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Preface

In recent years, computer vision, robotics, machine learning, and data sci-
ence have been some of the key areas that have contributed to major ad-
vances in technology. Anyone who looks at papers or books in the above ar-
eas will be ba✏ed by a strange jargon involving exotic terms such as kernel
PCA, ridge regression, lasso regression, support vector machines (SVM),
Lagrange multipliers, KKT conditions, etc. Do support vector machines
chase cattle to catch them with some kind of super lasso? No! But one
will quickly discover that behind the jargon which always comes with a new
field (perhaps to keep the outsiders out of the club), lies a lot of “classical”
linear algebra and techniques from optimization theory. And there comes
the main challenge: in order to understand and use tools from machine
learning, computer vision, and so on, one needs to have a firm background
in linear algebra and optimization theory. To be honest, some probablity
theory and statistics should also be included, but we already have enough
to contend with.

Many books on machine learning struggle with the above problem. How
can one understand what are the dual variables of a ridge regression problem
if one doesn’t know about the Lagrangian duality framework? Similarly,
how is it possible to discuss the dual formulation of SVM without a firm
understanding of the Lagrangian framework?

The easy way out is to sweep these di�culties under the rug. If one
is just a consumer of the techniques we mentioned above, the cookbook
recipe approach is probably adequate. But this approach doesn’t work
for someone who really wants to do serious research and make significant
contributions. To do so, we believe that one must have a solid background
in linear algebra and optimization theory.

This is a problem because it means investing a great deal of time and
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energy studying these fields, but we believe that perseverance will be amply
rewarded.

Our main goal is to present fundamentals of linear algebra and optimiza-
tion theory, keeping in mind applications to machine learning, robotics, and
computer vision. This work consists of two volumes, the first one being lin-
ear algebra, the second one optimization theory and applications, especially
to machine learning.

This first volume covers “classical” linear algebra, up to and including
the primary decomposition and the Jordan form. Besides covering the
standard topics, we discuss a few topics that are important for applications.
These include:

(1) Haar bases and the corresponding Haar wavelets.
(2) Hadamard matrices.
(3) A�ne maps (see Section 5.4).
(4) Norms and matrix norms (Chapter 8).
(5) Convergence of sequences and series in a normed vector space. The

matrix exponential eA and its basic properties (see Section 8.8).
(6) The group of unit quaternions, SU(2), and the representation of rota-

tions in SO(3) by unit quaternions (Chapter 15).
(7) An introduction to algebraic and spectral graph theory.
(8) Applications of SVD and pseudo-inverses, in particular, principal com-

ponent analysis, for short PCA (Chapter 21).
(9) Methods for computing eigenvalues and eigenvectors, with a main focus

on the QR algorithm (Chapter 17).

Four topics are covered in more detail than usual. These are

(1) Duality (Chapter 10).
(2) Dual norms (Section 13.7).
(3) The geometry of the orthogonal groups O(n) and SO(n), and of the

unitary groups U(n) and SU(n).
(4) The spectral theorems (Chapter 16).

Except for a few exceptions we provide complete proofs. We did so
to make this book self-contained, but also because we believe that no
deep knowledge of this material can be acquired without working out some
proofs. However, our advice is to skip some of the proofs upon first reading,
especially if they are long and intricate.

The chapters or sections marked with the symbol ~ contain material
that is typically more specialized or more advanced, and they can be omit-



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page ix

Preface ix

ted upon first (or second) reading.
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Chapter 1

Introduction

As we explained in the preface, this first volume covers “classical” linear
algebra, up to and including the primary decomposition and the Jordan
form. Besides covering the standard topics, we discuss a few topics that
are important for applications. These include:

(1) Haar bases and the corresponding Haar wavelets, a fundamental tool
in signal processing and computer graphics.

(2) Hadamard matrices which have applications in error correcting codes,
signal processing, and low rank approximation.

(3) A�ne maps (see Section 5.4). These are usually ignored or treated in a
somewhat obscure fashion. Yet they play an important role in computer
vision and robotics. There is a clean and elegant way to define a�ne
maps. One simply has to define a�ne combinations. Linear maps
preserve linear combinations, and similarly a�ne maps preserve a�ne
combinations.

(4) Norms and matrix norms (Chapter 8). These are used extensively in
optimization theory.

(5) Convergence of sequences and series in a normed vector space. Ba-
nach spaces (see Section 8.7). The matrix exponential eA and its basic
properties (see Section 8.8). In particular, we prove the Rodrigues
formula for rotations in SO(3) and discuss the surjectivity of the expo-
nential map exp: so(3) ! SO(3), where so(3) is the real vector space
of 3⇥3 skew symmetric matrices (see Section 11.7). We also show that
det(eA) = etr(A) (see Section 14.5).

(6) The group of unit quaternions, SU(2), and the representation of rota-
tions in SO(3) by unit quaternions (Chapter 15). We define a homo-
morphism r : SU(2) ! SO(3) and prove that it is surjective and that
its kernel is {�I, I}. We compute the rotation matrix Rq associated

3
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with a unit quaternion q, and give an algorithm to construct a quater-
nion from a rotation matrix. We also show that the exponential map
exp: su(2) ! SU(2) is surjective, where su(2) is the real vector space of
skew-Hermitian 2 ⇥ 2 matrices with zero trace. We discuss quaternion
interpolation and prove the famous slerp interpolation formula due to
Ken Shoemake.

(7) An introduction to algebraic and spectral graph theory. We define the
graph Laplacian and prove some of its basic properties (see Chapter 18).
In Chapter 19, we explain how the eigenvectors of the graph Laplacian
can be used for graph drawing.

(8) Applications of SVD and pseudo-inverses, in particular, principal com-
ponent analysis, for short PCA (Chapter 21).

(9) Methods for computing eigenvalues and eigenvectors are discussed in
Chapter 17. We first focus on the QR algorithm due to Rutishauser,
Francis, and Kublanovskaya. See Sections 17.1 and 17.3. We then
discuss how to use an Arnoldi iteration, in combination with the QR
algorithm, to approximate eigenvalues for a matrix A of large dimen-
sion. See Section 17.4. The special case where A is a symmetric (or
Hermitian) tridiagonal matrix, involves a Lanczos iteration, and is dis-
cussed in Section 17.6. In Section 17.7, we present power iterations and
inverse (power) iterations.

Five topics are covered in more detail than usual. These are

(1) Matrix factorizations such as LU , PA = LU , Cholesky, and reduced
row echelon form (rref). Deciding the solvablity of a linear system
Ax = b, and describing the space of solutions when a solution exists.
See Chapter 7.

(2) Duality (Chapter 10).
(3) Dual norms (Section 13.7).
(4) The geometry of the orthogonal groups O(n) and SO(n), and of the

unitary groups U(n) and SU(n).
(5) The spectral theorems (Chapter 16).

Most texts omit the proof that the PA = LU factorization can be
obtained by a simple modification of Gaussian elimination. We give a
complete proof of Theorem 7.2 in Section 7.6. We also prove the uniqueness
of the rref of a matrix; see Proposition 7.13.

At the most basic level, duality corresponds to transposition. But dual-
ity is really the bijection between subspaces of a vector space E (say finite-
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dimensional) and subspaces of linear forms (subspaces of the dual space
E⇤) established by two maps: the first map assigns to a subspace V of E
the subspace V 0 of linear forms that vanish on V ; the second map assigns
to a subspace U of linear forms the subspace U0 consisting of the vectors
in E on which all linear forms in U vanish. The above maps define a bijec-
tion such that dim(V )+ dim(V 0) = dim(E), dim(U)+ dim(U0) = dim(E),
V 00 = V , and U00 = U .

Another important fact is that if E is a finite-dimensional space with
an inner product u, v 7! hu, vi (or a Hermitian inner product if E is a
complex vector space), then there is a canonical isomorphism between E
and its dual E⇤. This means that every linear form f 2 E⇤ is uniquely
represented by some vector u 2 E, in the sense that f(v) = hv, ui for all
v 2 E. As a consequence, every linear map f has an adjoint f⇤ such that
hf(u), vi = hu, f⇤(v)i for all u, v 2 E.

Dual norms show up in convex optimization; see Boyd and Vanden-
berghe [Boyd and Vandenberghe (2004)].

Because of their importance in robotics and computer vision, we discuss
in some detail the groups of isometries O(E) and SO(E) of a vector space
with an inner product. The isometries in O(E) are the linear maps such
that f � f⇤ = f⇤ � f = id, and the direct isometries in SO(E), also called
rotations, are the isometries in O(E) whose determinant is equal to +1.
We also discuss the hermitian counterparts U(E) and SU(E).

We prove the spectral theorems not only for real symmetric matrices,
but also for real and complex normal matrices.

We stress the importance of linear maps. Matrices are of course invalu-
able for computing and one needs to develop skills for manipulating them.
But matrices are used to represent a linear map over a basis (or two bases),
and the same linear map has di↵erent matrix representations. In fact, we
can view the various normal forms of a matrix (Schur, SVD, Jordan) as a
suitably convenient choice of bases.

We have listed most of the Matlab functions relevant to numerical lin-
ear algebra and have included Matlab programs implementing most of the
algorithms discussed in this book.
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Chapter 2

Vector Spaces, Bases, Linear Maps

2.1 Motivations: Linear Combinations, Linear Indepen-
dence and Rank

In linear optimization problems, we often encounter systems of linear equa-
tions. For example, consider the problem of solving the following system of
three linear equations in the three variables x

1

, x
2

, x
3

2 R:

x
1

+ 2x
2

� x
3

= 1

2x
1

+ x
2

+ x
3

= 2

x
1

� 2x
2

� 2x
3

= 3.

One way to approach this problem is introduce the “vectors” u, v, w,
and b, given by

u =

0

@
1
2
1

1

A v =

0

@
2
1

�2

1

A w =

0

@
�1
1

�2

1

A b =

0

@
1
2
3

1

A

and to write our linear system as

x
1

u+ x
2

v + x
3

w = b.

In the above equation, we used implicitly the fact that a vector z can be
multiplied by a scalar � 2 R, where

�z = �

0

@
z
1

z
2

z
3

1

A =

0

@
�z

1

�z
2

�z
3

1

A ,

and two vectors y and and z can be added, where

y + z =

0

@
y
1

y
2

y
3

1

A+

0

@
z
1

z
2

z
3

1

A =

0

@
y
1

+ z
1

y
2

+ z
2

y
3

+ z
3

1

A .

7
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Also, given a vector

x =

0

@
x
1

x
2

x
3

1

A ,

we define the additive inverse �x of x (pronounced minus x) as

�x =

0

@
�x

1

�x
2

�x
3

1

A .

Observe that �x = (�1)x, the scalar multiplication of x by �1.
The set of all vectors with three components is denoted by R3⇥1. The

reason for using the notation R3⇥1 rather than the more conventional no-
tation R3 is that the elements of R3⇥1 are column vectors; they consist of
three rows and a single column, which explains the superscript 3 ⇥ 1. On
the other hand, R3 = R⇥R⇥R consists of all triples of the form (x

1

, x
2

, x
3

),
with x

1

, x
2

, x
3

2 R, and these are row vectors. However, there is an ob-
vious bijection between R3⇥1 and R3 and they are usually identified. For
the sake of clarity, in this introduction, we will denote the set of column
vectors with n components by Rn⇥1.

An expression such as

x
1

u+ x
2

v + x
3

w

where u, v, w are vectors and the xis are scalars (in R) is called a linear
combination. Using this notion, the problem of solving our linear system

x
1

u+ x
2

v + x
3

w = b.

is equivalent to determining whether b can be expressed as a linear combi-
nation of u, v, w.

Now if the vectors u, v, w are linearly independent , which means that
there is no triple (x

1

, x
2

, x
3

) 6= (0, 0, 0) such that

x
1

u+ x
2

v + x
3

w = 0
3

,

it can be shown that every vector in R3⇥1 can be written as a linear com-
bination of u, v, w. Here, 0

3

is the zero vector

0
3

=

0

@
0
0
0

1

A .

It is customary to abuse notation and to write 0 instead of 0
3

. This rarely
causes a problem because in most cases, whether 0 denotes the scalar zero
or the zero vector can be inferred from the context.
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In fact, every vector z 2 R3⇥1 can be written in a unique way as a linear
combination

z = x
1

u+ x
2

v + x
3

w.

This is because if

z = x
1

u+ x
2

v + x
3

w = y
1

u+ y
2

v + y
3

w,

then by using our (linear!) operations on vectors, we get

(y
1

� x
1

)u+ (y
2

� x
2

)v + (y
3

� x
3

)w = 0,

which implies that

y
1

� x
1

= y
2

� x
2

= y
3

� x
3

= 0,

by linear independence. Thus,

y
1

= x
1

, y
2

= x
2

, y
3

= x
3

,

which shows that z has a unique expression as a linear combination, as
claimed. Then our equation

x
1

u+ x
2

v + x
3

w = b

has a unique solution, and indeed, we can check that

x
1

= 1.4

x
2

= �0.4

x
3

= �0.4

is the solution.
But then, how do we determine that some vectors are linearly indepen-

dent?
One answer is to compute a numerical quantity det(u, v, w), called the

determinant of (u, v, w), and to check that it is nonzero. In our case, it
turns out that

det(u, v, w) =

������

1 2 �1
2 1 1
1 �2 �2

������
= 15,

which confirms that u, v, w are linearly independent.
Other methods, which are much better for systems with a large num-

ber of variables, consist of computing an LU-decomposition or a QR-
decomposition, or an SVD of the matrix consisting of the three columns
u, v, w,

A =
�
u v w

�
=

0

@
1 2 �1
2 1 1
1 �2 �2

1

A .
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If we form the vector of unknowns

x =

0

@
x
1

x
2

x
3

1

A ,

then our linear combination x
1

u+x
2

v+x
3

w can be written in matrix form
as

x
1

u+ x
2

v + x
3

w =

0

@
1 2 �1
2 1 1
1 �2 �2

1

A

0

@
x
1

x
2

x
3

1

A ,

so our linear system is expressed by
0

@
1 2 �1
2 1 1
1 �2 �2

1

A

0

@
x
1

x
2

x
3

1

A =

0

@
1
2
3

1

A ,

or more concisely as

Ax = b.

Now what if the vectors u, v, w are linearly dependent? For example, if
we consider the vectors

u =

0

@
1
2
1

1

A v =

0

@
2
1

�1

1

A w =

0

@
�1
1
2

1

A ,

we see that

u � v = w,

a nontrivial linear dependence. It can be verified that u and v are still
linearly independent. Now for our problem

x
1

u+ x
2

v + x
3

w = b

it must be the case that b can be expressed as linear combination of u and
v. However, it turns out that u, v, b are linearly independent (one way to
see this is to compute the determinant det(u, v, b) = �6), so b cannot be
expressed as a linear combination of u and v and thus, our system has no
solution.

If we change the vector b to

b =

0

@
3
3
0

1

A ,



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 11

2.1. Motivations: Linear Combinations, Linear Independence, Rank 11

then

b = u+ v,

and so the system

x
1

u+ x
2

v + x
3

w = b

has the solution

x
1

= 1, x
2

= 1, x
3

= 0.

Actually, since w = u � v, the above system is equivalent to

(x
1

+ x
3

)u+ (x
2

� x
3

)v = b,

and because u and v are linearly independent, the unique solution in x
1

+x
3

and x
2

� x
3

is

x
1

+ x
3

= 1

x
2

� x
3

= 1,

which yields an infinite number of solutions parameterized by x
3

, namely

x
1

= 1 � x
3

x
2

= 1 + x
3

.

In summary, a 3 ⇥ 3 linear system may have a unique solution, no
solution, or an infinite number of solutions, depending on the linear inde-
pendence (and dependence) or the vectors u, v, w, b. This situation can be
generalized to any n⇥n system, and even to any n⇥m system (n equations
in m variables), as we will see later.

The point of view where our linear system is expressed in matrix form
as Ax = b stresses the fact that the map x 7! Ax is a linear transformation.
This means that

A(�x) = �(Ax)

for all x 2 R3⇥1 and all � 2 R and that

A(u+ v) = Au+Av,

for all u, v 2 R3⇥1. We can view the matrix A as a way of expressing a
linear map from R3⇥1 to R3⇥1 and solving the system Ax = b amounts to
determining whether b belongs to the image of this linear map.

Given a 3 ⇥ 3 matrix

A =

0

@
a
11

a
12

a
13

a
21

a
22

a
23

a
31

a
32

a
33

1

A ,
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whose columns are three vectors denoted A1, A2, A3, and given any vector
x = (x

1

, x
2

, x
3

), we defined the product Ax as the linear combination

Ax = x
1

A1 + x
2

A2 + x
3

A3 =

0

@
a
11

x
1

+ a
12

x
2

+ a
13

x
3

a
21

x
1

+ a
22

x
2

+ a
23

x
3

a
31

x
1

+ a
32

x
2

+ a
33

x
3

1

A .

The common pattern is that the ith coordinate of Ax is given by a certain
kind of product called an inner product , of a row vector , the ith row of A,
times the column vector x:

�
ai1 ai2 ai3

�
·

0

@
x
1

x
2

x
3

1

A = ai1x1

+ ai2x2

+ ai3x3

.

More generally, given any two vectors x = (x
1

, . . . , xn) and y =
(y

1

, . . . , yn) 2 Rn, their inner product denoted x ·y, or hx, yi, is the number

x · y =
�
x
1

x
2

· · · xn

�
·

0

BBB@

y
1

y
2

...
yn

1

CCCA
=

nX

i=1

xiyi.

Inner products play a very important role. First, the quantity

kxk
2

=
p
x · x = (x2

1

+ · · · + x2

n)
1/2

is a generalization of the length of a vector, called the Euclidean norm, or
`2-norm. Second, it can be shown that we have the inequality

|x · y|  kxk kyk ,

so if x, y 6= 0, the ratio (x · y)/(kxk kyk) can be viewed as the cosine of
an angle, the angle between x and y. In particular, if x · y = 0 then the
vectors x and y make the angle ⇡/2, that is, they are orthogonal . The
(square) matrices Q that preserve the inner product, in the sense that
hQx,Qyi = hx, yi for all x, y 2 Rn, also play a very important role. They
can be thought of as generalized rotations.

Returning to matrices, if A is an m⇥ n matrix consisting of n columns
A1, . . . , An (in Rm), and B is a n ⇥ p matrix consisting of p columns
B1, . . . , Bp (in Rn) we can form the p vectors (in Rm)

AB1, . . . , ABp.
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These p vectors constitute the m⇥p matrix denoted AB, whose jth column
is ABj . But we know that the ith coordinate of ABj is the inner product
of the ith row of A by the jth column of B,

�
ai1 ai2 · · · ain

�
·

0

BBB@

b
1j

b
2j

...
bnj

1

CCCA
=

nX

k=1

aikbkj .

Thus we have defined a multiplication operation on matrices, namely if
A = (aik) is a m ⇥ n matrix and if B = (bjk) if n ⇥ p matrix, then their
product AB is the m ⇥ n matrix whose entry on the ith row and the jth
column is given by the inner product of the ith row of A by the jth column
of B,

(AB)ij =
nX

k=1

aikbkj .

Beware that unlike the multiplication of real (or complex) numbers, if A
and B are two n ⇥ n matrices, in general, AB 6= BA.

Suppose that A is an n ⇥ n matrix and that we are trying to solve the
linear system

Ax = b,

with b 2 Rn. Suppose we can find an n ⇥ n matrix B such that

BAi = ei, i = 1, . . . , n,

with ei = (0, . . . , 0, 1, 0 . . . , 0), where the only nonzero entry is 1 in the ith
slot. If we form the n ⇥ n matrix

In =

0

BBBBBBBB@

1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...
...
...
. . .

...
...

0 0 0 · · · 1 0
0 0 0 · · · 0 1

1

CCCCCCCCA

,

called the identity matrix , whose ith column is ei, then the above is equiv-
alent to

BA = In.

If Ax = b, then multiplying both sides on the left by B, we get

B(Ax) = Bb.
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But is is easy to see that B(Ax) = (BA)x = Inx = x, so we must have

x = Bb.

We can verify that x = Bb is indeed a solution, because it can be shown
that

A(Bb) = (AB)b = Inb = b.

What is not obvious is that BA = In implies AB = In, but this is indeed
provable. The matrix B is usually denoted A�1 and called the inverse of
A. It can be shown that it is the unique matrix such that

AA�1 = A�1A = In.

If a square matrix A has an inverse, then we say that it is invertible or
nonsingular , otherwise we say that it is singular . We will show later that
a square matrix is invertible i↵ its columns are linearly independent i↵ its
determinant is nonzero.

In summary, if A is a square invertible matrix, then the linear system
Ax = b has the unique solution x = A�1b. In practice, this is not a good
way to solve a linear system because computing A�1 is too expensive. A
practical method for solving a linear system is Gaussian elimination, dis-
cussed in Chapter 7. Other practical methods for solving a linear system
Ax = b make use of a factorization of A (QR decomposition, SVD decom-
position), using orthogonal matrices defined next.

Given an m ⇥ n matrix A = (akl), the n ⇥ m matrix A> = (a>ij) whose
ith row is the ith column of A, which means that a>ij = aji for i = 1, . . . , n
and j = 1, . . . ,m, is called the transpose of A. An n ⇥ n matrix Q such
that

QQ> = Q>Q = In

is called an orthogonal matrix . Equivalently, the inverse Q�1 of an orthog-
onal matrix Q is equal to its transpose Q>. Orthogonal matrices play an
important role. Geometrically, they correspond to linear transformation
that preserve length. A major result of linear algebra states that every
m ⇥ n matrix A can be written as

A = V ⌃U>,

where V is anm⇥m orthogonal matrix, U is an n⇥n orthogonal matrix, and
⌃ is an m⇥ n matrix whose only nonzero entries are nonnegative diagonal
entries �

1

� �
2

� · · · � �p, where p = min(m,n), called the singular values
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of A. The factorization A = V ⌃U> is called a singular decomposition of
A, or SVD .

The SVD can be used to “solve” a linear system Ax = b where A is an
m ⇥ n matrix, even when this system has no solution. This may happen
when there are more equations than variables (m > n) , in which case the
system is overdetermined.

Of course, there is no miracle, an unsolvable system has no solution.
But we can look for a good approximate solution, namely a vector x that
minimizes some measure of the error Ax � b. Legendre and Gauss used
kAx � bk2

2

, which is the squared Euclidean norm of the error. This quan-
tity is di↵erentiable, and it turns out that there is a unique vector x+ of
minimum Euclidean norm that minimizes kAx � bk2

2

. Furthermore, x+ is
given by the expression x+ = A+b, where A+ is the pseudo-inverse of
A, and A+ can be computed from an SVD A = V ⌃U> of A. Indeed,
A+ = U⌃+V >, where ⌃+ is the matrix obtained from ⌃ by replacing every
positive singular value �i by its inverse ��1

i , leaving all zero entries intact,
and transposing.

Instead of searching for the vector of least Euclidean norm minimizing
kAx � bk2

2

, we can add the penalty term K kxk2
2

(for some positive K > 0)
to kAx � bk2

2

and minimize the quantity kAx � bk2
2

+K kxk2
2

. This approach
is called ridge regression. It turns out that there is a unique minimizer x+

given by x+ = (A>A+KIn)�1A>b, as shown in the second volume.
Another approach is to replace the penalty term K kxk2

2

by K kxk
1

,
where kxk

1

= |x
1

| + · · · + |xn| (the `1-norm of x). The remarkable fact
is that the minimizers x of kAx � bk2

2

+ K kxk
1

tend to be sparse, which
means that many components of x are equal to zero. This approach known
as lasso is popular in machine learning and will be discussed in the second
volume.

Another important application of the SVD is principal component anal-
ysis (or PCA), an important tool in data analysis.

Yet another fruitful way of interpreting the resolution of the system
Ax = b is to view this problem as an intersection problem. Indeed, each of
the equations

x
1

+ 2x
2

� x
3

= 1

2x
1

+ x
2

+ x
3

= 2

x
1

� 2x
2

� 2x
3

= 3

defines a subset of R3 which is actually a plane. The first equation

x
1

+ 2x
2

� x
3

= 1
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defines the plane H
1

passing through the three points (1, 0, 0), (0, 1/2, 0),
(0, 0,�1), on the coordinate axes, the second equation

2x
1

+ x
2

+ x
3

= 2

defines the plane H
2

passing through the three points (1, 0, 0), (0, 2, 0),
(0, 0, 2), on the coordinate axes, and the third equation

x
1

� 2x
2

� 2x
3

= 3

defines the plane H
3

passing through the three points (3, 0, 0), (0,�3/2, 0),
(0, 0,�3/2), on the coordinate axes. See Figure 2.1.

2x + 2x - x = 11 2 3

2x + x + x = 21 2 3

x -2x -2x = 31 2 3

Fig. 2.1 The planes defined by the preceding linear equations.

The intersection Hi \Hj of any two distinct planes Hi and Hj is a line,
and the intersection H

1

\H
2

\H
3

of the three planes consists of the single
point (1.4,�0.4,�0.4), as illustrated in Figure 2.2.

The planes corresponding to the system

x
1

+ 2x
2

� x
3

= 1

2x
1

+ x
2

+ x
3

= 2

x
1

� x
2

+ 2x
3

= 3,

are illustrated in Figure 2.3. This system has no solution since there is no
point simultaneously contained in all three planes; see Figure 2.4.
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x -2x -2x = 31 2 3

2x + x + x = 21 2 3

2x + 2x - x = 11 2 3

(1.4, -0.4, -0.4)

Fig. 2.2 The solution of the system is the point in common with each of the three
planes.

2x + 2x - x = 11 2 3

2x + x + x = 21 2 3

1 2 3

x - x +2x = 31 2 3

Fig. 2.3 The planes defined by the equations x1 + 2x2 � x3 = 1, 2x1 + x2 + x3 = 2,
and x1 � x2 + 2x3 = 3.

Finally, the planes corresponding to the system

x
1

+ 2x
2

� x
3

= 3

2x
1

+ x
2

+ x
3

= 3

x
1

� x
2

+ 2x
3

= 0,
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2x + 2x - x = 11 2 3

x - x +2x = 31 2 3

2x + x + x = 21 2 32x + x + x = 21 2 3

Fig. 2.4 The linear system x1 + 2x2 � x3 = 1, 2x1 + x2 + x3 = 2, x1 � x2 + 2x3 = 3
has no solution.

are illustrated in Figure 2.5.

2x + 2x -  x = 3
1

1

1

2

2 3

3

2x + x + x = 32 3

x - x + 2x = 01 2 3

1

Fig. 2.5 The planes defined by the equations x1 + 2x2 � x3 = 3, 2x1 + x2 + x3 = 3,
and x1 � x2 + 2x3 = 0.

This system has infinitely many solutions, given parametrically by (1�
x
3

, 1+ x
3

, x
3

). Geometrically, this is a line common to all three planes; see
Figure 2.6.

Under the above interpretation, observe that we are focusing on the
rows of the matrix A, rather than on its columns, as in the previous inter-
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2x + 2x -  x = 3
1 2 3

x - x + 2x = 01 2 3

12x + x + x = 32 3

Fig. 2.6 The linear system x1 + 2x2 � x3 = 3, 2x1 + x2 + x3 = 3, x1 � x2 + 2x3 = 0
has the red line common to all three planes.

pretations.
Another great example of a real-world problem where linear algebra

proves to be very e↵ective is the problem of data compression, that is, of
representing a very large data set using a much smaller amount of storage.

Typically the data set is represented as an m ⇥ n matrix A where each
row corresponds to an n-dimensional data point and typically, m � n. In
most applications, the data are not independent so the rank of A is a lot
smaller than min{m,n}, and the the goal of low-rank decomposition is to
factor A as the product of two matrices B and C, where B is a m ⇥ k
matrix and C is a k ⇥ n matrix, with k ⌧ min{m,n} (here, ⌧ means
“much smaller than”):

0

BBBBBBBBB@

A
m ⇥ n

1

CCCCCCCCCA

=

0

BBBBBBBBB@

B
m ⇥ k

1

CCCCCCCCCA

0

@ C
k ⇥ n

1

A

Now it is generally too costly to find an exact factorization as above,
so we look for a low-rank matrix A0 which is a “good” approximation of
A. In order to make this statement precise, we need to define a mechanism
to determine how close two matrices are. This can be done using matrix
norms, a notion discussed in Chapter 8. The norm of a matrix A is a
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nonnegative real number kAk which behaves a lot like the absolute value
|x| of a real number x. Then our goal is to find some low-rank matrix A0

that minimizes the norm

kA � A0k2 ,
over all matrices A0 of rank at most k, for some given k ⌧ min{m,n}.

Some advantages of a low-rank approximation are:

(1) Fewer elements are required to represent A; namely, k(m+n) instead of
mn. Thus less storage and fewer operations are needed to reconstruct
A.

(2) Often, the process for obtaining the decomposition exposes the under-
lying structure of the data. Thus, it may turn out that “most” of the
significant data are concentrated along some directions called principal
directions.

Low-rank decompositions of a set of data have a multitude of applica-
tions in engineering, including computer science (especially computer vi-
sion), statistics, and machine learning. As we will see later in Chapter
21, the singular value decomposition (SVD) provides a very satisfactory
solution to the low-rank approximation problem. Still, in many cases, the
data sets are so large that another ingredient is needed: randomization.
However, as a first step, linear algebra often yields a good initial solution.

We will now be more precise as to what kinds of operations are allowed
on vectors. In the early 1900, the notion of a vector space emerged as a
convenient and unifying framework for working with “linear” objects and
we will discuss this notion in the next few sections.

2.2 Vector Spaces

A (real) vector space is a set E together with two operations, +: E ⇥
E ! E and · : R ⇥ E ! E, called addition and scalar multiplication, that
satisfy some simple properties. First of all, E under addition has to be a
commutative (or abelian) group, a notion that we review next.

However, keep in mind that vector spaces
are not just algebraic objects; they are also

geometric objects.
Definition 2.1. A group is a set G equipped with a binary operation · : G⇥
G ! G that associates an element a·b 2 G to every pair of elements a, b 2 G,
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and having the following properties: · is associative, has an identity element
e 2 G, and every element in G is invertible (w.r.t. ·). More explicitly, this
means that the following equations hold for all a, b, c 2 G:

(G1) a · (b · c) = (a · b) · c. (associativity);
(G2) a · e = e · a = a. (identity);
(G3) For every a 2 G, there is some a�1 2 G such that

a · a�1 = a�1 · a = e. (inverse).

A group G is abelian (or commutative) if

a · b = b · a for all a, b 2 G.

A set M together with an operation · : M ⇥ M ! M and an element e
satisfying only Conditions (G1) and (G2) is called a monoid . For example,
the set N = {0, 1, . . . , n, . . .} of natural numbers is a (commutative) monoid
under addition with identity element 0. However, it is not a group.

Some examples of groups are given below.

Example 2.1.

(1) The set Z = {. . . ,�n, . . . ,�1, 0, 1, . . . , n, . . .} of integers is an abelian
group under addition, with identity element 0. However, Z⇤ = Z� {0}
is not a group under multiplication; it is a commutative monoid with
identity element 1.

(2) The set Q of rational numbers (fractions p/q with p, q 2 Z and q 6= 0)
is an abelian group under addition, with identity element 0. The set
Q⇤ = Q � {0} is also an abelian group under multiplication, with
identity element 1.

(3) Similarly, the sets R of real numbers and C of complex numbers are
abelian groups under addition (with identity element 0), and R⇤ =
R � {0} and C⇤ = C � {0} are abelian groups under multiplication
(with identity element 1).

(4) The sets Rn and Cn of n-tuples of real or complex numbers are abelian
groups under componentwise addition:

(x
1

, . . . , xn) + (y
1

, . . . , yn) = (x
1

+ y
1

, . . . , xn + yn),

with identity element (0, . . . , 0).
(5) Given any nonempty set S, the set of bijections f : S ! S, also called

permutations of S, is a group under function composition (i.e., the
multiplication of f and g is the composition g�f), with identity element
the identity function idS . This group is not abelian as soon as S has
more than two elements.
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(6) The set of n⇥nmatrices with real (or complex) coe�cients is an abelian
group under addition of matrices, with identity element the null matrix.
It is denoted by Mn(R) (or Mn(C)).

(7) The set R[X] of all polynomials in one variable X with real coe�cients,

P (X) = anX
n + an�1

Xn�1 + · · · + a
1

X + a
0

,

(with ai 2 R), is an abelian group under addition of polynomials. The
identity element is the zero polynomial.

(8) The set of n⇥n invertible matrices with real (or complex) coe�cients is
a group under matrix multiplication, with identity element the identity
matrix In. This group is called the general linear group and is usually
denoted by GL(n,R) (or GL(n,C)).

(9) The set of n ⇥ n invertible matrices with real (or complex) coe�cients
and determinant +1 is a group under matrix multiplication, with iden-
tity element the identity matrix In. This group is called the special
linear group and is usually denoted by SL(n,R) (or SL(n,C)).

(10) The set of n ⇥ n invertible matrices with real coe�cients such that
RR> = R>R = In and of determinant +1 is a group (under matrix
multiplication) called the special orthogonal group and is usually de-
noted by SO(n) (where R> is the transpose of the matrix R, i.e., the
rows of R> are the columns of R). It corresponds to the rotations in
Rn.

(11) Given an open interval (a, b), the set C(a, b) of continuous functions
f : (a, b) ! R is an abelian group under the operation f + g defined
such that

(f + g)(x) = f(x) + g(x)

for all x 2 (a, b).

