Fundamentals of Linear Algebra and Optimization Lagrangian Duality

Jean Gallier and Jocelyn Quaintance

CIS Department University of Pennsylvania jean@cis.upenn.edu

March 31, 2025

・ロト ・日子・ ・ヨト ・ ヨト

æ

Primal Minimization Problem

In this section we investigate methods to solve the *Minimization Problem* (P):

minimize $J(\mathbf{v})$ subject to $\varphi_i(\mathbf{v}) \leq 0$, $i = 1, \dots, m$.

Primal Minimization Problem

In this section we investigate methods to solve the *Minimization Problem* (P):

minimize $J(\mathbf{v})$ subject to $\varphi_i(\mathbf{v}) \leq 0, \quad i = 1, \dots, m.$

It turns out that under certain conditions the original Problem (P), called *primal problem*, can be solved in two stages with the help another Problem (D), called the *dual problem*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Dual Problem

The Dual Problem (D) is a maximization problem involving a function G, called the Lagrangian dual, and it is obtained by minimizing the Lagrangian $L(v, \mu)$ of Problem (P) over the variable $v \in \mathbb{R}^n$, holding μ fixed, where $L: \Omega \times \mathbb{R}^m_+ \to \mathbb{R}$ is given by

$$L(\mathbf{v},\mu) = J(\mathbf{v}) + \sum_{i=1}^{m} \mu_i \varphi_i(\mathbf{v}),$$

with $\mu \in \mathbb{R}^m_+$.

The two steps of the method are:

The two steps of the method are:

Find the dual function μ → G(μ) explicitly by solving the minimization problem of finding the minimum of L(v, μ) with respect to v ∈ Ω, holding μ fixed.

The two steps of the method are:

(1) Find the dual function μ → G(μ) explicitly by solving the minimization problem of finding the minimum of L(v, μ) with respect to v ∈ Ω, holding μ fixed. This is an unconstrained minimization problem (with v ∈ Ω). If we are lucky, a unique minimizer u_μ such that G(μ) = L(u_μ, μ) can be found.

The two steps of the method are:

- (1) Find the dual function $\mu \mapsto G(\mu)$ explicitly by solving the *minimization* problem of finding the minimum of $L(v, \mu)$ with respect to $v \in \Omega$, holding μ fixed. This is an *unconstrained* minimization problem (with $v \in \Omega$). If we are lucky, a unique minimizer u_{μ} such that $G(\mu) = L(u_{\mu}, \mu)$ can be found.
- (2) Solve the maximization problem of finding the maximum of the function $\mu \mapsto G(\mu)$ over all $\mu \in \mathbb{R}^m_+$.

The two steps of the method are:

- (1) Find the dual function $\mu \mapsto G(\mu)$ explicitly by solving the *minimization* problem of finding the minimum of $L(v, \mu)$ with respect to $v \in \Omega$, holding μ fixed. This is an *unconstrained* minimization problem (with $v \in \Omega$). If we are lucky, a unique minimizer u_{μ} such that $G(\mu) = L(u_{\mu}, \mu)$ can be found.
- (2) Solve the maximization problem of finding the maximum of the function $\mu \mapsto G(\mu)$ over all $\mu \in \mathbb{R}^m_+$. This is basically an unconstrained problem, except for the fact that $\mu \in \mathbb{R}^m_+$.

If Steps (1) and (2) are successful, under some suitable conditions on the function J and the constraints φ_i (for example, if they are convex), for any solution $\lambda \in \mathbb{R}^m_+$ obtained in Step (2), the vector u_λ obtained in Step (1) is an optimal solution of Problem (P).

If Steps (1) and (2) are successful, under some suitable conditions on the function J and the constraints φ_i (for example, if they are convex), for any solution $\lambda \in \mathbb{R}^m_+$ obtained in Step (2), the vector u_λ obtained in Step (1) is an optimal solution of Problem (P).

The local minima of a function $J: \Omega \to \mathbb{R}$ over a domain U defined by inequality constraints are *saddle points* of the Lagrangian $L(v, \mu)$ associated with J and the constraints φ_i .

If Steps (1) and (2) are successful, under some suitable conditions on the function J and the constraints φ_i (for example, if they are convex), for any solution $\lambda \in \mathbb{R}^m_+$ obtained in Step (2), the vector u_λ obtained in Step (1) is an optimal solution of Problem (P).

The local minima of a function $J: \Omega \to \mathbb{R}$ over a domain U defined by inequality constraints are *saddle points* of the Lagrangian $L(v, \mu)$ associated with J and the constraints φ_i .

In this presentation we do not discuss saddle points since this would take too much time.

