Fundamentals of Linear Algebra and Optimization The Karush–Kuhn–Tucker Conditions

Jean Gallier and Jocelyn Quaintance

CIS Department University of Pennsylvania jean@cis.upenn.edu

April 2, 2025

Optimization with Convex Constraints

If the domain U is defined by convex inequality constraints satisfying mild differentiability conditions and if the constraints at u are qualified, then there is a necessary condition for the function J to have a local minimum at $u \in U$ involving $generalized\ Lagrange\ multipliers$. The proof uses a version of Farkas lemma.

Farkas Lemma

We will be using the following version of Farkas lemma.

Farkas Lemma

We will be using the following version of Farkas lemma.

Proposition (*Farkas lemma*). Let V be a Euclidean space of finite dimension with inner product $\langle -, - \rangle$ (more generally, a Hilbert space). For any finite family (a_1, \ldots, a_m) of m vectors $a_i \in V$ and any vector $b \in V$, for any $v \in V$,

if
$$\langle a_i, v \rangle \geq 0$$
 for $i = 1, \dots, m$ implies that $\langle b, v \rangle \geq 0$,

then there exist $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$ such that

$$\lambda_i \geq 0$$
 for $i = 1, \dots, m$, and $b = \sum_{i=1}^m \lambda_i a_i$.

Optimization with Convex Constraints

We can now prove the following theorem.

Optimization with Convex Constraints

We can now prove the following theorem.

Theorem. Let $\varphi_i \colon \Omega \to \mathbb{R}$ be m convex constraints defined on some open convex subset Ω of a finite-dimensional Euclidean vector space V (more generally, a real Hilbert space V), let $J \colon \Omega \to \mathbb{R}$ be some function, let U be given by

$$U = \{ x \in \Omega \mid \varphi_i(x) \le 0, \ 1 \le i \le m \},\$$

and let $u \in U$ be any point such that the functions φ_i and J are differentiable at u.

Necessary Condition for Minimization with Convex Constraints

(1) If J has a local minimum at u with respect to U, and if the constraints are qualified, then there exist some scalars $\lambda_i(u) \in \mathbb{R}$, such that the KKT conditions hold:

$$J_{u}' + \sum_{i=1}^{m} \lambda_{i}(u)(\varphi_{i}')_{u} = 0$$

and

$$\lambda_i(u)\varphi_i(u) = 0, \quad \lambda_i(u) \ge 0, \quad i = 1, \dots, m.$$

Necessary Condition for Minimization with Convex Constraints

Equivalently, in terms of gradients, the above conditions are expressed as

$$\nabla J_u + \sum_{i=1}^m \lambda_i(u) \nabla (\varphi_i)_u = 0,$$

and

$$\lambda_i(u)\varphi_i(u)=0, \quad \lambda_i(u)\geq 0, \quad i=1,\ldots,m.$$

Necessary Condition for Minimization with Convex Constraints

Furthermore, the conditions

$$\lambda_i(u)\varphi_i(u)=0, \quad \lambda_i(u)\geq 0, \quad i=1,\ldots,m,$$

are equivalent to the conditions

$$\sum_{i=1}^m \lambda_i(u)\varphi_i(u) = 0 \quad \text{and} \quad \lambda_i(u) \ge 0, \quad i = 1, \dots, m.$$

Sufficient Condition for Minimization with Convex Constraints

(2) Conversely, if the restriction of J to U is *convex* and if there exist scalars $(\lambda_1,\ldots,\lambda_m)\in\mathbb{R}^m_+$ such that the KKT conditions hold, then the function J has a (global) minimum at u with respect to U.

Sufficient Condition for Minimization with Convex Constraints

(2) Conversely, if the restriction of J to U is *convex* and if there exist scalars $(\lambda_1, \ldots, \lambda_m) \in \mathbb{R}_+^m$ such that the KKT conditions hold, then the function J has a (global) minimum at u with respect to U.

The scalars $\lambda_i(u)$ are often called *generalized Lagrange multipliers*.

