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Chapter 15

Unit Quaternions and Rotations in
SO(3)

This chapter is devoted to the representation of rotations in SO(3) in terms
of unit quaternions. Since we already defined the unitary groups SU(n),
the quickest way to introduce the unit quaternions is to define them as the
elements of the group SU(2).

The skew field H of quaternions and the group SU(2) of unit quater-
nions are discussed in Section 15.1. In Section 15.2, we define a homo-
morphism r : SU(2) ! SO(3) and prove that its kernel is {�I, I}. We
compute the rotation matrix Rq associated with the rotation rq induced
by a unit quaternion q in Section 15.3. In Section 15.4, we prove that the
homomorphism r : SU(2) ! SO(3) is surjective by providing an algorithm
to construct a quaternion from a rotation matrix. In Section 15.5 we define
the exponential map exp: su(2) ! SU(2) where su(2) is the real vector
space of skew-Hermitian 2 ⇥ 2 matrices with zero trace. We prove that
exponential map exp: su(2) ! SU(2) is surjective and give an algorithm
for finding a logarithm. We discuss quaternion interpolation and prove the
famous slerp interpolation formula due to Ken Shoemake in Section 15.6.
This formula is used in robotics and computer graphics to deal with inter-
polation problems. In Section 15.7, we prove that there is no “nice” section
s : SO(3) ! SU(2) of the homomorphism r : SU(2) ! SO(3), in the sense
that any section of r is neither a homomorphism nor continuous.

567
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15.1 The Group SU(2) of Unit Quaternions and the Skew
Field H of Quaternions

Definition 15.1. The unit quaternions are the elements of the group
SU(2), namely the group of 2 ⇥ 2 complex matrices of the form

✓
↵ �

�� ↵

◆
↵,� 2 C, ↵↵+ �� = 1.

The quaternions are the elements of the real vector space H = RSU(2).

Let 1, i, j,k be the matrices

1 =

✓
1 0
0 1

◆
, i =

✓
i 0
0 �i

◆
, j =

✓
0 1

�1 0

◆
, k =

✓
0 i
i 0

◆
,

then H is the set of all matrices of the form

X = a1+ bi+ cj+ dk, a, b, c, d 2 R.

Indeed, every matrix in H is of the form

X =

✓
a+ ib c+ id

�(c � id) a � ib

◆
, a, b, c, d 2 R.

It is easy (but a bit tedious) to verify that the quaternions 1, i, j,k
satisfy the famous identities discovered by Hamilton:

i2 = j2 = k2 = ijk = �1,

ij = �ji = k,

jk = �kj = i,

ki = �ik = j.

Thus, the quaternions are a generalization of the complex numbers, but
there are three square roots of �1 and multiplication is not commutative.

Given any two quaternions X = a1+ bi+ cj+ dk and Y = a01+ b0i+
c0j+ d0k, Hamilton’s famous formula

XY = (aa0 � bb0 � cc0 � dd0)1+ (ab0 + ba0 + cd0 � dc0)i

+ (ac0 + ca0 + db0 � bd0)j+ (ad0 + da0 + bc0 � cb0)k

looks mysterious, but it is simply the result of multiplying the two matrices

X =

✓
a+ ib c+ id

�(c � id) a � ib

◆
and Y =

✓
a0 + ib0 c0 + id0

�(c0 � id0) a0 � ib0

◆
.
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It is worth noting that this formula was discovered independently by
Olinde Rodrigues in 1840, a few years before Hamilton (Veblen and Young
[Veblen and Young (1946)]). However, Rodrigues was working with a dif-
ferent formalism, homogeneous transformations, and he did not discover
the quaternions.

If

X =

✓
a+ ib c+ id

�(c � id) a � ib

◆
, a, b, c, d 2 R,

it is immediately verified that

XX⇤ = X⇤X = (a2 + b2 + c2 + d2)1.

Also observe that

X⇤ =

✓
a � ib �(c+ id)
c � id a+ ib

◆
= a1 � bi � cj � dk.

This implies that if X 6= 0, then X is invertible and its inverse is given
by

X�1 = (a2 + b2 + c2 + d2)�1X⇤.

As a consequence, it can be verified that H is a skew field (a noncom-
mutative field). It is also a real vector space of dimension 4 with basis
(1, i, j,k); thus as a vector space, H is isomorphic to R4.

Definition 15.2. A concise notation for the quaternion X defined by ↵ =
a+ ib and � = c+ id is

X = [a, (b, c, d)].

We call a the scalar part of X and (b, c, d) the vector part of X. With this
notation, X⇤ = [a,�(b, c, d)], which is often denoted by X. The quaternion
X is called the conjugate of X. If q is a unit quaternion, then q is the
multiplicative inverse of q.

15.2 Representation of Rotations in SO(3) by Quaternions
in SU(2)

The key to representation of rotations in SO(3) by unit quaternions is a
certain group homomorphism called the adjoint representation of SU(2).
To define this mapping, first we define the real vector space su(2) of skew
Hermitian matrices.

Definition 15.3. The (real) vector space su(2) of 2 ⇥ 2 skew Hermitian
matrices with zero trace is given by

su(2) =

⇢✓
ix y + iz

�y + iz �ix

◆ ���� (x, y, z) 2 R3

�
.
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Observe that for every matrix A 2 su(2), we have A⇤ = �A, that is, A
is skew Hermitian, and that tr(A) = 0.

Definition 15.4. The adjoint representation of the group SU(2) is the
group homomorphism
Ad: SU(2) ! GL(su(2)) defined such that for every q 2 SU(2), with

q =

✓
↵ �

�� ↵

◆
2 SU(2),

we have

Adq(A) = qAq⇤, A 2 su(2),

where q⇤ is the inverse of q (since SU(2) is a unitary group) and is given
by

q⇤ =

✓
↵ ��
� ↵

◆
.

One needs to verify that the map Adq is an invertible linear map from
su(2) to itself, and that Ad is a group homomorphism, which is easy to do.

In order to associate a rotation ⇢q (in SO(3)) to q, we need to embed
R3 into H as the pure quaternions, by

 (x, y, z) =

✓
ix y + iz

�y + iz �ix

◆
, (x, y, z) 2 R3.

Then q defines the map ⇢q (on R3) given by

⇢q(x, y, z) =  �1(q (x, y, z)q⇤).

Therefore, modulo the isomorphism  , the linear map ⇢q is the linear
isomorphism Adq. In fact, it turns out that ⇢q is a rotation (and so is Adq),
which we will prove shortly. So, the representation of rotations in SO(3)
by unit quaternions is just the adjoint representation of SU(2); its image
is a subgroup of GL(su(2)) isomorphic to SO(3).

Technically, it is a bit simpler to embed R3 in the (real) vector spaces
of Hermitian matrices with zero trace,

⇢✓
x z � iy

z + iy �x

◆ ���� x, y, z 2 R
�
.

Since the matrix  (x, y, z) is skew-Hermitian, the matrix �i (x, y, z) is
Hermitian, and we have

�i (x, y, z) =

✓
x z � iy

z + iy �x

◆
= x�

3

+ y�
2

+ z�
1

,
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where �
1

,�
2

,�
3

are the Pauli spin matrices

�
1

=

✓
0 1
1 0

◆
, �

2

=

✓
0 �i
i 0

◆
, �

3

=

✓
1 0
0 �1

◆
.

Matrices of the form x�
3

+ y�
2

+ z�
1

are Hermitian matrices with zero
trace.

It is easy to see that every 2⇥ 2 Hermitian matrix with zero trace must
be of this form. (observe that (i�

1

, i�
2

, i�
3

) forms a basis of su(2). Also,
i = i�

3

, j = i�
2

, k = i�
1

.)
Now, if A = x�

3

+y�
2

+z�
1

is a Hermitian 2⇥2 matrix with zero trace,
we have

(qAq⇤)⇤ = qA⇤q⇤ = qAq⇤,

so qAq⇤ is also Hermitian, and

tr(qAq⇤) = tr(Aq⇤q) = tr(A),

and qAq⇤ also has zero trace. Therefore, the map A 7! qAq⇤ preserves the
Hermitian matrices with zero trace. We also have

det(x�
3

+ y�
2

+ z�
1

) = det

✓
x z � iy

z + iy �x

◆
= �(x2 + y2 + z2),

and

det(qAq⇤) = det(q) det(A) det(q⇤) = det(A) = �(x2 + y2 + z2).

We can embed R3 into the space of Hermitian matrices with zero trace
by

'(x, y, z) = x�
3

+ y�
2

+ z�
1

.

Note that

' = �i and '�1 = i �1.

Definition 15.5. The unit quaternion q 2 SU(2) induces a map rq on R3

by

rq(x, y, z) = '�1(q'(x, y, z)q⇤) = '�1(q(x�
3

+ y�
2

+ z�
1

)q⇤).

The map rq is clearly linear since ' is linear.

Proposition 15.1. For every unit quaternion q 2 SU(2), the linear map
rq is orthogonal, that is, rq 2 O(3).
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Proof. Since

� k(x, y, z)k2 = �(x2 + y2 + z2) = det(x�3 + y�2 + z�
1

) = det('(x, y, z)),

we have

� krq(x, y, z)k2 = det('(rq(x, y, z))) = det(q(x�
3

+ y�
2

+ z�
1

)q⇤)

= det(x�
3

+ y�
2

+ z�
1

) = �
��(x, y, z)2

�� ,

and we deduce that rq is an isometry. Thus, rq 2 O(3).

In fact, rq is a rotation, and we can show this by finding the fixed points
of rq. Let q be a unit quaternion of the form

q =

✓
↵ �

�� ↵

◆

with ↵ = a+ ib, � = c+ id, and a2 + b2 + c2 + d2 = 1 (a, b, c, d 2 R).
If b = c = d = 0, then q = I and rq is the identity so we may assume

that (b, c, d) 6= (0, 0, 0).

Proposition 15.2. If (b, c, d) 6= (0, 0, 0), then the fixed points of rq are
solutions (x, y, z) of the linear system

�dy + cz = 0

cx � by = 0

dx � bz = 0.

This linear system has the nontrivial solution (b, c, d) and has rank 2.
Therefore, rq has the eigenvalue 1 with multiplicity 1, and rq is a rota-
tion whose axis is determined by (b, c, d).

Proof. We have rq(x, y, z) = (x, y, z) i↵

'�1(q(x�
3

+ y�
2

+ z�
1

)q⇤) = (x, y, z)

i↵

q(x�
3

+ y�
2

+ z�
1

)q⇤ = '(x, y, z),

and since

'(x, y, z) = x�
3

+ y�
2

+ z�
1

= A

with

A =

✓
x z � iy

z + iy �x

◆
,
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we see that rq(x, y, z) = (x, y, z) i↵

qAq⇤ = A i↵ qA = Aq.

We have

qA =

✓
↵ �

�� ↵

◆✓
x z � iy

z + iy �x

◆
=

✓
↵x+ �z + i�y ↵z � i↵y � �x

��x+ ↵z + i↵y ��z + i�y � ↵x

◆

and

Aq =

✓
x z � iy

z + iy �x

◆✓
↵ �

�� ↵

◆
=

✓
↵x � �z + i�y �x+ ↵z � i↵y
↵z + i↵y + �x �z + i�y � ↵x

◆
.

By equating qA and Aq, we get

i(� � �)y + (� + �)z = 0

2�x+ i(↵� ↵)y + (↵� ↵)z = 0

2�x+ i(↵� ↵)y + (↵� ↵)z = 0

i(� � �)y + (� + �)z = 0.

The first and the fourth equation are identical and the third equation is
obtained by conjugating the second, so the above system reduces to

i(� � �)y + (� + �)z = 0

2�x+ i(↵� ↵)y + (↵� ↵)z = 0.

Replacing ↵ by a+ ib and � by c+ id, we get

�dy + cz = 0

cx � by + i(dx � bz) = 0,

which yields the equations

�dy + cz = 0

cx � by = 0

dx � bz = 0.

This linear system has the nontrivial solution (b, c, d) and the matrix of this
system is 0

@
0 �d c
c �b 0
d 0 �b

1

A .

Since (b, c, d) 6= (0, 0, 0), this matrix always has a 2 ⇥ 2 submatrix which
is nonsingular, so it has rank 2, and consequently its kernel is the one-
dimensional space spanned by (b, c, d). Therefore, rq has the eigenvalue
1 with multiplicity 1. If we had det(rq) = �1, then the eigenvalues of
rq would be either (�1, 1, 1) or (�1, ei✓, e�i✓) with ✓ 6= k2⇡ (with k 2 Z),
contradicting the fact that 1 is an eigenvalue with multiplicity 1. Therefore,
rq is a rotation; in fact, its axis is determined by (b, c, d).
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In summary, q 7! rq is a map r from SU(2) to SO(3).

Theorem 15.1. The map r : SU(2) ! SO(3) is a homomorphism whose
kernel is {I,�I}.

Proof. This map is a homomorphism, because if q
1

, q
2

2 SU(2), then

rq2(rq1(x, y, z)) = '�1(q
2

'(rq1(x, y, z))q
⇤
2

)

= '�1(q
2

'('�1(q
1

'(x, y, z)q⇤
1

))q⇤
2

)

= '�1((q
2

q
1

)'(x, y, z)(q
2

q
1

)⇤)

= rq2q1(x, y, z).

The computation that showed that if (b, c, d) 6= (0, 0, 0), then rq has the
eigenvalue 1 with multiplicity 1 implies the following: if rq = I

3

, namely
rq has the eigenvalue 1 with multiplicity 3, then (b, c, d) = (0, 0, 0). But
then a = ±1, and so q = ±I

2

. Therefore, the kernel of the homomorphism
r : SU(2) ! SO(3) is {I,�I}.

Remark: Perhaps the quickest way to show that r maps SU(2) into SO(3)
is to observe that the map r is continuous. Then, since it is known that
SU(2) is connected, its image by r lies in the connected component of I,
namely SO(3).

The map r is surjective, but this is not obvious. We will return to this
point after finding the matrix representing rq explicitly.

15.3 Matrix Representation of the Rotation rq

Given a unit quaternion q of the form

q =

✓
↵ �

�� ↵

◆

with ↵ = a + ib, � = c + id, and a2 + b2 + c2 + d2 = 1 (a, b, c, d 2 R), to
find the matrix representing the rotation rq we need to compute

q(x�
3

+ y�
2

+ z�
1

)q⇤ =

✓
↵ �

�� ↵

◆✓
x z � iy

z + iy �x

◆✓
↵ ��
� ↵

◆
.

First we have
✓

x z � iy
z + iy �x

◆✓
↵ ��
� ↵

◆
=

✓
x↵+ z� � iy� �x� + z↵� iy↵
z↵+ iy↵� x� �z� � iy� � x↵

◆
.
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Next, we have
✓
↵ �

�� ↵

◆✓
x↵+ z� � iy� �x� + z↵� iy↵
z↵+ iy↵� x� �z� � iy� � x↵

◆
=

✓
A

1

A
2

A
3

A
4

◆
,

with

A
1

= (↵↵� ��)x+ i(↵� � ↵�)y + (↵� + ↵�)z

A
2

= �2↵�x � i(↵2 + �2)y + (↵2 � �2)z

A
3

= �2↵�x+ i(↵2 + �
2

)y + (↵2 � �
2

)z

A
4

= �(↵↵� ��)x � i(↵� � ↵�)y � (↵� + ↵�)z.

Since ↵ = a+ ib and � = c+ id, with a, b, c, d 2 R, we have

↵↵� �� = a2 + b2 � c2 � d2

i(↵� � ↵�) = 2(bc � ad)

↵� + ↵� = 2(ac+ bd)

�↵� = �ac+ bd � i(ad+ bc)

�i(↵2 + �2) = 2(ab+ cd) � i(a2 � b2 + c2 � d2)

↵2 � �2 = a2 � b2 � c2 + d2 + i2(ab � cd).

Using the above, we get

(↵↵� ��)x+ i(↵� � ↵�)y + (↵� + ↵�)z

= (a2 + b2 � c2 � d2)x+ 2(bc � ad)y + 2(ac+ bd)z,

and

� 2↵�x � i(↵2 + �2)y + (↵2 � �2)z

= 2(�ac+ bd)x+ 2(ab+ cd)y + (a2 � b2 � c2 + d2)z

� i[2(ad+ bc)x+ (a2 � b2 + c2 � d2)y + 2(�ab+ cd)z].

If we write

q(x�
3

+ y�
2

+ z�
1

)q⇤ =

✓
x0 z0 � iy0

z0 + iy0 �x0

◆
,

we obtain

x0 = (a2 + b2 � c2 � d2)x+ 2(bc � ad)y + 2(ac+ bd)z

y0 = 2(ad+ bc)x+ (a2 � b2 + c2 � d2)y + 2(�ab+ cd)z

z0 = 2(�ac+ bd)x+ 2(ab+ cd)y + (a2 � b2 � c2 + d2)z.
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In summary, we proved the following result.

Proposition 15.3. The matrix representing rq is

Rq =

0

@
a2 + b2 � c2 � d2 2bc � 2ad 2ac+ 2bd

2bc+ 2ad a2 � b2 + c2 � d2 �2ab+ 2cd
�2ac+ 2bd 2ab+ 2cd a2 � b2 � c2 + d2

1

A .

Since a2 + b2 + c2 + d2 = 1, this matrix can also be written as

Rq =

0

@
2a2 + 2b2 � 1 2bc � 2ad 2ac+ 2bd
2bc+ 2ad 2a2 + 2c2 � 1 �2ab+ 2cd

�2ac+ 2bd 2ab+ 2cd 2a2 + 2d2 � 1

1

A .

The above is the rotation matrix in Euler form induced by the quater-
nion q, which is the matrix corresponding to ⇢q. This is because

' = �i , '�1 = i �1,

so

rq(x, y, z) = '�1(q'(x, y, z)q⇤) = i �1(q(�i (x, y, z))q⇤)

=  �1(q (x, y, z)q⇤) = ⇢q(x, y, z),

and so rq = ⇢q.
We showed that every unit quaternion q 2 SU(2) induces a rotation

rq 2 SO(3), but it is not obvious that every rotation can be represented by
a quaternion. This can shown in various ways.

One way to is use the fact that every rotation in SO(3) is the composi-
tion of two reflections, and that every reflection � of R3 can be represented
by a quaternion q, in the sense that

�(x, y, z) = �'�1(q'(x, y, z)q⇤).

Note the presence of the negative sign. This is the method used in Gallier
[Gallier (2011b)] (Chapter 9).

15.4 An Algorithm to Find a Quaternion Representing a
Rotation

Theorem 15.2. The homomorphism r : SU(2) ! SO(3) is surjective.
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Here is an algorithmic method to find a unit quaternion q representing
a rotation matrix R, which provides a proof of Theorem 15.2.

Let

q =

✓
a+ ib c+ id

�(c � id) a � ib

◆
, a2 + b2 + c2 + d2 = 1, a, b, c, d 2 R.

First observe that the trace of Rq is given by

tr(Rq) = 3a2 � b2 � c2 � d2,

but since a2 + b2 + c2 + d2 = 1, we get tr(Rq) = 4a2 � 1, so

a2 =
tr(Rq) + 1

4
.

If R 2 SO(3) is any rotation matrix and if we write

R =

0

@
r
11

r
12

r
13

r
21

r
22

r
23

r
31

r
32

r
33

,

1

A

we are looking for a unit quaternion q 2 SU(2) such that Rq = R. There-
fore, we must have

a2 =
tr(R) + 1

4
.

We also know that

tr(R) = 1 + 2 cos ✓,

where ✓ 2 [0,⇡] is the angle of the rotation R, so we get

a2 =
cos ✓ + 1

2
= cos2

✓
✓

2

◆
,

which implies that

|a| = cos

✓
✓

2

◆
(0  ✓  ⇡).

Note that we may assume that ✓ 2 [0,⇡], because if ⇡  ✓  2⇡, then
✓� 2⇡ 2 [�⇡, 0], and then the rotation of angle ✓� 2⇡ and axis determined
by the vector (b, c, d) is the same as the rotation of angle 2⇡ � ✓ 2 [0,⇡]
and axis determined by the vector �(b, c, d). There are two cases.

Case 1 . tr(R) 6= �1, or equivalently ✓ 6= ⇡. In this case a 6= 0. Pick

a =

p
tr(R) + 1

2
.
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Then by equating R � R> and Rq � R>
q , we get

4ab = r
32

� r
23

4ac = r
13

� r
31

4ad = r
21

� r
12

,

which yields

b =
r
32

� r
23

4a
, c =

r
13

� r
31

4a
, d =

r
21

� r
12

4a
.

Case 2 . tr(R) = �1, or equivalently ✓ = ⇡. In this case a = 0. By
equating R+R> and Rq +R>

q , we get

4bc = r
21

+ r
12

4bd = r
13

+ r
31

4cd = r
32

+ r
23

.

By equating the diagonal terms of R and Rq, we also get

b2 =
1 + r

11

2

c2 =
1 + r

22

2

d2 =
1 + r

33

2
.

Since q 6= 0 and a = 0, at least one of b, c, d is nonzero.
If b 6= 0, let

b =

p
1 + r

11p
2

,

and determine c, d using

4bc = r
21

+ r
12

4bd = r
13

+ r
31

.

If c 6= 0, let

c =

p
1 + r

22p
2

,

and determine b, d using

4bc = r
21

+ r
12

4cd = r
32

+ r
23

.
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If d 6= 0, let

d =

p
1 + r

33p
2

,

and determine b, c using

4bd = r
13

+ r
31

4cd = r
32

+ r
23

.

It is easy to check that whenever we computed a square root, if we
had chosen a negative sign instead of a positive sign, we would obtain the
quaternion �q. However, both q and �q determine the same rotation rq.

The above discussion involving the cases tr(R) 6= �1 and tr(R) = �1
is reminiscent of the procedure for finding a logarithm of a rotation matrix
using the Rodrigues formula (see Section 11.7). This is not surprising,
because if

B =

0

@
0 �u

3

u
2

u
3

0 �u
1

�u
2

u
1

0

1

A

and if we write ✓ =
p
u2

1

+ u2

2

+ u2

3

(with 0  ✓  ⇡), then the Rodrigues
formula says that

eB = I +
sin ✓

✓
B +

(1 � cos ✓)

✓2
B2, ✓ 6= 0,

with e0 = I. It is easy to check that tr(eB) = 1 + 2 cos ✓. Then it is an
easy exercise to check that the quaternion q corresponding to the rotation
R = eB (with B 6= 0) is given by

q =


cos

✓
✓

2

◆
, sin

✓
✓

2

◆⇣u
1

✓
,
u
2

✓
,
u
3

✓

⌘�
.

So the method for finding the logarithm of a rotation R is essentially the
same as the method for finding a quaternion defining R.

Remark: Geometrically, the group SU(2) is homeomorphic to the 3-
sphere S3 in R4,

S3 = {(x, y, z, t) 2 R4 | x2 + y2 + z2 + t2 = 1}.
However, since the kernel of the surjective homomorphism r : SU(2) !
SO(3) is {I,�I}, as a topological space, SO(3) is homeomorphic to the
quotient of S3 obtained by identifying antipodal points (x, y, z, t) and
�(x, y, z, t). This quotient space is the (real) projective space RP3, and
it is more complicated than S3. The space S3 is simply-connected, but
RP3 is not.
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15.5 The Exponential Map exp: su(2) ! SU(2)

Given any matrix A 2 su(2), with

A =

✓
iu

1

u
2

+ iu
3

�u
2

+ iu
3

�iu
1

◆
,

it is easy to check that

A2 = �✓2
✓
1 0
0 1

◆
,

with ✓ =
p
u2

1

+ u2

2

+ u2

3

. Then we have the following formula whose proof
is very similar to the proof of the formula given in Proposition 8.17.

Proposition 15.4. For every matrix A 2 su(2), with

A =

✓
iu

1

u
2

+ iu
3

�u
2

+ iu
3

�iu
1

◆
,

if we write ✓ =
p
u2

1

+ u2

2

+ u2

3

, then

eA = cos ✓I +
sin ✓

✓
A, ✓ 6= 0,

and e0 = I.

Therefore, by the discussion at the end of the previous section, eA is a
unit quaternion representing the rotation of angle 2✓ and axis (u

1

, u
2

, u
3

)
(or I when ✓ = k⇡, k 2 Z). The above formula shows that we may assume
that 0  ✓  ⇡. Proposition 15.4 shows that the exponential yields a map
exp: su(2) ! SU(2). It is an analog of the exponential map exp: so(3) !
SO(3).

Remark: Because so(3) and su(2) are real vector spaces of dimension 3,
they are isomorphic, and it is easy to construct an isomorphism. In fact,
so(3) and su(2) are isomorphic as Lie algebras, which means that there
is a linear isomorphism preserving the the Lie bracket [A,B] = AB �
BA. However, as observed earlier, the groups SU(2) and SO(3) are not
isomorphic.

An equivalent, but often more convenient, formula is obtained by as-
suming that u = (u

1

, u
2

, u
3

) is a unit vector, equivalently det(A) = 1, in
which case A2 = �I, so we have

e✓A = cos ✓I + sin ✓A.
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Using the quaternion notation, this is read as

e✓A = [cos ✓, sin ✓ u].

Proposition 15.5. The exponential map exp: su(2) ! SU(2) is surjective

Proof. We give an algorithm to find the logarithm A 2 su(2) of a unit
quaternion

q =

✓
↵ �

�� ↵

◆

with ↵ = a+ bi and � = c+ id.
If q = I (i.e. a = 1), then A = 0. If q = �I (i.e. a = �1), then

A = ±⇡
✓
i 0
0 �i

◆
.

Otherwise, a 6= ±1 and (b, c, d) 6= (0, 0, 0), and we are seeking some A =
✓B 2 su(2) with det(B) = 1 and 0 < ✓ < ⇡, such that, by Proposition 15.4,

q = e✓B = cos ✓I + sin ✓B.

Let

B =

✓
iu

1

u
2

+ iu
3

�u
2

+ iu
3

�iu
1

◆
,

with u = (u
1

, u
2

, u
3

) a unit vector. We must have

a = cos ✓, e✓B � (e✓B)⇤ = q � q⇤.

Since 0 < ✓ < ⇡, we have sin ✓ 6= 0, and

2 sin ✓

✓
iu

1

u
2

+ iu
3

�u
2

+ iu
3

�iu
1

◆
=

✓
↵� ↵ 2�
�2� ↵� ↵

◆
.

Thus, we get

u
1

=
1

sin ✓
b, u

2

+ iu
3

=
1

sin ✓
(c+ id);

that is,

cos ✓ = a (0 < ✓ < ⇡)

(u
1

, u
2

, u
3

) =
1

sin ✓
(b, c, d).

Since a2 + b2 + c2 + d2 = 1 and a = cos ✓, the vector (b, c, d)/ sin ✓ is a unit
vector. Furthermore if the quaternion q is of the form q = [cos ✓, sin ✓u]
where u = (u

1

, u
2

, u
3

) is a unit vector (with 0 < ✓ < ⇡), then

A = ✓

✓
iu

1

u
2

+ iu
3

�u
2

+ iu
3

�iu
1

◆
(⇤

log

)

is a logarithm of q.
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Observe that not only is the exponential map exp: su(2) ! SU(2)
surjective, but the above proof shows that it is injective on the open ball

{✓B 2 su(2) | det(B) = 1, 0  ✓ < ⇡}.
Also, unlike the situation where in computing the logarithm of a rotation

matrix R 2 SO(3) we needed to treat the case where tr(R) = �1 (the
angle of the rotation is ⇡) in a special way, computing the logarithm of a
quaternion (other than ±I) does not require any case analysis; no special
case is needed when the angle of rotation is ⇡.

15.6 Quaternion Interpolation ~

We are now going to derive a formula for interpolating between two quater-
nions. This formula is due to Ken Shoemake, once a Penn student and
my TA! Since rotations in SO(3) can be defined by quaternions, this has
applications to computer graphics, robotics, and computer vision.

First we observe that multiplication of quaternions can be expressed
in terms of the inner product and the cross-product in R3. Indeed, if
q
1

= [a, u
1

] and q
2

= [a
2

, u
2

], it can be verified that

q
1

q
2

= [a
1

, u
1

][a
2

, u
2

] = [a
1

a
2

� u
1

· u
2

, a
1

u
2

+ a
2

u
1

+ u
1

⇥ u
2

]. (⇤
mult

)

We will also need the identity

u ⇥ (u ⇥ v) = (u · v)u � (u · u)v.
Given a quaternion q expressed as q = [cos ✓, sin ✓ u], where u is a unit
vector, we can interpolate between I and q by finding the logs of I and q,
interpolating in su(2), and then exponentiating. We have

A = log(I) =

✓
0 0
0 0

◆
, B = log(q) = ✓

✓
iu

1

u
2

+ iu
3

�u
2

+ iu
3

�iu
1

◆
,

and so q = eB . Since SU(2) is a compact Lie group and since the inner
product on su(2) given by

hX,Y i = tr(X>Y )

is Ad(SU(2))-invariant, it induces a biinvariant Riemannian metric on
SU(2), and the curve

� 7! e�B , � 2 [0, 1]

is a geodesic from I to q in SU(2). We write q� = e�B . Given two
quaternions q

1

and q
2

, because the metric is left invariant, the curve

� 7! Z(�) = q
1

(q�1

1

q
2

)�, � 2 [0, 1]
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is a geodesic from q
1

to q
2

. Remarkably, there is a closed-form formula for
the interpolant Z(�).

Say q
1

= [cos ✓, sin ✓ u] and q
2

= [cos', sin' v], and assume that q
1

6= q
2

and q
1

6= �q
2

. First, we compute q�1q
2

. Since q�1 = [cos ✓,� sin ✓ u], we
have

q�1q
2

= [cos ✓ cos'+ sin ✓ sin'(u · v),
� sin ✓ cos'u+ cos ✓ sin' v � sin ✓ sin'(u ⇥ v)].

Define ⌦ by

cos⌦ = cos ✓ cos'+ sin ✓ sin'(u · v). (⇤
⌦

)

Since q
1

6= q
2

and q
1

6= �q
2

, we have 0 < ⌦ < ⇡, so we get

q�1

1

q
2

=


cos⌦, sin⌦

(� sin ✓ cos'u+ cos ✓ sin' v � sin ✓ sin'(u ⇥ v)

sin⌦

�
,

where the term multiplying sin⌦ is a unit vector because q
1

and q
2

are unit
quaternions, so q�1

1

q
2

is also a unit quaternion. By (⇤
log

), we have

(q�1

1

q
2

)�

=


cos�⌦, sin�⌦

(� sin ✓ cos'u+ cos ✓ sin' v � sin ✓ sin'(u ⇥ v)

sin⌦

�
.

Next we need to compute q
1

(q�1

1

q
2

)�. The scalar part of this product is

s = cos ✓ cos�⌦+
sin�⌦

sin⌦
sin2 ✓ cos'(u · u) � sin�⌦

sin⌦
sin ✓ sin' cos ✓(u · v)

+
sin�⌦

sin⌦
sin2 ✓ sin'(u · (u ⇥ v)).

Since u · (u ⇥ v) = 0, the last term is zero, and since u · u = 1 and

sin ✓ sin'(u · v) = cos⌦ � cos ✓ cos',

we get

s = cos ✓ cos�⌦+
sin�⌦

sin⌦
sin2 ✓ cos'� sin�⌦

sin⌦
cos ✓(cos⌦ � cos ✓ cos')

= cos ✓ cos�⌦+
sin�⌦

sin⌦
(sin2 ✓ + cos2 ✓) cos'� sin�⌦

sin⌦
cos ✓ cos⌦

=
(cos�⌦ sin⌦ � sin�⌦ cos⌦) cos ✓

sin⌦
+

sin�⌦

sin⌦
cos'

=
sin(1 � �)⌦

sin⌦
cos ✓ +

sin�⌦

sin⌦
cos'.
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The vector part of the product q
1

(q�1

1

q
2

)� is given by

⌫ = � sin�⌦

sin⌦
cos ✓ sin ✓ cos'u+

sin�⌦

sin⌦
cos2 ✓ sin' v

� sin�⌦

sin⌦
cos ✓ sin ✓ sin'(u ⇥ v) + cos�⌦ sin ✓ u

� sin�⌦

sin⌦
sin2 ✓ cos'(u ⇥ u) +

sin�⌦

sin⌦
cos ✓ sin ✓ sin'(u ⇥ v)

� sin�⌦

sin⌦
sin2 ✓ sin'(u ⇥ (u ⇥ v)).

We have u ⇥ u = 0, the two terms involving u ⇥ v cancel out,

u ⇥ (u ⇥ v) = (u · v)u � (u · u)v,
and u · u = 1, so we get

⌫ = � sin�⌦

sin⌦
cos ✓ sin ✓ cos'u+ cos�⌦ sin ✓ u+

sin�⌦

sin⌦
cos2 ✓ sin' v

+
sin�⌦

sin⌦
sin2 ✓ sin' v � sin�⌦

sin⌦
sin2 ✓ sin'(u · v)u.

Using

sin ✓ sin'(u · v) = cos⌦ � cos ✓ cos',

we get

⌫ = � sin�⌦

sin⌦
cos ✓ sin ✓ cos'u+ cos�⌦ sin ✓ u+

sin�⌦

sin⌦
sin' v

� sin�⌦

sin⌦
sin ✓(cos⌦ � cos ✓ cos')u

= cos�⌦ sin ✓ u+
sin�⌦

sin⌦
sin' v � sin�⌦

sin⌦
sin ✓ cos⌦u

=
(cos�⌦ sin⌦ � sin�⌦ cos⌦)

sin⌦
sin ✓ u+

sin�⌦

sin⌦
sin' v

=
sin(1 � �)⌦

sin⌦
sin ✓ u+

sin�⌦

sin⌦
sin' v.

Putting the scalar part and the vector part together, we obtain

q
1

(q�1

1

q
2

)� =


sin(1 � �)⌦

sin⌦
cos ✓ +

sin�⌦

sin⌦
cos',

sin(1 � �)⌦

sin⌦
sin ✓ u+

sin�⌦

sin⌦
sin' v

�
,

=
sin(1 � �)⌦

sin⌦
[cos ✓, sin ✓ u] +

sin�⌦

sin⌦
[cos', sin' v].

This yields the celebrated slerp interpolation formula

Z(�) = q
1

(q�1

1

q
2

)� =
sin(1 � �)⌦

sin⌦
q
1

+
sin�⌦

sin⌦
q
2

,

with

cos⌦ = cos ✓ cos'+ sin ✓ sin'(u · v).
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15.7 Nonexistence of a “Nice” Section from SO(3) to SU(2)

We conclude by discussing the problem of a consistent choice of sign for
the quaternion q representing a rotation R = ⇢q 2 SO(3). We are looking
for a “nice” section s : SO(3) ! SU(2), that is, a function s satisfying the
condition

⇢ � s = id,

where ⇢ is the surjective homomorphism ⇢ : SU(2) ! SO(3).

Proposition 15.6. Any section s : SO(3) ! SU(2) of ⇢ is neither a ho-
momorphism nor continuous.

Intuitively, this means that there is no “nice and simple ” way to pick
the sign of the quaternion representing a rotation.

The following proof is due to Marcel Berger.

Proof. Let � be the subgroup of SU(2) consisting of all quaternions of the
form q = [a, (b, 0, 0)]. Then, using the formula for the rotation matrix Rq

corresponding to q (and the fact that a2 + b2 = 1), we get

Rq =

0

@
1 0 0
0 2a2 � 1 �2ab
0 2ab 2a2 � 1

1

A .

Since a2 + b2 = 1, we may write a = cos ✓, b = sin ✓, and we see that

Rq =

0

@
1 0 0
0 cos 2✓ � sin 2✓
0 sin 2✓ cos 2✓

1

A ,

a rotation of angle 2✓ around the x-axis. Thus, both � and its image are
isomorphic to SO(2), which is also isomorphic toU(1) = {w 2 C | |w| = 1}.
By identifying i and i, and identifying � and its image to U(1), if we write
w = cos ✓ + i sin ✓ 2 �, the restriction of the map ⇢ to � is given by
⇢(w) = w2.

We claim that any section s of ⇢ is not a homomorphism. Consider
the restriction of s to U(1). Then since ⇢ � s = id and ⇢(w) = w2, for
�1 2 ⇢(�) ⇡ U(1), we have

�1 = ⇢(s(�1)) = (s(�1))2.

On the other hand, if s is a homomorphism, then

(s(�1))2 = s((�1)2) = s(1) = 1,
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contradicting (s(�1))2 = �1.
We also claim that s is not continuous. Assume that s(1) = 1, the case

where s(1) = �1 being analogous. Then s is a bijection inverting ⇢ on �
whose restriction to U(1) must be given by

s(cos ✓ + i sin ✓) = cos(✓/2) + i sin(✓/2), �⇡  ✓ < ⇡.

If ✓ tends to ⇡, that is z = cos ✓ + i sin ✓ tends to �1 in the upper-half
plane, then s(z) tends to i, but if ✓ tends to �⇡, that is z tends to �1
in the lower-half plane, then s(z) tends to �i, which shows that s is not
continuous.

Another way (due to Jean Dieudonné) to prove that a section s of ⇢ is
not a homomorphism is to prove that any unit quaternion is the product
of two unit pure quaternions. Indeed, if q = [a, u] is a unit quaternion, if
we let q

1

= [0, u
1

], where u
1

is any unit vector orthogonal to u, then

q
1

q = [�u
1

· u, au
1

+ u
1

⇥ u] = [0, au
1

+ u
1

⇥ u] = q
2

is a nonzero unit pure quaternion. This is because if a 6= 0 then au
1

+u
1

⇥
u 6= 0 (since u

1

⇥ u is orthogonal to au
1

6= 0), and if a = 0 then u 6= 0, so
u
1

⇥ u 6= 0 (since u
1

is orthogonal to u). But then, q�1

1

= [0,�u
1

] is a unit
pure quaternion and we have

q = q�1

1

q
2

,

a product of two pure unit quaternions.
We also observe that for any two pure quaternions q

1

, q
2

, there is some
unit quaternion q such that

q
2

= qq
1

q�1.

This is just a restatement of the fact that the group SO(3) is transi-
tive. Since the kernel of ⇢ : SU(2) ! SO(3) is {I,�I}, the subgroup
s(SO(3)) would be a normal subgroup of index 2 in SU(2). Then we
would have a surjective homomorphism ⌘ from SU(2) onto the quotient
group SU(2)/s(SO(3)), which is isomorphic to {1,�1}. Now, since any
two pure quaternions are conjugate of each other, ⌘ would have a constant
value on the unit pure quaternions. Since k = ij, we would have

⌘(k) = ⌘(ij) = (⌘(i))2 = 1.

Consequently, ⌘ would map all pure unit quaternions to 1. But since every
unit quaternion is the product of two pure quaternions, ⌘ would map every
unit quaternion to 1, contradicting the fact that it is surjective onto {�1, 1}.
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15.8 Summary

The main concepts and results of this chapter are listed below:

• The group SU(2) of unit quaternions.
• The skew field H of quaternions.
• Hamilton’s identities.
• The (real) vector space su(2) of 2 ⇥ 2 skew Hermitian matrices with
zero trace.

• The adjoint representation of SU(2).
• The (real) vector space su(2) of 2 ⇥ 2 Hermitian matrices with zero
trace.

• The group homomorphism r : SU(2) ! SO(3); Ker (r) = {+I,�I}.
• The matrix representation Rq of the rotation rq induced by a unit
quaternion q.

• Surjectivity of the homomorphism r : SU(2) ! SO(3).
• The exponential map exp: su(2) ! SU(2).
• Surjectivity of the exponential map exp: su(2) ! SU(2).
• Finding a logarithm of a quaternion.
• Quaternion interpolation.
• Shoemake’s slerp interpolation formula.
• Sections s : SO(3) ! SU(2) of r : SU(2) ! SO(3).

15.9 Problems

Problem 15.1. Verify the quaternion identities

i2 = j2 = k2 = ijk = �1,

ij = �ji = k,

jk = �kj = i,

ki = �ik = j.

Problem 15.2. Check that for every quaternion X = a1+ bi+ cj+dk, we
have

XX⇤ = X⇤X = (a2 + b2 + c2 + d2)1.

Conclude that if X 6= 0, then X is invertible and its inverse is given by

X�1 = (a2 + b2 + c2 + d2)�1X⇤.
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Problem 15.3. Given any two quaternions X = a1 + bi + cj + dk and
Y = a01+ b0i+ c0j+ d0k, prove that

XY = (aa0 � bb0 � cc0 � dd0)1+ (ab0 + ba0 + cd0 � dc0)i

+ (ac0 + ca0 + db0 � bd0)j+ (ad0 + da0 + bc0 � cb0)k.

Also prove that if X = [a, U ] and Y = [a0, U 0], the quaternion product
XY can be expressed as

XY = [aa0 � U · U 0, aU 0 + a0U + U ⇥ U 0].

Problem 15.4. Let Ad: SU(2) ! GL(su(2)) be the map defined such
that for every q 2 SU(2),

Adq(A) = qAq⇤, A 2 su(2),

where q⇤ is the inverse of q (since SU(2) is a unitary group) Prove that the
map Adq is an invertible linear map from su(2) to itself and that Ad is a
group homomorphism.

Problem 15.5. Prove that every Hermitian matrix with zero trace is of
the form x�

3

+ y�
2

+ z�
1

, with

�
1

=

✓
0 1
1 0

◆
, �

2

=

✓
0 �i
i 0

◆
, �

3

=

✓
1 0
0 �1

◆
.

Check that i = i�
3

, j = i�
2

, and that k = i�
1

.

Problem 15.6. If

B =

0

@
0 �u

3

u
2

u
3

0 �u
1

�u
2

u
1

0

1

A ,

and if we write ✓ =
p
u2

1

+ u2

2

+ u2

3

(with 0  ✓  ⇡), then the Rodrigues
formula says that

eB = I +
sin ✓

✓
B +

(1 � cos ✓)

✓2
B2, ✓ 6= 0,

with e0 = I. Check that tr(eB) = 1 + 2 cos ✓. Prove that the quaternion q
corresponding to the rotation R = eB (with B 6= 0) is given by

q =


cos

✓
✓

2

◆
, sin

✓
✓

2

◆⇣u
1

✓
,
u
2

✓
,
u
3

✓

⌘�
.
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Problem 15.7. For every matrix A 2 su(2), with

A =

✓
iu

1

u
2

+ iu
3

�u
2

+ iu
3

�iu
1

◆
,

prove that if we write ✓ =
p
u2

1

+ u2

2

+ u2

3

, then

eA = cos ✓I +
sin ✓

✓
A, ✓ 6= 0,

and e0 = I. Conclude that eA is a unit quaternion representing the rotation
of angle 2✓ and axis (u

1

, u
2

, u
3

) (or I when ✓ = k⇡, k 2 Z).

Problem 15.8. Write a Matlab program implementing the method of Sec-
tion 15.4 for finding a unit quaternion corresponding to a rotation matrix.

Problem 15.9. Show that there is a very simple method for producing
an orthonormal frame in R4 whose first vector is any given nonnull vector
(a, b, c, d).

Problem 15.10. Let i, j, and k, be the unit vectors of coordinates (1, 0, 0),
(0, 1, 0), and (0, 0, 1) in R3.

(1) Describe geometrically the rotations defined by the following quater-
nions:

p = (0, i), q = (0, j).

Prove that the interpolant Z(�) = p(p�1q)� is given by

Z(�) = (0, cos(�⇡/2)i+ sin(�⇡/2)j) .

Describe geometrically what this rotation is.
(2) Repeat Question (1) with the rotations defined by the quaternions

p =

 
1

2
,

p
3

2
i

!
, q = (0, j).

Prove that the interpolant Z(�) is given by

Z(�) =

 
1

2
cos(�⇡/2),

p
3

2
cos(�⇡/2)i+ sin(�⇡/2)j

!
.

Describe geometrically what this rotation is.
(3) Repeat Question (1) with the rotations defined by the quaternions

p =

✓
1p
2
,
1p
2
i

◆
, q =

✓
0,

1p
2
(i+ j)

◆
.

Prove that the interpolant Z(�) is given by

Z(�) =

✓
1p
2
cos(�⇡/3) � 1p

6
sin(�⇡/3),

(1/
p
2 cos(�⇡/3) + 1/

p
6 sin(�⇡/3))i+

2p
6
sin(�⇡/3)j

◆
.
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Problem 15.11. Prove that

w ⇥ (u ⇥ v) = (w · v)u � (u · w)v.

Conclude that

u ⇥ (u ⇥ v) = (u · v)u � (u · u)v.
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Chapter 16

Spectral Theorems in Euclidean and
Hermitian Spaces

16.1 Introduction

The goal of this chapter is to show that there are nice normal forms for
symmetric matrices, skew-symmetric matrices, orthogonal matrices, and
normal matrices. The spectral theorem for symmetric matrices states that
symmetric matrices have real eigenvalues and that they can be diagonalized
over an orthonormal basis. The spectral theorem for Hermitian matrices
states that Hermitian matrices also have real eigenvalues and that they can
be diagonalized over a complex orthonormal basis. Normal real matrices
can be block diagonalized over an orthonormal basis with blocks having
size at most two and there are refinements of this normal form for skew-
symmetric and orthogonal matrices.

The spectral result for real symmetric matrices can be used to prove two
characterizations of the eigenvalues of a symmetric matrix in terms of the
Rayleigh ratio. The first characterization is the Rayleigh–Ritz theorem and
the second one is the Courant–Fischer theorem. Both results are used in
optimization theory and to obtain results about perturbing the eigenvalues
of a symmetric matrix.

In this chapter all vector spaces are finite-dimensional real or complex
vector spaces.

16.2 Normal Linear Maps: Eigenvalues and Eigenvectors

We begin by studying normal maps, to understand the structure of their
eigenvalues and eigenvectors. This section and the next three were in-
spired by Lang [Lang (1993)], Artin [Artin (1991)], Mac Lane and Birkho↵
[Mac Lane and Birkho↵ (1967)], Berger [Berger (1990a)], and Bertin [Bertin

591
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(1981)].

Definition 16.1. Given a Euclidean or Hermitian space E, a linear map
f : E ! E is normal if

f � f⇤ = f⇤ � f.

A linear map f : E ! E is self-adjoint if f = f⇤, skew-self-adjoint if
f = �f⇤, and orthogonal if f � f⇤ = f⇤ � f = id.

Obviously, a self-adjoint, skew-self-adjoint, or orthogonal linear map is
a normal linear map. Our first goal is to show that for every normal linear
map f : E ! E, there is an orthonormal basis (w.r.t. h�,�i) such that the
matrix of f over this basis has an especially nice form: it is a block diagonal
matrix in which the blocks are either one-dimensional matrices (i.e., single
entries) or two-dimensional matrices of the form

✓
� µ

�µ �

◆
.

This normal form can be further refined if f is self-adjoint, skew-self-
adjoint, or orthogonal. As a first step we show that f and f⇤ have the same
kernel when f is normal.

Proposition 16.1. Given a Euclidean space E, if f : E ! E is a normal
linear map, then Ker f = Ker f⇤.

Proof. First let us prove that

hf(u), f(v)i = hf⇤(u), f⇤(v)i
for all u, v 2 E. Since f⇤ is the adjoint of f and f � f⇤ = f⇤ � f , we have

hf(u), f(u)i = hu, (f⇤ � f)(u)i,
= hu, (f � f⇤)(u)i,
= hf⇤(u), f⇤(u)i.

Since h�,�i is positive definite,

hf(u), f(u)i = 0 i↵ f(u) = 0,

hf⇤(u), f⇤(u)i = 0 i↵ f⇤(u) = 0,

and since

hf(u), f(u)i = hf⇤(u), f⇤(u)i,
we have

f(u) = 0 i↵ f⇤(u) = 0.

Consequently, Ker f = Ker f⇤.
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Assuming again that E is a Hermitian space, observe that Proposition
16.1 also holds. We deduce the following corollary.

Proposition 16.2. Given a Hermitian space E, for any normal linear map
f : E ! E, we have Ker (f) \ Im(f) = (0).

Proof. Assume v 2 Ker (f) \ Im(f), which means that v = f(u) for some
u 2 E, and f(v) = 0. By Proposition 16.1, Ker (f) = Ker (f⇤), so f(v) = 0
implies that f⇤(v) = 0. Consequently,

0 = hf⇤(v), ui
= hv, f(u)i
= hv, vi,

and thus, v = 0.

We also have the following crucial proposition relating the eigenvalues
of f and f⇤.

Proposition 16.3. Given a Hermitian space E, for any normal linear map
f : E ! E, a vector u is an eigenvector of f for the eigenvalue � (in C) i↵
u is an eigenvector of f⇤ for the eigenvalue �.

Proof. First it is immediately verified that the adjoint of f�� id is f⇤�� id.
Furthermore, f � � id is normal. Indeed,

(f � � id) � (f � � id)⇤ = (f � � id) � (f⇤ � � id),

= f � f⇤ � �f � �f⇤ + �� id,

= f⇤ � f � �f⇤ � �f + �� id,

= (f⇤ � � id) � (f � � id),

= (f � � id)⇤ � (f � � id).

Applying Proposition 16.1 to f � � id, for every nonnull vector u, we see
that

(f � � id)(u) = 0 i↵ (f⇤ � � id)(u) = 0,

which is exactly the statement of the proposition.

The next proposition shows a very important property of normal linear
maps: eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proposition 16.4. Given a Hermitian space E, for any normal linear map
f : E ! E, if u and v are eigenvectors of f associated with the eigenvalues
� and µ (in C) where � 6= µ, then hu, vi = 0.
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Proof. Let us compute hf(u), vi in two di↵erent ways. Since v is an eigen-
vector of f for µ, by Proposition 16.3, v is also an eigenvector of f⇤ for µ,
and we have

hf(u), vi = h�u, vi = �hu, vi,
and

hf(u), vi = hu, f⇤(v)i = hu, µvi = µhu, vi,
where the last identity holds because of the semilinearity in the second
argument. Thus

�hu, vi = µhu, vi,
that is,

(�� µ)hu, vi = 0,

which implies that hu, vi = 0, since � 6= µ.

We can show easily that the eigenvalues of a self-adjoint linear map are
real.

Proposition 16.5. Given a Hermitian space E, all the eigenvalues of any
self-adjoint linear map f : E ! E are real.

Proof. Let z (in C) be an eigenvalue of f and let u be an eigenvector for
z. We compute hf(u), ui in two di↵erent ways. We have

hf(u), ui = hzu, ui = zhu, ui,
and since f = f⇤, we also have

hf(u), ui = hu, f⇤(u)i = hu, f(u)i = hu, zui = zhu, ui.
Thus,

zhu, ui = zhu, ui,
which implies that z = z, since u 6= 0, and z is indeed real.

There is also a version of Proposition 16.5 for a (real) Euclidean space
E and a self-adjoint map f : E ! E since every real vector space E can be
embedded into a complex vector space EC, and every linear map f : E ! E
can be extended to a linear map fC : EC ! EC.

Definition 16.2. Given a real vector space E, let EC be the structure
E ⇥ E under the addition operation

(u
1

, u
2

) + (v
1

, v
2

) = (u
1

+ v
1

, u
2

+ v
2

),

and let multiplication by a complex scalar z = x+ iy be defined such that

(x+ iy) · (u, v) = (xu � yv, yu+ xv).

The space EC is called the complexification of E.
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It is easily shown that the structure EC is a complex vector space. It is
also immediate that

(0, v) = i(v, 0),

and thus, identifying E with the subspace of EC consisting of all vectors of
the form (u, 0), we can write

(u, v) = u+ iv.

Observe that if (e
1

, . . . , en) is a basis of E (a real vector space), then
(e

1

, . . . , en) is also a basis of EC (recall that ei is an abbreviation for (ei, 0)).
A linear map f : E ! E is extended to the linear map fC : EC ! EC

defined such that

fC(u+ iv) = f(u) + if(v).

For any basis (e
1

, . . . , en) of E, the matrix M(f) representing f
over (e

1

, . . . , en) is identical to the matrix M(fC) representing fC over
(e

1

, . . . , en), where we view (e
1

, . . . , en) as a basis of EC. As a consequence,
det(zI � M(f)) = det(zI � M(fC)), which means that f and fC have the
same characteristic polynomial (which has real coe�cients). We know that
every polynomial of degree n with real (or complex) coe�cients always
has n complex roots (counted with their multiplicity), and the roots of
det(zI � M(fC)) that are real (if any) are the eigenvalues of f .