Primal Minimization Problem

We now return to our main Minimization Problem (P):

minimize
$$J(\mathbf{v})$$

subject to $\varphi_i(\mathbf{v}) \leq 0, \quad i = 1, \dots, m,$

where $J: \Omega \to \mathbb{R}$ and the constraints $\varphi_i: \Omega \to \mathbb{R}$ are some functions defined on some open subset Ω of some finite-dimensional Euclidean vector space V(more generally, a real Hilbert space V).

Lagrangian of the Minimization Problem

Definition. The Lagrangian of the Minimization Problem (P) defined above is the function $L: \Omega \times \mathbb{R}^m_+ \to \mathbb{R}$ given by

$$L(\mathbf{v},\mu) = J(\mathbf{v}) + \sum_{i=1}^{m} \mu_i \varphi_i(\mathbf{v}),$$

with $\mu = (\mu_1, \dots, \mu_m)$. The numbers μ_i are called *generalized Lagrange multipliers*.

$\begin{array}{l} Dual \ Maximization \ Problem \\ \text{We are naturally led to introduce the function } \mathcal{G} \colon \mathbb{R}^m_+ \to \mathbb{R} \ \text{given by} \end{array}$

 $G(\mu) = \inf_{\mathbf{v}\in\Omega} L(\mathbf{v},\mu) \quad \mu \in \mathbb{R}^m_+,$

and then λ will be a solution of the problem

find $\lambda \in \mathbb{R}^m_+$ such that $G(\lambda) = \sup_{\mu \in \mathbb{R}^m_+} G(\mu),$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

 $\begin{array}{l} Dual \ Maximization \ Problem \\ \text{We are naturally led to introduce the function } \mathcal{G} \colon \mathbb{R}^m_+ \to \mathbb{R} \text{ given by} \end{array}$

 $G(\mu) = \inf_{\mathbf{v}\in\Omega} L(\mathbf{v},\mu) \quad \mu \in \mathbb{R}^m_+,$

and then λ will be a solution of the problem

find $\lambda \in \mathbb{R}^m_+$ such that $G(\lambda) = \sup_{\mu \in \mathbb{R}^m_+} G(\mu),$

which is equivalent to the *Maximization Problem* (D):

 $\begin{array}{ll} \text{maximize} & \mathcal{G}(\mu) \\ \text{subject to} & \mu \in \mathbb{R}_+^m. \end{array}$

Lagrangian Duality

Definition. Given the Minimization Problem (P)

minimize $J(\mathbf{v})$ subject to $\varphi_i(\mathbf{v}) \leq 0, \quad i = 1, \dots, m,$

where $J: \Omega \to \mathbb{R}$ and the constraints $\varphi_i: \Omega \to \mathbb{R}$ are some functions defined on some open subset Ω of some finite-dimensional Euclidean vector space V(more generally, a real Hilbert space V), the function $G: \mathbb{R}^m_+ \to \mathbb{R}$ given by

$$G(\mu) = \inf_{\mathbf{v}\in\Omega} L(\mathbf{v},\mu) \quad \mu \in \mathbb{R}^m_+,$$

is called the *Lagrange dual function* (or simply *dual function*).

Lagrange Dual Problem

Problem (D)

 $\begin{array}{ll} \text{maximize} & G(\mu) \\ \text{subject to} & \mu \in \mathbb{R}^m_+ \end{array}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

is called the Lagrange dual problem.

Lagrange Dual Problem

 $\mathsf{Problem}\ (D)$

 $\begin{array}{ll} \text{maximize} & G(\mu) \\ \text{subject to} & \mu \in \mathbb{R}^m_+ \end{array}$

is called the Lagrange dual problem.

Problem (P) is often called the *primal problem*, and (D) is the *dual problem*. The variable μ is called the *dual variable*. The variable $\mu \in \mathbb{R}^m_+$ is said to be *dual feasible* if $G(\mu)$ is defined (not $-\infty$). If $\lambda \in \mathbb{R}^m_+$ is a maximum of G, then we call it a *dual optimal* or an *optimal Lagrange multiplier*.

Dual as a Convex Optimization Problem

Since

$$L(\mathbf{v},\mu) = J(\mathbf{v}) + \sum_{i=1}^{m} \mu_i \varphi_i(\mathbf{v}),$$

the function $G(\mu) = \inf_{\nu \in \Omega} L(\nu, \mu)$ is the pointwise infimum of some affine functions of μ , so it is *concave*, even if the φ_i are not convex.

Dual as a Convex Optimization Problem

Since

$$L(\mathbf{v},\mu) = J(\mathbf{v}) + \sum_{i=1}^{m} \mu_i \varphi_i(\mathbf{v}),$$

the function $G(\mu) = \inf_{\nu \in \Omega} L(\nu, \mu)$ is the pointwise infimum of some affine functions of μ , so it is *concave*, even if the φ_i are not convex.

