Fundamentals of Linear Algebra and Optimization

The Karush-Kuhn-Tucker Conditions

Jean Gallier and Jocelyn Quaintance
CIS Department
University of Pennsylvania
jean@cis.upenn.edu
May 7, 2020

Optimization with Convex Constraints

If the domain U is defined by convex inequality constraints satisfying mild differentiability conditions and if the constraints at u are qualified, then there is a necessary condition for the function J to have a local minimum at $u \in U$ involving generalized Lagrange multipliers. The proof uses a version of Farkas lemma.

Farkas Lemma

We will be using the following version of Farkas lemma.

Farkas Lemma

We will be using the following version of Farkas lemma.
Proposition (Farkas lemma). Let V be a Euclidean space of finite dimension with inner product $\langle-,-\rangle$ (more generally, a Hilbert space). For any finite family $\left(a_{1}, \ldots, a_{m}\right)$ of m vectors $a_{i} \in V$ and any vector $b \in V$, for any $v \in V$,

$$
\text { if }\left\langle a_{i}, v\right\rangle \geq 0 \text { for } i=1, \ldots, m \text { implies that }\langle b, v\rangle \geq 0,
$$

then there exist $\lambda_{1}, \ldots, \lambda_{m} \in \mathbb{R}$ such that

$$
\lambda_{i} \geq 0 \text { for } i=1, \ldots, m, \text { and } b=\sum_{i=1}^{m} \lambda_{i} a_{i} .
$$

Optimization with Convex Constraints

We can now prove the following theorem.

Optimization with Convex Constraints

We can now prove the following theorem.
Theorem. Let $\varphi_{i}: \Omega \rightarrow \mathbb{R}$ be m convex constraints defined on some open convex subset Ω of a finite-dimensional Euclidean vector space V (more generally, a real Hilbert space V), let $J: \Omega \rightarrow \mathbb{R}$ be some function, let U be given by

$$
U=\left\{x \in \Omega \mid \varphi_{i}(x) \leq 0, \quad 1 \leq i \leq m\right\},
$$

and let $u \in U$ be any point such that the functions φ_{i} and J are differentiable at u.

Necessary Condition for Minimization with

 Convex Constraints(1) If J has a local minimum at u with respect to U, and if the constraints are qualified, then there exist some scalars $\lambda_{i}(u) \in \mathbb{R}$, such that the $K K T$ condition hold:

$$
J_{u}^{\prime}+\sum_{i=1}^{m} \lambda_{i}(u)\left(\varphi_{i}^{\prime}\right)_{u}=0
$$

and

$$
\sum_{i=1}^{m} \lambda_{i}(u) \varphi_{i}(u)=0, \quad \lambda_{i}(u) \geq 0, \quad i=1, \ldots, m
$$

Necessary Condition for Minimization with

 Convex ConstraintsEquivalently, in terms of gradients, the above conditions are expressed as

$$
\nabla J_{u}+\sum_{i=1}^{m} \lambda_{i}(u) \nabla\left(\varphi_{i}\right)_{u}=0,
$$

and

$$
\sum_{i=1}^{m} \lambda_{i}(u) \varphi_{i}(u)=0, \quad \lambda_{i}(u) \geq 0, \quad i=1, \ldots, m .
$$

Sufficient Condition for Minimization with

 Convex Constraints(2) Conversely, if the restriction of J to U is convex and if there exist scalars $\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in \mathbb{R}_{+}^{m}$ such that the KKT conditions hold, then the function J has a (global) minimum at u with respect to U.

Sufficient Condition for Minimization with Convex Constraints
(2) Conversely, if the restriction of J to U is convex and if there exist scalars $\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in \mathbb{R}_{+}^{m}$ such that the KKT conditions hold, then the function J has a (global) minimum at u with respect to U.
The scalars $\lambda_{i}(u)$ are often called generalized Lagrange multipliers.