Next we need to extend the inner product on E to an inner product on
EC.

The inner product h�,�i on a Euclidean space E is extended to the
Hermitian positive definite form h�,�iC on EC as follows:

hu
1

+ iv
1

, u
2

+ iv
2

iC = hu
1

, u
2

i + hv
1

, v
2

i + i(hv
1

, u
2

i � hu
1

, v
2

i).

It is easily verified that h�,�iC is indeed a Hermitian form that is
positive definite, and it is clear that h�,�iC agrees with h�,�i on real
vectors. Then given any linear map f : E ! E, it is easily verified that the
map f⇤

C defined such that

f⇤
C(u+ iv) = f⇤(u) + if⇤(v)

for all u, v 2 E is the adjoint of fC w.r.t. h�,�iC.

Proposition 16.6. Given a Euclidean space E, if f : E ! E is any self-
adjoint linear map, then every eigenvalue � of fC is real and is actually
an eigenvalue of f (which means that there is some real eigenvector u 2 E
such that f(u) = �u). Therefore, all the eigenvalues of f are real.
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Proof. Let EC be the complexification of E, h�,�iC the complexification
of the inner product h�,�i on E, and fC : EC ! EC the complexification
of f : E ! E. By definition of fC and h�,�iC, if f is self-adjoint, we have

hfC(u1

+ iv
1

), u
2

+ iv
2

iC = hf(u
1

) + if(v
1

), u
2

+ iv
2

iC
= hf(u

1

), u
2

i + hf(v
1

), v
2

i
+ i(hu

2

, f(v
1

)i � hf(u
1

), v
2

i)
= hu

1

, f(u
2

)i + hv
1

, f(v
2

)i
+ i(hf(u

2

), v
1

i � hu
1

, f(v
2

)i)
= hu

1

+ iv
1

, f(u
2

) + if(v
2

)iC
= hu

1

+ iv
1

, fC(u2

+ iv
2

)iC,
which shows that fC is also self-adjoint with respect to h�,�iC.

As we pointed out earlier, f and fC have the same characteristic polyno-
mial det(zI�fC) = det(zI�f), which is a polynomial with real coe�cients.
Proposition 16.5 shows that the zeros of det(zI � fC) = det(zI � f) are all
real, and for each real zero � of det(zI � f), the linear map �id � f is sin-
gular, which means that there is some nonzero u 2 E such that f(u) = �u.
Therefore, all the eigenvalues of f are real.

Proposition 16.7. Given a Hermitian space E, for any linear map
f : E ! E, if f is skew-self-adjoint, then f has eigenvalues that are pure
imaginary or zero, and if f is unitary, then f has eigenvalues of absolute
value 1.

Proof. If f is skew-self-adjoint, f⇤ = �f , and then by the definition of the
adjoint map, for any eigenvalue � and any eigenvector u associated with �,
we have

�hu, ui = h�u, ui = hf(u), ui = hu, f⇤(u)i = hu,�f(u)i
= �hu,�ui = ��hu, ui,

and since u 6= 0 and h�,�i is positive definite, hu, ui 6= 0, so

� = ��,
which shows that � = ir for some r 2 R.

If f is unitary, then f is an isometry, so for any eigenvalue � and any
eigenvector u associated with �, we have

|�|2hu, ui = ��hu, ui = h�u,�ui = hf(u), f(u)i = hu, ui,
and since u 6= 0, we obtain |�|2 = 1, which implies

|�| = 1.
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16.3 Spectral Theorem for Normal Linear Maps

Given a Euclidean space E, our next step is to show that for every linear
map f : E ! E there is some subspace W of dimension 1 or 2 such that
f(W ) ✓ W . When dim(W ) = 1, the subspace W is actually an eigenspace
for some real eigenvalue of f . Furthermore, when f is normal, there is a
subspace W of dimension 1 or 2 such that f(W ) ✓ W and f⇤(W ) ✓ W .
The di�culty is that the eigenvalues of f are not necessarily real. One way
to get around this problem is to complexify both the vector space E and
the inner product h�,�i as we did in Section 16.2.

Given any subspaceW of a Euclidean space E, recall that the orthogonal
complement W? of W is the subspace defined such that

W? = {u 2 E | hu,wi = 0, for all w 2 W}.
Recall from Proposition 11.9 that E = W �W? (this can be easily shown,
for example, by constructing an orthonormal basis of E using the Gram–
Schmidt orthonormalization procedure). The same result also holds for
Hermitian spaces; see Proposition 13.12.

As a warm up for the proof of Theorem 16.2, let us prove that every
self-adjoint map on a Euclidean space can be diagonalized with respect to
an orthonormal basis of eigenvectors.

Theorem 16.1. (Spectral theorem for self-adjoint linear maps on a Eu-
clidean space) Given a Euclidean space E of dimension n, for every self-
adjoint linear map f : E ! E, there is an orthonormal basis (e

1

, . . . , en) of
eigenvectors of f such that the matrix of f w.r.t. this basis is a diagonal
matrix

0

BBB@

�
1

. . .
�
2

. . .
...

...
. . .

...
. . . �n

1

CCCA
,

with �i 2 R.

Proof. We proceed by induction on the dimension n of E as follows. If
n = 1, the result is trivial. Assume now that n � 2. From Proposition
16.6, all the eigenvalues of f are real, so pick some eigenvalue � 2 R, and
let w be some eigenvector for �. By dividing w by its norm, we may assume
that w is a unit vector. Let W be the subspace of dimension 1 spanned by
w. Clearly, f(W ) ✓ W . We claim that f(W?) ✓ W?, where W? is the
orthogonal complement of W .
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Indeed, for any v 2 W?, that is, if hv, wi = 0, because f is self-adjoint
and f(w) = �w, we have

hf(v), wi = hv, f(w)i
= hv,�wi
= �hv, wi = 0

since hv, wi = 0. Therefore,

f(W?) ✓ W?.

Clearly, the restriction of f to W? is self-adjoint, and we conclude by
applying the induction hypothesis to W? (whose dimension is n � 1).

We now come back to normal linear maps. One of the key points in the
proof of Theorem 16.1 is that we found a subspace W with the property
that f(W ) ✓ W implies that f(W?) ✓ W?. In general, this does not
happen, but normal maps satisfy a stronger property which ensures that
such a subspace exists.

The following proposition provides a condition that will allow us to
show that a normal linear map can be diagonalized. It actually holds for
any linear map. We found the inspiration for this proposition in Berger
[Berger (1990a)].

Proposition 16.8. Given a Hermitian space E, for any linear map
f : E ! E and any subspace W of E, if f(W ) ✓ W , then f⇤�W?� ✓ W?.
Consequently, if f(W ) ✓ W and f⇤(W ) ✓ W , then f

�
W?� ✓ W? and

f⇤�W?� ✓ W?.

Proof. If u 2 W?, then

hw, ui = 0 for all w 2 W.

However,

hf(w), ui = hw, f⇤(u)i,
and f(W ) ✓ W implies that f(w) 2 W . Since u 2 W?, we get

0 = hf(w), ui = hw, f⇤(u)i,
which shows that hw, f⇤(u)i = 0 for all w 2 W , that is, f⇤(u) 2 W?.
Therefore, we have f⇤(W?) ✓ W?.

We just proved that if f(W ) ✓ W , then f⇤�W?� ✓ W?. If we also have
f⇤(W ) ✓ W , then by applying the above fact to f⇤, we get f⇤⇤(W?) ✓ W?,
and since f⇤⇤ = f , this is just f(W?) ✓ W?, which proves the second
statement of the proposition.
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It is clear that the above proposition also holds for Euclidean spaces.
Although we are ready to prove that for every normal linear map f

(over a Hermitian space) there is an orthonormal basis of eigenvectors (see
Theorem 16.3 below), we now return to real Euclidean spaces.

Proposition 16.9. If f : E ! E is a linear map and w = u + iv is an
eigenvector of fC : EC ! EC for the eigenvalue z = �+ iµ, where u, v 2 E
and �, µ 2 R, then

f(u) = �u � µv and f(v) = µu+ �v. (⇤)

As a consequence,

fC(u � iv) = f(u) � if(v) = (�� iµ)(u � iv),

which shows that w = u � iv is an eigenvector of fC for z = �� iµ.

Proof. Since

fC(u+ iv) = f(u) + if(v)

and

fC(u+ iv) = (�+ iµ)(u+ iv) = �u � µv + i(µu+ �v),

we have

f(u) = �u � µv and f(v) = µu+ �v.

Using this fact, we can prove the following proposition.

Proposition 16.10. Given a Euclidean space E, for any normal linear
map f : E ! E, if w = u + iv is an eigenvector of fC associated with the
eigenvalue z = � + iµ (where u, v 2 E and �, µ 2 R), if µ 6= 0 (i.e., z is
not real) then hu, vi = 0 and hu, ui = hv, vi, which implies that u and v are
linearly independent, and if W is the subspace spanned by u and v, then
f(W ) = W and f⇤(W ) = W . Furthermore, with respect to the (orthogonal)
basis (u, v), the restriction of f to W has the matrix

✓
� µ

�µ �

◆
.

If µ = 0, then � is a real eigenvalue of f , and either u or v is an eigenvector
of f for �. If W is the subspace spanned by u if u 6= 0, or spanned by v 6= 0
if u = 0, then f(W ) ✓ W and f⇤(W ) ✓ W .
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Proof. Since w = u+ iv is an eigenvector of fC, by definition it is nonnull,
and either u 6= 0 or v 6= 0. Proposition 16.9 implies that u � iv is an
eigenvector of fC for �� iµ. It is easy to check that fC is normal. However,
if µ 6= 0, then �+ iµ 6= �� iµ, and from Proposition 16.4, the vectors u+ iv
and u � iv are orthogonal w.r.t. h�,�iC, that is,

hu+ iv, u � iviC = hu, ui � hv, vi + 2ihu, vi = 0.

Thus we get hu, vi = 0 and hu, ui = hv, vi, and since u 6= 0 or v 6= 0, u and
v are linearly independent. Since

f(u) = �u � µv and f(v) = µu+ �v

and since by Proposition 16.3 u+ iv is an eigenvector of f⇤
C for �� iµ, we

have

f⇤(u) = �u+ µv and f⇤(v) = �µu+ �v,

and thus f(W ) = W and f⇤(W ) = W , where W is the subspace spanned
by u and v.

When µ = 0, we have

f(u) = �u and f(v) = �v,

and since u 6= 0 or v 6= 0, either u or v is an eigenvector of f for �. If W is
the subspace spanned by u if u 6= 0, or spanned by v if u = 0, it is obvious
that f(W ) ✓ W and f⇤(W ) ✓ W . Note that � = 0 is possible, and this is
why ✓ cannot be replaced by =.

The beginning of the proof of Proposition 16.10 actually shows that for
every linear map f : E ! E there is some subspaceW such that f(W ) ✓ W ,
where W has dimension 1 or 2. In general, it doesn’t seem possible to prove
that W? is invariant under f . However, this happens when f is normal .

We can finally prove our first main theorem.

Theorem 16.2. (Main spectral theorem) Given a Euclidean space E of
dimension n, for every normal linear map f : E ! E, there is an orthonor-
mal basis (e

1

, . . . , en) such that the matrix of f w.r.t. this basis is a block
diagonal matrix of the form

0

BBB@

A
1

. . .
A

2

. . .
...

...
. . .

...
. . . Ap

1

CCCA
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such that each block Aj is either a one-dimensional matrix (i.e., a real
scalar) or a two-dimensional matrix of the form

Aj =

✓
�j �µj

µj �j

◆
,

where �j , µj 2 R, with µj > 0.

Proof. We proceed by induction on the dimension n of E as follows. If
n = 1, the result is trivial. Assume now that n � 2. First, since C is
algebraically closed (i.e., every polynomial has a root in C), the linear map
fC : EC ! EC has some eigenvalue z = � + iµ (where �, µ 2 R). Let
w = u+ iv be some eigenvector of fC for �+ iµ (where u, v 2 E). We can
now apply Proposition 16.10.

If µ = 0, then either u or v is an eigenvector of f for � 2 R. Let W
be the subspace of dimension 1 spanned by e

1

= u/kuk if u 6= 0, or by
e
1

= v/kvk otherwise. It is obvious that f(W ) ✓ W and f⇤(W ) ✓ W . The
orthogonal W? of W has dimension n � 1, and by Proposition 16.8, we
have f

�
W?� ✓ W?. But the restriction of f to W? is also normal, and

we conclude by applying the induction hypothesis to W?.
If µ 6= 0, then hu, vi = 0 and hu, ui = hv, vi, and if W is the subspace

spanned by u/kuk and v/kvk, then f(W ) = W and f⇤(W ) = W . We also
know that the restriction of f to W has the matrix

✓
� µ

�µ �

◆

with respect to the basis (u/kuk, v/kvk). If µ < 0, we let �
1

= �, µ
1

= �µ,
e
1

= u/kuk, and e
2

= v/kvk. If µ > 0, we let �
1

= �, µ
1

= µ, e
1

= v/kvk,
and e

2

= u/kuk. In all cases, it is easily verified that the matrix of the
restriction of f to W w.r.t. the orthonormal basis (e

1

, e
2

) is

A
1

=

✓
�
1

�µ
1

µ
1

�
1

◆
,

where �
1

, µ
1

2 R, with µ
1

> 0. However, W? has dimension n� 2, and by
Proposition 16.8, f

�
W?� ✓ W?. Since the restriction of f to W? is also

normal, we conclude by applying the induction hypothesis to W?.

After this relatively hard work, we can easily obtain some nice normal
forms for the matrices of self-adjoint, skew-self-adjoint, and orthogonal lin-
ear maps. However, for the sake of completeness (and since we have all the
tools to so do), we go back to the case of a Hermitian space and show that
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normal linear maps can be diagonalized with respect to an orthonormal
basis. The proof is a slight generalization of the proof of Theorem 16.6.

Theorem 16.3. (Spectral theorem for normal linear maps on a Hermitian
space) Given a Hermitian space E of dimension n, for every normal linear
map f : E ! E there is an orthonormal basis (e

1

, . . . , en) of eigenvectors
of f such that the matrix of f w.r.t. this basis is a diagonal matrix

0

BBB@

�
1

. . .
�
2

. . .
...

...
. . .

...
. . . �n

1

CCCA
,

where �j 2 C.

Proof. We proceed by induction on the dimension n of E as follows. If
n = 1, the result is trivial. Assume now that n � 2. Since C is algebraically
closed (i.e., every polynomial has a root in C), the linear map f : E ! E
has some eigenvalue � 2 C, and let w be some unit eigenvector for �. Let
W be the subspace of dimension 1 spanned by w. Clearly, f(W ) ✓ W . By
Proposition 16.3, w is an eigenvector of f⇤ for �, and thus f⇤(W ) ✓ W .
By Proposition 16.8, we also have f(W?) ✓ W?. The restriction of f to
W? is still normal, and we conclude by applying the induction hypothesis
to W? (whose dimension is n � 1).

Theorem 16.3 implies that (complex) self-adjoint, skew-self-adjoint, and
orthogonal linear maps can be diagonalized with respect to an orthonormal
basis of eigenvectors. In this latter case, though, an orthogonal map is
called a unitary map. Proposition 16.5 also shows that the eigenvalues
of a self-adjoint linear map are real, and Proposition 16.7 shows that the
eigenvalues of a skew self-adjoint map are pure imaginary or zero, and that
the eigenvalues of a unitary map have absolute value 1.

Remark: There is a converse to Theorem 16.3, namely, if there is an or-
thonormal basis (e

1

, . . . , en) of eigenvectors of f , then f is normal. We
leave the easy proof as an exercise.

In the next section we specialize Theorem 16.2 to self-adjoint, skew-self-
adjoint, and orthogonal linear maps. Due to the additional structure, we
obtain more precise normal forms.
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16.4 Self-Adjoint, Skew-Self-Adjoint, and Orthogonal
Linear Maps

We begin with self-adjoint maps.

Theorem 16.4. Given a Euclidean space E of dimension n, for every self-
adjoint linear map f : E ! E, there is an orthonormal basis (e

1

, . . . , en) of
eigenvectors of f such that the matrix of f w.r.t. this basis is a diagonal
matrix

0

BBB@

�
1

. . .
�
2

. . .
...

...
. . .

...
. . . �n

1

CCCA
,

where �i 2 R.

Proof. We already proved this; see Theorem 16.1. However, it is instruc-
tive to give a more direct method not involving the complexification of
h�,�i and Proposition 16.5.

Since C is algebraically closed, fC has some eigenvalue � + iµ, and let
u + iv be some eigenvector of fC for � + iµ, where �, µ 2 R and u, v 2 E.
We saw in the proof of Proposition 16.9 that

f(u) = �u � µv and f(v) = µu+ �v.

Since f = f⇤,

hf(u), vi = hu, f(v)i

for all u, v 2 E. Applying this to

f(u) = �u � µv and f(v) = µu+ �v,

we get

hf(u), vi = h�u � µv, vi = �hu, vi � µhv, vi

and

hu, f(v)i = hu, µu+ �vi = µhu, ui + �hu, vi,

and thus we get

�hu, vi � µhv, vi = µhu, ui + �hu, vi,

that is,

µ(hu, ui + hv, vi) = 0,
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which implies µ = 0, since either u 6= 0 or v 6= 0. Therefore, � is a real
eigenvalue of f .

Now going back to the proof of Theorem 16.2, only the case where µ = 0
applies, and the induction shows that all the blocks are one-dimensional.

Theorem 16.4 implies that if �
1

, . . . ,�p are the distinct real eigenvalues
of f , and Ei is the eigenspace associated with �i, then

E = E
1

� · · · � Ep,

where Ei and Ej are orthogonal for all i 6= j.

Remark: Another way to prove that a self-adjoint map has a real eigen-
value is to use a little bit of calculus. We learned such a proof from Herman
Gluck. The idea is to consider the real-valued function � : E ! R defined
such that

�(u) = hf(u), ui

for every u 2 E. This function is C1, and if we represent f by a matrix A
over some orthonormal basis, it is easy to compute the gradient vector

r�(X) =

✓
@�

@x
1

(X), . . . ,
@�

@xn
(X)

◆

of � at X. Indeed, we find that

r�(X) = (A+A>)X,

where X is a column vector of size n. But since f is self-adjoint, A = A>,
and thus

r�(X) = 2AX.

The next step is to find the maximum of the function � on the sphere

Sn�1 = {(x
1

, . . . , xn) 2 Rn | x2

1

+ · · · + x2

n = 1}.

Since Sn�1 is compact and � is continuous, and in fact C1, � takes a
maximum at some X on Sn�1. But then it is well known that at an
extremum X of � we must have

d�X(Y ) = hr�(X), Y i = 0

for all tangent vectors Y to Sn�1 at X, and so r�(X) is orthogonal to the
tangent plane at X, which means that

r�(X) = �X
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for some � 2 R. Since r�(X) = 2AX, we get

2AX = �X,

and thus �/2 is a real eigenvalue of A (i.e., of f).

Next we consider skew-self-adjoint maps.

Theorem 16.5. Given a Euclidean space E of dimension n, for every skew-
self-adjoint linear map f : E ! E there is an orthonormal basis (e

1

, . . . , en)
such that the matrix of f w.r.t. this basis is a block diagonal matrix of the
form

0

BBB@

A
1

. . .
A

2

. . .
...

...
. . .

...
. . . Ap

1

CCCA

such that each block Aj is either 0 or a two-dimensional matrix of the form

Aj =

✓
0 �µj

µj 0

◆
,

where µj 2 R, with µj > 0. In particular, the eigenvalues of fC are pure
imaginary of the form ±iµj or 0.

Proof. The case where n = 1 is trivial. As in the proof of Theorem 16.2,
fC has some eigenvalue z = � + iµ, where �, µ 2 R. We claim that � = 0.
First we show that

hf(w), wi = 0

for all w 2 E. Indeed, since f = �f⇤, we get

hf(w), wi = hw, f⇤(w)i = hw,�f(w)i = �hw, f(w)i = �hf(w), wi,

since h�,�i is symmetric. This implies that

hf(w), wi = 0.

Applying this to u and v and using the fact that

f(u) = �u � µv and f(v) = µu+ �v,

we get

0 = hf(u), ui = h�u � µv, ui = �hu, ui � µhu, vi
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and

0 = hf(v), vi = hµu+ �v, vi = µhu, vi + �hv, vi,
from which, by addition, we get

�(hv, vi + hv, vi) = 0.

Since u 6= 0 or v 6= 0, we have � = 0.
Then going back to the proof of Theorem 16.2, unless µ = 0, the case

where u and v are orthogonal and span a subspace of dimension 2 applies,
and the induction shows that all the blocks are two-dimensional or reduced
to 0.

Remark: One will note that if f is skew-self-adjoint, then ifC is self-adjoint
w.r.t. h�,�iC. By Proposition 16.5, the map ifC has real eigenvalues,
which implies that the eigenvalues of fC are pure imaginary or 0.

Finally we consider orthogonal linear maps.

Theorem 16.6. Given a Euclidean space E of dimension n, for every
orthogonal linear map f : E ! E there is an orthonormal basis (e

1

, . . . , en)
such that the matrix of f w.r.t. this basis is a block diagonal matrix of the
form

0

BBB@

A
1

. . .
A

2

. . .
...

...
. . .

...
. . . Ap

1

CCCA

such that each block Aj is either 1, �1, or a two-dimensional matrix of the
form

Aj =

✓
cos ✓j � sin ✓j
sin ✓j cos ✓j

◆

where 0 < ✓j < ⇡. In particular, the eigenvalues of fC are of the form
cos ✓j ± i sin ✓j, 1, or �1.

Proof. The case where n = 1 is trivial. It is immediately verified that
f � f⇤ = f⇤ � f = id implies that fC � f⇤

C = f⇤
C � fC = id, so the map fC is

unitary. By Proposition 16.7, the eigenvalues of fC have absolute value 1.
As a consequence, the eigenvalues of fC are of the form cos ✓± i sin ✓, 1, or
�1. The theorem then follows immediately from Theorem 16.2, where the
condition µ > 0 implies that sin ✓j > 0, and thus, 0 < ✓j < ⇡.
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It is obvious that we can reorder the orthonormal basis of eigenvectors
given by Theorem 16.6, so that the matrix of f w.r.t. this basis is a block
diagonal matrix of the form

0

BBBBB@

A
1

. . .
...

. . .
...

...
. . . Ar

�Iq
. . . Ip

1

CCCCCA

where each block Aj is a two-dimensional rotation matrix Aj 6= ±I
2

of the
form

Aj =

✓
cos ✓j � sin ✓j
sin ✓j cos ✓j

◆

with 0 < ✓j < ⇡.
The linear map f has an eigenspace E(1, f) = Ker (f � id) of dimen-

sion p for the eigenvalue 1, and an eigenspace E(�1, f) = Ker (f + id) of
dimension q for the eigenvalue �1. If det(f) = +1 (f is a rotation), the
dimension q of E(�1, f) must be even, and the entries in �Iq can be paired
to form two-dimensional blocks, if we wish. In this case, every rotation in
SO(n) has a matrix of the form

0

BBB@

A
1

. . .
...

. . .
...

. . . Am

. . . In�2m

1

CCCA

where the first m blocks Aj are of the form

Aj =

✓
cos ✓j � sin ✓j
sin ✓j cos ✓j

◆

with 0 < ✓j  ⇡.
Theorem 16.6 can be used to prove a version of the Cartan–Dieudonné

theorem.

Theorem 16.7. Let E be a Euclidean space of dimension n � 2. For every
isometry f 2 O(E), if p = dim(E(1, f)) = dim(Ker (f � id)), then f is the
composition of n � p reflections, and n � p is minimal.

Proof. From Theorem 16.6 there are r subspaces F
1

, . . . , Fr, each of di-
mension 2, such that

E = E(1, f) � E(�1, f) � F
1

� · · · � Fr,
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and all the summands are pairwise orthogonal. Furthermore, the restriction
ri of f to each Fi is a rotation ri 6= ±id. Each 2D rotation ri can be written
as the composition ri = s0i � si of two reflections si and s0i about lines in Fi

(forming an angle ✓i/2). We can extend si and s0i to hyperplane reflections
in E by making them the identity on F?

i . Then

s0r � sr � · · · � s0
1

� s
1

agrees with f on F
1

� · · · � Fr and is the identity on E(1, f) � E(�1, f).
If E(�1, f) has an orthonormal basis of eigenvectors (v

1

, . . . , vq), letting s00j
be the reflection about the hyperplane (vj)?, it is clear that

s00q � · · · � s00
1

agrees with f on E(�1, f) and is the identity on E(1, f) � F
1

� · · · � Fr.
But then

f = s00q � · · · � s00
1

� s0r � sr � · · · � s0
1

� s
1

,

the composition of 2r + q = n � p reflections.
If

f = st � · · · � s
1

,

for t reflections si, it is clear that

F =
t\

i=1

E(1, si) ✓ E(1, f),

where E(1, si) is the hyperplane defining the reflection si. By the Grass-
mann relation, if we intersect t  n hyperplanes, the dimension of their
intersection is at least n � t. Thus, n � t  p, that is, t � n � p, and n � p
is the smallest number of reflections composing f .

As a corollary of Theorem 16.7, we obtain the following fact: If the
dimension n of the Euclidean space E is odd, then every rotation f 2
SO(E) admits 1 as an eigenvalue.

Proof. The characteristic polynomial det(XI � f) of f has odd degree
n and has real coe�cients, so it must have some real root �. Since f
is an isometry, its n eigenvalues are of the form, +1,�1, and e±i✓, with
0 < ✓ < ⇡, so � = ±1. Now the eigenvalues e±i✓ appear in conjugate
pairs, and since n is odd, the number of real eigenvalues of f is odd. This
implies that +1 is an eigenvalue of f , since otherwise �1 would be the
only real eigenvalue of f , and since its multiplicity is odd, we would have
det(f) = �1, contradicting the fact that f is a rotation.
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When n = 3, we obtain the result due to Euler which says that every
3D rotation R has an invariant axis D, and that restricted to the plane
orthogonal to D, it is a 2D rotation. Furthermore, if (a, b, c) is a unit
vector defining the axis D of the rotation R and if the angle of the rotation
is ✓, if B is the skew-symmetric matrix

B =

0

@
0 �c b
c 0 �a

�b a 0

1

A ,

then the Rodigues formula (Proposition 11.13) states that

R = I + sin ✓B + (1 � cos ✓)B2.

The theorems of this section and of the previous section can be immedi-
ately translated in terms of matrices. The matrix versions of these theorems
is often used in applications so we briefly present them in the section.

16.5 Normal and Other Special Matrices

First we consider real matrices. Recall the following definitions.

Definition 16.3. Given a real m ⇥ n matrix A, the transpose A> of A is
the n ⇥ m matrix A> = (a>i j) defined such that

a>i j = aj i

for all i, j, 1  i  m, 1  j  n. A real n ⇥ n matrix A is

• normal if

AA> = A>A,

• symmetric if

A> = A,

• skew-symmetric if

A> = �A,

• orthogonal if

AA> = A>A = In.
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Recall from Proposition 11.12 that when E is a Euclidean space and
(e

1

, . . ., en) is an orthonormal basis for E, if A is the matrix of a linear
map f : E ! E w.r.t. the basis (e

1

, . . . , en), then A> is the matrix of the
adjoint f⇤ of f . Consequently, a normal linear map has a normal matrix,
a self-adjoint linear map has a symmetric matrix, a skew-self-adjoint linear
map has a skew-symmetric matrix, and an orthogonal linear map has an
orthogonal matrix.

Furthermore, if (u
1

, . . . , un) is another orthonormal basis for E and P
is the change of basis matrix whose columns are the components of the ui

w.r.t. the basis (e
1

, . . . , en), then P is orthogonal, and for any linear map
f : E ! E, if A is the matrix of f w.r.t (e

1

, . . . , en) and B is the matrix of
f w.r.t. (u

1

, . . . , un), then

B = P>AP.

As a consequence, Theorems 16.2 and 16.4–16.6 can be restated as fol-
lows.

Theorem 16.8. For every normal matrix A there is an orthogonal matrix
P and a block diagonal matrix D such that A = PDP>, where D is of the
form

D =

0

BBB@

D
1

. . .
D

2

. . .
...

...
. . .

...
. . . Dp

1

CCCA

such that each block Dj is either a one-dimensional matrix (i.e., a real
scalar) or a two-dimensional matrix of the form

Dj =

✓
�j �µj

µj �j

◆
,

where �j , µj 2 R, with µj > 0.

Theorem 16.9. For every symmetric matrix A there is an orthogonal ma-
trix P and a diagonal matrix D such that A = PDP>, where D is of the
form

D =

0

BBB@

�
1

. . .
�
2

. . .
...

...
. . .

...
. . . �n

1

CCCA
,

where �i 2 R.
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Theorem 16.10. For every skew-symmetric matrix A there is an orthogo-
nal matrix P and a block diagonal matrix D such that A = PDP>, where
D is of the form

D =

0

BBB@

D
1

. . .
D

2

. . .
...

...
. . .

...
. . . Dp

1

CCCA

such that each block Dj is either 0 or a two-dimensional matrix of the form

Dj =

✓
0 �µj

µj 0

◆
,

where µj 2 R, with µj > 0. In particular, the eigenvalues of A are pure
imaginary of the form ±iµj, or 0.

Theorem 16.11. For every orthogonal matrix A there is an orthogonal
matrix P and a block diagonal matrix D such that A = PDP>, where D
is of the form

D =

0

BBB@

D
1

. . .
D

2

. . .
...

...
. . .

...
. . . Dp

1

CCCA

such that each block Dj is either 1, �1, or a two-dimensional matrix of the
form

Dj =

✓
cos ✓j � sin ✓j
sin ✓j cos ✓j

◆

where 0 < ✓j < ⇡. In particular, the eigenvalues of A are of the form
cos ✓j ± i sin ✓j, 1, or �1.

Theorem 16.11 can be used to show that the exponential map
exp: so(n) ! SO(n) is surjective; see Gallier [Gallier (2011b)].

We now consider complex matrices.

Definition 16.4. Given a complex m ⇥ n matrix A, the transpose A> of
A is the n ⇥ m matrix A> =

�
a>i j

�
defined such that

a>i j = aj i

for all i, j, 1  i  m, 1  j  n. The conjugate A of A is the m⇥n matrix
A = (bi j) defined such that

bi j = ai j
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for all i, j, 1  i  m, 1  j  n. Given an m ⇥ n complex matrix A, the
adjoint A⇤ of A is the matrix defined such that

A⇤ = (A>) = (A)>.

A complex n ⇥ n matrix A is

• normal if

AA⇤ = A⇤A,

• Hermitian if

A⇤ = A,

• skew-Hermitian if

A⇤ = �A,

• unitary if

AA⇤ = A⇤A = In.

Recall from Proposition 13.14 that when E is a Hermitian space and
(e

1

, . . ., en) is an orthonormal basis for E, if A is the matrix of a linear
map f : E ! E w.r.t. the basis (e

1

, . . . , en), then A⇤ is the matrix of the
adjoint f⇤ of f . Consequently, a normal linear map has a normal matrix,
a self-adjoint linear map has a Hermitian matrix, a skew-self-adjoint linear
map has a skew-Hermitian matrix, and a unitary linear map has a unitary
matrix.

Furthermore, if (u
1

, . . . , un) is another orthonormal basis for E and P
is the change of basis matrix whose columns are the components of the
ui w.r.t. the basis (e

1

, . . . , en), then P is unitary, and for any linear map
f : E ! E, if A is the matrix of f w.r.t (e

1

, . . . , en) and B is the matrix of
f w.r.t. (u

1

, . . . , un), then

B = P ⇤AP.

Theorem 16.3 and Proposition 16.7 can be restated in terms of matrices
as follows.

Theorem 16.12. For every complex normal matrix A there is a unitary
matrix U and a diagonal matrix D such that A = UDU⇤. Furthermore,
if A is Hermitian, then D is a real matrix; if A is skew-Hermitian, then
the entries in D are pure imaginary or zero; and if A is unitary, then the
entries in D have absolute value 1.
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16.6 Rayleigh–Ritz Theorems and Eigenvalue Interlacing

A fact that is used frequently in optimization problems is that the eigen-
values of a symmetric matrix are characterized in terms of what is known
as the Rayleigh ratio, defined by

R(A)(x) =
x>Ax

x>x
, x 2 Rn, x 6= 0.

The following proposition is often used to prove the correctness of vari-
ous optimization or approximation problems (for example PCA; see Section
21.4). It is also used to prove Proposition 16.13, which is used to justify
the correctness of a method for graph-drawing (see Chapter 19).

Proposition 16.11. (Rayleigh–Ritz) If A is a symmetric n ⇥ n matrix
with eigenvalues �

1

 �
2

 · · ·  �n and if (u
1

, . . . , un) is any orthonormal
basis of eigenvectors of A, where ui is a unit eigenvector associated with �i,
then

max
x 6=0

x>Ax

x>x
= �n

(with the maximum attained for x = un), and

max
x 6=0,x2{un�k+1,...,un}?

x>Ax

x>x
= �n�k

(with the maximum attained for x = un�k), where 1  k  n � 1. Equiva-
lently, if Vk is the subspace spanned by (u

1

, . . . , uk), then

�k = max
x 6=0,x2Vk

x>Ax

x>x
, k = 1, . . . , n.

Proof. First observe that

max
x 6=0

x>Ax

x>x
= max

x
{x>Ax | x>x = 1},

and similarly,

max
x 6=0,x2{un�k+1,...,un}?

x>Ax

x>x

= max
x

�
x>Ax | (x 2 {un�k+1

, . . . , un}?) ^ (x>x = 1)
 
.

Since A is a symmetric matrix, its eigenvalues are real and it can be di-
agonalized with respect to an orthonormal basis of eigenvectors, so let
(u

1

, . . . , un) be such a basis. If we write

x =
nX

i=1

xiui,
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a simple computation shows that

x>Ax =
nX

i=1

�ix
2

i .

If x>x = 1, then
Pn

i=1

x2

i = 1, and since we assumed that �
1

 �
2

 · · · 
�n, we get

x>Ax =
nX

i=1

�ix
2

i  �n

✓ nX

i=1

x2

i

◆
= �n.

Thus,

max
x

�
x>Ax | x>x = 1

 
 �n,

and since this maximum is achieved for en = (0, 0, . . . , 1), we conclude that

max
x

�
x>Ax | x>x = 1

 
= �n.

Next observe that x 2 {un�k+1

, . . . , un}? and x>x = 1 i↵ xn�k+1

= · · · =
xn = 0 and

Pn�k
i=1

x2

i = 1. Consequently, for such an x, we have

x>Ax =
n�kX

i=1

�ix
2

i  �n�k

✓n�kX

i=1

x2

i

◆
= �n�k.

Thus,

max
x

�
x>Ax | (x 2 {un�k+1

, . . . , un}?) ^ (x>x = 1)
 

 �n�k,

and since this maximum is achieved for en�k = (0, . . . , 0, 1, 0, . . . , 0) with a
1 in position n � k, we conclude that

max
x

�
x>Ax | (x 2 {un�k+1

, . . . , un}?) ^ (x>x = 1)
 
= �n�k,

as claimed.

For our purposes we need the version of Proposition 16.11 applying to
min instead of max, whose proof is obtained by a trivial modification of the
proof of Proposition 16.11.

Proposition 16.12. (Rayleigh–Ritz) If A is a symmetric n ⇥ n matrix
with eigenvalues �

1

 �
2

 · · ·  �n and if (u
1

, . . . , un) is any orthonormal
basis of eigenvectors of A, where ui is a unit eigenvector associated with �i,
then

min
x 6=0

x>Ax

x>x
= �

1
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(with the minimum attained for x = u
1

), and

min
x 6=0,x2{u1,...,ui�1}?

x>Ax

x>x
= �i

(with the minimum attained for x = ui), where 2  i  n. Equivalently, if
Wk = V ?

k�1

denotes the subspace spanned by (uk, . . . , un) (with V
0

= (0)),
then

�k = min
x 6=0,x2Wk

x>Ax

x>x
= min

x 6=0,x2V ?
k�1

x>Ax

x>x
, k = 1, . . . , n.

Propositions 16.11 and 16.12 together are known the Rayleigh–Ritz the-
orem.

As an application of Propositions 16.11 and 16.12, we prove a proposi-
tion which allows us to compare the eigenvalues of two symmetric matrices
A and B = R>AR, where R is a rectangular matrix satisfying the equation
R>R = I.

First we need a definition.

Definition 16.5. Given an n ⇥ n symmetric matrix A and an m ⇥ m
symmetric B, with m  n, if �

1

 �
2

 · · ·  �n are the eigenvalues of A
and µ

1

 µ
2

 · · ·  µm are the eigenvalues of B, then we say that the
eigenvalues of B interlace the eigenvalues of A if

�i  µi  �n�m+i, i = 1, . . . ,m.

For example, if n = 5 and m = 3, we have

�
1

 µ
1

 �
3

�
2

 µ
2

 �
4

�
3

 µ
3

 �
5

.

Proposition 16.13. Let A be an n⇥ n symmetric matrix, R be an n⇥m
matrix such that R>R = I (with m  n), and let B = R>AR (an m ⇥ m
matrix). The following properties hold:

(a) The eigenvalues of B interlace the eigenvalues of A.
(b) If �

1

 �
2

 · · ·  �n are the eigenvalues of A and µ
1

 µ
2

 · · ·  µm

are the eigenvalues of B, and if �i = µi, then there is an eigenvector
v of B with eigenvalue µi such that Rv is an eigenvector of A with
eigenvalue �i.
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Proof. (a) Let (u
1

, . . . , un) be an orthonormal basis of eigenvectors for A,
and let (v

1

, . . . , vm) be an orthonormal basis of eigenvectors for B. Let
Uj be the subspace spanned by (u

1

, . . . , uj) and let Vj be the subspace
spanned by (v

1

, . . . , vj). For any i, the subspace Vi has dimension i and the
subspace R>Ui�1

has dimension at most i � 1. Therefore, there is some
nonzero vector v 2 Vi \ (R>Ui�1

)?, and since

v>R>uj = (Rv)>uj = 0, j = 1, . . . , i � 1,

we have Rv 2 (Ui�1

)?. By Proposition 16.12 and using the fact that
R>R = I, we have

�i  (Rv)>ARv

(Rv)>Rv
=

v>Bv

v>v
.

On the other hand, by Proposition 16.11,

µi = max
x 6=0,x2{vi+1,...,vn}?

x>Bx

x>x
= max

x 6=0,x2{v1,...,vi}

x>Bx

x>x
,

so

w>Bw

w>w
 µi for all w 2 Vi,

and since v 2 Vi, we have

�i  v>Bv

v>v
 µi, i = 1, . . . ,m.

We can apply the same argument to the symmetric matrices �A and �B,
to conclude that

��n�m+i  �µi,

that is,

µi  �n�m+i, i = 1, . . . ,m.

Therefore,

�i  µi  �n�m+i, i = 1, . . . ,m,

as desired.
(b) If �i = µi, then

�i =
(Rv)>ARv

(Rv)>Rv
=

v>Bv

v>v
= µi,

so v must be an eigenvector for B and Rv must be an eigenvector for A,
both for the eigenvalue �i = µi.
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Proposition 16.13 immediately implies the Poincaré separation theorem.
It can be used in situations, such as in quantum mechanics, where one has
information about the inner products u>

i Auj .

Proposition 16.14. (Poincaré separation theorem) Let A be a n⇥n sym-
metric (or Hermitian) matrix, let r be some integer with 1  r  n, and let
(u

1

, . . . , ur) be r orthonormal vectors. Let B = (u>
i Auj) (an r⇥ r matrix),

let �
1

(A)  . . .  �n(A) be the eigenvalues of A and �
1

(B)  . . .  �r(B)
be the eigenvalues of B; then we have

�k(A)  �k(B)  �k+n�r(A), k = 1, . . . , r.

Observe that Proposition 16.13 implies that

�
1

+ · · · + �m  tr(R>AR)  �n�m+1

+ · · · + �n.

If P
1

is the the n ⇥ (n � 1) matrix obtained from the identity matrix by
dropping its last column, we have P>

1

P
1

= I, and the matrix B = P>
1

AP
1

is the matrix obtained from A by deleting its last row and its last column.
In this case the interlacing result is

�
1

 µ
1

 �
2

 µ
2

 · · ·  µn�2

 �n�1

 µn�1

 �n,

a genuine interlacing. We obtain similar results with the matrix Pn�r ob-
tained by dropping the last n�r columns of the identity matrix and setting
B = P>

n�rAPn�r (B is the r ⇥ r matrix obtained from A by deleting its
last n� r rows and columns). In this case we have the following interlacing
inequalities known as Cauchy interlacing theorem:

�k  µk  �k+n�r, k = 1, . . . , r. (⇤)

16.7 The Courant–Fischer Theorem; Perturbation Results

Another useful tool to prove eigenvalue equalities is the Courant–Fischer
characterization of the eigenvalues of a symmetric matrix, also known as
the Min-max (and Max-min) theorem.

Theorem 16.13. (Courant–Fischer) Let A be a symmetric n ⇥ n matrix
with eigenvalues �

1

 �
2

 · · ·  �n. If Vk denotes the set of subspaces of
Rn of dimension k, then

�k = max
W2Vn�k+1

min
x2W,x 6=0

x>Ax

x>x

�k = min
W2Vk

max
x2W,x 6=0

x>Ax

x>x
.
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Proof. Let us consider the second equality, the proof of the first equality
being similar. Let (u

1

, . . . , un) be any orthonormal basis of eigenvectors of
A, where ui is a unit eigenvector associated with �i. Observe that the space
Vk spanned by (u

1

, . . . , uk) has dimension k, and by Proposition 16.11, we
have

�k = max
x 6=0,x2Vk

x>Ax

x>x
� min

W2Vk

max
x2W,x 6=0

x>Ax

x>x
.

Therefore, we need to prove the reverse inequality; that is, we have to show
that

�k  max
x 6=0,x2W

x>Ax

x>x
, for all W 2 Vk.

Now for any W 2 Vk, if we can prove that W \ V ?
k�1

6= (0), then for any
nonzero v 2 W \ V ?

k�1

, by Proposition 16.12 , we have

�k = min
x 6=0,x2V ?

k�1

x>Ax

x>x
 v>Av

v>v
 max

x2W,x 6=0

x>Ax

x>x
.

It remains to prove that dim(W\V ?
k�1

) � 1. However, dim(Vk�1

) = k�1, so
dim(V ?

k�1

) = n�k+1, and by hypothesis dim(W ) = k. By the Grassmann
relation,

dim(W ) + dim(V ?
k�1

) = dim(W \ V ?
k�1

) + dim(W + V ?
k�1

),

and since dim(W + V ?
k�1

)  dim(Rn) = n, we get

k + n � k + 1  dim(W \ V ?
k�1

) + n;

that is, 1  dim(W \ V ?
k�1

), as claimed.

The Courant–Fischer theorem yields the following useful result about
perturbing the eigenvalues of a symmetric matrix due to Hermann Weyl.

Proposition 16.15. Given two n⇥n symmetric matrices A and B = A+
�A, if ↵

1

 ↵
2

 · · ·  ↵n are the eigenvalues of A and �
1

 �
2

 · · ·  �n
are the eigenvalues of B, then

|↵k � �k|  ⇢(�A)  k�Ak
2

, k = 1, . . . , n.

Proof. Let Vk be defined as in the Courant–Fischer theorem and let Vk be
the subspace spanned by the k eigenvectors associated with �

1

, . . . ,�k. By
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the Courant–Fischer theorem applied to B, we have

�k = min
W2Vk

max
x2W,x 6=0

x>Bx

x>x

 max
x2Vk

x>Bx

x>x

= max
x2Vk

✓
x>Ax

x>x
+

x>�Ax

x>x

◆

 max
x2Vk

x>Ax

x>x
+ max

x2Vk

x>�Ax

x>x
.

By Proposition 16.11, we have

↵k = max
x2Vk

x>Ax

x>x
,

so we obtain

�k  max
x2Vk

x>Ax

x>x
+ max

x2Vk

x>�Ax

x>x

= ↵k + max
x2Vk

x>�Ax

x>x

 ↵k + max
x2Rn

x>�Ax

x>x
.

Now by Proposition 16.11 and Proposition 8.6, we have

max
x2Rn

x>�Ax

x>x
= max

i
�i(�A)  ⇢(�A)  k�Ak

2

,

where �i(�A) denotes the ith eigenvalue of �A, which implies that

�k  ↵k + ⇢(�A)  ↵k + k�Ak
2

.

By exchanging the roles of A and B, we also have

↵k  �k + ⇢(�A)  �k + k�Ak
2

,

and thus,

|↵k � �k|  ⇢(�A)  k�Ak
2

, k = 1, . . . , n,

as claimed.

Proposition 16.15 also holds for Hermitian matrices.
A pretty result of Wielandt and Ho↵man asserts that

nX

k=1

(↵k � �k)
2  k�Ak2F ,
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where k kF is the Frobenius norm. However, the proof is significantly harder
than the above proof; see Lax [Lax (2007)].

The Courant–Fischer theorem can also be used to prove some famous
inequalities due to Hermann Weyl. These can also be viewed as perturba-
tion results. Given two symmetric (or Hermitian) matrices A and B, let
�i(A),�i(B), and �i(A+B) denote the ith eigenvalue of A,B, and A+B,
respectively, arranged in nondecreasing order.

Proposition 16.16. (Weyl) Given two symmetric (or Hermitian) n ⇥ n
matrices A and B, the following inequalities hold: For all i, j, k with 1 
i, j, k  n:

(1) If i+ j = k + 1, then

�i(A) + �j(B)  �k(A+B).

(2) If i+ j = k + n, then

�k(A+B)  �i(A) + �j(B).

Proof. Observe that the first set of inequalities is obtained from the second
set by replacing A by �A and B by �B, so it is enough to prove the second
set of inequalities. By the Courant–Fischer theorem, there is a subspace H
of dimension n � k + 1 such that

�k(A+B) = min
x2H,x 6=0

x>(A+B)x

x>x
.

Similarly, there exists a subspace F of dimension i and a subspace G of
dimension j such that

�i(A) = max
x2F,x 6=0

x>Ax

x>x
, �j(B) = max

x2G,x 6=0

x>Bx

x>x
.

We claim that F \ G \ H 6= (0). To prove this, we use the Grassmann
relation twice. First,

dim(F \ G \ H) = dim(F ) + dim(G \ H) � dim(F + (G \ H))

� dim(F ) + dim(G \ H) � n,

and second,

dim(G \ H) = dim(G) + dim(H) � dim(G+H) � dim(G) + dim(H) � n,

so

dim(F \ G \ H) � dim(F ) + dim(G) + dim(H) � 2n.
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However,

dim(F ) + dim(G) + dim(H) = i+ j + n � k + 1

and i+ j = k + n, so we have

dim(F \ G \ H) � i+ j + n � k + 1 � 2n = k + n+ n � k + 1 � 2n = 1,

which shows that F \G\H 6= (0). Then for any unit vector z 2 F \G\H
6= (0), we have

�k(A+B)  z>(A+B)z, �i(A) � z>Az, �j(B) � z>Bz,

establishing the desired inequality �k(A+B)  �i(A) + �j(B).

In the special case i = j = k, we obtain

�
1

(A) + �
1

(B)  �
1

(A+B), �n(A+B)  �n(A) + �n(B).

It follows that �
1

(as a function) is concave, while �n (as a function) is
convex.

If i = 1 and j = k, we obtain

�
1

(A) + �k(B)  �k(A+B),

and if i = k and j = n, we obtain

�k(A+B)  �k(A) + �n(B),

and combining them, we get

�
1

(A) + �k(B)  �k(A+B)  �k(A) + �n(B).

In particular, if B is positive semidefinite, since its eigenvalues are non-
negative, we obtain the following inequality known as the monotonicity
theorem for symmetric (or Hermitian) matrices: if A and B are symmetric
(or Hermitian) and B is positive semidefinite, then

�k(A)  �k(A+B) k = 1, . . . , n.

The reader is referred to Horn and Johnson [Horn and Johnson (1990)]
(Chapters 4 and 7) for a very complete treatment of matrix inequalities and
interlacing results, and also to Lax [Lax (2007)] and Serre [Serre (2010)].
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16.8 Summary

The main concepts and results of this chapter are listed below:

• Normal linear maps, self-adjoint linear maps, skew-self-adjoint linear
maps, and orthogonal linear maps.

• Properties of the eigenvalues and eigenvectors of a normal linear map.
• The complexification of a real vector space, of a linear map, and of a
Euclidean inner product.

• The eigenvalues of a self-adjoint map in a Hermitian space are real .
• The eigenvalues of a self-adjoint map in a Euclidean space are real .
• Every self-adjoint linear map on a Euclidean space has an orthonormal
basis of eigenvectors.

• Every normal linear map on a Euclidean space can be block diagonal-
ized (blocks of size at most 2⇥2) with respect to an orthonormal basis
of eigenvectors.

• Every normal linear map on a Hermitian space can be diagonalized
with respect to an orthonormal basis of eigenvectors.

• The spectral theorems for self-adjoint, skew-self-adjoint, and orthogo-
nal linear maps (on a Euclidean space).

• The spectral theorems for normal, symmetric, skew-symmetric, and
orthogonal (real) matrices.

• The spectral theorems for normal, Hermitian, skew-Hermitian, and uni-
tary (complex) matrices.

• The Rayleigh ratio and the Rayleigh–Ritz theorem.
• Interlacing inequalities and the Cauchy interlacing theorem.
• The Poincaré separation theorem.
• The Courant–Fischer theorem.
• Inequalities involving perturbations of the eigenvalues of a symmetric
matrix.

• The Weyl inequalities .

16.9 Problems

Problem 16.1. Prove that the structure EC introduced in Definition 16.2
is indeed a complex vector space.

Problem 16.2. Prove that the formula

hu
1

+ iv
1

, u
2

+ iv
2

iC = hu
1

, u
2

i + hv
1

, v
2

i + i(hv
1

, u
2

i � hu
1

, v
2

i)
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defines a Hermitian form on EC that is positive definite and that h�,�iC
agrees with h�,�i on real vectors.

Problem 16.3. Given any linear map f : E ! E, prove the map f⇤
C defined

such that

f⇤
C(u+ iv) = f⇤(u) + if⇤(v)

for all u, v 2 E is the adjoint of fC w.r.t. h�,�iC.

Problem 16.4. Let A be a real symmetric n⇥n matrix whose eigenvalues
are nonnegative. Prove that for every p > 0, there is a real symmetric
matrix S whose eigenvalues are nonnegative such that Sp = A.

Problem 16.5. Let A be a real symmetric n⇥n matrix whose eigenvalues
are positive.

(1) Prove that there is a real symmetric matrix S such that A = eS .
(2) Let S be a real symmetric n⇥n matrix. Prove that A = eS is a real

symmetric n ⇥ n matrix whose eigenvalues are positive.

Problem 16.6. Let A be a complex matrix. Prove that if A can be diag-
onalized with respect to an orthonormal basis, then A is normal.

Problem 16.7. Let f : Cn ! Cn be a linear map.
(1) Prove that if f is diagonalizable and if �

1

, . . . ,�n are the eigenvalues
of f , then �2

1

, . . . ,�2n are the eigenvalues of f2, and if �2i = �2j implies that
�i = �j , then f and f2 have the same eigenspaces.

(2) Let f and g be two real self-adjoint linear maps f, g : Rn ! Rn.
Prove that if f and g have nonnegative eigenvalues (f and g are positve
semidefinite) and if f2 = g2, then f = g.

Problem 16.8. (1) Let so(3) be the space of 3⇥3 skew symmetric matrices

so(3) =

8
<

:

0

@
0 �c b
c 0 �a

�b a 0

1

A
���� a, b, c 2 R

9
=

; .

For any matrix

A =

0

@
0 �c b
c 0 �a

�b a 0

1

A 2 so(3),

if we let ✓ =
p
a2 + b2 + c2, recall from Section 11.7 (the Rodrigues formula)

that the exponential map exp: so(3) ! SO(3) is given by

eA = I
3

+
sin ✓

✓
A+

(1 � cos ✓)

✓2
A2, if ✓ 6= 0,
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with exp(0
3

) = I
3

.
(2) Prove that eA is an orthogonal matrix of determinant +1, i.e., a

rotation matrix.
(3) Prove that the exponential map exp: so(3) ! SO(3) is surjective.

