Fundamentals of Linear Algebra and Optimization Weak and Strong Duality

Jean Gallier and Jocelyn Quaintance
CIS Department
University of Pennsylvania
jean@cis.upenn.edu

November 23, 2020

Dual Bounds Primal Problem (P)

Another important property of the dual function G is that it provides a lower bound on the value of the objective function J.

Dual Bounds Primal Problem (P)

Another important property of the dual function G is that it provides a lower bound on the value of the objective function J.

Indeed, we have

$$
G(\mu) \leq L(u, \mu) \leq J(u) \quad \text { for all } u \in U \text { and all } \mu \in \mathbb{R}_{+}^{m},
$$

since $\mu \geq 0$ and $\varphi_{i}(u) \leq 0$ for $i=1, \ldots, m$, so

$$
G(\mu)=\inf _{v \in \Omega} L(v, \mu) \leq L(u, \mu)=J(u)+\sum_{i=1}^{m} \mu_{i} \varphi_{i}(u) \leq J(u) .
$$

Weak Duality

If the Primal Problem (P) has a minimum denoted p^{*} and the Dual Problem (D) has a maximum denoted d^{*}, then the above inequality implies that

$$
\begin{equation*}
d^{*} \leq p^{*} \tag{w}
\end{equation*}
$$

known as weak duality.

Weak Duality Restated

Equivalently, for every optimal solution λ^{*} of the dual problem and every optimal solution u^{*} of the primal problem, we have

$$
\begin{equation*}
G\left(\lambda^{*}\right) \leq J\left(u^{*}\right) . \tag{w}
\end{equation*}
$$

Weak Duality Restated

Equivalently, for every optimal solution λ^{*} of the dual problem and every optimal solution u^{*} of the primal problem, we have

$$
\begin{equation*}
G\left(\lambda^{*}\right) \leq J\left(u^{*}\right) . \tag{w}
\end{equation*}
$$

In particular, if $p^{*}=-\infty$, which means that the primal problem is unbounded below, then the dual problem is unfeasible.

Weak Duality Restated

Equivalently, for every optimal solution λ^{*} of the dual problem and every optimal solution u^{*} of the primal problem, we have

$$
G\left(\lambda^{*}\right) \leq J\left(u^{*}\right) .
$$

In particular, if $p^{*}=-\infty$, which means that the primal problem is unbounded below, then the dual problem is unfeasible.

Conversely, if $d^{*}=+\infty$, which means that the dual problem is unbounded above, then the primal problem is unfeasible.

Strong Duality

Definition. The difference $p^{*}-d^{*} \geq 0$ is called the optimal duality gap. If the duality gap is zero, that is, $p^{*}=d^{*}$, then we say that strong duality holds.

Strong Duality

Definition. The difference $p^{*}-d^{*} \geq 0$ is called the optimal duality gap. If the duality gap is zero, that is, $p^{*}=d^{*}$, then we say that strong duality holds.

Even when the duality gap is strictly positive, the inequality $\left(\dagger_{w}\right)$ can be helpful to find a lower bound on the optimal value of a primal problem that is difficult to solve, since the dual problem is always convex.

Strong Duality

Definition. The difference $p^{*}-d^{*} \geq 0$ is called the optimal duality gap. If the duality gap is zero, that is, $p^{*}=d^{*}$, then we say that strong duality holds.

Even when the duality gap is strictly positive, the inequality $\left(\dagger_{w}\right)$ can be helpful to find a lower bound on the optimal value of a primal problem that is difficult to solve, since the dual problem is always convex.

If the primal problem and the dual problem are feasible and if the optimal values p^{*} and d^{*} are finite and $p^{*}=d^{*}$ (no duality gap), then the complementary slackness conditions hold for the inequality constraints.

Complementary Slackness Conditions

Proposition (complementary slackness). Given the Minimization Problem (P)

$$
\begin{array}{ll}
\operatorname{minimize} & J(v) \\
\text { subject to } & \varphi_{i}(v) \leq 0, \quad i=1, \ldots, m,
\end{array}
$$

and its Dual Problem (D)

> maximize $\quad G(\mu)$
> subject to $\quad \mu \in \mathbb{R}_{+}^{m}$

Complementary Slackness Conditions

if both (P) and (D) are feasible, $u \in U$ is an optimal solution of $(P), \lambda \in \mathbb{R}_{+}^{m}$ is an optimal solution of (D), and $J(u)=G(\lambda)$, then

$$
\sum_{i=1}^{m} \lambda_{i} \varphi_{i}(u)=0 .
$$

In other words, if the constraint φ_{i} is inactive at u, then $\lambda_{i}=0$.

