Fundamentals of Linear Algebra and Optimization

Dual of the Hard Margin Support Vector Machine

Jean Gallier and Jocelyn Quaintance

CIS Department
University of Pennsylvania
jean@cis.upenn.edu
May 7, 2020

Solving Hard Margin SVM Problem $\left(S_{1}{ }_{h 2}\right)$

Recall the Hard margin SVM problem $\left(\mathrm{SVM}_{h 2}\right)$:
$\operatorname{minimize} \quad \frac{1}{2}\|w\|^{2}, \quad w \in \mathbb{R}^{n}$
subject to

$$
\begin{array}{rl}
w^{\top} u_{i}-b \geq 1 & i=1, \ldots, p \\
-w^{\top} v_{j}+b \geq 1 & j=1, \ldots, q
\end{array}
$$

Solving Hard Margin SVM Problem $\left(S V M_{h 2}\right)$

Recall the Hard margin SVM problem $\left(\mathrm{SVM}_{h 2}\right)$:

$$
\begin{array}{rl}
\operatorname{minimize} & \frac{1}{2}\|w\|^{2}, \\
\text { subject to } & w \in \mathbb{R}^{n} \\
w^{\top} u_{i}-b \geq 1 & i=1, \ldots, p \\
-w^{\top} v_{j}+b \geq 1 & j=1, \ldots, q
\end{array}
$$

The main steps are the following.

Lagrangian of Hard Margin ($\mathrm{SVM}_{h 2}$)

Step 1. Write the Lagrangian in matrix form.

Lagrangian of Hard Margin ($\mathrm{SVM}_{h 2}$)

Step 1. Write the Lagrangian in matrix form.
Let X be the $n \times(p+q)$ matrix given by

$$
X=\left(\begin{array}{llllll}
-u_{1} & \cdots & -u_{p} & v_{1} & \cdots & v_{q}
\end{array}\right) .
$$

Lagrangian of Hard Margin $\left(\mathrm{SVM}_{h 2}\right)$

Step 1. Write the Lagrangian in matrix form.
Let X be the $n \times(p+q)$ matrix given by

$$
X=\left(\begin{array}{llllll}
-u_{1} & \cdots & -u_{p} & v_{1} & \cdots & v_{q}
\end{array}\right) .
$$

We obtain the Lagrangian

$$
\begin{aligned}
& L(w, b, \lambda, \mu)=\frac{1}{2}\left(w^{\top}\right. \\
& \text { b) }\left(\begin{array}{cc}
I_{n} & 0_{n} \\
0_{n}^{\top} & 0
\end{array}\right)\binom{w}{b}+ \\
& \left(\begin{array}{ll}
w^{\top} & b
\end{array}\right)\left(\begin{array}{c}
x\binom{\lambda}{\mu} \\
\mathbf{1}_{p}^{\top} \lambda \\
-\mathbf{1}_{q}^{\top} \mu
\end{array}\right)+\left(\begin{array}{ll}
\lambda^{\top} & \mu^{\top}
\end{array}\right) \mathbf{1}_{p+q} .
\end{aligned}
$$

Dual Function of Hard Margin $\left(\mathrm{SVM}_{h 2}\right)$

Step 2. Find the dual function $G(\lambda, \mu)$.

Dual Function of Hard Margin $\left(\mathrm{SVM}_{h 2}\right)$

Step 2. Find the dual function $G(\lambda, \mu)$.
In order to find the dual function $G(\lambda, \mu)$, we need to minimize $L(w, b, \lambda, \mu)$ with respect to w and b and for this, since the objective function J is convex and since \mathbb{R}^{n+1} is convex and open, a necessary and sufficient condition for a minimum is that $\nabla L_{w, b}=0$, where $\nabla L_{w, b}$ is the gradient of $L(w, b, \lambda, \mu)$.

Dual Function of Hard Margin $\left(\mathrm{SVM}_{h 2}\right)$

Step 2. Find the dual function $G(\lambda, \mu)$.
In order to find the dual function $G(\lambda, \mu)$, we need to minimize $L(w, b, \lambda, \mu)$ with respect to w and b and for this, since the objective function J is convex and since \mathbb{R}^{n+1} is convex and open, a necessary and sufficient condition for a minimum is that $\nabla L_{w, b}=0$, where $\nabla L_{w, b}$ is the gradient of $L(w, b, \lambda, \mu)$.