For this proceed as follows: Pick any rotation matrix R 2 SO(3);

(1) The case R = I is trivial.
(2) If R 6= I and tr(R) 6= �1, then

exp�1(R) =

⇢
✓

2 sin ✓
(R � RT )

���� 1 + 2 cos ✓ = tr(R)

�
.

(Recall that tr(R) = r
1 1

+ r
2 2

+ r
3 3

, the trace of the matrix R).
Show that there is a unique skew-symmetric B with corresponding ✓
satisfying 0 < ✓ < ⇡ such that eB = R.

(3) If R 6= I and tr(R) = �1, then prove that the eigenvalues of R are
1,�1,�1, that R = R>, and that R2 = I. Prove that the matrix

S =
1

2
(R � I)

is a symmetric matrix whose eigenvalues are �1,�1, 0. Thus S can be
diagonalized with respect to an orthogonal matrix Q as

S = Q

0

@
�1 0 0
0 �1 0
0 0 0

1

AQ>.

Prove that there exists a skew symmetric matrix

U =

0

@
0 �d c
d 0 �b

�c b 0

1

A

so that

U2 = S =
1

2
(R � I).

Observe that

U2 =

0

@
�(c2 + d2) bc bd

bc �(b2 + d2) cd
bd cd �(b2 + c2)

1

A ,

and use this to conclude that if U2 = S, then b2 + c2 + d2 = 1. Then
show that

exp�1(R) =

8
<

:(2k + 1)⇡

0

@
0 �d c
d 0 �b

�c b 0

1

A , k 2 Z

9
=

; ,

where (b, c, d) is any unit vector such that for the corresponding skew
symmetric matrix U , we have U2 = S.
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(4) To find a skew symmetric matrix U so that U2 = S = 1

2

(R � I) as
in (3), we can solve the system

0

@
b2 � 1 bc bd
bc c2 � 1 cd
bd cd d2 � 1

1

A = S.

We immediately get b2, c2, d2, and then, since one of b, c, d is nonzero, say
b, if we choose the positive square root of b2, we can determine c and d
from bc and bd.

Implement a computer program in Matlab to solve the above system.

Problem 16.9. It was shown in Proposition 14.10 that the exponential
map is a map exp: so(n) ! SO(n), where so(n) is the vector space of real
n⇥n skew-symmetric matrices. Use the spectral theorem to prove that the
map exp: so(n) ! SO(n) is surjective.

Problem 16.10. Let u(n) be the space of (complex) n⇥n skew-Hermitian
matrices (B⇤ = �B) and let su(n) be its subspace consisting of skew-
Hermitian matrice with zero trace (tr(B) = 0).

(1) Prove that if B 2 u(n), then eB 2 U(n), and if if B 2 su(n), then
eB 2 SU(n). Thus we have well-defined maps exp: u(n) ! U(n) and
exp: su(n) ! SU(n).

(2) Prove that the map exp: u(n) ! U(n) is surjective.
(3) Prove that the map exp: su(n) ! SU(n) is surjective.

Problem 16.11. Recall that a matrix B 2 Mn(R) is skew-symmetric if
B> = �B. Check that the set so(n) of skew-symmetric matrices is a
vector space of dimension n(n� 1)/2, and thus is isomorphic to Rn(n�1)/2.

(1) Given a rotation matrix

R =

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆
,

where 0 < ✓ < ⇡, prove that there is a skew symmetric matrix B such that

R = (I � B)(I +B)�1.

(2) Prove that the eigenvalues of a skew-symmetric matrix are either 0
or pure imaginary (that is, of the form iµ for µ 2 R.).

Let C : so(n) ! Mn(R) be the function (called the Cayley transform of
B) given by

C(B) = (I � B)(I +B)�1.
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Prove that if B is skew-symmetric, then I � B and I + B are invertible,
and so C is well-defined. Prove that

(I +B)(I � B) = (I � B)(I +B),

and that

(I +B)(I � B)�1 = (I � B)�1(I +B).

Prove that

(C(B))>C(B) = I

and that

detC(B) = +1,

so that C(B) is a rotation matrix. Furthermore, show that C(B) does not
admit �1 as an eigenvalue.

(3) Let SO(n) be the group of n ⇥ n rotation matrices. Prove that the
map

C : so(n) ! SO(n)

is bijective onto the subset of rotation matrices that do not admit �1 as
an eigenvalue. Show that the inverse of this map is given by

B = (I +R)�1(I � R) = (I � R)(I +R)�1,

where R 2 SO(n) does not admit �1 as an eigenvalue.

Problem 16.12. Please refer back to Problem 3.6. Let �
1

, . . . ,�n be the
eigenvalues of A (not necessarily distinct). Using Schur’s theorem, A is
similar to an upper triangular matrix B, that is, A = PBP�1 with B
upper triangular, and we may assume that the diagonal entries of B in
descending order are �

1

, . . . ,�n.
(1) If the Eij are listed according to total order given by

(i, j) < (h, k) i↵

⇢
i = h and j > k
or i < h.

prove that RB is an upper triangular matrix whose diagonal entries are

(�n, . . . ,�1, . . . ,�n, . . . ,�1| {z }
n2

),

and that LB is an upper triangular matrix whose diagonal entries are

(�
1

, . . . ,�
1| {z }

n

. . . ,�n, . . . ,�n| {z }
n

).

Hint . Figure out what are RB(Eij) = EijB and LB(Eij) = BEij .
(2) Use the fact that

LA = LP � LB � L�1

P , RA = R�1

P � RB � RP ,

to express adA = LA � RA in terms of LB � RB , and conclude that the
eigenvalues of adA are �i � �j , for i = 1, . . . , n, and for j = n, . . . , 1.
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Chapter 17

Computing Eigenvalues and
Eigenvectors

After the problem of solving a linear system, the problem of computing
the eigenvalues and the eigenvectors of a real or complex matrix is one
of most important problems of numerical linear algebra. Several methods
exist, among which we mention Jacobi, Givens–Householder, divide-and-
conquer, QR iteration, and Rayleigh–Ritz; see Demmel [Demmel (1997)],
Trefethen and Bau [Trefethen and Bau III (1997)], Meyer [Meyer (2000)],
Serre [Serre (2010)], Golub and Van Loan [Golub and Van Loan (1996)],
and Ciarlet [Ciarlet (1989)]. Typically, better performing methods exist for
special kinds of matrices, such as symmetric matrices.

In theory, given an n ⇥ n complex matrix A, if we could compute a
Schur form A = UTU⇤, where T is upper triangular and U is unitary, we
would obtain the eigenvalues of A, since they are the diagonal entries in T .
However, this would require finding the roots of a polynomial, but methods
for doing this are known to be numerically very unstable, so this is not a
practical method.

A common paradigm is to construct a sequence (Pk) of matrices such
that Ak = P�1

k APk converges, in some sense, to a matrix whose eigenvalues
are easily determined. For example, Ak = P�1

k APk could become upper
triangular in the limit. Furthermore, Pk is typically a product of “nice”
matrices, for example, orthogonal matrices.

For general matrices, that is, matrices that are not symmetric, the
QR iteration algorithm, due to Rutishauser, Francis, and Kublanovskaya
in the early 1960s, is one of the most e�cient algorithms for computing
eigenvalues. A fascinating account of the history of the QR algorithm is
given in Golub and Uhlig [Golub and Uhlig (2009)]. The QR algorithm
constructs a sequence of matrices (Ak), where Ak+1

is obtained from Ak

by performing a QR-decomposition Ak = QkRk of Ak and then setting

627
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Ak+1

= RkQk, the result of swapping Qk and Rk. It is immediately ver-
ified that Ak+1

= Q⇤
kAkQk, so Ak and Ak+1

have the same eigenvalues,
which are the eigenvalues of A.

The basic version of this algorithm runs into di�culties with matrices
that have several eigenvalues with the same modulus (it may loop or not
“converge” to an upper triangular matrix). There are ways of dealing with
some of these problems, but for ease of exposition, we first present a sim-
plified version of the QR algorithm which we call basic QR algorithm. We
prove a convergence theorem for the basic QR algorithm, under the rather
restrictive hypothesis that the input matrix A is diagonalizable and that
its eigenvalues are nonzero and have distinct moduli. The proof shows that
the part of Ak strictly below the diagonal converges to zero and that the
diagonal entries of Ak converge to the eigenvalues of A.

Since the convergence of the QR method depends crucially only on the
fact that the part of Ak below the diagonal goes to zero, it would be highly
desirable if we could replace A by a similar matrix U⇤AU easily computable
from A and having lots of zero strictly below the diagonal. It turns out that
there is a way to construct a matrix H = U⇤AU which is almost triangular,
except that it may have an extra nonzero diagonal below the main diagonal.
Such matrices called, Hessenberg matrices, are discussed in Section 17.2.
An n ⇥ n diagonalizable Hessenberg matrix H having the property that
hi+1i 6= 0 for i = 1, . . . , n � 1 (such a matrix is called unreduced) has the
nice property that its eigenvalues are all distinct. Since every Hessenberg
matrix is a block diagonal matrix of unreduced Hessenberg blocks, it su�ces
to compute the eigenvalues of unreduced Hessenberg matrices. There is
a special case of particular interest: symmetric (or Hermitian) positive
definite tridiagonal matrices. Such matrices must have real positive distinct
eigenvalues, so the QR algorithm converges to a diagonal matrix.

In Section 17.3, we consider techniques for making the basic QR method
practical and more e�cient. The first step is to convert the original input
matrix A to a similar matrix H in Hessenberg form, and to apply the QR
algorithm to H (actually, to the unreduced blocks of H). The second and
crucial ingredient to speed up convergence is to add shifts.

A shift is the following step: pick some �k, hopefully close to some
eigenvalue of A (in general, �n), QR-factor Ak � �kI as

Ak � �kI = QkRk,

and then form

Ak+1

= RkQk + �kI.
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It is easy to see that we still have Ak+1

= Q⇤
kAkQk. A judicious choice

of �k can speed up convergence considerably. If H is real and has pairs of
complex conjugate eigenvalues, we can perform a double shift, and it can
be arranged that we work in real arithmetic.

The last step for improving e�ciency is to compute Ak+1

= Q⇤
kAkQk

without even performing a QR-factorization of Ak ��kI. This can be done
when Ak is unreduced Hessenberg. Such a method is called QR iteration
with implicit shifts. There is also a version of QR iteration with implicit
double shifts.

If the dimension of the matrix A is very large, we can find approxima-
tions of some of the eigenvalues of A by using a truncated version of the
reduction to Hessenberg form due to Arnoldi in general and to Lanczos
in the symmetric (or Hermitian) tridiagonal case. Arnoldi iteration is dis-
cussed in Section 17.4. If A is an m⇥m matrix, for n ⌧ m (n much smaller
than m) the idea is to generate the n⇥ n Hessenberg submatrix Hn of the
full Hessenberg matrix H (such that A = UHU⇤) consisting of its first n
rows and n columns; the matrix Un consisting of the first n columns of
U is also produced. The Rayleigh–Ritz method consists in computing the
eigenvalues of Hn using the QR- method with shifts. These eigenvalues,
called Ritz values , are approximations of the eigenvalues of A. Typically,
extreme eigenvalues are found first.

Arnoldi iteration can also be viewed as a way of computing an orthonor-
mal basis of a Krylov subspace, namely the subspace Kn(A, b) spanned by
(b, Ab, . . . , Anb). We can also use Arnoldi iteration to find an approximate
solution of a linear equation Ax = b by minimizing kb � Axnk

2

for all xn

is the Krylov space Kn(A, b). This method named GMRES is discussed in
Section 17.5.

The special case where H is a symmetric (or Hermitian) tridiagonal ma-
trix is discussed in Section 17.6. In this case, Arnoldi’s algorithm becomes
Lanczos’ algorithm. It is much more e�cient than Arnoldi iteration.

We close this chapter by discussing two classical methods for computing
a single eigenvector and a single eigenvalue: power iteration and inverse
(power) iteration; see Section 17.7.

17.1 The Basic QR Algorithm

Let A be an n⇥n matrix which is assumed to be diagonalizable and invert-
ible. The basic QR algorithm makes use of two very simple steps. Starting
with A

1

= A, we construct sequences of matrices (Ak), (Qk) (Rk) and (Pk)
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as follows:

Factor A
1

= Q
1

R
1

Set A
2

= R
1

Q
1

Factor A
2

= Q
2

R
2

Set A
3

= R
2

Q
2

...

Factor Ak = QkRk

Set Ak+1

= RkQk

...

Thus, Ak+1

is obtained from a QR-factorization Ak = QkRk of Ak by
swapping Qk and Rk. Define Pk by

Pk = Q
1

Q
2

· · ·Qk.

Since Ak = QkRk, we have Rk = Q⇤
kAk, and since Ak+1

= RkQk, we
obtain

Ak+1

= Q⇤
kAkQk. (⇤

1

)

An obvious induction shows that

Ak+1

= Q⇤
k · · ·Q⇤

1

A
1

Q
1

· · ·Qk = P ⇤
kAPk,

that is

Ak+1

= P ⇤
kAPk. (⇤

2

)

Therefore, Ak+1

and A are similar, so they have the same eigenvalues.
The basic QR iteration method consists in computing the sequence of

matrices Ak, and in the ideal situation, to expect that Ak “converges” to an
upper triangular matrix, more precisely that the part of Ak below the main
diagonal goes to zero, and the diagonal entries converge to the eigenvalues
of A.

This ideal situation is only achieved in rather special cases. For one
thing, if A is unitary (or orthogonal in the real case), since in the QR
decomposition we have R = I, we get A

2

= IQ = Q = A
1

, so the method
does not make any progress. Also, if A is a real matrix, since the Ak

are also real, if A has complex eigenvalues, then the part of Ak below the
main diagonal can’t go to zero. Generally, the method runs into troubles
whenever A has distinct eigenvalues with the same modulus.
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The convergence of the sequence (Ak) is only known under some fairly
restrictive hypotheses. Even under such hypotheses, this is not really gen-
uine convergence. Indeed, it can be shown that the part of Ak below the
main diagonal goes to zero, and the diagonal entries converge to the eigen-
values of A, but the part of Ak above the diagonal may not converge.
However, for the purpose of finding the eigenvalues of A, this does not
matter.

The following convergence result is proven in Ciarlet [Ciarlet (1989)]
(Chapter 6, Theorem 6.3.10 and Serre [Serre (2010)] (Chapter 13, The-
orem 13.2). It is rarely applicable in practice, except for symmetric (or
Hermitian) positive definite matrices, as we will see shortly.

Theorem 17.1. Suppose the (complex) n ⇥ n matrix A is invertible, di-
agonalizable, and that its eigenvalues �

1

, . . . ,�n have di↵erent moduli, so
that

|�
1

| > |�
2

| > · · · > |�n| > 0.

If A = P⇤P�1, where ⇤ = diag(�
1

, . . . ,�n), and if P�1 has an LU-
factorization, then the strictly lower-triangular part of Ak converges to zero,
and the diagonal of Ak converges to ⇤.

Proof. We reproduce the proof in Ciarlet [Ciarlet (1989)] (Chapter 6, The-
orem 6.3.10). The strategy is to study the asymptotic behavior of the ma-
trices Pk = Q

1

Q
2

· · ·Qk. For this, it turns out that we need to consider the
powers Ak.

Step 1 . Let Rk = Rk · · ·R
2

R
1

. We claim that

Ak = (Q
1

Q
2

· · ·Qk)(Rk · · ·R
2

R
1

) = PkRk. (⇤
3

)

We proceed by induction. The base case k = 1 is trivial. For the
induction step, from (⇤

2

), we have

PkAk+1

= APk.

Since Ak+1

= RkQk = Qk+1

Rk+1

, we have

Pk+1

Rk+1

= PkQk+1

Rk+1

Rk = PkAk+1

Rk = APkRk = AAk = Ak+1

establishing the induction step.
Step 2 . We will express the matrix Pk as Pk = Q eQkDk, in terms of a

diagonal matrix Dk with unit entries, with Q and eQk unitary.
Let P = QR, a QR-factorization of P (with R an upper triangular

matrix with positive diagonal entries), and P�1 = LU , an LU -factorization
of P�1. Since A = P⇤P�1, we have

Ak = P⇤kP�1 = QR⇤kLU = QR(⇤kL⇤�k)⇤kU. (⇤
4

)
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Here, ⇤�k is the diagonal matrix with entries ��k
i . The reason for introduc-

ing the matrix ⇤kL⇤�k is that its asymptotic behavior is easy to determine.
Indeed, we have

(⇤kL⇤�k)ij =

8
>>><

>>>:

0 if i < j

1 if i = j
✓
�i
�j

◆k

Lij if i > j.

The hypothesis that |�
1

| > |�
2

| > · · · > |�n| > 0 implies that

lim
k 7!1

⇤kL⇤�k = I. (†)

Note that it is to obtain this limit that we made the hypothesis on the
moduli of the eigenvalues. We can write

⇤kL⇤�k = I + Fk, with lim
k 7!1

Fk = 0,

and consequently, since R(⇤kL⇤�k) = R(I + Fk) = R + RFkR�1R =
(I +RFkR�1)R, we have

R(⇤kL⇤�k) = (I +RFkR
�1)R. (⇤

5

)

By Proposition 8.8(1), since limk 7!1 Fk = 0, and thus limk 7!1 RFkR�1 =
0, the matrices I+RFkR�1 are invertible for k large enough. Consequently
for k large enough, we have a QR-factorization

I +RFkR
�1 = eQk

eRk, (⇤
6

)

with ( eRk)ii > 0 for i = 1, . . . , n. Since the matrices eQk are unitary, we

have
��� eQk

���
2

= 1, so the sequence ( eQk) is bounded. It follows that it has

a convergent subsequence ( eQ`) that converges to some matrix eQ, which is
also unitary. Since

eR` = ( eQ`)
⇤(I +RF`R

�1),

we deduce that the subsequence ( eR`) also converges to some matrix eR,
which is also upper triangular with positive diagonal entries. By passing to
the limit (using the subsequences), we get eR = ( eQ)⇤, that is,

I = eQ eR.

By the uniqueness of a QR-decomposition (when the diagonal entries of R
are positive), we get

eQ = eR = I.
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Since the above reasoning applies to any subsequences of ( eQk) and ( eRk),
by the uniqueness of limits, we conclude that the “full” sequences ( eQk) and
( eRk) converge:

lim
k 7!1

eQk = I, lim
k 7!1

eRk = I.

Since by (⇤
4

),

Ak = QR(⇤kL⇤�k)⇤kU,

by (⇤
5

),

R(⇤kL⇤�k) = (I +RFkR
�1)R,

and by (⇤
6

)

I +RFkR
�1 = eQk

eRk,

we proved that

Ak = (Q eQk)( eRkR⇤kU). (⇤
7

)

Observe that Q eQk is a unitary matrix, and eRkR⇤kU is an upper triangular
matrix, as a product of upper triangular matrices. However, some entries
in ⇤ may be negative, so we can’t claim that eRkR⇤kU has positive diagonal
entries. Nevertheless, we have another QR-decomposition of Ak,

Ak = (Q eQk)( eRkR⇤kU) = PkRk.

It is easy to prove that there is diagonal matrix Dk with |(Dk)ii| = 1 for
i = 1, . . . , n, such that

Pk = Q eQkDk. (⇤
8

)

The existence of Dk is consequence of the following fact: If an invertible
matrix B has two QR factorizations B = Q

1

R
1

= Q
2

R
2

, then there is a
diagonal matrix D with unit entries such that Q

2

= DQ
1

.
The expression for Pk in (⇤

8

) is that which we were seeking.
Step 3 . Asymptotic behavior of the matrices Ak+1

= P ⇤
kAPk.

Since A = P⇤P�1 = QR⇤R�1Q�1 and by (⇤
8

), Pk = Q eQkDk, we get

Ak+1

= D⇤
k( eQk)

⇤Q⇤QR⇤R�1Q�1Q eQkDk = D⇤
k( eQk)

⇤R⇤R�1 eQkDk. (⇤
9

)

Since limk 7!1 eQk = I, we deduce that

lim
k 7!1

( eQk)
⇤R⇤R�1 eQk = R⇤R�1 =

0

BBB@

�
1

⇤ · · · ⇤
0 �

2

· · · ⇤
...

. . .
...

0 0 · · · �n

1

CCCA
,
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an upper triangular matrix with the eigenvalues of A on the diagonal. Since
R is upper triangular, the order of the eigenvalues is preserved. If we let

Dk = ( eQk)
⇤R⇤R�1 eQk, (⇤

10

)

then by (⇤
9

) we have Ak+1

= D⇤
kDkDk, and since the matrices Dk are

diagonal matrices, we have

(Ak+1

)jj = (D⇤
kDkDk)ij = (Dk)ii(Dk)jj(Dk)ij ,

which implies that

(Ak+1

)ii = (Dk)ii, i = 1, . . . , n, (⇤
11

)

since |(Dk)ii| = 1 for i = 1, . . . , n. Since limk 7!1 Dk = R⇤R�1, we conclude
that the strictly lower-triangular part of Ak+1

converges to zero, and the
diagonal of Ak+1

converges to ⇤.

Observe that if the matrix A is real, then the hypothesis that the eigen-
values have distinct moduli implies that the eigenvalues are all real and
simple.

The following Matlab program implements the basic QR-method using
the function qrv4 from Section 11.8.

function T = qreigen(A,m)

T = A;

for k = 1:m

[Q R] = qrv4(T);

T = R*Q;

end

end

Example 17.1. If we run the function qreigen with 100 iterations on the
8 ⇥ 8 symmetric matrix

A =

0

BBBBBBBBBBB@

4 1 0 0 0 0 0 0
1 4 1 0 0 0 0 0
0 1 4 1 0 0 0 0
0 0 1 4 1 0 0 0
0 0 0 1 4 1 0 0
0 0 0 0 1 4 1 0
0 0 0 0 0 1 4 1
0 0 0 0 0 0 1 4

1

CCCCCCCCCCCA

,
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we find the matrix

T =

0

BBBBBBBBBBB@

5.8794 0.0015 0.0000 �0.0000 0.0000 �0.0000 0.0000 �0.0000
0.0015 5.5321 0.0001 0.0000 �0.0000 0.0000 0.0000 0.0000

0 0.0001 5.0000 0.0000 �0.0000 0.0000 0.0000 0.0000
0 0 0.0000 4.3473 0.0000 0.0000 0.0000 0.0000
0 0 0 0.0000 3.6527 0.0000 0.0000 �0.0000
0 0 0 0 0.0000 3.0000 0.0000 �0.0000
0 0 0 0 0 0.0000 2.4679 0.0000
0 0 0 0 0 0 0.0000 2.1.206

1

CCCCCCCCCCCA

.

The diagonal entries match the eigenvalues found by running the Matlab

function eig(A).

If several eigenvalues have the same modulus, then the proof breaks
down, we can no longer claim (†), namely that

lim
k 7!1

⇤kL⇤�k = I.

If we assume that P�1 has a suitable “block LU -factorization,” it can be
shown that the matrices Ak+1

converge to a block upper-triangular matrix,
where each block corresponds to eigenvalues having the same modulus. For
example, if A is a 9 ⇥ 9 matrix with eigenvalues �i such that |�

1

| = |�
2

| =
|�

3

| > |�
4

| > |�
5

| = |�
6

| = |�
7

| = |�
8

| = |�
9

|, then Ak converges to a block
diagonal matrix (with three blocks, a 3⇥ 3 block, a 1⇥ 1 block, and a 5⇥ 5
block) of the form

0

BBBBBBBBBBBBB@

? ? ? ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
? ? ? ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
? ? ? ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
0 0 0 ? ⇤ ⇤ ⇤ ⇤ ⇤
0 0 0 0 ? ? ? ? ?
0 0 0 0 ? ? ? ? ?
0 0 0 0 ? ? ? ? ?
0 0 0 0 ? ? ? ? ?
0 0 0 0 ? ? ? ? ?

1

CCCCCCCCCCCCCA

.

See Ciarlet [Ciarlet (1989)] (Chapter 6 Section 6.3) for more details.
Under the conditions of Theorem 17.1, in particular, if A is a symmetric

(or Hermitian) positive definite matrix, the eigenvectors of A can be ap-
proximated. However, when A is not a symmetric matrix, since the upper
triangular part of Ak does not necessarily converge, one has to be cautious
that a rigorous justification is lacking.
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Suppose we apply the QR algorithm to a matrix A satisfying the hy-
potheses of Theorem Theorem 17.1. For k large enough, Ak+1

= P ⇤
kAPk

is nearly upper triangular and the diagonal entries of Ak+1

are all distinct,
so we can consider that they are the eigenvalues of Ak+1

, and thus of A.
To avoid too many subscripts, write T for the upper triangular matrix ob-
tained by settting the entries of the part of Ak+1

below the diagonal to
0. Then we can find the corresponding eigenvectors by solving the linear
system

Tv = tiiv,

and since T is upper triangular, this can be done by bottom-up elimi-
nation. We leave it as an exercise to show that the following vectors
vi = (vi

1

, . . . , vin) are eigenvectors:

v1 = e
1

,

and if i = 2, . . . , n, then

vij =

8
>>><

>>>:

0 if i+ 1  j  n

1 if j = i

�
tjj+1

vij+1

+ · · · + tjivii
tjj � tii

if i � 1 � j � 1.

Then the vectors (Pkv1, . . . , Pkvn) are a basis of (approximate) eigenvectors
for A. In the special case where T is a diagonal matrix, then vi = ei for i =
1, . . . , n and the columns of Pk are an orthonormal basis of (approximate)
eigenvectors for A.

If A is a real matrix whose eigenvalues are not all real, then there is some
complex pair of eigenvalues � + iµ (with µ 6= 0), and the QR-algorithm
cannot converge to a matrix whose strictly lower-triangular part is zero.
There is a way to deal with this situation using upper Hessenberg matrices
which will be discussed in the next section.

Since the convergence of the QR method depends crucially only on
the fact that the part of Ak below the diagonal goes to zero, it would be
highly desirable if we could replace A by a similar matrix U⇤AU easily
computable from A having lots of zero strictly below the diagonal. We
can’t expect U⇤AU to be a diagonal matrix (since this would mean that A
was easily diagonalized), but it turns out that there is a way to construct
a matrix H = U⇤AU which is almost triangular, except that it may have
an extra nonzero diagonal below the main diagonal. Such matrices called
Hessenberg matrices are discussed in the next section.
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17.2 Hessenberg Matrices

Definition 17.1. An n⇥ n matrix (real or complex) H is an (upper) Hes-
senberg matrix if it is almost triangular, except that it may have an extra
nonzero diagonal below the main diagonal. Technically, hjk = 0 for all
(j, k) such that j � k � 2.

The 5 ⇥ 5 matrix below is an example of a Hessenberg matrix.

H =

0

BBBB@

⇤ ⇤ ⇤ ⇤ ⇤
h
21

⇤ ⇤ ⇤ ⇤
0 h

32

⇤ ⇤ ⇤
0 0 h

43

⇤ ⇤
0 0 0 h

54

⇤

1

CCCCA
.

The following result can be shown.

Theorem 17.2. Every n ⇥ n complex or real matrix A is similar to an
upper Hessenberg matrix H, that is, A = UHU⇤ for some unitary matrix
U . Furthermore, H can be constructed as a product of Householder matrices
(the definition is the same as in Section 12.1, except that W is a complex
vector, and that the inner product is the Hermitian inner product on Cn).
If A is a real matrix, then H is an orthogonal matrix (and H is a real
matrix).

Theorem 17.2 and algorithms for converting a matrix to Hessenberg
form are discussed in Trefethen and Bau [Trefethen and Bau III (1997)]
(Lecture 26), Demmel [Demmel (1997)] (Section 4.4.6, in the real case),
Serre [Serre (2010)] (Theorem 13.1), and Meyer [Meyer (2000)] (Example
5.7.4, in the real case). The proof of correctness is not di�cult and will be
the object of a homework problem.

The following functions written in Matlab implement a function to com-
pute a Hessenberg form of a matrix.

The function house constructs the normalized vector u defining the
Householder reflection that zeros all but the first entries in a vector x.

function [uu, u] = house(x)

tol = 2*10^(-15); % tolerance

uu = x;

p = size(x,1);

% computes l^1-norm of x(2:p,1)
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n1 = sum(abs(x(2:p,1)));

if n1 <= tol

u = zeros(p,1); uu = u;

else

l = sqrt(x’*x); % l^2 norm of x

uu(1) = x(1) + signe(x(1))*l;

u = uu/sqrt(uu’*uu);

end

end

The function signe(z) returms �1 if z < 0, else +1.
The function buildhouse builds a Householder reflection from a vector

uu.

function P = buildhouse(v,i)

% This function builds a Householder reflection

% [I 0 ]

% [0 PP]

% from a Householder reflection

% PP = I - 2uu*uu’

% where uu = v(i:n)

% If uu = 0 then P - I

%

n = size(v,1);

if v(i:n) == zeros(n - i + 1,1)

P = eye(n);

else

PP = eye(n - i + 1) - 2*v(i:n)*v(i:n)’;

P = [eye(i-1) zeros(i-1, n - i + 1);

zeros(n - i + 1, i - 1) PP];

end

end

The function Hessenberg1 computes an upper Hessenberg matrix H
and an orthogonal matrix Q such that A = Q>HQ.

function [H, Q] = Hessenberg1(A)

%

% This function constructs an upper Hessenberg
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% matrix H and an orthogonal matrix Q such that

% A = Q’ H Q

n = size(A,1);

H = A;

Q = eye(n);

for i = 1:n-2

% H(i+1:n,i)

[~,u] = house(H(i+1:n,i));

% u

P = buildhouse(u,1);

Q(i+1:n,i:n) = P*Q(i+1:n,i:n);

H(i+1:n,i:n) = H(i+1:n,i:n) - 2*u*(u’)*H(i+1:n,i:n);

H(1:n,i+1:n) = H(1:n,i+1:n) - 2*H(1:n,i+1:n)*u*(u’);

end

end

Example 17.2. If

A =

0

BB@

1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7

1

CCA ,

running Hessenberg1 we find

H =

0

BB@

1.0000 �5.3852 0 0
�5.3852 15.2069 �1.6893 �0.0000
�0.0000 �1.6893 �0.2069 �0.0000

0 �0.0000 0.0000 0.0000

1

CCA

Q =

0

BB@

1.0000 0 0 0
0 �0.3714 �0.5571 �0.7428
0 0.8339 0.1516 �0.5307
0 0.4082 �0.8165 0.4082

1

CCA .

An important property of (upper) Hessenberg matrices is that if some
subdiagonal entry Hp+1p = 0, then H is of the form

H =

✓
H

11

H
12

0 H
22

◆
,

where both H
11

and H
22

are upper Hessenberg matrices (with H
11

a p⇥ p
matrix and H

22

a (n � p) ⇥ (n � p) matrix), and the eigenvalues of H are
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the eigenvalues of H
11

and H
22

. For example, in the matrix

H =

0

BBBB@

⇤ ⇤ ⇤ ⇤ ⇤
h
21

⇤ ⇤ ⇤ ⇤
0 h

32

⇤ ⇤ ⇤
0 0 h

43

⇤ ⇤
0 0 0 h

54

⇤

1

CCCCA
,

if h
43

= 0, then we have the block matrix

H =

0

BBBB@

⇤ ⇤ ⇤ ⇤ ⇤
h
21

⇤ ⇤ ⇤ ⇤
0 h

32

⇤ ⇤ ⇤
0 0 0 ⇤ ⇤
0 0 0 h

54

⇤

1

CCCCA
.

Then the list of eigenvalues of H is the concatenation of the list of eigen-
values of H

11

and the list of the eigenvalues of H
22

. This is easily seen by
induction on the dimension of the block H

11

.
More generally, every upper Hessenberg matrix can be written in such

a way that it has diagonal blocks that are Hessenberg blocks whose subdi-
agonal is not zero.

Definition 17.2. An upper Hessenberg n ⇥ n matrix H is unreduced if
hi+1i 6= 0 for i = 1, . . . , n�1. A Hessenberg matrix which is not unreduced
is said to be reduced .

The following is an example of an 8⇥ 8 matrix consisting of three diag-
onal unreduced Hessenberg blocks:

H =

0

BBBBBBBBBBB@

? ? ? ⇤ ⇤ ⇤ ⇤ ⇤
h21 ? ? ⇤ ⇤ ⇤ ⇤ ⇤
0 h32 ? ⇤ ⇤ ⇤ ⇤ ⇤
0 0 0 ? ? ? ⇤ ⇤
0 0 0 h54 ? ? ⇤ ⇤
0 0 0 0 h65 ? ⇤ ⇤
0 0 0 0 0 0 ? ?
0 0 0 0 0 0 h87 ?

1

CCCCCCCCCCCA

.

An interesting and important property of unreduced Hessenberg matri-
ces is the following.

Proposition 17.1. Let H be an n ⇥ n complex or real unreduced Hessen-
berg matrix. Then every eigenvalue of H is geometrically simple, that is,
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dim(E�) = 1 for every eigenvalue �, where E� is the eigenspace associ-
ated with �. Furthermore, if H is diagonalizable, then every eigenvalue is
simple, that is, H has n distinct eigenvalues.

Proof. We follow Serre’s proof [Serre (2010)] (Proposition 3.26). Let � be
any eigenvalue of H, let M = �In � H, and let N be the (n � 1) ⇥ (n � 1)
matrix obtained from M by deleting its first row and its last column. Since
H is upper Hessenberg, N is a diagonal matrix with entries �hi+1i 6=
0, i = 1, . . . , n � 1. Thus N is invertible and has rank n � 1. But a
matrix has rank greater than or equal to the rank of any of its submatrices,
so rank(M) = n � 1, since M is singular. By the rank-nullity theorem,
rank(KerN) = 1, that is, dim(E�) = 1, as claimed.

If H is diagonalizable, then the sum of the dimensions of the eigenspaces
is equal to n, which implies that the eigenvalues of H are distinct.

As we said earlier, a case where Theorem 17.1 applies is the case where
A is a symmetric (or Hermitian) positive definite matrix. This follows from
two facts.

The first fact is that if A is Hermitian (or symmetric in the real case),
then it is easy to show that the Hessenberg matrix similar to A is a Hermi-
tian (or symmetric in real case) tridiagonal matrix . The conversion method
is also more e�cient. Here is an example of a symmetric tridiagonal matrix
consisting of three unreduced blocks:

H =

0

BBBBBBBBBBB@

↵1 �1 0 0 0 0 0 0
�1 ↵2 �2 0 0 0 0 0
0 �2 ↵3 0 0 0 0 0
0 0 0 ↵4 �4 0 0 0
0 0 0 �4 ↵5 �5 0 0
0 0 0 0 �5 ↵6 0 0
0 0 0 0 0 0 ↵7 �7
0 0 0 0 0 0 �7 ↵8

1

CCCCCCCCCCCA

.

Thus the problem of finding the eigenvalues of a symmetric (or Hermi-
tian) matrix reduces to the problem of finding the eigenvalues of a symmet-
ric (resp. Hermitian) tridiagonal matrix, and this can be done much more
e�ciently.

The second fact is that if H is an upper Hessenberg matrix and if it is
diagonalizable, then there is an invertible matrix P such that H = P⇤P�1

with ⇤ a diagonal matrix consisting of the eigenvalues of H, such that P�1

has an LU -decomposition; see Serre [Serre (2010)] (Theorem 13.3).
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As a consequence, since any symmetric (or Hermitian) tridiagonal ma-
trix is a block diagonal matrix of unreduced symmetric (resp. Hermitian)
tridiagonal matrices, by Proposition 17.1, we see that the QR algorithm
applied to a tridiagonal matrix which is symmetric (or Hermitian) positive
definite converges to a diagonal matrix consisting of its eigenvalues. Let us
record this important fact.

Theorem 17.3. Let H be a symmetric (or Hermitian) positive definite
tridiagonal matrix. If H is unreduced, then the QR algorithm converges to
a diagonal matrix consisting of the eigenvalues of H.

Since every symmetric (or Hermitian) positive definite matrix is sim-
ilar to tridiagonal symmetric (resp. Hermitian) positive definite matrix,
we deduce that we have a method for finding the eigenvalues of a sym-
metric (resp. Hermitian) positive definite matrix (more accurately, to find
approximations as good as we want for these eigenvalues).

If A is a symmetric (or Hermitian) matrix, since its eigenvalues are real,
for some µ > 0 large enough (pick µ > ⇢(A)), A + µI is symmetric (resp.
Hermitan) positive definite, so we can apply the QR algorithm to an upper
Hessenberg matrix similar to A + µI to find its eigenvalues, and then the
eigenvalues of A are obtained by subtracting µ.

The problem of finding the eigenvalues of a symmetric matrix is dis-
cussed extensively in Parlett [Parlett (1997)], one of the best references on
this topic.

The upper Hessenberg form also yields a way to handle singular matri-
ces. First, checking the proof of Proposition 13.20 that an n ⇥ n complex
matrix A (possibly singular) can be factored as A = QR where Q is a uni-
tary matrix which is a product of Householder reflections and R is upper
triangular, it is easy to see that if A is upper Hessenberg, then Q is also
upper Hessenberg. If H is an unreduced upper Hessenberg matrix, since
Q is upper Hessenberg and R is upper triangular, we have hi+1i = qi+1irii
for i = 1 . . . , n � 1, and since H is unreduced, rii 6= 0 for i = 1, . . . , n � 1.
Consequently H is singular i↵ rnn = 0. Then the matrix RQ is a matrix
whose last row consists of zero’s thus we can deflate the problem by con-
sidering the (n � 1) ⇥ (n � 1) unreduced Hessenberg matrix obtained by
deleting the last row and the last column. After finitely many steps (not
larger that the multiplicity of the eigenvalue 0), there remains an invertible
unreduced Hessenberg matrix. As an alternative, see Serre [Serre (2010)]
(Chapter 13, Section 13.3.2).

As is, the QR algorithm, although very simple, is quite ine�cient for
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several reasons. In the next section, we indicate how to make the method
more e�cient. This involves a lot of work and we only discuss the main
ideas at a high level.

17.3 Making the QR Method More E�cient
Using Shifts

To improve e�ciency and cope with pairs of complex conjugate eigenvalues
in the case of real matrices, the following steps are taken:

(1) Initially reduce the matrix A to upper Hessenberg form, as A = UHU⇤.
Then apply the QR-algorithm to H (actually, to its unreduced Hessen-
berg blocks). It is easy to see that the matrices Hk produced by the
QR algorithm remain upper Hessenberg.

(2) To accelerate convergence, use shifts, and to deal with pairs of complex
conjugate eigenvalues, use double shifts.

(3) Instead of computing a QR-factorization explicitly while doing a shift,
perform an implicit shift which computes Ak+1

= Q⇤
kAkQk without

having to compute a QR-factorization (of Ak � �kI), and similarly in
the case of a double shift. This is the most intricate modification of
the basic QR algorithm and we will not discuss it here. This method
is usually referred as bulge chasing . Details about this technique for
real matrices can be found in Demmel [Demmel (1997)] (Section 4.4.8)
and Golub and Van Loan [Golub and Van Loan (1996)] (Section 7.5).
Watkins discusses the QR algorithm with shifts as a bulge chasing
method in the more general case of complex matrices [Watkins (1982,
2008)].

Let us repeat an important remark made in the previous section. If we
start with a matrix H in upper Hessenberg form, if at any stage of the QR
algorithm we find that some subdiagonal entry (Hk)p+1p = 0 or is very
small , then Hk is of the form

Hk =

✓
H

11

H
12

0 H
22

◆
,

where both H
11

and H
22

are upper Hessenberg matrices (with H
11

a p⇥ p
matrix and H

22

a (n� p)⇥ (n� p) matrix), and the eigenvalues of Hk are
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the eigenvalues of H
11

and H
22

. For example, in the matrix

H =

0

BBBB@

⇤ ⇤ ⇤ ⇤ ⇤
h
21

⇤ ⇤ ⇤ ⇤
0 h

32

⇤ ⇤ ⇤
0 0 h

43

⇤ ⇤
0 0 0 h

54

⇤

1

CCCCA
,

if h
43

= 0, then we have the block matrix

H =

0

BBBB@

⇤ ⇤ ⇤ ⇤ ⇤
h
21

⇤ ⇤ ⇤ ⇤
0 h

32

⇤ ⇤ ⇤
0 0 0 ⇤ ⇤
0 0 0 h

54

⇤

1

CCCCA
.

Then we can recursively apply the QR algorithm to H
11

and H
22

.
In particular, if (Hk)nn�1

= 0 or is very small, then (Hk)nn is a good
approximation of an eigenvalue, so we can delete the last row and the last
column of Hk and apply the QR algorithm to this submatrix. This process
is called deflation. If (Hk)n�1n�2

= 0 or is very small, then the 2 ⇥ 2
“corner block”

✓
(Hk)n�1n�1

(Hk)n�1n

(Hk)nn�1

(Hk)nn

◆

appears, and its eigenvalues can be computed immediately by solving a
quadratic equation. Then we deflate Hk by deleting its last two rows and
its last two columns and apply the QR algorithm to this submatrix.

Thus it would seem desirable to modify the basic QR algorithm so
that the above situations arises, and this is what shifts are designed for.
More precisely, under the hypotheses of Theorem 17.1, it can be shown
(see Ciarlet [Ciarlet (1989)], Section 6.3) that the entry (Ak)ij with i > j
converges to 0 as |�i/�j |k converges to 0. Also, if we let ri be defined by

r
1

=

����
�
2

�
1

���� , ri = max

⇢����
�i
�i�1

���� ,
����
�i+1

�i

����

�
, 2  i  n � 1, rn =

����
�n
�n�1

���� ,

then there is a constant C (independent of k) such that

|(Ak)ii � �i|  Crki , 1  i  n.

In particular, if H is upper Hessenberg, then the entry (Hk)i+1i con-
verges to 0 as |�i+1

/�i|k converges to 0. Thus if we pick �k close to �i,
we expect that (Hk � �kI)i+1i converges to 0 as |(�i+1

� �k)/(�i � �k)|k
converges to 0, and this ratio is much smaller than 1 as �k is closer to �i.
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Typically, we apply a shift to accelerate convergence to �n (so i = n � 1).
In this case, both (Hk � �kI)nn�1

and |(Hk � �kI)nn � �n| converge to 0
as |(�n � �k)/(�n�1

� �k)|k converges to 0.
A shift is the following modified QR-steps (switching back to an arbi-

trary matrix A, since the shift technique applies in general). Pick some
�k, hopefully close to some eigenvalue of A (in general, �n), and QR-factor
Ak � �kI as

Ak � �kI = QkRk,

and then form

Ak+1

= RkQk + �kI.

Since

Ak+1

= RkQk + �kI

= Q⇤
kQkRkQk +Q⇤

kQk�k

= Q⇤
k(QkRk + �kI)Qk

= Q⇤
kAkQk,

Ak+1

is similar to Ak, as before. If Ak is upper Hessenberg, then it is easy
to see that Ak+1

is also upper Hessenberg.
If A is upper Hessenberg and if �i is exactly equal to an eigenvalue, then

Ak � �kI is singular, and forming the QR-factorization will detect that Rk

has some diagonal entry equal to 0. Assuming that the QR-algorithm
returns (Rk)nn = 0 (if not, the argument is easily adapted), then the last
row of RkQk is 0, so the last row of Ak+1

= RkQk + �kI ends with �k (all
other entries being zero), so we are in the case where we can deflate Ak

(and �k is indeed an eigenvalue).
The question remains, what is a good choice for the shift �k?
Assuming again that H is in upper Hessenberg form, it turns out that

when (Hk)nn�1

is small enough, then a good choice for �k is (Hk)nn. In fact,
the rate of convergence is quadratic, which means roughly that the number
of correct digits doubles at every iteration. The reason is that shifts are
related to another method known as inverse iteration, and such a method
converges very fast. For further explanations about this connection, see
Demmel [Demmel (1997)] (Section 4.4.4) and Trefethen and Bau [Trefethen
and Bau III (1997)] (Lecture 29).

One should still be cautious that the QR method with shifts does not
necessarily converge, and that our convergence proof no longer applies,
because instead of having the identity Ak = PkRk, we have

(A � �kI) · · · (A � �
2

I)(A � �
1

I) = PkRk.
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Of course, the QR algorithm loops immediately when applied to an or-
thogonal matrix A. This is also the case when A is symmetric but not
positive definite. For example, both the QR algorithm and the QR algo-
rithm with shifts loop on the matrix

A =

✓
0 1
1 0

◆
.

In the case of symmetric matrices, Wilkinson invented a shift which
helps the QR algorithm with shifts to make progress. Again, looking at the
lower corner of Ak, say

B =

✓
an�1

bn�1

bn�1

an

◆
,

the Wilkinson shift picks the eigenvalue of B closer to an. If we let

� =
an�1

� an
2

,

it is easy to see that the eigenvalues of B are given by

� =
an + an�1

2
±
q
�2 + b2n�1

.

It follows that

�� an = � ±
q
�2 + b2n�1

,

and from this it is easy to see that the eigenvalue closer to an is given by

µ = an �
sign(�)b2n�1

(|�| +
q
�2 + b2n�1

)
.

If � = 0, then we pick arbitrarily one of the two eigenvalues. Observe that
the Wilkinson shift applied to the matrix

A =

✓
0 1
1 0

◆

is either +1 or �1, and in one step, deflation occurs and the algorithm
terminates successfully.

We now discuss double shifts, which are intended to deal with pairs of
complex conjugate eigenvalues.

Let us assume that A is a real matrix. For any complex number �k with
nonzero imaginary part, a double shift consists of the following steps:

Ak � �kI = QkRk

Ak+1

= RkQk + �kI

Ak+1

� �kI = Qk+1

Rk+1

Ak+2

= Rk+1

Qk+1

+ �kI.
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From the computation made for a single shift, we have Ak+1

= Q⇤
kAkQk

and Ak+2

= Q⇤
k+1

Ak+1

Qk+1

, so we obtain

Ak+2

= Q⇤
k+1

Q⇤
kAkQkQk+1

.

The matrices Qk are complex, so we would expect that the Ak are also
complex, but remarkably we can keep the products QkQk+1

real, and so the
Ak also real. This is highly desirable to avoid complex arithmetic, which is
more expensive.

Observe that since

Qk+1

Rk+1

= Ak+1

� �kI = RkQk + (�k � �k)I,

we have

QkQk+1

Rk+1

Rk = Qk(RkQk + (�k � �k)I)Rk

= QkRkQkRk + (�k � �k)QkRk

= (Ak � �kI)
2 + (�k � �k)(Ak � �kI)

= A2

k � 2(<�k)Ak + |�k|2I.

If we assume by induction that matrix Ak is real (with k = 2`+1, ` � 0),
then the matrix S = A2

k �2(<�k)Ak+ |�k|2I is also real, and since QkQk+1

is unitary and Rk+1

Rk is upper triangular, we see that

S = QkQk+1

Rk+1

Rk

is a QR-factorization of the real matrix S, thus QkQk+1

and Rk+1

Rk can
be chosen to be real matrices, in which case (QkQk+1

)⇤ is also real, and
thus

Ak+2

= Q⇤
k+1

Q⇤
kAkQkQk+1

= (QkQk+1

)⇤AkQkQk+1

is real. Consequently, if A
1

= A is real, then A
2`+1

is real for all ` � 0.
The strategy that consists in picking �k and �k as the complex conjugate

eigenvalues of the corner block
✓
(Hk)n�1n�1

(Hk)n�1n

(Hk)nn�1

(Hk)nn

◆

is called the Francis shift (here we are assuming that A has be reduced to
upper Hessenberg form).

It should be noted that there are matrices for which neither a shift by
(Hk)nn nor the Francis shift works. For instance, the permutation matrix

A =

0

@
0 0 1
1 0 0
0 1 0

1

A
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has eigenvalues ei2⇡/3, ei4⇡/3,+1, and neither of the above shifts apply to
the matrix

✓
0 0
1 0

◆
.

However, a shift by 1 does work. There are other kinds of matrices for
which the QR algorithm does not converge. Demmel gives the example of
matrices of the form

0

BB@

0 1 0 0
1 0 h 0
0 �h 0 1
0 0 1 0

1

CCA

where h is small.
Algorithms implementing the QR algorithm with shifts and double

shifts perform “exceptional” shifts every 10 shifts. Despite the fact that
the QR algorithm has been perfected since the 1960’s, it is still an open
problem to find a shift strategy that ensures convergence of all matrices.

Implicit shifting is based on a result known as the implicit Q theo-
rem. This theorem says that if A is reduced to upper Hessenberg form
as A = UHU⇤ and if H is unreduced (hi+1i 6= 0 for i = 1, . . . , n � 1),
then the columns of index 2, . . . , n of U are determined by the first col-
umn of U up to sign; see Demmel [Demmel (1997)] (Theorem 4.9) and
Golub and Van Loan [Golub and Van Loan (1996)] (Theorem 7.4.2) for the
proof in the case of real matrices. Actually, the proof is not di�cult and
will be the object of a homework exercise. In the case of a single shift,
an implicit shift generates Ak+1

= Q⇤
kAkQk without having to compute a

QR-factorization of Ak � �kI. For real matrices, this is done by applying
a sequence of Givens rotations which perform a bulge chasing process (a
Givens rotation is an orthogonal block diagonal matrix consisting of a sin-
gle block which is a 2D rotation, the other diagonal entries being equal to
1). Similarly, in the case of a double shift, Ak+2

= (QkQk+1

)⇤AkQkQk+1

is generated without having to compute the QR-factorizations of Ak � �kI
and Ak+1

� �kI. Again, (QkQk+1

)⇤AkQkQk+1

is generated by applying
some simple orthogonal matrices which perform a bulge chasing process.
See Demmel [Demmel (1997)] (Section 4.4.8) and Golub and Van Loan
[Golub and Van Loan (1996)] (Section 7.5) for further explanations regard-
ing implicit shifting involving bulge chasing in the case of real matrices.
Watkins [Watkins (1982, 2008)] discusses bulge chasing in the more general
case of complex matrices.
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The Matlab function for finding the eigenvalues and the eigenvectors
of a matrix A is eig and is called as [U, D] = eig(A). It is implemented
using an optimized version of the QR-algorithm with implicit shifts.

If the dimension of the matrix A is very large, we can find approxima-
tions of some of the eigenvalues of A by using a truncated version of the
reduction to Hessenberg form due to Arnoldi in general and to Lanczos in
the symmetric (or Hermitian) tridiagonal case.

17.4 Krylov Subspaces; Arnoldi Iteration

In this section, we denote the dimension of the square real or complex
matrix A by m rather than n, to make it easier for the reader to follow
Trefethen and Bau exposition [Trefethen and Bau III (1997)], which is
particularly lucid.

Suppose that the m ⇥ m matrix A has been reduced to the upper Hes-
senberg form H, as A = UHU⇤. For any n  m (typically much smaller
than m), consider the (n+ 1) ⇥ n upper left block

eHn =

0

BBBBBBBB@

h
11

h
12

h
13

· · · h
1n

h
21

h
22

h
23

· · · h
2n

0 h
32

h
33

· · · h
3n

...
. . .

. . .
. . .

...
0 · · · 0 hnn�1

hnn

0 · · · 0 0 hn+1n

1

CCCCCCCCA

of H, and the n⇥ n upper Hessenberg matrix Hn obtained by deleting the
last row of eHn,

Hn =

0

BBBBB@

h
11

h
12

h
13

· · · h
1n

h
21

h
22

h
23

· · · h
2n

0 h
32

h
33

· · · h
3n

...
. . .

. . .
. . .

...
0 · · · 0 hnn�1

hnn

1

CCCCCA
.

If we denote by Un the m ⇥ n matrix consisting of the first n columns of
U , denoted u

1

, . . . , un, then matrix consisting of the first n columns of the
matrix UH = AU can be expressed as

AUn = Un+1

eHn. (⇤
1

)

It follows that the nth column of this matrix can be expressed as

Aun = h
1nu1

+ · · · + hnnun + hn+1nun+1

. (⇤
2

)
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Since (u
1

, . . . , un) form an orthonormal basis, we deduce from (⇤
2

) that

huj , Auni = u⇤
jAun = hjn, j = 1, . . . , n. (⇤

3

)

Equations (⇤
2

) and (⇤
3

) show that Un+1

and eHn can be computed it-
eratively using the following algorithm due to Arnoldi, known as Arnoldi
iteration:

Given an arbitrary nonzero vector b 2 Cm, let u
1

= b/ kbk;
for n = 1, 2, 3, . . . do

z := Aun;

for j = 1 to n do

hjn := u⇤
jz;

z := z � hjnuj

endfor

hn+1n := kzk;
if hn+1n = 0 quit

un+1

= z/hn+1n

When hn+1n = 0, we say that we have a breakdown of the Arnoldi
iteration.

