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Motivations

Two central problems in machine learning are

(1.) Data fitting (or learning a function).
(2.) Data classification.

For this introduction we focus on the more classical problem of data fitting.
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Fitting Points in the Plane

Assume we have some data points in the plane given as a list of m coordinates

((x1, y1), . . . , (xm, ym)), xi, yi ∈ R.

The figure on the next slide shows an example of 100 points in the plane.
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Fitting Points in the Plane

Figure 1: A data set of 100 points in the plane.
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Learning an AffineMap

We are looking for a function f : R → R such that f(xi) = yi for i = 1, . . . , 100.

The simplest kind of function is an affine map, that is, a map of the form

f(x) = wx + b,

for some real numbers w, b. The number w is called a weight.
The numbers w and b must satisfy the 100 (affine) equations

yi = f(xi) = wxi + b.
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Learning an AffineMap

In general, unless all the points lie on the same line, the above linear system
has no solution.

We are asking for too much. A more promising approach is to minimize the
error.
But what is the error?
Gauss and Legendre proposed a method over 200 years ago: the least squares
method.
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What is the Error?

Every equation yi = wxi + b can be written as

yi − wxi − b = 0.

Think of yi − wxi − b as an error.

In the method of least squares, the error (or loss) is the sum of the squares of
the errors:

100∑
i=1

(yi − wxi − b)2.
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Least Squares Solution
Here the least squares solution for our data set of 100 points.
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Figure 2: The least squares best fit.
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Fitting Points inRn

We can generalize the problem to data in Rn.

Assume we have some data given as a list of m pairs

((x1, y1), . . . , (xm, ym)), xi ∈ Rn, yi ∈ R.

We wish to learn an affine map f : Rn → R of the form

f(z) = w1z1 + · · ·+ wnzn + b,

with z = (z1, . . . , zn) and where w1, . . . ,wn ∈ R are weights.
It is convenient to denote the quantity w1z1 + · · ·+ wnzn (an inner product)
as z⊤w.
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The Euclidean Norm (or ℓ2-Norm)
The Euclidean norm (or ℓ2-norm) of a vector z = (z1, . . . , zn) ∈ Rn is defined
as

∥z∥2 = (z21 + · · ·+ z2n)1/2 = (z⊤z)1/2.

The least squares problem is find w ∈ Rn that minimizes

∥ξ∥22 ,

where ξ = (ξ1, . . . , ξm) is the vector given by

ξi = yi − x⊤i w − b.
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Pseudo-Inverse
It turns out that there is a unique solution

(w
b
)+ of least ℓ2-norm.

Furthermore, this solution
(w

b
)+ is expressed in terms of something called a

pseudo-inverse.
In our case (

w
b

)+

= A+y,

where A+ is the pseudo-inverse of the matrix

A =

x⊤1 1
... ...

x⊤m 1

 .
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Pseudo-Inverse

The pseudo-inverse of a matrix A can be computed in terms of its singular
value decomposition (or SVD).

The SVD and the pseudo-inverse will be discussed extensively later.

The solution given by the pseudo-inverse is not always desirable or too
expensive to compute.

Another method is to penalize the ℓ2-norm of w.
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Ridge Regression

The problem to solve is the following minimization problem known as ridge
regression:

minimize ∥ξ∥22 + K ∥w∥22
subject to

yi − x⊤i w − b = ξi, i = 1, . . . ,m

where K is positive constant.
This time there is a unique solution given in terms of the matrix X whose rows
are the (row) vectors x⊤i . For simplicity assume b = 0.
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Ridge Regression

The unique minimizer is given by the expression

w = X⊤(XX⊤ + KIm)−1y.

The matrix
XX⊤ + KIm

is particularly nice because it is symmetric positive definite. There are more
efficient methods for solving linear system involving SPD matrices. We will
study such matrices extensively.
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ℓ1-Norm and Lasso Regression

One of the weak points of ridge regression is that when the dimension n of the
data is relatively large, the weight vector w is not sparse, which means that
very few weights wi are close to zero.

A remedy to this problem is to penalize the ℓ1-norm ∥w∥1 of w instead of its
ℓ2-norm ∥w∥22.

The ℓ1-norm of a vector z = (z1, . . . , zn) ∈ Rn is defined as

∥z∥1 = |z1|+ · · ·+ |zn|.
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Lasso Regression

Lasso regression is the following minimization problem:

minimize ∥ξ∥22 + τ ∥w∥1
subject to

yi − x⊤i w − b = ξi, i = 1, . . . ,m

where τ is positive constant.
This time, there is no closed-form solution. However a solution can be
computed using an iterative process (ADMM) which solves a sequence of
linear systems involving SPD matrices.
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Elastic Net Regression

There are still undesirable features of lasso, especially when the dimension n of
the data is much larger than the number m of data.

A way to retain the best features of ridge regression and lasso is to penalize
both the ℓ1-norm and the ℓ2-norm of w.
Elastic net regression is the following minimization problem:

minimize ∥ξ∥22 + K ∥w∥22 + τ ∥w∥1
subject to

yi − x⊤i w − b = ξi, i = 1, . . . ,m

where K and τ are positive constants.
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Elastic Net Regression

Elastic net can also be solved using an iterative process (ADMM) which solves
linear systems involving SPD matrices.

When m is much larger than n, elastic net is much slower than lasso,
especially for small K.
Remarkably, least squares, ridge regression, lasso, and elastic net, all rely on
solving linear systems involving SPD matrices.
This is why most of this course will be devoted to these topics! The notion of
orthogonality also play a crucial role.
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