One of the main advantages of the dual problem over the primal problem is that it is a *convex optimization problem*, since we wish to maximize a concave objective function G (thus minimize -G, a convex function), and the constraints $\mu \ge 0$ are convex. In a number of practical situations, the dual function G can indeed be computed.

Dual as a Partial Function

To be perfectly rigorous, we should mention that the dual function G is actually a *partial function*, because it takes the value $-\infty$ when the map $v \mapsto L(v, \mu)$ is unbounded below.

Example. Consider the Linear Program (*P*)

 $\begin{array}{ll} \text{minimize} & \boldsymbol{c}^{\top}\boldsymbol{v} \\ \text{subject to} & \boldsymbol{A}\boldsymbol{v} \leq \boldsymbol{b}, \ \boldsymbol{v} \geq \boldsymbol{0}, \end{array}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

where A is an $m \times n$ matrix, $v \in \mathbb{R}^n$, $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$.

Example. Consider the Linear Program (*P*)

 $\begin{array}{ll} \text{minimize} & \boldsymbol{c}^{\top}\boldsymbol{v} \\ \text{subject to} & \boldsymbol{A}\boldsymbol{v}\leq\boldsymbol{b}, \ \boldsymbol{v}\geq\boldsymbol{0}, \end{array}$

where A is an $m \times n$ matrix, $v \in \mathbb{R}^n$, $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$.

The constraints $v \ge 0$ are rewritten as $-v_i \le 0$, so we introduce Lagrange multipliers $\mu \in \mathbb{R}^m_+$ and $\nu \in \mathbb{R}^n_+$, and we have the Lagrangian

$$L(\mathbf{v}, \mu, \nu) = \mathbf{c}^{\top}\mathbf{v} + \mu^{\top}(A\mathbf{v} - \mathbf{b}) - \nu^{\top}\mathbf{v}$$
$$= -\mathbf{b}^{\top}\mu + (\mathbf{c} + \mathbf{A}^{\top}\mu - \nu)^{\top}\mathbf{v}.$$

The linear function $\mathbf{v} \mapsto (\mathbf{c} + \mathbf{A}^\top \mu - \nu)^\top \mathbf{v}$ is unbounded below unless $\mathbf{c} + \mathbf{A}^\top \mu - \nu = 0$, so the dual function $\mathcal{G}(\mu, \nu) = \inf_{\mathbf{v} \in \mathbb{R}^n} \mathcal{L}(\mathbf{v}, \mu, \nu)$ is given for all $\mu \ge 0$ and $\nu \ge 0$ by

$$G(\mu,\nu) = \begin{cases} -b^{\top}\mu & \text{if } A^{\top}\mu - \nu + c = 0, \\ -\infty & \text{otherwise.} \end{cases}$$

The linear function $\mathbf{v} \mapsto (\mathbf{c} + \mathbf{A}^\top \mu - \nu)^\top \mathbf{v}$ is unbounded below unless $\mathbf{c} + \mathbf{A}^\top \mu - \nu = 0$, so the dual function $G(\mu, \nu) = \inf_{\mathbf{v} \in \mathbb{R}^n} L(\mathbf{v}, \mu, \nu)$ is given for all $\mu \ge 0$ and $\nu \ge 0$ by

$$\mathcal{G}(\mu,\nu) = \begin{cases} -b^{\top}\mu & \text{if } A^{\top}\mu - \nu + c = 0, \\ -\infty & \text{otherwise.} \end{cases}$$

The domain of G is a proper subset of $\mathbb{R}^m_+ \times \mathbb{R}^n_+$.

The linear function $\mathbf{v} \mapsto (\mathbf{c} + \mathbf{A}^\top \mu - \nu)^\top \mathbf{v}$ is unbounded below unless $\mathbf{c} + \mathbf{A}^\top \mu - \nu = 0$, so the dual function $G(\mu, \nu) = \inf_{\mathbf{v} \in \mathbb{R}^n} L(\mathbf{v}, \mu, \nu)$ is given for all $\mu \ge 0$ and $\nu \ge 0$ by

$$\mathcal{G}(\mu,
u) = egin{cases} -m{b}^{ op}\mu & ext{if } m{A}^{ op}\mu -
u + m{c} = 0, \ -\infty & ext{otherwise}. \end{cases}$$

The domain of G is a proper subset of $\mathbb{R}^m_+ \times \mathbb{R}^n_+$.

Observe that the value $G(\mu, \nu)$ of the function G, when it is defined, is independent of the second argument ν .

Another way to obtain $G(\mu, \nu)$ is to observe that the function $v \mapsto (c + A^{\top}\mu - \nu)^{\top}v - b^{\top}\mu$ is affine, thus convex, and since \mathbb{R}^n is convex and open, by an earlier theorem, this function (for μ, ν fixed) has a minimum at v iff

$$\nabla L(-,\mu,\nu)_{\nu} = \boldsymbol{c} + \boldsymbol{A}^{\top} \boldsymbol{\mu} - \boldsymbol{\nu} = 0,$$

a condition independent of v.

