red points v_j for which $\mu_j = 0$ are either exceptional support vectors or they are (strictly) in the open half-space corresponding to the red side.

Classification of the Points In the example below (from the last lesson), we have numsvl1 = 2, numsvm1 = 1, $p_{sf} = p_f = 2$, $q_{sf} = q_f = 3$, $p_m = 4$, $q_m = 4$.

Figure 1: Soft margin ν -SVM for two sets of six points for $\nu = 0.6$.