It is customary to denote the operation of an abelian group G by +, in
which case the inverse a�1 of an element a 2 G is denoted by �a.

The identity element of a group is unique. In fact, we can prove a more
general fact:

Proposition 2.1. If a binary operation · : M ⇥M ! M is associative and
if e0 2 M is a left identity and e00 2 M is a right identity, which means that

e0 · a = a for all a 2 M (G2l)

and

a · e00 = a for all a 2 M, (G2r)

then e0 = e00.
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Proof. If we let a = e00 in equation (G2l), we get

e0 · e00 = e00,

and if we let a = e0 in equation (G2r), we get

e0 · e00 = e0,

and thus

e0 = e0 · e00 = e00,

as claimed.

Proposition 2.1 implies that the identity element of a monoid is unique,
and since every group is a monoid, the identity element of a group is unique.
Furthermore, every element in a group has a unique inverse. This is a
consequence of a slightly more general fact:

Proposition 2.2. In a monoid M with identity element e, if some element
a 2 M has some left inverse a0 2 M and some right inverse a00 2 M , which
means that

a0 · a = e (G3l)

and

a · a00 = e, (G3r)

then a0 = a00.

Proof. Using (G3l) and the fact that e is an identity element, we have

(a0 · a) · a00 = e · a00 = a00.

Similarly, Using (G3r) and the fact that e is an identity element, we have

a0 · (a · a00) = a0 · e = a0.

However, since M is monoid, the operation · is associative, so

a0 = a0 · (a · a00) = (a0 · a) · a00 = a00,

as claimed.

Remark: Axioms (G2) and (G3) can be weakened a bit by requiring only
(G2r) (the existence of a right identity) and (G3r) (the existence of a right
inverse for every element) (or (G2l) and (G3l)). It is a good exercise to
prove that the group axioms (G2) and (G3) follow from (G2r) and (G3r).
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A vector space is an abelian group E with an additional operation · : K⇥
E ! E called scalar multiplication that allows rescaling a vector in E by
an element in K. The set K itself is an algebraic structure called a field .
A field is a special kind of stucture called a ring . These notions are defined
below. We begin with rings.

Definition 2.2. A ring is a set A equipped with two operations +: A⇥A !
A (called addition) and ⇤ : A ⇥ A ! A (called multiplication) having the
following properties:

(R1) A is an abelian group w.r.t. +;
(R2) ⇤ is associative and has an identity element 1 2 A;
(R3) ⇤ is distributive w.r.t. +.

The identity element for addition is denoted 0, and the additive inverse
of a 2 A is denoted by �a. More explicitly, the axioms of a ring are the
following equations which hold for all a, b, c 2 A:

a+ (b+ c) = (a+ b) + c (associativity of +) (2.1)

a+ b = b+ a (commutativity of +) (2.2)

a+ 0 = 0 + a = a (zero) (2.3)

a+ (�a) = (�a) + a = 0 (additive inverse) (2.4)

a ⇤ (b ⇤ c) = (a ⇤ b) ⇤ c (associativity of ⇤) (2.5)

a ⇤ 1 = 1 ⇤ a = a (identity for ⇤) (2.6)

(a+ b) ⇤ c = (a ⇤ c) + (b ⇤ c) (distributivity) (2.7)

a ⇤ (b+ c) = (a ⇤ b) + (a ⇤ c) (distributivity) (2.8)

The ring A is commutative if

a ⇤ b = b ⇤ a for all a, b 2 A.

From (2.7) and (2.8), we easily obtain

a ⇤ 0 = 0 ⇤ a = 0 (2.9)

a ⇤ (�b) = (�a) ⇤ b = �(a ⇤ b). (2.10)

Note that (2.9) implies that if 1 = 0, then a = 0 for all a 2 A, and thus,
A = {0}. The ring A = {0} is called the trivial ring . A ring for which
1 6= 0 is called nontrivial . The multiplication a ⇤ b of two elements a, b 2 A
is often denoted by ab.
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The abelian group Z is a commutative ring (with unit 1), and for any
commutative ring K, the abelian group K[X] of polynomials is also a com-
mutative ring (also with unit 1). The set Z/mZ of residues modulo m
where m is a positive integer is a commutative ring.

A field is a commutative ring K for which K � {0} is a group under
multiplication.

Definition 2.3. A set K is a field if it is a ring and the following properties
hold:

(F1) 0 6= 1;
(F2) For every a 2 K, if a 6= 0, then a has an inverse w.r.t. ⇤;
(F3) ⇤ is commutative.

Let K⇤ = K � {0}. Observe that (F1) and (F2) are equivalent to
the fact that K⇤ is a group w.r.t. ⇤ with identity element 1. If ⇤ is not
commutative but (F1) and (F2) hold, we say that we have a skew field (or
noncommutative field).

Note that we are assuming that the operation ⇤ of a field is commutative.
This convention is not universally adopted, but since ⇤ will be commutative
for most fields we will encounter, we may as well include this condition in
the definition.

Example 2.2.

(1) The rings Q, R, and C are fields.
(2) The set Z/pZ of residues modulo p where p is a prime number is field.
(3) The set of (formal) fractions f(X)/g(X) of polynomials f(X), g(X) 2

R[X], where g(X) is not the zero polynomial, is a field.

Vector spaces are defined as follows.

Definition 2.4. A real vector space is a set E (of vectors) together with
two operations +: E ⇥ E ! E (called vector addition)1 and · : R ⇥ E !
E (called scalar multiplication) satisfying the following conditions for all
↵,� 2 R and all u, v 2 E;

(V0) E is an abelian group w.r.t. +, with identity element 0;2

1The symbol + is overloaded, since it denotes both addition in the field R and addition
of vectors in E. It is usually clear from the context which + is intended.
2The symbol 0 is also overloaded, since it represents both the zero in R (a scalar) and

the identity element of E (the zero vector). Confusion rarely arises, but one may prefer
using 0 for the zero vector.
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(V1) ↵ · (u+ v) = (↵ · u) + (↵ · v);
(V2) (↵+ �) · u = (↵ · u) + (� · u);
(V3) (↵ ⇤ �) · u = ↵ · (� · u);
(V4) 1 · u = u.

In (V3), ⇤ denotes multiplication in R.

Given ↵ 2 R and v 2 E, the element ↵ · v is also denoted by ↵v. The
field R is often called the field of scalars.

In Definition 2.4, the field R may be replaced by the field of complex
numbers C, in which case we have a complex vector space. It is even possible
to replace R by the field of rational numbers Q or by any arbitrary field K
(for example Z/pZ, where p is a prime number), in which case we have a
K-vector space (in (V3), ⇤ denotes multiplication in the field K). In most
cases, the field K will be the field R of reals, but all results in this chapter
hold for vector spaces over an arbitrary field .

From (V0), a vector space always contains the null vector 0, and thus
is nonempty. From (V1), we get ↵ · 0 = 0, and ↵ · (�v) = �(↵ · v). From
(V2), we get 0 · v = 0, and (�↵) · v = �(↵ · v).

Another important consequence of the axioms is the following fact:

Proposition 2.3. For any u 2 E and any � 2 R, if � 6= 0 and � · u = 0,
then u = 0.

Proof. Indeed, since � 6= 0, it has a multiplicative inverse ��1, so from
� · u = 0, we get

��1 · (� · u) = ��1 · 0.
However, we just observed that ��1 · 0 = 0, and from (V3) and (V4), we
have

��1 · (� · u) = (��1�) · u = 1 · u = u,

and we deduce that u = 0.

Remark: One may wonder whether axiom (V4) is really needed. Could
it be derived from the other axioms? The answer is no. For example, one
can take E = Rn and define · : R ⇥ Rn ! Rn by

� · (x
1

, . . . , xn) = (0, . . . , 0)

for all (x
1

, . . . , xn) 2 Rn and all � 2 R. Axioms (V0)–(V3) are all satisfied,
but (V4) fails. Less trivial examples can be given using the notion of a
basis, which has not been defined yet.
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The field R itself can be viewed as a vector space over itself, addition
of vectors being addition in the field, and multiplication by a scalar being
multiplication in the field.

Example 2.3.

(1) The fields R and C are vector spaces over R.
(2) The groups Rn and Cn are vector spaces over R, with scalar multipli-

cation given by

�(x
1

, . . . , xn) = (�x
1

, . . . ,�xn),

for any � 2 R and with (x
1

, . . . , xn) 2 Rn or (x
1

, . . . , xn) 2 Cn, and Cn

is a vector space over C with scalar multiplication as above, but with
� 2 C.

(3) The ring R[X]n of polynomials of degree at most n with real coe�cients
is a vector space over R, and the ring C[X]n of polynomials of degree at
most n with complex coe�cients is a vector space over C, with scalar
multiplication � · P (X) of a polynomial

P (X) = amXm + am�1

Xm�1 + · · · + a
1

X + a
0

(with ai 2 R or ai 2 C) by the scalar � (in R or C), with m  n, given
by

� · P (X) = �amXm + �am�1

Xm�1 + · · · + �a
1

X + �a
0

.

(4) The ring R[X] of all polynomials with real coe�cients is a vector space
over R, and the ring C[X] of all polynomials with complex coe�cients
is a vector space over C, with the same scalar multiplication as above.

(5) The ring of n ⇥ n matrices Mn(R) is a vector space over R.
(6) The ring of m ⇥ n matrices Mm,n(R) is a vector space over R.
(7) The ring C(a, b) of continuous functions f : (a, b) ! R is a vector space

over R, with the scalar multiplication �f of a function f : (a, b) ! R
by a scalar � 2 R given by

(�f)(x) = �f(x), for all x 2 (a, b).

(8) A very important example of vector space is the set of linear maps
between two vector spaces to be defined in Section 2.7. Here is an
example that will prepare us for the vector space of linear maps. Let
X be any nonempty set and let E be a vector space. The set of all
functions f : X ! E can be made into a vector space as follows: Given
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any two functions f : X ! E and g : X ! E, let (f + g) : X ! E be
defined such that

(f + g)(x) = f(x) + g(x)

for all x 2 X, and for every � 2 R, let �f : X ! E be defined such that

(�f)(x) = �f(x)

for all x 2 X. The axioms of a vector space are easily verified.

Let E be a vector space. We would like to define the important notions
of linear combination and linear independence.

Before defining these notions, we need to discuss a strategic choice
which, depending how it is settled, may reduce or increase headaches in
dealing with notions such as linear combinations and linear dependence
(or independence). The issue has to do with using sets of vectors versus
sequences of vectors.

2.3 Indexed Families; the Sum Notation
P

i2I ai

Our experience tells us that it is preferable to use sequences of vectors ;
even better, indexed families of vectors. (We are not alone in having opted
for sequences over sets, and we are in good company; for example, Artin
[Artin (1991)], Axler [Axler (2004)], and Lang [Lang (1993)] use sequences.
Nevertheless, some prominent authors such as Lax [Lax (2007)] use sets.
We leave it to the reader to conduct a survey on this issue.)

Given a set A, recall that a sequence is an ordered n-tuple (a
1

, . . . , an) 2
An of elements from A, for some natural number n. The elements of a se-
quence need not be distinct and the order is important. For example,
(a

1

, a
2

, a
1

) and (a
2

, a
1

, a
1

) are two distinct sequences in A3. Their under-
lying set is {a

1

, a
2

}.
What we just defined are finite sequences, which can also be viewed as

functions from {1, 2, . . . , n} to the set A; the ith element of the sequence
(a

1

, . . . , an) is the image of i under the function. This viewpoint is fruitful,
because it allows us to define (countably) infinite sequences as functions
s : N ! A. But then, why limit ourselves to ordered sets such as {1, . . . , n}
or N as index sets?

The main role of the index set is to tag each element uniquely, and the
order of the tags is not crucial, although convenient. Thus, it is natural to
define the notion of indexed family.

Definition 2.5. Given a set A, an I-indexed family of elements of A, for
short a family , is a function a : I ! A where I is any set viewed as an index
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set. Since the function a is determined by its graph

{(i, a(i)) | i 2 I},

the family a can be viewed as the set of pairs a = {(i, a(i)) | i 2 I}. For
notational simplicity, we write ai instead of a(i), and denote the family
a = {(i, a(i)) | i 2 I} by (ai)i2I .

For example, if I = {r, g, b, y} and A = N, the set of pairs

a = {(r, 2), (g, 3), (b, 2), (y, 11)}

is an indexed family. The element 2 appears twice in the family with the
two distinct tags r and b.

When the indexed set I is totally ordered, a family (ai)i2I is often called
an I-sequence. Interestingly, sets can be viewed as special cases of families.
Indeed, a set A can be viewed as the A-indexed family {(a, a) | a 2 I}
corresponding to the identity function.

Remark: An indexed family should not be confused with a multiset. Given
any set A, a multiset is a similar to a set, except that elements of A may oc-
cur more than once. For example, if A = {a, b, c, d}, then {a, a, a, b, c, c, d, d}
is a multiset. Each element appears with a certain multiplicity, but the or-
der of the elements does not matter. For example, a has multiplicity 3.
Formally, a multiset is a function s : A ! N, or equivalently a set of pairs
{(a, i) | a 2 A}. Thus, a multiset is an A-indexed family of elements from
N, but not a N-indexed family, since distinct elements may have the same
multiplicity (such as c an d in the example above). An indexed family is a
generalization of a sequence, but a multiset is a generalization of a set.

We also need to take care of an annoying technicality, which is to define
sums of the form

P
i2I ai, where I is any finite index set and (ai)i2I is a

family of elements in some set A equiped with a binary operation +: A ⇥
A ! A which is associative (Axiom (G1)) and commutative. This will
come up when we define linear combinations.

The issue is that the binary operation + only tells us how to compute
a
1

+ a
2

for two elements of A, but it does not tell us what is the sum of
three of more elements. For example, how should a

1

+ a
2

+ a
3

be defined?
What we have to do is to define a

1

+a
2

+a
3

by using a sequence of steps
each involving two elements, and there are two possible ways to do this:
a
1

+(a
2

+a
3

) and (a
1

+a
2

)+a
3

. If our operation + is not associative, these
are di↵erent values. If it associative, then a

1

+ (a
2

+ a
3

) = (a
1

+ a
2

) + a
3

,
but then there are still six possible permutations of the indices 1, 2, 3, and if
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+ is not commutative, these values are generally di↵erent. If our operation
is commutative, then all six permutations have the same value. Thus, if
+ is associative and commutative, it seems intuitively clear that a sum of
the form

P
i2I ai does not depend on the order of the operations used to

compute it.
This is indeed the case, but a rigorous proof requires induction, and

such a proof is surprisingly involved. Readers may accept without proof
the fact that sums of the form

P
i2I ai are indeed well defined, and jump

directly to Definition 2.6. For those who want to see the gory details, here
we go.

First, we define sums
P

i2I ai, where I is a finite sequence of distinct
natural numbers, say I = (i

1

, . . . , im). If I = (i
1

, . . . , im) with m � 2, we
denote the sequence (i

2

, . . . , im) by I � {i
1

}. We proceed by induction on
the size m of I. Let

X

i2I

ai = ai1 , if m = 1,

X

i2I

ai = ai1 +

✓ X

i2I�{i1}

ai

◆
, if m > 1.

For example, if I = (1, 2, 3, 4), we have
X

i2I

ai = a
1

+ (a
2

+ (a
3

+ a
4

)).

If the operation + is not associative, the grouping of the terms matters.
For instance, in general

a
1

+ (a
2

+ (a
3

+ a
4

)) 6= (a
1

+ a
2

) + (a
3

+ a
4

).

However, if the operation + is associative, the sum
P

i2I ai should not
depend on the grouping of the elements in I, as long as their order is
preserved. For example, if I = (1, 2, 3, 4, 5), J

1

= (1, 2), and J
2

= (3, 4, 5),
we expect that

X

i2I

ai =

✓X

j2J1

aj

◆
+

✓X

j2J2

aj

◆
.

This indeed the case, as we have the following proposition.

Proposition 2.4. Given any nonempty set A equipped with an associative
binary operation +: A⇥A ! A, for any nonempty finite sequence I of dis-
tinct natural numbers and for any partition of I into p nonempty sequences
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Ik1 , . . . , Ikp , for some nonempty sequence K = (k
1

, . . . , kp) of distinct nat-
ural numbers such that ki < kj implies that ↵ < � for all ↵ 2 Iki and all
� 2 Ikj , for every sequence (ai)i2I of elements in A, we have

X

↵2I

a↵ =
X

k2K

✓X

↵2Ik

a↵

◆
.

Proof. We proceed by induction on the size n of I.
If n = 1, then we must have p = 1 and Ik1 = I, so the proposition holds

trivially.
Next, assume n > 1. If p = 1, then Ik1 = I and the formula is trivial,

so assume that p � 2 and write J = (k
2

, . . . , kp). There are two cases.
Case 1. The sequence Ik1 has a single element, say �, which is the first

element of I. In this case, write C for the sequence obtained from I by
deleting its first element �. By definition,

X

↵2I

a↵ = a� +

✓X

↵2C

a↵

◆
,

and
X

k2K

✓X

↵2Ik

a↵

◆
= a� +

✓X

j2J

✓X

↵2Ij

a↵

◆◆
.

Since |C| = n � 1, by the induction hypothesis, we have
✓X

↵2C

a↵

◆
=
X

j2J

✓X

↵2Ij

a↵

◆
,

which yields our identity.
Case 2. The sequence Ik1 has at least two elements. In this case, let �

be the first element of I (and thus of Ik1), let I
0 be the sequence obtained

from I by deleting its first element �, let I 0k1
be the sequence obtained from

Ik1 by deleting its first element �, and let I 0ki
= Iki for i = 2, . . . , p. Recall

that J = (k
2

, . . . , kp) and K = (k
1

, . . . , kp). The sequence I 0 has n � 1
elements, so by the induction hypothesis applied to I 0 and the I 0ki

, we get

X

↵2I0

a↵ =
X

k2K

✓X

↵2I0
k

a↵

◆
=

✓ X

↵2I0
k1

a↵

◆
+

✓X

j2J

✓X

↵2Ij

a↵

◆◆
.

If we add the lefthand side to a� , by definition we get
X

↵2I

a↵.
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If we add the righthand side to a� , using associativity and the definition of
an indexed sum, we get

a� +

✓✓ X

↵2I0
k1

a↵

◆
+

✓X

j2J

✓X

↵2Ij

a↵

◆◆◆

=

✓
a� +

✓ X

↵2I0
k1

a↵

◆◆
+

✓X

j2J

✓X

↵2Ij

a↵

◆◆

=

✓ X

↵2Ik1

a↵

◆
+

✓X

j2J

✓X

↵2Ij

a↵

◆◆
=
X

k2K

✓X

↵2Ik

a↵

◆
,

as claimed.

If I = (1, . . . , n), we also write
Pn

i=1

ai instead of
P

i2I ai. Since + is
associative, Proposition 2.4 shows that the sum

Pn
i=1

ai is independent of
the grouping of its elements, which justifies the use the notation a

1

+· · ·+an
(without any parentheses).

If we also assume that our associative binary operation on A is com-
mutative, then we can show that the sum

P
i2I ai does not depend on the

ordering of the index set I.

Proposition 2.5. Given any nonempty set A equipped with an associative
and commutative binary operation +: A ⇥ A ! A, for any two nonempty
finite sequences I and J of distinct natural numbers such that J is a per-
mutation of I (in other words, the underlying sets of I and J are identical),
for every sequence (ai)i2I of elements in A, we have

X

↵2I

a↵ =
X

↵2J

a↵.

Proof. We proceed by induction on the number p of elements in I. If
p = 1, we have I = J and the proposition holds trivially.

If p > 1, to simplify notation, assume that I = (1, . . . , p) and that J is a
permutation (i

1

, . . . , ip) of I. First, assume that 2  i
1

 p�1, let J 0 be the
sequence obtained from J by deleting i

1

, I 0 be the sequence obtained from
I by deleting i

1

, and let P = (1, 2, . . . , i
1

�1) and Q = (i
1

+1, . . . , p�1, p).
Observe that the sequence I 0 is the concatenation of the sequences P and Q.
By the induction hypothesis applied to J 0 and I 0, and then by Proposition
2.4 applied to I 0 and its partition (P,Q), we have

X

↵2J 0

a↵ =
X

↵2I0

a↵ =

✓i1�1X

i=1

ai

◆
+

✓ pX

i=i1+1

ai

◆
.
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If we add the lefthand side to ai1 , by definition we get
X

↵2J

a↵.

If we add the righthand side to ai1 , we get

ai1 +

✓✓i1�1X

i=1

ai

◆
+

✓ pX

i=i1+1

ai

◆◆
.

Using associativity, we get

ai1 +

✓✓i1�1X

i=1

ai

◆
+

✓ pX

i=i1+1

ai

◆◆
=

✓
ai1 +

✓i1�1X

i=1

ai

◆◆
+

✓ pX

i=i1+1

ai

◆
,

then using associativity and commutativity several times (more rigorously,
using induction on i

1

� 1), we get

✓
ai1 +

✓i1�1X

i=1

ai

◆◆
+

✓ pX

i=i1+1

ai

◆
=

✓i1�1X

i=1

ai

◆
+ ai1 +

✓ pX

i=i1+1

ai

◆

=
pX

i=1

ai,

as claimed.
The cases where i

1

= 1 or i
1

= p are treated similarly, but in a sim-
pler manner since either P = () or Q = () (where () denotes the empty
sequence).

Having done all this, we can now make sense of sums of the form
P

i2I ai,
for any finite indexed set I and any family a = (ai)i2I of elements in A,
where A is a set equipped with a binary operation + which is associative
and commutative.

Indeed, since I is finite, it is in bijection with the set {1, . . . , n} for some
n 2 N, and any total ordering � on I corresponds to a permutation I� of
{1, . . . , n} (where we identify a permutation with its image). For any total
ordering � on I, we define

P
i2I,� ai as
X

i2I,�
ai =

X

j2I�

aj .

Then for any other total ordering �0 on I, we have
X

i2I,�0

ai =
X

j2I�0

aj ,
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and since I� and I�0 are di↵erent permutations of {1, . . . , n}, by Proposi-
tion 2.5, we have

X

j2I�

aj =
X

j2I�0

aj .

Therefore, the sum
P

i2I,� ai does not depend on the total ordering on I.
We define the sum

P
i2I ai as the common value

P
i2I,� ai for all total

orderings � of I.
Here are some examples with A = R:

(1) If I = {1, 2, 3}, a = {(1, 2), (2,�3), (3,
p
2)}, then

P
i2I ai = 2 � 3 +p

2 = �1 +
p
2.

(2) If I = {2, 5, 7}, a = {(2, 2), (5,�3), (7,
p
2)}, then

P
i2I ai = 2 � 3 +p

2 = �1 +
p
2.

(3) If I = {r, g, b}, a = {(r, 2), (g,�3), (b, 1)}, then
P

i2I ai = 2�3+1 = 0.

2.4 Linear Independence, Subspaces

One of the most useful properties of vector spaces is that they possess
bases. What this means is that in every vector space E, there is some set
of vectors, {e

1

, . . . , en}, such that every vector v 2 E can be written as a
linear combination,

v = �
1

e
1

+ · · · + �nen,

of the ei, for some scalars, �
1

, . . . ,�n 2 R. Furthermore, the n-tuple,
(�

1

, . . . ,�n), as above is unique.
This description is fine when E has a finite basis, {e

1

, . . . , en}, but this
is not always the case! For example, the vector space of real polynomials,
R[X], does not have a finite basis but instead it has an infinite basis, namely

1, X, X2, . . . , Xn, . . .

Given a set A, recall that an I-indexed family (ai)i2I of elements of A
(for short, a family) is a function a : I ! A, or equivalently a set of pairs
{(i, ai) | i 2 I}. We agree that when I = ;, (ai)i2I = ;. A family (ai)i2I is
finite if I is finite.

Remark: When considering a family (ai)i2I , there is no reason to assume
that I is ordered. The crucial point is that every element of the family is
uniquely indexed by an element of I. Thus, unless specified otherwise, we
do not assume that the elements of an index set are ordered.
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Given two disjoint sets I and J , the union of two families (ui)i2I and
(vj)j2J , denoted as (ui)i2I [ (vj)j2J , is the family (wk)k2(I[J) defined such
that wk = uk if k 2 I, and wk = vk if k 2 J . Given a family (ui)i2I and
any element v, we denote by (ui)i2I [k (v) the family (wi)i2I[{k} defined
such that, wi = ui if i 2 I, and wk = v, where k is any index such that
k /2 I. Given a family (ui)i2I , a subfamily of (ui)i2I is a family (uj)j2J

where J is any subset of I.
In this chapter, unless specified otherwise, it is assumed that all families

of scalars are finite (i.e., their index set is finite).

Definition 2.6. Let E be a vector space. A vector v 2 E is a linear
combination of a family (ui)i2I of elements of E i↵ there is a family (�i)i2I

of scalars in R such that

v =
X

i2I

�iui.

When I = ;, we stipulate that v = 0. (By Proposition 2.5, sums of the
form

P
i2I �iui are well defined.) We say that a family (ui)i2I is linearly

independent i↵ for every family (�i)i2I of scalars in R,
X

i2I

�iui = 0 implies that �i = 0 for all i 2 I.

Equivalently, a family (ui)i2I is linearly dependent i↵ there is some family
(�i)i2I of scalars in R such that

X

i2I

�iui = 0 and �j 6= 0 for some j 2 I.

We agree that when I = ;, the family ; is linearly independent.

Observe that defining linear combinations for families of vectors rather
than for sets of vectors has the advantage that the vectors being combined
need not be distinct. For example, for I = {1, 2, 3} and the families (u, v, u)
and (�

1

,�
2

,�
1

), the linear combination
X

i2I

�iui = �
1

u+ �
2

v + �
1

u

makes sense. Using sets of vectors in the definition of a linear combination
does not allow such linear combinations; this is too restrictive.

Unravelling Definition 2.6, a family (ui)i2I is linearly dependent i↵ ei-
ther I consists of a single element, say i, and ui = 0, or |I| � 2 and some uj

in the family can be expressed as a linear combination of the other vectors
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in the family. Indeed, in the second case, there is some family (�i)i2I of
scalars in R such that

X

i2I

�iui = 0 and �j 6= 0 for some j 2 I,

and since |I| � 2, the set I � {j} is nonempty and we get

uj =
X

i2(I�{j})

���1

j �iui.

Observe that one of the reasons for defining linear dependence for fam-
ilies of vectors rather than for sets of vectors is that our definition allows
multiple occurrences of a vector. This is important because a matrix may
contain identical columns, and we would like to say that these columns are
linearly dependent. The definition of linear dependence for sets does not
allow us to do that.

The above also shows that a family (ui)i2I is linearly independent i↵
either I = ;, or I consists of a single element i and ui 6= 0, or |I| � 2 and
no vector uj in the family can be expressed as a linear combination of the
other vectors in the family.

When I is nonempty, if the family (ui)i2I is linearly independent, note
that ui 6= 0 for all i 2 I. Otherwise, if ui = 0 for some i 2 I, then we
get a nontrivial linear dependence

P
i2I �iui = 0 by picking any nonzero

�i and letting �k = 0 for all k 2 I with k 6= i, since �i0 = 0. If |I| � 2,
we must also have ui 6= uj for all i, j 2 I with i 6= j, since otherwise we
get a nontrivial linear dependence by picking �i = � and �j = �� for any
nonzero �, and letting �k = 0 for all k 2 I with k 6= i, j.

Thus, the definition of linear independence implies that a nontrivial
linearly independent family is actually a set. This explains why certain au-
thors choose to define linear independence for sets of vectors. The problem
with this approach is that linear dependence, which is the logical negation
of linear independence, is then only defined for sets of vectors. However, as
we pointed out earlier, it is really desirable to define linear dependence for
families allowing multiple occurrences of the same vector.

Example 2.4.

(1) Any two distinct scalars �, µ 6= 0 in R are linearly dependent.
(2) In R3, the vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) are linearly indepen-

dent. See Figure 2.7.
(3) In R4, the vectors (1, 1, 1, 1), (0, 1, 1, 1), (0, 0, 1, 1), and (0, 0, 0, 1) are

linearly independent.
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Fig. 2.7 A visual (arrow) depiction of the red vector (1, 0, 0), the green vector (0, 1, 0),
and the blue vector (0, 0, 1) in R3.

(4) In R2, the vectors u = (1, 1), v = (0, 1) and w = (2, 3) are linearly
dependent, since

w = 2u+ v.

See Figure 2.8.

(2,3)

2u

v

w

Fig. 2.8 A visual (arrow) depiction of the pink vector u = (1, 1), the dark purple vector
v = (0, 1), and the vector sum w = 2u + v.

When I is finite, we often assume that it is the set I = {1, 2, . . . , n}. In
this case, we denote the family (ui)i2I as (u

1

, . . . , un).
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The notion of a subspace of a vector space is defined as follows.

Definition 2.7. Given a vector space E, a subset F of E is a linear subspace
(or subspace) of E i↵ F is nonempty and �u+ µv 2 F for all u, v 2 F , and
all �, µ 2 R.

It is easy to see that a subspace F of E is indeed a vector space, since
the restriction of +: E⇥E ! E to F ⇥F is indeed a function +: F ⇥F !
F , and the restriction of · : R ⇥ E ! E to R ⇥ F is indeed a function
· : R ⇥ F ! F .

Since a subspace F is nonempty, if we pick any vector u 2 F and if we
let � = µ = 0, then �u+ µu = 0u+ 0u = 0, so every subspace contains the
vector 0.

The following facts also hold. The proof is left as an exercise.

Proposition 2.6.

(1) The intersection of any family (even infinite) of subspaces of a vector
space E is a subspace.

(2) Let F be any subspace of a vector space E. For any nonempty finite
index set I, if (ui)i2I is any family of vectors ui 2 F and (�i)i2I is
any family of scalars, then

P
i2I �iui 2 F .

The subspace {0} will be denoted by (0), or even 0 (with a mild abuse
of notation).

Example 2.5.

(1) In R2, the set of vectors u = (x, y) such that

x+ y = 0

is the subspace illustrated by Figure 2.9.
(2) In R3, the set of vectors u = (x, y, z) such that

x+ y + z = 0

is the subspace illustrated by Figure 2.10.
(3) For any n � 0, the set of polynomials f(X) 2 R[X] of degree at most

n is a subspace of R[X].
(4) The set of upper triangular n ⇥ n matrices is a subspace of the space

of n ⇥ n matrices.

Proposition 2.7. Given any vector space E, if S is any nonempty subset
of E, then the smallest subspace hSi (or Span(S)) of E containing S is the
set of all (finite) linear combinations of elements from S.
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Fig. 2.9 The subspace x+y = 0 is the line through the origin with slope �1. It consists
of all vectors of the form �(�1, 1).

Fig. 2.10 The subspace x + y + z = 0 is the plane through the origin with normal
(1, 1, 1).

Proof. We prove that the set Span(S) of all linear combinations of elements
of S is a subspace of E, leaving as an exercise the verification that every
subspace containing S also contains Span(S).

First, Span(S) is nonempty since it contains S (which is nonempty).
If u =

P
i2I �iui and v =

P
j2J µjvj are any two linear combinations in
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Span(S), for any two scalars �, µ 2 R,

�u+ µv = �
X

i2I

�iui + µ
X

j2J

µjvj

=
X

i2I

��iui +
X

j2J

µµjvj

=
X

i2I�J

��iui +
X

i2I\J

(��i + µµi)ui +
X

j2J�I

µµjvj ,

which is a linear combination with index set I [ J , and thus �u + µv 2
Span(S), which proves that Span(S) is a subspace.

One might wonder what happens if we add extra conditions to the
coe�cients involved in forming linear combinations. Here are three natural
restrictions which turn out to be important (as usual, we assume that our
index sets are finite):

(1) Consider combinations
P

i2I �iui for which
X

i2I

�i = 1.

These are called a�ne combinations. One should realize that every
linear combination

P
i2I �iui can be viewed as an a�ne combination.

For example, if k is an index not in I, if we let J = I [ {k}, uk = 0,
and �k = 1 �

P
i2I �i, then

P
j2J �juj is an a�ne combination and

X

i2I

�iui =
X

j2J

�juj .

However, we get new spaces. For example, in R3, the set of all a�ne
combinations of the three vectors e

1

= (1, 0, 0), e
2

= (0, 1, 0), and e
3

=
(0, 0, 1), is the plane passing through these three points. Since it does
not contain 0 = (0, 0, 0), it is not a linear subspace.

(2) Consider combinations
P

i2I �iui for which

�i � 0, for all i 2 I.

These are called positive (or conic) combinations. It turns out that
positive combinations of families of vectors are cones. They show up
naturally in convex optimization.

(3) Consider combinations
P

i2I �iui for which we require (1) and (2), that
is

X

i2I

�i = 1, and �i � 0 for all i 2 I.
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These are called convex combinations. Given any finite family of vec-
tors, the set of all convex combinations of these vectors is a convex
polyhedron. Convex polyhedra play a very important role in convex
optimization.

Remark: The notion of linear combination can also be defined for infinite
index sets I. To ensure that a sum

P
i2I �iui makes sense, we restrict our

attention to families of finite support.

Definition 2.8. Given any field K, a family of scalars (�i)i2I has finite
support if �i = 0 for all i 2 I � J , for some finite subset J of I.

If (�i)i2I is a family of scalars of finite support, for any vector space
E over K, for any (possibly infinite) family (ui)i2I of vectors ui 2 E, we
define the linear combination

P
i2I �iui as the finite linear combinationP

j2J �juj , where J is any finite subset of I such that �i = 0 for all
i 2 I � J . In general, results stated for finite families also hold for families
of finite support.

