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Dual Bounds Primal Problem (P)
Another important property of the dual function G is that it provides a lower
bound on the value of the objective function J.

Indeed, we have

G(µ) ≤ L(u, µ) ≤ J(u) for all u ∈ U and all µ ∈ Rm
+, (†)

since µ ≥ 0 and φi(u) ≤ 0 for i = 1, . . . ,m, so

G(µ) = inf
v∈Ω

L(v, µ) ≤ L(u, µ) = J(u) +
m∑

i=1

µiφi(u) ≤ J(u).
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Weak Duality

If the Primal Problem (P) has a minimum denoted p∗ and the Dual Problem
(D) has a maximum denoted d∗, then the above inequality implies that

d∗ ≤ p∗ (†w)

known as weak duality.
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Weak Duality Restated

Equivalently, for every optimal solution λ∗ of the dual problem and every
optimal solution u∗ of the primal problem, we have

G(λ∗) ≤ J(u∗). (†w′)

In particular, if p∗ = −∞, which means that the primal problem is unbounded
below, then the dual problem is unfeasible.

Conversely, if d∗ = +∞, which means that the dual problem is unbounded
above, then the primal problem is unfeasible.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Weak Duality Restated

Equivalently, for every optimal solution λ∗ of the dual problem and every
optimal solution u∗ of the primal problem, we have

G(λ∗) ≤ J(u∗). (†w′)

In particular, if p∗ = −∞, which means that the primal problem is unbounded
below, then the dual problem is unfeasible.

Conversely, if d∗ = +∞, which means that the dual problem is unbounded
above, then the primal problem is unfeasible.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
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Strong Duality

Definition. The difference p∗ − d∗ ≥ 0 is called the optimal duality gap. If
the duality gap is zero, that is, p∗ = d∗, then we say that strong duality holds.

Even when the duality gap is strictly positive, the inequality (†w) can be
helpful to find a lower bound on the optimal value of a primal problem that is
difficult to solve, since the dual problem is always convex.

If the primal problem and the dual problem are feasible and if the optimal
values p∗ and d∗ are finite and p∗ = d∗ (no duality gap), then the
complementary slackness conditions hold for the inequality constraints.
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Definition. The difference p∗ − d∗ ≥ 0 is called the optimal duality gap. If
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complementary slackness conditions hold for the inequality constraints.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Complementary Slackness Conditions
Proposition (complementary slackness). Given the Minimization Problem
(P)

minimize J(v)
subject to φi(v) ≤ 0, i = 1, . . . ,m,

and its Dual Problem (D)

maximize G(µ)
subject to µ ∈ Rm

+,
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Complementary Slackness Conditions

if both (P) and (D) are feasible, u ∈ U is an optimal solution of (P), λ ∈ Rm
+

is an optimal solution of (D), and J(u) = G(λ), then
m∑

i=1

λiφi(u) = 0.

In other words, if the constraint φi is inactive at u, then λi = 0.
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Weak Duality for Linear Programming

Going back to the example of the last lesson, we see that weak duality says
that for any feasible solution u of the Primal Problem (P), that is, some
u ∈ Rn such that

Au ≤ b, u ≥ 0,

and for any feasible solution µ ∈ Rm of the Dual Problem (D1), that is,

A⊤µ ≥ −c, µ ≥ 0,

we have
−b⊤µ ≤ c⊤u.
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Weak Duality for Linear Programming

Actually, if u and λ are optimal, then it can be shown that strong duality
holds, namely −b⊤µ = c⊤u, but the proof of this fact is nontrivial.
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Duality Gap

The following theorem establishes a link between the solutions of the Primal
Problem (P) and those of the Dual Problem (D). It also gives sufficient
conditions for the duality gap to be zero.
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Duality Gap Theorem

Theorem. Consider the Minimization Problem (P):

minimize J(v)
subject to φi(v) ≤ 0, i = 1, . . . ,m,

where the functions J and φi are defined on some open subset Ω of a
finite-dimensional Euclidean vector space V (more generally, a real Hilbert
space V).
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Duality Gap Theorem

(1) Suppose the functions φi : Ω → R are continuous, and that for every
µ ∈ Rm

+, the Problem (Pµ):

minimize L(v, µ)
subject to v ∈ Ω,

has a unique solution uµ, so that

L(uµ, µ) = inf
v∈Ω

L(v, µ) = G(µ),
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Duality Gap Theorem
and the function µ 7→ uµ is continuous (on Rm

+).

Then the function G is
differentiable for all µ ∈ Rm

+, and

G′
µ(ξ) =

m∑
i=1

ξiφi(uµ) for all ξ ∈ Rm.

If λ is any solution of Problem (D):

maximize G(µ)
subject to µ ∈ Rm

+,

then the solution uλ of the corresponding Problem (Pλ) is a solution of
Problem (P).
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Duality Gap Theorem

(2) Assume Problem (P) has some solution u ∈ U, and that Ω is convex
(open), the functions φi (1 ≤ i ≤ m) and J are convex and differentiable
at u, and that the constraints are qualified. Then Problem (D) has a
solution λ ∈ Rm

+, and J(u) = G(λ); that is, the duality gap is zero.
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Duality Gap Theorem
Informally, in Part (1) of the preceding theorem, the hypotheses say that if
G(µ) can be “computed nicely,” in the sense that there is a unique minimizer
uµ of L(v, µ) (with v ∈ Ω) such that G(µ) = L(uµ, µ), and if a maximizer λ of
G(µ) (with µ ∈ Rm

+) can be determined, then uλ yields the minimum value of
J, that is, p∗ = J(uλ).

