Fundamentals of Linear Algebra and Optimization Handling Equality Constraints Explicitly

Jean Gallier and Jocelyn Quaintance

CIS Department
University of Pennsylvania
jean@cis.upenn.edu
April 6, 2022

Handling Equality Constraints Explicitly

Sometimes it is desirable to handle equality constraints explicitly.
The only difference is that the Lagrange multipliers associated with equality constraints are not required to be nonnegative.

Handling Equality Constraints Explicitly

Consider the Optimization Problem (P^{\prime})

$$
\begin{array}{ll}
\operatorname{minimize} & J(v) \\
\text { subject to } & \varphi_{i}(v) \leq 0, \quad i=1, \ldots, m \\
& \psi_{j}(v)=0, \quad j=1, \ldots, p
\end{array}
$$

Let us also assume that the functions φ_{i} are convex and that the equality constraints ψ_{j} are affine (then they are qualified).

KKT Conditions for Equality Constraints

Theorem. Let $\varphi_{i}: \Omega \rightarrow \mathbb{R}$ be m convex inequality constraints and $\psi_{j}: \Omega \rightarrow \mathbb{R}$ be p affine equality constraints defined on some open convex subset Ω of a finite-dimensional Euclidean vector space V (more generally, a real Hilbert space V), let $J: \Omega \rightarrow \mathbb{R}$ be some function, let U be given by

$$
U=\left\{x \in \Omega \mid \varphi_{i}(x) \leq 0, \psi_{j}(x)=0,1 \leq i \leq m, 1 \leq j \leq p\right\},
$$

and let $u \in U$ be any point such that the functions φ_{i} and J are differentiable at u.

KKT Conditions for Equality Constraints

(1) If J has a local minimum at u with respect to U, and if the constraints are qualified, then there exist some vectors $\lambda \in \mathbb{R}_{+}^{m}$ and $\nu \in \mathbb{R}^{p}$, such that the KKT conditions hold:

$$
J_{u}{ }^{\prime}+\sum_{i=1}^{m} \lambda_{i}(u)\left(\varphi_{i}^{\prime}\right)_{u}+\sum_{j=1}^{p} \nu_{j}\left(\psi_{j}^{\prime}\right)_{u}=0,
$$

and

$$
\sum_{i=1}^{m} \lambda_{i}(u) \varphi_{i}(u)=0, \quad \lambda_{i} \geq 0, \quad i=1, \ldots, m .
$$

KKT Conditions for Equality Constraints

Equivalently, in terms of gradients, the above conditions are expressed as

$$
\nabla J_{u}+\sum_{i=1}^{m} \lambda_{i} \nabla\left(\varphi_{i}\right)_{u}+\sum_{j=1}^{p} \nu_{j} \nabla\left(\psi_{j}\right)_{u}=0
$$

and

$$
\sum_{i=1}^{m} \lambda_{i}(u) \varphi_{i}(u)=0, \quad \lambda_{i} \geq 0, \quad i=1, \ldots, m .
$$

KKT Conditions for Equality Constraints

(2) Conversely, if the restriction of J to U is convex and if there exist vectors $\lambda \in \mathbb{R}_{+}^{m}$ and $\nu \in \mathbb{R}^{p}$ such that the KKT conditions hold, then the function J has a (global) minimum at u with respect to U.

Lagrange Dual Function

The Lagrangian $L(v, \lambda, \nu)$ of Problem $\left(P^{\prime}\right)$ is defined as

$$
L(v, \mu, \nu)=J(v)+\sum_{i=1}^{m} \mu_{i} \varphi_{i}(v)+\sum_{j=1}^{p} \nu_{i} \psi_{j}(v)
$$

where $v \in \Omega, \mu \in \mathbb{R}_{+}^{m}$, and $\nu \in \mathbb{R}^{p}$.

Dual Problem

The function $G: \mathbb{R}_{+}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$ given by

$$
G(\mu, \nu)=\inf _{v \in \Omega} L(v, \mu, \nu) \quad \mu \in \mathbb{R}_{+}^{m}, \nu \in \mathbb{R}^{p}
$$

is called the Lagrange dual function (or dual function), and the Dual Problem (D^{\prime}) is

$$
\begin{aligned}
& \text { maximize } \quad G(\mu, \nu) \\
& \text { subject to } \quad \mu \in \mathbb{R}_{+}^{m}, \nu \in \mathbb{R}^{p} .
\end{aligned}
$$

Observe that the Lagrange multipliers ν are not restricted to be nonnegative.

Handling Equality Constraints Explicitly

The duality gap theorem of the last lesson is immediately generalized to Problem $\left(P^{\prime}\right)$. We leave the precise statement of this result as an exercise

We now give an example of the Lagrangian dual tecnhique to the Support Vector Machine (abbreviated as SVM).