Arnoldi iteration is an algorithm for producing the n ⇥ n Hessenberg
submatrix Hn of the full Hessenberg matrix H consisting of its first n rows
and n columns (the first n columns of U are also produced), not using
Householder matrices.

As long as hj+1j 6= 0 for j = 1, . . . , n, Equation (⇤
2

) shows by an easy
induction that un+1

belong to the span of (b, Ab, . . . , Anb), and obviously
Aun belongs to the span of (u

1

, . . . , un+1

), and thus the following spaces
are identical:

Span(b, Ab, . . . , Anb) = Span(u
1

, . . . , un+1

).

The space Kn(A, b) = Span(b, Ab, . . . , An�1b) is called a Krylov sub-
space. We can view Arnoldi’s algorithm as the construction of an orthonor-
mal basis for Kn(A, b). It is a sort of Gram–Schmidt procedure.

Equation (⇤
2

) shows that if Kn is the m⇥ n matrix whose columns are
the vectors (b, Ab, . . . , An�1b), then there is a n⇥n upper triangular matrix
Rn such that

Kn = UnRn. (⇤
4

)

The above is called a reduced QR factorization of Kn.
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Since (u
1

, . . . , un) is an orthonormal system, the matrix U⇤
nUn+1

is the
n⇥ (n+1) matrix consisting of the identity matrix In plus an extra column
of 0’s, so U⇤

nUn+1

eHn = U⇤
nAUn is obtained by deleting the last row of eHn,

namely Hn, and so

U⇤
nAUn = Hn. (⇤

5

)

We summarize the above facts in the following proposition.

Proposition 17.2. If Arnoldi iteration run on an m⇥m matrix A starting
with a nonzero vector b 2 Cm does not have a breakdown at stage n  m,
then the following properties hold:

(1) If Kn is the m ⇥ n Krylov matrix associated with the vectors
(b, Ab, . . . , An�1b) and if Un is the m ⇥ n matrix of orthogonal vec-
tors produced by Arnoldi iteration, then there is a QR-factorization

Kn = UnRn,

for some n ⇥ n upper triangular matrix Rn.
(2) The m⇥n upper Hessenberg matrices Hn produced by Arnoldi iteration

are the projection of A onto the Krylov space Kn(A, b), that is,

Hn = U⇤
nAUn.

(3) The successive iterates are related by the formula

AUn = Un+1

eHn.

Remark: If Arnoldi iteration has a breakdown at stage n, that is, hn+1

=
0, then we found the first unreduced block of the Hessenberg matrix H.
It can be shown that the eigenvalues of Hn are eigenvalues of A. So a
breakdown is actually a good thing. In this case, we can pick some new
nonzero vector un+1

orthogonal to the vectors (u
1

, . . . , un) as a new starting
vector and run Arnoldi iteration again. Such a vector exists since the
(n + 1)th column of U works. So repeated application of Arnoldi yields a
full Hessenberg reduction of A. However, this is not what we are after, since
m is very large an we are only interested in a “small” number of eigenvalues
of A.

There is another aspect of Arnoldi iteration, which is that it solves an
optimization problem involving polynomials of degree n. Let Pn denote
the set of (complex) monic polynomials of degree n, that is, polynomials of
the form

p(z) = zn + cn�1

zn�1 + · · · + c
1

z + c
0

(ci 2 C).
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For any m ⇥ m matrix A, we write

p(A) = An + cn�1

An�1 + · · · + c
1

A+ c
0

I.

The following result is proven in Trefethen and Bau [Trefethen and Bau III
(1997)] (Lecture 34, Theorem 34.1).

Theorem 17.4. If Arnoldi iteration run on an m ⇥ m matrix A start-
ing with a nonzero vector b does not have a breakdown at stage n  m,
then there is a unique polynomial p 2 Pn such that kp(A)bk

2

is minimum,
namely the characteristic polynomial det(zI � Hn) of Hn.

Theorem 17.4 can be viewed as the “justification” for a method to find
some of the eigenvalues of A (say n ⌧ m of them). Intuitively, the closer
the roots of the characteristic polynomials of Hn are to the eigenvalues of
A, the smaller kp(A)bk

2

should be, and conversely. In the extreme case
where m = n, by the Cayley–Hamilton theorem, p(A) = 0 (where p is
the characteristic polynomial of A), so this idea is plausible, but this is far
from constituting a proof (also, b should have nonzero coordinates in all
directions associated with the eigenvalues).

The method known as the Rayleigh–Ritz method is to run Arnoldi iter-
ation on A and some b 6= 0 chosen at random for n ⌧ m steps before or
until a breakdown occurs. Then run the QR algorithm with shifts on Hn.
The eigenvalues of the Hessenberg matrix Hn may then be considered as
approximations of the eigenvalues of A. The eigenvalues of Hn are called
Arnoldi estimates or Ritz values . One has to be cautious because Hn is a
truncated version of the full Hessenberg matrix H, so not all of the Ritz
values are necessary close to eigenvalues of A. It has been observed that the
eigenvalues that are found first are the extreme eigenvalues of A, namely
those close to the boundary of the spectrum of A plotted in C. So if A
has real eigenvalues, the largest and the smallest eigenvalues appear first as
Ritz values. In many problems where eigenvalues occur, the extreme eigen-
values are the one that need to be computed. Similarly, the eigenvectors of
Hn may be considered as approximations of eigenvectors of A.

The Matlab function eigs is based on the computation of Ritz values.
It computes the six eigenvalues of largest magnitude of a matrix A, and the
call is [V, D] = eigs(A). More generally, to get the top k eigenvalues, use
[V, D] = eigs(A, k).

In the absence of rigorous theorems about error estimates, it is hard to
make the above statements more precise; see Trefethen and Bau [Trefethen
and Bau III (1997)] (Lecture 34) for more on this subject.



March 25, 2021 15:30 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 653

17.5. GMRES 653

However, if A is a symmetric (or Hermitian) matrix, then Hn is a sym-
metric (resp. Hermitian) tridiagonal matrix and more precise results can
be shown; see Demmel [Demmel (1997)] (Chapter 7, especially Section 7.2).
We will consider the symmetric (and Hermitan) case in the next section,
but first we show how Arnoldi iteration can be used to find approximations
for the solution of a linear system Ax = b where A is invertible but of very
large dimension m.

17.5 GMRES

Suppose A is an invertiblem⇥mmatrix and let b be a nonzero vector in Cm.
Let x

0

= A�1b, the unique solution of Ax = b. It is not hard to show that
x
0

2 Kn(A, b) for some n  m. In fact, there is a unique monic polynomial
p(z) of minimal degree s  m such that p(A)b = 0, so x

0

2 Ks(A, b).
Thus it makes sense to search for a solution of Ax = b in Krylov spaces of
dimension m  s. The idea is to find an approximation xn 2 Kn(A, b) of
x
0

such that rn = b � Axn is minimized, that is, krnk
2

= kb � Axnk
2

is
minimized over xn 2 Kn(A, b). This minimization problem can be stated
as

minimize krnk
2

= kAxn � bk
2

, xn 2 Kn(A, b).

This is a least-squares problem, and we know how to solve it (see Section
21.1). The quantity rn is known as the residual and the method which
consists in minimizing krnk

2

is known as GMRES, for generalized minimal
residuals.

Now since (u
1

, . . . , un) is a basis of Kn(A, b) (since n  s, no breakdown
occurs, except for n = s), we may write xn = Uny, so our minimization
problem is

minimize kAUny � bk
2

, y 2 Cn.

Since by (⇤
1

) of Section 17.4, we have AUn = Un+1

eHn, minimiz-
ing kAUny � bk

2

is equivalent to minimizing kUn+1

eHny � bk
2

over Cm.
Since Un+1

eHny and b belong to the column space of Un+1

, minimizing
kUn+1

eHny� bk
2

is equivalent to minimizing k eHny�U⇤
n+1

bk
2

. However, by
construction,

U⇤
n+1

b = kbk
2

e
1

2 Cn+1,

so our minimization problem can be stated as

minimize k eHny � kbk
2

e
1

k
2

, y 2 Cn.
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The approximate solution of Ax = b is then

xn = Uny.

Starting with u
1

= b/ kbk
2

and with n = 1, the GMRES method runs
n  s Arnoldi iterations to find Un and eHn, and then runs a method to
solve the least squares problem

minimize k eHny � kbk
2

e
1

k
2

, y 2 Cn.

When krnk
2

= k eHny � kbk
2

e
1

k
2

is considered small enough, we stop
and the approximate solution of Ax = b is then

xn = Uny.

There are ways of improving e�ciency of the “naive” version of GM-
RES that we just presented; see Trefethen and Bau [Trefethen and Bau III
(1997)] (Lecture 35). We now consider the case where A is a Hermitian (or
symmetric) matrix.

17.6 The Hermitian Case; Lanczos Iteration

If A is an m ⇥ m symmetric or Hermitian matrix, then Arnoldi’s method
is simpler and much more e�cient. Indeed, in this case, it is easy to see
that the upper Hessenberg matrices Hn are also symmetric (Hermitian
respectively), and thus tridiagonal. Also, the eigenvalues of A and Hn are
real. It is convenient to write

Hn =

0

BBBBBB@

↵
1

�
1

�
1

↵
2

�
2

�
2

↵
3

. . .
. . .

. . . �n�1

�n�1

↵n

1

CCCCCCA
.

The recurrence (⇤
2

) of Section 17.4 becomes the three-term recurrence

Aun = �n�1

un�1

+ ↵nun + �nun+1

. (⇤
6

)

We also have ↵n = u⇤
nAUn, so Arnoldi’s algorithm become the following

algorithm known as Lanczos’ algorithm (or Lanczos iteration). The in-
ner loop on j from 1 to n has been eliminated and replaced by a single
assignment.

Given an arbitrary nonzero vector b 2 Cm, let u
1

= b/ kbk;
for n = 1, 2, 3, . . . do



March 25, 2021 15:30 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 655

17.7. Power Methods 655

z := Aun;

↵n := u⇤
nz;

z := z � �n�1

un�1

� ↵nun

�n := kzk;
if �n = 0 quit

un+1

= z/�n
When �n = 0, we say that we have a breakdown of the Lanczos iteration.
Versions of Proposition 17.2 and Theorem 17.4 apply to Lanczos itera-

tion.
Besides being much more e�cient than Arnoldi iteration, Lanczos it-

eration has the advantage that the Rayleigh–Ritz method for finding some
of the eigenvalues of A as the eigenvalues of the symmetric (respectively
Hermitian) tridiagonal matrix Hn applies, but there are more methods for
finding the eigenvalues of symmetric (respectively Hermitian) tridiagonal
matrices. Also theorems about error estimates exist. The version of Lanc-
zos iteration given above may run into problems in floating point arithmetic.
What happens is that the vectors uj may lose the property of being orthog-
onal, so it may be necessary to reorthogonalize them. For more on all this,
see Demmel [Demmel (1997)] (Chapter 7, in particular Section 7.2-7.4).
The version of GMRES using Lanczos iteration is called MINRES.

We close our brief survey of methods for computing the eigenvalues and
the eigenvectors of a matrix with a quick discussion of two methods known
as power methods.

17.7 Power Methods

Let A be an m⇥m complex or real matrix. There are two power methods,
both of which yield one eigenvalue and one eigenvector associated with this
vector:

(1) Power iteration.
(2) Inverse (power) iteration.

Power iteration only works if the matrix A has an eigenvalue � of largest
modulus, which means that if �

1

, . . . ,�m are the eigenvalues of A, then

|�
1

| > |�
2

| � · · · � |�m| � 0.

In particular, if A is a real matrix, then �
1

must be real (since otherwise
there are two complex conjugate eigenvalues of the same largest modulus).
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If the above condition is satisfied, then power iteration yields �
1

and some
eigenvector associated with it. The method is simple enough:

Pick some initial unit vector x0 and compute the following sequence
(xk), where

xk+1 =
Axk

kAxkk , k � 0.

We would expect that (xk) converges to an eigenvector associated with
�
1

, but this is not quite correct. The following results are proven in Serre
[Serre (2010)] (Section 13.5.1). First assume that �

1

6= 0.
We have

lim
k 7!1

��Axk
�� = |�

1

|.

If A is a complex matrix which has a unique complex eigenvalue �
1

of
largest modulus, then

v = lim
k 7!1

✓
�
1

|�
1

|

◆k

xk

is a unit eigenvector of A associated with �
1

. If �
1

is real, then

v = lim
k 7!1

xk

is a unit eigenvector of A associated with �
1

. Actually some condition
on x0 is needed: x0 must have a nonzero component in the eigenspace E
associated with �

1

(in any direct sum of Cm in which E is a summand).
The eigenvalue �

1

is found as follows. If �
1

is complex, and if vj 6= 0 is
any nonzero coordinate of v, then

�
1

= lim
k 7!1

(Axk)j
xk
j

.

If �
1

is real, then we can define the sequence (�(k)) by

�(k+1) = (xk+1)⇤Axk+1, k � 0,

and we have

�
1

= lim
k 7!1

�(k).

Indeed, in this case, since v = limk 7!1 xk and v is a unit eigenvector for
�
1

, we have

lim
k 7!1

�(k) = lim
k 7!1

(xk+1)⇤Axk+1 = v⇤Av = �
1

v⇤v = �
1

.

Note that since xk+1 is a unit vector, (xk+1)⇤Axk+1 is a Rayleigh ratio.
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If A is a Hermitian matrix, then the eigenvalues are real and we can say
more about the rate of convergence, which is not great (only linear). For
details, see Trefethen and Bau [Trefethen and Bau III (1997)] (Lecture 27).

If �
1

= 0, then there is some power ` < m such that Ax` = 0.
The inverse iteration method is designed to find an eigenvector associ-

ated with an eigenvalue � of A for which we know a good approximation
µ.

Pick some initial unit vector x0 and compute the following sequences
(wk) and (xk), where wk+1 is the solution of the system

(A � µI)wk+1 = xk equivalently wk+1 = (A � µI)�1xk, k � 0,

and

xk+1 =
wk+1

kwk+1k , k � 0.

The following result is proven in Ciarlet [Ciarlet (1989)] (Theorem
6.4.1).

Proposition 17.3. Let A be an m⇥m diagonalizable (complex or real) ma-
trix with eigenvalues �

1

, . . . ,�m, and let � = �` be an arbitrary eigenvalue
of A (not necessary simple). For any µ such that

µ 6= � and |µ � �| < |µ � �j | for all j 6= `,

if x0 does not belong to the subspace spanned by the eigenvectors associated
with the eigenvalues �j with j 6= `, then

lim
k 7!1

✓
(�� µ)k

|�� µ|k

◆
xk = v,

where v is an eigenvector associated with �. Furthermore, if both � and µ
are real, we have

lim
k 7!1

xk = v if µ < �,

lim
k 7!1

(�1)kxk = v if µ > �.

Also, if we define the sequence (�(k)) by

�(k+1) = (xk+1)⇤Axk+1,

then

lim
k 7!1

�(k+1) = �.
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The condition of x0 may seem quite stringent, but in practice, a vector
x0 chosen at random usually satisfies it.

If A is a Hermitian matrix, then we can say more. In particular, the
inverse iteration algorithm can be modified to make use of the newly com-
puted �(k+1) instead of µ, and an even faster convergence is achieved. Such
a method is called the Rayleigh quotient iteration. When it converges
(which is for almost all x0), this method eventually achieves cubic con-
vergence, which is remarkable. Essentially, this means that the number of
correct digits is tripled at every iteration. For more details, see Trefethen
and Bau [Trefethen and Bau III (1997)] (Lecture 27) and Demmel [Demmel
(1997)] (Section 5.3.2).

17.8 Summary

The main concepts and results of this chapter are listed below:

• QR iteration, QR algorithm.
• Upper Hessenberg matrices.
• Householder matrix.
• Unreduced and reduced Hessenberg matrices.
• Deflation.
• Shift.
• Wilkinson shift.
• Double shift.
• Francis shift.
• Implicit shifting.
• Implicit Q-theorem.
• Arnoldi iteration.
• Breakdown of Arnoldi iteration.
• Krylov subspace.
• Rayleigh–Ritz method.
• Ritz values, Arnoldi estimates.
• Residual.
• GMRES
• Lanczos iteration.
• Power iteration.
• Inverse power iteration.
• Rayleigh ratio.
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17.9 Problems

Problem 17.1. Prove Theorem 17.2; see Problem 12.7.

Problem 17.2. Prove that if a matrix A is Hermitian (or real symmetric),
then any Hessenberg matrix H similar to A is Hermitian tridiagonal (real
symmetric tridiagonal).

Problem 17.3. For any matrix (real or complex) A, if A = QR is a QR-
decomposition of A using Householder reflections, prove that if A is upper
Hessenberg then so is Q.

Problem 17.4. Prove that if A is upper Hessenberg, then the matrices Ak

obtained by applying the QR-algorithm are also upper Hessenberg.

Problem 17.5. Prove the implicit Q theorem. This theorem says that if A
is reduced to upper Hessenberg form as A = UHU⇤ and if H is unreduced
(hi+1i 6= 0 for i = 1, . . . , n� 1), then the columns of index 2, . . . , n of U are
determined by the first column of U up to sign;

Problem 17.6. Read Section 7.5 of Golub and Van Loan [Golub and
Van Loan (1996)] and implement their version of the QR-algorithm with
shifts.

Problem 17.7. If an Arnoldi iteration has a breakdown at stage n, that
is, hn+1

= 0, then we found the first unreduced block of the Hessenberg
matrix H. Prove that the eigenvalues of Hn are eigenvalues of A.

Problem 17.8. Prove Theorem 17.4.

Problem 17.9. Implement GRMES and test it on some linear systems.

Problem 17.10. State and prove versions of Proposition 17.2 and Theorem
17.4 for the Lanczos iteration.

Problem 17.11. Prove the results about the power iteration method
stated in Section 17.7.

Problem 17.12. Prove the results about the inverse power iteration
method stated in Section 17.7.

Problem 17.13. Implement and test the power iteration method and the
inverse power iteration method.
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Problem 17.14. Read Lecture 27 in Trefethen and Bau [Trefethen and
Bau III (1997)] and implement and test the Rayleigh quotient iteration
method.
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Chapter 18

Graphs and Graph Laplacians; Basic
Facts

In this chapter and the next we present some applications of linear algebra
to graph theory. Graphs (undirected and directed) can be defined in terms
of various matrices (incidence and adjacency matrices), and various con-
nectivity properties of graphs are captured by properties of these matrices.
Another very important matrix is associated with a (undirected) graph:
the graph Laplacian. The graph Laplacian is symmetric positive definite,
and its eigenvalues capture some of the properties of the underlying graph.
This is a key fact that is exploited in graph clustering methods, the most
powerful being the method of normalized cuts due to Shi and Malik [Shi
and Malik (2000)]. This chapter and the next constitute an introduction
to algebraic and spectral graph theory. We do not discuss normalized cuts,
but we discuss graph drawings. Thorough presentations of algebraic graph
theory can be found in Godsil and Royle [Godsil and Royle (2001)] and
Chung [Chung (1997)].

We begin with a review of basic notions of graph theory. Even though
the graph Laplacian is fundamentally associated with an undirected graph,
we review the definition of both directed and undirected graphs. For both
directed and undirected graphs, we define the degree matrix D, the inci-
dence matrix B, and the adjacency matrix A. Then we define a weighted
graph. This is a pair (V,W ), where V is a finite set of nodes and W is a
m⇥m symmetric matrix with nonnegative entries and zero diagonal entries
(where m = |V |).

For every node vi 2 V , the degree d(vi) (or di) of vi is the sum of the
weights of the edges adjacent to vi:

di = d(vi) =
mX

j=1

wi j .

661
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The degree matrix is the diagonal matrix

D = diag(d
1

, . . . , dm).

The notion of degree is illustrated in Figure 18.1. Then we introduce the

18

Degree of a node:
di = ¦j Wi,j

Degree matrix:
Dii = ¦j Wi,j

Fig. 18.1 Degree of a node.

(unnormalized) graph Laplacian L of a directed graph G in an “old-fashion”
way, by showing that for any orientation of a graph G,

BB> = D � A = L

is an invariant. We also define the (unnormalized) graph Laplacian L of
a weighted graph G = (V,W ) as L = D � W . We show that the notion
of incidence matrix can be generalized to weighted graphs in a simple way.
For any graph G� obtained by orienting the underlying graph of a weighted
graph G = (V,W ), there is an incidence matrix B� such that

B�(B�)> = D � W = L.

We also prove that

x>Lx =
1

2

mX

i,j=1

wi j(xi � xj)
2 for all x 2 Rm.

Consequently, x>Lx does not depend on the diagonal entries in W , and if
wi j � 0 for all i, j 2 {1, . . . ,m}, then L is positive semidefinite. Then if W
consists of nonnegative entries, the eigenvalues 0 = �

1

 �
2

 . . .  �m of L
are real and nonnegative, and there is an orthonormal basis of eigenvectors
of L. We show that the number of connected components of the graph
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G = (V,W ) is equal to the dimension of the kernel of L, which is also equal
to the dimension of the kernel of the transpose (B�)> of any incidence
matrix B� obtained by orienting the underlying graph of G.

We also define the normalized graph Laplacians L
sym

and L
rw

, given by

L
sym

= D�1/2LD�1/2 = I � D�1/2WD�1/2

L
rw

= D�1L = I � D�1W,

and prove some simple properties relating the eigenvalues and the eigen-
vectors of L, L

sym

and L
rw

. These normalized graph Laplacians show up
when dealing with normalized cuts.

Next, we turn to graph drawings (Chapter 19). Graph drawing is a very
attractive application of so-called spectral techniques, which is a fancy way
of saying that that eigenvalues and eigenvectors of the graph Laplacian are
used. Furthermore, it turns out that graph clustering using normalized cuts
can be cast as a certain type of graph drawing.

Given an undirected graph G = (V,E), with |V | = m, we would like
to draw G in Rn for n (much) smaller than m. The idea is to assign a
point ⇢(vi) in Rn to the vertex vi 2 V , for every vi 2 V , and to draw a
line segment between the points ⇢(vi) and ⇢(vj). Thus, a graph drawing is
a function ⇢ : V ! Rn.

We define the matrix of a graph drawing ⇢ (in Rn) as a m⇥n matrix R
whose ith row consists of the row vector ⇢(vi) corresponding to the point
representing vi in Rn. Typically, we want n < m; in fact n should be much
smaller than m.

Since there are infinitely many graph drawings, it is desirable to have
some criterion to decide which graph is better than another. Inspired by
a physical model in which the edges are springs, it is natural to consider
a representation to be better if it requires the springs to be less extended.
We can formalize this by defining the energy of a drawing R by

E(R) =
X

{vi,vj}2E

k⇢(vi) � ⇢(vj)k2 ,

where ⇢(vi) is the ith row of R and k⇢(vi) � ⇢(vj)k2 is the square of the
Euclidean length of the line segment joining ⇢(vi) and ⇢(vj).

Then “good drawings” are drawings that minimize the energy function
E . Of course, the trivial representation corresponding to the zero matrix
is optimum, so we need to impose extra constraints to rule out the trivial
solution.
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We can consider the more general situation where the springs are not
necessarily identical. This can be modeled by a symmetric weight (or sti↵-
ness) matrix W = (wij), with wij � 0. In this case, our energy function
becomes

E(R) =
X

{vi,vj}2E

wij k⇢(vi) � ⇢(vj)k2 .

Following Godsil and Royle [Godsil and Royle (2001)], we prove that

E(R) = tr(R>LR),

where

L = D � W,

is the familiar unnormalized Laplacian matrix associated with W , and
where D is the degree matrix associated with W .

It can be shown that there is no loss in generality in assuming that the
columns of R are pairwise orthogonal and that they have unit length. Such
a matrix satisfies the equation R>R = I and the corresponding drawing is
called an orthogonal drawing . This condition also rules out trivial drawings.

Then we prove the main theorem about graph drawings (Theorem 19.1),
which essentially says that the matrix R of the desired graph drawing is
constituted by the n eigenvectors of L associated with the smallest nonzero
n eigenvalues of L. We give a number examples of graph drawings, many
of which are borrowed or adapted from Spielman [Spielman (2012)].

18.1 Directed Graphs, Undirected Graphs, Incidence Ma-
trices, Adjacency Matrices, Weighted Graphs

Definition 18.1. A directed graph is a pair G = (V,E), where V =
{v

1

, . . . , vm} is a set of nodes or vertices, and E ✓ V ⇥ V is a set of
ordered pairs of distinct nodes (that is, pairs (u, v) 2 V ⇥ V with u 6= v),
called edges. Given any edge e = (u, v), we let s(e) = u be the source of e
and t(e) = v be the target of e.

Remark: Since an edge is a pair (u, v) with u 6= v, self-loops are not
allowed. Also, there is at most one edge from a node u to a node v. Such
graphs are sometimes called simple graphs.

An example of a directed graph is shown in Figure 18.2.
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1

v4

v5

v1 v2

v3

e1

e7

e2 e3 e4

e5

e6

Fig. 18.2 Graph G1.

Definition 18.2. For every node v 2 V , the degree d(v) of v is the number
of edges leaving or entering v:

d(v) = |{u 2 V | (v, u) 2 E or (u, v) 2 E}|.

We abbreviate d(vi) as di. The degree matrix , D(G), is the diagonal matrix

D(G) = diag(d
1

, . . . , dm).

For example, for graph G
1

, we have

D(G
1

) =

0

BBBB@

2 0 0 0 0
0 4 0 0 0
0 0 3 0 0
0 0 0 3 0
0 0 0 0 2

1

CCCCA
.

Unless confusion arises, we write D instead of D(G).

Definition 18.3. Given a directed graph G = (V,E), for any two nodes
u, v 2 V , a path from u to v is a sequence of nodes (v

0

, v
1

, . . . , vk) such that
v
0

= u, vk = v, and (vi, vi+1

) is an edge in E for all i with 0  i  k � 1.
The integer k is the length of the path. A path is closed if u = v. The
graph G is strongly connected if for any two distinct nodes u, v 2 V , there
is a path from u to v and there is a path from v to u.

Remark: The terminology walk is often used instead of path, the word
path being reserved to the case where the nodes vi are all distinct, except
that v

0

= vk when the path is closed.
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The binary relation on V ⇥V defined so that u and v are related i↵ there
is a path from u to v and there is a path from v to u is an equivalence relation
whose equivalence classes are called the strongly connected components of
G.

Definition 18.4. Given a directed graph G = (V,E), with V =
{v

1

, . . . , vm}, if E = {e
1

, . . . , en}, then the incidence matrix B(G) of G
is the m ⇥ n matrix whose entries bi j are given by

bi j =

8
>><

>>:

+1 if s(ej) = vi

�1 if t(ej) = vi

0 otherwise.

Here is the incidence matrix of the graph G
1

:

B =

0

BBBB@

1 1 0 0 0 0 0
�1 0 �1 �1 1 0 0
0 �1 1 0 0 0 1
0 0 0 1 0 �1 �1
0 0 0 0 �1 1 0

1

CCCCA
.

Observe that every column of an incidence matrix contains exactly two
nonzero entries, +1 and �1. Again, unless confusion arises, we write B
instead of B(G).

When a directed graph has m nodes v
1

, . . . , vm and n edges e
1

, . . . , en,
a vector x 2 Rm can be viewed as a function x : V ! R assigning the value
xi to the node vi. Under this interpretation, Rm is viewed as RV . Similarly,
a vector y 2 Rn can be viewed as a function in RE . This point of view is
often useful. For example, the incidence matrix B can be interpreted as a
linear map from RE to RV , the boundary map, and B> can be interpreted
as a linear map from RV to RE , the coboundary map.

Remark: Some authors adopt the opposite convention of sign in defining
the incidence matrix, which means that their incidence matrix is �B.

Undirected graphs are obtained from directed graphs by forgetting the
orientation of the edges.

Definition 18.5. A graph (or undirected graph) is a pair G = (V,E), where
V = {v

1

, . . . , vm} is a set of nodes or vertices, and E is a set of two-element
subsets of V (that is, subsets {u, v}, with u, v 2 V and u 6= v), called edges.
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Remark: Since an edge is a set {u, v}, we have u 6= v, so self-loops are not
allowed. Also, for every set of nodes {u, v}, there is at most one edge be-
tween u and v. As in the case of directed graphs, such graphs are sometimes
called simple graphs.

An example of a graph is shown in Figure 18.3.

1

v4

v5

v1 v2

v3

a

g

b c d

e

f

Fig. 18.3 The undirected graph G2.

Definition 18.6. For every node v 2 V , the degree d(v) of v is the number
of edges incident to v:

d(v) = |{u 2 V | {u, v} 2 E}|.

The degree matrix D(G) (or simply, D) is defined as in Definition 18.2.

Definition 18.7. Given a (undirected) graph G = (V,E), for any two
nodes u, v 2 V , a path from u to v is a sequence of nodes (v

0

, v
1

, . . . , vk)
such that v

0

= u, vk = v, and {vi, vi+1

} is an edge in E for all i with
0  i  k � 1. The integer k is the length of the path. A path is closed
if u = v. The graph G is connected if for any two distinct nodes u, v 2 V ,
there is a path from u to v.

Remark: The terminology walk or chain is often used instead of path, the
word path being reserved to the case where the nodes vi are all distinct,
except that v

0

= vk when the path is closed.
The binary relation on V ⇥ V defined so that u and v are related i↵

there is a path from u to v is an equivalence relation whose equivalence
classes are called the connected components of G.
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The notion of incidence matrix for an undirected graph is not as useful
as in the case of directed graphs

Definition 18.8. Given a graph G = (V,E), with V = {v
1

, . . . , vm}, if
E = {e

1

, . . . , en}, then the incidence matrix B(G) of G is the m⇥n matrix
whose entries bi j are given by

bi j =

(
+1 if ej = {vi, vk} for some k

0 otherwise.

Unlike the case of directed graphs, the entries in the incidence matrix of
a graph (undirected) are nonnegative. We usually write B instead of B(G).

Definition 18.9. If G = (V,E) is a directed or an undirected graph, given
a node u 2 V , any node v 2 V such that there is an edge (u, v) in the
directed case or {u, v} in the undirected case is called adjacent to u, and
we often use the notation

u ⇠ v.

Observe that the binary relation ⇠ is symmetric whenG is an undirected
graph, but in general it is not symmetric when G is a directed graph.

The notion of adjacency matrix is basically the same for directed or
undirected graphs.

Definition 18.10. Given a directed or undirected graph G = (V,E), with
V = {v

1

, . . . , vm}, the adjacency matrix A(G) of G is the symmetric m⇥m
matrix (ai j) such that

(1) If G is directed, then

ai j =

(
1 if there is some edge (vi, vj) 2 E or some edge (vj , vi) 2 E

0 otherwise.

(2) Else if G is undirected, then

ai j =

(
1 if there is some edge {vi, vj} 2 E

0 otherwise.

As usual, unless confusion arises, we write A instead of A(G). Here is
the adjacency matrix of both graphs G

1

and G
2

:
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A =

0

BBBB@

0 1 1 0 0
1 0 1 1 1
1 1 0 1 0
0 1 1 0 1
0 1 0 1 0

1

CCCCA
.

If G = (V,E) is an undirected graph, the adjacency matrix A of G can
be viewed as a linear map from RV to RV , such that for all x 2 Rm, we
have

(Ax)i =
X

j⇠i

xj ;

that is, the value of Ax at vi is the sum of the values of x at the nodes vj
adjacent to vi. The adjacency matrix can be viewed as a di↵usion operator .
This observation yields a geometric interpretation of what it means for a
vector x 2 Rm to be an eigenvector of A associated with some eigenvalue
�; we must have

�xi =
X

j⇠i

xj , i = 1, . . . ,m,

which means that the the sum of the values of x assigned to the nodes vj
adjacent to vi is equal to � times the value of x at vi.

Definition 18.11. Given any undirected graph G = (V,E), an orientation
of G is a function � : E ! V ⇥ V assigning a source and a target to every
edge in E, which means that for every edge {u, v} 2 E, either �({u, v}) =
(u, v) or �({u, v}) = (v, u). The oriented graph G� obtained from G by
applying the orientation � is the directed graph G� = (V,E�), with E� =
�(E).

The following result shows how the number of connected components of
an undirected graph is related to the rank of the incidence matrix of any
oriented graph obtained from G.

Proposition 18.1. Let G = (V,E) be any undirected graph with m vertices,
n edges, and c connected components. For any orientation � of G, if B is
the incidence matrix of the oriented graph G�, then c = dim(Ker (B>)),
and B has rank m � c. Furthermore, the nullspace of B> has a basis
consisting of indicator vectors of the connected components of G; that is,
vectors (z

1

, . . . , zm) such that zj = 1 i↵ vj is in the ith component Ki of
G, and zj = 0 otherwise.
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Proof. (After Godsil and Royle [Godsil and Royle (2001)], Section 8.3).
The fact that rank(B) = m � c will be proved last.

Let us prove that the kernel of B> has dimension c. A vector z 2 Rm

belongs to the kernel of B> i↵ B>z = 0 i↵ z>B = 0. In view of the
definition of B, for every edge {vi, vj} of G, the column of B corresponding
to the oriented edge �({vi, vj}) has zero entries except for a +1 and a �1
in position i and position j or vice-versa, so we have

zi = zj .

An easy induction on the length of the path shows that if there is a path
from vi to vj in G (unoriented), then zi = zj . Therefore, z has a constant
value on any connected component of G. It follows that every vector z 2
Ker (B>) can be written uniquely as a linear combination

z = �
1

z1 + · · · + �cz
c,

where the vector zi corresponds to the ith connected component Ki of G
and is defined such that

zij =

(
1 i↵ vj 2 Ki

0 otherwise.

This shows that dim(Ker (B>)) = c, and that Ker (B>) has a basis con-
sisting of indicator vectors.

Since B> is a n ⇥ m matrix, we have

m = dim(Ker (B>)) + rank(B>),

and since we just proved that dim(Ker (B>)) = c, we obtain rank(B>) =
m� c. Since B and B> have the same rank, rank(B) = m� c, as claimed.

Definition 18.12. Following common practice, we denote by 1 the (col-
umn) vector (of dimension m) whose components are all equal to 1.

Since every column of B contains a single +1 and a single �1, the rows
of B> sum to zero, which can be expressed as

B>1 = 0.

According to Proposition 18.1, the graph G is connected i↵ B has rank
m � 1 i↵ the nullspace of B> is the one-dimensional space spanned by 1.

In many applications, the notion of graph needs to be generalized to
capture the intuitive idea that two nodes u and v are linked with a degree
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of certainty (or strength). Thus, we assign a nonnegative weight wi j to
an edge {vi, vj}; the smaller wi j is, the weaker is the link (or similarity)
between vi and vj , and the greater wi j is, the stronger is the link (or
similarity) between vi and vj .

Definition 18.13. A weighted graph is a pair G = (V,W ), where V =
{v

1

, . . . , vm} is a set of nodes or vertices, and W is a symmetric matrix
called the weight matrix , such that wi j � 0 for all i, j 2 {1, . . . ,m}, and
wi i = 0 for i = 1, . . . ,m. We say that a set {vi, vj} is an edge i↵ wi j > 0.
The corresponding (undirected) graph (V,E) with E = {{vi, vj} | wi j > 0},
is called the underlying graph of G.

Remark: Since wi i = 0, these graphs have no self-loops. We can think of
the matrix W as a generalized adjacency matrix. The case where wi j 2
{0, 1} is equivalent to the notion of a graph as in Definition 18.5.

We can think of the weight wi j of an edge {vi, vj} as a degree of sim-
ilarity (or a�nity) in an image, or a cost in a network. An example of a
weighted graph is shown in Figure 18.4. The thickness of an edge corre-
sponds to the magnitude of its weight.

15

Encode Pairwise Relationships as a Weighted Graph

Fig. 18.4 A weighted graph.

Definition 18.14. Given a weighted graph G = (V,W ), for every node
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vi 2 V , the degree d(vi) of vi is the sum of the weights of the edges adjacent
to vi:

d(vi) =
mX

j=1

wi j .

Note that in the above sum, only nodes vj such that there is an edge {vi, vj}
have a nonzero contribution. Such nodes are said to be adjacent to vi, and
we write vi ⇠ vj . The degree matrix D(G) (or simply, D) is defined as
before, namely by D(G) = diag(d(v

1

), . . . , d(vm)).

The weight matrix W can be viewed as a linear map from RV to itself.
For all x 2 Rm, we have

(Wx)i =
X

j⇠i

wijxj ;

that is, the value of Wx at vi is the weighted sum of the values of x at the
nodes vj adjacent to vi.

Observe that W1 is the (column) vector (d(v
1

), . . . , d(vm)) consisting
of the degrees of the nodes of the graph.

We now define the most important concept of this chapter: the Lapla-
cian matrix of a graph. Actually, as we will see, it comes in several flavors.

18.2 Laplacian Matrices of Graphs

Let us begin with directed graphs, although as we will see, graph Laplacians
are fundamentally associated with undirected graph. The key proposition
below shows how given an undirected graph G, for any orientation � of
G, B�(B�)> relates to the adjacency matrix A (where B� is the incidence
matrix of the directed graph G�). We reproduce the proof in Gallier [Gallier
(2011a)] (see also Godsil and Royle [Godsil and Royle (2001)]).

Proposition 18.2. Given any undirected graph G, for any orientation � of
G, if B�is the incidence matrix of the directed graph G�, A is the adjacency
matrix of G�, and D is the degree matrix such that Di i = d(vi), then

B�(B�)> = D � A.

Consequently, L = B�(B�)> is independent of the orientation � of G, and
D � A is symmetric and positive semidefinite; that is, the eigenvalues of
D � A are real and nonnegative.
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Proof. The entry B�(B�)>i j is the inner product of the ith row b�i , and
the jth row b�j of B�. If i = j, then as

b�i k =

8
>><

>>:

+1 if s(ek) = vi

�1 if t(ek) = vi

0 otherwise

we see that b�i · b�i = d(vi). If i 6= j, then b�i · b�j 6= 0 i↵ there is some
edge ek with s(ek) = vi and t(ek) = vj or vice-versa (which are mutually
exclusive cases, since G� arises by orienting an undirected graph), in which
case, b�i · b�j = �1. Therefore,

B�(B�)> = D � A,

as claimed.
For every x 2 Rm, we have

x>Lx = x>B�(B�)>x = ((B�)>x)>(B�)>x =
��(B�)>x

��2
2

� 0,

since the Euclidean norm k k
2

is positive (definite). Therefore, L =
B�(B�)> is positive semidefinite. It is well-known that a real symmet-
ric matrix is positive semidefinite i↵ its eigenvalues are nonnegative.

Definition 18.15. The matrix L = B�(B�)> = D � A is called the (un-
normalized) graph Laplacian of the graph G�. The (unnormalized) graph
Laplacian of an undirected graph G = (V,E) is defined by

L = D � A.

For example, the graph Laplacian of graph G
1

is

L =

0

BBBB@

2 �1 �1 0 0
�1 4 �1 �1 �1
�1 �1 3 �1 0
0 �1 �1 3 �1
0 �1 0 �1 2

1

CCCCA
.

Observe that each row of L sums to zero (because (B�)>1 = 0). Con-
sequently, the vector 1 is in the nullspace of L.

Remarks:

(1) With the unoriented version of the incidence matrix (see Definition
18.8), it can be shown that

BB> = D +A.



March 25, 2021 15:30 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 674

674 Graphs and Graph Laplacians; Basic Facts

(2) As pointed out by Evangelos Chatzipantazis, Proposition 18.2 in which
the incidence matrix B� is replaced by the incidence matrix B of any
arbitrary directed graph G does not hold. The problem is that such
graphs may have both edges (vi, vj) and (vj , vi) between two distinct
nodes vi and vj , and as a consequence, the inner product bi · bj = �2
instead of �1. A simple counterexample is given by the directed graph
with three vertices and four edges whose incidence matrix is given by

B =

0

@
1 �1 0 �1

�1 1 �1 0
0 0 1 1

1

A .

We have

BB> =

0

@
3 �2 �1

�2 3 �1
�1 �1 2

1

A 6=

0

@
3 0 0
0 3 0
0 0 2

1

A�

0

@
0 1 1
1 0 1
1 1 0

1

A = D � A.

The natural generalization of the notion of graph Laplacian to weighted
graphs is this:

Definition 18.16. Given any weighted graph G = (V,W ) with V =
{v

1

, . . . , vm}, the (unnormalized) graph Laplacian L(G) of G is defined by

L(G) = D(G) � W,

where D(G) = diag(d
1

, . . . , dm) is the degree matrix of G (a diagonal ma-
trix), with

di =
mX

j=1

wi j .

As usual, unless confusion arises, we write D instead of D(G) and L instead
of L(G).

The graph Laplacian can be interpreted as a linear map from RV to
itself. For all x 2 RV , we have

(Lx)i =
X

j⇠i

wij(xi � xj).

It is clear from the equation L = D �W that each row of L sums to 0,
so the vector 1 is the nullspace of L, but it is less obvious that L is positive
semidefinite. One way to prove it is to generalize slightly the notion of
incidence matrix.

Definition 18.17. Given a weighted graph G = (V,W ), with V =
{v

1

, . . . , vm}, if {e
1

, . . ., en} are the edges of the underlying graph of G
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(recall that {vi, vj} is an edge of this graph i↵ wij > 0), for any oriented
graph G� obtained by giving an orientation to the underlying graph of G,
the incidence matrix B� of G� is the m ⇥ n matrix whose entries bi j are
given by

bi j =

8
>><

>>:

+
p
wij if s(ej) = vi

�p
wij if t(ej) = vi

0 otherwise.

For example, given the weight matrix

W =

0

BB@

0 3 6 3
3 0 0 3
6 0 0 3
3 3 3 0

1

CCA ,

the incidence matrix B corresponding to the orientation of the underlying
graph of W where an edge (i, j) is oriented positively i↵ i < j is

B =

0

BB@

1.7321 2.4495 1.7321 0 0
�1.7321 0 0 1.7321 0

0 �2.4495 0 0 1.7321
0 0 �1.7321 �1.7321 �1.7321

1

CCA .

The reader should verify that BB> = D � W . This is true in general, see
Proposition 18.3.

It is easy to see that Proposition 18.1 applies to the underlying graph
of G. For any oriented graph G� obtained from the underlying graph of
G, the rank of the incidence matrix B� is equal to m � c, where c is the
number of connected components of the underlying graph of G, and we
have (B�)>1 = 0. We also have the following version of Proposition 18.2
whose proof is immediately adapted.

Proposition 18.3. Given any weighted graph G = (V,W ) with V =
{v

1

, . . . , vm}, if B� is the incidence matrix of any oriented graph G� ob-
tained from the underlying graph of G and D is the degree matrix of G,
then

B�(B�)> = D � W = L.

Consequently, B�(B�)> is independent of the orientation of the underlying
graph of G and L = D�W is symmetric and positive semidefinite; that is,
the eigenvalues of L = D � W are real and nonnegative.
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Another way to prove that L is positive semidefinite is to evaluate the
quadratic form x>Lx.

Proposition 18.4. For any m ⇥ m symmetric matrix W = (wij), if we
let L = D � W where D is the degree matrix associated with W (that is,
di =

Pm
j=1

wij), then we have

x>Lx =
1

2

mX

i,j=1

wi j(xi � xj)
2 for all x 2 Rm.

Consequently, x>Lx does not depend on the diagonal entries in W , and if
wi j � 0 for all i, j 2 {1, . . . ,m}, then L is positive semidefinite.

Proof. We have

x>Lx = x>Dx � x>Wx

=
mX

i=1

dix
2

i �
mX

i,j=1

wi jxixj

=
1

2

0

@
mX

i=1

dix
2

i � 2
mX

i,j=1

wi jxixj +
mX

i=1

dix
2

i

1

A

=
1

2

mX

i,j=1

wi j(xi � xj)
2.

Obviously, the quantity on the right-hand side does not depend on the
diagonal entries in W , and if wi j � 0 for all i, j, then this quantity is
nonnegative.

Proposition 18.4 immediately implies the following facts: For any
weighted graph G = (V,W ),

(1) The eigenvalues 0 = �
1

 �
2

 . . .  �m of L are real and nonnegative,
and there is an orthonormal basis of eigenvectors of L.

(2) The smallest eigenvalue �
1

of L is equal to 0, and 1 is a corresponding
eigenvector.

It turns out that the dimension of the nullspace of L (the eigenspace of
0) is equal to the number of connected components of the underlying graph
of G.

Proposition 18.5. Let G = (V,W ) be a weighted graph. The number c
of connected components K

1

, . . . ,Kc of the underlying graph of G is equal
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to the dimension of the nullspace of L, which is equal to the multiplicity
of the eigenvalue 0. Furthermore, the nullspace of L has a basis consist-
ing of indicator vectors of the connected components of G, that is, vectors
(f

1

, . . . , fm) such that fj = 1 i↵ vj 2 Ki and fj = 0 otherwise.

Proof. Since L = BB> for the incidence matrix B associated with any ori-
ented graph obtained from G, and since L and B> have the same nullspace,
by Proposition 18.1, the dimension of the nullspace of L is equal to the
number c of connected components of G and the indicator vectors of the
connected components of G form a basis of Ker (L).

Proposition 18.5 implies that if the underlying graph of G is connected,
then the second eigenvalue �

2

of L is strictly positive.
Remarkably, the eigenvalue �

2

contains a lot of information about the
graph G (assuming that G = (V,E) is an undirected graph). This was first
discovered by Fiedler in 1973, and for this reason, �

2

is often referred to
as the Fiedler number . For more on the properties of the Fiedler number,
see Godsil and Royle [Godsil and Royle (2001)] (Chapter 13) and Chung
[Chung (1997)]. More generally, the spectrum (0,�

2

, . . . ,�m) of L contains
a lot of information about the combinatorial structure of the graph G.
Leverage of this information is the object of spectral graph theory .

18.3 Normalized Laplacian Matrices of Graphs

It turns out that normalized variants of the graph Laplacian are needed,
especially in applications to graph clustering. These variants make sense
only if G has no isolated vertices.

Definition 18.18. Given a weighted graph G = (V,W ), a vertex u 2 V is
isolated if it is not incident to any other vertex. This means that every row
of W contains some strictly positive entry.

If G has no isolated vertices, then the degree matrix D contains positive
entries, so it is invertible and D�1/2 makes sense; namely

D�1/2 = diag(d�1/2
1

, . . . , d�1/2
m ),

and similarly for any real exponent ↵.

Definition 18.19. Given any weighted directed graph G = (V,W ) with no
isolated vertex and with V = {v

1

, . . . , vm}, the (normalized) graph Lapla-
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cians L
sym

and L
rw

of G are defined by

L
sym

= D�1/2LD�1/2 = I � D�1/2WD�1/2

L
rw

= D�1L = I � D�1W.

Observe that the Laplacian L
sym

= D�1/2LD�1/2 is a symmetric matrix
(because L and D�1/2 are symmetric) and that

L
rw

= D�1/2L
sym

D1/2.

The reason for the notation L
rw

is that this matrix is closely related to a
random walk on the graph G.

Example 18.1. As an example, the matrices L
sym

and L
rw

associated with
the graph G

1

are

L
sym

=

0

BBBB@

1.0000 �0.3536 �0.4082 0 0
�0.3536 1.0000 �0.2887 �0.2887 �0.3536
�0.4082 �0.2887 1.0000 �0.3333 0

0 �0.2887 �0.3333 1.0000 �0.4082
0 �0.3536 0 �0.4082 1.0000

1

CCCCA

and

L
rw

=

0

BBBB@

1.0000 �0.5000 �0.5000 0 0
�0.2500 1.0000 �0.2500 �0.2500 �0.2500
�0.3333 �0.3333 1.0000 �0.3333 0

0 �0.3333 �0.3333 1.0000 �0.3333
0 �0.5000 0 �0.5000 1.0000

1

CCCCA
.

Since the unnormalized Laplacian L can be written as L = BB>, where
B is the incidence matrix of any oriented graph obtained from the under-
lying graph of G = (V,W ), if we let

B
sym

= D�1/2B,

we get

L
sym

= B
sym

B>
sym

.

In particular, for any singular decomposition B
sym

= U⌃V > of B
sym

(with
U an m ⇥ m orthogonal matrix, ⌃ a “diagonal” m ⇥ n matrix of singular
values, and V an n ⇥ n orthogonal matrix), the eigenvalues of L

sym

are
the squares of the top m singular values of B

sym

, and the vectors in U
are orthonormal eigenvectors of L

sym

with respect to these eigenvalues (the
squares of the top m diagonal entries of ⌃). Computing the SVD of B

sym
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generally yields more accurate results than diagonalizing L
sym

, especially
when L

sym

has eigenvalues with high multiplicity.
There are simple relationships between the eigenvalues and the eigen-

vectors of L
sym

, and L
rw

. There is also a simple relationship with the
generalized eigenvalue problem Lx = �Dx.

Proposition 18.6. Let G = (V,W ) be a weighted graph without isolated
vertices. The graph Laplacians, L,L

sym

, and L
rw

satisfy the following prop-
erties:

(1) The matrix L
sym

is symmetric and positive semidefinite. In fact,

x>L
sym

x =
1

2

mX

i,j=1

wi j

 
xip
di

� xjp
dj

!
2

for all x 2 Rm.

(2) The normalized graph Laplacians L
sym

and L
rw

have the same spectrum
(0 = ⌫

1

 ⌫
2

 . . .  ⌫m), and a vector u 6= 0 is an eigenvector of L
rw

for � i↵ D1/2u is an eigenvector of L
sym

for �.
(3) The graph Laplacians L and L

sym

are symmetric and positive semidef-
inite.

(4) A vector u 6= 0 is a solution of the generalized eigenvalue problem
Lu = �Du i↵ D1/2u is an eigenvector of L

sym

for the eigenvalue � i↵
u is an eigenvector of L

rw

for the eigenvalue �.
(5) The graph Laplacians, L and L

rw

have the same nullspace. For any
vector u, we have u 2 Ker (L) i↵ D1/2u 2 Ker (L

sym

).
(6) The vector 1 is in the nullspace of L

rw

, and D1/21 is in the nullspace
of L

sym

.
(7) For every eigenvalue ⌫i of the normalized graph Laplacian L

sym

, we
have 0  ⌫i  2. Furthermore, ⌫m = 2 i↵ the underlying graph of G
contains a nontrivial connected bipartite component.

(8) If m � 2 and if the underlying graph of G is not a complete graph,1

then ⌫
2

 1. Furthermore the underlying graph of G is a complete
graph i↵ ⌫

2

= m
m�1

.
(9) If m � 2 and if the underlying graph of G is connected, then ⌫

2

> 0.
(10) If m � 2 and if the underlying graph of G has no isolated vertices, then

⌫m � m
m�1

.

Proof. (1) We have L
sym

= D�1/2LD�1/2, and D�1/2 is a symmet-
ric invertible matrix (since it is an invertible diagonal matrix). It is a
1Recall that an undirected graph is complete if for any two distinct nodes u, v, there is

an edge {u, v}.
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well-known fact of linear algebra that if B is an invertible matrix, then
a matrix S is symmetric, positive semidefinite i↵ BSB> is symmetric,
positive semidefinite. Since L is symmetric, positive semidefinite, so is
L
sym

= D�1/2LD�1/2. The formula

x>L
sym

x =
1

2

mX

i,j=1

wi j

 
xip
di

� xjp
dj

!
2

for all x 2 Rm

follows immediately from Proposition 18.4 by replacing x by D�1/2x, and
also shows that L

sym

is positive semidefinite.
(2) Since

L
rw

= D�1/2L
sym

D1/2,

the matrices L
sym

and L
rw

are similar, which implies that they have the
same spectrum. In fact, since D1/2 is invertible,

L
rw

u = D�1Lu = �u

i↵

D�1/2Lu = �D1/2u

i↵

D�1/2LD�1/2D1/2u = L
sym

D1/2u = �D1/2u,

which shows that a vector u 6= 0 is an eigenvector of L
rw

for � i↵ D1/2u is
an eigenvector of L

sym

for �.
(3) We already know that L and L

sym

are positive semidefinite.
(4) Since D�1/2 is invertible, we have

Lu = �Du

i↵

D�1/2Lu = �D1/2u

i↵

D�1/2LD�1/2D1/2u = L
sym

D1/2u = �D1/2u,

which shows that a vector u 6= 0 is a solution of the generalized eigenvalue
problem Lu = �Du i↵ D1/2u is an eigenvector of L

sym

for the eigenvalue
�. The second part of the statement follows from (2).