Weak Duality for Linear Programming

Going back to the example of the last lesson, we see that weak duality says that for any feasible solution u of the Primal Problem (P), that is, some $u \in \mathbb{R}^{n}$ such that

$$
A u \leq b, \quad u \geq 0
$$

and for any feasible solution $\mu \in \mathbb{R}^{m}$ of the Dual Problem $\left(D_{1}\right)$, that is,

$$
A^{\top} \mu \geq-c, \quad \mu \geq 0
$$

we have

$$
-b^{\top} \mu \leq c^{\top} u
$$

Weak Duality for Linear Programming

Actually, if u and λ are optimal, then it can be shown that strong duality holds, namely $-b^{\top} \mu=c^{\top} u$, but the proof of this fact is nontrivial.

Duality Gap

The following theorem establishes a link between the solutions of the Primal Problem (P) and those of the Dual Problem (D). It also gives sufficient conditions for the duality gap to be zero.

Duality Gap Theorem

Theorem. Consider the Minimization Problem (P):

$$
\begin{array}{ll}
\operatorname{minimize} & J(v) \\
\text { subject to } & \varphi_{i}(v) \leq 0, \quad i=1, \ldots, m,
\end{array}
$$

where the functions J and φ_{i} are defined on some open subset Ω of a finite-dimensional Euclidean vector space V (more generally, a real Hilbert space V).

Duality Gap Theorem

(1) Suppose the functions $\varphi_{i}: \Omega \rightarrow \mathbb{R}$ are continuous, and that for every $\mu \in \mathbb{R}_{+}^{m}$, the Problem $\left(P_{\mu}\right)$:

$$
\begin{array}{ll}
\text { minimize } & L(v, \mu) \\
\text { subject to } & v \in \Omega,
\end{array}
$$

has a unique solution u_{μ}, so that

$$
L\left(u_{\mu}, \mu\right)=\inf _{v \in \Omega} L(v, \mu)=G(\mu),
$$

Duality Gap Theorem

 and the function $\mu \mapsto u_{\mu}$ is continuous (on \mathbb{R}_{+}^{m}).
Duality Gap Theorem

and the function $\mu \mapsto u_{\mu}$ is continuous (on \mathbb{R}_{+}^{m}). Then the function G is differentiable for all $\mu \in \mathbb{R}_{+}^{m}$, and

$$
G_{\mu}^{\prime}(\xi)=\sum_{i=1}^{m} \xi_{i} \varphi_{i}\left(u_{\mu}\right) \quad \text { for all } \xi \in \mathbb{R}^{m} .
$$

Duality Gap Theorem

and the function $\mu \mapsto u_{\mu}$ is continuous (on \mathbb{R}_{+}^{m}). Then the function G is differentiable for all $\mu \in \mathbb{R}_{+}^{m}$, and

$$
G_{\mu}^{\prime}(\xi)=\sum_{i=1}^{m} \xi_{i} \varphi_{i}\left(u_{\mu}\right) \quad \text { for all } \xi \in \mathbb{R}^{m} .
$$

If λ is any solution of Problem (D):

$$
\begin{array}{ll}
\text { maximize } & G(\mu) \\
\text { subject to } & \mu \in \mathbb{R}_{+}^{m},
\end{array}
$$

then the solution u_{λ} of the corresponding Problem $\left(P_{\lambda}\right)$ is a solution of Problem (P).

Duality Gap Theorem

(2) Assume Problem (P) has some solution $u \in U$, and that Ω is convex (open), the functions $\varphi_{i}(1 \leq i \leq m)$ and J are convex and differentiable at u, and that the constraints are qualified. Then Problem (D) has a solution $\lambda \in \mathbb{R}_{+}^{m}$, and $J(u)=G(\lambda)$; that is, the duality gap is zero.

Duality Gap Theorem

Informally, in Part (1) of the preceding theorem, the hypotheses say that if $G(\mu)$ can be "computed nicely," in the sense that there is a unique minimizer u_{μ} of $L(v, \mu)$ (with $v \in \Omega$) such that $G(\mu)=L\left(u_{\mu}, \mu\right)$, and if a maximizer λ of $G(\mu)$ (with $\mu \in \mathbb{R}_{+}^{m}$) can be determined, then u_{λ} yields the minimum value of J, that is, $p^{*}=J\left(u_{\lambda}\right)$.