2.5 Bases of a Vector Space

Given a vector space E, given a family (vi)i2I , the subset V of E consisting
of the null vector 0 and of all linear combinations of (vi)i2I is easily seen to
be a subspace of E. The family (vi)i2I is an economical way of representing
the entire subspace V , but such a family would be even nicer if it was not
redundant. Subspaces having such an “e�cient” generating family (called
a basis) play an important role and motivate the following definition.

Definition 2.9. Given a vector space E and a subspace V of E, a family
(vi)i2I of vectors vi 2 V spans V or generates V i↵ for every v 2 V , there
is some family (�i)i2I of scalars in R such that

v =
X

i2I

�ivi.

We also say that the elements of (vi)i2I are generators of V and that V
is spanned by (vi)i2I , or generated by (vi)i2I . If a subspace V of E is
generated by a finite family (vi)i2I , we say that V is finitely generated . A
family (ui)i2I that spans V and is linearly independent is called a basis of
V .

Example 2.6.
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(1) In R3, the vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1), illustrated in Figure
2.9, form a basis.

(2) The vectors (1, 1, 1, 1), (1, 1,�1,�1), (1,�1, 0, 0), (0, 0, 1,�1) form a ba-
sis of R4 known as the Haar basis. This basis and its generalization to
dimension 2n are crucial in wavelet theory.

(3) In the subspace of polynomials in R[X] of degree at most n, the poly-
nomials 1, X,X2, . . . , Xn form a basis.

(4) The Bernstein polynomials

✓
n
k

◆
(1 � X)n�kXk for k = 0, . . . , n, also

form a basis of that space. These polynomials play a major role in the
theory of spline curves.

The first key result of linear algebra is that every vector space E has a
basis. We begin with a crucial lemma which formalizes the mechanism for
building a basis incrementally.

Lemma 2.1. Given a linearly independent family (ui)i2I of elements of a
vector space E, if v 2 E is not a linear combination of (ui)i2I , then the
family (ui)i2I [k (v) obtained by adding v to the family (ui)i2I is linearly
independent (where k /2 I).

Proof. Assume that µv +
P

i2I �iui = 0, for any family (�i)i2I of scalars
in R. If µ 6= 0, then µ has an inverse (because R is a field), and thus
we have v = �

P
i2I(µ

�1�i)ui, showing that v is a linear combination of
(ui)i2I and contradicting the hypothesis. Thus, µ = 0. But then, we haveP

i2I �iui = 0, and since the family (ui)i2I is linearly independent, we have
�i = 0 for all i 2 I.

The next theorem holds in general, but the proof is more sophisticated
for vector spaces that do not have a finite set of generators. Thus, in this
chapter, we only prove the theorem for finitely generated vector spaces.

Theorem 2.1. Given any finite family S = (ui)i2I generating a vector
space E and any linearly independent subfamily L = (uj)j2J of S (where
J ✓ I), there is a basis B of E such that L ✓ B ✓ S.

Proof. Consider the set of linearly independent families B such that
L ✓ B ✓ S. Since this set is nonempty and finite, it has some maximal
element (that is, a subfamily B = (uh)h2H of S with H ✓ I of maximum
cardinality), say B = (uh)h2H . We claim that B generates E. Indeed,
if B does not generate E, then there is some up 2 S that is not a linear
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combination of vectors in B (since S generates E), with p /2 H. Then by
Lemma 2.1, the family B0 = (uh)h2H[{p} is linearly independent, and since
L ✓ B ⇢ B0 ✓ S, this contradicts the maximality of B. Thus, B is a basis
of E such that L ✓ B ✓ S.

Remark: Theorem 2.1 also holds for vector spaces that are not finitely
generated. In this case, the problem is to guarantee the existence of a max-
imal linearly independent family B such that L ✓ B ✓ S. The existence of
such a maximal family can be shown using Zorn’s lemma; see Lang [Lang
(1993)] (Theorem 5.1).

A situation where the full generality of Theorem 2.1 is needed is the
case of the vector space R over the field of coe�cients Q. The numbers
1 and

p
2 are linearly independent over Q, so according to Theorem 2.1,

the linearly independent family L = (1,
p
2) can be extended to a basis B

of R. Since R is uncountable and Q is countable, such a basis must be
uncountable!

The notion of a basis can also be defined in terms of the notion of
maximal linearly independent family and minimal generating family.

Definition 2.10. Let (vi)i2I be a family of vectors in a vector space E. We
say that (vi)i2I a maximal linearly independent family of E if it is linearly
independent, and if for any vector w 2 E, the family (vi)i2I[k{w} obtained
by adding w to the family (vi)i2I is linearly dependent. We say that (vi)i2I

a minimal generating family of E if it spans E, and if for any index p 2 I,
the family (vi)i2I�{p} obtained by removing vp from the family (vi)i2I does
not span E.

The following proposition giving useful properties characterizing a basis
is an immediate consequence of Lemma 2.1.

Proposition 2.8. Given a vector space E, for any family B = (vi)i2I of
vectors of E, the following properties are equivalent:

(1) B is a basis of E.
(2) B is a maximal linearly independent family of E.
(3) B is a minimal generating family of E.

Proof. We will first prove the equivalence of (1) and (2). Assume (1).
Since B is a basis, it is a linearly independent family. We claim that B
is a maximal linearly independent family. If B is not a maximal linearly
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independent family, then there is some vector w 2 E such that the family
B0 obtained by adding w to B is linearly independent. However, since B
is a basis of E, the vector w can be expressed as a linear combination of
vectors in B, contradicting the fact that B0 is linearly independent.

Conversely, assume (2). We claim that B spans E. If B does not span
E, then there is some vector w 2 E which is not a linear combination of
vectors in B. By Lemma 2.1, the family B0 obtained by adding w to B is
linearly independent. Since B is a proper subfamily of B0, this contradicts
the assumption that B is a maximal linearly independent family. Therefore,
B must span E, and since B is also linearly independent, it is a basis of E.

Now we will prove the equivalence of (1) and (3). Again, assume (1).
Since B is a basis, it is a generating family of E. We claim that B is a
minimal generating family. If B is not a minimal generating family, then
there is a proper subfamily B0 of B that spans E. Then, every w 2 B �B0

can be expressed as a linear combination of vectors from B0, contradicting
the fact that B is linearly independent.

Conversely, assume (3). We claim that B is linearly independent. If B
is not linearly independent, then some vector w 2 B can be expressed as a
linear combination of vectors in B0 = B � {w}. Since B generates E, the
family B0 also generates E, but B0 is a proper subfamily of B, contradicting
the minimality of B. Since B spans E and is linearly independent, it is a
basis of E.

The second key result of linear algebra is that for any two bases (ui)i2I

and (vj)j2J of a vector space E, the index sets I and J have the same
cardinality. In particular, if E has a finite basis of n elements, every basis
of E has n elements, and the integer n is called the dimension of the vector
space E.

To prove the second key result, we can use the following replacement
lemma due to Steinitz. This result shows the relationship between finite
linearly independent families and finite families of generators of a vector
space. We begin with a version of the lemma which is a bit informal, but
easier to understand than the precise and more formal formulation given in
Proposition 2.10. The technical di�culty has to do with the fact that some
of the indices need to be renamed.

Proposition 2.9. (Replacement lemma, version 1) Given a vector space
E, let (u

1

, . . . , um) be any finite linearly independent family in E, and let
(v

1

, . . . , vn) be any finite family such that every ui is a linear combination
of (v

1

, . . . , vn). Then we must have m  n, and there is a replacement of
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m of the vectors vj by (u
1

, . . . , um), such that after renaming some of the
indices of the vjs, the families (u

1

, . . . , um, vm+1

, . . . , vn) and (v
1

, . . . , vn)
generate the same subspace of E.

Proof. We proceed by induction on m. When m = 0, the family
(u

1

, . . . , um) is empty, and the proposition holds trivially. For the in-
duction step, we have a linearly independent family (u

1

, . . . , um, um+1

).
Consider the linearly independent family (u

1

, . . . , um). By the induction
hypothesis, m  n, and there is a replacement of m of the vectors vj by
(u

1

, . . . , um), such that after renaming some of the indices of the vs, the
families (u

1

, . . . , um, vm+1

, . . . , vn) and (v
1

, . . . , vn) generate the same sub-
space of E. The vector um+1

can also be expressed as a linear combination
of (v

1

, . . . , vn), and since (u
1

, . . . , um, vm+1

, . . . , vn) and (v
1

, . . . , vn) gener-
ate the same subspace, um+1

can be expressed as a linear combination of
(u

1

, . . . , um, vm+1

, . . ., vn), say

um+1

=
mX

i=1

�iui +
nX

j=m+1

�jvj .

We claim that �j 6= 0 for some j with m + 1  j  n, which implies
that m+ 1  n.

Otherwise, we would have

um+1

=
mX

i=1

�iui,

a nontrivial linear dependence of the ui, which is impossible since
(u

1

, . . . , um+1

) are linearly independent.
Therefore, m+ 1  n, and after renaming indices if necessary, we may

assume that �m+1

6= 0, so we get

vm+1

= �
mX

i=1

(��1

m+1

�i)ui � ��1

m+1

um+1

�
nX

j=m+2

(��1

m+1

�j)vj .

Observe that the families (u
1

, . . . , um, vm+1

, . . . , vn) and
(u

1

, . . . , um+1

, vm+2

, . . . , vn) generate the same subspace, since um+1

is a
linear combination of (u

1

, . . . , um, vm+1

, . . . , vn) and vm+1

is a linear com-
bination of (u

1

, . . . , um+1

, vm+2

, . . . , vn). Since (u
1

, . . . , um, vm+1

, . . . , vn)
and (v

1

, . . . , vn) generate the same subspace, we conclude that
(u

1

, . . . , um+1

, vm+2

, . . . , vn) and and (v
1

, . . . , vn) generate the same sub-
space, which concludes the induction hypothesis.
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Here is an example illustrating the replacement lemma. Consider se-
quences (u

1

, u
2

, u
3

) and (v
1

, v
2

, v
3

, v
4

, v
5

), where (u
1

, u
2

, u
3

) is a linearly
independent family and with the uis expressed in terms of the vjs as fol-
lows:

u
1

= v
4

+ v
5

u
2

= v
3

+ v
4

� v
5

u
3

= v
1

+ v
2

+ v
3

.

From the first equation we get

v
4

= u
1

� v
5

,

and by substituting in the second equation we have

u
2

= v
3

+ v
4

� v
5

= v
3

+ u
1

� v
5

� v
5

= u
1

+ v
3

� 2v
5

.

From the above equation we get

v
3

= �u
1

+ u
2

+ 2v
5

,

and so

u
3

= v
1

+ v
2

+ v
3

= v
1

+ v
2

� u
1

+ u
2

+ 2v
5

.

Finally, we get

v
1

= u
1

� u
2

+ u
3

� v
2

� 2v
5

Therefore we have

v
1

= u
1

� u
2

+ u
3

� v
2

� 2v
5

v
3

= �u
1

+ u
2

+ 2v
5

v
4

= u
1

� v
5

,

which shows that (u
1

, u
2

, u
3

, v
2

, v
5

) spans the same subspace as
(v

1

, v
2

, v
3

, v
4

, v
5

). The vectors (v
1

, v
3

, v
4

) have been replaced by (u
1

, u
2

, u
3

),
and the vectors left over are (v

2

, v
5

). We can rename them (v
4

, v
5

).
For the sake of completeness, here is a more formal statement of the

replacement lemma (and its proof).

Proposition 2.10. (Replacement lemma, version 2) Given a vector space
E, let (ui)i2I be any finite linearly independent family in E, where |I| = m,
and let (vj)j2J be any finite family such that every ui is a linear combination
of (vj)j2J , where |J | = n. Then there exists a set L and an injection
⇢ : L ! J (a relabeling function) such that L\ I = ;, |L| = n�m, and the
families (ui)i2I [ (v⇢(l))l2L and (vj)j2J generate the same subspace of E.
In particular, m  n.
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Proof. We proceed by induction on |I| = m. When m = 0, the family
(ui)i2I is empty, and the proposition holds trivially with L = J (⇢ is the
identity). Assume |I| = m + 1. Consider the linearly independent family
(ui)i2(I�{p}), where p is any member of I. By the induction hypothesis,
there exists a set L and an injection ⇢ : L ! J such that L\ (I � {p}) = ;,
|L| = n�m, and the families (ui)i2(I�{p}) [ (v⇢(l))l2L and (vj)j2J generate
the same subspace of E. If p 2 L, we can replace L by (L � {p}) [ {p0}
where p0 does not belong to I [ L, and replace ⇢ by the injection ⇢0 which
agrees with ⇢ on L� {p} and such that ⇢0(p0) = ⇢(p). Thus, we can always
assume that L\ I = ;. Since up is a linear combination of (vj)j2J and the
families (ui)i2(I�{p}) [ (v⇢(l))l2L and (vj)j2J generate the same subspace
of E, up is a linear combination of (ui)i2(I�{p}) [ (v⇢(l))l2L. Let

up =
X

i2(I�{p})

�iui +
X

l2L

�lv⇢(l). (1)

If �l = 0 for all l 2 L, we have
X

i2(I�{p})

�iui � up = 0,

contradicting the fact that (ui)i2I is linearly independent. Thus, �l 6= 0 for
some l 2 L, say l = q. Since �q 6= 0, we have

v⇢(q) =
X

i2(I�{p})

(���1

q �i)ui + ��1

q up +
X

l2(L�{q})

(���1

q �l)v⇢(l). (2)

We claim that the families (ui)i2(I�{p}) [ (v⇢(l))l2L and (ui)i2I [
(v⇢(l))l2(L�{q}) generate the same subset of E. Indeed, the second fam-
ily is obtained from the first by replacing v⇢(q) by up, and vice-versa, and
up is a linear combination of (ui)i2(I�{p}) [ (v⇢(l))l2L, by (1), and v⇢(q) is
a linear combination of (ui)i2I [ (v⇢(l))l2(L�{q}), by (2). Thus, the fam-
ilies (ui)i2I [ (v⇢(l))l2(L�{q}) and (vj)j2J generate the same subspace of
E, and the proposition holds for L � {q} and the restriction of the injec-
tion ⇢ : L ! J to L � {q}, since L \ I = ; and |L| = n � m imply that
(L � {q}) \ I = ; and |L � {q}| = n � (m+ 1).

The idea is that m of the vectors vj can be replaced by the linearly
independent uis in such a way that the same subspace is still generated.
The purpose of the function ⇢ : L ! J is to pick n�m elements j

1

, . . . , jn�m

of J and to relabel them l
1

, . . . , ln�m in such a way that these new indices
do not clash with the indices in I; this way, the vectors vj1 , . . . , vjn�m who
“survive” (i.e. are not replaced) are relabeled vl1 , . . . , vln�m , and the other
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m vectors vj with j 2 J �{j
1

, . . . , jn�m} are replaced by the ui. The index
set of this new family is I [ L.

Actually, one can prove that Proposition 2.10 implies Theorem 2.1 when
the vector space is finitely generated. Putting Theorem 2.1 and Proposition
2.10 together, we obtain the following fundamental theorem.

Theorem 2.2. Let E be a finitely generated vector space. Any family
(ui)i2I generating E contains a subfamily (uj)j2J which is a basis of E.
Any linearly independent family (ui)i2I can be extended to a family (uj)j2J

which is a basis of E (with I ✓ J). Furthermore, for every two bases (ui)i2I

and (vj)j2J of E, we have |I| = |J | = n for some fixed integer n � 0.

Proof. The first part follows immediately by applying Theorem 2.1 with
L = ; and S = (ui)i2I . For the second part, consider the family S0 =
(ui)i2I [(vh)h2H , where (vh)h2H is any finitely generated family generating
E, and with I \ H = ;. Then apply Theorem 2.1 to L = (ui)i2I and to
S0. For the last statement, assume that (ui)i2I and (vj)j2J are bases of E.
Since (ui)i2I is linearly independent and (vj)j2J spans E, Proposition 2.10
implies that |I|  |J |. A symmetric argument yields |J |  |I|.

Remark: Theorem 2.2 also holds for vector spaces that are not finitely
generated.

Definition 2.11. When a vector space E is not finitely generated, we say
that E is of infinite dimension. The dimension of a finitely generated vector
space E is the common dimension n of all of its bases and is denoted by
dim(E).

Clearly, if the field R itself is viewed as a vector space, then every
family (a) where a 2 R and a 6= 0 is a basis. Thus dim(R) = 1. Note that
dim({0}) = 0.

Definition 2.12. If E is a vector space of dimension n � 1, for any sub-
space U of E, if dim(U) = 1, then U is called a line; if dim(U) = 2, then
U is called a plane; if dim(U) = n � 1, then U is called a hyperplane. If
dim(U) = k, then U is sometimes called a k-plane.

Let (ui)i2I be a basis of a vector space E. For any vector v 2 E, since
the family (ui)i2I generates E, there is a family (�i)i2I of scalars in R, such
that

v =
X

i2I

�iui.
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A very important fact is that the family (�i)i2I is unique.

Proposition 2.11. Given a vector space E, let (ui)i2I be a family of vec-
tors in E. Let v 2 E, and assume that v =

P
i2I �iui. Then the family

(�i)i2I of scalars such that v =
P

i2I �iui is unique i↵ (ui)i2I is linearly
independent.

Proof. First, assume that (ui)i2I is linearly independent. If (µi)i2I is
another family of scalars in R such that v =

P
i2I µiui, then we have

X

i2I

(�i � µi)ui = 0,

and since (ui)i2I is linearly independent, we must have �i � µi = 0 for all
i 2 I, that is, �i = µi for all i 2 I. The converse is shown by contradiction.
If (ui)i2I was linearly dependent, there would be a family (µi)i2I of scalars
not all null such that

X

i2I

µiui = 0

and µj 6= 0 for some j 2 I. But then,

v =
X

i2I

�iui + 0 =
X

i2I

�iui +
X

i2I

µiui =
X

i2I

(�i + µi)ui,

with �j 6= �j + µj since µj 6= 0, contradicting the assumption that (�i)i2I

is the unique family such that v =
P

i2I �iui.

Definition 2.13. If (ui)i2I is a basis of a vector space E, for any vector
v 2 E, if (xi)i2I is the unique family of scalars in R such that

v =
X

i2I

xiui,

each xi is called the component (or coordinate) of index i of v with respect
to the basis (ui)i2I .

2.6 Matrices

In Section 2.1 we introduced informally the notion of a matrix. In this
section we define matrices precisely, and also introduce some operations on
matrices. It turns out that matrices form a vector space equipped with a
multiplication operation which is associative, but noncommutative. We will
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explain in Section 3.1 how matrices can be used to represent linear maps,
defined in the next section.

Definition 2.14. If K = R or K = C, an m⇥n-matrix over K is a family
(ai j)1im, 1jn of scalars in K, represented by an array

0

BBB@

a
1 1

a
1 2

. . . a
1n

a
2 1

a
2 2

. . . a
2n

...
...

. . .
...

am 1

am 2

. . . amn

1

CCCA
.

In the special case where m = 1, we have a row vector , represented by

(a
1 1

· · · a
1n)

and in the special case where n = 1, we have a column vector , represented
by

0

B@
a
1 1

...
am 1

1

CA .

In these last two cases, we usually omit the constant index 1 (first index
in case of a row, second index in case of a column). The set of all m ⇥ n-
matrices is denoted by Mm,n(K) or Mm,n. An n ⇥ n-matrix is called a
square matrix of dimension n. The set of all square matrices of dimension
n is denoted by Mn(K), or Mn.

Remark: As defined, a matrix A = (ai j)1im, 1jn is a family , that
is, a function from {1, 2, . . . ,m} ⇥ {1, 2, . . . , n} to K. As such, there is
no reason to assume an ordering on the indices. Thus, the matrix A can
be represented in many di↵erent ways as an array, by adopting di↵erent
orders for the rows or the columns. However, it is customary (and usually
convenient) to assume the natural ordering on the sets {1, 2, . . . ,m} and
{1, 2, . . . , n}, and to represent A as an array according to this ordering of
the rows and columns.

We define some operations on matrices as follows.

Definition 2.15. Given two m ⇥ n matrices A = (ai j) and B = (bi j), we
define their sum A+B as the matrix C = (ci j) such that ci j = ai j + bi j ;
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that is,

0

BBB@

a
1 1

a
1 2

. . . a
1n

a
2 1

a
2 2

. . . a
2n

...
...

. . .
...

am 1

am 2

. . . amn

1

CCCA
+

0

BBB@

b
1 1

b
1 2

. . . b
1n

b
2 1

b
2 2

. . . b
2n

...
...

. . .
...

bm 1

bm 2

. . . bmn

1

CCCA

=

0

BBB@

a
1 1

+ b
1 1

a
1 2

+ b
1 2

. . . a
1n + b

1n

a
2 1

+ b
2 1

a
2 2

+ b
2 2

. . . a
2n + b

2n

...
...

. . .
...

am 1

+ bm 1

am 2

+ bm 2

. . . amn + bmn

1

CCCA
.

For any matrix A = (ai j), we let �A be the matrix (�ai j). Given a
scalar � 2 K, we define the matrix �A as the matrix C = (ci j) such that
ci j = �ai j ; that is

�

0

BBB@

a
1 1

a
1 2

. . . a
1n

a
2 1

a
2 2

. . . a
2n

...
...

. . .
...

am 1

am 2

. . . amn

1

CCCA
=

0

BBB@

�a
1 1

�a
1 2

. . . �a
1n

�a
2 1

�a
2 2

. . . �a
2n

...
...

. . .
...

�am 1

�am 2

. . . �amn

1

CCCA
.

Given an m ⇥ n matrices A = (ai k) and an n ⇥ p matrices B = (bk j), we
define their product AB as the m ⇥ p matrix C = (ci j) such that

ci j =
nX

k=1

ai kbk j ,

for 1  i  m, and 1  j  p. In the product AB = C shown below
0

BBB@

a
1 1

a
1 2

. . . a
1n

a
2 1

a
2 2

. . . a
2n

...
...

. . .
...

am 1

am 2

. . . amn

1

CCCA

0

BBB@

b
1 1

b
1 2

. . . b
1 p

b
2 1

b
2 2

. . . b
2 p

...
...

. . .
...

bn 1

bn 2

. . . bn p

1

CCCA
=

0

BBB@

c
1 1

c
1 2

. . . c
1 p

c
2 1

c
2 2

. . . c
2 p

...
...

. . .
...

cm 1

cm 2

. . . cmp

1

CCCA
,

note that the entry of index i and j of the matrix AB obtained by mul-
tiplying the matrices A and B can be identified with the product of the
row matrix corresponding to the i-th row of A with the column matrix
corresponding to the j-column of B:

(ai 1 · · · ai n)

0

B@
b
1 j

...
bn j

1

CA =
nX

k=1

ai kbk j .
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Definition 2.16. The square matrix In of dimension n containing 1 on the
diagonal and 0 everywhere else is called the identity matrix . It is denoted
by

In =

0

BBB@

1 0 . . . 0
0 1 . . . 0
...
...
. . .

...
0 0 . . . 1

1

CCCA

Definition 2.17. Given an m ⇥ n matrix A = (ai j), its transpose A> =
(a>j i), is the n⇥m-matrix such that a>j i = ai j , for all i, 1  i  m, and all
j, 1  j  n.

The transpose of a matrix A is sometimes denoted by At, or even by tA.
Note that the transpose A> of a matrix A has the property that the j-th
row of A> is the j-th column of A. In other words, transposition exchanges
the rows and the columns of a matrix. Here is an example. If A is the 5⇥6
matrix

A =

0

BBBB@

1 2 3 4 5 6
7 1 2 3 4 5
8 7 1 2 3 4
9 8 7 1 2 3
10 9 8 7 1 2

1

CCCCA
,

then A> is the 6 ⇥ 5 matrix

A> =

0

BBBBBBB@

1 7 8 9 10
2 1 7 8 9
3 2 1 7 8
4 3 2 1 7
5 4 3 2 1
6 5 4 3 2

1

CCCCCCCA

.

The following observation will be useful later on when we discuss the
SVD. Given any m⇥n matrix A and any n⇥ p matrix B, if we denote the
columns of A by A1, . . . , An and the rows of B by B

1

, . . . , Bn, then we have

AB = A1B
1

+ · · · +AnBn.

For every square matrix A of dimension n, it is immediately verified that
AIn = InA = A.

Definition 2.18. For any square matrix A of dimension n, if a matrix B
such that AB = BA = In exists, then it is unique, and it is called the
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inverse of A. The matrix B is also denoted by A�1. An invertible matrix
is also called a nonsingular matrix, and a matrix that is not invertible is
called a singular matrix.

Using Proposition 2.16 and the fact that matrices represent linear maps,
it can be shown that if a square matrix A has a left inverse, that is a matrix
B such thatBA = I, or a right inverse, that is a matrix C such thatAC = I,
then A is actually invertible; so B = A�1 and C = A�1. These facts also
follow from Proposition 5.10.

It is immediately verified that the set Mm,n(K) of m ⇥ n matrices is a
vector space under addition of matrices and multiplication of a matrix by
a scalar.

Definition 2.19. The m ⇥ n-matrices Eij = (eh k), are defined such that
ei j = 1, and eh k = 0, if h 6= i or k 6= j; in other words, the (i, j)-entry is
equal to 1 and all other entries are 0.

Here are the Eij matrices for m = 2 and n = 3:

E
11

=

✓
1 0 0
0 0 0

◆
, E

12

=

✓
0 1 0
0 0 0

◆
, E

13

=

✓
0 0 1
0 0 0

◆

E
21

=

✓
0 0 0
1 0 0

◆
, E

22

=

✓
0 0 0
0 1 0

◆
, E

23

=

✓
0 0 0
0 0 1

◆
.

It is clear that every matrix A = (ai j) 2 Mm,n(K) can be written in a
unique way as

A =
mX

i=1

nX

j=1

ai jEij .

Thus, the family (Eij)1im,1jn is a basis of the vector space Mm,n(K),
which has dimension mn.

Remark: Definition 2.14 and Definition 2.15 also make perfect sense when
K is a (commutative) ring rather than a field. In this more general setting,
the framework of vector spaces is too narrow, but we can consider struc-
tures over a commutative ring A satisfying all the axioms of Definition 2.4.
Such structures are called modules. The theory of modules is (much) more
complicated than that of vector spaces. For example, modules do not al-
ways have a basis, and other properties holding for vector spaces usually
fail for modules. When a module has a basis, it is called a free module. For
example, when A is a commutative ring, the structure An is a module such
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that the vectors ei, with (ei)i = 1 and (ei)j = 0 for j 6= i, form a basis of
An. Many properties of vector spaces still hold for An. Thus, An is a free
module. As another example, when A is a commutative ring, Mm,n(A) is a
free module with basis (Ei,j)1im,1jn. Polynomials over a commutative
ring also form a free module of infinite dimension.

The properties listed in Proposition 2.12 are easily verified, although
some of the computations are a bit tedious. A more conceptual proof is
given in Proposition 3.1.

Proposition 2.12. (1) Given any matrices A 2 Mm,n(K), B 2 Mn,p(K),
and C 2 Mp,q(K), we have

(AB)C = A(BC);

that is, matrix multiplication is associative.
(2) Given any matrices A,B 2 Mm,n(K), and C,D 2 Mn,p(K), for all

� 2 K, we have

(A+B)C = AC +BC

A(C +D) = AC +AD

(�A)C = �(AC)

A(�C) = �(AC),

so that matrix multiplication · : Mm,n(K)⇥Mn,p(K) ! Mm,p(K) is bilinear.

The properties of Proposition 2.12 together with the fact that AIn =
InA = A for all square n⇥n matrices show that Mn(K) is a ring with unit
In (in fact, an associative algebra). This is a noncommutative ring with
zero divisors, as shown by the following example.

Example 2.7. For example, letting A,B be the 2 ⇥ 2-matrices

A =

✓
1 0
0 0

◆
, B =

✓
0 0
1 0

◆
,

then

AB =

✓
1 0
0 0

◆✓
0 0
1 0

◆
=

✓
0 0
0 0

◆
,

and

BA =

✓
0 0
1 0

◆✓
1 0
0 0

◆
=

✓
0 0
1 0

◆
.

Thus AB 6= BA, and AB = 0, even though both A,B 6= 0.
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2.7 Linear Maps

Now that we understand vector spaces and how to generate them, we would
like to be able to transform one vector space E into another vector space
F . A function between two vector spaces that preserves the vector space
structure is called a homomorphism of vector spaces, or linear map. Linear
maps formalize the concept of linearity of a function.

Keep in mind that linear maps, which are
transformations of space, are usually far

more important than the spaces themselves.
In the rest of this section, we assume that all vector spaces are real

vector spaces, but all results hold for vector spaces over an arbitrary field.

Definition 2.20. Given two vector spaces E and F , a linear map between
E and F is a function f : E ! F satisfying the following two conditions:

f(x+ y) = f(x) + f(y) for all x, y 2 E;

f(�x) = �f(x) for all � 2 R, x 2 E.

Setting x = y = 0 in the first identity, we get f(0) = 0. The basic prop-
erty of linear maps is that they transform linear combinations into linear
combinations. Given any finite family (ui)i2I of vectors in E, given any
family (�i)i2I of scalars in R, we have

f(
X

i2I

�iui) =
X

i2I

�if(ui).

The above identity is shown by induction on |I| using the properties of
Definition 2.20.

Example 2.8.

(1) The map f : R2 ! R2 defined such that

x0 = x � y

y0 = x+ y

is a linear map. The reader should check that it is the composition of
a rotation by ⇡/4 with a magnification of ratio

p
2.

(2) For any vector space E, the identity map id : E ! E given by

id(u) = u for all u 2 E

is a linear map. When we want to be more precise, we write idE instead
of id.
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(3) The map D : R[X] ! R[X] defined such that

D(f(X)) = f 0(X),

where f 0(X) is the derivative of the polynomial f(X), is a linear map.
(4) The map � : C([a, b]) ! R given by

�(f) =

Z b

a

f(t)dt,

where C([a, b]) is the set of continuous functions defined on the interval
[a, b], is a linear map.

(5) The function h�,�i : C([a, b]) ⇥ C([a, b]) ! R given by

hf, gi =
Z b

a

f(t)g(t)dt,

is linear in each of the variable f , g. It also satisfies the properties
hf, gi = hg, fi and hf, fi = 0 i↵ f = 0. It is an example of an inner
product .

Definition 2.21. Given a linear map f : E ! F , we define its image (or
range) Im f = f(E), as the set

Im f = {y 2 F | (9x 2 E)(y = f(x))},

and its Kernel (or nullspace) Ker f = f�1(0), as the set

Ker f = {x 2 E | f(x) = 0}.

The derivative map D : R[X] ! R[X] from Example 2.8(3) has ker-
nel the constant polynomials, so KerD = R. If we consider the second
derivative D � D : R[X] ! R[X], then the kernel of D � D consists of all
polynomials of degree  1. The image of D : R[X] ! R[X] is actually R[X]
itself, because every polynomial P (X) = a

0

Xn+ · · ·+an�1

X+an of degree
n is the derivative of the polynomial Q(X) of degree n+ 1 given by

Q(X) = a
0

Xn+1

n+ 1
+ · · · + an�1

X2

2
+ anX.

On the other hand, if we consider the restriction of D to the vector space
R[X]n of polynomials of degree  n, then the kernel of D is still R, but
the image of D is the R[X]n�1

, the vector space of polynomials of degree
 n � 1.

Proposition 2.13. Given a linear map f : E ! F , the set Im f is a sub-
space of F and the set Ker f is a subspace of E. The linear map f : E ! F
is injective i↵ Ker f = (0) (where (0) is the trivial subspace {0}).
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Proof. Given any x, y 2 Im f , there are some u, v 2 E such that x = f(u)
and y = f(v), and for all �, µ 2 R, we have

f(�u+ µv) = �f(u) + µf(v) = �x+ µy,

and thus, �x+ µy 2 Im f , showing that Im f is a subspace of F .
Given any x, y 2 Ker f , we have f(x) = 0 and f(y) = 0, and thus,

f(�x+ µy) = �f(x) + µf(y) = 0,

that is, �x+ µy 2 Ker f , showing that Ker f is a subspace of E.
First, assume that Ker f = (0). We need to prove that f(x) = f(y)

implies that x = y. However, if f(x) = f(y), then f(x) � f(y) = 0, and
by linearity of f we get f(x � y) = 0. Because Ker f = (0), we must have
x � y = 0, that is x = y, so f is injective. Conversely, assume that f is
injective. If x 2 Ker f , that is f(x) = 0, since f(0) = 0 we have f(x) = f(0),
and by injectivity, x = 0, which proves that Ker f = (0). Therefore, f is
injective i↵ Ker f = (0).

Since by Proposition 2.13, the image Im f of a linear map f is a subspace
of F , we can define the rank rk(f) of f as the dimension of Im f .

Definition 2.22. Given a linear map f : E ! F , the rank rk(f) of f is the
dimension of the image Im f of f .

A fundamental property of bases in a vector space is that they allow
the definition of linear maps as unique homomorphic extensions, as shown
in the following proposition.

Proposition 2.14. Given any two vector spaces E and F , given any basis
(ui)i2I of E, given any other family of vectors (vi)i2I in F , there is a unique
linear map f : E ! F such that f(ui) = vi for all i 2 I. Furthermore, f
is injective i↵ (vi)i2I is linearly independent, and f is surjective i↵ (vi)i2I

generates F .