(5) SinceD�1 is invertible, we have Lu = 0 i↵D�1Lu = L
rw

u = 0. Sim-
ilarly, since D�1/2 is invertible, we have Lu = 0 i↵ D�1/2LD�1/2D1/2u = 0
i↵ D1/2u 2 Ker (L

sym

).
(6) Since L1 = 0, we get L

rw

1 = D�1L1 = 0. That D1/21 is in the
nullspace of L

sym

follows from (2). Properties (7)–(10) are proven in Chung
[Chung (1997)] (Chapter 1).
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The eigenvalues the matrices L
sym

and L
rw

from Example 18.1 are

0, 7257, 1.1667, 1.5, 1.6076.

On the other hand, the eigenvalues of the unnormalized Laplacian for G
1

are

0, 1.5858, 3, 4.4142, 5.

Remark: Observe that although the matrices L
sym

and L
rw

have the same
spectrum, the matrix L

rw

is generally not symmetric, whereas L
sym

is sym-
metric.

A version of Proposition 18.5 also holds for the graph Laplacians L
sym

and L
rw

. This follows easily from the fact that Proposition 18.1 applies to
the underlying graph of a weighted graph. The proof is left as an exercise.

Proposition 18.7. Let G = (V,W ) be a weighted graph. The number c of
connected components K

1

, . . . ,Kc of the underlying graph of G is equal to
the dimension of the nullspace of both L

sym

and L
rw

, which is equal to the
multiplicity of the eigenvalue 0. Furthermore, the nullspace of L

rw

has a
basis consisting of indicator vectors of the connected components of G, that
is, vectors (f

1

, . . . , fm) such that fj = 1 i↵ vj 2 Ki and fj = 0 otherwise.
For L

sym

, a basis of the nullpace is obtained by multiplying the above basis
of the nullspace of L

rw

by D1/2.

A particularly interesting application of graph Laplacians is graph clus-
tering.

18.4 Graph Clustering Using Normalized Cuts

In order to explain this problem we need some definitions.

Definition 18.20. Given any subset of nodes A ✓ V , we define the volume
vol(A) of A as the sum of the weights of all edges adjacent to nodes in A:

vol(A) =
X

vi2A

mX

j=1

wi j .

Given any two subsets A,B ✓ V (not necessarily distinct), we define
links(A,B) by

links(A,B) =
X

vi2A,vj2B

wi j .
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The quantity links(A,A) = links(A,A) (where A = V � A denotes the
complement of A in V ) measures how many links escape from A (and A).
We define the cut of A as

cut(A) = links(A,A).

The notion of volume is illustrated in Figure 18.5 and the notions of cut
is illustrated in Figure 18.6.

Fig. 18.5 Volume of a set of nodes.

Fig. 18.6 A cut involving the set of nodes in the center and the nodes on the perimeter.

The above concepts play a crucial role in the theory of normalized cuts.
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This beautiful and deeply original method first published in Shi and Ma-
lik [Shi and Malik (2000)], has now come to be a “textbook chapter” of
computer vision and machine learning. It was invented by Jianbo Shi and
Jitendra Malik and was the main topic of Shi’s dissertation. This method
was extended to K � 3 clusters by Stella Yu in her dissertation [Yu (2003)]
and is also the subject of Yu and Shi [Yu and Shi (2003)].

Given a set of data, the goal of clustering is to partition the data into
di↵erent groups according to their similarities. When the data is given in
terms of a similarity graph G, where the weight wi j between two nodes vi
and vj is a measure of similarity of vi and vj , the problem can be stated as
follows: Find a partition (A

1

, . . . , AK) of the set of nodes V into di↵erent
groups such that the edges between di↵erent groups have very low weight
(which indicates that the points in di↵erent clusters are dissimilar), and the
edges within a group have high weight (which indicates that points within
the same cluster are similar).

The above graph clustering problem can be formalized as an optimiza-
tion problem, using the notion of cut mentioned earlier. If we want to par-
tition V into K clusters, we can do so by finding a partition (A

1

, . . . , AK)
that minimizes the quantity

cut(A
1

, . . . , AK) =
1

2

KX

i=1

cut(Ai) =
1

2

KX

i=1

links(Ai, Ai).

For K = 2, the mincut problem is a classical problem that can be solved
e�ciently, but in practice, it does not yield satisfactory partitions. Indeed,
in many cases, the mincut solution separates one vertex from the rest of
the graph. What we need is to design our cost function in such a way that
it keeps the subsets Ai “reasonably large” (reasonably balanced).

An example of a weighted graph and a partition of its nodes into two
clusters is shown in Figure 18.7.

A way to get around this problem is to normalize the cuts by dividing
by some measure of each subset Ai. A solution using the volume vol(Ai)
of Ai (for K = 2) was proposed and investigated in a seminal paper of Shi
and Malik [Shi and Malik (2000)]. Subsequently, Yu (in her dissertation
[Yu (2003)]) and Yu and Shi [Yu and Shi (2003)] extended the method to
K > 2 clusters. The idea is to minimize the cost function

Ncut(A
1

, . . . , AK) =
KX

i=1

links(Ai, Ai)

vol(Ai)
=

KX

i=1

cut(Ai)

vol(Ai)
.

The next step is to express our optimization problem in matrix form, and
this can be done in terms of Rayleigh ratios involving the graph Laplacian
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15

Encode Pairwise Relationships as a Weighted Graph

16

Cut the graph into two pieces 

Fig. 18.7 A weighted graph and its partition into two clusters.

in the numerators. This theory is very beautiful, but we do not have the
space to present it here. The interested reader is referred to Gallier [Gallier
(2019)].

18.5 Summary

The main concepts and results of this chapter are listed below:
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• Directed graphs, undirected graphs.
• Incidence matrices, adjacency matrices.
• Weighted graphs.
• Degree matrix.
• Graph Laplacian (unnormalized).
• Normalized graph Laplacian.
• Spectral graph theory.
• Graph clustering using normalized cuts.

18.6 Problems

Problem 18.1. Find the unnormalized Laplacian of the graph representing
a triangle and of the graph representing a square.

Problem 18.2. Consider the complete graph Km on m � 2 nodes.
(1) Prove that the normalized Laplacian L

sym

of K is

L
sym

=

0

BBBBB@

1 �1/(m � 1) . . . �1/(m � 1) �1/(m � 1)
�1/(m � 1) 1 . . . �1/(m � 1) �1/(m � 1)

...
. . .

. . .
. . .

...
�1/(m � 1) �1/(m � 1) . . . 1 �1/(m � 1)
�1/(m � 1) �1/(m � 1) . . . �1/(m � 1) 1

1

CCCCCA
.

(2) Prove that the characteristic polynomial of L
sym

is
�����������

�� 1 1/(m � 1) . . . 1/(m � 1) 1/(m � 1)
1/(m � 1) �� 1 . . . 1/(m � 1) 1/(m � 1)

...
. . .

. . .
. . .

...
1/(m � 1) 1/(m � 1) . . . �� 1 1/(m � 1)
1/(m � 1) 1/(m � 1) . . . 1/(m � 1) �� 1

�����������

= �

✓
�� m

m � 1

◆m�1

.

Hint . First subtract the second column from the first, factor ��m/(m�1),
and then add the first row to the second. Repeat this process. You will
end up with the determinant

����
�� 1/(m � 1) 1
1/(m � 1) �� 1

���� .

Problem 18.3. Consider the complete bipartite graph Km,n on m+n � 3
nodes, with edges between each of the first m � 1 nodes to each of the last
n � 1 nodes. Prove that the eigenvalues of the normalized Laplacian L

sym

of Km,n are 0, 1 with multiplicity m+ n � 2, and 2.



March 25, 2021 15:30 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 686

686 Graphs and Graph Laplacians; Basic Facts

Problem 18.4. Let G be a graph with a set of nodes V with m � 2
elements, without isolated nodes, and let L

sym

= D�1/2LD�1/2 be its
normalized Laplacian (with L its unnormalized Laplacian).

(1) For any y 2 RV , consider the Rayleigh ratio

R =
y>L

sym

y

y>y
.

Prove that if x = D�1/2y, then

R =
x>Lx

(D1/2x)>D1/2x
=

X

u⇠v

(x(u) � x(v))2

X

v

dvx(v)
2

.

(2) Prove that the second eigenvalue ⌫
2

of L
sym

is given by

⌫
2

= min
1>Dx=0,x 6=0

X

u⇠v

(x(u) � x(v))2

X

v

dvx(v)
2

.

(3) Prove that the largest eigenvalue ⌫m of L
sym

is given by

⌫m = max
x 6=0

X

u⇠v

(x(u) � x(v))2

X

v

dvx(v)
2

.

Problem 18.5. Let G be a graph with a set of nodes V with m � 2
elements, without isolated nodes. If 0 = ⌫

1

 ⌫
1

 . . .  ⌫m are the
eigenvalues of L

sym

, prove the following properties:

(1) We have ⌫
1

+ ⌫
2

+ · · · + ⌫m = m.
(2) We have ⌫

2

 m/(m � 1), with equality holding i↵ G = Km, the
complete graph on m nodes.

(3) We have ⌫m � m/(m � 1).
(4) If G is not a complete graph, then ⌫

2

 1
Hint . If a and b are nonadjacent nodes, consider the function x given
by

x(v) =

8
>><

>>:

db if v = a

�da if v = b

0 if v 6= a, b,

and use Problem 18.4(2).
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(5) Prove that ⌫m  2. Prove that ⌫m = 2 i↵ the underlying graph of G
contains a nontrivial connected bipartite component.
Hint . Use Problem 18.4(3).

(6) Prove that if G is connected, then ⌫
2

> 0.

Problem 18.6. Let G be a graph with a set of nodes V with m � 2
elements, without isolated nodes. Let vol(G) =

P
v2V dv and let

x =

P
v dvx(v)

vol(G)
.

Prove that

⌫
2

= min
x 6=0

X

u⇠v

(x(u) � x(v))2

X

v

dv(x(v) � x)2
.

Problem 18.7. Let G be a connected bipartite graph. Prove that if ⌫ is
an eigenvalue of L

sym

, then 2 � ⌫ is also an eigenvalue of L
sym

.

Problem 18.8. Prove Proposition 18.7.
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Chapter 19

Spectral Graph Drawing

19.1 Graph Drawing and Energy Minimization

Let G = (V,E) be some undirected graph. It is often desirable to draw
a graph, usually in the plane but possibly in 3D, and it turns out that
the graph Laplacian can be used to design surprisingly good methods. Say
|V | = m. The idea is to assign a point ⇢(vi) in Rn to the vertex vi 2 V ,
for every vi 2 V , and to draw a line segment between the points ⇢(vi) and
⇢(vj) i↵ there is an edge {vi, vj}.

Definition 19.1. Let G = (V,E) be some undirected graph with m
vertices. A graph drawing is a function ⇢ : V ! Rn, for some n � 1. The
matrix of a graph drawing ⇢ (in Rn) is a m ⇥ n matrix R whose ith row
consists of the row vector ⇢(vi) corresponding to the point representing vi
in Rn.

For a graph drawing to be useful we want n  m; in fact n should be
much smaller than m, typically n = 2 or n = 3.

Definition 19.2. A graph drawing is balanced i↵ the sum of the entries of
every column of the matrix of the graph drawing is zero, that is,

1>R = 0.

If a graph drawing is not balanced, it can be made balanced by a suitable
translation. We may also assume that the columns of R are linearly inde-
pendent, since any basis of the column space also determines the drawing.
Thus, from now on, we may assume that n  m.

Remark: A graph drawing ⇢ : V ! Rn is not required to be injective,
which may result in degenerate drawings where distinct vertices are drawn

689
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as the same point. For this reason, we prefer not to use the terminology
graph embedding , which is often used in the literature. This is because in
di↵erential geometry, an embedding always refers to an injective map. The
term graph immersion would be more appropriate.

As explained in Godsil and Royle [Godsil and Royle (2001)], we can
imagine building a physical model of G by connecting adjacent vertices (in
Rn) by identical springs. Then it is natural to consider a representation to
be better if it requires the springs to be less extended. We can formalize
this by defining the energy of a drawing R by

E(R) =
X

{vi,vj}2E

k⇢(vi) � ⇢(vj)k2 ,

where ⇢(vi) is the ith row of R and k⇢(vi) � ⇢(vj)k2 is the square of the
Euclidean length of the line segment joining ⇢(vi) and ⇢(vj).

Then, “good drawings” are drawings that minimize the energy function
E . Of course, the trivial representation corresponding to the zero matrix
is optimum, so we need to impose extra constraints to rule out the trivial
solution.

We can consider the more general situation where the springs are not
necessarily identical. This can be modeled by a symmetric weight (or sti↵-
ness) matrix W = (wij), with wij � 0. Then our energy function becomes

E(R) =
X

{vi,vj}2E

wij k⇢(vi) � ⇢(vj)k2 .

It turns out that this function can be expressed in terms of the Laplacian
L = D�W . The following proposition is shown in Godsil and Royle [Godsil
and Royle (2001)]. We give a slightly more direct proof.

Proposition 19.1. Let G = (V,W ) be a weighted graph, with |V | = m
and W an m ⇥ m symmetric matrix, and let R be the matrix of a graph
drawing ⇢ of G in Rn (a m⇥n matrix). If L = D�W is the unnormalized
Laplacian matrix associated with W , then

E(R) = tr(R>LR).

Proof. Since ⇢(vi) is the ith row of R (and ⇢(vj) is the jth row of R), if
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we denote the kth column of R by Rk, using Proposition 18.4, we have

E(R) =
X

{vi,vj}2E

wij k⇢(vi) � ⇢(vj)k2

=
nX

k=1

X

{vi,vj}2E

wij(Rik � Rjk)
2

=
nX

k=1

1

2

mX

i,j=1

wij(Rik � Rjk)
2

=
nX

k=1

(Rk)>LRk = tr(R>LR),

as claimed.

Since the matrix R>LR is symmetric, it has real eigenvalues. Actually,
since L is positive semidefinite, so is R>LR. Then the trace of R>LR is
equal to the sum of its positive eigenvalues, and this is the energy E(R) of
the graph drawing.

If R is the matrix of a graph drawing in Rn, then for any n⇥n invertible
matrix M , the map that assigns ⇢(vi)M to vi is another graph drawing of
G, and these two drawings convey the same amount of information. From
this point of view, a graph drawing is determined by the column space of R.
Therefore, it is reasonable to assume that the columns of R are pairwise
orthogonal and that they have unit length. Such a matrix satisfies the
equation R>R = I.

Definition 19.3. If the matrix R of a graph drawing satisfies the equation
R>R = I, then the corresponding drawing is called an orthogonal graph
drawing .

This above condition also rules out trivial drawings. The following result
tells us how to find minimum energy orthogonal balanced graph drawings,
provided the graph is connected. Recall that

L1 = 0,

as we already observed.

Theorem 19.1. Let G = (V,W ) be a weighted graph with |V | = m. If
L = D � W is the (unnormalized) Laplacian of G, and if the eigenvalues
of L are 0 = �

1

< �
2

 �
3

 . . .  �m, then the minimal energy of any
balanced orthogonal graph drawing of G in Rn is equal to �

2

+ · · · + �n+1
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(in particular, this implies that n < m). The m ⇥ n matrix R consisting
of any unit eigenvectors u

2

, . . . , un+1

associated with �
2

 . . .  �n+1

yields a balanced orthogonal graph drawing of minimal energy; it satisfies
the condition R>R = I.

Proof. We present the proof given in Godsil and Royle [Godsil and Royle
(2001)] (Section 13.4, Theorem 13.4.1). The key point is that the sum of
the n smallest eigenvalues of L is a lower bound for tr(R>LR). This can be
shown using a Rayleigh ratio argument; see Proposition 16.13 (the Poincaré
separation theorem). Then any n eigenvectors (u

1

, . . . , un) associated with
�
1

, . . . ,�n achieve this bound. Because the first eigenvalue of L is �
1

= 0
and because we are assuming that �

2

> 0, we have u
1

= 1/
p
m. Since the

uj are pairwise orthogonal for i = 2, . . . , n and since ui is orthogonal to
u
1

= 1/
p
m, the entries in ui add up to 0. Consequently, for any ` with

2  `  n, by deleting u
1

and using (u
2

, . . . , u`), we obtain a balanced
orthogonal graph drawing in R`�1 with the same energy as the orthogonal
graph drawing in R` using (u

1

, u
2

, . . . , u`). Conversely, from any balanced
orthogonal drawing in R`�1 using (u

2

, . . . , u`), we obtain an orthogonal
graph drawing in R` using (u

1

, u
2

, . . . , u`) with the same energy. Therefore,
the minimum energy of a balanced orthogonal graph drawing in Rn is equal
to the minimum energy of an orthogonal graph drawing in Rn+1, and this
minimum is �

2

+ · · · + �n+1

.

Since 1 spans the nullspace of L, using u
1

(which belongs to KerL) as
one of the vectors in R would have the e↵ect that all points representing
vertices of G would have the same first coordinate. This would mean that
the drawing lives in a hyperplane in Rn, which is undesirable, especially
when n = 2, where all vertices would be collinear. This is why we omit the
first eigenvector u

1

.
Observe that for any orthogonal n ⇥ n matrix Q, since

tr(R>LR) = tr(Q>R>LRQ),

the matrix RQ also yields a minimum orthogonal graph drawing. This
amounts to applying the rigid motion Q> to the rows of R.

In summary, if �
2

> 0, an automatic method for drawing a graph in R2

is this:

(1) Compute the two smallest nonzero eigenvalues �
2

 �
3

of the graph
Laplacian L (it is possible that �

3

= �
2

if �
2

is a multiple eigenvalue);
(2) Compute two unit eigenvectors u

2

, u
3

associated with �
2

and �
3

, and
let R = [u

2

u
3

] be the m ⇥ 2 matrix having u
2

and u
3

as columns.
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(3) Place vertex vi at the point whose coordinates is the ith row of R, that
is, (Ri1, Ri2).

This method generally gives pleasing results, but beware that there is
no guarantee that distinct nodes are assigned distinct images since R can
have identical rows. This does not seem to happen often in practice.

19.2 Examples of Graph Drawings

We now give a number of examples using Matlab. Some of these are bor-
rowed or adapted from Spielman [Spielman (2012)].

Example 1. Consider the graph with four nodes whose adjacency matrix
is

A =

0

BB@

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

1

CCA .

We use the following program to compute u
2

and u
3

:

A = [0 1 1 0; 1 0 0 1; 1 0 0 1; 0 1 1 0];

D = diag(sum(A));

L = D - A;

[v, e] = eigs(L);

gplot(A, v(:,[3 2]))

hold on;

gplot(A, v(:,[3 2]),’o’)

The graph of Example 1 is shown in Figure 19.1. The function eigs(L)

computes the six largest eigenvalues of L in decreasing order, and corre-
sponding eigenvectors. It turns out that �

2

= �
3

= 2 is a double eigenvalue.
Example 2. Consider the graph G

2

shown in Figure 18.3 given by the
adjacency matrix

A =

0

BBBB@

0 1 1 0 0
1 0 1 1 1
1 1 0 1 0
0 1 1 0 1
0 1 0 1 0

1

CCCCA
.

We use the following program to compute u
2

and u
3

:
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Fig. 19.1 Drawing of the graph from Example 1.

A = [0 1 1 0 0; 1 0 1 1 1; 1 1 0 1 0; 0 1 1 0 1; 0 1 0 1 0];

D = diag(sum(A));

L = D - A;

[v, e] = eig(L);

gplot(A, v(:, [2 3]))

hold on

gplot(A, v(:, [2 3]),’o’)

The function eig(L) (with no s at the end) computes the eigenvalues of
L in increasing order. The result of drawing the graph is shown in Figure
19.2. Note that node v

2

is assigned to the point (0, 0), so the di↵erence
between this drawing and the drawing in Figure 18.3 is that the drawing
of Figure 19.2 is not convex.

Example 3. Consider the ring graph defined by the adjacency matrix A
given in the Matlab program shown below:

A = diag(ones(1, 11),1);

A = A + A’;

A(1, 12) = 1; A(12, 1) = 1;

D = diag(sum(A));

L = D - A;

[v, e] = eig(L);

gplot(A, v(:, [2 3]))

hold on
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Fig. 19.2 Drawing of the graph from Example 2.

gplot(A, v(:, [2 3]),’o’)
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0.5

Fig. 19.3 Drawing of the graph from Example 3.

Observe that we get a very nice ring; see Figure 19.3. Again �
2

= 0.2679
is a double eigenvalue (and so are the next pairs of eigenvalues, except the
last, �

12

= 4).
Example 4. In this example adapted from Spielman, we generate 20

randomly chosen points in the unit square, compute their Delaunay trian-
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gulation, then the adjacency matrix of the corresponding graph, and finally
draw the graph using the second and third eigenvalues of the Laplacian.

A = zeros(20,20);

xy = rand(20, 2);

trigs = delaunay(xy(:,1), xy(:,2));

elemtrig = ones(3) - eye(3);

for i = 1:length(trigs),

A(trigs(i,:),trigs(i,:)) = elemtrig;

end

A = double(A >0);

gplot(A,xy)

D = diag(sum(A));

L = D - A;

[v, e] = eigs(L, 3, ’sm’);

figure(2)

gplot(A, v(:, [2 1]))

hold on

gplot(A, v(:, [2 1]),’o’)

The Delaunay triangulation of the set of 20 points and the drawing of
the corresponding graph are shown in Figure 19.4. The graph drawing on
the right looks nicer than the graph on the left but is is no longer planar.

Example 5. Our last example, also borrowed from Spielman [Spielman
(2012)], corresponds to the skeleton of the “Buckyball,” a geodesic dome
invented by the architect Richard Buckminster Fuller (1895–1983). The
Montréal Biosphère is an example of a geodesic dome designed by Buck-
minster Fuller.

A = full(bucky);

D = diag(sum(A));

L = D - A;

[v, e] = eig(L);

gplot(A, v(:, [2 3]))

hold on;

gplot(A,v(:, [2 3]), ’o’)

Figure 19.5 shows a graph drawing of the Buckyball. This picture seems
a bit squashed for two reasons. First, it is really a 3-dimensional graph;
second, �

2

= 0.2434 is a triple eigenvalue. (Actually, the Laplacian of L
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Fig. 19.4 Delaunay triangulation (left) and drawing of the graph from Example 4
(right).

has many multiple eigenvalues.) What we should really do is to plot this
graph in R3 using three orthonormal eigenvectors associated with �

2

.
A 3D picture of the graph of the Buckyball is produced by the following

Matlab program, and its image is shown in Figure 19.6. It looks better!

[x, y] = gplot(A, v(:, [2 3]));

[x, z] = gplot(A, v(:, [2 4]));

plot3(x,y,z)
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Fig. 19.5 Drawing of the graph of the Buckyball.
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Fig. 19.6 Drawing of the graph of the Buckyball in R3.

19.3 Summary

The main concepts and results of this chapter are listed below:

• Graph drawing.
• Matrix of a graph drawing.



March 25, 2021 15:30 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 699

19.3. Summary 699

• Balanced graph drawing.
• Energy E(R) of a graph drawing.
• Orthogonal graph drawing.
• Delaunay triangulation.
• Buckyball.
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Chapter 20

Singular Value Decomposition and
Polar Form

20.1 Properties of f⇤ � f

In this section we assume that we are dealing with real Euclidean spaces.
Let f : E ! E be any linear map. In general, it may not be possible to
diagonalize f . We show that every linear map can be diagonalized if we
are willing to use two orthonormal bases. This is the celebrated singular
value decomposition (SVD). A close cousin of the SVD is the polar form of
a linear map, which shows how a linear map can be decomposed into its
purely rotational component (perhaps with a flip) and its purely stretching
part.

The key observation is that f⇤ � f is self-adjoint since

h(f⇤ � f)(u), vi = hf(u), f(v)i = hu, (f⇤ � f)(v)i.
Similarly, f � f⇤ is self-adjoint.

The fact that f⇤�f and f �f⇤ are self-adjoint is very important, because
by Theorem 16.1, it implies that f⇤�f and f�f⇤ can be diagonalized and that
they have real eigenvalues. In fact, these eigenvalues are all nonnegative as
shown in the following proposition.

Proposition 20.1. The eigenvalues of f⇤ � f and f � f⇤ are nonnegative.

Proof. If u is an eigenvector of f⇤ � f for the eigenvalue �, then

h(f⇤ � f)(u), ui = hf(u), f(u)i
and

h(f⇤ � f)(u), ui = �hu, ui,
and thus

�hu, ui = hf(u), f(u)i,
which implies that � � 0, since h�,�i is positive definite. A similar proof
applies to f � f⇤.

701
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Thus, the eigenvalues of f⇤ � f are of the form �2

1

, . . . ,�2

r or 0, where
�i > 0, and similarly for f � f⇤.

The above considerations also apply to any linear map f : E ! F be-
tween two Euclidean spaces (E, h�,�i

1

) and (F, h�,�i
2

). Recall that the
adjoint f⇤ : F ! E of f is the unique linear map f⇤ such that

hf(u), vi
2

= hu, f⇤(v)i
1

, for all u 2 E and all v 2 F .

Then f⇤ � f and f � f⇤ are self-adjoint (the proof is the same as in the
previous case), and the eigenvalues of f⇤ � f and f � f⇤ are nonnegative.

Proof. If � is an eigenvalue of f⇤ � f and u ( 6= 0) is a corresponding
eigenvector, we have

h(f⇤ � f)(u), ui
1

= hf(u), f(u)i
2

,

and also

h(f⇤ � f)(u), ui
1

= �hu, ui
1

,

so

�hu, ui
1

,= hf(u), f(u)i
2

,

which implies that � � 0. A similar proof applies to f � f⇤.

The situation is even better, since we will show shortly that f⇤ � f and
f � f⇤ have the same nonzero eigenvalues.

Remark: Given any two linear maps f : E ! F and g : F ! E, where
dim(E) = n and dim(F ) = m, it can be shown that

�m det(� In � g � f) = �n det(� Im � f � g),

and thus g � f and f � g always have the same nonzero eigenvalues; see
Problem 14.14.

Definition 20.1. Given any linear map f : E ! F , the square roots �i > 0
of the positive eigenvalues of f⇤�f (and f �f⇤) are called the singular values
of f .

Definition 20.2. A self-adjoint linear map f : E ! E whose eigenvalues
are nonnegative is called positive semidefinite (or positive), and if f is
also invertible, f is said to be positive definite. In the latter case, every
eigenvalue of f is strictly positive.
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If f : E ! F is any linear map, we just showed that f⇤ �f and f �f⇤ are
positive semidefinite self-adjoint linear maps. This fact has the remarkable
consequence that every linear map has two important decompositions:

(1) The polar form.
(2) The singular value decomposition (SVD).

The wonderful thing about the singular value decomposition is that
there exist two orthonormal bases (u

1

, . . . , un) and (v
1

, . . . , vm) such that,
with respect to these bases, f is a diagonal matrix consisting of the singular
values of f or 0. Thus, in some sense, f can always be diagonalized with
respect to two orthonormal bases. The SVD is also a useful tool for solv-
ing overdetermined linear systems in the least squares sense and for data
analysis, as we show later on.

First we show some useful relationships between the kernels and the
images of f , f⇤, f⇤ � f , and f � f⇤. Recall that if f : E ! F is a linear
map, the image Im f of f is the subspace f(E) of F , and the rank of f is
the dimension dim(Im f) of its image. Also recall that (Theorem 5.1)

dim (Ker f) + dim (Im f) = dim (E),

and that (Propositions 11.9 and 13.12) for every subspace W of E,

dim (W ) + dim (W?) = dim (E).

Proposition 20.2. Given any two Euclidean spaces E and F , where E has
dimension n and F has dimension m, for any linear map f : E ! F , we
have

Ker f = Ker (f⇤ � f),

Ker f⇤ = Ker (f � f⇤),

Ker f = (Im f⇤)?,

Ker f⇤ = (Im f)?,

dim(Im f) = dim(Im f⇤),

and f , f⇤, f⇤ � f , and f � f⇤ have the same rank.

Proof. To simplify the notation, we will denote the inner products on E
and F by the same symbol h�,�i (to avoid subscripts). If f(u) = 0, then
(f⇤ � f)(u) = f⇤(f(u)) = f⇤(0) = 0, and so Ker f ✓ Ker (f⇤ � f). By
definition of f⇤, we have

hf(u), f(u)i = h(f⇤ � f)(u), ui
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for all u 2 E. If (f⇤ � f)(u) = 0, since h�,�i is positive definite, we must
have f(u) = 0, and so Ker (f⇤ � f) ✓ Ker f . Therefore,

Ker f = Ker (f⇤ � f).

The proof that Ker f⇤ = Ker (f � f⇤) is similar.
By definition of f⇤, we have

hf(u), vi = hu, f⇤(v)i for all u 2 E and all v 2 F . (⇤)
This immediately implies that

Ker f = (Im f⇤)? and Ker f⇤ = (Im f)?.

Let us explain why Ker f = (Im f⇤)?, the proof of the other equation being
similar.

Because the inner product is positive definite, for every u 2 E, we have

• u 2 Ker f
• i↵ f(u) = 0
• i↵ hf(u), vi = 0 for all v,
• by (⇤) i↵ hu, f⇤(v)i = 0 for all v,
• i↵ u 2 (Im f⇤)?.

Since

dim(Im f) = n � dim(Ker f)

and

dim(Im f⇤) = n � dim((Im f⇤)?),

from

Ker f = (Im f⇤)?

we also have

dim(Ker f) = dim((Im f⇤)?),

from which we obtain

dim(Im f) = dim(Im f⇤).

Since

dim(Ker (f⇤ � f)) + dim(Im (f⇤ � f)) = dim(E),

Ker (f⇤ � f) = Ker f and Ker f = (Im f⇤)?, we get

dim((Im f⇤)?) + dim(Im (f⇤ � f)) = dim(E).

Since

dim((Im f⇤)?) + dim(Im f⇤) = dim(E),

we deduce that

dim(Im f⇤) = dim(Im (f⇤ � f)).

A similar proof shows that

dim(Im f) = dim(Im (f � f⇤)).

Consequently, f , f⇤, f⇤ � f , and f � f⇤ have the same rank.
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20.2 Singular Value Decomposition for
Square Matrices

We will now prove that every square matrix has an SVD. Stronger results
can be obtained if we first consider the polar form and then derive the SVD
from it (there are uniqueness properties of the polar decomposition). For
our purposes, uniqueness results are not as important so we content our-
selves with existence results, whose proofs are simpler. Readers interested
in a more general treatment are referred to Gallier [Gallier (2011b)].

The early history of the singular value decomposition is described in a
fascinating paper by Stewart [Stewart (1993)]. The SVD is due to Beltrami
and Camille Jordan independently (1873, 1874). Gauss is the grandfather
of all this, for his work on least squares (1809, 1823) (but Legendre also
published a paper on least squares!). Then come Sylvester, Schmidt, and
Hermann Weyl. Sylvester’s work was apparently “opaque.” He gave a com-
putational method to find an SVD. Schmidt’s work really has to do with
integral equations and symmetric and asymmetric kernels (1907). Weyl’s
work has to do with perturbation theory (1912). Autonne came up with
the polar decomposition (1902, 1915). Eckart and Young extended SVD to
rectangular matrices (1936, 1939).

Theorem 20.1. (Singular value decomposition) For every real n⇥n matrix
A there are two orthogonal matrices U and V and a diagonal matrix D such
that A = V DU>, where D is of the form

D =

0

BBB@

�
1

. . .
�
2

. . .
...

...
. . .

...
. . . �n

1

CCCA
,

where �
1

, . . . ,�r are the singular values of f , i.e., the (positive) square roots
of the nonzero eigenvalues of A>A and AA>, and �r+1

= · · · = �n = 0.
The columns of U are eigenvectors of A>A, and the columns of V are
eigenvectors of AA>.

Proof. Since A>A is a symmetric matrix, in fact, a positive semidefinite
matrix, there exists an orthogonal matrix U such that

A>A = UD2U>,

with D = diag(�
1

, . . . ,�r, 0, . . . , 0), where �2

1

, . . . ,�2

r are the nonzero eigen-
values of A>A, and where r is the rank of A; that is, �

1

, . . . ,�r are the
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singular values of A. It follows that

U>A>AU = (AU)>AU = D2,

and if we let fj be the jth column of AU for j = 1, . . . , n, then we have

hfi, fji = �2

i �ij , 1  i, j  r

and

fj = 0, r + 1  j  n.

If we define (v
1

, . . . , vr) by

vj = ��1

j fj , 1  j  r,

then we have

hvi, vji = �ij , 1  i, j  r,

so complete (v
1

, . . . , vr) into an orthonormal basis (v
1

, . . . , vr, vr+1

, . . . , vn)
(for example, using Gram–Schmidt). Now since fj = �jvj for j = 1 . . . , r,
we have

hvi, fji = �jhvi, vji = �j�i,j , 1  i  n, 1  j  r

and since fj = 0 for j = r + 1, . . . , n,

hvi, fji = 0 1  i  n, r + 1  j  n.

If V is the matrix whose columns are v
1

, . . . , vn, then V is orthogonal and
the above equations prove that

V >AU = D,

which yields A = V DU>, as required.
The equation A = V DU> implies that

A>A = UD2U>, AA> = V D2V >,

which shows that A>A and AA> have the same eigenvalues, that the
columns of U are eigenvectors of A>A, and that the columns of V are
eigenvectors of AA>.

Example 20.1. Here is a simple example of how to use the proof of The-

orem 20.1 to obtain an SVD decomposition. Let A =

✓
1 1
0 0

◆
. Then

A> =

✓
1 0
1 0

◆
, A>A =

✓
1 1
1 1

◆
, and AA> =

✓
2 0
0 0

◆
. A simple calculation

shows that the eigenvalues of A>A are 2 and 0, and for the eigenvalue 2,
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a unit eigenvector is

✓
1/

p
2

1/
p
2

◆
, while a unit eigenvector for the eigenvalue

0 is

✓
1/

p
2

�1/
p
2

◆
. Observe that the singular values are �

1

=
p
2 and �

2

= 0.

Furthermore, U =

✓
1/

p
2 1/

p
2

1/
p
2 �1/

p
2

◆
= U>. To determine V , the proof of

Theorem 20.1 tells us to first calculate

AU =

✓p
2 0
0 0

◆
,

and then set

v
1

= (1/
p
2)

✓p
2
0

◆
=

✓
1
0

◆
.

Once v
1

is determined, since �
2

= 0, we have the freedom to choose v
2

such that (v
1

, v
2

) forms an orthonormal basis for R2. Naturally, we chose

v
2

=

✓
0
1

◆
and set V =

✓
1 0
0 1

◆
. The columns of V are unit eigenvectors

of AA>, but finding V by computing unit eigenvectors of AA> does not
guarantee that these vectors are consistent with U so that A = V ⌃U>.
Thus one has to use AU instead. We leave it to the reader to check that

A = V

✓p
2 0
0 0

◆
U>.

Theorem 20.1 suggests the following definition.

Definition 20.3. A triple (U,D, V ) such that A = V DU>, where U and V
are orthogonal and D is a diagonal matrix whose entries are nonnegative (it
is positive semidefinite) is called a singular value decomposition (SVD) of A.
If D = diag(�

1

, . . . ,�n), it is customary to assume that �
1

� �
2

� · · · � �n.

The Matlab command for computing an SVD A = V DU> of a matrix
A is [V, D, U] = svd(A).

The proof of Theorem 20.1 shows that there are two orthonormal bases
(u

1

, . . . , un) and (v
1

, . . . , vn), where (u
1

, . . . , un) are eigenvectors of A>A
and (v

1

, . . . , vn) are eigenvectors of AA>. Furthermore, (u
1

, . . . , ur) is
an orthonormal basis of ImA>, (ur+1

, . . . , un) is an orthonormal basis of
KerA, (v

1

, . . . , vr) is an orthonormal basis of ImA, and (vr+1

, . . . , vn) is
an orthonormal basis of KerA>.

Using a remark made in Chapter 3, if we denote the columns of U by
u
1

, . . . , un and the columns of V by v
1

, . . . , vn, then we can write

A = V DU> = �
1

v
1

u>
1

+ · · · + �rvru
>
r ,
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with �
1

� �
2

� · · · � �r. As a consequence, if r is a lot smaller than
n (we write r ⌧ n), we see that A can be reconstructed from U and V
using a much smaller number of elements. This idea will be used to provide
“low-rank” approximations of a matrix. The idea is to keep only the k
top singular values for some suitable k ⌧ r for which �k+1

, . . .�r are very
small.

Remarks:

(1) In Strang [Strang (1988)] the matrices U, V,D are denoted by U = Q
2

,
V = Q

1

, and D = ⌃, and an SVD is written as A = Q
1

⌃Q>
2

. This has
the advantage that Q

1

comes before Q
2

in A = Q
1

⌃Q>
2

. This has the
disadvantage that A maps the columns of Q

2

(eigenvectors of A>A) to
multiples of the columns of Q

1

(eigenvectors of AA>).
(2) Algorithms for actually computing the SVD of a matrix are presented in

Golub and Van Loan [Golub and Van Loan (1996)], Demmel [Demmel
(1997)], and Trefethen and Bau [Trefethen and Bau III (1997)], where
the SVD and its applications are also discussed quite extensively.

(3) If A is a symmetric matrix, then in general, there is no SVD V ⌃U>

of A with V = U . However, if A is positive semidefinite, then the
eigenvalues of A are nonnegative, and so the nonzero eigenvalues of A
are equal to the singular values of A and SVDs of A are of the form

A = V ⌃V >.

(4) The SVD also applies to complex matrices. In this case, for every
complex n ⇥ n matrix A, there are two unitary matrices U and V and
a diagonal matrix D such that

A = V DU⇤,

whereD is a diagonal matrix consisting of real entries �
1

, . . . ,�n, where
�
1

� · · · � �r are the singular values of A, i.e., the positive square roots
of the nonzero eigenvalues of A⇤A and AA⇤, and �r+1

= . . . = �n = 0.

20.3 Polar Form for Square Matrices

A notion closely related to the SVD is the polar form of a matrix.

Definition 20.4. A pair (R,S) such that A = RS with R orthogonal and
S symmetric positive semidefinite is called a polar decomposition of A.
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Theorem 20.1 implies that for every real n ⇥ n matrix A, there is some
orthogonal matrix R and some positive semidefinite symmetric matrix S
such that

A = RS.

This is easy to show and we will prove it below. Furthermore, R,S are
unique if A is invertible, but this is harder to prove; see Problem 20.9.

For example, the matrix

A =
1

2

0

BB@

1 1 1 1
1 1 �1 �1
1 �1 1 �1
1 �1 �1 1

1

CCA

is both orthogonal and symmetric, and A = RS with R = A and S = I,
which implies that some of the eigenvalues of A are negative.

Remark: In the complex case, the polar decomposition states that for
every complex n ⇥ n matrix A, there is some unitary matrix U and some
positive semidefinite Hermitian matrix H such that

A = UH.

It is easy to go from the polar form to the SVD, and conversely.
Given an SVD decomposition A = V DU>, let R = V U> and S =

UDU>. It is clear that R is orthogonal and that S is positive semidefinite
symmetric, and

RS = V U>UDU> = V DU> = A.

Example 20.2. Recall from Example 20.1 that A = V DU> where V = I
2

and

A =

✓
1 1
0 0

◆
, U =

 
1p
2

1p
2

1p
2

� 1p
2

!
, D =

✓p
2 0
0 0

◆
.

Set R = V U> = U and

S = UDU> =

 
1p
2

1p
2

1p
2

1p
2

!
.

Since S = 1p
2

A>A, S has eigenvalues
p
2 and 0. We leave it to the reader

to check that A = RS.
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Going the other way, given a polar decomposition A = R
1

S, where R
1

is
orthogonal and S is positive semidefinite symmetric, there is an orthogonal
matrix R

2

and a positive semidefinite diagonal matrix D such that S =
R

2

DR>
2

, and thus

A = R
1

R
2

DR>
2

= V DU>,

where V = R
1

R
2

and U = R
2

are orthogonal.

Example 20.3. Let A =

✓
1 1
0 0

◆
and A = R

1

S, where R
1

=
✓
1/

p
2 1/

p
2

1/
p
2 �1/

p
2

◆
and S =

✓
1/

p
2 1/

p
2

1/
p
2 1/

p
2

◆
. This is the polar decomposi-

tion of Example 20.2. Observe that

S =

 
1p
2

1p
2

1p
2

� 1p
2

!✓p
2 0
0 0

◆ 
1p
2

1p
2

1p
2

� 1p
2

!
= R

2

DR>
2

.

Set U = R
2

and V = R
1

R
2

=

✓
1 0
0 1

◆
to obtain the SVD decomposition of

Example 20.1.

The eigenvalues and the singular values of a matrix are typically not
related in any obvious way. For example, the n ⇥ n matrix

A =

0

BBBBBBBBBB@

1 2 0 0 . . . 0 0
0 1 2 0 . . . 0 0
0 0 1 2 . . . 0 0
...
...
. . .

. . .
. . .

...
...

0 0 . . . 0 1 2 0
0 0 . . . 0 0 1 2
0 0 . . . 0 0 0 1

1

CCCCCCCCCCA

has the eigenvalue 1 with multiplicity n, but its singular values, �
1

� · · · �
�n, which are the positive square roots of the eigenvalues of the matrix
B = A>A with

B =

0

BBBBBBBBBB@

1 2 0 0 . . . 0 0
2 5 2 0 . . . 0 0
0 2 5 2 . . . 0 0
...
...
. . .

. . .
. . .

...
...

0 0 . . . 2 5 2 0
0 0 . . . 0 2 5 2
0 0 . . . 0 0 2 5

1

CCCCCCCCCCA
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have a wide spread, since
�
1

�n
= cond

2

(A) � 2n�1.

If A is a complex n ⇥ n matrix, the eigenvalues �
1

, . . . ,�n and the
singular values
�
1

� �
2

� · · · � �n of A are not unrelated, since

�2

1

· · ·�2

n = det(A⇤A) = | det(A)|2

and

|�
1

| · · · |�n| = | det(A)|,

so we have

|�
1

| · · · |�n| = �
1

· · ·�n.

More generally, Hermann Weyl proved the following remarkable theo-
rem:

Theorem 20.2. (Weyl’s inequalities, 1949) For any complex n⇥n matrix,
A, if �

1

, . . . ,�n 2 C are the eigenvalues of A and �
1

, . . . ,�n 2 R
+

are the
singular values of A, listed so that |�

1

| � · · · � |�n| and �
1

� · · · � �n � 0,
then

|�
1

| · · · |�n| = �
1

· · ·�n and

|�
1

| · · · |�k|  �
1

· · ·�k, for k = 1, . . . , n � 1.

A proof of Theorem 20.2 can be found in Horn and Johnson [Horn and
Johnson (1994)], Chapter 3, Section 3.3, where more inequalities relating
the eigenvalues and the singular values of a matrix are given.

Theorem 20.1 can be easily extended to rectangular m ⇥ n matrices,
as we show in the next section. For various versions of the SVD for rect-
angular matrices, see Strang [Strang (1988)] Golub and Van Loan [Golub
and Van Loan (1996)], Demmel [Demmel (1997)], and Trefethen and Bau
[Trefethen and Bau III (1997)].

20.4 Singular Value Decomposition for
Rectangular Matrices

Here is the generalization of Theorem 20.1 to rectangular matrices.

Theorem 20.3. (Singular value decomposition) For every real m⇥n matrix
A, there are two orthogonal matrices U (n ⇥ n) and V (m ⇥ m) and a
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diagonal m ⇥ n matrix D such that A = V DU>, where D is of the form

D =

0

BBBBBBBBBBBBB@

�
1

. . .
�
2

. . .
...

...
. . .

...
. . . �n

0
... . . . 0

...
...

. . .
...

0
... . . . 0

1

CCCCCCCCCCCCCA

or D =

0

BBB@

�
1

. . . 0 . . . 0
�
2

. . . 0 . . . 0
...

...
. . .

... 0
... 0

. . . �m 0 . . . 0

1

CCCA
,

where �
1

, . . . ,�r are the singular values of f , i.e. the (positive) square roots
of the nonzero eigenvalues of A>A and AA>, and �r+1

= . . . = �p = 0,
where p = min(m,n). The columns of U are eigenvectors of A>A, and the
columns of V are eigenvectors of AA>.

Proof. As in the proof of Theorem 20.1, since A>A is symmetric positive
semidefinite, there exists an n ⇥ n orthogonal matrix U such that

A>A = U⌃2U>,

with ⌃ = diag(�
1

, . . . ,�r, 0, . . . , 0), where �2

1

, . . . ,�2

r are the nonzero eigen-
values of A>A, and where r is the rank of A. Observe that r  min{m,n},
and AU is an m ⇥ n matrix. It follows that

U>A>AU = (AU)>AU = ⌃2,

and if we let fj 2 Rm be the jth column of AU for j = 1, . . . , n, then we
have

hfi, fji = �2

i �ij , 1  i, j  r

and

fj = 0, r + 1  j  n.

If we define (v
1

, . . . , vr) by

vj = ��1

j fj , 1  j  r,

then we have

hvi, vji = �ij , 1  i, j  r,

so complete (v
1

, . . . , vr) into an orthonormal basis (v
1

, . . . , vr, vr+1

, . . . , vm)
(for example, using Gram–Schmidt).
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Now since fj = �jvj for j = 1 . . . , r, we have

hvi, fji = �jhvi, vji = �j�i,j , 1  i  m, 1  j  r

and since fj = 0 for j = r + 1, . . . , n, we have

hvi, fji = 0 1  i  m, r + 1  j  n.

If V is the matrix whose columns are v
1

, . . . , vm, then V is an m ⇥ m
orthogonal matrix and if m � n, we let

D =

✓
⌃

0m�n

◆
=

0

BBBBBBBBBBBBB@

�
1

. . .
�
2

. . .
...

...
. . .

...
. . . �n

0
... . . . 0

...
...

. . .
...

0
... . . . 0

1

CCCCCCCCCCCCCA

,

else if n � m, then we let

D =

0

BBB@

�
1

. . . 0 . . . 0
�
2

. . . 0 . . . 0
...

...
. . .

... 0
... 0

. . . �m 0 . . . 0

1

CCCA
.

In either case, the above equations prove that

V >AU = D,

which yields A = V DU>, as required.
The equation A = V DU> implies that

A>A = UD>DU> = Udiag(�2

1

, . . . ,�2

r , 0, . . . , 0| {z }
n�r

)U>

and

AA> = V DD>V > = V diag(�2

1

, . . . ,�2

r , 0, . . . , 0| {z }
m�r

)V >,

which shows that A>A and AA> have the same nonzero eigenvalues, that
the columns of U are eigenvectors of A>A, and that the columns of V are
eigenvectors of AA>.
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A triple (U,D, V ) such that A = V DU> is called a singular value
decomposition (SVD) of A. If D = diag(�

1

, . . . ,�p) (with p = min(m,n)),
it is customary to assume that �

1

� �
2

� · · · � �p.

Example 20.4. Let A =

0

@
1 1
0 0
0 0

1

A. Then A> =

✓
1 0 0
1 0 0

◆
A>A =

✓
1 1
1 1

◆
,

and AA> =

0

@
2 0 0
0 0 0
0 0 0

1

A. The reader should verify that A>A = U⌃2U> where

⌃2 =

✓
2 0
0 0

◆
and U = U> =

✓
1/

p
2 1/

p
2

1/
p
2 �1/

p
2

◆
. Since AU =

0

@

p
2 0
0 0
0 0

1

A , set

v
1

= 1p
2

0

@

p
2
0
0

1

A =

0

@
1
0
0

1

A , and complete an orthonormal basis for R3 by

assigning v
2

=

0

@
0
1
0

1

A, and v
3

=

0

@
0
0
1

1

A. Thus V = I
3

, and the reader should

verify that A = V DU>, where D =

0

@

p
2 0
0 0
0 0

1

A.

Even though the matrix D is an m ⇥ n rectangular matrix, since its
only nonzero entries are on the descending diagonal, we still say that D is
a diagonal matrix.

The Matlab command for computing an SVD A = V DU> of a matrix
A is also [V, D, U] = svd(A).

If we view A as the representation of a linear map f : E ! F , where
dim(E) = n and dim(F ) = m, the proof of Theorem 20.3 shows that
there are two orthonormal bases (u

1

, . . ., un) and (v
1

, . . . , vm) for E and F ,
respectively, where (u

1

, . . . , un) are eigenvectors of f⇤ � f and (v
1

, . . . , vm)
are eigenvectors of f �f⇤. Furthermore, (u

1

, . . . , ur) is an orthonormal basis
of Im f⇤, (ur+1

, . . . , un) is an orthonormal basis of Ker f , (v
1

, . . . , vr) is an
orthonormal basis of Im f , and (vr+1

, . . . , vm) is an orthonormal basis of
Ker f⇤.

The SVD of matrices can be used to define the pseudo-inverse of a
rectangular matrix; we will do so in Chapter 21. The reader may also
consult Strang [Strang (1988)], Demmel [Demmel (1997)], Trefethen and
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Bau [Trefethen and Bau III (1997)], and Golub and Van Loan [Golub and
Van Loan (1996)].

One of the spectral theorems states that a symmetric matrix can be di-
agonalized by an orthogonal matrix. There are several numerical methods
to compute the eigenvalues of a symmetric matrix A. One method consists
in tridiagonalizing A, which means that there exists some orthogonal matrix
P and some symmetric tridiagonal matrix T such that A = PTP>. In fact,
this can be done using Householder transformations; see Theorem 17.2. It
is then possible to compute the eigenvalues of T using a bisection method
based on Sturm sequences. One can also use Jacobi’s method. For details,
see Golub and Van Loan [Golub and Van Loan (1996)], Chapter 8, Dem-
mel [Demmel (1997)], Trefethen and Bau [Trefethen and Bau III (1997)],
Lecture 26, Ciarlet [Ciarlet (1989)], and Chapter 17. Computing the SVD
of a matrix A is more involved. Most methods begin by finding orthogonal
matrices U and V and a bidiagonal matrix B such that A = V BU>; see
Problem 12.8 and Problem 20.3. This can also be done using Householder
transformations. Observe that B>B is symmetric tridiagonal. Thus, in
principle, the previous method to diagonalize a symmetric tridiagonal ma-
trix can be applied. However, it is unwise to compute B>B explicitly, and
more subtle methods are used for this last step; the matrix of Problem 20.1
can be used, and see Problem 20.3. Again, see Golub and Van Loan [Golub
and Van Loan (1996)], Chapter 8, Demmel [Demmel (1997)], and Trefethen
and Bau [Trefethen and Bau III (1997)], Lecture 31.

The polar form has applications in continuum mechanics. Indeed, in any
deformation it is important to separate stretching from rotation. This is
exactly what QS achieves. The orthogonal part Q corresponds to rotation
(perhaps with an additional reflection), and the symmetric matrix S to
stretching (or compression). The real eigenvalues �

1

, . . . ,�r of S are the
stretch factors (or compression factors) (see Marsden and Hughes [Marsden
and Hughes (1994)]). The fact that S can be diagonalized by an orthogonal
matrix corresponds to a natural choice of axes, the principal axes.

The SVD has applications to data compression, for instance in image
processing. The idea is to retain only singular values whose magnitudes
are significant enough. The SVD can also be used to determine the rank of
a matrix when other methods such as Gaussian elimination produce very
small pivots. One of the main applications of the SVD is the computation
of the pseudo-inverse. Pseudo-inverses are the key to the solution of various
optimization problems, in particular the method of least squares. This topic
is discussed in the next chapter (Chapter 21). Applications of the material
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of this chapter can be found in Strang [Strang (1988, 1986)]; Ciarlet [Ciarlet
(1989)]; Golub and Van Loan [Golub and Van Loan (1996)], which contains
many other references; Demmel [Demmel (1997)]; and Trefethen and Bau
[Trefethen and Bau III (1997)].

