Fundamentals of Linear Algebra and Optimization Hard Margin Support Vector Machine; Version II

Jean Gallier and Jocelyn Quaintance

CIS Department
University of Pennsylvania
jean@cis.upenn.edu
May 7, 2020

Converting from Affine to Quadratic Functional

Since $\delta>0$ (otherwise the data would not be separable into two disjoint sets), we can divide the affine constraints by δ to obtain

$$
\begin{array}{rl}
W^{\top} u_{i}-b^{\prime} \geq 1 & i=1, \ldots, p \\
-W^{\top} v_{j}+b^{\prime} \geq 1 & j=1, \ldots, q
\end{array}
$$

except that now, w is not necessarily a unit vector.

Converting from Affine to Quadratic Functional

To obtain the distances to the hyperplane H, we need to divide by $\|W\|$ and then we have

$$
\begin{array}{cl}
\frac{w^{\top} u_{i}-b^{\prime}}{\|w\|} \geq \frac{1}{\|w\|} & i=1, \ldots, p \\
\frac{-w^{\top} v_{j}+b^{\prime}}{\|w\|} \geq \frac{1}{\|w\|} & j=1, \ldots, q
\end{array}
$$

Converting from Affine to Quadratic Functional

To obtain the distances to the hyperplane H, we need to divide by $\|W\|$ and then we have

$$
\begin{array}{cl}
\frac{w^{\top} u_{i}-b^{\prime}}{\left\|w^{\prime}\right\|} \geq \frac{1}{\|w\|} & i=1, \ldots, p \\
\frac{-w^{\top} v_{j}+b^{\prime}}{\|w\|} \geq \frac{1}{\|w\|} & j=1, \ldots, q
\end{array}
$$

which means that the shortest distance from the data points to the hyperplane is $\delta=1 /\|w\|$.

The Optimization Problem $\left(\mathrm{SVM}_{h 2}\right)$

Therefore, we wish to maximize $1 /\|w\|$, that is, to minimize $\|w\|$, so we obtain the following optimization Problem ($\mathrm{SVM}_{h 2}$):

The Optimization Problem $\left(\mathrm{SVM}_{h 2}\right)$

Therefore, we wish to maximize $1 /\|W\|$, that is, to minimize $\|W\|$, so we obtain the following optimization Problem ($\mathrm{SVM}_{h 2}$):

Hard margin SVM $\left(\mathrm{SVM}_{h 2}\right)$:

$$
\begin{array}{rl}
\operatorname{minimize} & \frac{1}{2}\|w\|^{2} \\
\text { subject to } & \\
\qquad w^{\top} u_{i}-b \geq 1 & i=1, \ldots, p \\
-w^{\top} v_{j}+b \geq 1 & j=1, \ldots, q
\end{array}
$$

Solving $\left(\mathrm{SVM}_{h 2}\right)$ Via the KKT Conditions

The objective function $J(w)=1 / 2\|w\|^{2}$ is convex, so the last proposition of the KKT lesson applies and gives us a necessary and sufficient condition for having a minimum in terms of the KKT conditions.

Solving $\left(\mathrm{SVM}_{h 2}\right)$ Via the KKT Conditions

The objective function $J(w)=1 / 2\|w\|^{2}$ is convex, so the last proposition of the KKT lesson applies and gives us a necessary and sufficient condition for having a minimum in terms of the KKT conditions.
Observe that the trivial solution $w=0$ is impossible, because the blue constraints would be

$$
-b \geq 1
$$

Solving $\left(\mathrm{SVM}_{h 2}\right)$ Via the KKT Conditions

The objective function $J(w)=1 / 2\|w\|^{2}$ is convex, so the last proposition of the KKT lesson applies and gives us a necessary and sufficient condition for having a minimum in terms of the KKT conditions.
Observe that the trivial solution $w=0$ is impossible, because the blue constraints would be

$$
-b \geq 1
$$

that is $b \leq-1$, and the red constraints would be

$$
b \geq 1,
$$

but these are contradictory.

Solving $\left(\mathrm{SVM}_{h 2}\right)$ via the Lagrangian

Our goal is to find w and b, and optionally, $\delta=1 /\|w\|$. In theory this can be done using the KKT conditions but in the present case it is much more efficient to solve the dual.