Another way to obtain $G(\mu, \nu)$ is to observe that the function $\nu \mapsto (c + A^{\top}\mu - \nu)^{\top}\nu - b^{\top}\mu$ is affine, thus convex, and since \mathbb{R}^n is convex and open, by an earlier theorem, this function (for μ, ν fixed) has a minimum at ν iff

$$\nabla L(-,\mu,\nu)_{\nu} = \boldsymbol{c} + \boldsymbol{A}^{\top} \boldsymbol{\mu} - \boldsymbol{\nu} = 0,$$

a condition independent of v.

But if $c + A^{\top}\mu - \nu = 0$, the function $v \mapsto (c + A^{\top}\mu - \nu)^{\top}v - b^{\top}\mu$ is the constant function with value $-b^{\top}\mu$, so indeed $G(\mu, \nu)$ is defined as above.

Since $G(\mu, \nu)$ is independent of ν , we introduce the function \widehat{G} of the single argument μ given by

$$\widehat{G}(\mu) = -\boldsymbol{b}^{\top}\mu,$$

which is defined for all $\mu \in \mathbb{R}^m_+$.

Since $G(\mu, \nu)$ is independent of ν , we introduce the function \widehat{G} of the single argument μ given by

$$\widehat{\boldsymbol{G}}(\boldsymbol{\mu}) = -\boldsymbol{b}^{\top}\boldsymbol{\mu},$$

which is defined for all $\mu \in \mathbb{R}^m_+$.

Of course, $\sup_{\mu \in \mathbb{R}_+^m} \widehat{G}(\mu)$ and $\sup_{(\mu,\nu) \in \mathbb{R}_+^m \times \mathbb{R}_+^n} G(\mu, \nu)$ are generally different, but note that $\widehat{G}(\mu) = G(\mu, \nu)$ iff there is some $\nu \in \mathbb{R}_+^n$ such that $A^\top \mu - \nu + c = 0$ iff $A^\top \mu + c \ge 0$.

Since $G(\mu, \nu)$ is independent of ν , we introduce the function \widehat{G} of the single argument μ given by

$$\widehat{\mathbf{G}}(\mu) = -\mathbf{b}^{\top}\mu,$$

which is defined for all $\mu \in \mathbb{R}^m_+$.

Of course, $\sup_{\mu \in \mathbb{R}^m_+} \widehat{G}(\mu)$ and $\sup_{(\mu,\nu) \in \mathbb{R}^m_+ \times \mathbb{R}^n_+} G(\mu, \nu)$ are generally different, but note that $\widehat{G}(\mu) = G(\mu, \nu)$ iff there is some $\nu \in \mathbb{R}^n_+$ such that $A^\top \mu - \nu + c = 0$ iff $A^\top \mu + c \ge 0$. Therefore, finding $\sup_{(\mu,\nu) \in \mathbb{R}^m_+ \times \mathbb{R}^n_+} G(\mu, \nu)$ is equivalent to the *constrained* Problem (D_1)

maximize
$$-b^{\top}\mu$$

subject to $A^{\top}\mu \ge -c, \ \mu \ge 0.$

Hidden Constraints Within the Dual

In summary, the dual function G of a Primary Problem (P) often contains *hidden* inequality constraints that define its domain, and sometimes it is possible to make these domain constraints $\psi_1(\mu) \leq 0, \ldots, \psi_p(\mu) \leq 0$ explicit, to define a new function \widehat{G} that depends only on q < m of the variables μ_i and is defined for all values $\mu_i \geq 0$ of these variables, and to replace the Maximization Problem (D), find $\sup_{\mu \in \mathbb{R}^m_+} G(\mu)$, by the constrained Problem (D_1)

maximize $\widehat{G}(\mu)$ subject to $\psi_i(\mu) \leq 0$, $i = 1, \dots, p$.

くしゃ ふぼす ふぼす ふしゃ

Hidden Constraints Within the Dual

In summary, the dual function G of a Primary Problem (P) often contains *hidden* inequality constraints that define its domain, and sometimes it is possible to make these domain constraints $\psi_1(\mu) \leq 0, \ldots, \psi_p(\mu) \leq 0$ explicit, to define a new function \widehat{G} that depends only on q < m of the variables μ_i and is defined for all values $\mu_i \geq 0$ of these variables, and to replace the Maximization Problem (D), find $\sup_{\mu \in \mathbb{R}^m_+} G(\mu)$, by the constrained Problem (D_1)

maximize
$$\widehat{G}(\mu)$$

subject to $\psi_i(\mu) \leq 0$, $i = 1, \dots, p$.

Problem (D_1) is different from the Dual Program (D), but it is *equivalent* to (D) as a maximization problem.