20.5 Ky Fan Norms and Schatten Norms

The singular values of a matrix can be used to define various norms on ma-
trices which have found recent applications in quantum information theory
and in spectral graph theory. Following Horn and Johnson [Horn and John-
son (1994)] (Section 3.4) we can make the following definitions:

Definition 20.5. For any matrix A 2 Mm,n(C), let q = min{m,n}, and if
�
1

� · · · � �q are the singular values of A, for any k with 1  k  q, let

Nk(A) = �
1

+ · · · + �k,

called the Ky Fan k-norm of A.
More generally, for any p � 1 and any k with 1  k  q, let

Nk;p(A) = (�p
1

+ · · · + �p
k)

1/p,

called the Ky Fan p-k-norm of A. When k = q, Nq;p is also called the
Schatten p-norm.

Observe that when k = 1, N
1

(A) = �
1

, and the Ky Fan norm N
1

is
simply the spectral norm from Chapter 8, which is the subordinate matrix
norm associated with the Euclidean norm. When k = q, the Ky Fan norm
Nq is given by

Nq(A) = �
1

+ · · · + �q = tr((A⇤A)1/2)

and is called the trace norm or nuclear norm. When p = 2 and k = q, the
Ky Fan Nq;2 norm is given by

Nk;2(A) = (�2

1

+ · · · + �2

q )
1/2 =

p
tr(A⇤A) = kAkF ,

which is the Frobenius norm of A.
It can be shown that Nk and Nk;p are unitarily invariant norms, and

that when m = n, they are matrix norms; see Horn and Johnson [Horn and
Johnson (1994)] (Section 3.4, Corollary 3.4.4 and Problem 3).
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20.6 Summary

The main concepts and results of this chapter are listed below:

• For any linear map f : E ! E on a Euclidean space E, the maps f⇤ �f
and f � f⇤ are self-adjoint and positive semidefinite.

• The singular values of a linear map.
• Positive semidefinite and positive definite self-adjoint maps.
• Relationships between Im f , Ker f , Im f⇤, and Ker f⇤.
• The singular value decomposition theorem for square matrices (Theo-
rem 20.1).

• The SVD of matrix.
• The polar decomposition of a matrix.
• The Weyl inequalities .
• The singular value decomposition theorem for m⇥n matrices (Theorem
20.3).

• Ky Fan k-norms, Ky Fan p-k-norms, Schatten p-norms.

20.7 Problems

Problem 20.1. (1) Let A be a real n⇥nmatrix and consider the (2n)⇥(2n)
real symmetric matrix

S =

✓
0 A
A> 0

◆
.

Suppose that A has rank r. If A = V ⌃U> is an SVD for A, with
⌃ = diag(�

1

, . . . ,�n) and �
1

� · · · � �r > 0, denoting the columns of
U by uk and the columns of V by vk, prove that �k is an eigenvalue of S

with corresponding eigenvector

✓
vk
uk

◆
for k = 1, . . . , n, and that ��k is an

eigenvalue of S with corresponding eigenvector

✓
vk

�uk

◆
for k = 1, . . . , n.

Hint . We have Auk = �kvk for k = 1, . . . , n. Show that A>vk = �kuk

for k = 1, . . . , r, and that A>vk = 0 for k = r + 1, . . . , n. Recall that
Ker (A>) = Ker (AA>).

(2) Prove that the 2n eigenvectors of S in (1) are pairwise orthogonal.
Check that if A has rank r, then S has rank 2r.

(3) Now assume that A is a real m ⇥ n matrix and consider the (m +
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n) ⇥ (m+ n) real symmetric matrix

S =

✓
0 A
A> 0

◆
.

Suppose that A has rank r. If A = V ⌃U> is an SVD for A, prove that �k

is an eigenvalue of S with corresponding eigenvector

✓
vk
uk

◆
for k = 1, . . . , r,

and that ��k is an eigenvalue of S with corresponding eigenvector

✓
vk

�uk

◆

for k = 1, . . . , r.
Find the remaining m + n � 2r eigenvectors of S associated with the

eigenvalue 0.
(4) Prove that these m+ n eigenvectors of S are pairwise orthogonal.

Problem 20.2. Let A be a real m ⇥ n matrix of rank r and let q =
min(m,n).

(1) Consider the (m+ n) ⇥ (m+ n) real symmetric matrix

S =

✓
0 A
A> 0

◆

and prove that
✓
Im z�1A
0 In

◆✓
zIm �A
�A> zIn

◆
=

✓
zIm � z�1AA> 0

�A> zIn

◆
.

Use the above equation to prove that

det(zIm+n � S) = tn�m det(t2Im � AA>).

(2) Prove that the eigenvalues of S are ±�
1

, . . . ,±�q, with |m � n|
additional zeros.

Problem 20.3. Let B be a real bidiagonal matrix of the form

B =

0

BBBBBB@

a
1

b
1

0 · · · 0

0 a
2

b
2

. . . 0
...

. . .
. . .

. . .
...

0 · · · 0 an�1

bn�1

0 0 · · · 0 an

1

CCCCCCA
.

Let A be the (2n) ⇥ (2n) symmetric matrix

A =

✓
0 B>

B 0

◆
,
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and let P be the permutation matrix given by P = [e
1

, en+1

, e
2

, en+2

,
· · · , en, e2n].

(1) Prove that T = P>AP is a symmetric tridiagonal (2n)⇥(2n) matrix
with zero main diagonal of the form

T =

0

BBBBBBBBBBBB@

0 a
1

0 0 0 0 · · · 0
a
1

0 b
1

0 0 0 · · · 0
0 b

1

0 a
2

0 0 · · · 0
0 0 a

2

0 b
2

0 · · · 0
...

...
...

. . .
. . .

. . .
. . .

...
0 0 0 · · · an�1

0 bn�1

0
0 0 0 · · · 0 bn�1

0 an
0 0 0 · · · 0 0 an 0

1

CCCCCCCCCCCCA

.

(2) Prove that if xi is a unit eigenvector for an eigenvalue �i of T , then
�i = ±�i where �i is a singular value of B, and that

Pxi =
1p
2

✓
ui

±vi

◆
,

where the ui are unit eigenvectors of B>B and the vi are unit eigenvectors
of BB>.

Problem 20.4. Find the SVD of the matrix

A =

0

@
0 2 0
0 0 3
0 0 0

1

A .

Problem 20.5. Let u, v 2 Rn be two nonzero vectors, and let A = uv> be
the corresponding rank 1 matrix. Prove that the nonzero singular value of
A is kuk

2

kvk
2

.

Problem 20.6. Let A be a n⇥ n real matrix. Prove that if �
1

, . . . ,�n are
the singular values of A, then �3

1

, . . . ,�3

n are the singular values of AA>A.

Problem 20.7. Let A be a real n ⇥ n matrix.
(1) Prove that the largest singular value �

1

of A is given by

�
1

= sup
x 6=0

kAxk
2

kxk
2

,

and that this supremum is achieved at x = u
1

, the first column in U in an
SVD A = V ⌃U>.

(2) Extend the above result to real m ⇥ n matrices.
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Problem 20.8. Let A be a real m ⇥ n matrix. Prove that if B is any
submatrix of A (by keeping M  m rows and N  n columns of A), then
(�

1

)B  (�
1

)A (where (�
1

)A is the largest singular value of A and similarly
for (�

1

)B).

Problem 20.9. Let A be a real n ⇥ n matrix.
(1) Assume A is invertible. Prove that if A = Q

1

S
1

= Q
2

S
2

are two
polar decompositions of A, then Q

1

= Q
2

and S
1

= S
2

.
Hint . A>A = S2

1

= S2

2

, with S
1

and S
2

symmetric positive definite. Then
use Problem 16.7.

(2) Now assume that A is singular. Prove that if A = Q
1

S
1

= Q
2

S
2

are
two polar decompositions of A, then S

1

= S
2

, but Q
1

may not be equal to
Q

2

.

Problem 20.10. (1) Let A be any invertible (real) n ⇥ n matrix. Prove
that for every SVD, A = V DU> of A, the product V U> is the same (i.e.,
if V

1

DU>
1

= V
2

DU>
2

, then V
1

U>
1

= V
2

U>
2

). What does V U> have to do
with the polar form of A?

(2) Given any invertible (real) n ⇥ n matrix, A, prove that there is
a unique orthogonal matrix, Q 2 O(n), such that kA � QkF is minimal
(under the Frobenius norm). In fact, prove that Q = V U>, where A =
V DU> is an SVD of A. Moreover, if det(A) > 0, show that Q 2 SO(n).

What can you say if A is singular (i.e., non-invertible)?

Problem 20.11. (1) Prove that for any n⇥n matrix A and any orthogonal
matrix Q, we have

max{tr(QA) | Q 2 O(n)} = �
1

+ · · · + �n,

where �
1

� · · · � �n are the singular values of A. Furthermore, this
maximum is achieved by Q = UV >, where A = V ⌃U> is any SVD for A.

(2) By applying the above result with A = Z>X and Q = R>, deduce
the following result : For any two fixed n ⇥ k matrices X and Z, the
minimum of the set

{kX � ZRkF | R 2 O(k)}
is achieved by R = V U> for any SVD decomposition V ⌃U> = Z>X of
Z>X.

Remark: The problem of finding an orthogonal matrix R such that ZR
comes as close as possible to X is called the orthogonal Procrustes problem;
see Strang [Strang (2019)] (Section IV.9) for the history of this problem.
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Chapter 21

Applications of SVD and
Pseudo-Inverses

De tous les principes qu’on peut proposer pour cet objet, je pense
qu’il n’en est pas de plus général, de plus exact, ni d’une application
plus facile, que celui dont nous avons fait usage dans les recherches
précédentes, et qui consiste à rendre minimum la somme des carrés des
erreurs. Par ce moyen il s’établit entre les erreurs une sorte d’équilibre
qui, empêchant les extrêmes de prévaloir, est très propre às faire con-
naitre l’état du système le plus proche de la vérité.

—Legendre, 1805, Nouvelles Méthodes pour la détermination des Or-
bites des
Comètes

21.1 Least Squares Problems and the Pseudo-Inverse

This chapter presents several applications of SVD. The first one is the
pseudo-inverse, which plays a crucial role in solving linear systems by the
method of least squares. The second application is data compression. The
third application is principal component analysis (PCA), whose purpose is
to identify patterns in data and understand the variance–covariance struc-
ture of the data. The fourth application is the best a�ne approximation of
a set of data, a problem closely related to PCA.

The method of least squares is a way of “solving” an overdetermined
system of linear equations

Ax = b,

i.e., a system in which A is a rectangular m⇥n matrix with more equations
than unknowns (whenm > n). Historically, the method of least squares was
used by Gauss and Legendre to solve problems in astronomy and geodesy.
The method was first published by Legendre in 1805 in a paper on methods

721
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for determining the orbits of comets. However, Gauss had already used
the method of least squares as early as 1801 to determine the orbit of the
asteroid Ceres, and he published a paper about it in 1810 after the discovery
of the asteroid Pallas. Incidentally, it is in that same paper that Gaussian
elimination using pivots is introduced.

The reason why more equations than unknowns arise in such problems
is that repeated measurements are taken to minimize errors. This produces
an overdetermined and often inconsistent system of linear equations. For
example, Gauss solved a system of eleven equations in six unknowns to
determine the orbit of the asteroid Pallas.

Example 21.1. As a concrete illustration, suppose that we observe the
motion of a small object, assimilated to a point, in the plane. From our
observations, we suspect that this point moves along a straight line, say of
equation y = cx + d. Suppose that we observed the moving point at three
di↵erent locations (x

1

, y
1

), (x
2

, y
2

), and (x
3

, y
3

). Then we should have

d+ cx
1

= y
1

,

d+ cx
2

= y
2

,

d+ cx
3

= y
3

.

If there were no errors in our measurements, these equations would be
compatible, and c and d would be determined by only two of the equations.
However, in the presence of errors, the system may be inconsistent. Yet we
would like to find c and d!

The idea of the method of least squares is to determine (c, d) such that
it minimizes the sum of the squares of the errors, namely,

(d+ cx
1

� y
1

)2 + (d+ cx
2

� y
2

)2 + (d+ cx
3

� y
3

)2.

See Figure 21.1.
In general, for an overdetermined m ⇥ n system Ax = b, what Gauss

and Legendre discovered is that there are solutions x minimizing

kAx � bk2
2

(where kuk2
2

= u2

1

+ · · ·+u2

n, the square of the Euclidean norm of the vector
u = (u

1

, . . . , un)), and that these solutions are given by the square n ⇥ n
system

A>Ax = A>b,
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y = cx + d

(x , y )1 1

(x , y )2 2

(x , y )3 3

1(x , cx +d )1

(x , cx +d )
(x , cx +d )2 2

3 3

(x , y )1 1

(x , y )2 2

(x , y )3 3

Fig. 21.1 Given three points (x1, y1), (x2, y2), (x3, y3), we want to determine the line
y = cx + d which minimizes the lengths of the dashed vertical lines.

called the normal equations . Furthermore, when the columns of A are
linearly independent, it turns out that A>A is invertible, and so x is unique
and given by

x = (A>A)�1A>b.

Note that A>A is a symmetric matrix, one of the nice features of the normal
equations of a least squares problem. For instance, since the above problem
in matrix form is represented as

0

@
1 x

1

1 x
2

1 x
3

1

A
✓
d
c

◆
=

0

@
y
1

y
2

y
3

1

A ,

the normal equations are

✓
3 x

1

+ x
2

+ x
3

x
1

+ x
2

+ x
3

x2

1

+ x2

2

+ x2

3

◆✓
d
c

◆
=

✓
y
1

+ y
2

+ y
3

x
1

y
1

+ x
2

y
2

+ x
3

y
3

◆
.

In fact, given any real m ⇥ n matrix A, there is always a unique x+ of
minimum norm that minimizes kAx� bk2

2

, even when the columns of A are
linearly dependent. How do we prove this, and how do we find x+?

Theorem 21.1. Every linear system Ax = b, where A is an m⇥n matrix,
has a unique least squares solution x+ of smallest norm.
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Proof. Geometry o↵ers a nice proof of the existence and uniqueness of
x+. Indeed, we can interpret b as a point in the Euclidean (a�ne) space
Rm, and the image subspace of A (also called the column space of A) as a
subspace U of Rm (passing through the origin). Then it is clear that

inf
x2Rn

kAx � bk2
2

= inf
y2U

ky � bk2
2

,

with U = ImA, and we claim that x minimizes kAx�bk2
2

i↵ Ax = p, where
p the orthogonal projection of b onto the subspace U .

Recall from Section 12.1 that the orthogonal projection pU : U �U? !
U is the linear map given by

pU (u+ v) = u,

with u 2 U and v 2 U?. If we let p = pU (b) 2 U , then for any point y 2 U ,

the vectors �!py = y � p 2 U and
�!
bp = p � b 2 U? are orthogonal, which

implies that

k
�!
byk2

2

= k
�!
bpk2

2

+ k�!pyk2
2

,

where
�!
by = y � b. Thus, p is indeed the unique point in U that minimizes

the distance from b to any point in U . See Figure 21.2.

Im A = U

b

p

Im A = U

b

p

y

Fig. 21.2 Given a 3 ⇥ 2 matrix A, U = ImA is the peach plane in R3 and p is the
orthogonal projection of b onto U . Furthermore, given y 2 U , the points b, y, and p are
the vertices of a right triangle.

Thus the problem has been reduced to proving that there is a unique x+

of minimum norm such that Ax+ = p, with p = pU (b) 2 U , the orthogonal
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projection of b onto U . We use the fact that

Rn = KerA � (KerA)?.

Consequently, every x 2 Rn can be written uniquely as x = u + v, where
u 2 KerA and v 2 (KerA)?, and since u and v are orthogonal,

kxk2
2

= kuk2
2

+ kvk2
2

.

Furthermore, since u 2 KerA, we have Au = 0, and thus Ax = p i↵ Av = p,
which shows that the solutions of Ax = p for which x has minimum norm
must belong to (KerA)?. However, the restriction of A to (KerA)? is
injective. This is because if Av

1

= Av
2

, where v
1

, v
2

2 (KerA)?, then
A(v

2

� v
2

) = 0, which implies v
2

� v
1

2 KerA, and since v
1

, v
2

2 (KerA)?,
we also have v

2

�v
1

2 (KerA)?, and consequently, v
2

�v
1

= 0. This shows
that there is a unique x+ of minimum norm such that Ax+ = p, and that
x+ must belong to (KerA)?. By our previous reasoning, x+ is the unique
vector of minimum norm minimizing kAx � bk2

2

.

The proof also shows that x minimizes kAx � bk2
2

i↵
�!
pb = b � Ax is

orthogonal to U , which can be expressed by saying that b�Ax is orthogonal
to every column of A. However, this is equivalent to

A>(b � Ax) = 0, i.e., A>Ax = A>b.

Finally, it turns out that the minimum norm least squares solution x+ can
be found in terms of the pseudo-inverse A+ of A, which is itself obtained
from any SVD of A.

Definition 21.1. Given any nonzero m ⇥ n matrix A of rank r, if A =
V DU> is an SVD of A such that

D =

✓
⇤ 0r,n�r

0m�r,r 0m�r,n�r

◆
,

with

⇤ = diag(�
1

, . . . ,�r)

an r⇥r diagonal matrix consisting of the nonzero singular values of A, then
if we let D+ be the n ⇥ m matrix

D+ =

✓
⇤�1 0r,m�r

0n�r,r 0n�r,m�r

◆
,

with

⇤�1 = diag(1/�
1

, . . . , 1/�r),

the pseudo-inverse of A is defined by

A+ = UD+V >.
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If A = 0m,n is the zero matrix, we set A+ = 0n,m. Observe that D+ is
obtained from D by inverting the nonzero diagonal entries of D, leaving all
zeros in place, and then transposing the matrix. For example, given the
matrix

D =

0

BB@

1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 0 0

1

CCA ,

its pseudo-inverse is

D+ =

0

BBBB@

1 0 0 0
0 1

2

0 0
0 0 1

3

0
0 0 0 0
0 0 0 0

1

CCCCA
.

The pseudo-inverse of a matrix is also known as the Moore–Penrose pseudo-
inverse.

Actually, it seems that A+ depends on the specific choice of U and V
in an SVD (U,D, V ) for A, but the next theorem shows that this is not so.

Theorem 21.2. The least squares solution of smallest norm of the linear
system Ax = b, where A is an m ⇥ n matrix, is given by

x+ = A+b = UD+V >b.

Proof. First assume that A is a (rectangular) diagonal matrix D, as above.
Then since x minimizes kDx � bk2

2

i↵ Dx is the projection of b onto the
image subspace F of D, it is fairly obvious that x+ = D+b. Otherwise, we
can write

A = V DU>,

where U and V are orthogonal. However, since V is an isometry,

kAx � bk
2

= kV DU>x � bk
2

= kDU>x � V >bk
2

.

Letting y = U>x, we have kxk
2

= kyk
2

, since U is an isometry, and since
U is surjective, kAx� bk

2

is minimized i↵ kDy � V >bk
2

is minimized, and
we have shown that the least solution is

y+ = D+V >b.

Since y = U>x, with kxk
2

= kyk
2

, we get

x+ = UD+V >b = A+b.

Thus, the pseudo-inverse provides the optimal solution to the least squares
problem.
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By Theorem 21.2 and Theorem 21.1, A+b is uniquely defined by every
b, and thus A+ depends only on A.

The Matlab command for computing the pseudo-inverse B of the matrix
A is
B = pinv(A).

Example 21.2. If A is the rank 2 matrix

A =

0

BB@

1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7

1

CCA

whose eigenvalues are �1.1652, 0, 0, 17.1652, using Matlab we obtain the
SVD A = V DU> with

U =

0

BB@

�0.3147 0.7752 0.2630 �0.4805
�0.4275 0.3424 0.0075 0.8366
�0.5402 �0.0903 �0.8039 �0.2319
�0.6530 �0.5231 0.5334 �0.1243

1

CCA ,

V =

0

BB@

�0.3147 �0.7752 0.5452 0.0520
�0.4275 �0.3424 �0.7658 0.3371
�0.5402 0.0903 �0.1042 �0.8301
�0.6530 0.5231 0.3247 0.4411

1

CCA , D =

0

BB@

17.1652 0 0 0
0 1.1652 0 0
0 0 0 0
0 0 0 0

1

CCA .

Then

D+ =

0

BB@

0.0583 0 0 0
0 0.8583 0 0
0 0 0 0
0 0 0 0

1

CCA ,

and

A+ = UD+V > =

0

BB@

�0.5100 �0.2200 0.0700 0.3600
�0.2200 �0.0900 0.0400 0.1700
0.0700 0.0400 0.0100 �0.0200
0.3600 0.1700 �0.0200 �0.2100

1

CCA ,

which is also the result obtained by calling pinv(A).

If A is an m ⇥ n matrix of rank n (and so m � n), it is immediately
shown that the QR-decomposition in terms of Householder transformations
applies as follows:
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There are n m ⇥ m matrices H
1

, . . . , Hn, Householder matrices or the
identity, and an upper triangular m ⇥ n matrix R of rank n such that

A = H
1

· · ·HnR.

Then because each Hi is an isometry,

kAx � bk
2

= kRx � Hn · · ·H
1

bk
2

,

and the least squares problem Ax = b is equivalent to the system

Rx = Hn · · ·H
1

b.

Now the system

Rx = Hn · · ·H
1

b

is of the form ✓
R

1

0m�n

◆
x =

✓
c
d

◆
,

where R
1

is an invertible n ⇥ n matrix (since A has rank n), c 2 Rn, and
d 2 Rm�n, and the least squares solution of smallest norm is

x+ = R�1

1

c.

Since R
1

is a triangular matrix, it is very easy to invert R
1

.
The method of least squares is one of the most e↵ective tools of the

mathematical sciences. There are entire books devoted to it. Readers are
advised to consult Strang [Strang (1988)], Golub and Van Loan [Golub
and Van Loan (1996)], Demmel [Demmel (1997)], and Trefethen and Bau
[Trefethen and Bau III (1997)], where extensions and applications of least
squares (such as weighted least squares and recursive least squares) are
described. Golub and Van Loan [Golub and Van Loan (1996)] also contains
a very extensive bibliography, including a list of books on least squares.

21.2 Properties of the Pseudo-Inverse

We begin this section with a proposition which provides a way to calculate
the pseudo-inverse of an m⇥n matrix A without first determining an SVD
factorization.

Proposition 21.1. When A has full rank, the pseudo-inverse A+ can be
expressed as A+ = (A>A)�1A> when m � n, and as A+ = A>(AA>)�1

when n � m. In the first case (m � n), observe that A+A = I, so A+ is a
left inverse of A; in the second case (n � m), we have AA+ = I, so A+ is
a right inverse of A.
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Proof. If m � n and A has full rank n, we have

A = V

✓
⇤

0m�n,n

◆
U>

with ⇤ an n ⇥ n diagonal invertible matrix (with positive entries), so

A+ = U
�
⇤�1 0n,m�n

�
V >.

We find that

A>A = U
�
⇤ 0n,m�n

�
V >V

✓
⇤

0m�n,n

◆
U> = U⇤2U>,

which yields

(A>A)�1A> = U⇤�2U>U
�
⇤ 0n,m�n

�
V > = U

�
⇤�1 0n,m�n

�
V > = A+.

Therefore, if m � n and A has full rank n, then

A+ = (A>A)�1A>.

If n � m and A has full rank m, then

A = V
�
⇤ 0m,n�m

�
U>

with ⇤ an m ⇥ m diagonal invertible matrix (with positive entries), so

A+ = U

✓
⇤�1

0n�m,m

◆
V >.

We find that

AA> = V
�
⇤ 0m,n�m

�
U>U

✓
⇤

0n�m,m

◆
V > = V ⇤2V >,

which yields

A>(AA>)�1 = U

✓
⇤

0n�m,m

◆
V >V ⇤�2V > = U

✓
⇤�1

0n�m,m

◆
V > = A+.

Therefore, if n � m and A has full rank m, then A+ = A>(AA>)�1.

For example, if A =

0

@
1 2
2 3
0 1

1

A, then A has rank 2 and since m � n,

A+ = (A>A)�1A> where

A+ =

✓
5 8
8 14

◆�1

A> =

✓
7/3 �4/3
4/3 5/6

◆✓
1 2 0
2 3 1

◆
=

✓
�1/3 2/3 �4/3
1/3 �1/6 5/6

◆
.



March 25, 2021 15:30 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 730

730 Applications of SVD and Pseudo-Inverses

If A =

✓
1 2 3 0
0 1 1 �1

◆
, since A has rank 2 and n � m, then A+ = A>(AA>)�1

where

A+ = A>
✓
14 5
5 3

◆�1

=

0

BB@

1 0
2 1
3 1
0 �1

1

CCA

✓
3/17 �5/17

�5/17 14/17

◆
=

0

BB@

3/17 �5/17
1/17 4/17
4/17 �1/17
5/17 �14/17

1

CCA .

Let A = V ⌃U> be an SVD for any m⇥n matrix A. It is easy to check
that both AA+ and A+A are symmetric matrices. In fact,

AA+ = V ⌃U>U⌃+V > = V ⌃⌃+V > = V

✓
Ir 0
0 0m�r

◆
V >

and

A+A = U⌃+V >V ⌃U> = U⌃+⌃U> = U

✓
Ir 0
0 0n�r

◆
U>.

From the above expressions we immediately deduce that

AA+A = A,

A+AA+ = A+,

and that

(AA+)2 = AA+,

(A+A)2 = A+A,

so both AA+ and A+A are orthogonal projections (since they are both
symmetric).

Proposition 21.2. The matrix AA+ is the orthogonal projection onto the
range of A and A+A is the orthogonal projection onto Ker(A)? = Im(A>),
the range of A>.

Proof. Obviously, we have range(AA+) ✓ range(A), and for any y = Ax 2
range(A), since AA+A = A, we have

AA+y = AA+Ax = Ax = y,

so the image of AA+ is indeed the range of A. It is also clear that Ker(A) ✓
Ker(A+A), and since AA+A = A, we also have Ker(A+A) ✓ Ker(A), and
so

Ker(A+A) = Ker(A).

Since A+A is symmetric, range(A+A) = range((A+A)>) = Ker(A+A)? =
Ker(A)?, as claimed.
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Proposition 21.3. The set range(A) = range(AA+) consists of all vectors
y 2 Rm such that

V >y =

✓
z
0

◆
,

with z 2 Rr.

Proof. Indeed, if y = Ax, then

V >y = V >Ax = V >V ⌃U>x = ⌃U>x =

✓
⌃r 0
0 0m�r

◆
U>x =

✓
z
0

◆
,

where ⌃r is the r⇥r diagonal matrix diag(�
1

, . . . ,�r). Conversely, if V >y =
( z
0

), then y = V ( z
0

), and

AA+y = V

✓
Ir 0
0 0m�r

◆
V >y

= V

✓
Ir 0
0 0m�r

◆
V >V

✓
z
0

◆

= V

✓
Ir 0
0 0m�r

◆✓
z
0

◆

= V

✓
z
0

◆
= y,

which shows that y belongs to the range of A.

Similarly, we have the following result.

Proposition 21.4. The set range(A+A) = Ker(A)? consists of all vectors
y 2 Rn such that

U>y =

✓
z
0

◆
,

with z 2 Rr.

Proof. If y = A+Au, then

y = A+Au = U

✓
Ir 0
0 0n�r

◆
U>u = U

✓
z
0

◆
,

for some z 2 Rr. Conversely, if U>y = ( z
0

), then y = U ( z
0

), and so

A+AU

✓
z
0

◆
= U

✓
Ir 0
0 0n�r

◆
U>U

✓
z
0

◆

= U

✓
Ir 0
0 0n�r

◆✓
z
0

◆

= U

✓
z
0

◆
= y,
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which shows that y 2 range(A+A).

Analogous results hold for complex matrices, but in this case, V and U
are unitary matrices and AA+ and A+A are Hermitian orthogonal projec-
tions.

If A is a normal matrix, which means that AA> = A>A, then there
is an intimate relationship between SVD’s of A and block diagonalizations
of A. As a consequence, the pseudo-inverse of a normal matrix A can be
obtained directly from a block diagonalization of A.

If A is a (real) normal matrix, then we know from Theorem 16.8 that
A can be block diagonalized with respect to an orthogonal matrix U as

A = U⇤U>,

where ⇤ is the (real) block diagonal matrix

⇤ = diag(B
1

, . . . , Bn),

consisting either of 2 ⇥ 2 blocks of the form

Bj =

✓
�j �µj

µj �j

◆

with µj 6= 0, or of one-dimensional blocks Bk = (�k). Then we have the
following proposition:

Proposition 21.5. For any (real) normal matrix A and any block diag-
onalization A = U⇤U> of A as above, the pseudo-inverse of A is given
by

A+ = U⇤+U>,

where ⇤+ is the pseudo-inverse of ⇤. Furthermore, if

⇤ =

✓
⇤r 0
0 0

◆
,

where ⇤r has rank r, then

⇤+ =

✓
⇤�1

r 0
0 0

◆
.

Proof. Assume that B
1

, . . . , Bp are 2 ⇥ 2 blocks and that �
2p+1

, . . . ,�n
are the scalar entries. We know that the numbers �j ± iµj , and the �

2p+k

are the eigenvalues of A. Let ⇢
2j�1

= ⇢
2j =

q
�2j + µ2

j =
p
det(Bi) for

j = 1, . . . , p, ⇢j = |�j | for j = 2p + 1, . . . , r. Multiplying U by a suitable
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permutation matrix, we may assume that the blocks of ⇤ are ordered so
that ⇢

1

� ⇢
2

� · · · � ⇢r > 0. Then it is easy to see that

AA> = A>A = U⇤U>U⇤>U> = U⇤⇤>U>,

with

⇤⇤> = diag(⇢2
1

, . . . , ⇢2r, 0, . . . , 0),

so ⇢
1

� ⇢
2

� · · · � ⇢r > 0 are the singular values �
1

� �
2

� · · · � �r > 0
of A. Define the diagonal matrix

⌃ = diag(�
1

, . . . ,�r, 0, . . . , 0),

where r = rank(A), �
1

� · · · � �r > 0 and the block diagonal matrix ⇥
defined such that the block Bi in ⇤ is replaced by the block ��1Bi where
� =

p
det(Bi), the nonzero scalar �j is replaced �j/|�j |, and a diagonal

zero is replaced by 1. Observe that ⇥ is an orthogonal matrix and

⇤ = ⇥⌃.

But then we can write

A = U⇤U> = U⇥⌃U>,

and we if let V = U⇥, since U is orthogonal and ⇥ is also orthogonal, V is
also orthogonal and A = V ⌃U> is an SVD for A. Now we get

A+ = U⌃+V > = U⌃+⇥>U>.

However, since ⇥ is an orthogonal matrix, ⇥> = ⇥�1, and a simple calcu-
lation shows that

⌃+⇥> = ⌃+⇥�1 = ⇤+,

which yields the formula

A+ = U⇤+U>.

Also observe that ⇤r is invertible and

⇤+ =

✓
⇤�1

r 0
0 0

◆
.

Therefore, the pseudo-inverse of a normal matrix can be computed directly
from any block diagonalization of A, as claimed.
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Example 21.3. Consider the following real diagonal form of the normal
matrix

A =

0

BB@

�2.7500 2.1651 �0.8660 0.5000
2.1651 �0.2500 �1.5000 0.8660
0.8660 1.5000 0.7500 �0.4330

�0.5000 �0.8660 �0.4330 0.2500

1

CCA = U⇤U>,

with

U =

0

BB@

cos(⇡/3) 0 sin(⇡/3) 0
sin(⇡/3) 0 � cos(⇡/3) 0

0 cos(⇡/6) 0 sin(⇡/6)
0 � cos(⇡/6) 0 sin(⇡/6)

1

CCA , ⇤ =

0

BB@

1 �2 0 0
2 1 0 0
0 0 �4 0
0 0 0 0

1

CCA .

We obtain

⇤+ =

0

BB@

1/5 2/5 0 0
�2/5 1/5 0 0
0 0 �1/4 0
0 0 0 0

1

CCA ,

and the pseudo-inverse of A is

A+ = U⇤+U> =

0

BB@

�0.1375 0.1949 0.1732 �0.1000
0.1949 0.0875 0.3000 �0.1732

�0.1732 �0.3000 0.1500 �0.0866
0.1000 0.1732 �0.0866 0.0500

1

CCA ,

which agrees with pinv(A).

The following properties, due to Penrose, characterize the pseudo-
inverse of a matrix. We have already proved that the pseudo-inverse satis-
fies these equations. For a proof of the converse, see Kincaid and Cheney
[Kincaid and Cheney (1996)].

Proposition 21.6. Given any m ⇥ n matrix A (real or complex), the
pseudo-inverse A+ of A is the unique n⇥m matrix satisfying the following
properties:

AA+A = A,

A+AA+ = A+,

(AA+)> = AA+,

(A+A)> = A+A.
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21.3 Data Compression and SVD

Among the many applications of SVD, a very useful one is data compres-
sion, notably for images. In order to make precise the notion of closeness
of matrices, we use the notion of matrix norm. This concept is defined in
Chapter 8, and the reader may want to review it before reading any further.

Given an m ⇥ n matrix of rank r, we would like to find a best approx-
imation of A by a matrix B of rank k  r (actually, k < r) such that
kA � Bk

2

(or kA � BkF ) is minimized. The following proposition is known
as the Eckart–Young theorem.

Proposition 21.7. Let A be an m⇥n matrix of rank r and let V DU> = A
be an SVD for A. Write ui for the columns of U , vi for the columns of V ,
and �

1

� �
2

� · · · � �p for the singular values of A (p = min(m,n)). Then
a matrix of rank k < r closest to A (in the k k

2

norm) is given by

Ak =
kX

i=1

�iviu
>
i = V diag(�

1

, . . . ,�k, 0, . . . , 0)U
>

and kA � Akk
2

= �k+1

.

Proof. By construction, Ak has rank k, and we have

kA � Akk
2

=
���

pX

i=k+1

�iviu
>
i

���
2

=
��V diag(0, . . . , 0,�k+1

, . . . ,�p)U
>��

2

= �k+1

.

It remains to show that kA � Bk
2

� �k+1

for all rank k matrices B. Let
B be any rank k matrix, so its kernel has dimension n � k. The subspace
Uk+1

spanned by (u
1

, . . . , uk+1

) has dimension k+1, and because the sum
of the dimensions of the kernel of B and of Uk+1

is (n� k)+ k+1 = n+1,
these two subspaces must intersect in a subspace of dimension at least 1.
Pick any unit vector h in Ker(B) \ Uk+1

. Then since Bh = 0, and since U
and V are isometries, we have

kA � Bk2
2

� k(A � B)hk2
2

= kAhk2
2

=
��V DU>h

��2
2

=
��DU>h

��2
2

� �2

k+1

��U>h
��2
2

= �2

k+1

,

which proves our claim.
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Note that Ak can be stored using (m + n)k entries, as opposed to mn
entries. When k ⌧ m, this is a substantial gain.

Example 21.4. Consider the badly conditioned symmetric matrix

A =

0

BB@

10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10

1

CCA

from Section 8.5. Since A is SPD, we have the SVD

A = UDU>,

with

U =

0

BB@

�0.5286 �0.6149 0.3017 �0.5016
�0.3803 �0.3963 �0.0933 0.8304
�0.5520 0.2716 �0.7603 �0.2086
�0.5209 0.6254 0.5676 0.1237

1

CCA ,

D =

0

BB@

30.2887 0 0 0
0 3.8581 0 0
0 0 0.8431 0
0 0 0 0.0102

1

CCA .

If we set �
3

= �
4

= 0, we obtain the best rank 2 approximation

A
2

= U(:, 1 : 2) ⇤D(:, 1 : 2) ⇤U(:, 1 : 2)0 =

0

BB@

9.9207 7.0280 8.1923 6.8563
7.0280 4.9857 5.9419 5.0436
8.1923 5.9419 9.5122 9.3641
6.8563 5.0436 9.3641 9.7282

1

CCA .

A nice example of the use of Proposition 21.7 in image compression is
given in Demmel [Demmel (1997)], Chapter 3, Section 3.2.3, pages 113–115;
see the Matlab demo.

Proposition 21.7 also holds for the Frobenius norm; see Problem 21.4.
An interesting topic that we have not addressed is the actual computa-

tion of an SVD. This is a very interesting but tricky subject. Most methods
reduce the computation of an SVD to the diagonalization of a well-chosen
symmetric matrix which is not A>A; see Problem 20.1 and Problem 20.3.
Interested readers should read Section 5.4 of Demmel’s excellent book [Dem-
mel (1997)], which contains an overview of most known methods and an
extensive list of references.
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21.4 Principal Components Analysis (PCA)

Suppose we have a set of data consisting of n points X
1

, . . . , Xn, with each
Xi 2 Rd viewed as a row vector . Think of the Xi’s as persons, and if
Xi = (xi 1, . . . , xi d), each xi j is the value of some feature (or attribute) of
that person.

Example 21.5. For example, the Xi’s could be mathematicians, d = 2,
and the first component, xi 1, of Xi could be the year that Xi was born, and
the second component, xi 2, the length of the beard of Xi in centimeters.
Here is a small data set.

Name year length

Carl Friedrich Gauss 1777 0

Camille Jordan 1838 12

Adrien-Marie Legendre 1752 0

Bernhard Riemann 1826 15

David Hilbert 1862 2

Henri Poincaré 1854 5

Emmy Noether 1882 0

Karl Weierstrass 1815 0

Eugenio Beltrami 1835 2

Hermann Schwarz 1843 20

We usually form the n⇥d matrix X whose ith row is Xi, with 1  i  n.
Then the jth column is denoted by Cj (1  j  d). It is sometimes called a
feature vector , but this terminology is far from being universally accepted.
In fact, many people in computer vision call the data points Xi feature
vectors!

The purpose of principal components analysis, for short PCA, is to
identify patterns in data and understand the variance–covariance structure
of the data. This is useful for the following tasks:

(1) Data reduction: Often much of the variability of the data can be ac-
counted for by a smaller number of principal components .

(2) Interpretation: PCA can show relationships that were not previously
suspected.

Given a vector (a sample of measurements) x = (x
1

, . . . , xn) 2 Rn,
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recall that the mean (or average) x of x is given by

x =

Pn
i=1

xi

n
.

We let x � x denote the centered data point

x � x = (x
1

� x, . . . , xn � x).

In order to measure the spread of the xi’s around the mean, we define
the sample variance (for short, variance) var(x) (or s2) of the sample x by

var(x) =

Pn
i=1

(xi � x)2

n � 1
.

Example 21.6. If x = (1, 3,�1), x = 1+3�1

3

= 1, x � x = (0, 2,�2), and

var(x) = 0

2
+2

2
+(�2)

2

2

= 4. If y = (1, 2, 3), y = 1+2+3

3

= 2, y�y = (�1, 0, 1),

and var(y) = (�1)

2
+0

2
+1

2

2

= 2.

There is a reason for using n�1 instead of n. The above definition makes
var(x) an unbiased estimator of the variance of the random variable being
sampled. However, we don’t need to worry about this. Curious readers will
find an explanation of these peculiar definitions in Epstein [Epstein (2007)]
(Chapter 14, Section 14.5) or in any decent statistics book.

Given two vectors x = (x
1

, . . . , xn) and y = (y
1

, . . . , yn), the sample
covariance (for short, covariance) of x and y is given by

cov(x, y) =

Pn
i=1

(xi � x)(yi � y)

n � 1
.

Example 21.7. If we take x = (1, 3,�1) and y = (0, 2,�2), we know
from Example 21.6 that x � x = (0, 2,�2) and y � y = (�1, 0, 1). Thus,
cov(x, y) = 0(�1)+2(0)+(�2)(1)

2

= �1.

The covariance of x and y measures how x and y vary from the mean
with respect to each other . Obviously, cov(x, y) = cov(y, x) and cov(x, x) =
var(x).

Note that

cov(x, y) =
(x � x)>(y � y)

n � 1
.

We say that x and y are uncorrelated i↵ cov(x, y) = 0.
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Finally, given an n ⇥ d matrix X of n points Xi, for PCA to be mean-
ingful, it will be necessary to translate the origin to the centroid (or center
of gravity) µ of the Xi’s, defined by

µ =
1

n
(X

1

+ · · · +Xn).

Observe that if µ = (µ
1

, . . . , µd), then µj is the mean of the vector Cj (the
jth column of X).

We let X � µ denote the matrix whose ith row is the centered data
point Xi � µ (1  i  n). Then the sample covariance matrix (for short,
covariance matrix ) of X is the d ⇥ d symmetric matrix

⌃ =
1

n � 1
(X � µ)>(X � µ) = (cov(Ci, Cj)).

Example 21.8. Let X =

0

@
1 1
3 2

�1 3

1

A, the 3 ⇥ 2 matrix whose columns are

the vector x and y of Example 21.6. Then

µ =
1

3
[(1, 1) + (3, 2) + (�1, 3)] = (1, 2),

X � µ =

0

@
0 �1
2 0

�2 1

1

A ,

and

⌃ =
1

2

✓
0 2 �2

�1 0 1

◆0

@
0 �1
2 0

�2 1

1

A =

✓
4 �1

�1 1

◆
.

Remark: The factor 1

n�1

is irrelevant for our purposes and can be ignored.

Example 21.9. Here is the matrix X �µ in the case of our bearded math-
ematicians: since

µ
1

= 1828.4, µ
2

= 5.6,

we get the following centered data set.
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Name year length

Carl Friedrich Gauss �51.4 �5.6

Camille Jordan 9.6 6.4

Adrien-Marie Legendre �76.4 �5.6

Bernhard Riemann �2.4 9.4

David Hilbert 33.6 �3.6

Henri Poincaré 25.6 �0.6

Emmy Noether 53.6 �5.6

Karl Weierstrass 13.4 �5.6

Eugenio Beltrami 6.6 �3.6

Hermann Schwarz 14.6 14.4

See Figure 21.3.

Gauss

Jordan

Legendre

Riemann

Hilbert

Poincare

Noether

Weierstrass

Beltrami

Schwarz

Fig. 21.3 The centered data points of Example 21.9.

We can think of the vector Cj as representing the features of X in the di-
rection ej (the jth canonical basis vector in Rd, namely ej = (0, . . . , 1, . . . 0),
with a 1 in the jth position).
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If v 2 Rd is a unit vector, we wish to consider the projection of the
data points X

1

, . . . , Xn onto the line spanned by v. Recall from Euclidean
geometry that if x 2 Rd is any vector and v 2 Rd is a unit vector, the
projection of x onto the line spanned by v is

hx, viv.

Thus, with respect to the basis v, the projection of x has coordinate hx, vi.
If x is represented by a row vector and v by a column vector, then

hx, vi = xv.

Therefore, the vector Y 2 Rn consisting of the coordinates of the projec-
tions of X

1

, . . . , Xn onto the line spanned by v is given by Y = Xv, and
this is the linear combination

Xv = v
1

C
1

+ · · · + vdCd

of the columns of X (with v = (v
1

, . . . , vd)).
Observe that because µj is the mean of the vector Cj (the jth column

of X), we get

Y = Xv = v
1

µ
1

+ · · · + vdµd,

and so the centered point Y � Y is given by

Y � Y = v
1

(C
1

� µ
1

) + · · · + vd(Cd � µd) = (X � µ)v.

Furthermore, if Y = Xv and Z = Xw, then

cov(Y, Z) =
((X � µ)v)>(X � µ)w

n � 1

= v>
1

n � 1
(X � µ)>(X � µ)w

= v>⌃w,

where ⌃ is the covariance matrix of X. Since Y � Y has zero mean, we
have

var(Y ) = var(Y � Y ) = v>
1

n � 1
(X � µ)>(X � µ)v.

The above suggests that we should move the origin to the centroid µ of the
Xi’s and consider the matrix X � µ of the centered data points Xi � µ.

From now on beware that we denote the columns of X�µ by C
1

, . . . , Cd

and that Y denotes the centered point Y = (X � µ)v =
Pd

j=1

vjCj , where
v is a unit vector.
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Basic idea of PCA: The principal components of X are uncorrelated
projections Y of the data points X

1

, . . ., Xn onto some directions v (where
the v’s are unit vectors) such that var(Y ) is maximal. This suggests the
following definition:

Definition 21.2. Given an n ⇥ d matrix X of data points X
1

, . . . , Xn, if
µ is the centroid of the Xi’s, then a first principal component of X (first
PC) is a centered point Y

1

= (X � µ)v
1

, the projection of X
1

, . . . , Xn onto
a direction v

1

such that var(Y
1

) is maximized, where v
1

is a unit vector
(recall that Y

1

= (X�µ)v
1

is a linear combination of the Cj ’s, the columns
of X � µ).

More generally, if Y
1

, . . . , Yk are k principal components ofX along some
unit vectors v

1

, . . . , vk, where 1  k < d, a (k+1)th principal component of
X ((k + 1)th PC) is a centered point Yk+1

= (X � µ)vk+1

, the projection
of X

1

, . . . , Xn onto some direction vk+1

such that var(Yk+1

) is maximized,
subject to cov(Yh, Yk+1

) = 0 for all h with 1  h  k, and where vk+1

is a
unit vector (recall that Yh = (X�µ)vh is a linear combination of the Cj ’s).
The vh are called principal directions .

The following proposition is the key to the main result about PCA. This
result was already proven in Proposition 16.11 except that the eigenvalues
were listed in increasing order. For the reader’s convenience we prove it
again.

Proposition 21.8. If A is a symmetric d⇥d matrix with eigenvalues �
1

�
�
2

� · · · � �d and if (u
1

, . . . , ud) is any orthonormal basis of eigenvectors
of A, where ui is a unit eigenvector associated with �i, then

max
x 6=0

x>Ax

x>x
= �

1

(with the maximum attained for x = u
1

) and

max
x 6=0,x2{u1,...,uk}?

x>Ax

x>x
= �k+1

(with the maximum attained for x = uk+1

), where 1  k  d � 1.

Proof. First observe that

max
x 6=0

x>Ax

x>x
= max

x
{x>Ax | x>x = 1},

and similarly,

max
x 6=0,x2{u1,...,uk}?

x>Ax

x>x
= max

x

�
x>Ax | (x 2 {u

1

, . . . , uk}?) ^ (x>x = 1)
 
.
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Since A is a symmetric matrix, its eigenvalues are real and it can be di-
agonalized with respect to an orthonormal basis of eigenvectors, so let
(u

1

, . . . , ud) be such a basis. If we write

x =
dX

i=1

xiui,

a simple computation shows that

x>Ax =
dX

i=1

�ix
2

i .

If x>x = 1, then
Pd

i=1

x2

i = 1, and since we assumed that �
1

� �
2

� · · · �
�d, we get

x>Ax =
dX

i=1

�ix
2

i  �
1

✓ dX

i=1

x2

i

◆
= �

1

.

Thus,

max
x

�
x>Ax | x>x = 1

 
 �

1

,

and since this maximum is achieved for e
1

= (1, 0, . . . , 0), we conclude that

max
x

�
x>Ax | x>x = 1

 
= �

1

.

Next observe that x 2 {u
1

, . . . , uk}? and x>x = 1 i↵ x
1

= · · · = xk = 0
and

Pd
i=1

xi = 1. Consequently, for such an x, we have

x>Ax =
dX

i=k+1

�ix
2

i  �k+1

✓ dX

i=k+1

x2

i

◆
= �k+1

.

Thus,

max
x

�
x>Ax | (x 2 {u

1

, . . . , uk}?) ^ (x>x = 1)
 

 �k+1

,

and since this maximum is achieved for ek+1

= (0, . . . , 0, 1, 0, . . . , 0) with a
1 in position k + 1, we conclude that

max
x

�
x>Ax | (x 2 {u

1

, . . . , uk}?) ^ (x>x = 1)
 
= �k+1

,

as claimed.
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The quantity

x>Ax

x>x

is known as the Rayleigh ratio or Rayleigh–Ritz ratio (see Section 16.6 )
and Proposition 21.8 is often known as part of the Rayleigh–Ritz theorem.

Proposition 21.8 also holds if A is a Hermitian matrix and if we re-
place x>Ax by x⇤Ax and x>x by x⇤x. The proof is unchanged, since a
Hermitian matrix has real eigenvalues and is diagonalized with respect to
an orthonormal basis of eigenvectors (with respect to the Hermitian inner
product).

We then have the following fundamental result showing how the SVD
of X yields the PCs :

Theorem 21.3. (SVD yields PCA) Let X be an n⇥d matrix of data points
X

1

, . . . , Xn, and let µ be the centroid of the Xi’s. If X � µ = V DU> is
an SVD decomposition of X � µ and if the main diagonal of D consists of
the singular values �

1

� �
2

� · · · � �d, then the centered points Y
1

, . . . , Yd,
where

Yk = (X � µ)uk = kth column of V D

and uk is the kth column of U , are d principal components of X. Further-
more,

var(Yk) =
�2

k

n � 1

and cov(Yh, Yk) = 0, whenever h 6= k and 1  k, h  d.

Proof. Recall that for any unit vector v, the centered projection of the
points X

1

, . . . , Xn onto the line of direction v is Y = (X �µ)v and that the
variance of Y is given by

var(Y ) = v>
1

n � 1
(X � µ)>(X � µ)v.

Since X � µ = V DU>, we get

var(Y ) = v>
1

(n � 1)
(X � µ)>(X � µ)v

= v>
1

(n � 1)
UDV >V DU>v

= v>U
1

(n � 1)
D2U>v.
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Similarly, if Y = (X � µ)v and Z = (X � µ)w, then the covariance of Y
and Z is given by

cov(Y, Z) = v>U
1

(n � 1)
D2U>w.

Obviously, U 1

(n�1)

D2U> is a symmetric matrix whose eigenvalues are
�2
1

n�1

� · · · � �2
d

n�1

, and the columns of U form an orthonormal basis of
unit eigenvectors.

We proceed by induction on k. For the base case, k = 1, maximizing
var(Y ) is equivalent to maximizing

v>U
1

(n � 1)
D2U>v,

where v is a unit vector. By Proposition 21.8, the maximum of the above

quantity is the largest eigenvalue of U 1

(n�1)

D2U>, namely �2
1

n�1

, and it is
achieved for u

1

, the first columnn of U . Now we get

Y
1

= (X � µ)u
1

= V DU>u
1

,

and since the columns of U form an orthonormal basis, U>u
1

= e
1

=
(1, 0, . . . , 0), and so Y

1

is indeed the first column of V D.
By the induction hypothesis, the centered points Y

1

, . . . , Yk, where Yh =
(X � µ)uh and u

1

, . . . , uk are the first k columns of U , are k principal
components of X. Because

cov(Y, Z) = v>U
1

(n � 1)
D2U>w,

where Y = (X � µ)v and Z = (X � µ)w, the condition cov(Yh, Z) = 0 for
h = 1, . . . , k is equivalent to the fact that w belongs to the orthogonal com-
plement of the subspace spanned by {u

1

, . . . , uk}, and maximizing var(Z)
subject to cov(Yh, Z) = 0 for h = 1, . . . , k is equivalent to maximizing

w>U
1

(n � 1)
D2U>w,

where w is a unit vector orthogonal to the subspace spanned by
{u

1

, . . . , uk}. By Proposition 21.8, the maximum of the above quantity

is the (k+1)th eigenvalue of U 1

(n�1)

D2U>, namely
�2
k+1

n�1

, and it is achieved
for uk+1

, the (k + 1)th columnn of U . Now we get

Yk+1

= (X � µ)uk+1

= V DU>uk+1

,

and since the columns of U form an orthonormal basis, U>uk+1

= ek+1

,
and Yk+1

is indeed the (k+1)th column of V D, which completes the proof
of the induction step.
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The d columns u
1

, . . . , ud of U are usually called the principal directions
of X � µ (and X). We note that not only do we have cov(Yh, Yk) = 0
whenever h 6= k, but the directions u

1

, . . . , ud along which the data are
projected are mutually orthogonal.

Example 21.10. For the centered data set of our bearded mathematicians
(Example 21.9) we have X�µ = V ⌃U>, where ⌃ has two nonzero singular
values, �

1

= 116.9803,�
2

= 21.7812, and with

U =

✓
0.9995 0.0325
0.0325 �0.9995

◆
,

so the principal directions are u
1

= (0.9995, 0.0325) and u
2

=
(0.0325,�0.9995). Observe that u

1

is almost the direction of the x-axis,
and u

2

is almost the opposite direction of the y-axis. We also find that the
projections Y

1

and Y
2

along the principal directions are

V D =

0

BBBBBBBBBBBBBBB@

�51.5550 3.9249
9.8031 �6.0843

�76.5417 3.1116
�2.0929 �9.4731
33.4651 4.6912
25.5669 1.4325
53.3894 7.3408
13.2107 6.0330
6.4794 3.8128
15.0607 �13.9174

1

CCCCCCCCCCCCCCCA

, with X � µ =

0

BBBBBBBBBBBBBBB@

�51.4000 �5.6000
9.6000 6.4000

�76.4000 �5.6000
�2.4000 9.4000
33.6000 �3.6000
25.6000 �0.6000
53.6000 �5.6000
13.4000 �5.6000
6.6000 �3.6000
14.6000 14.4000

1

CCCCCCCCCCCCCCCA

.