We have

$$
\nabla L_{w, b}=\left(\begin{array}{cc}
w+X\binom{\lambda}{\mu} \\
\mathbf{1}_{\rho}^{\top} \lambda & -\mathbf{1}_{q}^{\top} \mu
\end{array}\right) .
$$

Dual Function of Hard Margin $\left(\mathrm{SVM}_{h 2}\right)$

The necessary and sufficient condition for a minimum is

$$
\nabla L_{w, b}=0,
$$

Dual Function of Hard Margin $\left(\mathrm{SVM}_{h 2}\right)$

The necessary and sufficient condition for a minimum is

$$
\nabla L_{w, b}=0,
$$

which yields

$$
\begin{equation*}
w=-X\binom{\lambda}{\mu} \tag{1}
\end{equation*}
$$

Dual Function of Hard Margin (SVM ${ }_{h 2}$)

The necessary and sufficient condition for a minimum is

$$
\nabla L_{w, b}=0,
$$

which yields

$$
\begin{equation*}
w=-X\binom{\lambda}{\mu} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{1}_{p}^{\top} \lambda-\mathbf{1}_{q}^{\top} \mu=0 . \tag{2}
\end{equation*}
$$

Dual Function of Hard Margin $\left(\mathrm{SVM}_{h 2}\right)$

The second equation can be written as

$$
\begin{equation*}
\sum_{i=1}^{p} \lambda_{i}-\sum_{j=1}^{q} \mu_{j}=0 . \tag{3}
\end{equation*}
$$

Dual Function of Hard Margin $\left(\mathrm{SVM}_{h 2}\right)$

The second equation can be written as

$$
\begin{equation*}
\sum_{i=1}^{p} \lambda_{i}-\sum_{j=1}^{q} \mu_{j}=0 \tag{3}
\end{equation*}
$$

Plugging back w from $\left(*_{1}\right)$ into the Lagrangian and using $\left(*_{2}\right)$ we get

$$
G(\lambda, \mu)=-\frac{1}{2}\left(\begin{array}{ll}
\lambda^{\top} & \mu^{\top}
\end{array}\right) X^{\top} X\binom{\lambda}{\mu}+\left(\begin{array}{ll}
\lambda^{\top} & \mu^{\top} \tag{4}
\end{array}\right) \mathbf{1}_{p+q},
$$

Dual Function of Hard Margin $\left(\mathrm{SVM}_{h 2}\right)$

The second equation can be written as

$$
\begin{equation*}
\sum_{i=1}^{p} \lambda_{i}-\sum_{j=1}^{q} \mu_{j}=0 \tag{3}
\end{equation*}
$$

Plugging back w from $\left(*_{1}\right)$ into the Lagrangian and using $\left(*_{2}\right)$ we get

$$
G(\lambda, \mu)=-\frac{1}{2}\left(\begin{array}{ll}
\lambda^{\top} & \mu^{\top}
\end{array}\right) X^{\top} X\binom{\lambda}{\mu}+\left(\begin{array}{ll}
\lambda^{\top} & \mu^{\top} \tag{4}
\end{array}\right) \mathbf{1}_{p+q},
$$

where $\left(\begin{array}{ll}\lambda^{\top} & \mu^{\top}\end{array}\right) \mathbf{1}_{p+q}=\sum_{i=1}^{p} \lambda_{i}+\sum_{j=1}^{q} \mu_{j}$.

Dual Function of Hard Margin $\left(\mathrm{SVM}_{h 2}\right)$

Step 3. Write the dual as a minimization problem.

Dual Function of Hard Margin $\left(\mathrm{SVM}_{h 2}\right)$

Step 3. Write the dual as a minimization problem.
Maximizing the dual function $G(\lambda, \mu)$ over its domain of definition is equivalent to maximizing

$$
\widehat{G}(\lambda, \mu)=-\frac{1}{2}\left(\begin{array}{ll}
\lambda^{\top} & \mu^{\top}
\end{array}\right) X^{\top} X\binom{\lambda}{\mu}+\left(\begin{array}{ll}
\lambda^{\top} & \mu^{\top}
\end{array}\right) \mathbf{1}_{p+q}
$$

Dual Function of Hard Margin ($\mathrm{SVM}_{h 2}$)

Step 3. Write the dual as a minimization problem.
Maximizing the dual function $G(\lambda, \mu)$ over its domain of definition is equivalent to maximizing

$$
\widehat{G}(\lambda, \mu)=-\frac{1}{2}\left(\begin{array}{ll}
\lambda^{\top} & \mu^{\top}
\end{array}\right) X^{\top} X\binom{\lambda}{\mu}+\left(\begin{array}{ll}
\lambda^{\top} & \mu^{\top}
\end{array}\right) \mathbf{1}_{p+q}
$$

subject to the constraint

$$
\sum_{i=1}^{p} \lambda_{i}-\sum_{j=1}^{q} \mu_{j}=0
$$

Convert Dual to a Minimization Problem

so we formulate the dual program as,

$$
\text { maximize } \quad-\frac{1}{2}\left(\begin{array}{ll}
\lambda^{\top} & \mu^{\top}
\end{array}\right) X^{\top} X\binom{\lambda}{\mu}+\left(\begin{array}{ll}
\lambda^{\top} & \mu^{\top}
\end{array}\right) \mathbf{1}_{p+q}
$$

subject to

$$
\begin{aligned}
& \sum_{i=1}^{p} \lambda_{i}-\sum_{j=1}^{q} \mu_{j}=0 \\
& \lambda \geq 0, \mu \geq 0
\end{aligned}
$$

Dual Function of Hard Margin $\left(\mathrm{SVM}_{h 2}\right)$

 or equivalently, Dual of the Hard margin SVM ($\mathrm{SVM}_{h 2}$):$\operatorname{minimize} \quad \frac{1}{2}\left(\begin{array}{ll}\lambda^{\top} & \mu^{\top}\end{array}\right) X^{\top} X\binom{\lambda}{\mu}-\left(\begin{array}{ll}\lambda^{\top} & \mu^{\top}\end{array}\right) \mathbf{1}_{p+q}$ subject to

$$
\begin{aligned}
& \sum_{i=1}^{p} \lambda_{i}-\sum_{j=1}^{q} \mu_{j}=0 \\
& \lambda \geq 0, \mu \geq 0
\end{aligned}
$$

Solving the Dual Program of $\left(\mathrm{SVM}_{h 2}\right)$

Step 4. Solve the dual program.

