Fundamentals of Linear Algebra and Optimization Extrema of Real-Valued Functions

Jean Gallier and Jocelyn Quaintance
CIS Department
University of Pennsylvania
jean@cis.upenn.edu
May 8, 2020

Extrema of Real-Valued Functions

This lesson deals with extrema of real-valued functions. In most optimization problems we need to find necessary conditions for a function $J: \Omega \rightarrow \mathbb{R}$ to have a local extremum with respect to a subset U of Ω (where Ω is open). This can be done in two cases:

Extrema of Real-Valued Functions

This lesson deals with extrema of real-valued functions. In most optimization problems we need to find necessary conditions for a function $J: \Omega \rightarrow \mathbb{R}$ to have a local extremum with respect to a subset U of Ω (where Ω is open). This can be done in two cases:
(1) The set U is defined by a set of equations,

$$
U=\left\{x \in \Omega \mid \varphi_{i}(x)=0,1 \leq i \leq m\right\},
$$

where the functions $\varphi_{i}: \Omega \rightarrow \mathbb{R}$ are continuous and differentiable.

Extrema of Real-Valued Functions

This lesson deals with extrema of real-valued functions. In most optimization problems we need to find necessary conditions for a function $J: \Omega \rightarrow \mathbb{R}$ to have a local extremum with respect to a subset U of Ω (where Ω is open). This can be done in two cases:
(1) The set U is defined by a set of equations,

$$
U=\left\{x \in \Omega \mid \varphi_{i}(x)=0,1 \leq i \leq m\right\},
$$

where the functions $\varphi_{i}: \Omega \rightarrow \mathbb{R}$ are continuous and differentiable.
(2) The set U is defined by a set of inequalities,

$$
U=\left\{x \in \Omega \mid \varphi_{i}(x) \leq 0, \quad 1 \leq i \leq m\right\}
$$

where the functions $\varphi_{i}: \Omega \rightarrow \mathbb{R}$ are continuous and differentiable.

Equality Constraints

In (1), the equations $\varphi_{i}(x)=0$ are called equality constraints, and in (2), the inequalities $\varphi_{i}(x) \leq 0$ are called inequality constraints. The case of equality constraints is much easier to deal with and is treated in this lesson.

Equality Constraints

In (1), the equations $\varphi_{i}(x)=0$ are called equality constraints, and in (2), the inequalities $\varphi_{i}(x) \leq 0$ are called inequality constraints. The case of equality constraints is much easier to deal with and is treated in this lesson.

In the case of equality constraints, a necessary condition for a local extremum with respect to U can be given in terms of Lagrange multipliers. In the case of inequality constraints, there is also a necessary condition for a local extremum with respect to U in terms of generalized Lagrange multipliers and the Karush-Kuhn-Tucker conditions.

Definition of a Local Minimum

Let $J: E \rightarrow \mathbb{R}$ be a real-valued function defined on a normed vector space E. Ideally we would like to find where the function J reaches a minimum or a maximum value, at least locally.

Definition of a Local Minimum

Let $J: E \rightarrow \mathbb{R}$ be a real-valued function defined on a normed vector space E. Ideally we would like to find where the function J reaches a minimum or a maximum value, at least locally.

Definition. If $J: E \rightarrow \mathbb{R}$ is a real-valued function defined on a normed vector space E, we say that J has a local minimum (or relative minimum) at the point $u \in E$ if there is some open subset $W \subseteq E$ containing u such that

$$
J(u) \leq J(w) \quad \text { for all } w \in W .
$$

Definition of a Local Maximum

Similarly, we say that J has a local maximum (or relative maximum) at the point $u \in E$ if there is some open subset $W \subseteq E$ containing u such that

$$
J(u) \geq J(w) \quad \text { for all } w \in W \text {. }
$$

Definition of a Local Maximum

Similarly, we say that J has a local maximum (or relative maximum) at the point $u \in E$ if there is some open subset $W \subseteq E$ containing u such that

$$
J(u) \geq J(w) \quad \text { for all } w \in W .
$$

In either case, we say that J has a local extremum (or relative extremum) at u. We say that J has a strict local minimum (resp. strict local maximum) at the point $u \in E$ if there is some open subset $W \subseteq E$ containing u such that

$$
J(u)<J(w) \quad \text { for all } w \in W-\{u\}
$$

(resp.

$$
J(u)>J(w) \quad \text { for all } w \in W-\{u\}) .
$$

Necessary Condition for Local Extrema

We begin with a necessary condition for a local extremum.