See Figures 21.4, 21.5, and 21.6.

We know from our study of SVD that �2

1

, . . . ,�2

d are the eigenvalues
of the symmetric positive semidefinite matrix (X � µ)>(X � µ) and that
u
1

, . . . , ud are corresponding eigenvectors. Numerically, it is preferable to
use SVD on X � µ rather than to compute explicitly (X � µ)>(X � µ)
and then diagonalize it. Indeed, the explicit computation of A>A from
a matrix A can be numerically quite unstable, and good SVD algorithms
avoid computing A>A explicitly.

In general, since an SVD of X is not unique, the principal directions
u
1

, . . . , ud are not unique. This can happen when a data set has some
rotational symmetries, and in such a case, PCA is not a very good method
for analyzing the data set.
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u1

u2

GaussLegendre

Riemann

Jordan

Schwarz

Noether
Weierstrass

Hilbert

Poincaire

Beltrami

Fig. 21.4 The centered data points of Example 21.9 and the two principal directions of
Example 21.10.

21.5 Best A�ne Approximation

A problem very close to PCA (and based on least squares) is to best approx-
imate a data set of n points X

1

, . . . , Xn, with Xi 2 Rd, by a p-dimensional
a�ne subspace A of Rd, with 1  p  d � 1 (the terminology rank d � p is
also used).

First consider p = d � 1. Then A = A
1

is an a�ne hyperplane (in Rd),
and it is given by an equation of the form

a
1

x
1

+ · · · + adxd + c = 0.

By best approximation, we mean that (a
1

, . . . , ad, c) solves the homogeneous
linear system

0

B@
x
1 1

· · · x
1 d 1

...
...

...
...

xn 1

· · · xn d 1

1

CA

0

BBB@

a
1

...
ad
c

1

CCCA
=

0

BBB@

0
...
0
0

1

CCCA

in the least squares sense, subject to the condition that a = (a
1

, . . . , ad) is
a unit vector , that is, a>a = 1, where Xi = (xi 1, · · · , xi d).
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Gauss

Jordan

Schwarz

Poincaire

Legendre

Beltrami

Riemann

Hilbert

Noether

Weierstrass

u1

Fig. 21.5 The first principal components of Example 21.10, i.e. the projection of the
centered data points onto the u1 line.

If we form the symmetric matrix
0

B@
x
1 1

· · · x
1 d 1

...
...

...
...

xn 1

· · · xn d 1

1

CA

>0

B@
x
1 1

· · · x
1 d 1

...
...

...
...

xn 1

· · · xn d 1

1

CA

involved in the normal equations, we see that the bottom row (and last
column) of that matrix is

nµ
1

· · · nµd n,

where nµj =
Pn

i=1

xi j is n times the mean of the column Cj of X.
Therefore, if (a

1

, . . . , ad, c) is a least squares solution, that is, a solution
of the normal equations, we must have

nµ
1

a
1

+ · · · + nµdad + nc = 0,

that is,

a
1

µ
1

+ · · · + adµd + c = 0,

which means that the hyperplane A
1

must pass through the centroid µ of
the data points X

1

, . . . , Xn. Then we can rewrite the original system with
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Legendre Gauss

Riemann

Jordan

Schwarz

Beltrami

Weierstrass

Poincare

Hilbert

Noether

u2

Fig. 21.6 The second principal components of Example 21.10, i.e. the projection of the
centered data points onto the u2 line.

respect to the centered data Xi � µ, find that the variable c drops out, get
the system

(X � µ)a = 0,

where a = (a
1

, . . . , ad).
Thus, we are looking for a unit vector a solving (X � µ)a = 0 in the

least squares sense, that is, some a such that a>a = 1 minimizing

a>(X � µ)>(X � µ)a.

Compute some SVD V DU> of X � µ, where the main diagonal of D
consists of the singular values �

1

� �
2

� · · · � �d of X � µ arranged in
descending order. Then

a>(X � µ)>(X � µ)a = a>UD2U>a,

where D2 = diag(�2

1

, . . . ,�2

d) is a diagonal matrix, so pick a to be the last
column in U (corresponding to the smallest eigenvalue �2

d of (X �µ)>(X �
µ)). This is a solution to our best fit problem.

Therefore, if Ud�1

is the linear hyperplane defined by a, that is,

Ud�1

= {u 2 Rd | hu, ai = 0},
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where a is the last column in U for some SVD V DU> of X � µ, we have
shown that the a�ne hyperplane A

1

= µ + Ud�1

is a best approximation
of the data set X

1

, . . . , Xn in the least squares sense.
It is easy to show that this hyperplane A

1

= µ + Ud�1

minimizes the
sum of the square distances of each Xi to its orthogonal projection onto
A

1

. Also, since Ud�1

is the orthogonal complement of a, the last column
of U , we see that Ud�1

is spanned by the first d � 1 columns of U , that is,
the first d � 1 principal directions of X � µ.

All this can be generalized to a best (d� k)-dimensional a�ne subspace
Ak approximating X

1

, . . . , Xn in the least squares sense (1  k  d � 1).
Such an a�ne subspace Ak is cut out by k independent hyperplanes Hi

(with 1  i  k), each given by some equation

ai 1x1

+ · · · + ai dxd + ci = 0.

If we write ai = (ai 1, · · · , ai d), to say that the Hi are independent means
that a

1

, . . . , ak are linearly independent. In fact, we may assume that
a
1

, . . . , ak form an orthonormal system.
Then finding a best (d� k)-dimensional a�ne subspace Ak amounts to

solving the homogeneous linear system

0

B@
X 1 0 · · · 0 0 0
...

...
...
. . .

...
...

...
0 0 0 · · · 0 X 1

1

CA

0

BBBBB@

a
1

c
1

...
ak
ck

1

CCCCCA
=

0

B@
0
...
0

1

CA ,

in the least squares sense, subject to the conditions a>i aj = �i j , for all i, j
with 1  i, j  k, where the matrix of the system is a block diagonal matrix
consisting of k diagonal blocks (X,1), where 1 denotes the column vector
(1, . . . , 1) 2 Rn.

Again it is easy to see that each hyperplane Hi must pass through the
centroid µ of X

1

, . . . , Xn, and by switching to the centered data Xi �µ we
get the system

0

B@
X � µ 0 · · · 0

...
...
. . .

...
0 0 · · · X � µ

1

CA

0

B@
a
1

...
ak

1

CA =

0

B@
0
...
0

1

CA ,

with a>i aj = �i j for all i, j with 1  i, j  k.
If V DU> = X � µ is an SVD decomposition, it is easy to see that

a least squares solution of this system is given by the last k columns of
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U , assuming that the main diagonal of D consists of the singular values
�
1

� �
2

� · · · � �d of X � µ arranged in descending order. But now the
(d � k)-dimensional subspace Ud�k cut out by the hyperplanes defined by
a
1

, . . . , ak is simply the orthogonal complement of (a
1

, . . . , ak), which is the
subspace spanned by the first d � k columns of U .

So the best (d � k)-dimensional a�ne subpsace Ak approximating
X

1

, . . . , Xn in the least squares sense is Ak = µ + Ud�k, where Ud�k is
the linear subspace spanned by the first d�k principal directions of X �µ,
that is, the first d � k columns of U . Consequently, we get the following
interesting interpretation of PCA (actually, principal directions):

Theorem 21.4. Let X be an n⇥d matrix of data points X
1

, . . . , Xn, and let
µ be the centroid of the Xi’s. If X � µ = V DU> is an SVD decomposition
of X � µ and if the main diagonal of D consists of the singular values
�
1

� �
2

� · · · � �d, then a best (d � k)-dimensional a�ne approximation
Ak of X

1

, . . . , Xn in the least squares sense is given by

Ak = µ+ Ud�k,

where Ud�k is the linear subspace spanned by the first d � k columns of U ,
the first d � k principal directions of X � µ (1  k  d � 1).

Example 21.11. Going back to Example 21.10, a best 1-dimensional a�ne
approximation A

1

is the a�ne line passing through (µ
1

, µ
2

) = (1824.4, 5.6)
of direction u

1

= (0.9995, 0.0325).

Example 21.12. Suppose in the data set of Example 21.5 that we add
the month of birth of every mathematician as a feature. We obtain the
following data set.

Name month year length

Carl Friedrich Gauss 4 1777 0

Camille Jordan 1 1838 12

Adrien-Marie Legendre 9 1752 0

Bernhard Riemann 9 1826 15

David Hilbert 1 1862 2

Henri Poincaré 4 1854 5

Emmy Noether 3 1882 0

Karl Weierstrass 10 1815 0

Eugenio Beltrami 10 1835 2

Hermann Schwarz 1 1843 20
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The mean of the first column is 5.2, and the centered data set is given
below.

Name month year length

Carl Friedrich Gauss �1.2 �51.4 �5.6

Camille Jordan �4.2 9.6 6.4

Adrien-Marie Legendre 3.8 �76.4 �5.6

Bernhard Riemann 3.8 �2.4 9.4

David Hilbert �4.2 33.6 �3.6

Henri Poincaré �1.2 25.6 �0.6

Emmy Noether �2.2 53.6 �5.6

Karl Weierstrass 4.8 13.4 �5.6

Eugenio Beltrami 4.8 6.6 �3.6

Hermann Schwarz �4.2 14.6 14.4

Running SVD on this data set we get

U =

0

@
0.0394 0.1717 0.9844

�0.9987 0.0390 0.0332
�0.0327 �0.9844 0.1730

1

A , D =

0

BBBBBBBBBBBBBBB@

117.0706 0 0
0 22.0390 0
0 0 10.1571
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

1

CCCCCCCCCCCCCCCA

,

and

V D =

0

BBBBBBBBBBBBBBB@

51.4683 3.3013 �3.8569
�9.9623 �6.6467 �2.7082
76.6327 3.1845 0.2348
2.2393 �8.6943 5.2872

�33.6038 4.1334 �3.6415
�25.5941 1.3833 �0.4350
�53.4333 7.2258 �1.3547
�13.0100 6.8594 4.2010
�6.2843 4.6254 4.3212
�15.2173 �14.3266 �1.1581

1

CCCCCCCCCCCCCCCA

,
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X � µ =

0

BBBBBBBBBBBBBBB@

�1.2000 �51.4000 �5.6000
�4.2000 9.6000 6.4000
3.8000 �76.4000 �5.6000
3.8000 �2.4000 9.4000

�4.2000 33.6000 �3.6000
�1.2000 25.6000 �0.6000
�2.2000 53.6000 �5.6000
4.8000 13.4000 �5.6000
4.8000 6.6000 �3.6000

�4.2000 14.6000 14.4000

1

CCCCCCCCCCCCCCCA

.

The first principal direction u
1

= (0.0394,�0.9987,�0.0327) is basically
the opposite of the y-axis, and the most significant feature is the year of
birth. The second principal direction u

2

= (0.1717, 0.0390,�0.9844) is close
to the opposite of the z-axis, and the second most significant feature is the
lenght of beards. A best a�ne plane is spanned by the vectors u

1

and u
2

.

There are many applications of PCA to data compression, dimension
reduction, and pattern analysis. The basic idea is that in many cases, given
a data set X

1

, . . . , Xn, with Xi 2 Rd, only a “small” subset of m < d of
the features is needed to describe the data set accurately.

If u
1

, . . . , ud are the principal directions of X � µ, then the first m
projections of the data (the first m principal components, i.e., the first m
columns of V D) onto the first m principal directions represent the data
without much loss of information. Thus, instead of using the original data
points X

1

, . . . , Xn, with Xi 2 Rd, we can use their projections onto the first
m principal directions Y

1

, . . . , Ym, where Yi 2 Rm and m < d, obtaining a
compressed version of the original data set.

For example, PCA is used in computer vision for face recognition.
Sirovitch and Kirby (1987) seem to be the first to have had the idea of
using PCA to compress facial images. They introduced the term eigen-
picture to refer to the principal directions, ui. However, an explicit face
recognition algorithm was given only later by Turk and Pentland (1991).
They renamed eigenpictures as eigenfaces.

For details on the topic of eigenfaces, see Forsyth and Ponce [Forsyth
and Ponce (2002)] (Chapter 22, Section 22.3.2), where you will also find
exact references to Turk and Pentland’s papers.

Another interesting application of PCA is to the recognition of hand-
written digits. Such an application is described in Hastie, Tibshirani, and
Friedman, [Hastie et al. (2009)] (Chapter 14, Section 14.5.1).
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21.6 Summary

The main concepts and results of this chapter are listed below:

• Least squares problems.
• Existence of a least squares solution of smallest norm (Theorem 21.1).
• The pseudo-inverse A+ of a matrix A.
• The least squares solution of smallest norm is given by the pseudo-
inverse (Theorem 21.2)

• Projection properties of the pseudo-inverse.
• The pseudo-inverse of a normal matrix.
• The Penrose characterization of the pseudo-inverse.
• Data compression and SVD.
• Best approximation of rank < r of a matrix.
• Principal component analysis .
• Review of basic statistical concepts: mean, variance, covariance, co-
variance matrix .

• Centered data, centroid .
• The principal components (PCA).
• The Rayleigh–Ritz theorem (Theorem 21.8).
• The main theorem: SVD yields PCA (Theorem 21.3).
• Best a�ne approximation.
• SVD yields a best a�ne approximation (Theorem 21.4).
• Face recognition, eigenfaces.

21.7 Problems

Problem 21.1. Consider the overdetermined system in the single variable
x:

a
1

x = b
1

, . . . , amx = bm,

with a2
1

+ · · · + a2m 6= 0. Prove that the least squares solution of smallest
norm is given by

x+ =
a
1

b
1

+ · · · + ambm
a2
1

+ · · · + a2m
.

Problem 21.2. Let X be an m ⇥ n real matrix. For any strictly positive
constant K > 0, the matrix X>X +KIn is invertible. Prove that the limit
of the matrix (X>X + KIn)�1X> when K goes to zero is equal to the
pseudo-inverse X+ of X.
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Problem 21.3. Use Matlab to find the pseudo-inverse of the 8⇥ 6 matrix

A =

0

BBBBBBBBBBB@

64 2 3 61 60 6
9 55 54 12 13 51
17 47 46 20 21 43
40 26 27 37 36 30
32 34 35 29 28 38
41 23 22 44 45 19
49 15 14 52 53 11
8 58 59 5 4 62

1

CCCCCCCCCCCA

.

Observe that the sums of the columns are all equal to to 256. Let b be
the vector of dimension 8 whose coordinates are all equal to 256. Find the
solution x+ of the system Ax = b.

Problem 21.4. The purpose of this problem is to show that Proposition
21.7 (the Eckart–Young theorem) also holds for the Frobenius norm. This
problem is adapted from Strang [Strang (2019)], Section I.9.

Suppose the m ⇥ n matrix B of rank at most k minimizes kA � BkF .
Start with an SVD of B,

B = V

✓
D 0
0 0

◆
U>,

where D is a diagonal k ⇥ k matrix. We can write

A = V

✓
L+ E +R F

G H

◆
U>,

where L is strictly lower triangular in the first k rows, E is diagonal, and
R is strictly upper triangular, and let

C = V

✓
L+D +R F

0 0

◆
U>,

which clearly has rank  k.
(1) Prove that

kA � Bk2F = kA � Ck2F + kLk2F + kRk2F + kFk2F .

Since kA � BkF is minimal, show that L = R = F = 0.
Similarly, show that G = 0.
(2) We have

V >AU =

✓
E 0
0 H

◆
, V >BU =

✓
D 0
0 0

◆
,

where E is diagonal, so deduce that
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(1) D = diag(�
1

, . . . ,�k).
(2) The singular values of H must be the smallest n� k singular values of

A.
(3) The minimum of kA � BkF must be kHkF = (�2

k+1

+ · · · + �2

r)
1/2.

Problem 21.5. Prove that the closest rank 1 approximation (in k k
2

) of
the matrix

A =

✓
3 0
4 5

◆

is

A
1

=
3

2

✓
1 1
3 3

◆
.

Show that the Eckart–Young theorem fails for the operator norm k k1
by finding a rank 1 matrix B such that kA � Bk1 < kA � A

1

k1.

Problem 21.6. Find a closest rank 1 approximation (in k k
2

) for the ma-
trices

A =

0

@
3 0 0
0 2 0
0 0 1

1

A , A =

✓
0 3
2 0

◆
, A =

✓
2 1
1 2

◆
.

Problem 21.7. Find a closest rank 1 approximation (in k k
2

) for the matrix

A =

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆
.

Problem 21.8. Let S be a real symmetric positive definite matrix and let
S = U⌃U> be a diagonalization of S. Prove that the closest rank 1 matrix
(in the L2-norm) to S is u

1

�
1

u>
1

, where u
1

is the first column of U .
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Chapter 22

Annihilating Polynomials and the
Primary Decomposition

In this chapter all vector spaces are defined over an arbitrary field K.
In Section 6.7 we explained that if f : E ! E is a linear map on a K-

vector space E, then for any polynomial p(X) = a
0

Xd + a
1

Xd�1 + · · ·+ ad
with coe�cients in the field K, we can define the linear map p(f) : E ! E
by

p(f) = a
0

fd + a
1

fd�1 + · · · + adid,

where fk = f � · · · � f , the k-fold composition of f with itself. Note that

p(f)(u) = a
0

fd(u) + a
1

fd�1(u) + · · · + adu,

for every vector u 2 E. Then we showed that if E is finite-dimensional
and if �f (X) = det(XI � f) is the characteristic polynomial of f , by the
Cayley–Hamilton theorem, we have

�f (f) = 0.

This fact suggests looking at the set of all polynomials p(X) such that

p(f) = 0.

Such polynomials are called annihilating polynomials of f , the set of all
these polynomials, denoted Ann(f), is called the annihilator of f , and the
Cayley-Hamilton theorem shows that it is nontrivial since it contains a
polynomial of positive degree. It turns out that Ann(f) contains a poly-
nomial mf of smallest degree that generates Ann(f), and this polynomial
divides the characteristic polynomial. Furthermore, the polynomial mf en-
capsulates a lot of information about f , in particular whether f can be
diagonalized. One of the main reasons for this is that a scalar � 2 K is a
zero of the minimal polynomial mf if and only if � is an eigenvalue of f .

757
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The first main result is Theorem 22.2 which states that if f : E ! E is
a linear map on a finite-dimensional space E, then f is diagonalizable i↵
its minimal polynomial m is of the form

m = (X � �
1

) · · · (X � �k),

where �
1

, . . . ,�k are distinct elements of K.
One of the technical tools used to prove this result is the notion of f -

conductor ; see Definition 22.7. As a corollary of Theorem 22.2 we obtain
results about finite commuting families of diagonalizable or triangulable
linear maps.

If f : E ! E is a linear map and � 2 K is an eigenvalue of f , recall that
the eigenspace E� associated with � is the kernel of the linear map �id�f .
If all the eigenvalues �

1

. . . ,�k of f are in K and if f is diagonalizable, then

E = E�1 � · · · � E�k ,

but in general there are not enough eigenvectors to span E. A remedy is to
generalize the notion of eigenvector and look for (nonzero) vectors u (called
generalized eigenvectors) such that

(�id � f)r(u) = 0, for some r � 1.

Then it turns out that if the minimal polynomial of f is of the form

m = (X � �
1

)r1 · · · (X � �k)
rk ,

then r = ri does the job for �i; that is, if we let

Wi = Ker (�iid � f)ri ,

then

E = W
1

� · · · � Wk.

The above facts are parts of the primary decomposition theorem (Theorem
22.4). It is a special case of a more general result involving the factorization
of the minimal polynomialm into its irreducible monic factors; see Theorem
22.3.

Theorem 22.4 implies that every linear map f that has all its eigenval-
ues in K can be written as f = D+N , where D is diagonalizable and N is
nilpotent (which means that Nr = 0 for some positive integer r). Further-
more D and N commute and are unique. This is the Jordan decomposition,
Theorem 22.5.
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The Jordan decomposition suggests taking a closer look at nilpotent
maps. We prove that for any nilpotent linear map f : E ! E on a finite-
dimensional vector space E of dimension n over a field K, there is a basis
of E such that the matrix N of f is of the form

N =

0

BBBBB@

0 ⌫
1

0 · · · 0 0
0 0 ⌫

2

· · · 0 0
...

...
...

...
...

...
0 0 0 · · · 0 ⌫n
0 0 0 · · · 0 0

1

CCCCCA
,

where ⌫i = 1 or ⌫i = 0; see Theorem 22.6. As a corollary we obtain the
Jordan form; which involves matrices of the form

Jr(�) =

0

BBBBBB@

� 1 0 · · · 0
0 � 1 · · · 0
...
...
. . .

. . .
...

0 0 0
. . . 1

0 0 0 · · · �

1

CCCCCCA
,

called Jordan blocks; see Theorem 22.7.

22.1 Basic Properties of Polynomials; Ideals, GCD’s

In order to understand the structure of Ann(f), we need to review three
basic properties of polynomials. We refer the reader to Ho↵man and Kunze,
[Ho↵man and Kunze (1971)], Artin [Artin (1991)], Dummit and Foote
[Dummit and Foote (1999)], and Godement [Godement (1963)] for com-
prehensive discussions of polynomials and their properties.

We begin by recalling some basic nomenclature. Given a field K, any
nonzero polynomial p(X) 2 K[X] has some monomial of highest degree
a
0

Xn with a
0

6= 0, and the integer n = deg(p) � 0 is called the degree of p.
It is convenient to set the degree of the zero polynomial (denoted by 0) to
be

deg(0) = �1.

A polynomial p(X) such that the coe�cient a
0

of its monomial of highest
degree is 1 is called a monic polynomial. For example, let K = R. The
polynomial p(X) = 4X7 + 2X5 is of degree 7 but is not monic since a

0

=
4. On the other hand, the polynomial p(X) = X3 � 3X + 1 is a monic
polynomial of degree 3.

We now discuss three key concepts of polynomial algebra:
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(1) Ideals
(2) Greatest common divisors and the Bezout identity.
(3) Irreducible polynomials and prime factorization.

Recall the definition a of ring (see Definition 2.2).

Definition 22.1. A ring is a set A equipped with two operations +: A ⇥
A ! A (called addition) and ⇤ : A ⇥ A ! A (called multiplication) having
the following properties:

(R1) A is an abelian group w.r.t. +;
(R2) ⇤ is associative and has an identity element 1 2 A;
(R3) ⇤ is distributive w.r.t. +.

The identity element for addition is denoted 0, and the additive inverse
of a 2 A is denoted by �a. More explicitly, the axioms of a ring are the
following equations which hold for all a, b, c 2 A:

a+ (b+ c) = (a+ b) + c (associativity of +) (22.1)

a+ b = b+ a (commutativity of +) (22.2)

a+ 0 = 0 + a = a (zero) (22.3)

a+ (�a) = (�a) + a = 0 (additive inverse) (22.4)

a ⇤ (b ⇤ c) = (a ⇤ b) ⇤ c (associativity of ⇤) (22.5)

a ⇤ 1 = 1 ⇤ a = a (identity for ⇤) (22.6)

(a+ b) ⇤ c = (a ⇤ c) + (b ⇤ c) (distributivity) (22.7)

a ⇤ (b+ c) = (a ⇤ b) + (a ⇤ c) (distributivity) (22.8)

The ring A is commutative if

a ⇤ b = b ⇤ a for all a, b 2 A.

From (22.7) and (22.8), we easily obtain

a ⇤ 0 = 0 ⇤ a = 0 (22.9)

a ⇤ (�b) = (�a) ⇤ b = �(a ⇤ b). (22.10)

The first crucial notion is that of an ideal.

Definition 22.2. Given a commutative ring A with unit 1, an ideal of A
is a nonempty subset I of A satisfying the following properties:

(ID1) If a, b 2 I, then b � a 2 I.
(ID2) If a 2 I, then ax 2 I for all x 2 A.
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An ideal I is a principal ideal if there is some a 2 I, called a generator ,
such that

I = {ax | x 2 A}.
In this case we usually write I = aA or I = (a). The ideal I = (0) = {0}
is called the null ideal (or zero ideal).

The following proposition is a fundamental result about polynomials
over a field.

Proposition 22.1. If K is a field, then every polynomial ideal I ✓ K[X]
is a principal ideal. As a consequence, if I is not the zero ideal, then there
is a unique monic polynomial

p(X) = Xn + a
1

Xn�1 + · · · + an�1

X + an

in I such that I = (p).

Proof. This result is not hard to prove if we recall that polynomials can
divided. Given any two nonzero polynomials f, g 2 K[X], there are unique
polynomials q, r such that

f = qg + r, and deg(r) < deg(g). (*)

If I is not the zero ideal, there is some polynomial of smallest degree in I,
and since K is a field, by suitable multiplication by a scalar, we can make
sure that this polynomial is monic. Thus, let f be a monic polynomial of
smallest degree in I. By (ID2), it is clear that (f) ✓ I. Now let g 2 I.
Using (⇤), there exist unique q, r 2 K[X] such that

g = qf + r and deg(r) < deg(f).

If r 6= 0, there is some � 6= 0 in K such that �r is a monic polynomial, and
since �r = �g � �qf , with f, g 2 I, by (ID1) and (ID2), we have �r 2 I,
where deg(�r) < deg(f) and �r is a monic polynomial, contradicting the
minimality of the degree of f . Thus, r = 0, and g 2 (f). The uniqueness
of the monic polynomial f is left as an exercise.

We will also need to know that the greatest common divisor of polyno-
mials exist. Given any two nonzero polynomials f, g 2 K[X], recall that f
divides g if g = qf for some q 2 K[X].

Definition 22.3. Given any two nonzero polynomials f, g 2 K[X], a poly-
nomial d 2 K[X] is a greatest common divisor of f and g (for short, a gcd
of f and g) if d divides f and g and whenever h 2 K[X] divides f and g,
then h divides d. We say that f and g are relatively prime if 1 is a gcd of
f and g.
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Note that f and g are relatively prime i↵ all of their gcd’s are constants
(scalars in K), or equivalently, if f, g have no common divisor q of degree
deg(q) � 1. For example, over R, gcd(X2 � 1, X3 +X2 � X � 1) = (X �
1)(X+1) sinceX3+X2�X�1 = (X�1)(X+1)2, while gcd(X3+1, X�1) =
1.

We can characterize gcd’s of polynomials as follows.

Proposition 22.2. Let K be a field and let f, g 2 K[X] be any two nonzero
polynomials. For every polynomial d 2 K[X], the following properties are
equivalent:

(1) The polynomial d is a gcd of f and g.
(2) The polynomial d divides f and g and there exist u, v 2 K[X] such that

d = uf + vg.

(3) The ideals (f), (g), and (d) satisfy the equation

(d) = (f) + (g).

In addition, d 6= 0, and d is unique up to multiplication by a nonzero
scalar in K.

As a consequence of Proposition 22.2, two nonzero polynomials f, g 2
K[X] are relatively prime i↵ there exist u, v 2 K[X] such that

uf + vg = 1.

The identity

d = uf + vg

of Part (2) of Proposition 22.2 is often called the Bezout identity . For an
example of Bezout’s identity, take K = R. Since X3 + 1 and X � 1 are
relatively prime, we have
1 = 1/2(X3 + 1) � 1/2(X2 +X + 1)(X � 1).

An important consequence of the Bezout identity is the following result.

Proposition 22.3. (Euclid’s proposition) Let K be a field and let f, g, h 2
K[X] be any nonzero polynomials. If f divides gh and f is relatively prime
to g, then f divides h.

Proposition 22.3 can be generalized to any number of polynomials.

Proposition 22.4. Let K be a field and let f, g
1

, . . . , gm 2 K[X] be some
nonzero polynomials. If f and gi are relatively prime for all i, 1  i  m,
then f and g

1

· · · gm are relatively prime.
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Definition 22.3 is generalized to any finite number of polynomials as
follows.

Definition 22.4. Given any nonzero polynomials f
1

, . . . , fn 2 K[X], where
n � 2, a polynomial d 2 K[X] is a greatest common divisor of f

1

, . . . , fn
(for short, a gcd of f

1

, . . . , fn) if d divides each fi and whenever h 2 K[X]
divides each fi, then h divides d. We say that f

1

, . . . , fn are relatively prime
if 1 is a gcd of f

1

, . . . , fn.

It is easily shown that Proposition 22.2 can be generalized to any finite
number of polynomials.

Proposition 22.5. Let K be a field and let f
1

, . . . , fn 2 K[X] be any
n � 2 nonzero polynomials. For every polynomial d 2 K[X], the following
properties are equivalent:

(1) The polynomial d is a gcd of f
1

, . . . , fn.
(2) The polynomial d divides each fi and there exist u

1

, . . . , un 2 K[X]
such that

d = u
1

f
1

+ · · · + unfn.

(3) The ideals (fi), and (d) satisfy the equation

(d) = (f
1

) + · · · + (fn).

In addition, d 6= 0, and d is unique up to multiplication by a nonzero
scalar in K.

As a consequence of Proposition 22.5, any n � 2 nonzero polynomials
f
1

, . . . , fn 2 K[X] are relatively prime i↵ there exist u
1

, . . . , un 2 K[X]
such that

u
1

f
1

+ · · · + unfn = 1,

the Bezout identity .
We will also need to know that every nonzero polynomial (over a field)

can be factored into irreducible polynomials, which is the generalization of
the prime numbers to polynomials.

Definition 22.5. Given a field K, a polynomial p 2 K[X] is irreducible
or indecomposable or prime if deg(p) � 1 and if p is not divisible by any
polynomial q 2 K[X] such that 1  deg(q) < deg(p). Equivalently, p is
irreducible if deg(p) � 1 and if p = q

1

q
2

, then either q
1

2 K or q
2

2 K (and
of course, q

1

6= 0, q
2

6= 0).
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Every polynomial aX + b of degree 1 is irreducible. Over the field R,
the polynomial X2 +1 is irreducible (why?), but X3 +1 is not irreducible,
since

X3 + 1 = (X + 1)(X2 � X + 1).

The polynomial X2 � X + 1 is irreducible over R (why?). It would seem
that X4 + 1 is irreducible over R, but in fact,

X4 + 1 = (X2 �
p
2X + 1)(X2 +

p
2X + 1).

However, in view of the above factorization, X4 + 1 is irreducible over Q.
It can be shown that the irreducible polynomials over R are the polyno-

mials of degree 1 or the polynomials of degree 2 of the form aX2 + bX + c,
for which b2 � 4ac < 0 (i.e., those having no real roots). This is not easy
to prove! Over the complex numbers C, the only irreducible polynomials
are those of degree 1. This is a version of a fact often referred to as the
“Fundamental Theorem of Algebra.”

Observe that the definition of irreducibilty implies that any finite num-
ber of distinct irreducible polynomials are relatively prime.

The following fundamental result can be shown

Theorem 22.1. Given any field K, for every nonzero polynomial

f = adX
d + ad�1

Xd�1 + · · · + a
0

of degree d = deg(f) � 1 in K[X], there exists a unique set {hp
1

, k
1

i,
. . . , hpm, kmi} such that

f = adp
k1
1

· · · pkm
m ,

where the pi 2 K[X] are distinct irreducible monic polynomials, the ki are
(not necessarily distinct) integers, and with m � 1, ki � 1.

We can now return to minimal polynomials.

22.2 Annihilating Polynomials and the Minimal Polynomial

Given a linear map f : E ! E, it is easy to check that the set Ann(f) of
polynomials that annihilate f is an ideal. Furthermore, when E is finite-
dimensional, the Cayley–Hamilton theorem implies that Ann(f) is not the
zero ideal. Therefore, by Proposition 22.1, there is a unique monic polyno-
mial mf that generates Ann(f).

Definition 22.6. If f : E ! E is a linear map on a finite-dimensional
vector space E, the unique monic polynomial mf (X) that generates the
ideal Ann(f) of polynomials which annihilate f (the annihilator of f) is
called the minimal polynomial of f .
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The minimal polynomial mf of f is the monic polynomial of smallest
degree that annihilates f . Thus, the minimal polynomial divides the char-
acteristic polynomial �f , and deg(mf ) � 1. For simplicity of notation, we
often write m instead of mf .

If A is any n⇥n matrix, the set Ann(A) of polynomials that annihilate
A is the set of polynomials

p(X) = a
0

Xd + a
1

Xd�1 + · · · + ad�1

X + ad

such that

a
0

Ad + a
1

Ad�1 + · · · + ad�1

A+ adI = 0.

It is clear that Ann(A) is a nonzero ideal and its unique monic generator is
called the minimal polynomial of A. We check immediately that if Q is an
invertible matrix, then A and Q�1AQ have the same minimal polynomial.
Also, if A is the matrix of f with respect to some basis, then f and A have
the same minimal polynomial.

The zeros (in K) of the minimal polynomial of f and the eigenvalues of
f (in K) are intimately related.

Proposition 22.6. Let f : E ! E be a linear map on some finite-
dimensional vector space E. Then � 2 K is a zero of the minimal poly-
nomial mf (X) of f i↵ � is an eigenvalue of f i↵ � is a zero of �f (X).
Therefore, the minimal and the characteristic polynomials have the same
zeros (in K), except for multiplicities.

Proof. First assume that m(�) = 0 (with � 2 K, and writing m instead
of mf ). If so, using polynomial division, m can be factored as

m = (X � �)q,

with deg(q) < deg(m). Since m is the minimal polynomial, q(f) 6= 0, so
there is some nonzero vector v 2 E such that u = q(f)(v) 6= 0. But then,
because m is the minimal polynomial,

0 = m(f)(v)

= (f � �id)(q(f)(v))

= (f � �id)(u),

which shows that � is an eigenvalue of f .
Conversely, assume that � 2 K is an eigenvalue of f . This means that

for some u 6= 0, we have f(u) = �u. Now it is easy to show that

m(f)(u) = m(�)u,

and since m is the minimal polynomial of f , we have m(f)(u) = 0, so
m(�)u = 0, and since u 6= 0, we must have m(�) = 0.



March 25, 2021 15:30 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 766

766 Annihilating Polynomials; Primary Decomposition

Proposition 22.7. Let f : E ! E be a linear map on some finite-
dimensional vector space E. If f diagonalizable, then its minimal poly-
nomial is a product of distinct factors of degree 1.

Proof. If we assume that f is diagonalizable, then its eigenvalues are all in
K, and if �

1

, . . . ,�k are the distinct eigenvalues of f , and then by Proposi-
tion 22.6, the minimal polynomial m of f must be a product of powers of
the polynomials (X � �i). Actually, we claim that

m = (X � �
1

) · · · (X � �k).

For this we just have to show that m annihilates f . However, for any
eigenvector u of f , one of the linear maps f � �iid sends u to 0, so

m(f)(u) = (f � �
1

id) � · · · � (f � �kid)(u) = 0.

Since E is spanned by the eigenvectors of f , we conclude that

m(f) = 0.

It turns out that the converse of Proposition 22.7 is true, but this will take
a little work to establish it.

22.3 Minimal Polynomials of Diagonalizable
Linear Maps

In this section we prove that if the minimal polynomial mf of a linear map
f is of the form

mf = (X � �
1

) · · · (X � �k)

for distinct scalars �
1

, . . . ,�k 2 K, then f is diagonalizable. This is a
powerful result that has a number of implications. But first we need of few
properties of invariant subspaces.

Given a linear map f : E ! E, recall that a subspaceW of E is invariant
under f if f(u) 2 W for all u 2 W . For example, if f : R2 ! R2 is
f(x, y) = (�x, y), the y-axis is invariant under f .

Proposition 22.8. Let W be a subspace of E invariant under the linear
map f : E ! E (where E is finite-dimensional). Then the minimal poly-
nomial of the restriction f | W of f to W divides the minimal polynomial
of f , and the characteristic polynomial of f | W divides the characteristic
polynomial of f .
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Sketch of proof. The key ingredient is that we can pick a basis
(e

1

, . . . , en) of E in which (e
1

, . . . , ek) is a basis of W . The matrix of f
over this basis is a block matrix of the form

A =

✓
B C
0 D

◆
,

where B is a k ⇥ k matrix, D is an (n � k) ⇥ (n � k) matrix, and C is a
k ⇥ (n � k) matrix. Then

det(XI � A) = det(XI � B) det(XI � D),

which implies the statement about the characteristic polynomials. Further-
more,

Ai =

✓
Bi Ci

0 Di

◆
,

for some k ⇥ (n � k) matrix Ci. It follows that any polynomial which
annihilates A also annihilates B and D. So the minimal polynomial of B
divides the minimal polynomial of A.

For the next step, there are at least two ways to proceed. We can use an
old-fashion argument using Lagrange interpolants, or we can use a slight
generalization of the notion of annihilator. We pick the second method
because it illustrates nicely the power of principal ideals.

What we need is the notion of conductor (also called transporter).

Definition 22.7. Let f : E ! E be a linear map on a finite-dimensional
vector space E, let W be an invariant subspace of f , and let u be any vector
in E. The set Sf (u,W ) consisting of all polynomials q 2 K[X] such that
q(f)(u) 2 W is called the f -conductor of u into W .

Observe that the minimal polynomial mf of f always belongs to
Sf (u,W ), so this is a nontrivial set. Also, if W = (0), then Sf (u, (0))
is just the annihilator of f . The crucial property of Sf (u,W ) is that it is
an ideal.

Proposition 22.9. If W is an invariant subspace for f , then for each
u 2 E, the f -conductor Sf (u,W ) is an ideal in K[X].

We leave the proof as a simple exercise, using the fact that ifW invariant
under f , then W is invariant under every polynomial q(f) in Sf (u,W ).
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Since Sf (u,W ) is an ideal, it is generated by a unique monic polynomial
q of smallest degree, and because the minimal polynomial mf of f is in
Sf (u,W ), the polynomial q divides m.

Definition 22.8. The unique monic polynomial which generates Sf (u,W )
is called the conductor of u into W .

Example 22.1. For example, suppose f : R2 ! R2 where f(x, y) = (x, 0).
Observe that W = {(x, 0) 2 R2} is invariant under f . By representing f

as

✓
1 0
0 0

◆
, we see that mf (X) = �f (X) = X2 � X. Let u = (0, y). Then

Sf (u,W ) = (X), and we say X is the conductor of u into W .

Proposition 22.10. Let f : E ! E be a linear map on a finite-dimensional
space E and assume that the minimal polynomial m of f is of the form

m = (X � �
1

)r1 · · · (X � �k)
rk ,

where the eigenvalues �
1

, . . . ,�k of f belong to K. If W is a proper subspace
of E which is invariant under f , then there is a vector u 2 E with the
following properties:

(a) u /2 W ;
(b) (f � �id)(u) 2 W , for some eigenvalue � of f .

Proof. Observe that (a) and (b) together assert that the conductor of u
into W is a polynomial of the form X � �i. Pick any vector v 2 E not
in W , and let g be the conductor of v into W , i.e. g(f)(v) 2 W . Since g
divides m and v /2 W , the polynomial g is not a constant, and thus it is of
the form

g = (X � �
1

)s1 · · · (X � �k)
sk ,

with at least some si > 0. Choose some index j such that sj > 0. Then
X � �j is a factor of g, so we can write

g = (X � �j)q. (*)

By definition of g, the vector u = q(f)(v) cannot be in W , since otherwise
g would not be of minimal degree. However, (⇤) implies that

(f � �j id)(u) = (f � �j id)(q(f)(v))

= g(f)(v)

is in W , which concludes the proof.
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We can now prove the main result of this section.

Theorem 22.2. Let f : E ! E be a linear map on a finite-dimensional
space E. Then f is diagonalizable i↵ its minimal polynomial m is of the
form

m = (X � �
1

) · · · (X � �k),

where �
1

, . . . ,�k are distinct elements of K.

Proof. We already showed in Proposition 22.7 that if f is diagonalizable,
then its minimal polynomial is of the above form (where �

1

, . . . ,�k are the
distinct eigenvalues of f).

For the converse, let W be the subspace spanned by all the eigenvectors
of f . If W 6= E, since W is invariant under f , by Proposition 22.10, there
is some vector u /2 W such that for some �j , we have

(f � �j id)(u) 2 W.

Let v = (f � �j id)(u) 2 W . Since v 2 W , we can write

v = w
1

+ · · · + wk

where f(wi) = �iwi (either wi = 0 or wi is an eigenvector for �i), and so
for every polynomial h, we have

h(f)(v) = h(�
1

)w
1

+ · · · + h(�k)wk,

which shows that h(f)(v) 2 W for every polynomial h. We can write

m = (X � �j)q

for some polynomial q, and also

q � q(�j) = p(X � �j)

for some polynomial p. We know that p(f)(v) 2 W , and since m is the
minimal polynomial of f , we have

0 = m(f)(u) = (f � �j id)(q(f)(u)),

which implies that q(f)(u) 2 W (either q(f)(u) = 0, or it is an eigenvector
associated with �j). However,

q(f)(u) � q(�j)u = p(f)((f � �j id)(u)) = p(f)(v),

and since p(f)(v) 2 W and q(f)(u) 2 W , we conclude that q(�j)u 2 W .
But, u /2 W , which implies that q(�j) = 0, so �j is a double root of m, a
contradiction. Therefore, we must have W = E.

Remark: Proposition 22.10 can be used to give a quick proof of Theorem
14.1.
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22.4 Commuting Families of Diagonalizable and Triangula-
ble Maps

Using Theorem 22.2, we can give a short proof about commuting diagonal-
izable linear maps.

Definition 22.9. If F is a family of linear maps on a vector space E, we
say that F is a commuting family i↵ f � g = g � f for all f, g 2 F .

Proposition 22.11. Let F be a commuting family of diagonalizable linear
maps on a vector space E. There exists a basis of E such that every linear
map in F is represented in that basis by a diagonal matrix.

Proof. We proceed by induction on n = dim(E). If n = 1, there is nothing
to prove. If n > 1, there are two cases. If all linear maps in F are of the
form �id for some � 2 K, then the proposition holds trivially. In the second
case, let f 2 F be some linear map in F which is not a scalar multiple of
the identity. In this case, f has at least two distinct eigenvalues �

1

, . . . ,�k,
and because f is diagonalizable, E is the direct sum of the corresponding
eigenspaces E�1 , . . . , E�k . For every index i, the eigenspace E�i is invariant
under f and under every other linear map g in F , since for any g 2 F and
any u 2 E�i , because f and g commute, we have

f(g(u)) = g(f(u)) = g(�iu) = �ig(u)

so g(u) 2 E�i . Let Fi be the family obtained by restricting each f 2 F
to E�i . By Proposition 22.8, the minimal polynomial of every linear map
f | E�i in Fi divides the minimal polynomial mf of f , and since f is
diagonalizable, mf is a product of distinct linear factors, so the minimal
polynomial of f | E�i is also a product of distinct linear factors. By The-
orem 22.2, the linear map f | E�i is diagonalizable. Since k > 1, we have
dim(E�i) < dim(E) for i = 1, . . . , k, and by the induction hypothesis, for
each i there is a basis of E�i over which f | E�i is represented by a diagonal
matrix. Since the above argument holds for all i, by combining the bases
of the E�i , we obtain a basis of E such that the matrix of every linear map
f 2 F is represented by a diagonal matrix.

There is also an analogous result for commuting families of linear maps
represented by upper triangular matrices. To prove this we need the fol-
lowing proposition.

Proposition 22.12. Let F be a nonempty commuting family of triangula-
ble linear maps on a finite-dimensional vector space E. Let W be a proper



March 25, 2021 15:30 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 771

22.4. Commuting Families of Linear Maps 771

subspace of E which is invariant under F . Then there exists a vector u 2 E
such that:

(1) u /2 W .
(2) For every f 2 F , the vector f(u) belongs to the subspace W � Ku

spanned by W and u.

Proof. By renaming the elements of F if necessary, we may assume that
(f

1

, . . . , fr) is a basis of the subspace of End(E) spanned by F . We prove
by induction on r that there exists some vector u 2 E such that

(1) u /2 W .
(2) (fi � ↵iid)(u) 2 W for i = 1, . . . , r, for some scalars ↵i 2 K.

Consider the base case r = 1. Since f
1

is triangulable, its eigenvalues
all belong to K since they are the diagonal entries of the triangular matrix
associated with f

1

(this is the easy direction of Theorem 14.1), so the
minimal polynomial of f

1

is of the form

m = (X � �
1

)r1 · · · (X � �k)
rk ,

where the eigenvalues �
1

, . . . ,�k of f
1

belong to K. We conclude by apply-
ing Proposition 22.10.

Next assume that r � 2 and that the induction hypothesis holds for
f
1

, . . . , fr�1

. Thus, there is a vector ur�1

2 E such that

(1) ur�1

/2 W .
(2) (fi � ↵iid)(ur�1

) 2 W for i = 1, . . . , r � 1, for some scalars ↵i 2 K.

Let

Vr�1

= {w 2 E | (fi � ↵iid)(w) 2 W, i = 1, . . . , r � 1}.

Clearly, W ✓ Vr�1

and ur�1

2 Vr�1

. We claim that Vr�1

is invariant
under F . This is because, for any v 2 Vr�1

and any f 2 F , since f and fi
commute, we have

(fi � ↵iid)(f(v)) = f((fi � ↵iid)(v)), 1  i  r � 1.

Now (fi � ↵iid)(v) 2 W because v 2 Vr�1

, and W is invariant under F , so
f(fi � ↵iid)(v)) 2 W , that is, (fi � ↵iid)(f(v)) 2 W .

Consider the restriction gr of fr to Vr�1

. The minimal polynomial of
gr divides the minimal polynomial of fr, and since fr is triangulable, just
as we saw for f

1

, the minimal polynomial of fr is of the form

m = (X � �
1

)r1 · · · (X � �k)
rk ,
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where the eigenvalues �
1

, . . . ,�k of fr belong to K, so the minimal polyno-
mial of gr is of the same form. By Proposition 22.10, there is some vector
ur 2 Vr�1

such that

(1) ur /2 W .
(2) (gr � ↵rid)(ur) 2 W for some scalars ↵r 2 K.

Now since ur 2 Vr�1

, we have (fi � ↵iid)(ur) 2 W for i = 1, . . . , r � 1, so
(fi �↵iid)(ur) 2 W for i = 1, . . . , r (since gr is the restriction of fr), which
concludes the proof of the induction step. Finally, since every f 2 F is
the linear combination of (f

1

, . . . , fr), Condition (2) of the inductive claim
implies Condition (2) of the proposition.

We can now prove the following result.

Proposition 22.13. Let F be a nonempty commuting family of triangu-
lable linear maps on a finite-dimensional vector space E. There exists a
basis of E such that every linear map in F is represented in that basis by
an upper triangular matrix.

Proof. Let n = dim(E). We construct inductively a basis (u
1

, . . . , un) of
E such that if Wi is the subspace spanned by (u

1

. . . , ui), then for every
f 2 F ,

f(ui) = af
1iu1

+ · · · + afiiui,

for some afij 2 K; that is, f(ui) belongs to the subspace Wi.
We begin by applying Proposition 22.12 to the subspace W

0

= (0) to
get u

1

so that for all f 2 F ,

f(u
1

) = ↵f
1

u
1

.

For the induction step, since Wi invariant under F , we apply Proposition
22.12 to the subspace Wi, to get ui+1

2 E such that

(1) ui+1

/2 Wi.
(2) For every f 2 F , the vector f(ui+1

) belong to the subspace spanned
by Wi and ui+1

.

Condition (1) implies that (u
1

, . . . , ui, ui+1

) is linearly independent, and
Condition (2) means that for every f 2 F ,

f(ui+1

) = af
1i+1

u
1

+ · · · + afi+1i+1

ui+1

,

for some afi+1j 2 K, establishing the induction step. After n steps, each
f 2 F is represented by an upper triangular matrix.
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Observe that if F consists of a single linear map f and if the minimal
polynomial of f is of the form

m = (X � �
1

)r1 · · · (X � �k)
rk ,

with all �i 2 K, using Proposition 22.10 instead of Proposition 22.12, the
proof of Proposition 22.13 yields another proof of Theorem 14.1.

22.5 The Primary Decomposition Theorem

If f : E ! E is a linear map and � 2 K is an eigenvalue of f , recall that
the eigenspace E� associated with � is the kernel of the linear map �id�f .
If all the eigenvalues �

1

. . . ,�k of f are in K, it may happen that

E = E�1 � · · · � E�k ,

but in general there are not enough eigenvectors to span E. What if we
generalize the notion of eigenvector and look for (nonzero) vectors u such
that

(�id � f)r(u) = 0, for some r � 1?

It turns out that if the minimal polynomial of f is of the form

m = (X � �
1

)r1 · · · (X � �k)
rk ,

then r = ri does the job for �i; that is, if we let

Wi = Ker (�iid � f)ri ,

then

E = W
1

� · · · � Wk.

This result is very nice but seems to require that the eigenvalues of f all
belong to K. Actually, it is a special case of a more general result involving
the factorization of the minimal polynomial m into its irreducible monic
factors (see Theorem 22.1),

m = pr1
1

· · · prkk ,

where the pi are distinct irreducible monic polynomials over K.

Theorem 22.3. (Primary Decomposition Theorem) Let f : E ! E be a
linear map on the finite-dimensional vector space E over the field K. Write
the minimal polynomial m of f as

m = pr1
1

· · · prkk ,

where the pi are distinct irreducible monic polynomials over K, and the ri
are positive integers. Let

Wi = Ker (prii (f)), i = 1, . . . , k.

Then
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(a) E = W
1

� · · · � Wk.
(b) Each Wi is invariant under f .
(c) The minimal polynomial of the restriction f | Wi of f to Wi is prii .

Proof. The trick is to construct projections ⇡i using the polynomials p
rj
j

so that the range of ⇡i is equal to Wi. Let

gi = m/prii =
Y

j 6=i

p
rj
j .

Note that

prii gi = m.

Since p
1

, . . . , pk are irreducible and distinct, they are relatively prime. Then
using Proposition 22.4, it is easy to show that g

1

, . . . , gk are relatively prime.
Otherwise, some irreducible polynomial p would divide all of g

1

, . . . , gk, so
by Proposition 22.4 it would be equal to one of the irreducible factors pi.
But that pi is missing from gi, a contradiction. Therefore, by Proposition
22.5, there exist some polynomials h

1

, . . . , hk such that

g
1

h
1

+ · · · + gkhk = 1.

Let qi = gihi and let ⇡i = qi(f) = gi(f)hi(f). We have

q
1

+ · · · + qk = 1,

and since m divides qiqj for i 6= j, we get

⇡
1

+ · · · + ⇡k = id

⇡i⇡j = 0, i 6= j.

(We implicitly used the fact that if p, q are two polynomials, the linear maps
p(f)�q(f) and q(f)�p(f) are the same since p(f) and q(f) are polynomials
in the powers of f , which commute.) Composing the first equation with ⇡i
and using the second equation, we get

⇡2

i = ⇡i.

Therefore, the ⇡i are projections, and E is the direct sum of the images of
the ⇡i. Indeed, every u 2 E can be expressed as

u = ⇡
1

(u) + · · · + ⇡k(u).

Also, if

⇡
1

(u) + · · · + ⇡k(u) = 0,
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then by applying ⇡i we get

0 = ⇡2

i (u) = ⇡i(u), i = 1, . . . k.

To finish proving (a), we need to show that

Wi = Ker (prii (f)) = ⇡i(E).

If v 2 ⇡i(E), then v = ⇡i(u) for some u 2 E, so

prii (f)(v) = prii (f)(⇡i(u))

= prii (f)gi(f)hi(f)(u)

= hi(f)p
ri
i (f)gi(f)(u)

= hi(f)m(f)(u) = 0,

because m is the minimal polynomial of f . Therefore, v 2 Wi.
Conversely, assume that v 2 Wi = Ker (prii (f)). If j 6= i, then gjhj is

divisible by prii , so

gj(f)hj(f)(v) = ⇡j(v) = 0, j 6= i.

Then since ⇡
1

+ · · · + ⇡k = id, we have v = ⇡iv, which shows that v is in
the range of ⇡i. Therefore, Wi = Im(⇡i), and this finishes the proof of (a).