Proof. If such a linear map f : E ! F exists, since (ui)i2I is a basis of E,
every vector x 2 E can written uniquely as a linear combination

x =
X

i2I

xiui,

and by linearity, we must have

f(x) =
X

i2I

xif(ui) =
X

i2I

xivi.
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Define the function f : E ! F , by letting

f(x) =
X

i2I

xivi

for every x =
P

i2I xiui. It is easy to verify that f is indeed linear, it is
unique by the previous reasoning, and obviously, f(ui) = vi.

Now assume that f is injective. Let (�i)i2I be any family of scalars,
and assume that X

i2I

�ivi = 0.

Since vi = f(ui) for every i 2 I, we have

f(
X

i2I

�iui) =
X

i2I

�if(ui) =
X

i2I

�ivi = 0.

Since f is injective i↵ Ker f = (0), we haveX

i2I

�iui = 0,

and since (ui)i2I is a basis, we have �i = 0 for all i 2 I, which shows that
(vi)i2I is linearly independent. Conversely, assume that (vi)i2I is linearly
independent. Since (ui)i2I is a basis of E, every vector x 2 E is a linear
combination x =

P
i2I �iui of (ui)i2I . If

f(x) = f(
X

i2I

�iui) = 0,

then X

i2I

�ivi =
X

i2I

�if(ui) = f(
X

i2I

�iui) = 0,

and �i = 0 for all i 2 I because (vi)i2I is linearly independent, which means
that x = 0. Therefore, Ker f = (0), which implies that f is injective. The
part where f is surjective is left as a simple exercise.

Figure 2.11 provides an illustration of Proposition 2.14 when E = R3

and V = R2

By the second part of Proposition 2.14, an injective linear map f : E !
F sends a basis (ui)i2I to a linearly independent family (f(ui))i2I of F ,
which is also a basis when f is bijective. Also, when E and F have the
same finite dimension n, (ui)i2I is a basis of E, and f : E ! F is injective,
then (f(ui))i2I is a basis of F (by Proposition 2.8).

The following simple proposition is also useful.

Proposition 2.15. Given any two vector spaces E and F , with F non-
trivial, given any family (ui)i2I of vectors in E, the following properties
hold:
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u  = (1,0,0)1

u = (0,1,0)
2

u = (0,0,1)
3 v = (1,1)1v = (-1,1)

2

v = (1,0)
3

f(u )1
f(u )

2
-

2f(u  )3

E = 

f

F =
R

R
2

3

f is not injective

defining f

Fig. 2.11 Given u1 = (1, 0, 0), u2 = (0, 1, 0), u3 = (0, 0, 1) and v1 = (1, 1), v2 = (�1, 1),
v3 = (1, 0), define the unique linear map f : R3 ! R2 by f(u1) = v1, f(u2) = v2, and
f(u3) = v3. This map is surjective but not injective since f(u1 �u2) = f(u1) � f(u2) =
(1, 1) � (�1, 1) = (2, 0) = 2f(u3) = f(2u3).

(1) The family (ui)i2I generates E i↵ for every family of vectors (vi)i2I in
F , there is at most one linear map f : E ! F such that f(ui) = vi for
all i 2 I.

(2) The family (ui)i2I is linearly independent i↵ for every family of vectors
(vi)i2I in F , there is some linear map f : E ! F such that f(ui) = vi
for all i 2 I.

Proof. (1) If there is any linear map f : E ! F such that f(ui) = vi for
all i 2 I, since (ui)i2I generates E, every vector x 2 E can be written as
some linear combination

x =
X

i2I

xiui,

and by linearity, we must have

f(x) =
X

i2I

xif(ui) =
X

i2I

xivi.

This shows that f is unique if it exists. Conversely, assume that (ui)i2I

does not generate E. Since F is nontrivial, there is some some vector y 2 F
such that y 6= 0. Since (ui)i2I does not generate E, there is some vector
w 2 E that is not in the subspace generated by (ui)i2I . By Theorem
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2.2, there is a linearly independent subfamily (ui)i2I0 of (ui)i2I generating
the same subspace. Since by hypothesis, w 2 E is not in the subspace
generated by (ui)i2I0 , by Lemma 2.1 and by Theorem 2.2 again, there is a
basis (ej)j2I0[J of E, such that ei = ui for all i 2 I

0

, and w = ej0 for some
j
0

2 J . Letting (vi)i2I be the family in F such that vi = 0 for all i 2 I,
defining f : E ! F to be the constant linear map with value 0, we have a
linear map such that f(ui) = 0 for all i 2 I. By Proposition 2.14, there
is a unique linear map g : E ! F such that g(w) = y, and g(ej) = 0 for
all j 2 (I

0

[ J) � {j
0

}. By definition of the basis (ej)j2I0[J of E, we have
g(ui) = 0 for all i 2 I, and since f 6= g, this contradicts the fact that there
is at most one such map. See Figure 2.12.

f

u  = (1,0,0)1

u = (0,1,0)
2

E = F =
R

R
2

3

u  = (1,0,0)1

u = (0,1,0)
2

E = F =
R

R
2

3

w = (0,0,1)

w = (0,0,1)

defining f as the zero

defining g
y = (1,0)

g(w) = y

Fig. 2.12 Let E = R3 and F = R2. The vectors u1 = (1, 0, 0), u2 = (0, 1, 0) do not
generate R3 since both the zero map and the map g, where g(0, 0, 1) = (1, 0), send the
peach xy-plane to the origin.

(2) If the family (ui)i2I is linearly independent, then by Theorem 2.2,
(ui)i2I can be extended to a basis of E, and the conclusion follows by
Proposition 2.14. Conversely, assume that (ui)i2I is linearly dependent.
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Then there is some family (�i)i2I of scalars (not all zero) such that
X

i2I

�iui = 0.

By the assumption, for any nonzero vector y 2 F , for every i 2 I, there
is some linear map fi : E ! F , such that fi(ui) = y, and fi(uj) = 0, for
j 2 I � {i}. Then we would get

0 = fi(
X

i2I

�iui) =
X

i2I

�ifi(ui) = �iy,

and since y 6= 0, this implies �i = 0 for every i 2 I. Thus, (ui)i2I is linearly
independent.

Given vector spaces E, F , and G, and linear maps f : E ! F and
g : F ! G, it is easily verified that the composition g � f : E ! G of f and
g is a linear map.

Definition 2.23. A linear map f : E ! F is an isomorphism i↵ there is a
linear map g : F ! E, such that

g � f = idE and f � g = idF . (⇤)

The map g in Definition 2.23 is unique. This is because if g and h both
satisfy g � f = idE , f � g = idF , h � f = idE , and f � h = idF , then

g = g � idF = g � (f � h) = (g � f) � h = idE � h = h.

The map g satisfying (⇤) above is called the inverse of f and it is also
denoted by f�1.

Observe that Proposition 2.14 shows that if F = Rn, then we get an
isomorphism between any vector space E of dimension |J | = n and Rn.
Proposition 2.14 also implies that if E and F are two vector spaces, (ui)i2I

is a basis of E, and f : E ! F is a linear map which is an isomorphism,
then the family (f(ui))i2I is a basis of F .

One can verify that if f : E ! F is a bijective linear map, then its
inverse f�1 : F ! E, as a function, is also a linear map, and thus f is an
isomorphism.

Another useful corollary of Proposition 2.14 is this:

Proposition 2.16. Let E be a vector space of finite dimension n � 1 and
let f : E ! E be any linear map. The following properties hold:

(1) If f has a left inverse g, that is, if g is a linear map such that g�f = id,
then f is an isomorphism and f�1 = g.
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(2) If f has a right inverse h, that is, if h is a linear map such that f �h =
id, then f is an isomorphism and f�1 = h.

Proof. (1) The equation g � f = id implies that f is injective; this is a
standard result about functions (if f(x) = f(y), then g(f(x)) = g(f(y)),
which implies that x = y since g � f = id). Let (u

1

, . . . , un) be any ba-
sis of E. By Proposition 2.14, since f is injective, (f(u

1

), . . . , f(un)) is
linearly independent, and since E has dimension n, it is a basis of E (if
(f(u

1

), . . . , f(un)) doesn’t span E, then it can be extended to a basis of
dimension strictly greater than n, contradicting Theorem 2.2). Then f is
bijective, and by a previous observation its inverse is a linear map. We also
have

g = g � id = g � (f � f�1) = (g � f) � f�1 = id � f�1 = f�1.

(2) The equation f � h = id implies that f is surjective; this is a stan-
dard result about functions (for any y 2 E, we have f(h(y)) = y). Let
(u

1

, . . . , un) be any basis of E. By Proposition 2.14, since f is surjective,
(f(u

1

), . . . , f(un)) spans E, and since E has dimension n, it is a basis of
E (if (f(u

1

), . . . , f(un)) is not linearly independent, then because it spans
E, it contains a basis of dimension strictly smaller than n, contradicting
Theorem 2.2). Then f is bijective, and by a previous observation its inverse
is a linear map. We also have

h = id � h = (f�1 � f) � h = f�1 � (f � h) = f�1 � id = f�1.

This completes the proof.

Definition 2.24. The set of all linear maps between two vector spaces
E and F is denoted by Hom(E,F ) or by L(E;F ) (the notation L(E;F )
is usually reserved to the set of continuous linear maps, where E and F
are normed vector spaces). When we wish to be more precise and specify
the field K over which the vector spaces E and F are defined we write
HomK(E,F ).

The set Hom(E,F ) is a vector space under the operations defined in
Example 2.3, namely

(f + g)(x) = f(x) + g(x)

for all x 2 E, and

(�f)(x) = �f(x)
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for all x 2 E. The point worth checking carefully is that �f is indeed a
linear map, which uses the commutativity of ⇤ in the field K (typically,
K = R or K = C). Indeed, we have

(�f)(µx) = �f(µx) = �µf(x) = µ�f(x) = µ(�f)(x).

When E and F have finite dimensions, the vector space Hom(E,F ) also
has finite dimension, as we shall see shortly.

Definition 2.25. When E = F , a linear map f : E ! E is also called an
endomorphism. The space Hom(E,E) is also denoted by End(E).

It is also important to note that composition confers to Hom(E,E)
a ring structure. Indeed, composition is an operation � : Hom(E,E) ⇥
Hom(E,E) ! Hom(E,E), which is associative and has an identity idE ,
and the distributivity properties hold:

(g
1

+ g
2

) � f = g
1

� f + g
2

� f ;

g � (f
1

+ f
2

) = g � f
1

+ g � f
2

.

The ring Hom(E,E) is an example of a noncommutative ring.
It is easily seen that the set of bijective linear maps f : E ! E is a

group under composition.

Definition 2.26. Bijective linear maps f : E ! E are also called automor-
phisms. The group of automorphisms of E is called the general linear group
(of E), and it is denoted by GL(E), or by Aut(E), or when E = Rn, by
GL(n,R), or even by GL(n).

2.8 Linear Forms and the Dual Space

We already observed that the field K itself (K = R or K = C) is a vector
space (over itself). The vector space Hom(E,K) of linear maps from E to
the field K, the linear forms, plays a particular role. In this section, we only
define linear forms and show that every finite-dimensional vector space has
a dual basis. A more advanced presentation of dual spaces and duality is
given in Chapter 10.

Definition 2.27. Given a vector space E, the vector space Hom(E,K) of
linear maps from E to the field K is called the dual space (or dual) of E.
The space Hom(E,K) is also denoted by E⇤, and the linear maps in E⇤

are called the linear forms , or covectors. The dual space E⇤⇤ of the space
E⇤ is called the bidual of E.
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As a matter of notation, linear forms f : E ! K will also be denoted
by starred symbol, such as u⇤, x⇤, etc.

If E is a vector space of finite dimension n and (u
1

, . . . , un) is a basis
of E, for any linear form f⇤ 2 E⇤, for every x = x

1

u
1

+ · · ·+ xnun 2 E, by
linearity we have

f⇤(x) = f⇤(u
1

)x
1

+ · · · + f⇤(un)xn

= �
1

x
1

+ · · · + �nxn,

with �i = f⇤(ui) 2 K for every i, 1  i  n. Thus, with respect to the
basis (u

1

, . . . , un), the linear form f⇤ is represented by the row vector

(�
1

· · · �n),
we have

f⇤(x) =
�
�
1

· · · �n
�
0

B@
x
1

...
xn

1

CA ,

a linear combination of the coordinates of x, and we can view the linear form
f⇤ as a linear equation. If we decide to use a column vector of coe�cients

c =

0

B@
c
1

...
cn

1

CA

instead of a row vector, then the linear form f⇤ is defined by

f⇤(x) = c>x.

The above notation is often used in machine learning.

Example 2.9. Given any di↵erentiable function f : Rn ! R, by definition,
for any x 2 Rn, the total derivative dfx of f at x is the linear form dfx : Rn !
R defined so that for all u = (u

1

, . . . , un) 2 Rn,

dfx(u) =

✓
@f

@x
1

(x) · · · @f

@xn
(x)

◆
0

B@
u
1

...
un

1

CA =
nX

i=1

@f

@xi
(x)ui.

Example 2.10. Let C([0, 1]) be the vector space of continuous functions
f : [0, 1] ! R. The map I : C([0, 1]) ! R given by

I(f) =
Z

1

0

f(x)dx for any f 2 C([0, 1])

is a linear form (integration).
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Example 2.11. Consider the vector space Mn(R) of real n ⇥ n matrices.
Let tr : Mn(R) ! R be the function given by

tr(A) = a
11

+ a
22

+ · · · + ann,

called the trace of A. It is a linear form. Let s : Mn(R) ! R be the function
given by

s(A) =
nX

i,j=1

aij ,

where A = (aij). It is immediately verified that s is a linear form.

Given a vector space E and any basis (ui)i2I for E, we can associate to
each ui a linear form u⇤

i 2 E⇤, and the u⇤
i have some remarkable properties.

Definition 2.28. Given a vector space E and any basis (ui)i2I for E, by
Proposition 2.14, for every i 2 I, there is a unique linear form u⇤

i such that

u⇤
i (uj) =

⇢
1 if i = j
0 if i 6= j,

for every j 2 I. The linear form u⇤
i is called the coordinate form of index i

w.r.t. the basis (ui)i2I .

Remark: Given an index set I, authors often define the so called “Kro-
necker symbol” �i j such that

�i j =

⇢
1 if i = j
0 if i 6= j,

for all i, j 2 I. Then, u⇤
i (uj) = �i j .

The reason for the terminology coordinate form is as follows: If E has
finite dimension and if (u

1

, . . . , un) is a basis of E, for any vector

v = �
1

u
1

+ · · · + �nun,

we have

u⇤
i (v) = u⇤

i (�1u1

+ · · · + �nun)

= �
1

u⇤
i (u1

) + · · · + �iu
⇤
i (ui) + · · · + �nu

⇤
i (un)

= �i,

since u⇤
i (uj) = �i j . Therefore, u⇤

i is the linear function that returns the ith
coordinate of a vector expressed over the basis (u

1

, . . . , un).
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The following theorem shows that in finite-dimension, every basis
(u

1

, . . . , un) of a vector space E yields a basis (u⇤
1

, . . . , u⇤
n) of the dual

space E⇤, called a dual basis.

Theorem 2.3. (Existence of dual bases) Let E be a vector space of dimen-
sion n. The following properties hold: For every basis (u

1

, . . . , un) of E,
the family of coordinate forms (u⇤

1

, . . . , u⇤
n) is a basis of E⇤ (called the dual

basis of (u
1

, . . . , un)).

Proof. (a) If v⇤ 2 E⇤ is any linear form, consider the linear form

f⇤ = v⇤(u
1

)u⇤
1

+ · · · + v⇤(un)u
⇤
n.

Observe that because u⇤
i (uj) = �i j ,

f⇤(ui) = (v⇤(u
1

)u⇤
1

+ · · · + v⇤(un)u
⇤
n)(ui)

= v⇤(u
1

)u⇤
1

(ui) + · · · + v⇤(ui)u
⇤
i (ui) + · · · + v⇤(un)u

⇤
n(ui)

= v⇤(ui),

and so f⇤ and v⇤ agree on the basis (u
1

, . . . , un), which implies that

v⇤ = f⇤ = v⇤(u
1

)u⇤
1

+ · · · + v⇤(un)u
⇤
n.

Therefore, (u⇤
1

, . . . , u⇤
n) spans E⇤. We claim that the covectors u⇤

1

, . . . , u⇤
n

are linearly independent. If not, we have a nontrivial linear dependence

�
1

u⇤
1

+ · · · + �nu
⇤
n = 0,

and if we apply the above linear form to each ui, using a familar computa-
tion, we get

0 = �iu
⇤
i (ui) = �i,

proving that u⇤
1

, . . . , u⇤
n are indeed linearly independent. Therefore,

(u⇤
1

, . . . , u⇤
n) is a basis of E⇤.

In particular, Theorem 2.3 shows a finite-dimensional vector space and
its dual E⇤ have the same dimension.

2.9 Summary

The main concepts and results of this chapter are listed below:

• The notion of a vector space.
• Families of vectors.
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• Linear combinations of vectors; linear dependence and linear indepen-
dence of a family of vectors.

• Linear subspaces.
• Spanning (or generating) family; generators, finitely generated sub-
space; basis of a subspace.

• Every linearly independent family can be extended to a basis (Theorem
2.1).

• A family B of vectors is a basis i↵ it is a maximal linearly independent
family i↵ it is a minimal generating family (Proposition 2.8).

• The replacement lemma (Proposition 2.10).
• Any two bases in a finitely generated vector space E have the same
number of elements ; this is the dimension of E (Theorem 2.2).

• Hyperplanes.
• Every vector has a unique representation over a basis (in terms of its
coordinates).

• Matrices
• Column vectors, row vectors.
• Matrix operations: addition, scalar multiplication, multiplication.
• The vector space Mm,n(K) of m ⇥ n matrices over the field K; The
ring Mn(K) of n ⇥ n matrices over the field K.

• The notion of a linear map.
• The image Im f (or range) of a linear map f .
• The kernel Ker f (or nullspace) of a linear map f .
• The rank rk(f) of a linear map f .
• The image and the kernel of a linear map are subspaces. A linear map
is injective i↵ its kernel is the trivial space (0) (Proposition 2.13).

• The unique homomorphic extension property of linear maps with re-
spect to bases (Proposition 2.14 ).

• The vector space of linear maps HomK(E,F ).
• Linear forms (covectors) and the dual space E⇤.
• Coordinate forms.
• The existence of dual bases (in finite dimension).
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2.10 Problems

Problem 2.1. Let H be the set of 3 ⇥ 3 upper triangular matrices given
by

H =

8
<

:

0

@
1 a b
0 1 c
0 0 1

1

A | a, b, c 2 R

9
=

; .

(1) Prove that H with the binary operation of matrix multiplication
is a group; find explicitly the inverse of every matrix in H. Is H abelian
(commutative)?

(2) Given two groups G
1

and G
2

, recall that a homomorphism if a
function ' : G

1

! G
2

such that

'(ab) = '(a)'(b), a, b 2 G
1

.

Prove that '(e
1

) = e
2

(where ei is the identity element of Gi) and that

'(a�1) = ('(a))�1, a 2 G
1

.

(3) Let S1 be the unit circle, that is

S1 = {ei✓ = cos ✓ + i sin ✓ | 0  ✓ < 2⇡},

and let ' be the function given by

'

0

@
1 a b
0 1 c
0 0 1

1

A = (a, c, eib).

Prove that ' is a surjective function onto G = R ⇥ R ⇥ S1, and that if
we define multiplication on this set by

(x
1

, y
1

, u
1

) · (x
2

, y
2

, u
2

) = (x
1

+ x
2

, y
1

+ y
2

, eix1y2u
1

u
2

),

then G is a group and ' is a group homomorphism from H onto G.
(4) The kernel of a homomorphism ' : G

1

! G
2

is defined as

Ker (') = {a 2 G
1

| '(a) = e
2

}.

Find explicitly the kernel of ' and show that it is a subgroup of H.

Problem 2.2. For any m 2 Z with m > 0, the subset mZ = {mk | k 2 Z}
is an abelian subgroup of Z. Check this.

(1) Give a group isomorphism (an invertible homomorphism) from mZ
to Z.
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(2) Check that the inclusion map i : mZ ! Z given by i(mk) = mk
is a group homomorphism. Prove that if m � 2 then there is no group
homomorphism p : Z ! mZ such that p � i = id.

Remark: The above shows that abelian groups fail to have some of the
properties of vector spaces. We will show later that a linear map satisfying
the condition p � i = id always exists.

Problem 2.3. Let E = R ⇥ R, and define the addition operation

(x
1

, y
1

) + (x
2

, y
2

) = (x
1

+ x
2

, y
1

+ y
2

), x
1

, x
2

, y
1

, y
2

2 R,

and the multiplication operation · : R ⇥ E ! E by

� · (x, y) = (�x, y), �, x, y 2 R.

Show that E with the above operations + and · is not a vector space.
Which of the axioms is violated?

Problem 2.4. (1) Prove that the axioms of vector spaces imply that

↵ · 0 = 0

0 · v = 0

↵ · (�v) = �(↵ · v)
(�↵) · v = �(↵ · v),

for all v 2 E and all ↵ 2 K, where E is a vector space over K.
(2) For every � 2 R and every x = (x

1

, . . . , xn) 2 Rn, define �x by

�x = �(x
1

, . . . , xn) = (�x
1

, . . . ,�xn).

Recall that every vector x = (x
1

, . . . , xn) 2 Rn can be written uniquely as

x = x
1

e
1

+ · · · + xnen,

where ei = (0, . . . , 0, 1, 0, . . . , 0), with a single 1 in position i. For any
operation · : R ⇥ Rn ! Rn, if · satisfies the Axiom (V1) of a vector space,
then prove that for any ↵ 2 R, we have

↵ · x = ↵ · (x
1

e
1

+ · · · + xnen) = ↵ · (x
1

e
1

) + · · · + ↵ · (xnen).

Conclude that · is completely determined by its action on the one-
dimensional subspaces of Rn spanned by e

1

, . . . , en.
(3) Use (2) to define operations · : R⇥Rn ! Rn that satisfy the Axioms

(V1–V3), but for which Axiom V4 fails.
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(4) For any operation · : R ⇥ Rn ! Rn, prove that if · satisfies the
Axioms (V2–V3), then for every rational number r 2 Q and every vector
x 2 Rn, we have

r · x = r(1 · x).

In the above equation, 1 ·x is some vector (y
1

, . . . , yn) 2 Rn not necessarily
equal to x = (x

1

, . . . , xn), and

r(1 · x) = (ry
1

, . . . , ryn),

as in Part (2).
Use (4) to conclude that any operation · : Q ⇥ Rn ! Rn that satisfies

the Axioms (V1–V3) is completely determined by the action of 1 on the
one-dimensional subspaces of Rn spanned by e

1

, . . . , en.

Problem 2.5. Let A
1

be the following matrix:

A
1

=

0

@
2 3 1
1 2 �1

�3 �5 1

1

A .

Prove that the columns ofA
1

are linearly independent. Find the coordinates
of the vector x = (6, 2,�7) over the basis consisting of the column vectors
of A

1

.

Problem 2.6. Let A
2

be the following matrix:

A
2

=

0

BB@

1 2 1 1
2 3 2 3

�1 0 1 �1
�2 �1 3 0

1

CCA .

Express the fourth column of A
2

as a linear combination of the first three
columns of A

2

. Is the vector x = (7, 14,�1, 2) a linear combination of the
columns of A

2

?

Problem 2.7. Let A
3

be the following matrix:

A
3

=

0

@
1 1 1
1 1 2
1 2 3

1

A .

Prove that the columns ofA
1

are linearly independent. Find the coordinates
of the vector x = (6, 9, 14) over the basis consisting of the column vectors
of A

3

.
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Problem 2.8. Let A
4

be the following matrix:

A
4

=

0

BB@

1 2 1 1
2 3 2 3

�1 0 1 �1
�2 �1 4 0

1

CCA .

Prove that the columns ofA
4

are linearly independent. Find the coordinates
of the vector x = (7, 14,�1, 2) over the basis consisting of the column
vectors of A

4

.

Problem 2.9. Consider the following Haar matrix

H =

0

BB@

1 1 1 0
1 1 �1 0
1 �1 0 1
1 �1 0 �1

1

CCA .

Prove that the columns of H are linearly independent.
Hint . Compute the product H>H.

Problem 2.10. Consider the following Hadamard matrix

H
4

=

0

BB@

1 1 1 1
1 �1 1 �1
1 1 �1 �1
1 �1 �1 1

1

CCA .

Prove that the columns of H
4

are linearly independent.
Hint . Compute the product H>

4

H
4

.

Problem 2.11. In solving this problem, do not use determinants.
(1) Let (u

1

, . . . , um) and (v
1

, . . . , vm) be two families of vectors in some
vector space E. Assume that each vi is a linear combination of the ujs, so
that

vi = ai 1u1

+ · · · + aimum, 1  i  m,

and that the matrix A = (ai j) is an upper-triangular matrix, which means
that if 1  j < i  m, then ai j = 0. Prove that if (u

1

, . . . , um) are
linearly independent and if all the diagonal entries of A are nonzero, then
(v

1

, . . . , vm) are also linearly independent.
Hint . Use induction on m.

(2) Let A = (ai j) be an upper-triangular matrix. Prove that if all the
diagonal entries of A are nonzero, then A is invertible and the inverse A�1

of A is also upper-triangular.
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Hint . Use induction on m.
Prove that if A is invertible, then all the diagonal entries of A are

nonzero.
(3) Prove that if the families (u

1

, . . . , um) and (v
1

, . . . , vm) are related
as in (1), then (u

1

, . . . , um) are linearly independent i↵ (v
1

, . . . , vm) are
linearly independent.

Problem 2.12. In solving this problem, do not use determinants. Con-
sider the n ⇥ n matrix

A =

0

BBBBBBBBBB@

1 2 0 0 . . . 0 0
0 1 2 0 . . . 0 0
0 0 1 2 . . . 0 0
...
...
. . .

. . .
. . .

...
...

0 0 . . . 0 1 2 0
0 0 . . . 0 0 1 2
0 0 . . . 0 0 0 1

1

CCCCCCCCCCA

.

(1) Find the solution x = (x
1

, . . . , xn) of the linear system

Ax = b,

for

b =

0

BBB@

b
1

b
2

...
bn

1

CCCA
.

(2) Prove that the matrix A is invertible and find its inverse A�1. Given
that the number of atoms in the universe is estimated to be  1082, compare
the size of the coe�cients the inverse of A to 1082, if n � 300.

(3) Assume b is perturbed by a small amount �b (note that �b is a
vector). Find the new solution of the system

A(x+�x) = b+�b,

where �x is also a vector. In the case where b = (0, . . . , 0, 1), and �b =
(0, . . . , 0, ✏), show that

|(�x)
1

| = 2n�1|✏|.

(where (�x)
1

is the first component of �x).
(4) Prove that (A � I)n = 0.
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Problem 2.13. An n ⇥ n matrix N is nilpotent if there is some integer
r � 1 such that Nr = 0.

(1) Prove that if N is a nilpotent matrix, then the matrix I � N is
invertible and

(I � N)�1 = I +N +N2 + · · · +Nr�1.

(2) Compute the inverse of the following matrix A using (1):

A =

0

BBBB@

1 2 3 4 5
0 1 2 3 4
0 0 1 2 3
0 0 0 1 2
0 0 0 0 1

1

CCCCA
.

Problem 2.14. (1) Let A be an n⇥n matrix. If A is invertible, prove that
for any x 2 Rn, if Ax = 0, then x = 0.

(2) Let A be an m ⇥ n matrix and let B be an n ⇥ m matrix. Prove
that Im � AB is invertible i↵ In � BA is invertible.
Hint . If for all x 2 Rn, Mx = 0 implies that x = 0, then M is invertible.

Problem 2.15. Consider the following n ⇥ n matrix, for n � 3:

B =

0

BBBBBBBBBB@

1 �1 �1 �1 · · · �1 �1
1 �1 1 1 · · · 1 1
1 1 �1 1 · · · 1 1
1 1 1 �1 · · · 1 1
...

...
...

...
...

...
...

1 1 1 1 · · · �1 1
1 1 1 1 · · · 1 �1

1

CCCCCCCCCCA

(1) If we denote the columns of B by b
1

, . . . , bn, prove that

(n � 3)b
1

� (b
2

+ · · · + bn) = 2(n � 2)e
1

b
1

� b
2

= 2(e
1

+ e
2

)

b
1

� b
3

= 2(e
1

+ e
3

)

...
...

b
1

� bn = 2(e
1

+ en),

where e
1

, . . . , en are the canonical basis vectors of Rn.
(2) Prove that B is invertible and that its inverse A = (aij) is given by

a
11

=
(n � 3)

2(n � 2)
, ai1 = � 1

2(n � 2)
2  i  n
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and

aii = � (n � 3)

2(n � 2)
, 2  i  n

aji =
1

2(n � 2)
, 2  i  n, j 6= i.

(3) Show that the n diagonal n ⇥ n matrices Di defined such that the
diagonal entries of Di are equal the entries (from top down) of the ith
column of B form a basis of the space of n⇥n diagonal matrices (matrices
with zeros everywhere except possibly on the diagonal). For example, when
n = 4, we have

D
1

=

0

BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

CCA D
2

=

0

BB@

�1 0 0 0
0 �1 0 0
0 0 1 0
0 0 0 1

1

CCA ,

D
3

=

0

BB@

�1 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 1

1

CCA , D
4

=

0

BB@

�1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 �1

1

CCA .

Problem 2.16. Given any m⇥ n matrix A and any n⇥ p matrix B, if we
denote the columns of A by A1, . . . , An and the rows of B by B

1

, . . . , Bn,
prove that

AB = A1B
1

+ · · · +AnBn.

Problem 2.17. Let f : E ! F be a linear map which is also a bijection (it
is injective and surjective). Prove that the inverse function f�1 : F ! E is
linear.

Problem 2.18. Given two vectors spaces E and F , let (ui)i2I be any basis
of E and let (vi)i2I be any family of vectors in F . Prove that the unique
linear map f : E ! F such that f(ui) = vi for all i 2 I is surjective i↵
(vi)i2I spans F .

Problem 2.19. Let f : E ! F be a linear map with dim(E) = n and
dim(F ) = m. Prove that f has rank 1 i↵ f is represented by an m ⇥ n
matrix of the form

A = uv>

with u a nonzero column vector of dimension m and v a nonzero column
vector of dimension n.
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Problem 2.20. Find a nontrivial linear dependence among the linear forms

'
1

(x, y, z) = 2x�y+3z, '
2

(x, y, z) = 3x�5y+z, '
3

(x, y, z) = 4x�7y+z.

Problem 2.21. Prove that the linear forms

'
1

(x, y, z) = x+2y+z, '
2

(x, y, z) = 2x+3y+3z, '
3

(x, y, z) = 3x+7y+z

are linearly independent. Express the linear form '(x, y, z) = x+ y + z as
a linear combination of '

1

,'
2

,'
3

.
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Chapter 3

Matrices and Linear Maps

In this chapter, all vector spaces are defined over an arbitrary field K. For
the sake of concreteness, the reader may safely assume that K = R.

3.1 Representation of Linear Maps by Matrices

Proposition 2.14 shows that given two vector spaces E and F and a basis
(uj)j2J of E, every linear map f : E ! F is uniquely determined by the
family (f(uj))j2J of the images under f of the vectors in the basis (uj)j2J .

If we also have a basis (vi)i2I of F , then every vector f(uj) can be
written in a unique way as

f(uj) =
X

i2I

ai jvi,

where j 2 J , for a family of scalars (ai j)i2I . Thus, with respect to the
two bases (uj)j2J of E and (vi)i2I of F , the linear map f is completely
determined by a “I ⇥ J-matrix” M(f) = (ai j)i2I, j2J .

Remark: Note that we intentionally assigned the index set J to the basis
(uj)j2J of E, and the index set I to the basis (vi)i2I of F , so that the
rows of the matrix M(f) associated with f : E ! F are indexed by I, and
the columns of the matrix M(f) are indexed by J . Obviously, this causes
a mildly unpleasant reversal. If we had considered the bases (ui)i2I of E
and (vj)j2J of F , we would obtain a J ⇥ I-matrix M(f) = (aj i)j2J, i2I .
No matter what we do, there will be a reversal! We decided to stick to the
bases (uj)j2J of E and (vi)i2I of F , so that we get an I ⇥ J-matrix M(f),
knowing that we may occasionally su↵er from this decision!

When I and J are finite, and say, when |I| = m and |J | = n, the linear
map f is determined by the matrix M(f) whose entries in the j-th column

77
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are the components of the vector f(uj) over the basis (v
1

, . . . , vm), that is,
the matrix

M(f) =

0

BBB@

a
1 1

a
1 2

. . . a
1n

a
2 1

a
2 2

. . . a
2n

...
...

. . .
...

am 1

am 2

. . . amn

1

CCCA

whose entry on Row i and Column j is ai j (1  i  m, 1  j  n).
We will now show that when E and F have finite dimension, linear maps

can be very conveniently represented by matrices, and that composition of
linear maps corresponds to matrix multiplication. We will follow rather
closely an elegant presentation method due to Emil Artin.

Let E and F be two vector spaces, and assume that E has a finite basis
(u

1

, . . . , un) and that F has a finite basis (v
1

, . . . , vm). Recall that we have
shown that every vector x 2 E can be written in a unique way as

x = x
1

u
1

+ · · · + xnun,

and similarly every vector y 2 F can be written in a unique way as

y = y
1

v
1

+ · · · + ymvm.