Minimization with Convex Constraints

If $V=\mathbb{R}^{n}$, the necessary conditions of the preceding theorem are expressed as the following system of equations and inequalities in the unknowns $\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{R}^{n}$ and $\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in \mathbb{R}_{+}^{m}$:

Minimization with Convex Constraints

$$
\begin{aligned}
\frac{\partial J}{\partial x_{1}}(u)+\lambda_{1} \frac{\partial \varphi_{1}}{\partial x_{1}}(u)+\cdots+\lambda_{m} \frac{\partial \varphi_{m}}{\partial x_{1}}(u) & =0 \\
\vdots & \vdots \\
\frac{\partial J}{\partial x_{n}}(u)+\lambda_{1} \frac{\partial \varphi_{n}}{\partial x_{1}}(u)+\cdots+\lambda_{m} \frac{\partial \varphi_{m}}{\partial x_{n}}(u) & =0 \\
\lambda_{1} \varphi_{1}(u)+\cdots+\lambda_{m} \varphi_{m}(u) & =0 \\
\varphi_{1}(u) & \leq 0 \\
\vdots & \vdots \\
\varphi_{m}(u) & \leq 0 \\
\lambda_{1}, \ldots, \lambda_{m} & \geq 0
\end{aligned}
$$

Example of Convex Minimization

Example. Let J, φ_{1} and φ_{2} be the functions defined on \mathbb{R} by

$$
\begin{aligned}
J(x) & =x \\
\varphi_{1}(x) & =-x \\
\varphi_{2}(x) & =x-1 .
\end{aligned}
$$

Example of Convex Minimization

Example. Let J, φ_{1} and φ_{2} be the functions defined on \mathbb{R} by

$$
\begin{aligned}
J(x) & =x \\
\varphi_{1}(x) & =-x \\
\varphi_{2}(x) & =x-1 .
\end{aligned}
$$

In this case

$$
U=\{x \in \mathbb{R} \mid-x \leq 0, x-1 \leq 0\}=[0,1] .
$$

Example of Convex Minimization

Example. Let J, φ_{1} and φ_{2} be the functions defined on \mathbb{R} by

$$
\begin{aligned}
J(x) & =x \\
\varphi_{1}(x) & =-x \\
\varphi_{2}(x) & =x-1 .
\end{aligned}
$$

In this case

$$
U=\{x \in \mathbb{R} \mid-x \leq 0, x-1 \leq 0\}=[0,1] .
$$

Since the constraints are affine, they are automatically qualified for any $u \in[0,1]$.

Example of Convex Minimization

The system of equations and inequalities shown above becomes

$$
\begin{aligned}
1-\lambda_{1}+\lambda_{2} & =0 \\
-\lambda_{1} x+\lambda_{2}(x-1) & =0 \\
-x & \leq 0 \\
x-1 & \leq 0 \\
\lambda_{1}, \lambda_{2} & \geq 0
\end{aligned}
$$

Example of Convex Minimization

The system of equations and inequalities shown above becomes

$$
\begin{aligned}
1-\lambda_{1}+\lambda_{2} & =0 \\
-\lambda_{1} x+\lambda_{2}(x-1) & =0 \\
-x & \leq 0 \\
x-1 & \leq 0 \\
\lambda_{1}, \lambda_{2} & \geq 0
\end{aligned}
$$

The first equality implies that $\lambda_{1}=1+\lambda_{2}$.
The second equality then becomes

$$
-\left(1+\lambda_{2}\right) x+\lambda_{2}(x-1)=0,
$$

which implies that $\lambda_{2}=-x$.

Example of Convex Minimization

Since $0 \leq x \leq 1$, or equivalently $-1 \leq-x \leq 0$, and $\lambda_{2} \geq 0$, we conclude that $\lambda_{2}=0$ and $\lambda_{1}=1$ is the solution associated with $x=0$, the minimum of $J(x)=x$ over $[0,1]$.

Example of Convex Minimization

Since $0 \leq x \leq 1$, or equivalently $-1 \leq-x \leq 0$, and $\lambda_{2} \geq 0$, we conclude that $\lambda_{2}=0$ and $\lambda_{1}=1$ is the solution associated with $x=0$, the minimum of $J(x)=x$ over $[0,1]$.
Observe that the case $x=1$ corresponds to the maximum and not a minimum of $J(x)=x$ over $[0,1]$.

The Karush-Kuhn-Tucker Conditions

It is important to note that when both the constraints, the domain of definition Ω, and the objective function J are convex, if the KKT conditions hold for some $u \in U$ and some $\lambda \in \mathbb{R}_{+}^{m}$, the preceding theorem implies that J has a (global) minimum at u with respect to U, independently of any assumption on the qualification of the constraints.

