Fundamentals of Linear Algebra and Optimization Hard Margin Support Vector Machine: Version I

Jean Gallier and Jocelyn Quaintance

CIS Department University of Pennsylvania

jean@cis.upenn.edu

May 7, 2020

・ロト ・日子・ ・ヨト ・ ヨト

In this section we describe the following *classification problem*, or perhaps more accurately, *separation problem* (into two classes).

In this section we describe the following *classification problem*, or perhaps more accurately, *separation problem* (into two classes).

Suppose we have two nonempty disjoint finite sets of p blue points $\{u_i\}_{i=1}^p$ and q red points $\{v_j\}_{j=1}^q$ in \mathbb{R}^n

In this section we describe the following *classification problem*, or perhaps more accurately, *separation problem* (into two classes).

Suppose we have two nonempty disjoint finite sets of *p* blue points $\{u_i\}_{i=1}^p$ and *q* red points $\{v_j\}_{i=1}^q$ in \mathbb{R}^n

Our goal is to find a hyperplane H of equation $w^{\top}x - b = 0$ (where $w \in \mathbb{R}^n$ is a nonzero vector and $b \in \mathbb{R}$), such that all the blue points u_i are in one of the two open half-spaces determined by H, and all the red points v_j are in the other open half-space determined by H.

Figure 1: Two examples of the SVM separation problem. The left figure is SVM in \mathbb{R}^2 , while the right figure is SVM in \mathbb{R}^3 .

Without loss of generality, we may assume that

$$w^{\top}u_i - b > 0 \qquad \text{for } i = 1, \dots, p$$

$$w^{\top}v_j - b < 0 \qquad \text{for } j = 1, \dots, q.$$

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ ∃ りゅつ

Of course, separating the blue and the red points may be impossible, as we will see in the next figure for four points where the line segments (u_1, u_2) and (v_1, v_2) intersect.

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ ∃ りゅつ

Of course, separating the blue and the red points may be impossible, as we will see in the next figure for four points where the line segments (u_1, u_2) and (v_1, v_2) intersect.

If a hyperplane separating the two subsets of blue and red points exists, we say that they are *linearly separable*.

Example of An Inseparable Problem

Figure 2: Two examples in which it is impossible to find purple hyperplanes which separate the red and blue points.

Classification Problem: Class Labels

Write m = p + q. The reader should be aware that in machine learning the classification problem is usually defined as follows.

Classification Problem: Class Labels

Write m = p + q. The reader should be aware that in machine learning the classification problem is usually defined as follows.

We assign *m* so-called *class labels* $y_k = \pm 1$ to the data points in such a way that $y_i = +1$ for each blue point u_i , and $y_{p+j} = -1$ for each red point v_j , and we denote the *m* points by x_k , where $x_k = u_k$ for k = 1, ..., p and $x_k = v_{k-p}$ for k = p + 1, ..., p + q.

Classification Problem: Training Data

Then the classification constraints can be written as

$$y_k(w^{ op}x_k-b)>0$$
 for $k=1,\ldots,m_k$

Classification Problem: Training Data

Then the classification constraints can be written as

$$y_k(w^{\top}x_k - b) > 0$$
 for $k = 1, \ldots, m$.

The set of pairs $\{(x_1, y_1), \ldots, (x_m, y_m)\}$ is called a set of *training data* (or *training set*).

Choosing the Hyperplane

We will not use the above method, and we will stick to our two subsets of *p* blue points $\{u_i\}_{i=1}^p$ and *q* red points $\{v_j\}_{j=1}^q$.

Choosing the Hyperplane

We will not use the above method, and we will stick to our two subsets of *p* blue points $\{u_i\}_{i=1}^p$ and *q* red points $\{v_j\}_{j=1}^q$.

Since there are infinitely many hyperplanes separating the two subsets (if indeed the two subsets are linearly separable), we would like to come up with a "good" criterion for choosing such a hyperplane.

The idea that was advocated by Vapnik is to consider the distances $d(u_i, H)$ and $d(v_j, H)$ from all the points to the hyperplane H, and to pick a hyperplane H that maximizes the smallest of these distances.

The idea that was advocated by Vapnik is to consider the distances $d(u_i, H)$ and $d(v_j, H)$ from all the points to the hyperplane H, and to pick a hyperplane H that maximizes the smallest of these distances.

In machine learning this strategy is called finding a *maximal margin hyperplane*, or *hard margin support vector machine*.

Distance from Point to Hyperplane

Since the distance from a point x to the hyperplane H of equation $w^{T}x - b = 0$ is

$$d(x,H)=\frac{|w|x-b|}{\|w\|},$$

(where $||w|| = \sqrt{w^{\top}w}$ is the Euclidean norm of w), it is convenient to temporarily assume that ||w|| = 1, so that

$$d(x, H) = |w^{\top}x - b|.$$

See the following figure.

Distance from Point to Hyperplane

Figure 3: In \mathbb{R}^3 , the distance from a point to the plane $w^{\top}x - b = 0$ is given by the projection onto the normal *w*.

