Fundamentals of Linear Algebra and Optimization
 Hard Margin Support Vector Machine: Version I

Jean Gallier and Jocelyn Quaintance

CIS Department
University of Pennsylvania
jean@cis.upenn.edu
May 7, 2020

Classification/Separation Problem

In this section we describe the following classification problem, or perhaps more accurately, separation problem (into two classes).

Classification/Separation Problem

In this section we describe the following classification problem, or perhaps more accurately, separation problem (into two classes).
Suppose we have two nonempty disjoint finite sets of p blue points $\left\{u_{i}\right\}_{i=1}^{p}$ and q red points $\left\{v_{j}\right\}_{j=1}^{q}$ in \mathbb{R}^{n}

Classification/Separation Problem

In this section we describe the following classification problem, or perhaps more accurately, separation problem (into two classes).
Suppose we have two nonempty disjoint finite sets of p blue points $\left\{u_{i}\right\}_{i=1}^{p}$ and q red points $\left\{v_{j}\right\}_{j=1}^{q}$ in \mathbb{R}^{n}
Our goal is to find a hyperplane H of equation $w^{\top} x-b=0$ (where $w \in \mathbb{R}^{n}$ is a nonzero vector and $b \in \mathbb{R}$), such that all the blue points u_{i} are in one of the two open half-spaces determined by H, and all the red points v_{j} are in the other open half-space determined by H.

Classification/Separation Problem

Figure 1: Two examples of the SVM separation problem. The left figure is SVM in \mathbb{R}^{2}, while the right figure is SVM in \mathbb{R}^{3}.

Classification/Separation Problem

Without loss of generality, we may assume that

$$
\begin{array}{ll}
w^{\top} u_{i}-b>0 & \text { for } i=1, \ldots, p \\
w^{\top} v_{j}-b<0 & \text { for } j=1, \ldots, q
\end{array}
$$

Classification/Separation Problem

Of course, separating the blue and the red points may be impossible, as we will see in the next figure for four points where the line segments $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ intersect.

Classification/Separation Problem

Of course, separating the blue and the red points may be impossible, as we will see in the next figure for four points where the line segments $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ intersect.

If a hyperplane separating the two subsets of blue and red points exists, we say that they are linearly separable.

Example of An Inseparable Problem

Figure 2: Two examples in which it is impossible to find purple hyperplanes which separate the red and blue points.

Classification Problem: Class Labels

Write $m=p+q$. The reader should be aware that in machine learning the classification problem is usually defined as follows.

Classification Problem: Class Labels

Write $m=p+q$. The reader should be aware that in machine learning the classification problem is usually defined as follows.

We assign m so-called class labels $y_{k}= \pm 1$ to the data points in such a way that $y_{i}=+1$ for each blue point u_{i}, and $y_{p+j}=-1$ for each red point v_{j}, and we denote the m points by x_{k}, where $x_{k}=u_{k}$ for $k=1, \ldots, p$ and $x_{k}=v_{k-p}$ for $k=p+1, \ldots, p+q$.

Classification Problem: Training Data

Then the classification constraints can be written as

$$
y_{k}\left(w^{\top} x_{k}-b\right)>0 \quad \text { for } k=1, \ldots, m .
$$

Classification Problem: Training Data

Then the classification constraints can be written as

$$
y_{k}\left(w^{\top} x_{k}-b\right)>0 \quad \text { for } k=1, \ldots, m .
$$

The set of pairs $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\right\}$ is called a set of training data (or training set).

Choosing the Hyperplane

We will not use the above method, and we will stick to our two subsets of p blue points $\left\{u_{i}\right\}_{i=1}^{p}$ and q red points $\left\{v_{j}\right\}_{j=1}^{q}$.

Choosing the Hyperplane

We will not use the above method, and we will stick to our two subsets of p blue points $\left\{u_{i}\right\}_{i=1}^{p}$ and q red points $\left\{v_{j}\right\}_{j=1}^{q}$.
Since there are infinitely many hyperplanes separating the two subsets (if indeed the two subsets are linearly separable), we would like to come up with a "good" criterion for choosing such a hyperplane.

Hard Margin Support Vector Machine

The idea that was advocated by Vapnik is to consider the distances $d\left(u_{i}, H\right)$ and $d\left(v_{j}, H\right)$ from all the points to the hyperplane H, and to pick a hyperplane H that maximizes the smallest of these distances.

Hard Margin Support Vector Machine

The idea that was advocated by Vapnik is to consider the distances $d\left(u_{i}, H\right)$ and $d\left(v_{j}, H\right)$ from all the points to the hyperplane H, and to pick a hyperplane H that maximizes the smallest of these distances.

In machine learning this strategy is called finding a maximal margin hyperplane, or hard margin support vector machine.

Distance from Point to Hyperplane

Since the distance from a point x to the hyperplane H of equation $w^{\top} x-b=0$ is

$$
d(x, H)=\frac{\left|w^{\top} x-b\right|}{\|w\|},
$$

(where $\|w\|=\sqrt{w^{\top} w}$ is the Euclidean norm of w), it is convenient to temporarily assume that $\|w\|=1$, so that

$$
d(x, H)=\left|w^{\top} x-b\right| .
$$

See the following figure.

Distance from Point to Hyperplane

Figure 3: $\ln \mathbb{R}^{3}$, the distance from a point to the plane $w^{\top} x-b=0$ is given by the projection onto the normal w.

