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Classification/Separation Problem

In this section we describe the following classification problem, or perhaps
more accurately, separation problem (into two classes).

Suppose we have two nonempty disjoint finite sets of p blue points {ui}p
i=1

and q red points {vj}q
j=1 in Rn

Our goal is to find a hyperplane H of equation w⊤x − b = 0 (where w ∈ Rn is
a nonzero vector and b ∈ R), such that all the blue points ui are in one of the
two open half-spaces determined by H, and all the red points vj are in the
other open half-space determined by H.
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Classification/Separation Problem
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Figure 1: Two examples of the SVM separation problem. The left figure is SVM in R2,
while the right figure is SVM in R3.
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Classification/Separation Problem

Without loss of generality, we may assume that

w⊤ui − b > 0 for i = 1, . . . , p
w⊤vj − b < 0 for j = 1, . . . , q.
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Classification/Separation Problem

Of course, separating the blue and the red points may be impossible, as we
will see in the next figure for four points where the line segments (u1, u2) and
(v1, v2) intersect.

If a hyperplane separating the two subsets of blue and red points exists, we
say that they are linearly separable.
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Classification/Separation Problem

Of course, separating the blue and the red points may be impossible, as we
will see in the next figure for four points where the line segments (u1, u2) and
(v1, v2) intersect.

If a hyperplane separating the two subsets of blue and red points exists, we
say that they are linearly separable.
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Example of An Inseparable Problem
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Figure 2: Two examples in which it is impossible to find purple hyperplanes which separate
the red and blue points.
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Classification Problem: Class Labels

Write m = p + q. The reader should be aware that in machine learning the
classification problem is usually defined as follows.

We assign m so-called class labels yk = ±1 to the data points in such a way
that yi = +1 for each blue point ui, and yp+j = −1 for each red point vj, and
we denote the m points by xk, where xk = uk for k = 1, . . . , p and xk = vk−p
for k = p + 1, . . . , p + q.
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Classification Problem: Training Data

Then the classification constraints can be written as

yk(w⊤xk − b) > 0 for k = 1, . . . ,m.

The set of pairs {(x1, y1), . . . , (xm, ym)} is called a set of training data (or
training set).
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Choosing the Hyperplane

We will not use the above method, and we will stick to our two subsets of p
blue points {ui}p

i=1 and q red points {vj}q
j=1.

Since there are infinitely many hyperplanes separating the two subsets (if
indeed the two subsets are linearly separable), we would like to come up with a
“good” criterion for choosing such a hyperplane.
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We will not use the above method, and we will stick to our two subsets of p
blue points {ui}p

i=1 and q red points {vj}q
j=1.

Since there are infinitely many hyperplanes separating the two subsets (if
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Hard Margin Support Vector Machine

The idea that was advocated by Vapnik is to consider the distances d(ui,H)
and d(vj,H) from all the points to the hyperplane H, and to pick a hyperplane
H that maximizes the smallest of these distances.

In machine learning this strategy is called finding a maximal margin
hyperplane, or hard margin support vector machine.
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Hard Margin Support Vector Machine

The idea that was advocated by Vapnik is to consider the distances d(ui,H)
and d(vj,H) from all the points to the hyperplane H, and to pick a hyperplane
H that maximizes the smallest of these distances.

In machine learning this strategy is called finding a maximal margin
hyperplane, or hard margin support vector machine.
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Distance from Point to Hyperplane

Since the distance from a point x to the hyperplane H of equation
w⊤x − b = 0 is

d(x,H) = |w⊤x − b|
∥w∥ ,

(where ∥w∥ =
√

w⊤w is the Euclidean norm of w), it is convenient to
temporarily assume that ∥w∥ = 1, so that

d(x,H) = |w⊤x − b|.

See the following figure.
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Distance from Point to Hyperplane
x

H

x0

d(x, H) w

proj   
x - x0
w

Figure 3: In R3, the distance from a point to the plane w⊤x − b = 0 is given by the
projection onto the normal w.
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Hard Margin Support Vector Machine

Then with our sign convention, we have

d(ui,H) = w⊤ui − b i = 1, . . . , p
d(vj,H) = −w⊤vj + b j = 1, . . . , q.
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Hard Margin Support Vector Machine

If we let
δ = min{d(ui,H), d(vj,H) | 1 ≤ i ≤ p, 1 ≤ j ≤ q},

then the hyperplane H should be chosen so that

w⊤ui − b ≥ δ i = 1, . . . , p
−w⊤vj + b ≥ δ j = 1, . . . , q,

and such that δ > 0 is maximal.

The distance δ is called the margin associated with the hyperplane H.
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Hard Margin Support Vector Machine

If we let
δ = min{d(ui,H), d(vj,H) | 1 ≤ i ≤ p, 1 ≤ j ≤ q},

then the hyperplane H should be chosen so that

w⊤ui − b ≥ δ i = 1, . . . , p
−w⊤vj + b ≥ δ j = 1, . . . , q,

and such that δ > 0 is maximal.

The distance δ is called the margin associated with the hyperplane H.
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Formulating the Separation Problem SVMh1
This is indeed one way of formulating the two-class separation problem as an
optimization problem with a linear objective function J(δ,w, b) = δ, and affine
and quadratic constraints (SVMh1):

maximize δ

subject to
w⊤ui − b ≥ δ i = 1, . . . , p

− w⊤vj + b ≥ δ j = 1, . . . , q
∥w∥ ≤ 1.

This problem has an optimal solution δ > 0 iff the two subsets are linearly
separable.
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The Optimal Solution for SVMh1

We used the constraint ∥w∥ ≤ 1 rather than ∥w∥ = 1 because the former is
qualified, whereas the latter is not. But if (w, b, δ) is an optimal solution, then
∥w∥ = 1, as shown in the following proposition.

Proposition. If (w, b, δ) is an optimal solution of Problem (SVMh1), so in
particular δ > 0, then we must have ∥w∥ = 1.
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The Optimal Solution for SVMh1
Vapnik proved that if the two subsets are linearly separable, then Problem
(SVMh1) has a unique optimal solution.

Theorem. If two disjoint subsets of p blue points {ui}p
i=1 and q red points

{vj}q
j=1 are linearly separable, then Problem (SVMh1) has a unique optimal

solution consisting of a hyperplane of equation w⊤x − b = 0 separating the
two subsets with maximum margin δ.
Furthermore, if we define c1(w) and c2(w) by

c1(w) = min
1≤i≤p

w⊤ui

c2(w) = max
1≤j≤q

w⊤vj,
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The Optimal Solution SVMh1
then w is the unique maximum of the function

ρ(w) = c1(w)− c2(w)
2

over the convex subset U of Rn given by the inequalities

w⊤ui − b ≥ δ i = 1, . . . , p
−w⊤vj + b ≥ δ j = 1, . . . , q

∥w∥ ≤ 1,

and
b =

c1(w) + c2(w)
2

.
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Reformulating the Classification Problem

We can proceed with the formulation (SVMh1) but there is a way to
reformulate the problem so that the constraints are all affine, which might be
preferable since they will be automatically qualified.