If the constraints are qualified and if the functions J and φi are convex and
differentiable, then since the KKT conditions hold, the duality gap is zero;
that is,

G(λ) = L(uλ, λ) = J(uλ).
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uµ of L(v, µ) (with v ∈ Ω) such that G(µ) = L(uµ, µ), and if a maximizer λ of
G(µ) (with µ ∈ Rm

+) can be determined, then uλ yields the minimum value of
J, that is, p∗ = J(uλ).

If the constraints are qualified and if the functions J and φi are convex and
differentiable, then since the KKT conditions hold, the duality gap is zero;
that is,

G(λ) = L(uλ, λ) = J(uλ).
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Duality Gap of a Linear Program
Example. Going back to the example of the previous lesson where we
considered the Linear Program (P)

minimize c⊤v
subject to Av ≤ b, v ≥ 0,

with A an m × n matrix, the Lagrangian L(v, µ, ν) is given by
L(v, µ, ν) = −b⊤µ+ (c + A⊤µ− ν)⊤v,

and we found that the dual function G(µ, ν) = infv∈Rn L(v, µ, ν) is given for all
µ ≥ 0 and ν ≥ 0 by

G(µ, ν) =
{
−b⊤µ if A⊤µ− ν + c = 0,

−∞ otherwise.
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Duality Gap of a Linear Program

The hypotheses of Part (1) certainly fail since there are infinitely uµ,ν ∈ Rn

such that G(µ, ν) = infv∈Rn L(v, µ, ν) = L(uµ,ν , µ, ν).

Therefore, the dual function G is no help in finding a solution of the Primal
Problem (P).

As we saw earlier, if we consider the modified dual Problem (D1), then strong
duality holds, but this does not follow from the preceding theorem, and a
different proof is required.
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such that G(µ, ν) = infv∈Rn L(v, µ, ν) = L(uµ,ν , µ, ν).

Therefore, the dual function G is no help in finding a solution of the Primal
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Duality Gap of a Linear Program
Thus, we have the somewhat counter-intuitive situation that the general
theory of Lagrange duality does not apply, at least directly, to linear
programming, a fact that is not sufficiently emphasized in many expositions.
A separate treatment of duality is required.

Unlike the case of linear programming, which needs a separate treatment, the
preceding theorem applies to the optimization problem involving a convex
quadratic objective function and a set of affine inequality constraints.

So in some sense, convex quadratic programming is simpler than linear
programming!
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Unlike the case of linear programming, which needs a separate treatment, the
preceding theorem applies to the optimization problem involving a convex
quadratic objective function and a set of affine inequality constraints.
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Duality and Quadratic Optimization

Example. Consider the quadratic objective function

J(v) = 1

2
v⊤Av − v⊤b,

where A is an n × n matrix which is symmetric positive definite, b ∈ Rn, and
the constraints are affine inequality constraints of the form

Cv ≤ d,

where C is an m × n matrix and d ∈ Rm. For the time being, we do not
assume that C has rank m.
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Duality and Quadratic Optimization

Since A is symmetric positive definite, J is strictly convex.

The Lagrangian of this quadratic optimization problem is given by

L(v, µ) = 1

2
v⊤Av − v⊤b + (Cv − d)⊤µ

=
1

2
v⊤Av − v⊤(b − C⊤µ)− µ⊤d.
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The Lagrangian of this quadratic optimization problem is given by
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Duality and Quadratic Optimization

Since A is symmetric positive definite, the function v 7→ L(v, µ) has a unique
minimum obtained for the solution uµ of the linear system

Av = b − C⊤µ;

that is,
uµ = A−1(b − C⊤µ).
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Duality and Quadratic Optimization

This shows that the Problem (Pµ) has a unique solution which depends
continuously on µ. Then for any solution λ of the dual problem,
uλ = A−1(b − C⊤λ) is an optimal solution of the primal problem.

We find that G(µ) is given by

G(µ) = −1

2
µ⊤CA−1C⊤µ+ µ⊤(CA−1b − d)− 1

2
b⊤A−1b.
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Duality and Quadratic Optimization

Since A is symmetric positive definite, the matrix CA−1C⊤ is symmetric
positive semidefinite. It can be shown that CA−1C⊤ is symmetric positive
definite iff C has rank m.

In this case it can be shown that if the inequalities Cx ≤ d have a solution,
then the primal problem has a unique solution.
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Duality and Quadratic Optimization

Since A is symmetric positive definite, the matrix CA−1C⊤ is symmetric
positive semidefinite. It can be shown that CA−1C⊤ is symmetric positive
definite iff C has rank m.

In this case it can be shown that if the inequalities Cx ≤ d have a solution,
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Duality and Quadratic Optimization

As a consequence, by Part (2) of the duality gap theorem, the function −G(µ)
always has a minimum, which is unique if C has rank m. The fact that −G(µ)
has a minimum is not obvious when C has rank < m, since in this case
CA−1C⊤ is not invertible.

We also verify easily that the gradient of G is given by

∇Gµ = Cuµ − d = −CA−1C⊤µ+ CA−1b − d.

Observe that since CA−1C⊤ is symmetric positive semidefinite, −G(µ) is
convex.
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Duality and Quadratic Optimization

Therefore, if C has rank m, a solution of Problem (P) is obtained by finding
the unique solution λ of the equation

−CA−1C⊤µ+ CA−1b − d = 0,

and then the minimum uλ of Problem (P) is given by

uλ = A−1(b − C⊤λ).

If C has rank < m, then we can find λ ≥ 0 using a method called ADMM.
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Therefore, if C has rank m, a solution of Problem (P) is obtained by finding
the unique solution λ of the equation

−CA−1C⊤µ+ CA−1b − d = 0,

and then the minimum uλ of Problem (P) is given by

uλ = A−1(b − C⊤λ).

If C has rank < m, then we can find λ ≥ 0 using a method called ADMM.