Necessary Condition for Local Extrema

We begin with a necessary condition for a local extremum.
Proposition. Let E be a normed vector space and let $J: \Omega \rightarrow \mathbb{R}$ be a function, with Ω some open subset of E. If the function J has a local extremum at some point $u \in \Omega$ and if J is differentiable at u, then

$$
d J_{u}=J^{\prime}(u)=0 .
$$

Necessary Condition for Local Extrema

Proof. Pick any $v \in E$. Since Ω is open, for t small enough we have $u+t v \in \Omega$, so there is an open interval $I \subseteq \mathbb{R}$ such that the function φ given by

$$
\varphi(t)=J(u+t v)
$$

for all $t \in I$ is well-defined. By applying the chain rule, we see that φ is differentiable at $t=0$, and we get

$$
\varphi^{\prime}(0)=d J_{u}(v)
$$

Necessary Condition for Local Extrema

Without loss of generality, assume that u is a local minimum. Then we have

$$
\varphi^{\prime}(0)=\lim _{t \rightarrow 0_{-}} \frac{\varphi(t)-\varphi(0)}{t} \leq 0
$$

and

$$
\varphi^{\prime}(0)=\lim _{t \rightarrow 0_{+}} \frac{\varphi(t)-\varphi(0)}{t} \geq 0
$$

which shows that $\varphi^{\prime}(0)=d J_{u}(v)=0$. As $v \in E$ is arbitrary, we conclude that $d J_{u}=0$. \square

Critical Point

Definition. A point $u \in \Omega$ such that $J^{\prime}(u)=0$ is called a critical point of J.

Critical Point

Definition. A point $u \in \Omega$ such that $J^{\prime}(u)=0$ is called a critical point of J.
If $E=\mathbb{R}^{n}$, then the condition $d J_{u}=0$ is equivalent to the system

$$
\begin{gathered}
\frac{\partial J}{\partial x_{1}}\left(u_{1}, \ldots, u_{n}\right)=0 \\
\vdots \\
\frac{\partial J}{\partial x_{n}}\left(u_{1}, \ldots, u_{n}\right)=0 .
\end{gathered}
$$

Necessary Condition for Local Extrema

The condition of the preceding proposition is only a necessary condition for the existence of an extremum, but not a sufficient condition.

Necessary Condition for Local Extrema

The condition of the preceding proposition is only a necessary condition for the existence of an extremum, but not a sufficient condition.

Here are some counter-examples.

Necessary Condition for Local Extrema

The condition of the preceding proposition is only a necessary condition for the existence of an extremum, but not a sufficient condition.

Here are some counter-examples.
If $f: \mathbb{R} \rightarrow \mathbb{R}$ is the function given by $f(x)=x^{3}$, since $f(x)=3 x^{2}$, we have $f(0)=0$, but 0 is neither a minimum nor a maximum of f as evidenced by the graph shown in Figure 1.

Illustration of a Cubic Curve

Figure 1: The graph of $f(x)=x^{3}$. Note that $x=0$ is a saddle point and not a local extremum.
\qquad

Necessary Condition for Local Extrema

If $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is the function given by $g(x, y)=x^{2}-y^{2}$, then $g_{(x, y)}^{\prime}=(2 x-2 y)$, so $g_{(0,0)}^{\prime}=(00)$, yet near $(0,0)$ the function g takes negative and positive values. See Figure 2.

Illustration of a Hyperbolic Paraboloid

Figure 2: The graph of $g(x, y)=x^{2}-y^{2}$. Note that $(0,0)$ is a saddle point and not a local extremum.

Necessary Condition for Local Extrema

It is very important to note that the hypothesis that Ω is open is crucial for the validity of the preceding proposition.

Necessary Condition for Local Extrema

It is very important to note that the hypothesis that Ω is open is crucial for the validity of the preceding proposition.

For example, if J is the identity function on \mathbb{R} and $U=[0,1]$, a closed subset, then $J^{\prime}(x)=1$ for all $x \in[0,1]$, even though J has a minimum at $x=0$ and a maximum at $x=1$.