Duality Gap Theorem

Informally, in Part (1) of the preceding theorem, the hypotheses say that if $G(\mu)$ can be "computed nicely," in the sense that there is a unique minimizer u_{μ} of $L(v, \mu)$ (with $v \in \Omega$) such that $G(\mu)=L\left(u_{\mu}, \mu\right)$, and if a maximizer λ of $G(\mu)$ (with $\mu \in \mathbb{R}_{+}^{m}$) can be determined, then u_{λ} yields the minimum value of J, that is, $p^{*}=J\left(u_{\lambda}\right)$.

If the constraints are qualified and if the functions J and φ_{i} are convex and differentiable, then since the KKT conditions hold, the duality gap is zero; that is,

$$
G(\lambda)=L\left(u_{\lambda}, \lambda\right)=J\left(u_{\lambda}\right) .
$$

Duality Gap of a Linear Program

Example. Going back to the example of the previous lesson where we considered the Linear Program (P)

$$
\begin{aligned}
& \operatorname{minimize} \quad c^{\top} v \\
& \text { subject to } A v \leq b, \quad v \geq 0
\end{aligned}
$$

with A an $m \times n$ matrix, the Lagrangian $L(v, \mu, \nu)$ is given by

$$
L(v, \mu, \nu)=-b^{\top} \mu+\left(c+A^{\top} \mu-\nu\right)^{\top} v,
$$

and we found that the dual function $G(\mu, \nu)=\inf _{v \in \mathbb{R}^{n}} L(v, \mu, \nu)$ is given for all $\mu \geq 0$ and $\nu \geq 0$ by

$$
G(\mu, \nu)= \begin{cases}-b^{\top} \mu & \text { if } A^{\top} \mu-\nu+c=0 \\ -\infty & \text { otherwise }\end{cases}
$$

Duality Gap of a Linear Program

The hypotheses of Part (1) certainly fail since there are infinitely $u_{\mu, \nu} \in \mathbb{R}^{n}$ such that $G(\mu, \nu)=\inf _{v \in \mathbb{R}^{n}} L(v, \mu, \nu)=L\left(u_{\mu, \nu}, \mu, \nu\right)$.

Duality Gap of a Linear Program

The hypotheses of Part (1) certainly fail since there are infinitely $u_{\mu, \nu} \in \mathbb{R}^{n}$ such that $G(\mu, \nu)=\inf _{v \in \mathbb{R}^{n}} L(v, \mu, \nu)=L\left(u_{\mu, \nu}, \mu, \nu\right)$.

Therefore, the dual function G is no help in finding a solution of the Primal Problem (P).

Duality Gap of a Linear Program

The hypotheses of Part (1) certainly fail since there are infinitely $u_{\mu, \nu} \in \mathbb{R}^{n}$ such that $G(\mu, \nu)=\inf _{v \in \mathbb{R}^{n}} L(v, \mu, \nu)=L\left(u_{\mu, \nu}, \mu, \nu\right)$.

Therefore, the dual function G is no help in finding a solution of the Primal Problem (P).

As we saw earlier, if we consider the modified dual Problem $\left(D_{1}\right)$, then strong duality holds, but this does not follow from the preceding theorem, and a different proof is required.

Duality Gap of a Linear Program

Thus, we have the somewhat counter-intuitive situation that the general theory of Lagrange duality does not apply, at least directly, to linear programming, a fact that is not sufficiently emphasized in many expositions. A separate treatment of duality is required.

Duality Gap of a Linear Program

Thus, we have the somewhat counter-intuitive situation that the general theory of Lagrange duality does not apply, at least directly, to linear programming, a fact that is not sufficiently emphasized in many expositions. A separate treatment of duality is required.

Unlike the case of linear programming, which needs a separate treatment, the preceding theorem applies to the optimization problem involving a convex quadratic objective function and a set of affine inequality constraints.

Duality Gap of a Linear Program

Thus, we have the somewhat counter-intuitive situation that the general theory of Lagrange duality does not apply, at least directly, to linear programming, a fact that is not sufficiently emphasized in many expositions. A separate treatment of duality is required.

Unlike the case of linear programming, which needs a separate treatment, the preceding theorem applies to the optimization problem involving a convex quadratic objective function and a set of affine inequality constraints.

So in some sense, convex quadratic programming is simpler than linear programming!

