Fundamentals of Linear Algebra and Optimization
 Classification of Data Points: Terminology

Jean Gallier and Jocelyn Quaintance

CIS Department
University of Pennsylvania
jean@cis.upenn.edu
May 6, 2020

Classification of Data Points for $\left(\mathrm{SVM}_{s 2^{\prime}}\right)$

In this module we introduce the concepts necessary to discuss a classification of the points u_{i} and v_{j} in terms of Lagrange multipliers.

If $(w, \eta, \epsilon, \xi, b)$ is an optimal solution of Problem $\left(\mathrm{SVM}_{s 2^{\prime}}\right)$ with $w \neq 0$ and $\eta \neq 0$, then the complementary slackness conditions yield a classification of the points u_{i} and v_{j} in terms of the values of λ and μ.

Indeed, we have $\epsilon_{i} \alpha_{i}=0$ for $i=1, \ldots, p$ and $\xi_{j} \beta_{j}=0$ for $j=1, \ldots, q$.

Classification of Data Points for $\left(\mathrm{SVM}_{52^{\prime}}\right)$

Also, if $\lambda_{i}>0$, then the corresponding constraint is active, and similarly if $\mu_{j}>0$. Since $\lambda_{i}+\alpha_{i}=K_{s}$, it follows that $\epsilon_{i} \alpha_{i}=0$ iff $\epsilon_{i}\left(K_{s}-\lambda_{i}\right)=0$, and since $\mu_{j}+\beta_{j}=K_{s}$, we have $\xi_{j} \beta_{j}=0$ iff $\xi_{j}\left(K_{s}-\mu_{j}\right)=0$.

Thus if $\epsilon_{i}>0$, then $\lambda_{i}=K_{s}$, and if $\xi_{j}>0$, then $\mu_{j}=K_{s}$.
Also, if $\lambda_{i}<K_{s}$, then $\epsilon_{i}=0$ and u_{i} is correctly classified, and similarly if $\mu_{j}<K_{s}$, then $\xi_{j}=0$ and v_{j} is correctly classified.

Definition of Support Vectors

Definition. The vectors u_{i} on the blue margin $H_{w, b+\eta}$ and the vectors v_{j} on the red margin $H_{w, b-\eta}$ are called support vectors. Support vectors correspond to vectors u_{i} for which $w^{\top} u_{i}-b-\eta=0$ (which implies $\epsilon_{i}=0$), and vectors v_{j} for which $w^{\top} v_{j}-b+\eta=0$ (which implies $\xi_{j}=0$).

Support vectors u_{i} such that $0<\lambda_{i}<K_{s}$ and support vectors v_{j} such that $0<\mu_{j}<K_{s}$ are support vectors of type 1 .

Support Vectors of Type 1

Support vectors of type 1 play a special role so we denote the sets of indices associated with them by

$$
\begin{aligned}
& I_{\lambda}=\left\{i \in\{1, \ldots, p\} \mid 0<\lambda_{i}<K_{s}\right\} \\
& I_{\mu}=\left\{j \in\{1, \ldots, q\} \mid 0<\mu_{j}<K_{s}\right\} .
\end{aligned}
$$

We denote their cardinalities by numsv $_{1}=\left|I_{\lambda}\right|$ and numsvm ${ }_{1}=\left|I_{\mu}\right|$.

Support Vectors of Type 2: Fail the Margin

Support vectors u_{i} such that $\lambda_{i}=K_{s}$ and support vectors v_{j} such that $\mu_{j}=K_{s}$ are support vectors of type 2 .
The vectors u_{i} for which $\lambda_{i}=K_{s}$ and the vectors v_{j} for which $\mu_{j}=K_{s}$ are said to fail the margin.

The sets of indices associated with the vectors failing the margin are denoted by

$$
\begin{aligned}
& K_{\lambda}=\left\{i \in\{1, \ldots, p\} \mid \lambda_{i}=K_{s}\right\} \\
& K_{\mu}=\left\{j \in\{1, \ldots, q\} \mid \mu_{j}=K_{s}\right\} .
\end{aligned}
$$

We denote their cardinalities by $p_{f}=\left|K_{\lambda}\right|$ and $q_{f}=\left|K_{\mu}\right|$.

Definition of Margin at Most δ

Definition. Vectors u_{i} such that $\lambda_{i}>0$ and vectors v_{j} such that $\mu_{j}>0$ are said to have margin at most δ.

The sets of indices associated with these vectors are denoted by

$$
\begin{aligned}
& I_{\lambda>0}=\left\{i \in\{1, \ldots, p\} \mid \lambda_{i}>0\right\} \\
& I_{\mu>0}=\left\{j \in\{1, \ldots, q\} \mid \mu_{j}>0\right\} .
\end{aligned}
$$

We denote their cardinalities by $p_{m}=\left|I_{\lambda>0}\right|$ and $q_{m}=\left|I_{\mu>0}\right|$.

Definition of Strictly Failing the Margin

Vectors u_{i} such that $\epsilon_{i}>0$ and vectors v_{j} such that $\xi_{j}>0$ are said to strictly fail the margin.

The corresponding sets of indices are denoted by

$$
\begin{aligned}
& E_{\lambda}=\left\{i \in\{1, \ldots, p\} \mid \epsilon_{i}>0\right\} \\
& E_{\mu}=\left\{j \in\{1, \ldots, q\} \mid \xi_{j}>0\right\} .
\end{aligned}
$$

We write $p_{s f}=\left|E_{\lambda}\right|$ and $q_{s f}=\left|E_{\mu}\right|$.

Strictly Failing the Margin

We have the inclusions $E_{\lambda} \subseteq K_{\lambda}$ and $E_{\mu} \subseteq K_{\mu}$.
The difference between the first sets and the second sets is that the second sets may contain support vectors such that $\lambda_{i}=K_{s}$ and $\epsilon_{i}=0$, or $\mu_{j}=K_{s}$ and $\xi_{j}=0$.

We also have the equations $I_{\lambda} \cup K_{\lambda}=I_{\lambda>0}$ and $I_{\mu} \cup K_{\mu}=I_{\mu>0}$, and the inequalities $p_{s f} \leq p_{f} \leq p_{m}$ and $q_{s f} \leq q_{f} \leq q_{m}$.

In the illustrated example of $\left(\mathrm{SVM}_{s 2^{\prime}}\right)$ from the last lesson, we have numsv/1 $=2$, numsvm $1=1, \quad p_{s f}=p_{f}=2, \quad q_{s f}=q_{f}=3, \quad p_{m}=4, \quad q_{m}=4$.