The Lagrangian

The above theorem suggests introducing the function $L: \Omega \times \mathbb{R}_{+}^{m} \rightarrow \mathbb{R}$ given by

$$
L(v, \lambda)=J(v)+\sum_{i=1}^{m} \lambda_{i} \varphi_{i}(v)
$$

with $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$.

The Lagrangian

The above theorem suggests introducing the function $L: \Omega \times \mathbb{R}_{+}^{m} \rightarrow \mathbb{R}$ given by

$$
L(v, \lambda)=J(v)+\sum_{i=1}^{m} \lambda_{i} \varphi_{i}(v)
$$

with $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$.
The function L is called the Lagrangian of the Minimization Problem (P) :

$$
\begin{aligned}
& \operatorname{minimize} \quad J(v) \\
& \text { subject to } \quad \varphi_{i}(v) \leq 0, \quad i=1, \ldots, m
\end{aligned}
$$

The Lagrangian and the KKT Conditions

The KKT conditions of the preceding theorem imply that for any $u \in U$, if the vector $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is known and if u is a minimum of J on U, then

$$
\begin{aligned}
\frac{\partial L}{\partial u}(u) & =0 \\
J(u) & =L(u, \lambda) .
\end{aligned}
$$

The Lagrangian and the KKT Conditions

The KKT conditions of the preceding theorem imply that for any $u \in U$, if the vector $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is known and if u is a minimum of J on U, then

$$
\begin{aligned}
\frac{\partial L}{\partial u}(u) & =0 \\
J(u) & =L(u, \lambda) .
\end{aligned}
$$

The Lagrangian technique "absorbs" the constraints into the new objective function L and reduces the problem of finding a constrained minimum of the function J, to the problem of finding an unconstrained minimum of the function $L(v, \lambda)$.

The Lagrangian and the KKT Conditions

The KKT conditions of the preceding theorem imply that for any $u \in U$, if the vector $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is known and if u is a minimum of J on U, then

$$
\begin{aligned}
\frac{\partial L}{\partial u}(u) & =0 \\
J(u) & =L(u, \lambda) .
\end{aligned}
$$

The Lagrangian technique "absorbs" the constraints into the new objective function L and reduces the problem of finding a constrained minimum of the function J, to the problem of finding an unconstrained minimum of the function $L(v, \lambda)$.
This is the main point of Lagrangian duality which will be treated in the next lesson.

KKT Conditions with Affine Constraints

A case that arises often in practice is the case where the constraints φ_{i} are affine. If so, the m constraints $a_{i} x \leq b_{i}$ can be expressed in matrix form as $A x \leq b$, where A is an $m \times n$ matrix whose th row is the row vector a_{i}.

KKT Conditions with Affine Constraints

A case that arises often in practice is the case where the constraints φ_{i} are affine. If so, the m constraints $a_{i} x \leq b_{i}$ can be expressed in matrix form as $A x \leq b$, where A is an $m \times n$ matrix whose th row is the row vector a_{i}.

The KKT conditions of the preceding theorem yield the following corollary.

KKT Conditions with Affine Constraints

Proposition. If U is given by

$$
U=\{x \in \Omega \mid A x \leq b\},
$$

where Ω is an open convex subset of \mathbb{R}^{n} and A is an $m \times n$ matrix, and if J is differentiable at u and J has a local minimum at u, then there exist some vector $\lambda \in \mathbb{R}^{m}$, such that

$$
\begin{aligned}
& \nabla J_{u}+A^{\top} \lambda=0 \\
& \lambda_{i} \geq 0 \text { and } \quad \text { if } a_{i} u<b_{i} \text {, then } \lambda_{i}=0, i=1, \ldots, m .
\end{aligned}
$$

KKT Conditions with Affine Constraints

Proposition. If U is given by

$$
U=\{x \in \Omega \mid A x \leq b\},
$$

where Ω is an open convex subset of \mathbb{R}^{n} and A is an $m \times n$ matrix, and if J is differentiable at u and J has a local minimum at u, then there exist some vector $\lambda \in \mathbb{R}^{m}$, such that

$$
\begin{aligned}
& \nabla J_{u}+A^{\top} \lambda=0 \\
& \lambda_{i} \geq 0 \text { and } \quad \text { if } a_{i} u<b_{i} \text {, then } \lambda_{i}=0, i=1, \ldots, m .
\end{aligned}
$$

If the function J is convex, then the above conditions are also sufficient for J to have a minimum at $u \in U$.