Let f : E ! F be a linear map between E and F . Then for every x =
x
1

u
1

+ · · · + xnun in E, by linearity, we have

f(x) = x
1

f(u
1

) + · · · + xnf(un).

Let

f(uj) = a
1 jv1 + · · · + amjvm,

or more concisely,

f(uj) =
mX

i=1

ai jvi,

for every j, 1  j  n. This can be expressed by writing the coe�cients
a
1j , a2j , . . . , amj of f(uj) over the basis (v

1

, . . . , vm), as the jth column of
a matrix, as shown below:

f(u
1

) f(u
2

) . . . f(un)

v
1

v
2

...
vm

0

BBB@

a
11

a
12

. . . a
1n

a
21

a
22

. . . a
2n

...
...

. . .
...

am1

am2

. . . amn

1

CCCA
.
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Then substituting the right-hand side of each f(uj) into the expression
for f(x), we get

f(x) = x
1

(
mX

i=1

ai 1vi) + · · · + xn(
mX

i=1

ai nvi),

which, by regrouping terms to obtain a linear combination of the vi, yields

f(x) = (
nX

j=1

a
1 jxj)v1 + · · · + (

nX

j=1

amjxj)vm.

Thus, letting f(x) = y = y
1

v
1

+ · · · + ymvm, we have

yi =
nX

j=1

ai jxj (1)

for all i, 1  i  m.
To make things more concrete, let us treat the case where n = 3 and

m = 2. In this case,

f(u
1

) = a
11

v
1

+ a
21

v
2

f(u
2

) = a
12

v
1

+ a
22

v
2

f(u
3

) = a
13

v
1

+ a
23

v
2

,

which in matrix form is expressed by

f(u
1

) f(u
2

) f(u
3

)

v
1

v
2

✓
a
11

a
12

a
13

a
21

a
22

a
23

◆
,

and for any x = x
1

u
1

+ x
2

u
2

+ x
3

u
3

, we have

f(x) = f(x
1

u
1

+ x
2

u
2

+ x
3

u
3

)

= x
1

f(u
1

) + x
2

f(u
2

) + x
3

f(u
3

)

= x
1

(a
11

v
1

+ a
21

v
2

) + x
2

(a
12

v
1

+ a
22

v
2

) + x
3

(a
13

v
1

+ a
23

v
2

)

= (a
11

x
1

+ a
12

x
2

+ a
13

x
3

)v
1

+ (a
21

x
1

+ a
22

x
2

+ a
23

x
3

)v
2

.

Consequently, since

y = y
1

v
1

+ y
2

v
2

,

we have

y
1

= a
11

x
1

+ a
12

x
2

+ a
13

x
3

y
2

= a
21

x
1

+ a
22

x
2

+ a
23

x
3

.
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This agrees with the matrix equation

✓
y
1

y
2

◆
=

✓
a
11

a
12

a
13

a
21

a
22

a
23

◆0

@
x
1

x
2

x
3

1

A .

We now formalize the representation of linear maps by matrices.

Definition 3.1. Let E and F be two vector spaces, and let (u
1

, . . . , un)
be a basis for E, and (v

1

, . . . , vm) be a basis for F . Each vector x 2 E
expressed in the basis (u

1

, . . . , un) as x = x
1

u
1

+ · · ·+ xnun is represented
by the column matrix

M(x) =

0

B@
x
1

...
xn

1

CA

and similarly for each vector y 2 F expressed in the basis (v
1

, . . . , vm).
Every linear map f : E ! F is represented by the matrix M(f) =

(ai j), where ai j is the i-th component of the vector f(uj) over the basis
(v

1

, . . . , vm), i.e., where

f(uj) =
mX

i=1

ai jvi, for every j, 1  j  n.

The coe�cients a
1j , a2j , . . . , amj of f(uj) over the basis (v

1

, . . . , vm) form
the jth column of the matrix M(f) shown below:

f(u
1

) f(u
2

) . . . f(un)

v
1

v
2

...
vm

0

BBB@

a
11

a
12

. . . a
1n

a
21

a
22

. . . a
2n

...
...

. . .
...

am1

am2

. . . amn

1

CCCA
.

The matrix M(f) associated with the linear map f : E ! F is called the
matrix of f with respect to the bases (u

1

, . . . , un) and (v
1

, . . . , vm). When
E = F and the basis (v

1

, . . . , vm) is identical to the basis (u
1

, . . . , un) of E,
the matrix M(f) associated with f : E ! E (as above) is called the matrix
of f with respect to the basis (u

1

, . . . , un).

Remark: As in the remark after Definition 2.14, there is no reason to
assume that the vectors in the bases (u

1

, . . . , un) and (v
1

, . . . , vm) are or-
dered in any particular way. However, it is often convenient to assume the



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 81

3.1. Representation of Linear Maps by Matrices 81

natural ordering. When this is so, authors sometimes refer to the matrix
M(f) as the matrix of f with respect to the ordered bases (u

1

, . . . , un) and
(v

1

, . . . , vm).
Let us illustrate the representation of a linear map by a matrix in a

concrete situation. Let E be the vector space R[X]
4

of polynomials of
degree at most 4, let F be the vector space R[X]

3

of polynomials of degree
at most 3, and let the linear map be the derivative map d: that is,

d(P +Q) = dP + dQ

d(�P ) = �dP,

with � 2 R. We choose (1, x, x2, x3, x4) as a basis of E and (1, x, x2, x3) as
a basis of F . Then the 4 ⇥ 5 matrix D associated with d is obtained by
expressing the derivative dxi of each basis vector xi for i = 0, 1, 2, 3, 4 over
the basis (1, x, x2, x3). We find

D =

0

BB@

0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4

1

CCA .

If P denotes the polynomial

P = 3x4 � 5x3 + x2 � 7x+ 5,

we have

dP = 12x3 � 15x2 + 2x � 7.

The polynomial P is represented by the vector (5,�7, 1,�5, 3), the poly-
nomial dP is represented by the vector (�7, 2,�15, 12), and we have

0

BB@

0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4

1

CCA

0

BBBB@

5
�7
1

�5
3

1

CCCCA
=

0

BB@

�7
2

�15
12

1

CCA ,

as expected! The kernel (nullspace) of d consists of the polynomials of
degree 0, that is, the constant polynomials. Therefore dim(Ker d) = 1, and
from

dim(E) = dim(Ker d) + dim(Im d)

(see Theorem 5.1), we get dim(Im d) = 4 (since dim(E) = 5).
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For fun, let us figure out the linear map from the vector space R[X]
3

to the vector space R[X]
4

given by integration (finding the primitive, or
anti-derivative) of xi, for i = 0, 1, 2, 3). The 5 ⇥ 4 matrix S representing

R

with respect to the same bases as before is

S =

0

BBBB@

0 0 0 0
1 0 0 0
0 1/2 0 0
0 0 1/3 0
0 0 0 1/4

1

CCCCA
.

We verify that DS = I
4

,

0

BB@

0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4

1

CCA

0

BBBB@

0 0 0 0
1 0 0 0
0 1/2 0 0
0 0 1/3 0
0 0 0 1/4

1

CCCCA
=

0

BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

CCA .

This is to be expected by the fundamental theorem of calculus since the
derivative of an integral returns the function. As we will shortly see, the
above matrix product corresponds to this functional composition. The
equation DS = I

4

shows that S is injective and has D as a left inverse.
However, SD 6= I

5

, and instead

0

BBBB@

0 0 0 0
1 0 0 0
0 1/2 0 0
0 0 1/3 0
0 0 0 1/4

1

CCCCA

0

BB@

0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4

1

CCA =

0

BBBB@

0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

1

CCCCA
,

because constant polynomials (polynomials of degree 0) belong to the kernel
of D.

3.2 Composition of Linear Maps and Matrix Multiplication

Let us now consider how the composition of linear maps is expressed in
terms of bases.

Let E, F , and G, be three vectors spaces with respective bases
(u

1

, . . . , up) for E, (v
1

, . . . , vn) for F , and (w
1

, . . . , wm) for G. Let g : E !
F and f : F ! G be linear maps. As explained earlier, g : E ! F is deter-
mined by the images of the basis vectors uj , and f : F ! G is determined
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by the images of the basis vectors vk. We would like to understand how
f � g : E ! G is determined by the images of the basis vectors uj .

Remark: Note that we are considering linear maps g : E ! F and f : F !
G, instead of f : E ! F and g : F ! G, which yields the composition
f � g : E ! G instead of g � f : E ! G. Our perhaps unusual choice is
motivated by the fact that if f is represented by a matrix M(f) = (ai k) and
g is represented by a matrix M(g) = (bk j), then f �g : E ! G is represented
by the product AB of the matrices A and B. If we had adopted the other
choice where f : E ! F and g : F ! G, then g � f : E ! G would be
represented by the product BA. Personally, we find it easier to remember
the formula for the entry in Row i and Column j of the product of two
matrices when this product is written by AB, rather than BA. Obviously,
this is a matter of taste! We will have to live with our perhaps unorthodox
choice.

Thus, let

f(vk) =
mX

i=1

ai kwi,

for every k, 1  k  n, and let

g(uj) =
nX

k=1

bk jvk,

for every j, 1  j  p; in matrix form, we have

f(v
1

) f(v
2

) . . . f(vn)

w
1

w
2

...
wm

0

BBB@

a
11

a
12

. . . a
1n

a
21

a
22

. . . a
2n

...
...

. . .
...

am1

am2

. . . amn

1

CCCA

and

g(u
1

) g(u
2

) . . . g(up)

v
1

v
2

...
vn

0

BBB@

b
11

b
12

. . . b
1p

b
21

b
22

. . . b
2p

...
...

. . .
...

bn1 bn2 . . . bnp

1

CCCA
.

By previous considerations, for every

x = x
1

u
1

+ · · · + xpup,
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letting g(x) = y = y
1

v
1

+ · · · + ynvn, we have

yk =
pX

j=1

bk jxj (2)

for all k, 1  k  n, and for every

y = y
1

v
1

+ · · · + ynvn,

letting f(y) = z = z
1

w
1

+ · · · + zmwm, we have

zi =
nX

k=1

ai kyk (3)

for all i, 1  i  m. Then if y = g(x) and z = f(y), we have z = f(g(x)),
and in view of (2) and (3), we have

zi =
nX

k=1

ai k(
pX

j=1

bk jxj)

=
nX

k=1

pX

j=1

ai kbk jxj

=
pX

j=1

nX

k=1

ai kbk jxj

=
pX

j=1

(
nX

k=1

ai kbk j)xj .

Thus, defining ci j such that

ci j =
nX

k=1

ai kbk j ,

for 1  i  m, and 1  j  p, we have

zi =
pX

j=1

ci jxj (4)

Identity (4) shows that the composition of linear maps corresponds to
the product of matrices.

Then given a linear map f : E ! F represented by the matrix M(f) =
(ai j) w.r.t. the bases (u

1

, . . . , un) and (v
1

, . . . , vm), by Equation (1),
namely

yi =
nX

j=1

ai jxj 1  i  m,
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and the definition of matrix multiplication, the equation y = f(x) corre-
sponds to the matrix equation M(y) = M(f)M(x), that is,

0

B@
y
1

...
ym

1

CA =

0

B@
a
1 1

. . . a
1n

...
. . .

...
am 1

. . . amn

1

CA

0

B@
x
1

...
xn

1

CA .

Recall that
0

BBB@

a
1 1

a
1 2

. . . a
1n

a
2 1

a
2 2

. . . a
2n

...
...

. . .
...

am 1

am 2

. . . amn

1

CCCA

0

BBB@

x
1

x
2

...
xn

1

CCCA
= x

1

0

BBB@

a
1 1

a
2 1

...
am 1

1

CCCA
+x

2

0

BBB@

a
1 2

a
2 2

...
am 2

1

CCCA
+· · ·+xn

0

BBB@

a
1n

a
2n

...
amn

1

CCCA
.

Sometimes, it is necessary to incorporate the bases (u
1

, . . . , un) and
(v

1

, . . . , vm) in the notation for the matrix M(f) expressing f with respect
to these bases. This turns out to be a messy enterprise!

We propose the following course of action:

Definition 3.2. Write U = (u
1

, . . . , un) and V = (v
1

, . . . , vm) for the bases
of E and F , and denote byMU,V(f) the matrix of f with respect to the bases
U and V. Furthermore, write xU for the coordinates M(x) = (x

1

, . . . , xn)
of x 2 E w.r.t. the basis U and write yV for the coordinates M(y) =
(y

1

, . . . , ym) of y 2 F w.r.t. the basis V . Then

y = f(x)

is expressed in matrix form by

yV = MU,V(f)xU .

When U = V, we abbreviate MU,V(f) as MU (f).

The above notation seems reasonable, but it has the slight disadvantage
that in the expression MU,V(f)xU , the input argument xU which is fed to
the matrix MU,V(f) does not appear next to the subscript U in MU,V(f).
We could have used the notation MV,U (f), and some people do that. But
then, we find a bit confusing that V comes before U when f maps from the
space E with the basis U to the space F with the basis V. So, we prefer to
use the notation MU,V(f).

Be aware that other authors such as Meyer [Meyer (2000)] use the no-
tation [f ]U,V , and others such as Dummit and Foote [Dummit and Foote
(1999)] use the notation MV

U (f), instead of MU,V(f). This gets worse! You
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may find the notation MU
V (f) (as in Lang [Lang (1993)]), or U [f ]V , or other

strange notations.
Definition 3.2 shows that the function which associates to a linear map

f : E ! F the matrix M(f) w.r.t. the bases (u
1

, . . . , un) and (v
1

, . . . , vm)
has the property that matrix multiplication corresponds to composition of
linear maps. This allows us to transfer properties of linear maps to matrices.
Here is an illustration of this technique:

Proposition 3.1. (1) Given any matrices A 2 Mm,n(K), B 2 Mn,p(K),
and C 2 Mp,q(K), we have

(AB)C = A(BC);

that is, matrix multiplication is associative.
(2) Given any matrices A,B 2 Mm,n(K), and C,D 2 Mn,p(K), for all

� 2 K, we have

(A+B)C = AC +BC

A(C +D) = AC +AD

(�A)C = �(AC)

A(�C) = �(AC),

so that matrix multiplication · : Mm,n(K)⇥Mn,p(K) ! Mm,p(K) is bilinear.

Proof. (1) Every m ⇥ n matrix A = (ai j) defines the function fA : Kn !
Km given by

fA(x) = Ax,

for all x 2 Kn. It is immediately verified that fA is linear and that the
matrix M(fA) representing fA over the canonical bases in Kn and Km is
equal to A. Then Formula (4) proves that

M(fA � fB) = M(fA)M(fB) = AB,

so we get

M((fA � fB) � fC) = M(fA � fB)M(fC) = (AB)C

and

M(fA � (fB � fC)) = M(fA)M(fB � fC) = A(BC),

and since composition of functions is associative, we have (fA � fB) � fC =
fA � (fB � fC), which implies that

(AB)C = A(BC).
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(2) It is immediately verified that if f
1

, f
2

2 HomK(E,F ), A,B 2
Mm,n(K), (u

1

, . . . , un) is any basis of E, and (v
1

, . . . , vm) is any basis of
F , then

M(f
1

+ f
2

) = M(f
1

) +M(f
2

)

fA+B = fA + fB .

Then we have

(A+B)C = M(fA+B)M(fC)

= M(fA+B � fC)

= M((fA + fB) � fC))

= M((fA � fC) + (fB � fC))

= M(fA � fC) +M(fB � fC)

= M(fA)M(fC) +M(fB)M(fC)

= AC +BC.

The equation A(C+D) = AC+AD is proven in a similar fashion, and the
last two equations are easily verified. We could also have verified all the
identities by making matrix computations.

Note that Proposition 3.1 implies that the vector space Mn(K) of square
matrices is a (noncommutative) ring with unit In. (It even shows that
Mn(K) is an associative algebra.)

The following proposition states the main properties of the mapping
f 7! M(f) between Hom(E,F ) and Mm,n. In short, it is an isomorphism
of vector spaces.

Proposition 3.2. Given three vector spaces E, F , G, with respec-
tive bases (u

1

, . . . , up), (v
1

, . . . , vn), and (w
1

, . . . , wm), the mapping
M : Hom(E,F ) ! Mn,p that associates the matrix M(g) to a linear map
g : E ! F satisfies the following properties for all x 2 E, all g, h : E ! F ,
and all f : F ! G:

M(g(x)) = M(g)M(x)

M(g + h) = M(g) +M(h)

M(�g) = �M(g)

M(f � g) = M(f)M(g),

where M(x) is the column vector associated with the vector x and M(g(x))
is the column vector associated with g(x), as explained in Definition 3.1.
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Thus, M : Hom(E,F ) ! Mn,p is an isomorphism of vector spaces, and
when p = n and the basis (v

1

, . . . , vn) is identical to the basis (u
1

, . . . , up),
M : Hom(E,E) ! Mn is an isomorphism of rings.

Proof. That M(g(x)) = M(g)M(x) was shown by Definition 3.2 or equiv-
alently by Formula (1). The identities M(g + h) = M(g) + M(h) and
M(�g) = �M(g) are straightforward, and M(f � g) = M(f)M(g) follows
from Identity (4) and the definition of matrix multiplication. The mapping
M : Hom(E,F ) ! Mn,p is clearly injective, and since every matrix defines
a linear map (see Proposition 3.1), it is also surjective, and thus bijective.
In view of the above identities, it is an isomorphism (and similarly for
M : Hom(E,E) ! Mn, where Proposition 3.1 is used to show that Mn is a
ring).

In view of Proposition 3.2, it seems preferable to represent vectors from
a vector space of finite dimension as column vectors rather than row vectors.
Thus, from now on, we will denote vectors of Rn (or more generally, of Kn)
as column vectors.

3.3 Change of Basis Matrix

It is important to observe that the isomorphism M : Hom(E,F ) ! Mn,p

given by Proposition 3.2 depends on the choice of the bases (u
1

, . . . , up)
and (v

1

, . . . , vn), and similarly for the isomorphism M : Hom(E,E) ! Mn,
which depends on the choice of the basis (u

1

, . . . , un). Thus, it would be
useful to know how a change of basis a↵ects the representation of a linear
map f : E ! F as a matrix. The following simple proposition is needed.

Proposition 3.3. Let E be a vector space, and let (u
1

, . . . , un) be a basis
of E. For every family (v

1

, . . . , vn), let P = (ai j) be the matrix defined
such that vj =

Pn
i=1

ai jui. The matrix P is invertible i↵ (v
1

, . . . , vn) is a
basis of E.

Proof. Note that we have P = M(f), the matrix associated with the
unique linear map f : E ! E such that f(ui) = vi. By Proposition 2.14, f
is bijective i↵ (v

1

, . . . , vn) is a basis of E. Furthermore, it is obvious that
the identity matrix In is the matrix associated with the identity id : E ! E
w.r.t. any basis. If f is an isomorphism, then f � f�1 = f�1 � f = id, and
by Proposition 3.2, we get M(f)M(f�1) = M(f�1)M(f) = In, showing
that P is invertible and that M(f�1) = P�1.
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Proposition 3.3 suggests the following definition.

Definition 3.3. Given a vector space E of dimension n, for any two bases
(u

1

, . . . , un) and (v
1

, . . . , vn) of E, let P = (ai j) be the invertible matrix
defined such that

vj =
nX

i=1

ai jui,

which is also the matrix of the identity id : E ! E with respect to the
bases (v

1

, . . . , vn) and (u
1

, . . . , un), in that order . Indeed, we express each
id(vj) = vj over the basis (u

1

, . . . , un). The coe�cients a
1j , a2j , . . . , anj of

vj over the basis (u
1

, . . . , un) form the jth column of the matrix P shown
below:

v
1

v
2

. . . vn

u
1

u
2

...
un

0

BBB@

a
11

a
12

. . . a
1n

a
21

a
22

. . . a
2n

...
...

. . .
...

an1 an2 . . . ann

1

CCCA
.

The matrix P is called the change of basis matrix from (u
1

, . . . , un) to
(v

1

, . . . , vn).

Clearly, the change of basis matrix from (v
1

, . . . , vn) to (u
1

, . . . , un)
is P�1. Since P = (ai j) is the matrix of the identity id : E ! E with
respect to the bases (v

1

, . . . , vn) and (u
1

, . . . , un), given any vector x 2 E,
if x = x

1

u
1

+· · ·+xnun over the basis (u
1

, . . . , un) and x = x0
1

v
1

+· · ·+x0
nvn

over the basis (v
1

, . . . , vn), from Proposition 3.2, we have
0

B@
x
1

...
xn

1

CA =

0

B@
a
1 1

. . . a
1n

...
. . .

...
an 1

. . . ann

1

CA

0

B@
x0
1

...
x0
n

1

CA ,

showing that the old coordinates (xi) of x (over (u
1

, . . . , un)) are expressed
in terms of the new coordinates (x0

i) of x (over (v
1

, . . . , vn)).
Now we face the painful task of assigning a “good” notation incorpo-

rating the bases U = (u
1

, . . . , un) and V = (v
1

, . . . , vn) into the notation
for the change of basis matrix from U to V. Because the change of basis
matrix from U to V is the matrix of the identity map idE with respect to
the bases V and U in that order , we could denote it by MV,U (id) (Meyer
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[Meyer (2000)] uses the notation [I]V,U ). We prefer to use an abbreviation
for MV,U (id).

Definition 3.4. The change of basis matrix from U to V is denoted

PV,U .

Note that

PU,V = P�1

V,U .

Then, if we write xU = (x
1

, . . . , xn) for the old coordinates of x with
respect to the basis U and xV = (x0

1

, . . . , x0
n) for the new coordinates of x

with respect to the basis V, we have

xU = PV,U xV , xV = P�1

V,U xU .

The above may look backward, but remember that the matrix MU,V(f)
takes input expressed over the basis U to output expressed over the basis
V. Consequently, PV,U takes input expressed over the basis V to output
expressed over the basis U , and xU = PV,U xV matches this point of view!� Beware that some authors (such as Artin [Artin (1991)]) define the

change of basis matrix from U to V as PU,V = P�1

V,U . Under this point
of view, the old basis U is expressed in terms of the new basis V. We find
this a bit unnatural. Also, in practice, it seems that the new basis is often
expressed in terms of the old basis, rather than the other way around.

Since the matrix P = PV,U expresses the new basis (v
1

, . . . , vn) in terms
of the old basis (u

1

, . . ., un), we observe that the coordinates (xi) of a vector
x vary in the opposite direction of the change of basis. For this reason,
vectors are sometimes said to be contravariant . However, this expression
does not make sense! Indeed, a vector in an intrinsic quantity that does
not depend on a specific basis. What makes sense is that the coordinates
of a vector vary in a contravariant fashion.

Let us consider some concrete examples of change of bases.

Example 3.1. Let E = F = R2, with u
1

= (1, 0), u
2

= (0, 1), v
1

= (1, 1)
and v

2

= (�1, 1). The change of basis matrix P from the basis U = (u
1

, u
2

)
to the basis V = (v

1

, v
2

) is

P =

✓
1 �1
1 1

◆

and its inverse is

P�1 =

✓
1/2 1/2

�1/2 1/2

◆
.
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The old coordinates (x
1

, x
2

) with respect to (u
1

, u
2

) are expressed in terms
of the new coordinates (x0

1

, x0
2

) with respect to (v
1

, v
2

) by
✓
x
1

x
2

◆
=

✓
1 �1
1 1

◆✓
x0
1

x0
2

◆
,

and the new coordinates (x0
1

, x0
2

) with respect to (v
1

, v
2

) are expressed in
terms of the old coordinates (x

1

, x
2

) with respect to (u
1

, u
2

) by
✓
x0
1

x0
2

◆
=

✓
1/2 1/2

�1/2 1/2

◆✓
x
1

x
2

◆
.

Example 3.2. Let E = F = R[X]
3

be the set of polynomials of de-
gree at most 3, and consider the bases U = (1, x, x2, x3) and V =
(B3

0

(x), B3

1

(x), B3

2

(x), B3

3

(x)), where B3

0

(x), B3

1

(x), B3

2

(x), B3

3

(x) are the
Bernstein polynomials of degree 3, given by

B3

0

(x) = (1 � x)3 B3

1

(x) = 3(1 � x)2x B3

2

(x) = 3(1 � x)x2 B3

3

(x) = x3.

By expanding the Bernstein polynomials, we find that the change of basis
matrix PV,U is given by

PV,U =

0

BB@

1 0 0 0
�3 3 0 0
3 �6 3 0

�1 3 �3 1

1

CCA .

We also find that the inverse of PV,U is

P�1

V,U =

0

BB@

1 0 0 0
1 1/3 0 0
1 2/3 1/3 0
1 1 1 1

1

CCA .

Therefore, the coordinates of the polynomial 2x3 � x + 1 over the basis V
are

0

BB@

1
2/3
1/3
2

1

CCA =

0

BB@

1 0 0 0
1 1/3 0 0
1 2/3 1/3 0
1 1 1 1

1

CCA

0

BB@

1
�1
0
2

1

CCA ,

and so

2x3 � x+ 1 = B3

0

(x) +
2

3
B3

1

(x) +
1

3
B3

2

(x) + 2B3

3

(x).
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3.4 The E↵ect of a Change of Bases on Matrices

The e↵ect of a change of bases on the representation of a linear map is
described in the following proposition.

Proposition 3.4. Let E and F be vector spaces, let U = (u
1

, . . . , un) and
U 0 = (u0

1

, . . . , u0
n) be two bases of E, and let V = (v

1

, . . . , vm) and V 0 =
(v0

1

, . . . , v0m) be two bases of F . Let P = PU 0,U be the change of basis matrix
from U to U 0, and let Q = PV0,V be the change of basis matrix from V to
V 0. For any linear map f : E ! F , let M(f) = MU,V(f) be the matrix
associated to f w.r.t. the bases U and V, and let M 0(f) = MU 0,V0(f) be the
matrix associated to f w.r.t. the bases U 0 and V 0. We have

M 0(f) = Q�1M(f)P,

or more explicitly

MU 0,V0(f) = P�1

V0,VMU,V(f)PU 0,U = PV,V0MU,V(f)PU 0,U .

Proof. Since f : E ! F can be written as f = idF � f � idE , since P is the
matrix of idE w.r.t. the bases (u0

1

, . . . , u0
n) and (u

1

, . . . , un), and Q�1 is the
matrix of idF w.r.t. the bases (v

1

, . . . , vm) and (v0
1

, . . . , v0m), by Proposition
3.2, we have M 0(f) = Q�1M(f)P .

As a corollary, we get the following result.

Corollary 3.1. Let E be a vector space, and let U = (u
1

, . . . , un) and
U 0 = (u0

1

, . . . , u0
n) be two bases of E. Let P = PU 0,U be the change of basis

matrix from U to U 0. For any linear map f : E ! E, let M(f) = MU (f)
be the matrix associated to f w.r.t. the basis U , and let M 0(f) = MU 0(f)
be the matrix associated to f w.r.t. the basis U 0. We have

M 0(f) = P�1M(f)P,

or more explicitly,

MU 0(f) = P�1

U 0,UMU (f)PU 0,U = PU,U 0MU (f)PU 0,U .

Example 3.3. Let E = R2, U = (e
1

, e
2

) where e
1

= (1, 0) and e
2

= (0, 1)
are the canonical basis vectors, let V = (v

1

, v
2

) = (e
1

, e
1

� e
2

), and let

A =

✓
2 1
0 1

◆
.

The change of basis matrix P = PV,U from U to V is

P =

✓
1 1
0 �1

◆
,
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and we check that

P�1 = P.

Therefore, in the basis V, the matrix representing the linear map f defined
by A is

A0 = P�1AP = PAP =

✓
1 1
0 �1

◆✓
2 1
0 1

◆✓
1 1
0 �1

◆
=

✓
2 0
0 1

◆
= D,

a diagonal matrix. In the basis V, it is clear what the action of f is: it is
a stretch by a factor of 2 in the v

1

direction and it is the identity in the v
2

direction. Observe that v
1

and v
2

are not orthogonal.
What happened is that we diagonalized the matrix A. The diagonal

entries 2 and 1 are the eigenvalues of A (and f), and v
1

and v
2

are corre-
sponding eigenvectors. We will come back to eigenvalues and eigenvectors
later on.

The above example showed that the same linear map can be represented
by di↵erent matrices. This suggests making the following definition:

Definition 3.5. Two n ⇥ n matrices A and B are said to be similar i↵
there is some invertible matrix P such that

B = P�1AP.

It is easily checked that similarity is an equivalence relation. From our
previous considerations, two n ⇥ n matrices A and B are similar i↵ they
represent the same linear map with respect to two di↵erent bases. The
following surprising fact can be shown: Every square matrix A is similar to
its transpose A>. The proof requires advanced concepts (the Jordan form
or similarity invariants).

If U = (u
1

, . . . , un) and V = (v
1

, . . . , vn) are two bases of E, the change
of basis matrix

P = PV,U =

0

BBB@

a
11

a
12

· · · a
1n

a
21

a
22

· · · a
2n

...
...

. . .
...

an1 an2 · · · ann

1

CCCA

from (u
1

, . . . , un) to (v
1

, . . . , vn) is the matrix whose jth column consists
of the coordinates of vj over the basis (u

1

, . . . , un), which means that

vj =
nX

i=1

aijui.
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It is natural to extend the matrix notation and to express the vector

0

B@
v
1

...
vn

1

CA

in En as the product of a matrix times the vector

0

B@
u
1

...
un

1

CA in En, namely as

0

BBB@

v
1

v
2

...
vn

1

CCCA
=

0

BBB@

a
11

a
21

· · · an1
a
12

a
22

· · · an2
...

...
. . .

...
a
1n a

2n · · · ann

1

CCCA

0

BBB@

u
1

u
2

...
un

1

CCCA
,

but notice that the matrix involved is not P , but its transpose P>.
This observation has the following consequence: if U = (u

1

, . . . , un) and
V = (v

1

, . . . , vn) are two bases of E and if
0

B@
v
1

...
vn

1

CA = A

0

B@
u
1

...
un

1

CA ,

that is,

vi =
nX

j=1

aijuj ,

for any vector w 2 E, if

w =
nX

i=1

xiui =
nX

k=1

ykvk,

then
0

B@
x
1

...
xn

1

CA = A>

0

B@
y
1

...
yn

1

CA ,

and so
0

B@
y
1

...
yn

1

CA = (A>)�1

0

B@
x
1

...
xn

1

CA .

It is easy to see that (A>)�1 = (A�1)>. Also, if U = (u
1

, . . . , un), V =
(v

1

, . . . , vn), and W = (w
1

, . . . , wn) are three bases of E, and if the change
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of basis matrix from U to V is P = PV,U and the change of basis matrix
from V to W is Q = PW,V , then

0

B@
v
1

...
vn

1

CA = P>

0

B@
u
1

...
un

1

CA ,

0

B@
w

1

...
wn

1

CA = Q>

0

B@
v
1

...
vn

1

CA ,

so
0

B@
w

1

...
wn

1

CA = Q>P>

0

B@
u
1

...
un

1

CA = (PQ)>

0

B@
u
1

...
un

1

CA ,

which means that the change of basis matrix PW,U from U to W is PQ.
This proves that

PW,U = PV,UPW,V .

Even though matrices are indispensable since they are the major tool
in applications of linear algebra, one should not lose track of the fact that

linear maps are more fundamental because
they are intrinsic objects that do not depend
on the choice of bases. Consequently, we

advise the reader to try to think in terms of
linear maps rather than reduce everything

to matrices.

In our experience, this is particularly e↵ective when it comes to proving
results about linear maps and matrices, where proofs involving linear maps
are often more “conceptual.” These proofs are usually more general because
they do not depend on the fact that the dimension is finite. Also, instead
of thinking of a matrix decomposition as a purely algebraic operation, it is
often illuminating to view it as a geometric decomposition. This is the case
of the SVD, which in geometric terms says that every linear map can be
factored as a rotation, followed by a rescaling along orthogonal axes and
then another rotation.

After all,

a matrix is a representation of a linear
map,
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and most decompositions of a matrix reflect the fact that with a suitable
choice of a basis (or bases), the linear map is a represented by a matrix
having a special shape. The problem is then to find such bases.

Still, for the beginner, matrices have a certain irresistible appeal, and we
confess that it takes a certain amount of practice to reach the point where
it becomes more natural to deal with linear maps. We still recommend it!
For example, try to translate a result stated in terms of matrices into a
result stated in terms of linear maps. Whenever we tried this exercise, we
learned something.

Also, always try to keep in mind that

linear maps are geometric in nature; they
act on space.

3.5 Summary

The main concepts and results of this chapter are listed below:

• The representation of linear maps by matrices.
• The matrix representation mapping M : Hom(E,F ) ! Mn,p and the
representation isomorphism (Proposition 3.2).

• Change of basis matrix and Proposition 3.4.

3.6 Problems

Problem 3.1. Prove that the column vectors of the matrix A
1

given by

A
1

=

0

@
1 2 3
2 3 7
1 3 1

1

A

are linearly independent.
Prove that the coordinates of the column vectors of the matrix B

1

over
the basis consisting of the column vectors of A

1

given by

B
1

=

0

@
3 5 1
1 2 1
4 3 �6

1

A

are the columns of the matrix P
1

given by

P
1

=

0

@
�27 �61 �41
9 18 9
4 10 8

1

A .
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Give a nontrivial linear dependence of the columns of P
1

. Check that
B

1

= A
1

P
1

. Is the matrix B
1

invertible?