Duality and Quadratic Optimization

Example. Consider the quadratic objective function

$$
J(v)=\frac{1}{2} v^{\top} A v-v^{\top} b
$$

where A is an $n \times n$ matrix which is symmetric positive definite, $b \in \mathbb{R}^{n}$, and the constraints are affine inequality constraints of the form

$$
C v \leq d
$$

where C is an $m \times n$ matrix and $d \in \mathbb{R}^{m}$. For the time being, we do not assume that C has rank m.

Duality and Quadratic Optimization

Since A is symmetric positive definite, J is strictly convex.

Duality and Quadratic Optimization

Since A is symmetric positive definite, J is strictly convex.
The Lagrangian of this quadratic optimization problem is given by

$$
\begin{aligned}
L(v, \mu) & =\frac{1}{2} v^{\top} A v-v^{\top} b+(C v-d)^{\top} \mu \\
& =\frac{1}{2} v^{\top} A v-v^{\top}\left(b-C^{\top} \mu\right)-\mu^{\top} d .
\end{aligned}
$$

Duality and Quadratic Optimization

Since A is symmetric positive definite, the function $v \mapsto L(v, \mu)$ has a unique minimum obtained for the solution u_{μ} of the linear system

$$
A v=b-C^{\top} \mu
$$

that is,

$$
u_{\mu}=A^{-1}\left(b-C^{\top} \mu\right)
$$

Duality and Quadratic Optimization

This shows that the Problem $\left(P_{\mu}\right)$ has a unique solution which depends continuously on μ. Then for any solution λ of the dual problem, $u_{\lambda}=A^{-1}\left(b-C^{\top} \lambda\right)$ is an optimal solution of the primal problem.

Duality and Quadratic Optimization

This shows that the Problem $\left(P_{\mu}\right)$ has a unique solution which depends continuously on μ. Then for any solution λ of the dual problem, $u_{\lambda}=A^{-1}\left(b-C^{\top} \lambda\right)$ is an optimal solution of the primal problem.

We find that $G(\mu)$ is given by

$$
G(\mu)=-\frac{1}{2} \mu^{\top} C A^{-1} C^{\top} \mu+\mu^{\top}\left(C A^{-1} b-d\right)-\frac{1}{2} b^{\top} A^{-1} b .
$$

Duality and Quadratic Optimization

Since A is symmetric positive definite, the matrix $C A^{-1} C^{\top}$ is symmetric positive semidefinite. It can be shown that $C A^{-1} C^{\top}$ is symmetric positive definite iff C has rank m.

Duality and Quadratic Optimization

Since A is symmetric positive definite, the matrix $C A^{-1} C^{\top}$ is symmetric positive semidefinite. It can be shown that $C A^{-1} C^{\top}$ is symmetric positive definite iff C has rank m.

In this case it can be shown that if the inequalities $C x \leq d$ have a solution, then the primal problem has a unique solution.

Duality and Quadratic Optimization

As a consequence, by Part (2) of the duality gap theorem, the function $-G(\mu)$ always has a minimum, which is unique if C has rank m. The fact that $-G(\mu)$ has a minimum is not obvious when C has rank $<m$, since in this case $C A^{-1} C^{\top}$ is not invertible.

Duality and Quadratic Optimization

As a consequence, by Part (2) of the duality gap theorem, the function $-G(\mu)$ always has a minimum, which is unique if C has rank m. The fact that $-G(\mu)$ has a minimum is not obvious when C has rank $<m$, since in this case $C A^{-1} C^{\top}$ is not invertible.

We also verify easily that the gradient of G is given by

$$
\nabla G_{\mu}=C u_{\mu}-d=-C A^{-1} C^{\top} \mu+C A^{-1} b-d .
$$

Observe that since $C A^{-1} C^{\top}$ is symmetric positive semidefinite, $-G(\mu)$ is convex.

Duality and Quadratic Optimization

Therefore, if C has rank m, a solution of Problem (P) is obtained by finding the unique solution λ of the equation

$$
-C A^{-1} C^{\top} \mu+C A^{-1} b-d=0,
$$

and then the minimum u_{λ} of $\operatorname{Problem}(P)$ is given by

$$
u_{\lambda}=A^{-1}\left(b-C^{\top} \lambda\right) .
$$

Duality and Quadratic Optimization

Therefore, if C has rank m, a solution of Problem (P) is obtained by finding the unique solution λ of the equation

$$
-C A^{-1} C^{\top} \mu+C A^{-1} b-d=0,
$$

and then the minimum u_{λ} of Problem (P) is given by

$$
u_{\lambda}=A^{-1}\left(b-C^{\top} \lambda\right) .
$$

If C has rank $<m$, then we can find $\lambda \geq 0$ using a method called ADMM.