Hard Margin Support Vector Machine

Then with our sign convention, we have

$$
\begin{aligned}
& d\left(u_{i}, H\right)=w^{\top} u_{i}-b \\
& d\left(v_{j}, H\right)=-w^{\top} v_{j}+b
\end{aligned}
$$

$$
i=1, \ldots, p
$$

$$
j=1, \ldots, q .
$$

Hard Margin Support Vector Machine

If we let

$$
\delta=\min \left\{d\left(u_{i}, H\right), d\left(v_{j}, H\right) \mid 1 \leq i \leq p, 1 \leq j \leq q\right\}
$$

then the hyperplane H should be chosen so that

$$
\begin{aligned}
w^{\top} u_{i}-b \geq \delta & i=1, \ldots, p \\
-w^{\top} v_{j}+b \geq \delta & j=1, \ldots, q
\end{aligned}
$$

and such that $\delta>0$ is maximal.

Hard Margin Support Vector Machine

If we let

$$
\delta=\min \left\{d\left(u_{i}, H\right), d\left(v_{j}, H\right) \mid 1 \leq i \leq p, 1 \leq j \leq q\right\}
$$

then the hyperplane H should be chosen so that

$$
\begin{aligned}
w^{\top} u_{i}-b \geq \delta & i=1, \ldots, p \\
-w^{\top} v_{j}+b \geq \delta & j=1, \ldots, q
\end{aligned}
$$

and such that $\delta>0$ is maximal.

The distance δ is called the margin associated with the hyperplane H.

Formulating the Separation Problem SVM $_{h 1}$

This is indeed one way of formulating the two-class separation problem as an optimization problem with a linear objective function $J(\delta, w, b)=\delta$, and affine and quadratic constraints $\left(\mathrm{SVM}_{h 1}\right)$:
maximize δ
subject to

$$
\begin{array}{cc}
w^{\top} u_{i}-b \geq \delta & i=1, \ldots, p \\
-w^{\top} v_{j}+b \geq \delta & j=1, \ldots, q \\
\|w\| \leq 1 . &
\end{array}
$$

Formulating the Separation Problem SVM $_{h 1}$

This is indeed one way of formulating the two-class separation problem as an optimization problem with a linear objective function $J(\delta, w, b)=\delta$, and affine and quadratic constraints $\left(\mathrm{SVM}_{h 1}\right)$:

$$
\begin{array}{ll}
\operatorname{maximize} & \delta \\
\text { subject to } & \\
w^{\top} u_{i}-b \geq \delta & i=1, \ldots, p \\
-w^{\top} v_{j}+b \geq \delta & j=1, \ldots, q \\
& \|w\| \leq 1 .
\end{array}
$$

This problem has an optimal solution $\delta>0$ iff the two subsets are linearly separable.

The Optimal Solution for SVM $_{h 1}$

We used the constraint $\|w\| \leq 1$ rather than $\|w\|=1$ because the former is qualified, whereas the latter is not. But if (w, b, δ) is an optimal solution, then $\|w\|=1$, as shown in the following proposition.

The Optimal Solution for $\mathrm{SVM}_{h 1}$

We used the constraint $\|w\| \leq 1$ rather than $\|w\|=1$ because the former is qualified, whereas the latter is not. But if (w, b, δ) is an optimal solution, then $\|w\|=1$, as shown in the following proposition.

Proposition. If (w, b, δ) is an optimal solution of Problem $\left(\mathrm{SVM}_{h 1}\right)$, so in particular $\delta>0$, then we must have $\|w\|=1$.

The Optimal Solution for SVM $_{h 1}$

Vapnik proved that if the two subsets are linearly separable, then Problem $\left(\mathrm{SVM}_{h 1}\right)$ has a unique optimal solution.

The Optimal Solution for SVM $_{h 1}$

Vapnik proved that if the two subsets are linearly separable, then Problem $\left(\mathrm{SVM}_{h 1}\right)$ has a unique optimal solution.

Theorem. If two disjoint subsets of p blue points $\left\{u_{i}\right\}_{i=1}^{p}$ and q red points $\left\{v_{j}\right\}_{j=1}^{q}$ are linearly separable, then Problem ($\mathrm{SVM}_{h 1}$) has a unique optimal solution consisting of a hyperplane of equation $w^{\top} x-b=0$ separating the two subsets with maximum margin δ.

The Optimal Solution for SVM $_{h 1}$

Vapnik proved that if the two subsets are linearly separable, then Problem $\left(\mathrm{SVM}_{11}\right)$ has a unique optimal solution.

Theorem. If two disjoint subsets of p blue points $\left\{u_{i}\right\}_{i=1}^{p}$ and q red points $\left\{v_{j}\right\}_{j=1}^{q}$ are linearly separable, then Problem ($\mathrm{SVM}_{h 1}$) has a unique optimal solution consisting of a hyperplane of equation $w^{\top} x-b=0$ separating the two subsets with maximum margin δ.
Furthermore, if we define $c_{1}(w)$ and $c_{2}(w)$ by

$$
\begin{aligned}
& c_{1}(w)=\min _{1 \leq i \leq p} w^{\top} u_{i} \\
& c_{2}(w)=\max _{1 \leq j \leq q} w^{\top} v_{j}
\end{aligned}
$$

The Optimal Solution SVM $_{h 1}$

then w is the unique maximum of the function

$$
\rho(w)=\frac{c_{1}(w)-c_{2}(w)}{2}
$$

over the convex subset U of \mathbb{R}^{n} given by the inequalities

$$
\begin{aligned}
w^{\top} u_{i}-b \geq \delta & i=1, \ldots, p \\
-w^{\top} v_{j}+b \geq \delta & j=1, \ldots, q \\
\|w\| \leq 1, &
\end{aligned}
$$

and

$$
b=\frac{c_{1}(w)+c_{2}(w)}{2} .
$$

Reformulating the Classification Problem

We can proceed with the formulation ($\mathrm{SVM}_{h 1}$) but there is a way to reformulate the problem so that the constraints are all affine, which might be preferable since they will be automatically qualified.

