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SVM Separation Problem

In the previous module we considered the problem of separating two nonempty
disjoint finite sets of p blue points {ui}p

i=1 and q red points {vj}q
j=1 in Rn.

The goal is to find a hyperplane H of equation w⊤x − b = 0 (where w ∈ Rn is
a nonzero vector and b ∈ R), such that all the blue points ui are in one of the
two open half-spaces determined by H, and all the red points vj are in the
other open half-space determined by H; see Figure 1.



Two Examples of SVM Separation Problem
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Figure 1: Two examples of the SVM separation problem.



SVM Soft Margin Problem

SVM picks a hyperplane which maximizes the minimum distance from these
points to the hyperplane.

In this module we return to the problem of separating two disjoint sets of
points, {ui}p

i=1 and {vj}q
j=1, but this time we do not assume that these two

sets are separable.

To cope with nonseparability, we allow points to invade the safety zone around
the separating hyperplane, and even points on the wrong side of the
hyperplane. Such a method is called soft margin support vector machine.



Soft Margin Support Vector Machines

We discuss variations of this method, and in each case we present the dual.

It turns out that the soft margin SVM arising from Problem (SVMh1) has
some problem (a potential division by 0). Soft margin SVMs arising from
Problem (SVMh2) do not suffer from this problem.



Soft Margin Support Vector Machines
If the sets of points {u1, . . . , up} and {v1, . . . , vq} are not linearly separable
(with ui, vj ∈ Rn), we can use a trick from linear programming which is to
introduce nonnegative “slack variables” ϵ = (ϵ1, . . . , ϵp) ∈ Rp and
ξ = (ξ1, . . . , ξq) ∈ Rq to relax the “hard” constraints

w⊤ui − b ≥ 1 i = 1, . . . , p
−w⊤vj + b ≥ 1 j = 1, . . . , q

of Problem (SVMh2) to the ”soft” constraints

w⊤ui − b ≥ 1− ϵi, ϵi ≥ 0 i = 1, . . . , p
−w⊤vj + b ≥ 1− ξj, ξj ≥ 0 j = 1, . . . , q.



Soft Margin Support Vector Machines

In this case there is no constraint on w, and we minimize (1/2)w⊤w. The
margin is δ = 1/ ∥w∥.

If ϵi > 0, the point ui may be misclassified, in the sense that it can belong to
the margin (the slab), or even to the wrong half-space classifying the negative
(red) points. See Figures (2) and (3) in the following illustrations.



Correctly Classified Points for Soft SVM
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Correctly Classified Points for Soft SVM
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Misclassified Points for Soft SVM
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Point Classifications for Soft Margin SVM

Figure (1) illustrates the case of ui contained in the margin and occurs when
ϵi = 0. Figure (1) also illustrates the case of vj contained in the margin when
ξj = 0. The left illustration of Figure (2) is when ui is inside the margin yet
still on the correct side of the separating hyperplane w⊤x − b = 0. Similarly, vj
is inside the margin on the correct side of the separating hyperplane. The
right illustration depicts ui and vj on the separating hyperplane. Figure (3)
illustrates a misclassification of ui and vj.



Point Classifications for Soft Margin SVM

Similarly, if ξj > 0, the point vj may be misclassified, in the sense that it can
belong to the margin (the slab), or even to the wrong half-space classifying
the positive (blue) points.

We can think of ϵi as a measure of how much the constraint w⊤ui − b ≥ 1 is
violated, and similarly of ξj as a measure of how much the constraint
−w⊤vj + b ≥ 1 is violated.



Soft Margin SVM Hyperplane Terminology
The hyperplane Hw,b of equation

w⊤x = b

is called the separating hyperplane.

The hyperplane Hw,b+1 of equation

w⊤x = b + 1

is called the blue margin hyperplane and the hyperplane Hw,b−1 of equation

w⊤x = b − 1

is called the red margin hyperplane.



Soft Margin Support Vector Machines

If ϵ = 0 and ξ = 0, then we recover the original constraints. By making ϵ and
ξ large enough, these constraints can always be satisfied.

Ideally we would like to find a separating hyperplane that minimizes the
number of misclassified points, which means that the variables ϵi and ξj should
be as small as possible, but there is a trade-off in maximizing the margin (the
thickness of the slab), and minimizing the number of misclassified points.



Soft Margin Support Vector Machines

This is reflected in the choice of the objective function, and there are several
options, depending on whether we minimize a linear function of the variables
ϵi and ξj, or a quadratic functions of these variables, or whether we include the
term (1/2)b2 in the objective function.

These methods are known as support vector classification algorithms (for short
SVC algorithms).



Soft Margin Support Vector Machines
A more flexible problem is obtained by using the margin δ = η/ ∥w∥, where η
is some positive constant that we wish to maximize.

To do so, we add a term −Kmη to the objective function (1/2)w⊤w, as well
as the “regularizing term”

Ks

( p∑
i=1

ϵi +

q∑
j=1

ξj

)
whose purpose is to make ϵ and ξ sparse, where Km > 0 (m refers to margin)
and Ks > 0 (s refers to sparse) are fixed constants that can be adjusted to
determine the influence of η and the regularizing term.


