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The Objective of Optimization Theory

The main goal of optimization theory is to construct algorithms to find
solutions (often approximate) of problems of the form

find u
such that u ∈ U and J(u) = inf

v∈U
J(v),

where U is a given subset of a (real) vector space V (possibly infinite
dimensional) and J : Ω → R is a function defined on some open subset Ω of V
such that U ⊆ Ω.
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Optimization Theory Notation

The notation infv∈U J(v) denotes the greatest lower bound of the set of real
numbers {J(v) | v ∈ U}.

The element infv∈U J(v) is just inf{J(v) | v ∈ U}.

The notation J∗ is often used to denote infv∈U J(v).
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Unbounded Below Optimization Problem

If the function J is not bounded below, which means that for every r ∈ R,
there is some u ∈ U such that J(u) < r, then

inf
v∈U

J(v) = −∞,

and we say that our minimization problem has no solution, or that it is
unbounded (below).

For example, if V = Ω = R, U = {x ∈ R | x ≤ 0}, and J(x) = x, then the
function J(x) is not bounded below and infv∈U J(v) = −∞.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Unbounded Below Optimization Problem
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Unsolvable Optimization Problem

The issue is that J∗ may not belong to {J(u) | u ∈ U}, that is, it may not be
achieved by some element u ∈ U, and solving the above problem consists in
finding some u ∈ U that achieves the value J∗ in the sense that J(u) = J∗.

If no such u ∈ U exists, again we say that our minimization problem has no
solution.
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Restated Objective of Optimization Theory

The minimization problem

find u
such that u ∈ U and J(u) = inf

v∈U
J(v)

is often presented in the following more informal way:

minimize J(v)
subject to v ∈ U. (Problem M)
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Minimizer of the Optimization Problem

A vector u ∈ U such that J(u) = infv∈U J(v) is often called a minimizer of J
over U.

Some authors denote the set of minimizers of J over U by argminv∈UJ(v) and
write

u ∈ argminv∈UJ(v)
to express that u is such a minimizer.
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Maximization Version of Optimization

If we need to maximize rather than minimize a function, then we try to find
some u ∈ U such that

J(u) = sup
v∈U

J(v).

Here supv∈U J(v) is the least upper bound of the set {J(v) | v ∈ U}.

Some authors denote the set of maximizers of J over U by argmaxv∈UJ(v).
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Constraints and Functional of the
Optimization Problem

In most cases, U is defined as the set of solutions of a finite sets of
constraints, either equality constraints φi(v) = 0, or inequality constraints
φi(v) ≤ 0, where the φi : Ω → R are some given functions.

The function J is often called the functional of the optimization problem.
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Questions Raised by Optimization Theory

The following questions arise naturally:

(1) Results concerning the existence and uniqueness of a solution for Problem
M.

(2) The characterization of the possible solutions of Problem M. These are
conditions for any element u ∈ U to be a solution of the problem. Such
conditions usually involve the derivative dJu of J, and possibly the
derivatives of the functions φi defining U. Some of these conditions
become sufficient when the functions φi are convex.
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Questions Raised by Optimization Theory
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M.
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conditions for any element u ∈ U to be a solution of the problem. Such
conditions usually involve the derivative dJu of J, and possibly the
derivatives of the functions φi defining U. Some of these conditions
become sufficient when the functions φi are convex.
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(2) The characterization of the possible solutions of Problem M. These are

conditions for any element u ∈ U to be a solution of the problem. Such
conditions usually involve the derivative dJu of J, and possibly the
derivatives of the functions φi defining U.

Some of these conditions
become sufficient when the functions φi are convex.
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Questions Raised by Optimization Theory

(3) The effective construction of algorithms, typically iterative algorithms that
construct a sequence (uk)k≥1 of elements of U whose limit is a solution
u ∈ U of our problem. It is then necessary to understand when and how
quickly such sequences converge.

Gradient descent methods fall under this category. As a general rule,
unconstrained problems (for which U = Ω = V) are (much) easier to deal with
than constrained problems (where U ̸= V).
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Optimization Problems: Equality
Constraints

In a previous module we investigated the problem of determining when a
function J : Ω → R defined on some open subset Ω of a normed vector space
E has a local extremum in a subset U of Ω defined by equational constraints,
namely

U = {x ∈ Ω | φi(x) = 0, 1 ≤ i ≤ m},

where the functions φi : Ω → R are continuous (and usually differentiable).

We gave a necessary condition in terms of the Lagrange multipliers.
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Optimization Problems: Inequality
Constraints

Our goal is to find a necessary criterion for a function J : Ω → R to have a
minimum on a subset U defined by inequality constraints φi(x) ≤ 0, where the
functions φi are convex.

There is a necessary condition for a function J to have a minimum on a subset
U defined by qualified inequality constraints in terms of the
Karush–Kuhn–Tucker conditions (for short KKT conditions), which involve
nonnegative Lagrange multipliers.
The proof relies on a version of the Farkas–Minkowski lemma.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Optimization Problems: Inequality
Constraints

Our goal is to find a necessary criterion for a function J : Ω → R to have a
minimum on a subset U defined by inequality constraints φi(x) ≤ 0, where the
functions φi are convex.
There is a necessary condition for a function J to have a minimum on a subset
U defined by qualified inequality constraints in terms of the
Karush–Kuhn–Tucker conditions (for short KKT conditions), which involve
nonnegative Lagrange multipliers.

The proof relies on a version of the Farkas–Minkowski lemma.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Optimization Problems: Inequality
Constraints

Our goal is to find a necessary criterion for a function J : Ω → R to have a
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Optimization Problems: Inequality
Constraints

In general, the KKT conditions are useless unless the constraints are convex.
In this case, there is a manageable notion of qualified constraint given by
Slater’s conditions.

Furthermore, if J is also convex and if the KKT conditions hold, then J has a
global minimum.
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Optimization Problems: Inequality
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In general, the KKT conditions are useless unless the constraints are convex.
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Equality Constraints as Inequalities

From now on we assume that U is defined by a set of inequalities, that is

U = {x ∈ Ω | φi(x) ≤ 0, 1 ≤ i ≤ m},

where the functions φi : Ω → R are continuous (and usually differentiable).

An equality constraint φi(x) = 0 is treated as the conjunction of the two
inequalities φi(x) ≤ 0 and −φi(x) ≤ 0.
Later on we will see that when the functions φi are convex, since −φi is not
necessarily convex, it is desirable to treat equality constraints separately, but
for the time being we won’t.
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Role of Convexity in Optimization

Since the astute reader will notice the word convex has appeared numerous
times throughout this lesson, we need to first define the notion of a convex
function.