Problem 3.2. Prove that the column vectors of the matrix A
2

given by

A
2

=

0

BB@

1 1 1 1
1 2 1 3
1 1 2 2
1 1 1 3

1

CCA

are linearly independent.
Prove that the column vectors of the matrix B

2

given by

B
2

=

0

BB@

1 �2 2 �2
0 �3 2 �3
3 �5 5 �4
3 �4 4 �4

1

CCA

are linearly independent.
Prove that the coordinates of the column vectors of the matrix B

2

over
the basis consisting of the column vectors of A

2

are the columns of the
matrix P

2

given by

P
2

=

0

BB@

2 0 1 �1
�3 1 �2 1
1 �2 2 �1
1 �1 1 �1

1

CCA .

Check that A
2

P
2

= B
2

. Prove that

P�1

2

=

0

BB@

�1 �1 �1 1
2 1 1 �2
2 1 2 �3

�1 �1 0 �1

1

CCA .

What are the coordinates over the basis consisting of the column vectors of
B

2

of the vector whose coordinates over the basis consisting of the column
vectors of A

2

are (2,�3, 0, 0)?

Problem 3.3. Consider the polynomials

B2

0

(t) = (1 � t)2 B2

1

(t) = 2(1 � t)t B2

2

(t) = t2

B3

0

(t) = (1 � t)3 B3

1

(t) = 3(1 � t)2t B3

2

(t) = 3(1 � t)t2 B3

3

(t) = t3,

known as the Bernstein polynomials of degree 2 and 3.
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(1) Show that the Bernstein polynomials B2

0

(t), B2

1

(t), B2

2

(t) are ex-
pressed as linear combinations of the basis (1, t, t2) of the vector space
of polynomials of degree at most 2 as follows:

0

@
B2

0

(t)
B2

1

(t)
B2

2

(t)

1

A =

0

@
1 �2 1
0 2 �2
0 0 1

1

A

0

@
1
t
t2

1

A .

Prove that

B2

0

(t) +B2

1

(t) +B2

2

(t) = 1.

(2) Show that the Bernstein polynomials B3

0

(t), B3

1

(t), B3

2

(t), B3

3

(t) are
expressed as linear combinations of the basis (1, t, t2, t3) of the vector space
of polynomials of degree at most 3 as follows:

0

BB@

B3

0

(t)
B3

1

(t)
B3

2

(t)
B3

3

(t)

1

CCA =

0

BB@

1 �3 3 �1
0 3 �6 3
0 0 3 �3
0 0 0 1

1

CCA

0

BB@

1
t
t2

t3

1

CCA .

Prove that

B3

0

(t) +B3

1

(t) +B3

2

(t) +B3

3

(t) = 1.

(3) Prove that the Bernstein polynomials of degree 2 are linearly in-
dependent, and that the Bernstein polynomials of degree 3 are linearly
independent.

Problem 3.4. Recall that the binomial coe�cient
�
m
k

�
is given by

✓
m

k

◆
=

m!

k!(m � k)!
,

with 0  k  m.
For any m � 1, we have the m + 1 Bernstein polynomials of degree m

given by

Bm
k (t) =

✓
m

k

◆
(1 � t)m�ktk, 0  k  m.

(1) Prove that

Bm
k (t) =

mX

j=k

(�1)j�k

✓
m

j

◆✓
j

k

◆
tj . (⇤)

Use the above to prove that Bm
0

(t), . . . , Bm
m(t) are linearly independent.
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(2) Prove that

Bm
0

(t) + · · · +Bm
m(t) = 1.

(3) What can you say about the symmetries of the (m + 1) ⇥ (m + 1)
matrix expressing Bm

0

, . . . , Bm
m in terms of the basis 1, t, . . . , tm?

Prove your claim (beware that in equation (⇤) the coe�cient of tj in Bm
k

is the entry on the (k+1)th row of the (j+1)th column, since 0  k, j  m.
Make appropriate modifications to the indices).

What can you say about the sum of the entries on each row of the above
matrix? What about the sum of the entries on each column?

(4) The purpose of this question is to express the ti in terms of the
Bernstein polynomials Bm

0

(t), . . . , Bm
m(t), with 0  i  m.

First, prove that

ti =
m�iX

j=0

tiBm�i
j (t), 0  i  m.

Then prove that
✓
m

i

◆✓
m � i

j

◆
=

✓
m

i+ j

◆✓
i+ j

i

◆
.

Use the above facts to prove that

ti =
m�iX

j=0

�
i+j
i

�
�
m
i

� Bm
i+j(t).

Conclude that the Bernstein polynomials Bm
0

(t), . . . , Bm
m(t) form a basis

of the vector space of polynomials of degree  m.
Compute the matrix expressing 1, t, t2 in terms of B2

0

(t), B2

1

(t), B2

2

(t),
and the matrix expressing 1, t, t2, t3 in terms of B3

0

(t), B3

1

(t), B3

2

(t), B3

3

(t).
You should find

0

@
1 1 1
0 1/2 1
0 0 1

1

A

and
0

BB@

1 1 1 1
0 1/3 2/3 1
0 0 1/3 1
0 0 0 1

1

CCA .
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(5) A polynomial curve C(t) of degree m in the plane is the set of points

C(t) =

✓
x(t)
y(t)

◆
given by two polynomials of degree  m,

x(t) = ↵
0

tm1 + ↵
1

tm1�1 + · · · + ↵m1

y(t) = �
0

tm2 + �
1

tm2�1 + · · · + �m2 ,

with 1  m
1

,m
2

 m and ↵
0

,�
0

6= 0.
Prove that there exist m+ 1 points b

0

, . . . , bm 2 R2 so that

C(t) =

✓
x(t)
y(t)

◆
= Bm

0

(t)b
0

+Bm
1

(t)b
1

+ · · · +Bm
m(t)bm

for all t 2 R, with C(0) = b
0

and C(1) = bm. Are the points b
1

, . . . , bm�1

generally on the curve?
We say that the curve C is a Bézier curve and (b

0

, . . . , bm) is the list of
control points of the curve (control points need not be distinct).

Remark: Because Bm
0

(t) + · · · + Bm
m(t) = 1 and Bm

i (t) � 0 when t 2
[0, 1], the curve segment C[0, 1] corresponding to t 2 [0, 1] belongs to the
convex hull of the control points. This is an important property of Bézier
curves which is used in geometric modeling to find the intersection of curve
segments. Bézier curves play an important role in computer graphics and
geometric modeling, but also in robotics because they can be used to model
the trajectories of moving objects.

Problem 3.5. Consider the n ⇥ n matrix

A =

0

BBBBBBBBB@

0 0 0 · · · 0 �an
1 0 0 · · · 0 �an�1

0 1 0 · · · 0 �an�2

...
. . .

. . .
. . .

...
...

0 0 0
. . . 0 �a

2

0 0 0 · · · 1 �a
1

1

CCCCCCCCCA

,

with an 6= 0.
(1) Find a matrix P such that

A> = P�1AP.

What happens when an = 0?
Hint . First, try n = 3, 4, 5. Such a matrix must have zeros above the
“antidiagonal,” and identical entries pij for all i, j � 0 such that i+j = n+k,
where k = 1, . . . , n.

(2) Prove that if an = 1 and if a
1

, . . . , an�1

are integers, then P can be
chosen so that the entries in P�1 are also integers.
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Problem 3.6. For any matrix A 2 Mn(C), let RA and LA be the maps
from Mn(C) to itself defined so that

LA(B) = AB, RA(B) = BA, for all B 2 Mn(C).

(1) Check that LA and RA are linear, and that LA and RB commute
for all A,B.

Let ad
A

: Mn(C) ! Mn(C) be the linear map given by

adA(B) = LA(B) � RA(B) = AB � BA = [A,B], for all B 2 Mn(C).

Note that [A,B] is the Lie bracket.
(2) Prove that if A is invertible, then LA and RA are invertible; in fact,

(LA)�1 = LA�1 and (RA)�1 = RA�1 . Prove that if A = PBP�1 for some
invertible matrix P , then

LA = LP � LB � L�1

P , RA = R�1

P � RB � RP .

(3) Recall that the n2 matrices Eij defined such that all entries in Eij

are zero except the (i, j)th entry, which is equal to 1, form a basis of the
vector space Mn(C). Consider the partial ordering of the Eij defined such
that for i = 1, . . . , n, if n � j > k � 1, then then Eij precedes Eik, and for
j = 1, . . . , n, if 1  i < h  n, then Eij precedes Ehj .

Draw the Hasse diagram of the partial order defined above when n = 3.
There are total orderings extending this partial ordering. How would

you find them algorithmically? Check that the following is such a total
order:

(1, 3), (1, 2), (1, 1), (2, 3), (2, 2), (2, 1), (3, 3), (3, 2), (3, 1).

(4) Let the total order of the basis (Eij) extending the partial ordering
defined in (2) be given by

(i, j) < (h, k) i↵

⇢
i = h and j > k
or i < h.

Let R be the n ⇥ n permutation matrix given by

R =

0

BBBBB@

0 0 . . . 0 1
0 0 . . . 1 0
...
...
. . .

...
...

0 1 . . . 0 0
1 0 . . . 0 0

1

CCCCCA
.

Observe that R�1 = R. Prove that for any n � 1, the matrix of LA is given
by A ⌦ In, and the matrix of RA is given by In ⌦ RA>R (over the basis
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(Eij) ordered as specified above), where ⌦ is the Kronecker product (also
called tensor product) of matrices defined in Definition 4.4.
Hint . Figure out what are RB(Eij) = EijB and LB(Eij) = BEij .

(5) Prove that if A is upper triangular, then the matrices representing
LA and RA are also upper triangular.

Note that if instead of the ordering

E
1n, E1n�1

, . . . , E
11

, E
2n, . . . , E21

, . . . , Enn, . . . , En1,

that I proposed you use the standard lexicographic ordering

E
11

, E
12

, . . . , E
1n, E21

, . . . , E
2n, . . . , En1, . . . , Enn,

then the matrix representing LA is still A⌦In, but the matrix representing
RA is In ⌦A>. In this case, if A is upper-triangular, then the matrix of RA

is lower triangular . This is the motivation for using the first basis (avoid
upper becoming lower).
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Chapter 4

Haar Bases, Haar Wavelets,
Hadamard Matrices

In this chapter, we discuss two types of matrices that have applications in
computer science and engineering:

(1) Haar matrices and the corresponding Haar wavelets, a fundamental tool
in signal processing and computer graphics.

2) Hadamard matrices which have applications in error correcting codes,
signal processing, and low rank approximation.

4.1 Introduction to Signal Compression Using Haar
Wavelets

We begin by considering Haar wavelets in R4. Wavelets play an important
role in audio and video signal processing, especially for compressing long
signals into much smaller ones that still retain enough information so that
when they are played, we can’t see or hear any di↵erence.

Consider the four vectors w
1

, w
2

, w
3

, w
4

given by

w
1

=

0

BB@

1
1
1
1

1

CCA w
2

=

0

BB@

1
1

�1
�1

1

CCA w
3

=

0

BB@

1
�1
0
0

1

CCA w
4

=

0

BB@

0
0
1

�1

1

CCA .

Note that these vectors are pairwise orthogonal, so they are indeed linearly
independent (we will see this in a later chapter). Let W = {w

1

, w
2

, w
3

, w
4

}
be the Haar basis, and let U = {e

1

, e
2

, e
3

, e
4

} be the canonical basis of R4.
The change of basis matrix W = PW,U from U to W is given by

W =

0

BB@

1 1 1 0
1 1 �1 0
1 �1 0 1
1 �1 0 �1

1

CCA ,

103
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and we easily find that the inverse of W is given by

W�1 =

0

BB@

1/4 0 0 0
0 1/4 0 0
0 0 1/2 0
0 0 0 1/2

1

CCA

0

BB@

1 1 1 1
1 1 �1 �1
1 �1 0 0
0 0 1 �1

1

CCA .

So the vector v = (6, 4, 5, 1) over the basis U becomes c = (c
1

, c
2

, c
3

, c
4

)
over the Haar basis W, with

0

BB@

c
1

c
2

c
3

c
4

1

CCA =

0

BB@

1/4 0 0 0
0 1/4 0 0
0 0 1/2 0
0 0 0 1/2

1

CCA

0

BB@

1 1 1 1
1 1 �1 �1
1 �1 0 0
0 0 1 �1

1

CCA

0

BB@

6
4
5
1

1

CCA =

0

BB@

4
1
1
2

1

CCA .

Given a signal v = (v
1

, v
2

, v
3

, v
4

), we first transform v into its coe�cients
c = (c

1

, c
2

, c
3

, c
4

) over the Haar basis by computing c = W�1v. Observe
that

c
1

=
v
1

+ v
2

+ v
3

+ v
4

4

is the overall average value of the signal v. The coe�cient c
1

corresponds
to the background of the image (or of the sound). Then, c

2

gives the coarse
details of v, whereas, c

3

gives the details in the first part of v, and c
4

gives
the details in the second half of v.

Reconstruction of the signal consists in computing v = Wc. The trick
for good compression is to throw away some of the coe�cients of c (set
them to zero), obtaining a compressed signal bc, and still retain enough
crucial information so that the reconstructed signal bv = Wbc looks almost
as good as the original signal v. Thus, the steps are:

inputv �! coe�cientsc = W�1v �! compressedbc �! compressedbv = Wbc.

This kind of compression scheme makes modern video conferencing pos-
sible.

It turns out that there is a faster way to find c = W�1v, without actually
using W�1. This has to do with the multiscale nature of Haar wavelets.

Given the original signal v = (6, 4, 5, 1) shown in Figure 4.1, we compute
averages and half di↵erences obtaining Figure 4.2. We get the coe�cients
c
3

= 1 and c
4

= 2. Then again we compute averages and half di↵erences
obtaining Figure 4.3. We get the coe�cients c

1

= 4 and c
2

= 1. Note that
the original signal v can be reconstructed from the two signals in Figure
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v = 61 v = 42
v = 53

v = 14

Fig. 4.1 The original signal v.

v  +  v  1

5

2

5

2

3 3

v  +  v  

2
3 4

c  =  v  - v 
3 1 2

2

1 2
2

- v - v

1 =

2
- v - v3 4

2
v - v3 42 = c =

4

Fig. 4.2 First averages and first half di↵erences.

4.2, and the signal on the left of Figure 4.2 can be reconstructed from the
two signals in Figure 4.3. In particular, the data from Figure 4.2 gives us

5 + 1 =
v
1

+ v
2

2
+

v
1

� v
2

2
= v

1

5 � 1 =
v
1

+ v
2

2
� v

1

� v
2

2
= v

2

3 + 2 =
v
3

+ v
4

2
+

v
3

� v
4

2
= v

3

3 � 2 =
v
3

+ v
4

2
� v

3

� v
4

2
= v

4

.

4.2 Haar Bases and Haar Matrices, Scaling Properties of
Haar Wavelets

The method discussed in Section 4.2 can be generalized to signals of any
length 2n. The previous case corresponds to n = 2. Let us consider the
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4 4 4 4

1

1 2 3 4

4

v + v + v + v
c =

1

1 1

− 1 − 1

v + v - v - v1 2 3 4

4
c = 

2

Fig. 4.3 Second averages and second half di↵erences.

case n = 3. The Haar basis (w
1

, w
2

, w
3

, w
4

, w
5

, w
6

, w
7

, w
8

) is given by the
matrix

W =

0

BBBBBBBBBBB@

1 1 1 0 1 0 0 0
1 1 1 0 �1 0 0 0
1 1 �1 0 0 1 0 0
1 1 �1 0 0 �1 0 0
1 �1 0 1 0 0 1 0
1 �1 0 1 0 0 �1 0
1 �1 0 �1 0 0 0 1
1 �1 0 �1 0 0 0 �1

1

CCCCCCCCCCCA

.

The columns of this matrix are orthogonal, and it is easy to see that

W�1 = diag(1/8, 1/8, 1/4, 1/4, 1/2, 1/2, 1/2, 1/2)W>.

A pattern is beginning to emerge. It looks like the second Haar basis vector
w

2

is the “mother” of all the other basis vectors, except the first, whose
purpose is to perform averaging. Indeed, in general, given

w
2

= (1, . . . , 1,�1, . . . ,�1)| {z }
2

n

,

the other Haar basis vectors are obtained by a “scaling and shifting pro-
cess.” Starting from w

2

, the scaling process generates the vectors

w
3

, w
5

, w
9

, . . . , w
2

j
+1

, . . . , w
2

n�1
+1

,

such that w
2

j+1
+1

is obtained from w
2

j
+1

by forming two consecutive blocks
of 1 and �1 of half the size of the blocks in w

2

j
+1

, and setting all other
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entries to zero. Observe that w
2

j
+1

has 2j blocks of 2n�j elements. The
shifting process consists in shifting the blocks of 1 and �1 in w

2

j
+1

to
the right by inserting a block of (k � 1)2n�j zeros from the left, with
0  j  n � 1 and 1  k  2j . Note that our convention is to use
j as the scaling index and k as the shifting index. Thus, we obtain the
following formula for w

2

j
+k:

w
2

j
+k(i) =

8
>>>><

>>>>:

0 1  i  (k � 1)2n�j

1 (k � 1)2n�j + 1  i  (k � 1)2n�j + 2n�j�1

�1 (k � 1)2n�j + 2n�j�1 + 1  i  k2n�j

0 k2n�j + 1  i  2n,

with 0  j  n � 1 and 1  k  2j . Of course

w
1

= (1, . . . , 1)| {z }
2

n

.

The above formulae look a little better if we change our indexing slightly
by letting k vary from 0 to 2j � 1, and using the index j instead of 2j .

Definition 4.1. The vectors of the Haar basis of dimension 2n are denoted
by

w
1

, h0

0

, h1

0

, h1

1

, h2

0

, h2

1

, h2

2

, h2

3

, . . . , hj
k, . . . , h

n�1

2

n�1�1

,

where

hj
k(i) =

8
>>>><

>>>>:

0 1  i  k2n�j

1 k2n�j + 1  i  k2n�j + 2n�j�1

�1 k2n�j + 2n�j�1 + 1  i  (k + 1)2n�j

0 (k + 1)2n�j + 1  i  2n,

with 0  j  n� 1 and 0  k  2j � 1. The 2n ⇥ 2n matrix whose columns
are the vectors

w
1

, h0

0

, h1

0

, h1

1

, h2

0

, h2

1

, h2

2

, h2

3

, . . . , hj
k, . . . , h

n�1

2

n�1�1

,

(in that order), is called the Haar matrix of dimension 2n, and is denoted
by Wn.

It turns out that there is a way to understand these formulae better if
we interpret a vector u = (u

1

, . . . , um) as a piecewise linear function over
the interval [0, 1).

Definition 4.2. Given a vector u = (u
1

, . . . , um), the piecewise linear func-
tion plf(u) is defined such that

plf(u)(x) = ui,
i � 1

m
 x <

i

m
, 1  i  m.
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In words, the function plf(u) has the value u
1

on the interval [0, 1/m),
the value u

2

on [1/m, 2/m), etc., and the value um on the interval [(m �
1)/m, 1).

For example, the piecewise linear function associated with the vector

u = (2.4, 2.2, 2.15, 2.05, 6.8, 2.8,�1.1,�1.3)

is shown in Figure 4.4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1

0

1

2

3

4

5

6

7

Fig. 4.4 The piecewise linear function plf(u).

Then each basis vector hj
k corresponds to the function

 j
k = plf(hj

k).

In particular, for all n, the Haar basis vectors

h0

0

= w
2

= (1, . . . , 1,�1, . . . ,�1)| {z }
2

n

yield the same piecewise linear function  given by

 (x) =

8
>><

>>:

1 if 0  x < 1/2

�1 if 1/2  x < 1

0 otherwise,

whose graph is shown in Figure 4.5. It is easy to see that  j
k is given by

the simple expression

 j
k(x) =  (2jx � k), 0  j  n � 1, 0  k  2j � 1.

The above formula makes it clear that  j
k is obtained from  by scaling

and shifting.

Definition 4.3. The function �0
0

= plf(w
1

) is the piecewise linear function
with the constant value 1 on [0, 1), and the functions  j

k = plf(hj
k) together

with �0
0

are known as the Haar wavelets.
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1

1

�1

0

Fig. 4.5 The Haar wavelet  .

Rather than using W�1 to convert a vector u to a vector c of coe�cients
over the Haar basis, and the matrix W to reconstruct the vector u from
its Haar coe�cients c, we can use faster algorithms that use averaging and
di↵erencing.

If c is a vector of Haar coe�cients of dimension 2n, we compute the
sequence of vectors u0, u1, . . ., un as follows:

u0 = c

uj+1 = uj

uj+1(2i � 1) = uj(i) + uj(2j + i)

uj+1(2i) = uj(i) � uj(2j + i),

for j = 0, . . . , n � 1 and i = 1, . . . , 2j . The reconstructed vector (signal) is
u = un.

If u is a vector of dimension 2n, we compute the sequence of vectors
cn, cn�1, . . . , c0 as follows:

cn = u

cj = cj+1

cj(i) = (cj+1(2i � 1) + cj+1(2i))/2

cj(2j + i) = (cj+1(2i � 1) � cj+1(2i))/2,

for j = n � 1, . . . , 0 and i = 1, . . . , 2j . The vector over the Haar basis is
c = c0.

We leave it as an exercise to implement the above programs in Matlab

using two variables u and c, and by building iteratively 2j . Here is an
example of the conversion of a vector to its Haar coe�cients for n = 3.
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Given the sequence u = (31, 29, 23, 17,�6,�8,�2,�4), we get the se-
quence

c3 = (31, 29, 23, 17,�6,�8,�2,�4)

c2 =

✓
31 + 29

2
,
23 + 17

2
,
�6 � 8

2
,
�2 � 4

2
,
31 � 29

2
,
23 � 17

2
,
�6 � (�8)

2
,

�2 � (�4)

2

◆

= (30, 20,�7,�3, 1, 3, 1, 1)

c1 =

✓
30 + 20

2
,
�7 � 3

2
,
30 � 20

2
,
�7 � (�3)

2
, 1, 3, 1, 1

◆

= (25,�5, 5,�2, 1, 3, 1, 1)

c0 =

✓
25 � 5

2
,
25 � (�5)

2
, 5,�2, 1, 3, 1, 1

◆

= (10, 15, 5,�2, 1, 3, 1, 1)

so c = (10, 15, 5,�2, 1, 3, 1, 1). Conversely, given c = (10, 15, 5,�2,
1, 3, 1, 1), we get the sequence

u0 = (10, 15, 5,�2, 1, 3, 1, 1)

u1 = (10 + 15, 10 � 15, 5,�2, 1, 3, 1, 1) = (25,�5, 5,�2, 1, 3, 1, 1)

u2 = (25 + 5, 25 � 5,�5 + (�2),�5 � (�2), 1, 3, 1, 1)

= (30, 20,�7,�3, 1, 3, 1, 1)

u3 = (30 + 1, 30 � 1, 20 + 3, 20 � 3,�7 + 1,�7 � 1,�3 + 1,�3 � 1)

= (31, 29, 23, 17,�6,�8,�2,�4),

which gives back u = (31, 29, 23, 17,�6,�8,�2,�4).

4.3 Kronecker Product Construction of Haar Matrices

There is another recursive method for constructing the Haar matrix Wn

of dimension 2n that makes it clearer why the columns of Wn are pairwise
orthogonal, and why the above algorithms are indeed correct (which nobody
seems to prove!). If we splitWn into two 2n⇥2n�1 matrices, then the second
matrix containing the last 2n�1 columns of Wn has a very simple structure:
it consists of the vector

(1,�1, 0, . . . , 0)| {z }
2

n
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and 2n�1 � 1 shifted copies of it, as illustrated below for n = 3:
0

BBBBBBBBBBB@

1 0 0 0
�1 0 0 0
0 1 0 0
0 �1 0 0
0 0 1 0
0 0 �1 0
0 0 0 1
0 0 0 �1

1

CCCCCCCCCCCA

.

Observe that this matrix can be obtained from the identity matrix I
2

n�1 ,
in our example

I
4

=

0

BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

CCA ,

by forming the 2n⇥2n�1 matrix obtained by replacing each 1 by the column
vector

✓
1

�1

◆

and each zero by the column vector
✓
0
0

◆
.

Now the first half of Wn, that is the matrix consisting of the first 2n�1

columns of Wn, can be obtained from Wn�1

by forming the 2n ⇥ 2n�1

matrix obtained by replacing each 1 by the column vector
✓
1
1

◆
,

each �1 by the column vector
✓

�1
�1

◆
,

and each zero by the column vector
✓
0
0

◆
.
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For n = 3, the first half of W
3

is the matrix
0

BBBBBBBBBBB@

1 1 1 0
1 1 1 0
1 1 �1 0
1 1 �1 0
1 �1 0 1
1 �1 0 1
1 �1 0 �1
1 �1 0 �1

1

CCCCCCCCCCCA

which is indeed obtained from

W
2

=

0

BB@

1 1 1 0
1 1 �1 0
1 �1 0 1
1 �1 0 �1

1

CCA

using the process that we just described.
These matrix manipulations can be described conveniently using a prod-

uct operation on matrices known as the Kronecker product.

Definition 4.4. Given a m ⇥ n matrix A = (aij) and a p ⇥ q matrix
B = (bij), the Kronecker product (or tensor product) A ⌦ B of A and B is
the mp ⇥ nq matrix

A ⌦ B =

0

BBB@

a
11

B a
12

B · · · a
1nB

a
21

B a
22

B · · · a
2nB

...
...

. . .
...

am1

B am2

B · · · amnB

1

CCCA
.

It can be shown that ⌦ is associative and that

(A ⌦ B)(C ⌦ D) = AC ⌦ BD

(A ⌦ B)> = A> ⌦ B>,

whenever AC and BD are well defined. Then it is immediately verified
that Wn is given by the following neat recursive equations:

Wn =

✓
Wn�1

⌦
✓
1
1

◆
I
2

n�1 ⌦
✓

1
�1

◆◆
,

with W
0

= (1). If we let

B
1

= 2

✓
1 0
0 1

◆
=

✓
2 0
0 2

◆
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and for n � 1,

Bn+1

= 2

✓
Bn 0
0 I

2

n

◆
,

then it is not hard to use the Kronecker product formulation of Wn to
obtain a rigorous proof of the equation

W>
n Wn = Bn, for all n � 1.

The above equation o↵ers a clean justification of the fact that the columns
of Wn are pairwise orthogonal.

Observe that the right block (of size 2n ⇥ 2n�1) shows clearly how the
detail coe�cients in the second half of the vector c are added and subtracted
to the entries in the first half of the partially reconstructed vector after n�1
steps.

4.4 Multiresolution Signal Analysis with Haar Bases

An important and attractive feature of the Haar basis is that it pro-
vides a multiresolution analysis of a signal. Indeed, given a signal u, if
c = (c

1

, . . . , c
2

n) is the vector of its Haar coe�cients, the coe�cients with
low index give coarse information about u, and the coe�cients with high
index represent fine information. For example, if u is an audio signal cor-
responding to a Mozart concerto played by an orchestra, c

1

corresponds to
the “background noise,” c

2

to the bass, c
3

to the first cello, c
4

to the second
cello, c

5

, c
6

, c
7

, c
7

to the violas, then the violins, etc. This multiresolution
feature of wavelets can be exploited to compress a signal, that is, to use
fewer coe�cients to represent it. Here is an example.

Consider the signal

u = (2.4, 2.2, 2.15, 2.05, 6.8, 2.8,�1.1,�1.3),

whose Haar transform is

c = (2, 0.2, 0.1, 3, 0.1, 0.05, 2, 0.1).

The piecewise-linear curves corresponding to u and c are shown in Figure
4.6. Since some of the coe�cients in c are small (smaller than or equal to
0.2) we can compress c by replacing them by 0. We get

c
2

= (2, 0, 0, 3, 0, 0, 2, 0),

and the reconstructed signal is

u
2

= (2, 2, 2, 2, 7, 3,�1,�1).
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Fig. 4.6 A signal and its Haar transform.

The piecewise-linear curves corresponding to u
2

and c
2

are shown in Figure
4.7.

An interesting (and amusing) application of the Haar wavelets is to the
compression of audio signals. It turns out that if your type load handel in
Matlab an audio file will be loaded in a vector denoted by y, and if you type
sound(y), the computer will play this piece of music. You can convert y to
its vector of Haar coe�cients c. The length of y is 73113, so first tuncate
the tail of y to get a vector of length 65536 = 216. A plot of the signals
corresponding to y and c is shown in Figure 4.8. Then run a program that
sets all coe�cients of c whose absolute value is less that 0.05 to zero. This
sets 37272 coe�cients to 0. The resulting vector c

2

is converted to a signal
y
2

. A plot of the signals corresponding to y
2

and c
2

is shown in Figure 4.9.
When you type sound(y2), you find that the music doesn’t di↵er much
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Fig. 4.7 A compressed signal and its compressed Haar transform.

from the original, although it sounds less crisp. You should play with other
numbers greater than or less than 0.05. You should hear what happens
when you type sound(c). It plays the music corresponding to the Haar
transform c of y, and it is quite funny.

4.5 Haar Transform for Digital Images

Another neat property of the Haar transform is that it can be instantly
generalized to matrices (even rectangular) without any extra e↵ort! This
allows for the compression of digital images. But first we address the issue
of normalization of the Haar coe�cients. As we observed earlier, the 2n⇥2n

matrix Wn of Haar basis vectors has orthogonal columns, but its columns
do not have unit length. As a consequence, W>

n is not the inverse of Wn,
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Fig. 4.8 The signal “handel” and its Haar transform.

but rather the matrix

W�1

n = DnW
>
n

with

Dn = diag
⇣
2�n, 2�n

|{z}
2

0

, 2�(n�1), 2�(n�1)

| {z }
2

1

, 2�(n�2), . . . , 2�(n�2)

| {z }
2

2

, . . . ,

2�1, . . . , 2�1

| {z }
2

n�1

⌘
.

Definition 4.5. The orthogonal matrix

Hn = WnD
1
2
n
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Fig. 4.9 The compressed signal “handel” and its Haar transform.

whose columns are the normalized Haar basis vectors, with

D
1
2
n = diag

⇣
2�

n
2 , 2�

n
2|{z}

2

0

, 2�
n�1
2 , 2�

n�1
2

| {z }
2

1

, 2�
n�2
2 , . . . , 2�

n�2
2

| {z }
2

2

, . . . , 2�
1
2 , . . . , 2�

1
2

| {z }
2

n�1

⌘

is called the normalized Haar transform matrix. Given a vector (signal) u,
we call c = H>

n u the normalized Haar coe�cients of u.

Because Hn is orthogonal, H�1

n = H>
n .

Then a moment of reflection shows that we have to slightly modify the
algorithms to compute H>

n u and Hnc as follows: When computing the
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sequence of ujs, use

uj+1(2i � 1) = (uj(i) + uj(2j + i))/
p
2

uj+1(2i) = (uj(i) � uj(2j + i))/
p
2,

and when computing the sequence of cjs, use

cj(i) = (cj+1(2i � 1) + cj+1(2i))/
p
2

cj(2j + i) = (cj+1(2i � 1) � cj+1(2i))/
p
2.

Note that things are now more symmetric, at the expense of a division
by

p
2. However, for long vectors, it turns out that these algorithms are

numerically more stable.

Remark: Some authors (for example, Stollnitz, Derose and Salesin [Stoll-
nitz et al. (1996)]) rescale c by 1/

p
2n and u by

p
2n. This is because the

norm of the basis functions  j
k is not equal to 1 (under the inner product

hf, gi =
R
1

0

f(t)g(t)dt). The normalized basis functions are the functionsp
2j j

k.
Let us now explain the 2D version of the Haar transform. We describe

the version using the matrix Wn, the method using Hn being identical
(except that H�1

n = H>
n , but this does not hold for W�1

n ). Given a 2m⇥2n

matrix A, we can first convert the rows of A to their Haar coe�cients using
the Haar transform W�1

n , obtaining a matrix B, and then convert the
columns of B to their Haar coe�cients, using the matrix W�1

m . Because
columns and rows are exchanged in the first step,

B = A(W�1

n )>,

and in the second step C = W�1

m B, thus, we have

C = W�1

m A(W�1

n )> = DmW>
mAWn Dn.

In the other direction, given a 2m ⇥ 2n matrix C of Haar coe�cients, we
reconstruct the matrix A (the image) by first applying Wm to the columns
of C, obtaining B, and then W>

n to the rows of B. Therefore

A = WmCW>
n .

Of course, we don’t actually have to invert Wm and Wn and perform matrix
multiplications. We just have to use our algorithms using averaging and
di↵erencing. Here is an example.
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If the data matrix (the image) is the 8 ⇥ 8 matrix

A =

0

BBBBBBBBBBB@

64 2 3 61 60 6 7 57
9 55 54 12 13 51 50 16
17 47 46 20 21 43 42 24
40 26 27 37 36 30 31 33
32 34 35 29 28 38 39 25
41 23 22 44 45 19 18 48
49 15 14 52 53 11 10 56
8 58 59 5 4 62 63 1

1

CCCCCCCCCCCA

,

then applying our algorithms, we find that

C =

0

BBBBBBBBBBB@

32.5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 4 �4 4 �4
0 0 0 0 4 �4 4 �4
0 0 0.5 0.5 27 �25 23 �21
0 0 �0.5 �0.5 �11 9 �7 5
0 0 0.5 0.5 �5 7 �9 11
0 0 �0.5 �0.5 21 �23 25 �27

1

CCCCCCCCCCCA

.