Solving the Dual Program of $\left(\mathrm{SVM}_{h 2}\right)$

Step 4. Solve the dual program.
This step involves using numerical procedures typically based on gradient descent to find λ and μ, for example, ADMM.

Solving the Dual Program of (SVM ${ }_{h 2}$)

Step 4. Solve the dual program.
This step involves using numerical procedures typically based on gradient descent to find λ and μ, for example, ADMM.

Once λ and μ are determined, w is determined by ($*_{1}$), namely

$$
w=-X\binom{\lambda}{\mu} .
$$

Solving the Dual Program of $\left(\mathrm{SVM}_{h 2}\right)$

Step 4. Solve the dual program.
This step involves using numerical procedures typically based on gradient descent to find λ and μ, for example, ADMM.

Once λ and μ are determined, w is determined by ($*_{1}$), namely

$$
w=-X\binom{\lambda}{\mu} .
$$

To determine b we use the KKT conditions.

Using the KKT Conditions of $\left(\mathrm{SVM}_{h 2}\right)$

Because the primal always has a solution, so does the dual, which implies that there is at least some i_{0} such that $\lambda_{i_{0}}>0$. But then the constraint $\sum_{i=1}^{p} \lambda_{i}-\sum_{j=1}^{q} \mu_{j}=0$ implies that there is also some j_{0} such that $\mu_{j_{0}}>0$.

Using the KKT Conditions of $\left(\mathrm{SVM}_{h 2}\right)$

Because the primal always has a solution, so does the dual, which implies that there is at least some i_{0} such that $\lambda_{i_{0}}>0$. But then the constraint $\sum_{i=1}^{p} \lambda_{i}-\sum_{j=1}^{q} \mu_{j}=0$ implies that there is also some j_{0} such that $\mu_{j_{0}}>0$. By the KKT conditions, since the corresponding constraints are active, we have

$$
w^{\top} u_{i_{0}}-b=1, \quad-w^{\top} v_{j_{0}}+b=1
$$

Using the KKT Conditions of $\left(\mathrm{SVM}_{h 2}\right)$

Because the primal always has a solution, so does the dual, which implies that there is at least some i_{0} such that $\lambda_{i_{0}}>0$. But then the constraint $\sum_{i=1}^{p} \lambda_{i}-\sum_{j=1}^{q} \mu_{j}=0$ implies that there is also some j_{0} such that $\mu_{j_{0}}>0$. By the KKT conditions, since the corresponding constraints are active, we have

$$
w^{\top} u_{i_{0}}-b=1, \quad-w^{\top} v_{j 0}+b=1,
$$

so we obtain

$$
b=w^{\top}\left(u_{i_{0}}+v_{j_{0}}\right) / 2 .
$$

Using the KKT Conditions of $\left(\mathrm{SVM}_{h 2}\right)$

Because the primal always has a solution, so does the dual, which implies that there is at least some i_{0} such that $\lambda_{i_{0}}>0$. But then the constraint $\sum_{i=1}^{p} \lambda_{i}-\sum_{j=1}^{q} \mu_{j}=0$ implies that there is also some j_{0} such that $\mu_{j_{0}}>0$. By the KKT conditions, since the corresponding constraints are active, we have

$$
w^{\top} u_{i 0}-b=1, \quad-w^{\top} v_{j 0}+b=1,
$$

so we obtain

$$
b=w^{\top}\left(u_{i_{0}}+v_{j_{0}}\right) / 2 .
$$

The support vectors are those for which the constraints are active.

Averaging Over Indices

For improved numerical stability, we can average over the sets of indices defined as $I_{\lambda>0}=\left\{i \in\{1, \ldots, p\} \mid \lambda_{i}>0\right\}$ and $I_{\mu>0}=\left\{j \in\{1, \ldots, q\} \mid \mu_{j}>0\right\}$.

Averaging Over Indices

For improved numerical stability, we can average over the sets of indices defined as $I_{\lambda>0}=\left\{i \in\{1, \ldots, p\} \mid \lambda_{i}>0\right\}$ and $I_{\mu>0}=\left\{j \in\{1, \ldots, q\} \mid \mu_{j}>0\right\}$.
We obtain

$$
b=w^{\top}\left(\left(\sum_{i \in \Lambda_{\lambda>0}} u_{i}\right) /\left|\left.\right|_{\lambda>0}\right|+\left(\sum_{j \in I_{\mu>0}} v_{j}\right) /\left|I_{\mu>0}\right|\right) / 2 .
$$