Then with our sign convention, we have

$$d(u_i, H) = w^{\top} u_i - b \qquad i = 1, \dots, p$$

$$d(v_j, H) = -w^{\top} v_j + b \qquad j = 1, \dots, q.$$

(ロ)、(同)、(目)、(目)、(目)、(の)へ()

If we let

$$\delta = \min\{d(u_i, H), d(v_j, H) \mid 1 \le i \le p, 1 \le j \le q\},\$$

then the hyperplane H should be chosen so that

$$w^{\top} u_i - b \ge \delta \qquad \qquad i = 1, \dots, p$$

$$-w^{\top} v_j + b \ge \delta \qquad \qquad j = 1, \dots, q,$$

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ ∃ りゅつ

and such that $\delta > 0$ is maximal.

If we let

$$\delta = \min\{d(u_i, H), d(v_j, H) \mid 1 \le i \le p, 1 \le j \le q\},\$$

then the hyperplane H should be chosen so that

$$w^{\top}u_{i} - b \ge \delta \qquad \qquad i = 1, \dots, p$$

$$-w^{\top}v_{j} + b \ge \delta \qquad \qquad j = 1, \dots, q,$$

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ ∃ りゅつ

and such that $\delta > 0$ is maximal.

The distance δ is called the *margin* associated with the hyperplane *H*.

Formulating the Separation Problem SVM_{h1}

This is indeed one way of formulating the two-class separation problem as an optimization problem with a linear objective function $J(\delta, w, b) = \delta$, and affine and quadratic constraints (SVM_{h1}):

 $\begin{array}{ll} \text{maximize} \quad \delta \\ \text{subject to} \\ & \boldsymbol{w}^{\top}\boldsymbol{u}_i - \boldsymbol{b} \geq \delta \\ & - \boldsymbol{w}^{\top}\boldsymbol{v}_j + \boldsymbol{b} \geq \delta \\ & \|\boldsymbol{w}\| \leq 1. \end{array}$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Formulating the Separation Problem SVM_{h1}

This is indeed one way of formulating the two-class separation problem as an optimization problem with a linear objective function $J(\delta, w, b) = \delta$, and affine and quadratic constraints (SVM_{h1}):

 $\begin{array}{ll} \text{maximize} & \delta \\ \text{subject to} \\ & \boldsymbol{w}^{\top}\boldsymbol{u}_i - \boldsymbol{b} \geq \delta \\ & - \boldsymbol{w}^{\top}\boldsymbol{v}_j + \boldsymbol{b} \geq \delta \\ & \|\boldsymbol{w}\| \leq 1. \end{array}$

This problem has an optimal solution $\delta > 0$ iff the two subsets are linearly separable.

We used the constraint $||w|| \le 1$ rather than ||w|| = 1 because the former is qualified, whereas the latter is not. But if (w, b, δ) is an optimal solution, then ||w|| = 1, as shown in the following proposition.

We used the constraint $||w|| \le 1$ rather than ||w|| = 1 because the former is qualified, whereas the latter is not. But if (w, b, δ) is an optimal solution, then ||w|| = 1, as shown in the following proposition.

Proposition. If (w, b, δ) is an optimal solution of Problem (SVM_{h1}) , so in particular $\delta > 0$, then we must have ||w|| = 1.

Vapnik proved that if the two subsets are linearly separable, then Problem (SVM_{h1}) has a *unique* optimal solution.

Vapnik proved that if the two subsets are linearly separable, then Problem (SVM_{h1}) has a *unique* optimal solution.

Theorem. If two disjoint subsets of *p* blue points $\{u_i\}_{i=1}^p$ and *q* red points $\{v_j\}_{j=1}^q$ are linearly separable, then Problem (SVM_{h1}) has a unique optimal solution consisting of a hyperplane of equation $w^{\top}x - b = 0$ separating the two subsets with maximum margin δ .

Vapnik proved that if the two subsets are linearly separable, then Problem (SVM_{h1}) has a *unique* optimal solution.

Theorem. If two disjoint subsets of *p* blue points $\{u_i\}_{i=1}^p$ and *q* red points $\{v_j\}_{j=1}^q$ are linearly separable, then Problem (SVM_{h1}) has a unique optimal solution consisting of a hyperplane of equation $w^{\top}x - b = 0$ separating the two subsets with maximum margin δ .

Furthermore, if we define $c_1(w)$ and $c_2(w)$ by

$$c_1(w) = \min_{1 \le i \le p} w^\top u_i$$

$$c_2(w) = \max_{1 \le j \le q} w^\top v_j,$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三回 めんの

then w is the unique maximum of the function

$$\rho(\mathbf{w}) = \frac{\mathbf{c}_1(\mathbf{w}) - \mathbf{c}_2(\mathbf{w})}{2}$$

over the convex subset U of \mathbb{R}^n given by the inequalities

$$w^{\top} u_i - b \ge \delta \qquad i = 1, \dots, p$$

$$-w^{\top} v_j + b \ge \delta \qquad j = 1, \dots, q$$

$$||w|| \le 1,$$

and

$$b = \frac{c_1(w) + c_2(w)}{2}$$

▲□▶▲圖▶▲≣▶▲≣▶ ▲国▼

Reformulating the Classification Problem

We can proceed with the formulation (SVM_{h1}) but there is a way to reformulate the problem so that the constraints are all *affine*, which might be preferable since they will be *automatically qualified*.