Minimization with Convex Constraints

If $V = \mathbb{R}^n$, the necessary conditions of the preceding theorem are expressed as the following system of equations and inequalities in the unknowns $(u_1, \ldots, u_n) \in \mathbb{R}^n$ and $(\lambda_1, \ldots, \lambda_m) \in \mathbb{R}^m$:

Minimization with Convex Constraints

$$\frac{\partial J}{\partial x_1}(u) + \lambda_1 \frac{\partial \varphi_1}{\partial x_1}(u) + \dots + \lambda_m \frac{\partial \varphi_m}{\partial x_1}(u) = 0$$

$$\vdots \qquad \vdots$$

$$\frac{\partial J}{\partial x_n}(u) + \lambda_1 \frac{\partial \varphi_1}{\partial x_n}(u) + \dots + \lambda_m \frac{\partial \varphi_m}{\partial x_n}(u) = 0$$

$$\lambda_1 \varphi_1(u) + \dots + \lambda_m \varphi_m(u) = 0$$

$$\varphi_1(u) \le 0$$

$$\vdots \qquad \vdots$$

$$\varphi_m(u) \le 0$$

$$\lambda_1, \dots, \lambda_m \ge 0.$$

Example. Let J, φ_1 and φ_2 be the functions defined on $\mathbb R$ by

$$J(x) = x$$

$$\varphi_1(x) = -x$$

$$\varphi_2(x) = x - 1.$$

Example. Let J, φ_1 and φ_2 be the functions defined on $\mathbb R$ by

$$J(x) = x$$

$$\varphi_1(x) = -x$$

$$\varphi_2(x) = x - 1.$$

In this case

$$U = \{x \in \mathbb{R} \mid -x \le 0, \ x - 1 \le 0\} = [0, 1].$$

Example. Let J, φ_1 and φ_2 be the functions defined on $\mathbb R$ by

$$J(x) = x$$

$$\varphi_1(x) = -x$$

$$\varphi_2(x) = x - 1.$$

In this case

$$U = \{x \in \mathbb{R} \mid -x \le 0, \ x - 1 \le 0\} = [0, 1].$$

Since the constraints are *affine*, they are automatically *qualified* for any $u \in [0,1].$

The system of equations and inequalities shown above becomes

$$1 - \lambda_1 + \lambda_2 = 0$$
$$-\lambda_1 x + \lambda_2 (x - 1) = 0$$
$$-x \le 0$$
$$x - 1 \le 0$$
$$\lambda_1, \lambda_2 \ge 0.$$

The system of equations and inequalities shown above becomes

$$1 - \lambda_1 + \lambda_2 = 0$$
$$-\lambda_1 x + \lambda_2 (x - 1) = 0$$
$$-x \le 0$$
$$x - 1 \le 0$$
$$\lambda_1, \lambda_2 \ge 0.$$

The first equality implies that $\lambda_1 = 1 + \lambda_2$.

The second equality then becomes

$$-(1+\lambda_2)x + \lambda_2(x-1) = 0,$$

which implies that $\lambda_2 = -x$.

Since $0 \le x \le 1$, or equivalently $-1 \le -x \le 0$, and $\lambda_2 \ge 0$, we conclude that $\lambda_2 = 0$ and $\lambda_1 = 1$ is the solution associated with x = 0, the minimum of J(x) = x over [0, 1].

Since $0 \le x \le 1$, or equivalently $-1 \le -x \le 0$, and $\lambda_2 \ge 0$, we conclude that $\lambda_2 = 0$ and $\lambda_1 = 1$ is the solution associated with x = 0, the minimum of J(x) = x over [0, 1].

Observe that the case x = 1 corresponds to the maximum and not a minimum of J(x) = x over [0, 1].

The Karush-Kuhn-Tucker Conditions

It is important to note that when *both* the constraints, the domain of definition Ω , and the objective function J are *convex*, if the KKT conditions hold for some $u \in U$ and some $\lambda \in \mathbb{R}_+^m$, the preceding theorem implies that J has a (global) minimum at u with respect to U, independently of any assumption on the qualification of the constraints.

The Lagrangian

The above theorem suggests introducing the function $L \colon \Omega \times \mathbb{R}^m_+ \to \mathbb{R}$ given by

$$L(\mathbf{v},\lambda) = J(\mathbf{v}) + \sum_{i=1}^{m} \lambda_i \varphi_i(\mathbf{v}),$$

with $\lambda = (\lambda_1, \ldots, \lambda_m)$.

