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Extrema of Real-Valued Functions
This lesson deals with extrema of real-valued functions. In most optimization
problems we need to find necessary conditions for a function J : Ω → R to
have a local extremum with respect to a subset U of Ω (where Ω is open).
This can be done in two cases:

(1) The set U is defined by a set of equations,

U = {x ∈ Ω | φi(x) = 0, 1 ≤ i ≤ m},

where the functions φi : Ω → R are continuous and differentiable.
(2) The set U is defined by a set of inequalities,

U = {x ∈ Ω | φi(x) ≤ 0, 1 ≤ i ≤ m},

where the functions φi : Ω → R are continuous and differentiable.
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Extrema of Real-Valued Functions
This lesson deals with extrema of real-valued functions. In most optimization
problems we need to find necessary conditions for a function J : Ω → R to
have a local extremum with respect to a subset U of Ω (where Ω is open).
This can be done in two cases:
(1) The set U is defined by a set of equations,

U = {x ∈ Ω | φi(x) = 0, 1 ≤ i ≤ m},

where the functions φi : Ω → R are continuous and differentiable.

(2) The set U is defined by a set of inequalities,

U = {x ∈ Ω | φi(x) ≤ 0, 1 ≤ i ≤ m},

where the functions φi : Ω → R are continuous and differentiable.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Extrema of Real-Valued Functions
This lesson deals with extrema of real-valued functions. In most optimization
problems we need to find necessary conditions for a function J : Ω → R to
have a local extremum with respect to a subset U of Ω (where Ω is open).
This can be done in two cases:
(1) The set U is defined by a set of equations,

U = {x ∈ Ω | φi(x) = 0, 1 ≤ i ≤ m},

where the functions φi : Ω → R are continuous and differentiable.
(2) The set U is defined by a set of inequalities,

U = {x ∈ Ω | φi(x) ≤ 0, 1 ≤ i ≤ m},

where the functions φi : Ω → R are continuous and differentiable.
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Equality Constraints

In (1), the equations φi(x) = 0 are called equality constraints, and in (2), the
inequalities φi(x) ≤ 0 are called inequality constraints. The case of equality
constraints is much easier to deal with and is treated in this lesson.

In the case of equality constraints, a necessary condition for a local extremum
with respect to U can be given in terms of Lagrange multipliers. In the case of
inequality constraints, there is also a necessary condition for a local extremum
with respect to U in terms of generalized Lagrange multipliers and the
Karush–Kuhn–Tucker conditions.
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Equality Constraints

In (1), the equations φi(x) = 0 are called equality constraints, and in (2), the
inequalities φi(x) ≤ 0 are called inequality constraints. The case of equality
constraints is much easier to deal with and is treated in this lesson.

In the case of equality constraints, a necessary condition for a local extremum
with respect to U can be given in terms of Lagrange multipliers. In the case of
inequality constraints, there is also a necessary condition for a local extremum
with respect to U in terms of generalized Lagrange multipliers and the
Karush–Kuhn–Tucker conditions.
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Definition of a Local Minimum

Let J : E → R be a real-valued function defined on a normed vector space E.
Ideally we would like to find where the function J reaches a minimum or a
maximum value, at least locally.

Definition. If J : E → R is a real-valued function defined on a normed
vector space E, we say that J has a local minimum (or relative minimum) at
the point u ∈ E if there is some open subset W ⊆ E containing u such that

J(u) ≤ J(w) for all w ∈ W.
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Definition of a Local Minimum

Let J : E → R be a real-valued function defined on a normed vector space E.
Ideally we would like to find where the function J reaches a minimum or a
maximum value, at least locally.

Definition. If J : E → R is a real-valued function defined on a normed
vector space E, we say that J has a local minimum (or relative minimum) at
the point u ∈ E if there is some open subset W ⊆ E containing u such that

J(u) ≤ J(w) for all w ∈ W.
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Definition of a Local Maximum
Similarly, we say that J has a local maximum (or relative maximum) at the
point u ∈ E if there is some open subset W ⊆ E containing u such that

J(u) ≥ J(w) for all w ∈ W.

In either case, we say that J has a local extremum (or relative extremum) at
u. We say that J has a strict local minimum (resp. strict local maximum) at
the point u ∈ E if there is some open subset W ⊆ E containing u such that

J(u) < J(w) for all w ∈ W − {u}

(resp.
J(u) > J(w) for all w ∈ W − {u}).
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Definition of a Local Maximum
Similarly, we say that J has a local maximum (or relative maximum) at the
point u ∈ E if there is some open subset W ⊆ E containing u such that

J(u) ≥ J(w) for all w ∈ W.