As we can see, C has more zero entries than A; it is a compressed version of
A. We can further compress C by setting to 0 all entries of absolute value
at most 0.5. Then we get

C
2

=

0

BBBBBBBBBBB@

32.5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 4 �4 4 �4
0 0 0 0 4 �4 4 �4
0 0 0 0 27 �25 23 �21
0 0 0 0 �11 9 �7 5
0 0 0 0 �5 7 �9 11
0 0 0 0 21 �23 25 �27

1

CCCCCCCCCCCA

.

We find that the reconstructed image is

A
2

=

0

BBBBBBBBBBB@

63.5 1.5 3.5 61.5 59.5 5.5 7.5 57.5
9.5 55.5 53.5 11.5 13.5 51.5 49.5 15.5
17.5 47.5 45.5 19.5 21.5 43.5 41.5 23.5
39.5 25.5 27.5 37.5 35.5 29.5 31.5 33.5
31.5 33.5 35.5 29.5 27.5 37.5 39.5 25.5
41.5 23.5 21.5 43.5 45.5 19.5 17.5 47.5
49.5 15.5 13.5 51.5 53.5 11.5 9.5 55.5
7.5 57.5 59.5 5.5 3.5 61.5 63.5 1.5

1

CCCCCCCCCCCA

,



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 120

120 Haar Bases, Haar Wavelets, Hadamard Matrices

which is pretty close to the original image matrix A.
It turns out that Matlab has a wonderful command, image(X) (also

imagesc(X), which often does a better job), which displays the matrix X
has an image in which each entry is shown as a little square whose gray
level is proportional to the numerical value of that entry (lighter if the value
is higher, darker if the value is closer to zero; negative values are treated as
zero). The images corresponding to A and C are shown in Figure 4.10. The

Fig. 4.10 An image and its Haar transform.

compressed images corresponding to A
2

and C
2

are shown in Figure 4.11.
The compressed versions appear to be indistinguishable from the originals!

If we use the normalized matrices Hm and Hn, then the equations re-
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Fig. 4.11 Compressed image and its Haar transform.

lating the image matrix A and its normalized Haar transform C are

C = H>
mAHn

A = HmCH>
n .

The Haar transform can also be used to send large images progressively
over the internet. Indeed, we can start sending the Haar coe�cients of the
matrix C starting from the coarsest coe�cients (the first column from top
down, then the second column, etc.), and at the receiving end we can start
reconstructing the image as soon as we have received enough data.

Observe that instead of performing all rounds of averaging and di↵er-
encing on each row and each column, we can perform partial encoding (and
decoding). For example, we can perform a single round of averaging and
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di↵erencing for each row and each column. The result is an image consist-
ing of four subimages, where the top left quarter is a coarser version of the
original, and the rest (consisting of three pieces) contain the finest detail
coe�cients. We can also perform two rounds of averaging and di↵erencing,
or three rounds, etc. The second round of averaging and di↵erencing is
applied to the top left quarter of the image. Generally, the kth round is
applied to the 2m+1�k ⇥ 2n+1�k submatrix consisting of the first 2m+1�k

rows and the first 2n+1�k columns (1  k  n) of the matrix obtained
at the end of the previous round. This process is illustrated on the image
shown in Figure 4.12. The result of performing one round, two rounds,

Fig. 4.12 Original drawing by Durer.

three rounds, and nine rounds of averaging is shown in Figure 4.13. Since
our images have size 512 ⇥ 512, nine rounds of averaging yields the Haar
transform, displayed as the image on the bottom right. The original im-
age has completely disappeared! We leave it as a fun exercise to modify
the algorithms involving averaging and di↵erencing to perform k rounds of
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averaging/di↵erencing. The reconstruction algorithm is a little tricky.

Fig. 4.13 Haar tranforms after one, two, three, and nine rounds of averaging.

A nice and easily accessible account of wavelets and their uses in image
processing and computer graphics can be found in Stollnitz, Derose and
Salesin [Stollnitz et al. (1996)]. A very detailed account is given in Strang
and and Nguyen [Strang and Truong (1997)], but this book assumes a fair
amount of background in signal processing.

We can find easily a basis of 2n⇥2n = 22n vectors wij (2n⇥2n matrices)
for the linear map that reconstructs an image from its Haar coe�cients, in
the sense that for any 2n ⇥ 2n matrix C of Haar coe�cients, the image
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matrix A is given by

A =
2

nX

i=1

2

nX

j=1

cijwij .

Indeed, the matrix wij is given by the so-called outer product

wij = wi(wj)
>.

Similarly, there is a basis of 2n ⇥ 2n = 22n vectors hij (2n ⇥ 2n matrices)
for the 2D Haar transform, in the sense that for any 2n ⇥ 2n matrix A, its
matrix C of Haar coe�cients is given by

C =
2

nX

i=1

2

nX

j=1

aijhij .

If the columns of W�1 are w0
1

, . . . , w0
2

n , then

hij = w0
i(w

0
j)

>.

We leave it as exercise to compute the bases (wij) and (hij) for n = 2, and
to display the corresponding images using the command imagesc.

4.6 Hadamard Matrices

There is another famous family of matrices somewhat similar to Haar ma-
trices, but these matrices have entries +1 and �1 (no zero entries).

Definition 4.6. A real n⇥ n matrix H is a Hadamard matrix if hij = ±1
for all i, j such that 1  i, j  n and if

H>H = nIn.

Thus the columns of a Hadamard matrix are pairwise orthogonal. Be-
cause H is a square matrix, the equation H>H = nIn shows that H is
invertible, so we also have HH> = nIn. The following matrices are exam-
ple of Hadamard matrices:

H
2

=

✓
1 1
1 �1

◆
, H

4

=

0

BB@

1 1 1 1
1 �1 1 �1
1 1 �1 �1
1 �1 �1 1

1

CCA ,
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and

H
8

=

0

BBBBBBBBBBB@

1 1 1 1 1 1 1 1
1 �1 1 �1 1 �1 1 �1
1 1 �1 �1 1 1 �1 �1
1 �1 �1 1 1 �1 �1 1
1 1 1 1 �1 �1 �1 �1
1 �1 1 �1 �1 1 �1 1
1 1 �1 �1 �1 �1 1 1
1 �1 �1 1 �1 1 1 �1

1

CCCCCCCCCCCA

.

A natural question is to determine the positive integers n for which a
Hadamard matrix of dimension n exists, but surprisingly this is an open
problem. The Hadamard conjecture is that for every positive integer of the
form n = 4k, there is a Hadamard matrix of dimension n.

What is known is a necessary condition and various su�cient conditions.

Theorem 4.1. If H is an n ⇥ n Hadamard matrix, then either n = 1, 2,
or n = 4k for some positive integer k.

Sylvester introduced a family of Hadamard matrices and proved that
there are Hadamard matrices of dimension n = 2m for all m � 1 using the
following construction.

Proposition 4.1. (Sylvester, 1867) If H is a Hadamard matrix of dimen-
sion n, then the block matrix of dimension 2n,

✓
H H
H �H

◆
,

is a Hadamard matrix.

If we start with

H
2

=

✓
1 1
1 �1

◆
,

we obtain an infinite family of symmetric Hadamard matrices usually
called Sylvester–Hadamard matrices and denoted by H

2

m . The Sylvester–
Hadamard matrices H

2

, H
4

and H
8

are shown on the previous page.
In 1893, Hadamard gave examples of Hadamard matrices for n = 12

and n = 20. At the present, Hadamard matrices are known for all n =
4k  1000, except for n = 668, 716, and 892.

Hadamard matrices have various applications to error correcting codes,
signal processing, and numerical linear algebra; see Seberry, Wysocki and
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Wysocki [Seberry et al. (2005)] and Tropp [Tropp (2011)]. For example,
there is a code based on H

32

that can correct 7 errors in any 32-bit encoded
block, and can detect an eighth. This code was used on a Mariner spacecraft
in 1969 to transmit pictures back to the earth.

For every m � 0, the piecewise a�ne functions plf((H
2

m)i) associated
with the 2m rows of the Sylvester–Hadamard matrix H

2

m are functions on
[0, 1] known as the Walsh functions. It is customary to index these 2m

functions by the integers 0, 1, . . . , 2m � 1 in such a way that the Walsh
function Wal(k, t) is equal to the function plf((H

2

m)i) associated with the
Row i of H

2

m that contains k changes of signs between consecutive groups
of +1 and consecutive groups of �1. For example, the fifth row of H

8

,
namely

�
1 �1 �1 1 1 �1 �1 1

�
,

has five consecutive blocks of +1s and �1s, four sign changes between these
blocks, and thus is associated with Wal(4, t). In particular, Walsh functions
corresponding to the rows of H

8

(from top down) are:

Wal(0, t), Wal(7, t), Wal(3, t), Wal(4, t),

Wal(1, t), Wal(6, t), Wal(2, t), Wal(5, t).

Because of the connection between Sylvester–Hadamard matrices and
Walsh functions, Sylvester–Hadamard matrices are calledWalsh–Hadamard
matrices by some authors. For every m, the 2m Walsh functions are pair-
wise orthogonal. The countable set of Walsh functions Wal(k, t) for all
m � 0 and all k such that 0  k  2m � 1 can be ordered in such a way
that it is an orthogonal Hilbert basis of the Hilbert space L2([0, 1)]; see
Seberry, Wysocki and Wysocki [Seberry et al. (2005)].

The Sylvester–Hadamard matrix H
2

m plays a role in various algorithms
for dimension reduction and low-rank matrix approximation. There is a
type of structured dimension-reduction map known as the subsampled ran-
domized Hadamard transform, for short SRHT; see Tropp [Tropp (2011)]
and Halko, Martinsson and Tropp [Halko et al. (2011)]. For ` ⌧ n = 2m,
an SRHT matrix is an `⇥ n matrix of the form

� =

r
n

`
RHD,

where

(1) D is a random n ⇥ n diagonal matrix whose entries are independent
random signs.



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 127

4.7. Summary 127

(2) H = n�1/2Hn, a normalized Sylvester–Hadamard matrix of dimension
n.

(3) R is a random `⇥ n matrix that restricts an n-dimensional vector to `
coordinates, chosen uniformly at random.

It is explained in Tropp [Tropp (2011)] that for any input x such that
kxk

2

= 1, the probability that |(HDx)i| �
p
n�1 log(n) for any i is quite

small. Thus HD has the e↵ect of “flattening” the input x. The main result
about the SRHT is that it preserves the geometry of an entire subspace of
vectors; see Tropp [Tropp (2011)] (Theorem 1.3).

4.7 Summary

The main concepts and results of this chapter are listed below:

• Haar basis vectors and a glimpse at Haar wavelets.
• Kronecker product (or tensor product) of matrices.
• Hadamard and Sylvester–Hadamard matrices.
• Walsh functions.

4.8 Problems

Problem 4.1. (Haar extravaganza) Consider the matrix

W
3,3 =

0

BBBBBBBBBBB@

1 0 0 0 1 0 0 0
1 0 0 0 �1 0 0 0
0 1 0 0 0 1 0 0
0 1 0 0 0 �1 0 0
0 0 1 0 0 0 1 0
0 0 1 0 0 0 �1 0
0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 �1

1

CCCCCCCCCCCA

.

(1) Show that given any vector c = (c
1

, c
2

, c
3

, c
4

, c
5

, c
6

, c
7

, c
8

), the result
W

3,3c of applying W
3,3 to c is

W
3,3c = (c

1

+ c
5

, c
1

� c
5

, c
2

+ c
6

, c
2

� c
6

, c
3

+ c
7

, c
3

� c
7

, c
4

+ c
8

, c
4

� c
8

),

the last step in reconstructing a vector from its Haar coe�cients.
(2) Prove that the inverse of W

3,3 is (1/2)W>
3,3. Prove that the columns

and the rows of W
3,3 are orthogonal.
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(3) Let W
3,2 and W

3,1 be the following matrices:

W
3,2 =

0

BBBBBBBBBBB@

1 0 1 0 0 0 0 0
1 0 �1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 1 0 �1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

1

CCCCCCCCCCCA

, W
3,1 =

0

BBBBBBBBBBB@

1 1 0 0 0 0 0 0
1 �1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

1

CCCCCCCCCCCA

.

Show that given any vector c = (c
1

, c
2

, c
3

, c
4

, c
5

, c
6

, c
7

, c
8

), the result W
3,2c

of applying W
3,2 to c is

W
3,2c = (c

1

+ c
3

, c
1

� c
3

, c
2

+ c
4

, c
2

� c
4

, c
5

, c
6

, c
7

, c
8

),

the second step in reconstructing a vector from its Haar coe�cients, and
the result W

3,1c of applying W
3,1 to c is

W
3,1c = (c

1

+ c
2

, c
1

� c
2

, c
3

, c
4

, c
5

, c
6

, c
7

, c
8

),

the first step in reconstructing a vector from its Haar coe�cients.
Conclude that

W
3,3W3,2W3,1 = W

3

,

the Haar matrix

W
3

=

0

BBBBBBBBBBB@

1 1 1 0 1 0 0 0
1 1 1 0 �1 0 0 0
1 1 �1 0 0 1 0 0
1 1 �1 0 0 �1 0 0
1 �1 0 1 0 0 1 0
1 �1 0 1 0 0 �1 0
1 �1 0 �1 0 0 0 1
1 �1 0 �1 0 0 0 �1

1

CCCCCCCCCCCA

.

Hint . First check that

W
3,2W3,1 =

✓
W

2

0
4,4

0
4,4 I

4

◆
,

where

W
2

=

0

BB@

1 1 1 0
1 1 �1 0
1 �1 0 1
1 �1 0 �1

1

CCA .
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(4) Prove that the columns and the rows of W
3,2 and W

3,1 are orthogo-
nal. Deduce from this that the columns of W

3

are orthogonal, and the rows
of W�1

3

are orthogonal. Are the rows of W
3

orthogonal? Are the columns
of W�1

3

orthogonal? Find the inverse of W
3,2 and the inverse of W

3,1.

Problem 4.2. This is a continuation of Problem 4.1.
(1) For any n � 2, the 2n ⇥ 2n matrix Wn,n is obtained form the two

rows

1, 0, . . . , 0| {z }
2

n�1

, 1, 0, . . . , 0| {z }
2

n�1

1, 0, . . . , 0| {z }
2

n�1

,�1, 0, . . . , 0| {z }
2

n�1

by shifting them 2n�1 � 1 times over to the right by inserting a zero on the
left each time.

Given any vector c = (c
1

, c
2

, . . . , c
2

n), show that Wn,nc is the result
of the last step in the process of reconstructing a vector from its Haar
coe�cients c. Prove that W�1

n,n = (1/2)W>
n,n, and that the columns and the

rows of Wn,n are orthogonal.
(2) Given a m ⇥ n matrix A = (aij) and a p ⇥ q matrix B = (bij), the

Kronecker product (or tensor product) A ⌦ B of A and B is the mp ⇥ nq
matrix

A ⌦ B =

0

BBB@

a
11

B a
12

B · · · a
1nB

a
21

B a
22

B · · · a
2nB

...
...

. . .
...

am1

B am2

B · · · amnB

1

CCCA
.

It can be shown (and you may use these facts without proof) that ⌦ is
associative and that

(A ⌦ B)(C ⌦ D) = AC ⌦ BD

(A ⌦ B)> = A> ⌦ B>,

whenever AC and BD are well defined.
Check that

Wn,n =

✓
I
2

n�1 ⌦
✓
1
1

◆
I
2

n�1 ⌦
✓

1
�1

◆◆
,

and that

Wn =

✓
Wn�1

⌦
✓
1
1

◆
I
2

n�1 ⌦
✓

1
�1

◆◆
.
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Use the above to reprove that

Wn,nW
>
n,n = 2I

2

n .

Let

B
1

= 2

✓
1 0
0 1

◆
=

✓
2 0
0 2

◆

and for n � 1,

Bn+1

= 2

✓
Bn 0
0 I

2

n

◆
.

Prove that

W>
n Wn = Bn, for all n � 1.

(3) The matrix Wn,i is obtained from the matrix Wi,i (1  i  n � 1)
as follows:

Wn,i =

✓
Wi,i 0

2

i,2n�2

i

0
2

n�2

i,2i I
2

n�2

i

◆
.

It consists of four blocks, where 0
2

i,2n�2

i and 0
2

n�2

i,2i are matrices of zeros
and I

2

n�2

i is the identity matrix of dimension 2n � 2i.
Explain what Wn,i does to c and prove that

Wn,nWn,n�1

· · ·Wn,1 = Wn,

where Wn is the Haar matrix of dimension 2n.
Hint . Use induction on k, with the induction hypothesis

Wn,kWn,k�1

· · ·Wn,1 =

✓
Wk 0

2

k,2n�2

k

0
2

n�2

k,2k I
2

n�2

k

◆
.

Prove that the columns and rows of Wn,k are orthogonal, and use this
to prove that the columns of Wn and the rows of W�1

n are orthogonal. Are
the rows of Wn orthogonal? Are the columns of W�1

n orthogonal? Prove
that

W�1

n,k =

✓
1

2

W>
k,k 0

2

k,2n�2

k

0
2

n�2

k,2k I
2

n�2

k

◆
.

Problem 4.3. Prove that if H is a Hadamard matrix of dimension n, then
the block matrix of dimension 2n,✓

H H
H �H

◆
,

is a Hadamard matrix.

Problem 4.4. Plot the graphs of the eight Walsh functions Wal(k, t) for
k = 0, 1, . . . , 7.

Problem 4.5. Describe a recursive algorithm to compute the product
H

2

m x of the Sylvester–Hadamard matrix H
2

m by a vector x 2 R2

m

that
uses m recursive calls.
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Chapter 5

Direct Sums, Rank-Nullity Theorem,
A�ne Maps

In this chapter all vector spaces are defined over an arbitrary field K. For
the sake of concreteness, the reader may safely assume that K = R.

5.1 Direct Products

There are some useful ways of forming new vector spaces from older ones.

Definition 5.1. Given p � 2 vector spaces E
1

, . . . , Ep, the product F =
E

1

⇥ · · · ⇥ Ep can be made into a vector space by defining addition and
scalar multiplication as follows:

(u
1

, . . . , up) + (v
1

, . . . , vp) = (u
1

+ v
1

, . . . , up + vp)

�(u
1

, . . . , up) = (�u
1

, . . . ,�up),

for all ui, vi 2 Ei and all � 2 R. The zero vector of E
1

⇥ · · · ⇥ Ep is the
p-tuple

( 0, . . . , 0| {z }
p

),

where the ith zero is the zero vector of Ei.
With the above addition and multiplication, the vector space F = E

1

⇥
· · · ⇥ Ep is called the direct product of the vector spaces E

1

, . . . , Ep.

As a special case, when E
1

= · · · = Ep = R, we find again the vector
space F = Rp. The projection maps pri : E1

⇥ · · · ⇥ Ep ! Ei given by

pri(u1

, . . . , up) = ui

are clearly linear. Similarly, the maps ini : Ei ! E
1

⇥ · · · ⇥ Ep given by

ini(ui) = (0, . . . , 0, ui, 0, . . . , 0)

131
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are injective and linear. If dim(Ei) = ni and if (ei
1

, . . . , eini
) is a basis of Ei

for i = 1, . . . , p, then it is easy to see that the n
1

+ · · · + np vectors

(e1
1

, 0, . . . , 0), . . . , (e1n1
, 0, . . . , 0),

...
...

...
(0, . . . , 0, ei

1

, 0, . . . , 0), . . . , (0, . . . , 0, eini
, 0, . . . , 0),

...
...

...
(0, . . . , 0, ep

1

), . . . , (0, . . . , 0, epnp
)

form a basis of E
1

⇥ · · · ⇥ Ep, and so

dim(E
1

⇥ · · · ⇥ Ep) = dim(E
1

) + · · · + dim(Ep).

5.2 Sums and Direct Sums

Let us now consider a vector space E and p subspaces U
1

, . . . , Up of E. We
have a map

a : U
1

⇥ · · · ⇥ Up ! E

given by

a(u
1

, . . . , up) = u
1

+ · · · + up,

with ui 2 Ui for i = 1, . . . , p. It is clear that this map is linear, and so its
image is a subspace of E denoted by

U
1

+ · · · + Up

and called the sum of the subspaces U
1

, . . . , Up. By definition,

U
1

+ · · · + Up = {u
1

+ · · · + up | ui 2 Ui, 1  i  p},

and it is immediately verified that U
1

+ · · · + Up is the smallest subspace
of E containing U

1

, . . . , Up. This also implies that U
1

+ · · · + Up does not
depend on the order of the factors Ui; in particular,

U
1

+ U
2

= U
2

+ U
1

.

Definition 5.2. For any vector space E and any p � 2 subspaces U
1

, . . . , Up

of E, if the map a : U
1

⇥ · · · ⇥ Up ! E defined above is injective, then the
sum U

1

+ · · · + Up is called a direct sum and it is denoted by

U
1

� · · · � Up.

The space E is the direct sum of the subspaces Ui if

E = U
1

� · · · � Up.
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If the map a is injective, then by Proposition 2.13 we have Ker a =
{( 0, . . . , 0| {z }

p

)} where each 0 is the zero vector of E, which means that if

ui 2 Ui for i = 1, . . . , p and if

u
1

+ · · · + up = 0,

then (u
1

, . . . , up) = (0, . . . , 0), that is, u
1

= 0, . . . , up = 0.

Proposition 5.1. If the map a : U
1

⇥ · · ·⇥Up ! E is injective, then every
u 2 U

1

+ · · · + Up has a unique expression as a sum

u = u
1

+ · · · + up,

with ui 2 Ui, for i = 1, . . . , p.

Proof. If

u = v
1

+ · · · + vp = w
1

+ · · · + wp,

with vi, wi 2 Ui, for i = 1, . . . , p, then we have

w
1

� v
1

+ · · · + wp � vp = 0,

and since vi, wi 2 Ui and each Ui is a subspace, wi�vi 2 Ui. The injectivity
of a implies that wi � vi = 0, that is, wi = vi for i = 1, . . . , p, which shows
the uniqueness of the decomposition of u.

Proposition 5.2. If the map a : U
1

⇥ · · · ⇥ Up ! E is injective, then any
p nonzero vectors u

1

, . . . , up with ui 2 Ui are linearly independent.

Proof. To see this, assume that

�
1

u
1

+ · · · + �pup = 0

for some �i 2 R. Since ui 2 Ui and Ui is a subspace, �iui 2 Ui, and the
injectivity of a implies that �iui = 0, for i = 1, . . . , p. Since ui 6= 0, we
must have �i = 0 for i = 1, . . . , p; that is, u

1

, . . . , up with ui 2 Ui and
ui 6= 0 are linearly independent.

Observe that if a is injective, then we must have Ui\Uj = (0) whenever
i 6= j. However, this condition is generally not su�cient if p � 3. For
example, if E = R2 and U

1

the line spanned by e
1

= (1, 0), U
2

is the
line spanned by d = (1, 1), and U

3

is the line spanned by e
2

= (0, 1), then
U
1

\U
2

= U
1

\U
3

= U
2

\U
3

= {(0, 0)}, but U
1

+U
2

= U
1

+U
3

= U
2

+U
3

=
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e1
U1

e

U3

2 (1,1)

U2

Fig. 5.1 The linear subspaces U1, U2, and U3 illustrated as lines in R2.

R2, so U
1

+U
2

+U
3

is not a direct sum. For example, d is expressed in two
di↵erent ways as

d = (1, 1) = (1, 0) + (0, 1) = e
1

+ e
2

.

See Figure 5.1.
As in the case of a sum, U

1

� U
2

= U
2

� U
1

. Observe that when the
map a is injective, then it is a linear isomorphism between U

1

⇥ · · · ⇥ Up

and U
1

� · · · � Up. The di↵erence is that U
1

⇥ · · · ⇥ Up is defined even if
the spaces Ui are not assumed to be subspaces of some common space.

If E is a direct sum E = U
1

� · · · � Up, since any p nonzero vectors
u
1

, . . . , up with ui 2 Ui are linearly independent, if we pick a basis (uk)k2Ij

in Uj for j = 1, . . . , p, then (ui)i2I with I = I
1

[ · · · [ Ip is a basis of E.
Intuitively, E is split into p independent subspaces.

Conversely, given a basis (ui)i2I of E, if we partition the index set I as
I = I

1

[ · · · [ Ip, then each subfamily (uk)k2Ij spans some subspace Uj of
E, and it is immediately verified that we have a direct sum

E = U
1

� · · · � Up.

Definition 5.3. Let f : E ! E be a linear map. For any subspace U of E,
if f(U) ✓ U we say that U is invariant under f .
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Assume that E is finite-dimensional, a direct sum E = U
1

� · · · � Up,
and that each Uj is invariant under f . If we pick a basis (ui)i2I as above
with I = I

1

[ · · · [ Ip and with each (uk)k2Ij a basis of Uj , since each Uj

is invariant under f , the image f(uk) of every basis vector uk with k 2 Ij
belongs to Uj , so the matrix A representing f over the basis (ui)i2I is a
block diagonal matrix of the form

A =

0

BBB@

A
1

A
2

. . .

Ap

1

CCCA
,

with each block Aj a dj ⇥dj-matrix with dj = dim(Uj) and all other entries
equal to 0. If dj = 1 for j = 1, . . . , p, the matrix A is a diagonal matrix.

There are natural injections from each Ui to E denoted by ini : Ui ! E.
Now, if p = 2, it is easy to determine the kernel of the map a : U

1

⇥U
2

!
E. We have

a(u
1

, u
2

) = u
1

+ u
2

= 0 i↵ u
1

= �u
2

, u
1

2 U
1

, u
2

2 U
2

,

which implies that

Ker a = {(u,�u) | u 2 U
1

\ U
2

}.

Now, U
1

\U
2

is a subspace of E and the linear map u 7! (u,�u) is clearly an
isomorphism between U

1

\U
2

and Ker a, so Ker a is isomorphic to U
1

\U
2

.
As a consequence, we get the following result:

Proposition 5.3. Given any vector space E and any two subspaces U
1

and
U
2

, the sum U
1

+ U
2

is a direct sum i↵ U
1

\ U
2

= (0).

An interesting illustration of the notion of direct sum is the decompo-
sition of a square matrix into its symmetric part and its skew-symmetric
part. Recall that an n ⇥ n matrix A 2 Mn is symmetric if A> = A, skew
-symmetric if A> = �A. It is clear that

S(n) = {A 2 Mn | A> = A} and Skew(n) = {A 2 Mn | A> = �A}

are subspaces of Mn, and that S(n) \ Skew(n) = (0). Observe that for
any matrix A 2 Mn, the matrix H(A) = (A+A>)/2 is symmetric and the
matrix S(A) = (A � A>)/2 is skew-symmetric. Since

A = H(A) + S(A) =
A+A>

2
+

A � A>

2
,
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we see that Mn = S(n) + Skew(n), and since S(n) \ Skew(n) = (0), we
have the direct sum

Mn = S(n) � Skew(n).

Remark: The vector space Skew(n) of skew-symmetric matrices is also
denoted by so(n). It is the Lie algebra of the group SO(n).

Proposition 5.3 can be generalized to any p � 2 subspaces at the expense
of notation. The proof of the following proposition is left as an exercise.

Proposition 5.4. Given any vector space E and any p � 2 subspaces
U
1

, . . . , Up, the following properties are equivalent:

(1) The sum U
1

+ · · · + Up is a direct sum.
(2) We have

Ui \
✓ pX

j=1,j 6=i

Uj

◆
= (0), i = 1, . . . , p.

(3) We have

Ui \
✓ i�1X

j=1

Uj

◆
= (0), i = 2, . . . , p.

Because of the isomorphism

U
1

⇥ · · · ⇥ Up ⇡ U
1

� · · · � Up,

we have

Proposition 5.5. If E is any vector space, for any (finite-dimensional)
subspaces U

1

, . . ., Up of E, we have

dim(U
1

� · · · � Up) = dim(U
1

) + · · · + dim(Up).

If E is a direct sum

E = U
1

� · · · � Up,

since every u 2 E can be written in a unique way as

u = u
1

+ · · · + up

with ui 2 Ui for i = 1 . . . , p, we can define the maps ⇡i : E ! Ui, called
projections, by

⇡i(u) = ⇡i(u1

+ · · · + up) = ui.
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It is easy to check that these maps are linear and satisfy the following
properties:

⇡j � ⇡i =
(
⇡i if i = j

0 if i 6= j,

⇡
1

+ · · · + ⇡p = idE .

For example, in the case of the direct sum

Mn = S(n) � Skew(n),

the projection onto S(n) is given by

⇡
1

(A) = H(A) =
A+A>

2
,

and the projection onto Skew(n) is given by

⇡
2

(A) = S(A) =
A � A>

2
.

Clearly, H(A) + S(A) = A, H(H(A)) = H(A), S(S(A)) = S(A), and
H(S(A)) = S(H(A)) = 0.

A function f such that f � f = f is said to be idempotent . Thus, the
projections ⇡i are idempotent. Conversely, the following proposition can
be shown:

Proposition 5.6. Let E be a vector space. For any p � 2 linear maps
fi : E ! E, if

fj � fi =

(
fi if i = j

0 if i 6= j,

f
1

+ · · · + fp = idE ,

then if we let Ui = fi(E), we have a direct sum

E = U
1

� · · · � Up.

We also have the following proposition characterizing idempotent linear
maps whose proof is also left as an exercise.

Proposition 5.7. For every vector space E, if f : E ! E is an idempotent
linear map, i.e., f � f = f , then we have a direct sum

E = Ker f � Im f,

so that f is the projection onto its image Im f .

We are now ready to prove a very crucial result relating the rank and
the dimension of the kernel of a linear map.
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5.3 The Rank-Nullity Theorem; Grassmann’s Relation

We begin with the following theorem which shows that given a linear map
f : E ! F , its domain E is the direct sum of its kernel Ker f with some
isomorphic copy of its image Im f .

Theorem 5.1. (Rank-nullity theorem) Let f : E ! F be a linear map with
finite image. For any choice of a basis (f

1

, . . . , fr) of Im f , let (u
1

, . . . , ur)
be any vectors in E such that fi = f(ui), for i = 1, . . . , r. If s : Im f ! E
is the unique linear map defined by s(fi) = ui, for i = 1, . . . , r, then s is
injective, f � s = id, and we have a direct sum

E = Ker f � Im s

as illustrated by the following diagram:

Ker f // E = Ker f � Im s
f //

Im f ✓ F.
s

oo

See Figure 5.2. As a consequence, if E is finite-dimensional, then

dim(E) = dim(Ker f) + dim(Im f) = dim(Ker f) + rk(f).

u = (0,1,1)

2

u = (1,0,1)
1

Ker f

f  = f(u  ) = (1,0)11

f  =  f(u  ) = (0, 1)2 2 f(u) = (1,1)

f(x,y,z) = (x,y)

s(x,y) = (x,y,x+y)

u = (1,1,1)

s (f(u)) = (1,1,2)

h = (0,0,-1)

Fig. 5.2 Let f : E ! F be the linear map from R3 to R2 given by f(x, y, z) = (x, y).
Then s : R2 ! R3 is given by s(x, y) = (x, y, x+y) and maps the pink R2 isomorphically
onto the slanted pink plane of R3 whose equation is �x� y + z = 0. Theorem 5.1 shows
that R3 is the direct sum of the plane �x � y + z = 0 and the kernel of f which the
orange z-axis.
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Proof. The vectors u
1

, . . . , ur must be linearly independent since otherwise
we would have a nontrivial linear dependence

�
1

u
1

+ · · · + �rur = 0,

and by applying f , we would get the nontrivial linear dependence

0 = �
1

f(u
1

) + · · · + �rf(ur) = �
1

f
1

+ · · · + �rfr,

contradicting the fact that (f
1

, . . . , fr) is a basis. Therefore, the unique
linear map s given by s(fi) = ui, for i = 1, . . . , r, is a linear isomorphism
between Im f and its image, the subspace spanned by (u

1

, . . . , ur). It is
also clear by definition that f � s = id. For any u 2 E, let

h = u � (s � f)(u).

Since f � s = id, we have

f(h) = f(u � (s � f)(u)) = f(u) � (f � s � f)(u)

= f(u) � (id � f)(u) = f(u) � f(u) = 0,

which shows that h 2 Ker f . Since h = u � (s � f)(u), it follows that

u = h+ s(f(u)),

with h 2 Ker f and s(f(u)) 2 Im s, which proves that

E = Ker f + Im s.

Now if u 2 Ker f \ Im s, then u = s(v) for some v 2 F and f(u) = 0 since
u 2 Ker f . Since u = s(v) and f � s = id, we get

0 = f(u) = f(s(v)) = v,

and so u = s(v) = s(0) = 0. Thus, Ker f \ Im s = (0), which proves that
we have a direct sum

E = Ker f � Im s.

The equation

dim(E) = dim(Ker f) + dim(Im f) = dim(Ker f) + rk(f)

is an immediate consequence of the fact that the dimension is an additive
property for direct sums, that by definition the rank of f is the dimen-
sion of the image of f , and that dim(Im s) = dim(Im f), because s is an
isomorphism between Im f and Im s.
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Remark: The statement E = Ker f � Im s holds if E has infinite dimen-
sion. It still holds if Im (f) also has infinite dimension.

Definition 5.4. The dimension dim(Ker f) of the kernel of a linear map
f is called the nullity of f .