If prii (f)(u) = 0, then prii (f)(f(u)) = f(prii (f)(u)) = 0, so (b) holds.
If we write fi = f | Wi, then prii (fi) = 0, because prii (f) = 0 on Wi (its

kernel). Therefore, the minimal polynomial of fi divides prii . Conversely,
let q be any polynomial such that q(fi) = 0 (on Wi). Since m = prii gi, the
fact that m(f)(u) = 0 for all u 2 E shows that

prii (f)(gi(f)(u)) = 0, u 2 E,

and thus Im(gi(f)) ✓ Ker (prii (f)) = Wi. Consequently, since q(f) is zero
on Wi,

q(f)gi(f) = 0 for all u 2 E.

But then qgi is divisible by the minimal polynomial m = prii gi of f , and
since prii and gi are relatively prime, by Euclid’s proposition, prii must divide
q. This finishes the proof that the minimal polynomial of fi is prii , which
is (c).

To best understand the projection constructions of Theorem 22.3, we
provide the following two explicit examples of the primary decomposition
theorem.
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Example 22.2. First let f : R3 ! R3 be defined as f(x, y, z) = (y,�x, z).
In terms of the standard basis f is represented by the 3 ⇥ 3 matrix

Xf :=

0

@
0 �1 0
1 0 0
0 0 1

1

A .

Then a simple calculation shows that mf (x) = �f (x) = (x2 + 1)(x � 1).
Using the notation of the preceding proof set

m = p
1

p
2

, p
1

= x2 + 1, p
2

= x � 1.

Then

g
1

=
m

p
1

= x � 1, g
2

=
m

p
2

= x2 + 1.

We must find h
1

, h
2

2 R[x] such that g
1

h
1

+ g
2

h
2

= 1. In general this is
the hard part of the projection construction. But since we are only working
with two relatively prime polynomials g

1

, g
2

, we may apply the Euclidean
algorithm to discover that

�x+ 1

2
(x � 1) +

1

2
(x2 + 1) = 1,

where h
1

= �x+1

2

while h
2

= 1

2

. By definition

⇡
1

= g
1

(f)h
1

(f) = �1

2
(Xf � id)(Xf + id) = �1

2
(X2

f � id) =

0

@
1 0 0
0 1 0
0 0 0

1

A ,

and

⇡
2

= g
2

(f)h
2

(f) =
1

2
(X2

f + id) =

0

@
0 0 0
0 0 0
0 0 1

1

A .

Then R3 = W
1

� W
2

, where

W
1

= ⇡
1

(R3) = Ker (p
1

(Xf )) = Ker (X2

f + id)

= Ker

0

@
0 0 0
0 0 0
0 0 1

1

A = {(x, y, 0) 2 R3},

W
2

= ⇡
2

(R3) = Ker (p
2

(Xf )) = Ker (Xf � id)

= Ker

0

@
�1 �1 0
1 �1 0
0 0 0

1

A = {(0, 0, z) 2 R3}.
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Example 22.3. For our second example of the primary decomposition
theorem let f : R3 ! R3 be defined as f(x, y, z) = (y,�x + z,�y), with

standard matrix representation Xf =

0

@
0 �1 0
1 0 �1
0 1 0

1

A. A simple calculation

shows that mf (x) = �f (x) = x(x2 + 2). Set

p
1

= x2 + 2, p
2

= x, g
1

=
mf

p
1

= x, g
2

=
mf

p
2

= x2 + 2.

Since gcd(g
1

, g
2

) = 1, we use the Euclidean algorithm to find

h
1

= �1

2
x, h

2

=
1

2
,

such that g
1

h
1

+ g
2

h
2

= 1. Then

⇡
1

= g
1

(f)h
1

(f) = �1

2
X2

f =

0

@
1

2

0 � 1

2

0 1 0
� 1

2

0 1

2

1

A ,

while

⇡
2

= g
2

(f)h
2

(f) =
1

2
(X2

f + 2id) =

0

@
1

2

0 1

2

0 0 0
1

2

0 1

2

1

A .

Although it is not entirely obvious, ⇡
1

and ⇡
2

are indeed projections since

⇡2

1

=

0

@
1

2

0 � 1

2

0 1 0
� 1

2

0 1

2

1

A

0

@
1

2

0 � 1

2

0 1 0
� 1

2

0 1

2

1

A =

0

@
1

2

0 � 1

2

0 1 0
� 1

2

0 1

2

1

A = ⇡
1

,

and

⇡2

2

=

0

@
1

2

0 1

2

0 0 0
1

2

0 1

2

1

A

0

@
1

2

0 1

2

0 0 0
1

2

0 1

2

1

A =

0

@
1

2

0 1

2

0 0 0
1

2

0 1

2

1

A = ⇡
2

.

Furthermore observe that ⇡
1

+ ⇡
2

= id. The primary decomposition theo-
rem implies that R3 = W

1

� W
2

where

W
1

= ⇡
1

(R3) = Ker (p
1

(f)) = Ker (X2 + 2)

= Ker

0

@
1 0 1
0 0 0
1 0 1

1

A = span{(0, 1, 0), (1, 0,�1)},

W
2

= ⇡
2

(R3) = Ker (p
2

(f)) = Ker (X) = span{(1, 0, 1)}.

See Figure 22.1.
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Fig. 22.1 The direct sum decomposition of R3 = W1 � W2 where W1 is the plane
x + z = 0 and W2 is line t(1, 0, 1). The spanning vectors of W1 are in blue.

If all the eigenvalues of f belong to the field K, we obtain the following
result.

Theorem 22.4. (Primary Decomposition Theorem, Version 2) Let
f : E ! E be a linear map on the finite-dimensional vector space E over
the field K. If all the eigenvalues �

1

, . . . ,�k of f belong to K, write

m = (X � �
1

)r1 · · · (X � �k)
rk

for the minimal polynomial of f ,

�f = (X � �
1

)n1 · · · (X � �k)
nk

for the characteristic polynomial of f , with 1  ri  ni, and let

Wi = Ker (�iid � f)ri , i = 1, . . . , k.

Then

(a) E = W
1

� · · · � Wk.
(b) Each Wi is invariant under f .
(c) dim(Wi) = ni.
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(d) The minimal polynomial of the restriction f | Wi of f to Wi is (X �
�i)ri .

Proof. Parts (a), (b) and (d) have already been proven in Theorem 22.3,
so it remains to prove (c). Since Wi is invariant under f , let fi be the
restriction of f to Wi. The characteristic polynomial �fi of fi divides �(f),
and since �(f) has all its roots in K, so does �i(f). By Theorem 14.1, there
is a basis of Wi in which fi is represented by an upper triangular matrix,
and since (�iid � f)ri = 0, the diagonal entries of this matrix are equal to
�i. Consequently,

�fi = (X � �i)
dim(Wi),

and since �fi divides �(f), we conclude hat

dim(Wi)  ni, i = 1, . . . , k.

Because E is the direct sum of the Wi, we have dim(W
1

)+ · · ·+dim(Wk) =
n, and since n

1

+ · · · + nk = n, we must have

dim(Wi) = ni, i = 1, . . . , k,

proving (c).

Definition 22.10. If � 2 K is an eigenvalue of f , we define a generalized
eigenvector of f as a nonzero vector u 2 E such that

(�id � f)r(u) = 0, for some r � 1.

The index of � is defined as the smallest r � 1 such that

Ker (�id � f)r = Ker (�id � f)r+1.

It is clear that Ker (�id � f)i ✓ Ker (�id � f)i+1 for all i � 1. By
Theorem 22.4(d), if � = �i, the index of �i is equal to ri.

22.6 Jordan Decomposition

Recall that a linear map g : E ! E is said to be nilpotent if there is some
positive integer r such that gr = 0. Another important consequence of
Theorem 22.4 is that f can be written as the sum of a diagonalizable and
a nilpotent linear map (which commute). For example f : R2 ! R2 be
the R-linear map f(x, y) = (x, x+ y) with standard matrix representation

Xf =

✓
1 1
0 1

◆
. A basic calculation shows that mf (x) = �f (x) = (x � 1)2.

By Theorem 22.2 we know that f is not diagonalizable over R. But since



March 25, 2021 15:30 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 780

780 Annihilating Polynomials; Primary Decomposition

the eigenvalue �
1

= 1 of f does belong to R, we may use the projection
construction inherent within Theorem 22.4 to write f = D +N , where D
is a diagonalizable linear map and N is a nilpotent linear map. The proof
of Theorem 22.3 implies that

pr1
1

= (x � 1)2, g
1

= 1 = h
1

, ⇡
1

= g
1

(f)h
1

(f) = id.

Then

D = �
1

⇡
1

= id,

N = f � D = f(x, y) � id(x, y) = (x, x+ y) � (x, y) = (0, y),

which is equivalent to the matrix decomposition

Xf =

✓
1 1
0 1

◆
=

✓
1 0
0 1

◆
+

✓
0 1
0 0

◆
.

This example suggests that the diagonal summand of f is related to the
projection constructions associated with the proof of the primary decom-
position theorem. If we write

D = �
1

⇡
1

+ · · · + �k⇡k,

where ⇡i is the projection from E onto the subspace Wi defined in the proof
of Theorem 22.3, since

⇡
1

+ · · · + ⇡k = id,

we have

f = f⇡
1

+ · · · + f⇡k,

and so we get

N = f � D = (f � �
1

id)⇡
1

+ · · · + (f � �kid)⇡k.

We claim that N = f � D is a nilpotent operator. Since by construction
the ⇡i are polynomials in f , they commute with f , using the properties of
the ⇡i, we get

Nr = (f � �
1

id)r⇡
1

+ · · · + (f � �kid)
r⇡k.

Therefore, if r = max{ri}, we have (f � �kid)r = 0 for i = 1, . . . , k, which
implies that

Nr = 0.

It remains to show that D is diagonalizable. Since N is a polynomial in
f , it commutes with f , and thus with D. From

D = �
1

⇡
1

+ · · · + �k⇡k,
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and

⇡
1

+ · · · + ⇡k = id,

we see that

D � �iid = �
1

⇡
1

+ · · · + �k⇡k � �i(⇡1 + · · · + ⇡k)

= (�
1

� �i)⇡1 + · · · + (�i�1

� �i)⇡i�1

+ (�i+1

� �i)⇡i+1

+ · · · + (�k � �i)⇡k.

Since the projections ⇡j with j 6= i vanish onWi, the above equation implies
that D��iid vanishes on Wi and that (D��j id)(Wi) ✓ Wi, and thus that
the minimal polynomial of D is

(X � �
1

) · · · (X � �k).

Since the �i are distinct, by Theorem 22.2, the linear map D is diagonaliz-
able.

In summary we have shown that when all the eigenvalues of f belong
to K, there exist a diagonalizable linear map D and a nilpotent linear map
N such that

f = D +N

DN = ND,

and N and D are polynomials in f .

Definition 22.11. A decomposition of f as f = D+N as above is called
a Jordan decomposition.

In fact, we can prove more: the maps D and N are uniquely determined
by f .

Theorem 22.5. (Jordan Decomposition) Let f : E ! E be a linear map
on the finite-dimensional vector space E over the field K. If all the eigen-
values �

1

, . . . ,�k of f belong to K, then there exist a diagonalizable linear
map D and a nilpotent linear map N such that

f = D +N

DN = ND.

Furthermore, D and N are uniquely determined by the above equations and
they are polynomials in f .
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Proof. We already proved the existence part. Suppose we also have f =
D0 + N 0, with D0N 0 = N 0D0, where D0 is diagonalizable, N 0 is nilpotent,
and both are polynomials in f . We need to prove that D = D0 and N = N 0.

Since D0 and N 0 commute with one another and f = D0 + N 0, we see
that D0 and N 0 commute with f . Then D0 and N 0 commute with any
polynomial in f ; hence they commute with D and N . From

D +N = D0 +N 0,

we get

D � D0 = N 0 � N,

and D,D0, N,N 0 commute with one another. Since D and D0 are both
diagonalizable and commute, by Proposition 22.11, they are simultaneousy
diagonalizable, so D � D0 is diagonalizable. Since N and N 0 commute, by
the binomial formula, for any r � 1,

(N 0 � N)r =
rX

j=0

(�1)j
✓
r

j

◆
(N 0)r�jN j .

Since both N and N 0 are nilpotent, we have Nr1 = 0 and (N 0)r2 = 0,
for some r

1

, r
2

> 0, so for r � r
1

+ r
2

, the right-hand side of the above
expression is zero, which shows that N 0 � N is nilpotent. (In fact, it is
easy that r

1

= r
2

= n works). It follows that D � D0 = N 0 � N is
both diagonalizable and nilpotent. Clearly, the minimal polynomial of a
nilpotent linear map is of the form Xr for some r > 0 (and r  dim(E)).
But D � D0 is diagonalizable, so its minimal polynomial has simple roots,
which means that r = 1. Therefore, the minimal polynomial of D � D0 is
X, which says that D � D0 = 0, and then N = N 0.

If K is an algebraically closed field, then Theorem 22.5 holds. This is
the case when K = C. This theorem reduces the study of linear maps (from
E to itself) to the study of nilpotent operators. There is a special normal
form for such operators which is discussed in the next section.

22.7 Nilpotent Linear Maps and Jordan Form

This section is devoted to a normal form for nilpotent maps. We follow
Godement’s exposition [Godement (1963)]. Let f : E ! E be a nilpotent
linear map on a finite-dimensional vector space over a field K, and assume
that f is not the zero map. There is a smallest positive integer r � 1
such fr 6= 0 and fr+1 = 0. Clearly, the polynomial Xr+1 annihilates
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f , and it is the minimal polynomial of f since fr 6= 0. It follows that
r + 1  n = dim(E). Let us define the subspaces Ni by

Ni = Ker (f i), i � 0.

Note that N
0

= (0), N
1

= Ker (f), and Nr+1

= E. Also, it is obvious that

Ni ✓ Ni+1

, i � 0.

Proposition 22.14. Given a nilpotent linear map f with fr 6= 0 and
fr+1 = 0 as above, the inclusions in the following sequence are strict:

(0) = N
0

⇢ N
1

⇢ · · · ⇢ Nr ⇢ Nr+1

= E.

Proof. We proceed by contradiction. Assume that Ni = Ni+1

for some i
with 0  i  r. Since fr+1 = 0, for every u 2 E, we have

0 = fr+1(u) = f i+1(fr�i(u)),

which shows that fr�i(u) 2 Ni+1

. Since Ni = Ni+1

, we get fr�i(u) 2 Ni,
and thus fr(u) = 0. Since this holds for all u 2 E, we see that fr = 0, a
contradiction.

Proposition 22.15. Given a nilpotent linear map f with fr 6= 0 and
fr+1 = 0, for any integer i with 1  i  r, for any subspace U of E,
if U \ Ni = (0), then f(U) \ Ni�1

= (0), and the restriction of f to U is
an isomorphism onto f(U).

Proof. Pick v 2 f(U) \ Ni�1

. We have v = f(u) for some u 2 U and
f i�1(v) = 0, which means that f i(u) = 0. Then u 2 U \ Ni, so u = 0
since U \ Ni = (0), and v = f(u) = 0. Therefore, f(U) \ Ni�1

= (0). The
restriction of f to U is obviously surjective on f(U). Suppose that f(u) = 0
for some u 2 U . Then u 2 U \ N

1

✓ U \ Ni = (0) (since i � 1), so u = 0,
which proves that f is also injective on U .

Proposition 22.16. Given a nilpotent linear map f with fr 6= 0 and
fr+1 = 0, there exists a sequence of subspace U

1

, . . . , Ur+1

of E with the
following properties:

(1) Ni = Ni�1

� Ui, for i = 1, . . . , r + 1.
(2) We have f(Ui) ✓ Ui�1

, and the restriction of f to Ui is an injection,
for i = 2, . . . , r + 1.

See Figure 22.2.
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N r U r+1

f( U r+1 )

f

0

E = 

4

4N r U r+1

Nr-1 Ur

f(U     )r+1f(U   )r

f

0

Nr-1=N r Ur

f(U   )r

Nr-2 Ur-1

Nr-1 Ur-1Nr-2= 4Ur-1f( )

f

0

Fig. 22.2 A schematic illustration of Ni = Ni�1 � Ui with f(Ui) ✓ Ui�1 for i =
r + 1, r, r � 1.

Proof. We proceed inductively, by defining the sequence Ur+1

, Ur, . . . , U1

.
We pick Ur+1

to be any supplement of Nr in Nr+1

= E, so that

E = Nr+1

= Nr � Ur+1

.

Since fr+1 = 0 and Nr = Ker (fr), we have f(Ur+1

) ✓ Nr, and by Proposi-
tion 22.15, as Ur+1

\Nr = (0), we have f(Ur+1

)\Nr�1

= (0). As a conse-
quence, we can pick a supplement Ur of Nr�1

in Nr so that f(Ur+1

) ✓ Ur.
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We have

Nr = Nr�1

� Ur and f(Ur+1

) ✓ Ur.

By Proposition 22.15, f is an injection from Ur+1

to Ur. Assume inductively
that Ur+1

, . . . , Ui have been defined for i � 2 and that they satisfy (1) and
(2). Since

Ni = Ni�1

� Ui,

we have Ui ✓ Ni, so f i�1(f(Ui)) = f i(Ui) = (0), which implies that
f(Ui) ✓ Ni�1

. Also, since Ui \ Ni�1

= (0), by Proposition 22.15, we
have f(Ui)\Ni�2

= (0). It follows that there is a supplement Ui�1

of Ni�2

in Ni�1

that contains f(Ui). We have

Ni�1

= Ni�2

� Ui�1

and f(Ui) ✓ Ui�1

.

The fact that f is an injection from Ui into Ui�1

follows from Proposition
22.15. Therefore, the induction step is proven. The construction stops
when i = 1.

Because N
0

= (0) and Nr+1

= E, we see that E is the direct sum of the
Ui:

E = U
1

� · · · � Ur+1

,

with f(Ui) ✓ Ui�1

, and f an injection from Ui to Ui�1

, for i = r+1, . . . , 2.
By a clever choice of bases in the Ui, we obtain the following nice theorem.

Theorem 22.6. For any nilpotent linear map f : E ! E on a finite-
dimensional vector space E of dimension n over a field K, there is a basis
of E such that the matrix N of f is of the form

N =

0

BBBBB@

0 ⌫
1

0 · · · 0 0
0 0 ⌫

2

· · · 0 0
...

...
...

...
...

...
0 0 0 · · · 0 ⌫n
0 0 0 · · · 0 0

1

CCCCCA
,

where ⌫i = 1 or ⌫i = 0.

Proof. First apply Proposition 22.16 to obtain a direct sum E =
Lr+1

i=1

Ui.
Then we define a basis of E inductively as follows. First we choose a basis

er+1

1

, . . . , er+1

nr+1
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of Ur+1

. Next, for i = r + 1, . . . , 2, given the basis

ei
1

, . . . , eini

of Ui, since f is injective on Ui and f(Ui) ✓ Ui�1

, the vectors
f(ei

1

), . . . , f(eini
) are linearly independent, so we define a basis of Ui�1

by
completing f(ei

1

), . . . , f(eini
) to a basis in Ui�1

:

ei�1

1

, . . . , ei�1

ni
, ei�1

ni+1

, . . . , ei�1

ni�1

with

ei�1

j = f(eij), j = 1 . . . , ni.

Since U
1

= N
1

= Ker (f), we have

f(e1j ) = 0, j = 1, . . . , n
1

.

These basis vectors can be arranged as the rows of the following matrix:

0

BBBBBBBBBBBBBBB@

er+1

1

· · · er+1

nr+1

...
...

er
1

· · · ernr+1
ernr+1+1

· · · ernr

...
...

...
...

er�1

1

· · · er�1

nr+1
er�1

nr+1+1

· · · er�1

nr
er�1

nr+1

· · · er�1

nr�1

...
...

...
...

...
...

...
...

...
...

...
...

e1
1

· · · e1nr+1
e1nr+1+1

· · · e1nr
e1nr+1

· · · e1nr�1
· · · · · · e1n1

1

CCCCCCCCCCCCCCCA

Finally, we define the basis (e
1

, . . . , en) by listing each column of the
above matrix from the bottom-up, starting with column one, then column
two, etc. This means that we list the vectors eij in the following order:

For j = 1, . . . , nr+1

, list e1j , . . . , e
r+1

j ;
In general, for i = r, . . . , 1,

for j = ni+1

+ 1, . . . , ni, list e1j , . . . , e
i
j .

Then because f(e1j ) = 0 and ei�1

j = f(eij) for i � 2, either

f(ei) = 0 or f(ei) = ei�1

,

which proves the theorem.
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As an application of Theorem 22.6, we obtain the Jordan form of a
linear map.

Definition 22.12. A Jordan block is an r ⇥ r matrix Jr(�), of the form

Jr(�) =

0

BBBBBB@

� 1 0 · · · 0
0 � 1 · · · 0
...
...
. . .

. . .
...

0 0 0
. . . 1

0 0 0 · · · �

1

CCCCCCA
,

where � 2 K, with J
1

(�) = (�) if r = 1. A Jordan matrix , J , is an n ⇥ n
block diagonal matrix of the form

J =

0

B@
Jr1(�1) · · · 0

...
. . .

...
0 · · · Jrm(�m)

1

CA ,

where each Jrk(�k) is a Jordan block associated with some �k 2 K, and
with r

1

+ · · · + rm = n.

To simplify notation, we often write J(�) for Jr(�). Here is an example
of a Jordan matrix with four blocks:

J =

0

BBBBBBBBBBB@

� 1 0 0 0 0 0 0
0 � 1 0 0 0 0 0
0 0 � 0 0 0 0 0
0 0 0 � 1 0 0 0
0 0 0 0 � 0 0 0
0 0 0 0 0 � 0 0
0 0 0 0 0 0 µ 1
0 0 0 0 0 0 0 µ

1

CCCCCCCCCCCA

.

Theorem 22.7. (Jordan form) Let E be a vector space of dimension n
over a field K and let f : E ! E be a linear map. The following properties
are equivalent:

(1) The eigenvalues of f all belong to K (i.e. the roots of the characteristic
polynomial �f all belong to K).

(2) There is a basis of E in which the matrix of f is a Jordan matrix.

Proof. Assume (1). First we apply Theorem 22.4, and we get a direct
sum E =

Lk
j=1

Wk, such that the restriction of gi = f � �j id to Wi is
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nilpotent. By Theorem 22.6, there is a basis of Wi such that the matrix of
the restriction of gi is of the form

Gi =

0

BBBBB@

0 ⌫
1

0 · · · 0 0
0 0 ⌫

2

· · · 0 0
...

...
...

...
...

...
0 0 0 · · · 0 ⌫ni

0 0 0 · · · 0 0

1

CCCCCA
,

where ⌫i = 1 or ⌫i = 0. Furthermore, over any basis, �iid is represented by
the diagonal matrix Di with �i on the diagonal. Then it is clear that we
can split Di + Gi into Jordan blocks by forming a Jordan block for every
uninterrupted chain of 1s. By putting the bases of the Wi together, we
obtain a matrix in Jordan form for f .

Now assume (2). If f can be represented by a Jordan matrix, it is
obvious that the diagonal entries are the eigenvalues of f , so they all belong
to K.

Observe that Theorem 22.7 applies if K = C. It turns out that there are
uniqueness properties of the Jordan blocks but more machinery is needed
to prove this result.

If a complex n⇥ n matrix A is expressed in terms of its Jordan decom-
position as A = D+N , since D and N commute, by Proposition 8.16, the
exponential of A is given by

eA = eDeN ,

and since N is an n ⇥ n nilpotent matrix, Nn�1 = 0, so we obtain

eA = eD
✓
I +

N

1!
+

N2

2!
+ · · · + Nn�1

(n � 1)!

◆
.

In particular, the above applies if A is a Jordan matrix. This fact can
be used to solve (at least in theory) systems of first-order linear di↵erential
equations. Such systems are of the form

dX

dt
= AX, (⇤)

where A is an n ⇥ n matrix and X is an n-dimensional vector of functions
of the parameter t.

It can be shown that the columns of the matrix etA form a basis of the
vector space of solutions of the system of linear di↵erential equations (⇤);
see Artin [Artin (1991)] (Chapter 4). Furthermore, for any matrix B and
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any invertible matrix P , if A = PBP�1, then the system (⇤) is equivalent
to

P�1

dX

dt
= BP�1X,

so if we make the change of variable Y = P�1X, we obtain the system

dY

dt
= BY. (⇤⇤)

Consequently, if B is such that the exponential etB can be easily computed,
we obtain an explicit solution Y of (⇤⇤) , andX = PY is an explicit solution
of (⇤). This is the case when B is a Jordan form of A. In this case, it su�ces
to consider the Jordan blocks of B. Then we have

Jr(�) = �Ir +

0

BBBBBB@

0 1 0 · · · 0
0 0 1 · · · 0
...
...
. . .

. . .
...

0 0 0
. . . 1

0 0 0 · · · 0

1

CCCCCCA
= �Ir +N,

and the powers Nk are easily computed.
For example, if

B =

0

@
3 1 0
0 3 1
0 0 3

1

A = 3I
3

+

0

@
0 1 0
0 0 1
0 0 0

1

A

we obtain

tB = t

0

@
3 1 0
0 3 1
0 0 3

1

A = 3tI
3

+

0

@
0 t 0
0 0 t
0 0 0

1

A

and so

etB =

0

@
e3t 0 0
0 e3t 0
0 0 e3t

1

A

0

@
1 t (1/2)t2

0 1 t
0 0 1

1

A =

0

@
e3t te3t (1/2)t2e3t

0 e3t te3t

0 0 e3t

1

A .

The columns of etB form a basis of the space of solutions of the system of
linear di↵erential equations

dY
1

dt
= 3Y

1

+ Y
2

dY
2

dt
= 3Y

2

+ Y
3

dY
3

dt
= 3Y

3

,
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in matrix form,

0

BB@

dY1
dt

dY2
dt

dY3
dt

1

CCA =

0

@
3 1 0
0 3 1
0 0 3

1

A

0

@
Y
1

Y
2

Y
3

1

A .

Explicitly, the general solution of the above system is

0

@
Y
1

Y
2

Y
3

1

A = c
1

0

@
e3t

0
0

1

A+ c
2

0

@
te3t

e3t

0

1

A+ c
3

0

@
(1/2)t2e3t

te3t

e3t

1

A ,

with c
1

, c
2

, c
3

2 R.
Solving systems of first-order linear di↵erential equations is discussed in

Artin [Artin (1991)] and more extensively in Hirsh and Smale [Hirsh and
Smale (1974)].

22.8 Summary

The main concepts and results of this chapter are listed below:

• Ideals, principal ideals, greatest common divisors.
• Monic polynomial, irreducible polynomial, relatively prime polynomi-
als.

• Annihilator of a linear map.
• Minimal polynomial of a linear map.
• Invariant subspace.
• f -conductor of u into W ; conductor of u into W .
• Diagonalizable linear maps.
• Commuting families of linear maps.
• Primary decomposition.
• Generalized eigenvectors.
• Nilpotent linear map.
• Normal form of a nilpotent linear map.
• Jordan decomposition.
• Jordan block.
• Jordan matrix.
• Jordan normal form.
• Systems of first-order linear di↵erential equations.
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22.9 Problems

Problem 22.1. Prove that the minimal monic polynomial of Proposition
22.1 is unique.

Problem 22.2. Given a linear map f : E ! E, prove that the set Ann(f)
of polynomials that annihilate f is an ideal.

Problem 22.3. Provide the details of Proposition 22.8.

Problem 22.4. Prove that the f -conductor Sf (u,W ) is an ideal in K[X]
(Proposition 22.9).

Problem 22.5. Prove that the polynomials g
1

, . . . , gk used in the proof of
Theorem 22.3 are relatively prime.

Problem 22.6. Find the minimal polynomial of the matrix

A =

0

@
6 �3 �2
4 �1 �2
10 �5 �3

1

A .

Problem 22.7. Find the Jordan decomposition of the matrix

A =

0

@
3 1 �1
2 2 �1
2 2 0

1

A .

Problem 22.8. Let f : E ! E be a linear map on a finite-dimensional
vector space. Prove that if f has rank 1, then either f is diagonalizable or
f is nilpotent but not both.

Problem 22.9. Find the Jordan form of the matrix

A =

0

BB@

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

1

CCA .

Problem 22.10. Let N be a 3 ⇥ 3 nilpotent matrix over C. Prove that
the matrix
A = I + (1/2)N � (1/8)N2 satisfies the equation

A2 = I +N.

In other words, A is a square root of I +N .
Generalize the above fact to any n⇥n nilpotent matrix N over C using

the binomial series for (1 + t)1/2.
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Problem 22.11. Let K be an algebraically closed field (for example, K =
C). Prove that every 4 ⇥ 4 matrix is similar to a Jordan matrix of the
following form:

0

BB@

�
1

0 0 0
0 �

2

0 0
0 0 �

3

0
0 0 0 �

4

1

CCA ,

0

BB@

� 1 0 0
0 � 0 0
0 0 �

3

0
0 0 0 �

4

1

CCA ,

0

BB@

� 1 0 0
0 � 1 0
0 0 � 0
0 0 0 �

4

1

CCA ,

0

BB@

� 1 0 0
0 � 0 0
0 0 µ 1
0 0 0 µ

1

CCA ,

0

BB@

� 1 0 0
0 � 1 0
0 0 � 1
0 0 0 �

1

CCA .

Problem 22.12. In this problem the fieldK is of characteristic 0. Consider
an (r ⇥ r) Jordan block

Jr(�) =

0

BBBBBB@

� 1 0 · · · 0
0 � 1 · · · 0
...
...
. . .

. . .
...

0 0 0
. . . 1

0 0 0 · · · �

1

CCCCCCA
.

Prove that for any polynomial f(X), we have

f(Jr(�)) =

0

BBBBBB@

f(�) f
1

(�) f
2

(�) · · · fr�1

(�)
0 f(�) f

1

(�) · · · fr�2

(�)
...

...
. . .

. . .
...

0 0 0
. . . f

1

(�)
0 0 0 · · · f(�)

1

CCCCCCA
,

where

fk(X) =
f (k)(X)

k!
,

and f (k)(X) is the kth derivative of f(X).
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(k + 1)th principal component
of X, 742

3-sphere S

3, 579
C

0-continuity, 203
C

2-continuity, 203
I-indexed family, 28

I-sequence, 29
I-sequence, 29
K-vector space, 26
LDU -factorization, 217
LU -factorization, 214, 216
QR algorithm, 629

deflation, 644
double shift, 643, 646
Francis shift, 647
implicit Q theorem, 648
implicit shift, 643

bulge chasing, 643
shift, 643, 645
Wilkinson shift, 646

QR-decomposition, 443, 510
Hom(E,F ), 62
SO(2), 585
SU(2), 568

adjoint representation, 569, 570
U(1), 585
so(n), 441
su(2), 569

inner product, 582
f -conductor of u into W , 767
k-plane, 48

kth elementary symmetric
polynomial, 537

n-linear form, see multilinear form
n-linear map, see multilinear map
(real) projective space RP3, 579
(upper) Hessenberg matrix, 637

reduced, 640
unreduced, 640

“musical map”, 422

`

2-norm, 12
I-indexed family

subfamily, 35
Gauss-Jordan factorization, 214
permanent

Van der Waerden conjecture, 193

abelian group, 21
adjacency matrix, 661, 668

di↵usion operator, 669
adjoint map, 424, 502
adjoint of f , 424, 426, 503
adjoint of a matrix, 508
adjugate, 179
a�ne combination, 145
a�ne frame, 151
a�ne map, 148, 437

unique linear map, 148
a�ne space, 149

free vectors, 149
points, 149
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translations, 149
algebraic varieties, 381
algebraically closed field, 545
alternating multilinear map, 167
annihilating polynomials, 757
annihilator

linear map, 764
of a polynomial, 757

applications
of Euclidean geometry, 449

Arnoldi iteration, 650
breakdown, 650
Rayleigh–Ritz method, 652

Arnoldi estimates, 652
Ritz values, 652

attribute, 737
automorphism, 63
average, 737

Bézier curve, 201
control points, 201

Bézier spline, 203
back-substitution, 206
Banach space, 328
barycentric combination, see a�ne

combination
basis, 41

dimension, 44, 48
Beltrami, 705
Bernstein polynomials, 42, 91, 201
best (d� k)-dimensional a�ne

approximation, 750, 751
best a�ne approximation, 747
best approximation, 747
Bezout’s identity, 762, 763
bidual, 63, 371
bijection between E and its dual E⇤,

421
bilinear form, see bilinear map
bilinear map, 167, 377

canonical pairing, 377
definite, 408
positive, 408
symmetric, 167

block diagonalization
of a normal linear map, 600

of a normal matrix, 610
of a skew-self-adjoint linear map,

605
of a skew-symmetric matrix, 611
of an orthogonal linear map, 606
of an orthogonal matrix, 611

canonical
isomorphism, 421

canonical pairing, 377
evaluation at v, 377

Cartan–Dieudonné theorem, 607
sharper version, 607

Cauchy determinant, 324
Cauchy sequence

normed vector space, 328
Cauchy–Schwarz inequality, 296, 297,

411, 496
Cayley–Hamilton theorem, 186, 189
center of gravity, 739
centered data point, 738
centroid, 739, 748, 750
chain, see graph path
change of basis matrix, 89, 90
characteristic polynomial, 185, 303,

536
characteristic value, see eigenvalue
characteristic vector, see eigenvector
Chebyshev polynomials, 433
Cholesky factorization, 242, 243
cofactor, 172
column vector, 8, 50, 375
commutative group, see abelian group
commuting family

linear maps, 770
complete normed vector space, see

Banach space
complex number

conjugate, 489
imaginary part, 489
modulus, 489
real part, 489

complex vector space, 26
complexification

of a vector space, 594
of an inner product, 595
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complexification of vector space, 594
computational geometry, 449
condition number, 318, 477
conductor, 768
conjugate

of a complex number, 489
of a matrix, 508

continuous
function, 313
linear map, 313

contravariant, 90
Courant–Fishcer theorem, 617
covariance, 738
covariance matrix, 739
covariant, 375
covector, see linear form, see linear

form
Cramer’s rules, 184
cross-product, 423
curve interpolation, 201, 203

de Boor control points, 203

data compression, 19, 715, 735
low-rank decomposition, 19

de Boor control points, 203
QR-decomposition, 430, 443, 449,

465, 471, 476, 505, 510
QR-decomposition, in terms of

Householder matrices, 471
degree matrix, 661, 662, 665, 667, 672
degree of a vertex, 662
Delaunay triangulation, 449, 695
Demmel, 736
determinant, 170, 172

Laplace expansion, 172
linear map, 185

determinant of a linear map, 440
determining orbits of asteroids, 722
diagonal matrix, 533
diagonalizable, 541
diagonalizable matrix, 533
diagonalization, 93

of a normal linear map, 602
of a normal matrix, 612
of a self-adjoint linear map, 603
of a symmetric matrix, 610

diagonalize a matrix, 449
di↵erential equations

system of first order, 788
dilation of hyperplane, 270

direction, 270
scale factor, 270

direct graph
strongly connected components,

666
direct product

inclusion map, 132
projection map, 131
vector spaces, 131

direct sum
inclusion map, 135
projection map, 136
vector space, 132

directed graph, 664
closed, 665
path, 665

length, 665
simply connected, 665
source, 664
target, 664

discriminant, 163
dual basis, 66
dual norm, 519, 520
dual space, 63, 371, 519

annihilator, 378
canonical pairing, 377
coordinate form, 65, 371
dual basis, 66, 371, 382, 383
Duality theorem, 382
linear form, 63, 371
orthogonal, 377

duality
in Euclidean spaces, 421

Duality theorem, 382

edge of a graph, 664, 666
eigenfaces, 754
eigenspace, 302, 535
eigenvalue, 93, 302, 303, 534, 593

algebraic multiplicity, 539
Arnoldi iteration, 651
basic QR algorithm, 629
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conditioning number, 553
extreme, 652
geometric multiplicity, 539
interlace, 615
spectrum, 303

eigenvector, 93, 302, 535, 593
generalized, 758

elementary matrix, 211, 213
endomorphism, 63
Euclid’s proposition, 762
Euclidean geometry, 407
Euclidean norm, 12, 290

induced by an inner product, 414
Euclidean space, 599

definition, 408
Euclidean structure, 408
evaluation at v, 377

face recognition, 754
family, see I-indexed family
feature, 737

vector, 737
Fiedler number, 677
field, 25
finding eigenvalues

inverse iteration method, 657
power iteration, 655
Rayleigh quotient iteration, 658
Rayleigh–Ritz method, 652, 655

finite support, 420
first principal component

of X, 742
flip

transformations, 440, 509
flip about F

definition, 466
forward-substitution, 207
Fourier analysis, 409
Fourier matrix, 510
free module, 53
free variables, 256
Frobenius norm, 305, 410, 494
from polar form to SVD, 709
from SVD to polar form, 709

Gauss, 450, 721

Gauss–Jordan factorization, 258
Gaussian elimination, 207, 208, 213

complete pivoting, 236
partial pivoting, 235
pivot, 209
pivoting, 209

gcd, see greatest common divisor, see
greatest common divisor

general linear group, 22
vector space, 63

generalized eigenvector, 758, 779
index, 779

geodesic dome, 696
Gershgorin disc, 547
Gershgorin domain, 547
Gershgorin–Hadamard theorem, 549
Givens rotation, 648
gradient, 423
Gram–Schmidt

orthonormalization, 442, 505
orthonormalization procedure, 428

graph
bipartite, 192
connected, 667
connected component, 667
cut, 681
degree of a vertex, 667
directed, 664
edge, 666
edges, 664
isolated vertex, 677
links between vertex subsets, 681
matching, 192
orientation, 669

relationship to directed graph,
669

oriented, 669
path, 667

closed, 667
length, 667

perfect matching, 192
simple, 664, 667
vertex, 666
vertex degree, 665
vertices, 664
volume of set of vertices, 681
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weighted, 671
graph clustering, 683
graph clustering method, 661

normalized cut, 661
graph drawing, 663, 689

balanced, 689
energy, 663, 690
function, 689
matrix, 663, 689
orthogonal drawing, 664, 691
relationship to graph clustering,

663
weighted energy function, 690

graph embedding, see graph drawing
graph Laplacian, 662
Grassmann’s relation, 140
greatest common divisor

polynomial, 761, 763
relatively prime, 761, 763

group, 20
abelian, 21
identity element, 21

Hölder’s inequality, 296, 297
Haar basis, 42, 103, 106, 107
Haar matrix, 107
Haar wavelets, 103, 108
Hadamard, 408
Hadamard matrix, 124

Sylvester–Hadamard, 125
Hahn–Banach theorem, 525
Hermite polynomials, 434
Hermitian form

definition, 490
positive, 492
positive definite, 492

Hermitian geometry, 489
Hermitian norm, 498
Hermitian reflection, 511
Hermitian space, 489

definition, 492
Hermitian product, 492

Hilbert matrix, 324
Hilbert space, 422, 501
Hilbert’s Nullstellensatz, 381

Hilbert-Schmidt norm, see Frobenius
norm

homogenous system, 256
nontrivial solution, 256

Householder matrices, 444, 465
definition, 469

Householder matrix, 512
hyperplane, 48, 422, 501
hyperplane symmetry

definition, 466

ideal, 381, 760
null, 761
principal, 761
radical, 381
zero, 761

idempotent function, 137
identity matrix, 13, 52
image

linear map, 56
image Im f of f , 703
image compression, 736
implicit Q theorem, 648, 659
improper

isometry, 440, 509
orthogonal transformation, 440
unitary transformation, 509

incidence matrix, 661, 666, 668
boundary map, 666
coboundary map, 666
weighted graph, 675

inner product, 12, 56, 407
definition, 408
Euclidean, 297
Gram matrix, 411
Hermitian, 296
weight function, 434

invariant subspace, 766
inverse map, 61
inverse matrix, 52
isometry, 426
isomorphism, 61
isotropic

vector, 422

Jacobi polynomials, 434
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Jacobian matrix, 423
Jordan, 705
Jordan block, 787
Jordan blocks, 759
Jordan decomposition, 781
Jordan form, 759, 787
Jordan matrix, 787

Kernel
linear map, 56

Kronecker product, 112
Kronecker symbol, 65
Krylov subspace, 650
Ky Fan k-norm, 716
Ky Fan p-k-norm, 716

Laguerre polynomials, 434
Lanczos iteration, 654

Rayleigh–Ritz method, 655
Laplacian

connection to energy function, 690
Fiedler number, 677
normalized Lrw, 678
normalized Lsym, 678
unnormalized, 673
unnormalized weighted graph, 674

lasso, 15
least squares, 715, 721

method, 450
problems, 447
recursive, 728
weighted, 728

least squares solution x

+, 723
least-squares

error, 326
least-squares problem

generalized minimal residuals, 653
GMRES method, 653, 654
residual, 653

Legen¿dre, 450
Legendre, 721

polynomials, 432
length of a line segment, 407
Lie algebra, 580
Lie bracket, 580
line, 48

linear combination, 8, 35
linear equation, 64
linear form, 63, 371
linear isometry, 407, 426, 435, 506

definition, 435
linear map, 55

automorphism, 63
bounded, 307, 313
continuous, 313
determinant, 185
endomorphism, 63
idempotent, 516
identity map, 55
image, 56
invariant subspace, 134
inverse, 61
involution, 516
isomorphism, 61
Jordan form, 787
matrix representation, 80
nilpotent, 758, 779
nullity, 140
projection, 516
rank, 57
retraction, 143
section, 143
transpose, 391

linear subspace, 38
linear system

condition, 318
ill-conditioned, 318

linear transformation, 11
linearly dependent, 10, 35
linearly independent, 8, 35
liner map

Kernel, 56
Lorentz form, 422

magic square, 267
magic sum, 267
normal, 267

matrix, 9, 50
adjoint, 301, 612
analysis, 449
bidiagonal, 715
block diagonal, 135, 600
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change of basis, 89
conjugate, 301, 611
determinant, 170, 172
diagonal, 533
Hermitian, 301, 612
identity, 13, 52
inverse, 14, 52
invertible, 14
Jordan, 787
minor, 171, 179
nonsingular, 14, 53
normal, 301, 612
orthogonal, 14, 302, 609
permanent, 191
product, 51
pseudo-inverse, 15
rank, 144
rank normal form, 269
reduced row echelon, 250, 253
similar, 93
singular, 14, 53
skew-Hermitian, 612
skew-symmetric, 609
square, 50
strictly column diagonally

dominant, 235
strictly row diagonally dominant,

236
sum, 50
symmetric, 135, 301, 609
trace, 65, 536
transpose, 301
tridiagonal, 236, 715
unit lower-triangular, 214
unitary, 302, 612
upper triangular, 443, 534, 542

matrix addition, 50
matrix completion, 524

Netflix competition, 524
matrix exponential, 331

eigenvalue, 554
eigenvector, 554
skew symmetric matrix, 333, 555
surjectivity exp: su(2) ! SU(2),

581

surjectivity exp: so(3) ! SO(3),
442

matrix multiplication, 51
matrix norm, 301, 735

Frobenius, 305
spectral, 312
submultiplicativity, 301

matrix norms, 19
matrix of the iterative method, 344

error vector, 344
Gauss–Seidel method, 351

Gauss–Seidel matrix, 351
Jacobi’s method, 348

Jacobi’s matrix, 348
relaxation method, 352

matrix of relaxation, 352
Ostrowski-Reich theorem, 356
parameter of relaxation, 353
successive overrelaxation, 353

maximal linearly independent family,
43

mean, 737
metric map, 435
metric notions, 407
minimal generating family, 43
minimal polynomial, 757, 764
minimizing kAx� bk2, 723
Minkowski inequality, 412, 496
Minkowski’s inequality, 297
Minkowski’s lemma, 525
minor, 171, 179

cofactor, 172
modified Gram–Schmidt method, 430
module, 53

free, 53
modulus

complex number, 289
monoid, 21
Moore–Penrose pseudo-inverse, 726
motion

planning, 449
mulitset, 29
multilinear form, 167
multilinear map, 166, 167

symmetric, 167
multiresolution signal analysis, 113
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nilpotent, 758
linear map, 779

nodes, see vertex
nondegenerate

symmetric bilinear form, 422
norm, 289, 409, 411, 414, 432, 498

1-norm, 290
`

2-norm, 12
`

p-norm, 290
dual, 519, 520
equivalent, 299
Euclidean, 12, 290
Frobenius, 410
matrix, 301
nuclear, 523
parallelogram law, 414
quadratic norm, 300
subordinate, 307, 308
sup-norm, 290
triangle inequality, 289

normal
matrix, 732

normal equations, 450, 723
definition, 723

normal linear map, 426, 591, 599, 602
definition, 592

normal matrix, 301
normalized cuts, 682
normalized Haar coe�cients, 117
normalized Haar transform matrix,

117
normed vector space, 289, 498

1-norm, 290
`

p-norm, 290
complete, 328
Euclidean norm, 290
norm, 289
sup-norm, 290
triangle inequality, 289

nuclear norm, 523
matrix completion, 524

nullity, 140
nullspace, see Kernel

operator norm, see subordinate norm
L(E;F ), 313

seesubordinate norm, 307
optimization problems, 721
orthogonal, 725

basis, 440
complement, 417, 597
family, 417
linear map, 592, 606
reflection, 466
spaces, 434
symmetry, 466
transformation

definition, 435
vectors, 417, 499

orthogonal group, 438
definition, 440

orthogonal matrix, 14, 302, 440
definition, 439

orthogonal projection, 730
orthogonal vectors, 12
orthogonal versus orthonormal, 440
orthogonality, 407, 417

and linear independence, 418
orthonormal

basis, 438, 504
family, 417

orthonormal basis
existence, 427
existence, second proof, 428

overdetermined linear system, 721

pairing
bilinear, 388
nondegenerate, 388

parallelepiped, 175
parallelogram, 175
parallelogram law, 414, 499
parallelotope, 175
partial sums, 420
Pauli spin matrices, 571
PCA, 737, 742, 744
permanent, 191
permutation, 21
permutation matrix, 286
permutation metrix, 220
permutation on n elements, 161

Cauchy two-line notation, 162
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inversion, 165
one-line notation, 162
sign, 165
signature, 165
symmetric group, 162
transposition, 162

basic, 163
perpendicular

vectors, 417
piecewise linear function, 107
plane, 48
Poincaré separation theorem, 617
polar decomposition, 449

of A, 708
polar form, 701

definition, 708
of a quadratic form, 410

polynomial
degree, 759
greatest common divisor, 761, 763
indecomposable, 763
irreducible, 763
monic, 759
prime, 763
relatively prime, 761, 763

positive
self-adjoint linear map, 702

positive definite
bilinear form, 408
self-adjoint linear map, 702

positive definite matrix, 239
positive semidefinite

self-adjoint linear map, 702
pre-Hilbert space, 492

Hermitian product, 492
pre-norm, 521
Primary Decomposition Theorem,

773, 778
principal axes, 715
principal components, 737
principal components analysis, 737
principal directions, 20, 742, 746
principal ideal, 761

generator, 761
projection

linear, 465

projection map, 131, 465
proper

isometry, 440
orthogonal transformations, 440
unitary transformations, 509

proper subspace, see eigenspace
proper value, see eigenvalue
proper vector, see eigenvector
pseudo-inverse, 15, 450, 715

definition, 725
Penrose properties, 734

quadratic form, 491
associated with ', 408

quaternions, 568
conjugate, 569
Hamilton’s identities, 568
interpolation formula, 584
multiplication of, 568
pure quaternions, 570
scalar part, 569
unit, 510
vector part, 569

rank
linear map, 57
matrix, 144, 396
of a linear map, 703

rank normal form, 269
Rank-nullity theorem, 138
ratio, 407
Rayleigh ratio, 613
Rayleigh–Ritz

ratio, 744
theorem, 744

Rayleigh–Ritz theorem, 613, 614
real eigenvalues, 425, 449
real vector space, 25
reduced QR factorization, 650
reduced row echelon form, see rref
reduced row echelon matrix, 250, 253
reflection, 407

with respect to F and parallel to
G, 465

reflection about F
definition, 466
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replacement lemma, 44, 46
ridge regression, 15
Riesz representation theorem, 422
rigid motion, 407, 435
ring, 24
Rodrigues, 569
Rodrigues’ formula, 441, 579
rotation, 407

definition, 440
row vector, 8, 50, 375
rref, see reduced row echelon matrix

augmented matrix, 251
pivot, 253

sample, 737
covariance, 738
covariance matrix, 739
mean, 737
variance, 738

scalar product
definition, 408

Schatten p-norm, 716
Schmidt, 705
Schur complement, 243
Schur norm, see Frobenius norm
Schur’s lemma, 544
SDR, see system of distinct

representatives
self-adjoint linear map, 592, 603, 605

definition, 425
semilinear map, 490
seminorm, 290, 499
sequence, 28

normed vector space, 328
convergent, 328, 341

series
absolutely convergent

rearrangement property, 330
normed vector space, 329

absolutely convergent, 329
convergent, 329
rearrangement, 330

sesquilinear form
definition, 490

signal compression, 103
compressed signal, 104

reconstruction, 104
signed volume, 175
similar matrix, 93
simple graph, 664, 667
singular decomposition, 15

pseudo-inverse, 15
singular value decomposition, 321,

449, 701, 714
case of a rectangular matrix, 712
definition, 707
singular value, 321
square matrices, 708
square matrix, 705

singular values, 15
Weyl’s inequalities, 711

singular values of f , 702
skew field, 569
skew-self-adjoint linear map, 592
skew-symmetric matrix, 135
SOR, see successive overrelaxation
spanning set, 41
special linear group, 22, 185, 440
special orthogonal group, 22

definition, 440
special unitary group

definition, 509
spectral graph theory, 677
spectral norm, 312

dual, 523
spectral radius, 303
spectral theorem, 597
spectrum, 303

spectral radius, 303
spline

Bézier spline, 203
spline curves, 42
splines, 201
square matrix, 50
SRHT, see subsampled randomized

Hadamard transform
subordinate matrix norm, 307, 308
subordinate norm, 519
subsampled randomized Hadamard

transform, 126
subspace, see linear subspace

k-plane, 48
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finitely generated, 41
generators, 41
hyperplane, 48
invariant, 766
line, 48
plane, 48
spanning set, 41

sum of vector spaces, 132
SVD, see singular decomposition, see

singular value decomposition, 449,
705, 714, 744, 750

Sylvester, 705
Sylvester’s criterion, 242, 247
Sylvester–Hadamard matrix, 125

Walsh function, 126
symmetric bilinear form, 408
symmetric group, 162
symmetric matrix, 135, 425, 449

positive definite, 239
symmetric multilinear map, 167
symmetry

with respect to F and parallel to
G, 465

with respect to the origin, 467
system of distinct representatives, 193

tensor product of matrices, see
Kronecker product

total derivative, 64, 422
Jacobian matrix, 423

trace, 65, 302, 536
trace norm, see nuclear norm
translation, 145

translation vector, 145
transporter, see conductor
transpose map, 391
transpose of a matrix, 14, 52, 438,

507, 609, 611
transposition, 162

basic, 163
transposition matrix, 211
transvection of hyperplane, 272

direction, 272
triangle inequality, 289, 414

Minkowski’s inequality, 297
triangularized matrix, 534

tridiagonal matrix, 236

uncorrelated, 738
undirected graph, 666
unit quaternions, 568
unitary

group, 507
map, 602
matrix, 507

unitary group
definition, 509

unitary matrix, 302
definition, 509

unitary space
definition, 492

unitary transformation, 506
definition, 506

unreduced Hessenberg matrix, 640
upper triangular matrix, 534

Vandermonde determinant, 177
variance, 738
vector space

basis, 41
component, 49
coordinate, 49

complex, 26
complexification, 594
dimension, 44, 48
direct product, 131
direct sum, 132
field of scalars, 26
infinite dimension, 48
norm, 289
real, 25
scalar multiplication, 25
sum, 132
vector addition, 25
vectors, 25

vertex
adjacent, 668

vertex of a graph, 664, 666
degree, 665

Voronoi diagram, 449

walk, see directed graph path, see
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graph path
Walsh function, 126
wavelets

Haar, 103
weight matrix

isolated vertex, 677
weighted graph, 661, 671

adjacent vertex, 672

degree of vertex, 672
edge, 671
underlying graph, 671
weight matrix, 671

Weyl, 705
Weyl’s inequalities, 711

zero vector, 8
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