The Lagrangian

The above theorem suggests introducing the function $L \colon \Omega \times \mathbb{R}^m_+ \to \mathbb{R}$ given by

$$L(\mathbf{v},\lambda) = J(\mathbf{v}) + \sum_{i=1}^{m} \lambda_i \varphi_i(\mathbf{v}),$$

with $\lambda = (\lambda_1, \ldots, \lambda_m)$.

The function L is called the Lagrangian of the Minimization Problem (P):

minimize
$$J(v)$$

subject to $\varphi_i(v) \leq 0$, $i = 1, ..., m$.

The Lagrangian and the KKT Conditions

The KKT conditions of the preceding theorem imply that for any $u \in U$, if the vector $\lambda = (\lambda_1, \dots, \lambda_m)$ is known and if u is a minimum of J on U, then

$$\frac{\partial L}{\partial u}(u) = 0$$
$$J(u) = L(u, \lambda).$$

The Lagrangian and the KKT Conditions

The KKT conditions of the preceding theorem imply that for any $u \in U$, if the vector $\lambda = (\lambda_1, \dots, \lambda_m)$ is known and if u is a minimum of J on U, then

$$\frac{\partial L}{\partial u}(u) = 0$$
$$J(u) = L(u, \lambda).$$

The Lagrangian technique "absorbs" the constraints into the new objective function L and reduces the problem of finding a constrained minimum of the function J, to the problem of finding an *unconstrained* minimum of the function $L(v, \lambda)$.

The Lagrangian and the KKT Conditions

The KKT conditions of the preceding theorem imply that for any $u \in U$, if the vector $\lambda = (\lambda_1, \dots, \lambda_m)$ is known and if u is a minimum of J on U, then

$$\frac{\partial L}{\partial u}(u) = 0$$
$$J(u) = L(u, \lambda).$$

The Lagrangian technique "absorbs" the constraints into the new objective function L and reduces the problem of finding a constrained minimum of the function J, to the problem of finding an *unconstrained* minimum of the function $L(v, \lambda)$.

This is the *main point* of Lagrangian duality which will be treated in the next lesson.

A case that arises often in practice is the case where the constraints φ_i are affine. If so, the m constraints $a_i x \leq b_i$ can be expressed in matrix form as

$$Ax \leq b$$
,

where A is an $m \times n$ matrix whose ith row is the row vector a_i , with $x \in \mathbb{R}^n$, and b is the column vector in \mathbb{R}^m whose ith component is b_i .

A case that arises often in practice is the case where the constraints φ_i are affine. If so, the m constraints $a_i x \leq b_i$ can be expressed in matrix form as

$$Ax \leq b$$
,

where A is an $m \times n$ matrix whose ith row is the row vector a_i , with $x \in \mathbb{R}^n$, and b is the column vector in \mathbb{R}^m whose ith component is b_i .

The KKT conditions of the preceding theorem yield the following corollary.

Proposition. If U is given by

$$U = \{ x \in \Omega \mid Ax \le b \},\$$

where Ω is an open convex subset of \mathbb{R}^n and A is an $m \times n$ matrix, and if J is differentiable at u and J has a local minimum at u, then there exist some vector $\lambda \in \mathbb{R}^m$, such that

$$abla J_u + A^{\top} \lambda = 0$$

 $\lambda_i \geq 0$ and if $a_i u < b_i$, then $\lambda_i = 0, i = 1, \dots, m$.

Proposition. If U is given by

$$U = \{x \in \Omega \mid Ax \le b\},\$$

where Ω is an open convex subset of \mathbb{R}^n and A is an $m \times n$ matrix, and if J is differentiable at u and J has a local minimum at u, then there exist some vector $\lambda \in \mathbb{R}^m$, such that

$$\nabla J_u + A^{\top} \lambda = 0$$

 $\lambda_i \geq 0$ and if $a_i u < b_i$, then $\lambda_i = 0, i = 1, \dots, m$.

If the function J is *convex*, then the above conditions are also *sufficient* for J to have a minimum at $u \in U$.

