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Converting from Affine to Quadratic
Functional

Since δ > 0 (otherwise the data would not be separable into two disjoint sets),
we can divide the affine constraints by δ to obtain

w′⊤ui − b′ ≥ 1 i = 1, . . . , p
−w′⊤vj + b′ ≥ 1 j = 1, . . . , q,

except that now, w′ is not necessarily a unit vector.
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Converting from Affine to Quadratic
Functional
To obtain the distances to the hyperplane H, we need to divide by ∥w′∥ and
then we have

w′⊤ui − b′
∥w′∥

≥ 1

∥w′∥
i = 1, . . . , p

−w′⊤vj + b′
∥w′∥

≥ 1

∥w′∥
j = 1, . . . , q,

which means that the shortest distance from the data points to the
hyperplane is δ = 1/ ∥w′∥.
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The Optimization Problem (SVMh2)

Therefore, we wish to maximize 1/ ∥w′∥, that is, to minimize ∥w′∥, so we
obtain the following optimization Problem (SVMh2):

Hard margin SVM (SVMh2):

minimize 1

2
∥w∥2

subject to
w⊤ui − b ≥ 1 i = 1, . . . , p

− w⊤vj + b ≥ 1 j = 1, . . . , q.
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Solving (SVMh2) Via the KKT Conditions
The objective function J(w) = 1/2 ∥w∥2 is convex, so the last proposition of
the KKT lesson applies and gives us a necessary and sufficient condition for
having a minimum in terms of the KKT conditions.

Observe that the trivial solution w = 0 is impossible, because the blue
constraints would be

−b ≥ 1,

that is b ≤ −1, and the red constraints would be

b ≥ 1,

but these are contradictory.
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Solving (SVMh2) via the Lagrangian

Our goal is to find w and b, and optionally, δ = 1/ ∥w∥. In theory this
can be done using the KKT conditions but in the present case it is much more
efficient to solve the dual.