In either case, we say that J has a local extremum (or relative extremum) at
u. We say that J has a strict local minimum (resp. strict local maximum) at
the point u ∈ E if there is some open subset W ⊆ E containing u such that

J(u) < J(w) for all w ∈ W − {u}

(resp.
J(u) > J(w) for all w ∈ W − {u}).
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Necessary Condition for Local Extrema

We begin with a necessary condition for a local extremum.

Proposition. Let E be a normed vector space and let J : Ω → R be a
function, with Ω some open subset of E. If the function J has a local
extremum at some point u ∈ Ω and if J is differentiable at u, then

dJu = J′(u) = 0.
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Necessary Condition for Local Extrema

We begin with a necessary condition for a local extremum.

Proposition. Let E be a normed vector space and let J : Ω → R be a
function, with Ω some open subset of E. If the function J has a local
extremum at some point u ∈ Ω and if J is differentiable at u, then

dJu = J′(u) = 0.
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Necessary Condition for Local Extrema

Proof. Pick any v ∈ E. Since Ω is open, for t small enough we have
u + tv ∈ Ω, so there is an open interval I ⊆ R such that the function φ given
by

φ(t) = J(u + tv)
for all t ∈ I is well-defined. By applying the chain rule, we see that φ is
differentiable at t = 0, and we get

φ′(0) = dJu(v).
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Necessary Condition for Local Extrema

Without loss of generality, assume that u is a local minimum. Then we have

φ′(0) = lim
t7→0−

φ(t)− φ(0)

t ≤ 0

and
φ′(0) = lim

t 7→0+

φ(t)− φ(0)

t ≥ 0,

which shows that φ′(0) = dJu(v) = 0. As v ∈ E is arbitrary, we conclude that
dJu = 0. □
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Critical Point
Definition. A point u ∈ Ω such that J′(u) = 0 is called a critical point of J.

If E = Rn, then the condition dJu = 0 is equivalent to the system

∂J
∂x1

(u1, . . . , un) = 0

...
∂J
∂xn

(u1, . . . , un) = 0.
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Critical Point
Definition. A point u ∈ Ω such that J′(u) = 0 is called a critical point of J.

If E = Rn, then the condition dJu = 0 is equivalent to the system

∂J
∂x1

(u1, . . . , un) = 0

...
∂J
∂xn

(u1, . . . , un) = 0.
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Necessary Condition for Local Extrema

� The condition of the preceding proposition is only a necessary condi-
tion for the existence of an extremum, but not a sufficient condition.

Here are some counter-examples.
If f : R → R is the function given by f(x) = x3, since f′(x) = 3x2, we have
f′(0) = 0, but 0 is neither a minimum nor a maximum of f as evidenced by the
graph shown in Figure 1.
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Necessary Condition for Local Extrema

� The condition of the preceding proposition is only a necessary condi-
tion for the existence of an extremum, but not a sufficient condition.

Here are some counter-examples.

If f : R → R is the function given by f(x) = x3, since f′(x) = 3x2, we have
f′(0) = 0, but 0 is neither a minimum nor a maximum of f as evidenced by the
graph shown in Figure 1.
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Necessary Condition for Local Extrema

� The condition of the preceding proposition is only a necessary condi-
tion for the existence of an extremum, but not a sufficient condition.

Here are some counter-examples.
If f : R → R is the function given by f(x) = x3, since f′(x) = 3x2, we have
f′(0) = 0, but 0 is neither a minimum nor a maximum of f as evidenced by the
graph shown in Figure 1.
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Illustration of a Cubic Curve

Figure 1: The graph of f(x) = x3. Note that x = 0 is a saddle point and not a local
extremum.
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Necessary Condition for Local Extrema

If g : R2 → R is the function given by g(x, y) = x2 − y2, then
g′(x,y) = (2x − 2y), so g′(0,0) = (0 0), yet near (0, 0) the function g takes
negative and positive values. See Figure 2.
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Illustration of a Hyperbolic Paraboloid

Figure 2: The graph of g(x, y) = x2 − y2. Note that (0, 0) is a saddle point and not a local
extremum.
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Necessary Condition for Local Extrema

� It is very important to note that the hypothesis that Ω is open is
crucial for the validity of the preceding proposition.

For example, if J is the identity function on R and U = [0, 1], a closed subset,
then J′(x) = 1 for all x ∈ [0, 1], even though J has a minimum at x = 0 and a
maximum at x = 1.
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Necessary Condition for Local Extrema

� It is very important to note that the hypothesis that Ω is open is
crucial for the validity of the preceding proposition.

For example, if J is the identity function on R and U = [0, 1], a closed subset,
then J′(x) = 1 for all x ∈ [0, 1], even though J has a minimum at x = 0 and a
maximum at x = 1.