We now derive some important results using Theorem 5.1.

Proposition 5.8. Given a vector space E, if U and V are any two finite-
dimensional subspaces of E, then

dim(U) + dim(V ) = dim(U + V ) + dim(U \ V ),

an equation known as Grassmann’s relation.

Proof. Recall that U + V is the image of the linear map

a : U ⇥ V ! E

given by

a(u, v) = u+ v,

and that we proved earlier that the kernel Ker a of a is isomorphic to U \V .
By Theorem 5.1,

dim(U ⇥ V ) = dim(Ker a) + dim(Im a),

but dim(U ⇥ V ) = dim(U) + dim(V ), dim(Ker a) = dim(U \ V ), and
Im a = U + V , so the Grassmann relation holds.

The Grassmann relation can be very useful to figure out whether two
subspace have a nontrivial intersection in spaces of dimension > 3. For
example, it is easy to see that in R5, there are subspaces U and V with
dim(U) = 3 and dim(V ) = 2 such that U \ V = (0); for example, let U be
generated by the vectors (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), and V be
generated by the vectors (0, 0, 0, 1, 0) and (0, 0, 0, 0, 1). However, we claim
that if dim(U) = 3 and dim(V ) = 3, then dim(U \ V ) � 1. Indeed, by the
Grassmann relation, we have

dim(U) + dim(V ) = dim(U + V ) + dim(U \ V ),

namely

3 + 3 = 6 = dim(U + V ) + dim(U \ V ),

and since U + V is a subspace of R5, dim(U + V )  5, which implies

6  5 + dim(U \ V ),
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that is 1  dim(U \ V ).
As another consequence of Proposition 5.8, if U and V are two hy-

perplanes in a vector space of dimension n, so that dim(U) = n � 1 and
dim(V ) = n � 1, the reader should show that

dim(U \ V ) � n � 2,

and so, if U 6= V , then

dim(U \ V ) = n � 2.

Here is a characterization of direct sums that follows directly from The-
orem 5.1.

Proposition 5.9. If U
1

, . . . , Up are any subspaces of a finite dimensional
vector space E, then

dim(U
1

+ · · · + Up)  dim(U
1

) + · · · + dim(Up),

and

dim(U
1

+ · · · + Up) = dim(U
1

) + · · · + dim(Up)

i↵ the Uis form a direct sum U
1

� · · · � Up.

Proof. If we apply Theorem 5.1 to the linear map

a : U
1

⇥ · · · ⇥ Up ! U
1

+ · · · + Up

given by a(u
1

, . . . , up) = u
1

+ · · · + up, we get

dim(U
1

+ · · · + Up) = dim(U
1

⇥ · · · ⇥ Up) � dim(Ker a)

= dim(U
1

) + · · · + dim(Up) � dim(Ker a),

so the inequality follows. Since a is injective i↵ Ker a = (0), the Uis form a
direct sum i↵ the second equation holds.

Another important corollary of Theorem 5.1 is the following result:

Proposition 5.10. Let E and F be two vector spaces with the same finite
dimension dim(E) = dim(F ) = n. For every linear map f : E ! F , the
following properties are equivalent:

(a) f is bijective.
(b) f is surjective.
(c) f is injective.
(d) Ker f = (0).
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Proof. Obviously, (a) implies (b).
If f is surjective, then Im f = F , and so dim(Im f) = n. By Theorem

5.1,

dim(E) = dim(Ker f) + dim(Im f),

and since dim(E) = n and dim(Im f) = n, we get dim(Ker f) = 0, which
means that Ker f = (0), and so f is injective (see Proposition 2.13). This
proves that (b) implies (c).

If f is injective, then by Proposition 2.13, Ker f = (0), so (c) implies
(d).

Finally, assume that Ker f = (0), so that dim(Ker f) = 0 and f is
injective (by Proposition 2.13). By Theorem 5.1,

dim(E) = dim(Ker f) + dim(Im f),

and since dim(Ker f) = 0, we get

dim(Im f) = dim(E) = dim(F ),

which proves that f is also surjective, and thus bijective. This proves that
(d) implies (a) and concludes the proof.

One should be warned that Proposition 5.10 fails in infinite dimension.
A linear map may be injective without being surjective and vice versa.

Here are a few applications of Proposition 5.10. Let A be an n ⇥ n
matrix and assume that A some right inverse B, which means that B is an
n ⇥ n matrix such that

AB = I.

The linear map associated with A is surjective, since for every u 2 Rn, we
have A(Bu) = u. By Proposition 5.10, this map is bijective so B is actually
the inverse of A; in particular BA = I.

Similarly, assume that A has a left inverse B, so that

BA = I.

This time the linear map associated with A is injective, because if Au =
0, then BAu = B0 = 0, and since BA = I we get u = 0. Again, by
Proposition 5.10, this map is bijective so B is actually the inverse of A; in
particular AB = I.

Now assume that the linear system Ax = b has some solution for every
b. Then the linear map associated with A is surjective and by Proposition
5.10, A is invertible.
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Finally assume that the linear system Ax = b has at most one solution
for every b. Then the linear map associated with A is injective and by
Proposition 5.10, A is invertible.

We also have the following basic proposition about injective or surjective
linear maps.

Proposition 5.11. Let E and F be vector spaces, and let f : E ! F be a
linear map. If f : E ! F is injective, then there is a surjective linear map
r : F ! E called a retraction, such that r � f = idE. See Figure 5.3. If
f : E ! F is surjective, then there is an injective linear map s : F ! E
called a section, such that f � s = idF . See Figure 5.2.

u = (1,0)
1

u = (1,1)
2

f(x,y) = (x,y,0)

v = f(u ) = (1,0,0)1 1 v  = f(u ) = (1,1,0)2 2

v = (0,0,1)
3

r(x,y,z) = (x,y)
E = R

2

F = R3

Fig. 5.3 Let f : E ! F be the injective linear map from R2 to R3 given by f(x, y) =
(x, y, 0). Then a surjective retraction is given by r : R3 ! R2 is given by r(x, y, z) =
(x, y). Observe that r(v1) = u1, r(v2) = u2, and r(v3) = 0 .

Proof. Let (ui)i2I be a basis of E. Since f : E ! F is an injective linear
map, by Proposition 2.14, (f(ui))i2I is linearly independent in F . By
Theorem 2.1, there is a basis (vj)j2J of F , where I ✓ J , and where vi =
f(ui), for all i 2 I. By Proposition 2.14, a linear map r : F ! E can be
defined such that r(vi) = ui, for all i 2 I, and r(vj) = w for all j 2 (J � I),
where w is any given vector in E, say w = 0. Since r(f(ui)) = ui for all
i 2 I, by Proposition 2.14, we have r � f = idE .

Now assume that f : E ! F is surjective. Let (vj)j2J be a basis of
F . Since f : E ! F is surjective, for every vj 2 F , there is some uj 2 E
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such that f(uj) = vj . Since (vj)j2J is a basis of F , by Proposition 2.14,
there is a unique linear map s : F ! E such that s(vj) = uj . Also since
f(s(vj)) = vj , by Proposition 2.14 (again), we must have f � s = idF .

Remark: Proposition 5.11 also holds if E or F has infinite dimension.
The converse of Proposition 5.11 is obvious.
The notion of rank of a linear map or of a matrix important, both

theoretically and practically, since it is the key to the solvability of linear
equations. We have the following simple proposition.

Proposition 5.12. Given a linear map f : E ! F , the following properties
hold:

(i) rk(f) + dim(Ker f) = dim(E).
(ii) rk(f)  min(dim(E), dim(F )).

Proof. Property (i) follows from Proposition 5.1. As for (ii), since Im f is
a subspace of F , we have rk(f)  dim(F ), and since rk(f) + dim(Ker f) =
dim(E), we have rk(f)  dim(E).

The rank of a matrix is defined as follows.

Definition 5.5. Given a m ⇥ n-matrix A = (ai j), the rank rk(A) of the
matrix A is the maximum number of linearly independent columns of A
(viewed as vectors in Rm).

In view of Proposition 2.8, the rank of a matrix A is the dimension of
the subspace of Rm generated by the columns of A. Let E and F be two
vector spaces, and let (u

1

, . . . , un) be a basis of E, and (v
1

, . . . , vm) a basis
of F . Let f : E ! F be a linear map, and let M(f) be its matrix w.r.t.
the bases (u

1

, . . . , un) and (v
1

, . . . , vm). Since the rank rk(f) of f is the
dimension of Im f , which is generated by (f(u

1

), . . . , f(un)), the rank of f is
the maximum number of linearly independent vectors in (f(u

1

), . . . , f(un)),
which is equal to the number of linearly independent columns of M(f),
since F and Rm are isomorphic. Thus, we have rk(f) = rk(M(f)), for
every matrix representing f .

We will see later, using duality, that the rank of a matrix A is also equal
to the maximal number of linearly independent rows of A.
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5.4 A�ne Maps

We showed in Section 2.7 that every linear map f must send the zero vector
to the zero vector; that is,

f(0) = 0.

Yet for any fixed nonzero vector u 2 E (where E is any vector space), the
function tu given by

tu(x) = x+ u, for all x 2 E

shows up in practice (for example, in robotics). Functions of this type are
called translations . They are not linear for u 6= 0, since tu(0) = 0 + u = u.

More generally, functions combining linear maps and translations occur
naturally in many applications (robotics, computer vision, etc.), so it is
necessary to understand some basic properties of these functions. For this,
the notion of a�ne combination turns out to play a key role.

Recall from Section 2.7 that for any vector space E, given any family
(ui)i2I of vectors ui 2 E, an a�ne combination of the family (ui)i2I is an
expression of the form

X

i2I

�iui with
X

i2I

�i = 1,

where (�i)i2I is a family of scalars.
A linear combination places no restriction on the scalars involved, but

an a�ne combination is a linear combination with the restriction that the
scalars �i must add up to 1. Nevertheless, a linear combination can always
be viewed as an a�ne combination using the following trick involving 0.
For any family (ui)i2I of vectors in E and for any family of scalars (�i)i2I ,
we can write the linear combination

P
i2I �iui as an a�ne combination as

follows:
X

i2I

�iui =
X

i2I

�iui +

✓
1 �

X

i2I

�i

◆
0.

A�ne combinations are also called barycentric combinations .
Although this is not obvious at first glance, the condition that the scalars

�i add up to 1 ensures that a�ne combinations are preserved under trans-
lations. To make this precise, consider functions f : E ! F , where E and
F are two vector spaces, such that there is some linear map h : E ! F and
some fixed vector b 2 F (a translation vector), such that

f(x) = h(x) + b, for all x 2 E.
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The map f given by
✓
x
1

x
2

◆
7!
✓
8/5 �6/5
3/10 2/5

◆✓
x
1

x
2

◆
+

✓
1
1

◆

is an example of the composition of a linear map with a translation.
We claim that functions of this type preserve a�ne combinations.

Proposition 5.13. For any two vector spaces E and F , given any function
f : E ! F defined such that

f(x) = h(x) + b, for all x 2 E,

where h : E ! F is a linear map and b is some fixed vector in F , for every
a�ne combination

P
i2I �iui (with

P
i2I �i = 1), we have

f

✓X

i2I

�iui

◆
=
X

i2I

�if(ui).

In other words, f preserves a�ne combinations.

Proof. By definition of f , using the fact that h is linear and the fact thatP
i2I �i = 1, we have

f

✓X

i2
�iui

◆
= h

✓X

i2I

�iui

◆
+ b

=
X

i2I

�ih(ui) + 1b

=
X

i2I

�ih(ui) +

✓X

i2I

�i

◆
b

=
X

i2I

�i(h(ui) + b)

=
X

i2I

�if(ui),

as claimed.

Observe how the fact that
P

i2I �i = 1 was used in a crucial way in
Line 3. Surprisingly, the converse of Proposition 5.13 also holds.

Proposition 5.14. For any two vector spaces E and F , let f : E ! F
be any function that preserves a�ne combinations, i.e., for every a�ne
combination

P
i2I �iui (with

P
i2I �i = 1), we have

f

✓X

i2I

�iui

◆
=
X

i2I

�if(ui).
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Then for any a 2 E, the function h : E ! F given by

h(x) = f(a+ x) � f(a)

is a linear map independent of a, and

f(a+ x) = h(x) + f(a), for all x 2 E.

In particular, for a = 0, if we let c = f(0), then

f(x) = h(x) + c, for all x 2 E.

Proof. First, let us check that h is linear. Since f preserves a�ne combi-
nations and since a+ u+ v = (a+ u) + (a+ v)� a is an a�ne combination
(1 + 1 � 1 = 1), we have

h(u+ v) = f(a+ u+ v) � f(a)

= f((a+ u) + (a+ v) � a) � f(a)

= f(a+ u) + f(a+ v) � f(a) � f(a)

= f(a+ u) � f(a) + f(a+ v) � f(a)

= h(u) + h(v).

This proves that

h(u+ v) = h(u) + h(v), u, v 2 E.

Observe that a + �u = �(a + u) + (1 � �)a is also an a�ne combination
(�+ 1 � � = 1), so we have

h(�u) = f(a+ �u) � f(a)

= f(�(a+ u) + (1 � �)a) � f(a)

= �f(a+ u) + (1 � �)f(a) � f(a)

= �(f(a+ u) � f(a))

= �h(u).

This proves that

h(�u) = �h(u), u 2 E, � 2 R.

Therefore, h is indeed linear.
For any b 2 E, since b + u = (a + u) � a + b is an a�ne combination

(1 � 1 + 1 = 1), we have

f(b+ u) � f(b) = f((a+ u) � a+ b) � f(b)

= f(a+ u) � f(a) + f(b) � f(b)

= f(a+ u) � f(a),
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which proves that for all a, b 2 E,

f(b+ u) � f(b) = f(a+ u) � f(a), u 2 E.

Therefore h(x) = f(a + u) � f(a) does not depend on a, and it is obvious
by the definition of h that

f(a+ x) = h(x) + f(a), for all x 2 E.

For a = 0, we obtain the last part of our proposition.

We should think of a as a chosen origin in E. The function f maps
the origin a in E to the origin f(a) in F . Proposition 5.14 shows that the
definition of h does not depend on the origin chosen in E. Also, since

f(x) = h(x) + c, for all x 2 E

for some fixed vector c 2 F , we see that f is the composition of the linear
map h with the translation tc (in F ).

The unique linear map h as above is called the linear map associated

with f , and it is sometimes denoted by
�!
f .

In view of Propositions 5.13 and 5.14, it is natural to make the following
definition.

Definition 5.6. For any two vector spaces E and F , a function f : E ! F
is an a�ne map if f preserves a�ne combinations, i.e., for every a�ne
combination

P
i2I �iui (with

P
i2I �i = 1), we have

f

✓X

i2I

�iui

◆
=
X

i2I

�if(ui).

Equivalently, a function f : E ! F is an a�ne map if there is some linear

map h : E ! F (also denoted by
�!
f ) and some fixed vector c 2 F such that

f(x) = h(x) + c, for all x 2 E.

Note that a linear map always maps the standard origin 0 in E to the
standard origin 0 in F . However an a�ne map usually maps 0 to a nonzero
vector c = f(0). This is the “translation component” of the a�ne map.

When we deal with a�ne maps, it is often fruitful to think of the el-
ements of E and F not only as vectors but also as points. In this point
of view, points can only be combined using a�ne combinations, but vec-
tors can be combined in an unrestricted fashion using linear combinations.
We can also think of u + v as the result of translating the point u by the
translation tv. These ideas lead to the definition of a�ne spaces.



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 149

5.4. A�ne Maps 149

The idea is that instead of a single space E, an a�ne space consists

of two sets E and
�!
E , where E is just an unstructured set of points, and

�!
E is a vector space. Furthermore, the vector space

�!
E acts on E. We can

think of
�!
E as a set of translations specified by vectors, and given any point

a 2 E and any vector (translation) u 2 �!
E , the result of translating a by u

is the point (not vector) a+u. Formally, we have the following definition.

Definition 5.7. An a�ne space is either the degenerate space reduced to

the empty set, or a triple
⌦
E,

�!
E ,+

↵
consisting of a nonempty set E (of

points), a vector space
�!
E (of translations , or free vectors), and an action

+: E ⇥ �!
E ! E, satisfying the following conditions.

(A1) a+0 = a, for every a 2 E.

(A2) (a+u)+ v = a+(u+ v), for every a 2 E, and every u, v 2 �!
E .

(A3) For any two points a, b 2 E, there is a unique u 2 �!
E such that

a+u = b.

The unique vector u 2 �!
E such that a+u = b is denoted by

�!
ab, or

sometimes by ab, or even by b � a. Thus, we also write

b = a+
�!
ab

(or b = a+ab, or even b = a+(b � a)).

It is important to note that adding or rescaling points does not make

sense! However, using the fact that
�!
E acts on E is a special way (this action

is transitive and faithful), it is possible to define rigorously the notion of
a�ne combinations of points and to define a�ne spaces, a�ne maps, etc.
However, this would lead us to far afield, and for our purposes it is enough
to stick to vector spaces and we will not distinguish between vector addition
+ and translation of a point by a vector +. Still, one should be aware that
a�ne combinations really apply to points, and that points are not vectors!

If E and F are finite dimensional vector spaces with dim(E) = n and
dim(F ) = m, then it is useful to represent an a�ne map with respect to
bases in E in F . However, the translation part c of the a�ne map must be
somehow incorporated. There is a standard trick to do this which amounts
to viewing an a�ne map as a linear map between spaces of dimension n+1
and m+1. We also have the extra flexibility of choosing origins a 2 E and
b 2 F .
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Let (u
1

, . . . , un) be a basis of E, (v
1

, . . . , vm) be a basis of F , and let
a 2 E and b 2 F be any two fixed vectors viewed as origins. Our a�ne
map f has the property that if v = f(u), then

v � b = f(a+ u � a) � b = f(a) � b+ h(u � a),

where the last equality made use of the fact that h(x) = f(a + x) � f(a).
If we let y = v � b, x = u � a, and d = f(a) � b, then

y = h(x) + d, x 2 E.

Over the basis U = (u
1

, . . . , un), we write

x = x
1

u
1

+ · · · + xnun,

and over the basis V = (v
1

, . . . , vm), we write

y = y
1

v
1

+ · · · + ymvm,

d = d
1

v
1

+ · · · + dmvm.

Then since

y = h(x) + d,

if we let A be the m ⇥ n matrix representing the linear map h, that is,
the jth column of A consists of the coordinates of h(uj) over the basis
(v

1

, . . . , vm), then we can write

yV = AxU + dV .

where xU = (x
1

, . . . , xn)>, yV = (y
1

, . . . , ym)>, and dV = (d
1

, . . . , dm)>.
The above is the matrix representation of our a�ne map f with respect to
(a, (u

1

, . . . , un)) and (b, (v
1

, . . . , vm)).
The reason for using the origins a and b is that it gives us more flexibility.

In particular, we can choose b = f(a), and then f behaves like a linear map
with respect to the origins a and b = f(a).

When E = F , if there is some a 2 E such that f(a) = a (a is a fixed
point of f), then we can pick b = a. Then because f(a) = a, we get

v = f(u) = f(a+ u � a) = f(a) + h(u � a) = a+ h(u � a),

that is

v � a = h(u � a).

With respect to the new origin a, if we define x and y by

x = u � a

y = v � a,
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then we get

y = h(x).

Therefore, f really behaves like a linear map, but with respect to the new
origin a (not the standard origin 0). This is the case of a rotation around
an axis that does not pass through the origin.

Remark: A pair (a, (u
1

, . . . , un)) where (u
1

, . . . , un) is a basis of E and a
is an origin chosen in E is called an a�ne frame.

We now describe the trick which allows us to incorporate the translation
part d into the matrix A. We define the (m + 1) ⇥ (n + 1) matrix A0

obtained by first adding d as the (n+1)th column and then (0, . . . , 0| {z }
n

, 1) as

the (m+ 1)th row:

A0 =

✓
A d
0n 1

◆
.

It is clear that ✓
y
1

◆
=

✓
A d
0n 1

◆✓
x
1

◆

i↵

y = Ax+ d.

This amounts to considering a point x 2 Rn as a point (x, 1) in the (a�ne)
hyperplane Hn+1

in Rn+1 of equation xn+1

= 1. Then an a�ne map is
the restriction to the hyperplane Hn+1

of the linear map bf from Rn+1

to Rm+1 corresponding to the matrix A0 which maps Hn+1

into Hm+1

( bf(Hn+1

) ✓ Hm+1

). Figure 5.4 illustrates this process for n = 2.
For example, the map

✓
x
1

x
2

◆
7!
✓
1 1
1 3

◆✓
x
1

x
2

◆
+

✓
3
0

◆

defines an a�ne map f which is represented in R3 by
0

@
x
1

x
2

1

1

A 7!

0

@
1 1 3
1 3 0
0 0 1

1

A

0

@
x
1

x
2

1

1

A .

It is easy to check that the point a = (6,�3) is fixed by f , which means
that f(a) = a, so by translating the coordinate frame to the origin a, the
a�ne map behaves like a linear map.

The idea of considering Rn as an hyperplane in Rn+1 can be used to
define projective maps .
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x1

x2

x

(x1,x2, 1)

H3 : x3 =1

x =( x1,x2)

3

Fig. 5.4 Viewing Rn as a hyperplane in Rn+1 (n = 2)

5.5 Summary

The main concepts and results of this chapter are listed below:

• Direct products, sums, direct sums .
• Projections.
• The fundamental equation

dim(E) = dim(Ker f) + dim(Im f) = dim(Ker f) + rk(f)

(The rank-nullity theorem; Theorem 5.1).
• Grassmann’s relation

dim(U) + dim(V ) = dim(U + V ) + dim(U \ V ).

• Characterizations of a bijective linear map f : E ! F .
• Rank of a matrix.
• A�ne Maps.

5.6 Problems

Problem 5.1. Let V and W be two subspaces of a vector space E. Prove
that if V [ W is a subspace of E, then either V ✓ W or W ✓ V .
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Problem 5.2. Prove that for every vector space E, if f : E ! E is an
idempotent linear map, i.e., f � f = f , then we have a direct sum

E = Ker f � Im f,

so that f is the projection onto its image Im f .

Problem 5.3. Let U
1

, . . . , Up be any p � 2 subspaces of some vector space
E and recall that the linear map

a : U
1

⇥ · · · ⇥ Up ! E

is given by

a(u
1

, . . . , up) = u
1

+ · · · + up,

with ui 2 Ui for i = 1, . . . , p.
(1) If we let Zi ✓ U

1

⇥ · · · ⇥ Up be given by

Zi =

8
<

:

⇣
u
1

, . . . , ui�1

,�
pX

j=1,j 6=i

uj , ui+1

, . . . , up

⌘
������

pX

j=1,j 6=i

uj 2 Ui \
✓ pX

j=1,j 6=i

Uj

◆9=

; ,

for i = 1, . . . , p, then prove that

Ker a = Z
1

= · · · = Zp.

In general, for any given i, the condition Ui \
✓Pp

j=1,j 6=i Uj

◆
= (0) does

not necessarily imply that Zi = (0). Thus, let

Z =

(⇣
u
1

, . . . , ui�1

, ui, ui+1

, . . . , up

⌘ �����

ui = �
pX

j=1,j 6=i

uj , ui 2 Ui \
✓ pX

j=1,j 6=i

Uj

◆
, 1  i  p

9
=

; .

Since Ker a = Z
1

= · · · = Zp, we have Z = Ker a. Prove that if

Ui \
✓ pX

j=1,j 6=i

Uj

◆
= (0) 1  i  p,

then Z = Ker a = (0).
(2) Prove that U

1

+ · · · + Up is a direct sum i↵

Ui \
✓ pX

j=1,j 6=i

Uj

◆
= (0) 1  i  p.
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Problem 5.4. Assume that E is finite-dimensional, and let fi : E ! E be
any p � 2 linear maps such that

f
1

+ · · · + fp = idE .

Prove that the following properties are equivalent:

(1) f2

i = fi, 1  i  p.
(2) fj � fi = 0, for all i 6= j, 1  i, j  p.

Hint . Use Problem 5.2.

Let U
1

, . . . , Up be any p � 2 subspaces of some vector space E. Prove
that U

1

+ · · · + Up is a direct sum i↵

Ui \
✓ i�1X

j=1

Uj

◆
= (0), i = 2, . . . , p.

Problem 5.5. Given any vector space E, a linear map f : E ! E is an
involution if f � f = id.

(1) Prove that an involution f is invertible. What is its inverse?
(2) Let E

1

and E�1

be the subspaces of E defined as follows:

E
1

= {u 2 E | f(u) = u}
E�1

= {u 2 E | f(u) = �u}.
Prove that we have a direct sum

E = E
1

� E�1

.

Hint . For every u 2 E, write

u =
u+ f(u)

2
+

u � f(u)

2
.

(3) If E is finite-dimensional and f is an involution, prove that there is
some basis of E with respect to which the matrix of f is of the form

Ik,n�k =

✓
Ik 0
0 �In�k

◆
,

where Ik is the k⇥ k identity matrix (similarly for In�k) and k = dim(E
1

).
Can you give a geometric interpretation of the action of f (especially when
k = n � 1)?

Problem 5.6. An n ⇥ n matrix H is upper Hessenberg if hjk = 0 for all
(j, k) such that j � k � 0. An upper Hessenberg matrix is unreduced if
hi+1i 6= 0 for i = 1, . . . , n � 1.

Prove that if H is a singular unreduced upper Hessenberg matrix, then
dim(Ker (H)) = 1.
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Problem 5.7. Let A be any n ⇥ k matrix.
(1) Prove that the k ⇥ k matrix A>A and the matrix A have the same

nullspace. Use this to prove that rank(A>A) = rank(A). Similarly, prove
that the n ⇥ n matrix AA> and the matrix A> have the same nullspace,
and conclude that rank(AA>) = rank(A>).

We will prove later that rank(A>) = rank(A).
(2) Let a

1

, . . . , ak be k linearly independent vectors in Rn (1  k  n),
and let A be the n⇥ k matrix whose ith column is ai. Prove that A>A has
rank k, and that it is invertible. Let P = A(A>A)�1A> (an n⇥n matrix).
Prove that

P 2 = P

P> = P.

What is the matrix P when k = 1?
(3) Prove that the image of P is the subspace V spanned by a

1

, . . . , ak,
or equivalently the set of all vectors in Rn of the form Ax, with x 2 Rk.
Prove that the nullspace U of P is the set of vectors u 2 Rn such that
A>u = 0. Can you give a geometric interpretation of U?

Conclude that P is a projection of Rn onto the subspace V spanned by
a
1

, . . . , ak, and that

Rn = U � V.

Problem 5.8. A rotation R✓ in the plane R2 is given by the matrix

R✓ =

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆
.

(1) Use Matlab to show the action of a rotation R✓ on a simple figure
such as a triangle or a rectangle, for various values of ✓, including ✓ =
⇡/6,⇡/4,⇡/3,⇡/2.

(2) Prove that R✓ is invertible and that its inverse is R�✓.
(3) For any two rotations R↵ and R� , prove that

R� � R↵ = R↵ � R� = R↵+� .

Use (2)-(3) to prove that the rotations in the plane form a commutative
group denoted SO(2).

Problem 5.9. Consider the a�ne map R✓,(a1,a2)
in R2 given by

✓
y
1

y
2

◆
=

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆✓
x
1

x
2

◆
+

✓
a
1

a
2

◆
.
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(1) Prove that if ✓ 6= k2⇡, with k 2 Z, then R✓,(a1,a2)
has a unique fixed

point (c
1

, c
2

), that is, there is a unique point (c
1

, c
2

) such that
✓
c
1

c
2

◆
= R✓,(a1,a2)

✓
c
1

c
2

◆
,

and this fixed point is given by
✓
c
1

c
2

◆
=

1

2 sin(✓/2)

✓
cos(⇡/2 � ✓/2) � sin(⇡/2 � ✓/2)
sin(⇡/2 � ✓/2) cos(⇡/2 � ✓/2)

◆✓
a
1

a
2

◆
.

(2) In this question we still assume that ✓ 6= k2⇡, with k 2 Z. By
translating the coordinate system with origin (0, 0) to the new coordinate
system with origin (c

1

, c
2

), which means that if (x
1

, x
2

) are the coordinates
with respect to the standard origin (0, 0) and if (x0

1

, x0
2

) are the coordinates
with respect to the new origin (c

1

, c
2

), we have

x
1

= x0
1

+ c
1

x
2

= x0
2

+ c
2

and similarly for (y
1

, y
2

) and (y0
1

, y0
2

), then show that
✓
y
1

y
2

◆
= R✓,(a1,a2)

✓
x
1

x
2

◆

becomes
✓
y0
1

y0
2

◆
= R✓

✓
x0
1

x0
2

◆
.

Conclude that with respect to the new origin (c
1

, c
2

), the a�ne map
R✓,(a1,a2)

becomes the rotation R✓. We say that R✓,(a1,a2)
is a rotation of

center (c
1

, c
2

).
(3) Use Matlab to show the action of the a�ne map R✓,(a1,a2)

on a
simple figure such as a triangle or a rectangle, for ✓ = ⇡/3 and various
values of (a

1

, a
2

). Display the center (c
1

, c
2

) of the rotation.
What kind of transformations correspond to ✓ = k2⇡, with k 2 Z?
(4) Prove that the inverse of R✓,(a1,a2)

is of the form R�✓,(b1,b2), and
find (b

1

, b
2

) in terms of ✓ and (a
1

, a
2

).
(5) Given two a�ne maps R↵,(a1,a2)

and R�,(b1,b2), prove that

R�,(b1,b2) � R↵,(a1,a2)
= R↵+�,(t1,t2)

for some (t
1

, t
2

), and find (t
1

, t
2

) in terms of �, (a
1

, a
2

) and (b
1

, b
2

).
Even in the case where (a

1

, a
2

) = (0, 0), prove that in general

R�,(b1,b2) � R↵ 6= R↵ � R�,(b1,b2).
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Use (4)-(5) to show that the a�ne maps of the plane defined in this
problem form a nonabelian group denoted SE(2).

Prove that R�,(b1,b2) � R↵,(a1,a2)
is not a translation (possibly the iden-

tity) i↵ ↵ + � 6= k2⇡, for all k 2 Z. Find its center of rotation when
(a

1

, a
2

) = (0, 0).
If ↵ + � = k2⇡, then R�,(b1,b2) � R↵,(a1,a2)

is a pure translation. Find
the translation vector of R�,(b1,b2) � R↵,(a1,a2)

.

Problem 5.10. (A�ne subspaces) A subset A of Rn is called an a�ne
subspace if either A = ;, or there is some vector a 2 Rn and some subspace
U of Rn such that

A = a+ U = {a+ u | u 2 U}.
We define the dimension dim(A) of A as the dimension dim(U) of U .

(1) If A = a+ U , why is a 2 A?
What are a�ne subspaces of dimension 0? What are a�ne subspaces

of dimension 1 (begin with R2)? What are a�ne subspaces of dimension 2
(begin with R3)?

Prove that any nonempty a�ne subspace is closed under a�ne combi-
nations.

(2) Prove that if A = a + U is any nonempty a�ne subspace, then
A = b+ U for any b 2 A.

(3) Let A be any nonempty subset of Rn closed under a�ne combina-
tions. For any a 2 A, prove that

Ua = {x � a 2 Rn | x 2 A}
is a (linear) subspace of Rn such that

A = a+ Ua.

Prove that Ua does not depend on the choice of a 2 A; that is, Ua = Ub for
all a, b 2 A. In fact, prove that

Ua = U = {y � x 2 Rn | x, y 2 A}, for all a 2 A,

and so

A = a+ U, for any a 2 A.

Remark: The subspace U is called the direction of A.
(4) Two nonempty a�ne subspaces A and B are said to be parallel i↵

they have the same direction. Prove that that if A 6= B and A and B are
parallel, then A \ B = ;.

Remark: The above shows that a�ne subspaces behave quite di↵erently
from linear subspaces.
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Problem 5.11. (A�ne frames and a�ne maps) For any vector v =
(v

1

, . . . , vn) 2 Rn, let bv 2 Rn+1 be the vector bv = (v
1

, . . . , vn, 1). Equiva-
lently, bv = (bv

1

, . . . , bvn+1

) 2 Rn+1 is the vector defined by

bvi =
(
vi if 1  i  n,

1 if i = n+ 1.

(1) For any m + 1 vectors (u
0

, u
1

, . . . , um) with ui 2 Rn and m  n,
prove that if the m vectors (u

1

�u
0

, . . . , um �u
0

) are linearly independent,
then the m+ 1 vectors (bu

0

, . . . , bum) are linearly independent.
(2) Prove that if the m+1 vectors (bu

0

, . . . , bum) are linearly independent,
then for any choice of i, with 0  i  m, the m vectors uj � ui for j 2
{0, . . . ,m} with j � i 6= 0 are linearly independent.

Any m + 1 vectors (u
0

, u
1

, . . . , um) such that the m + 1 vectors
(bu

0

, . . . , bum) are linearly independent are said to be a�nely independent .
From (1) and (2), the vector (u

0

, u
1

, . . . , um) are a�nely independent
i↵ for any any choice of i, with 0  i  m, the m vectors uj � ui for
j 2 {0, . . . ,m} with j � i 6= 0 are linearly independent. If m = n, we say
that n+1 a�nely independent vectors (u

0

, u
1

, . . . , un) form an a�ne frame
of Rn.

(3) if (u
0

, u
1

, . . . , un) is an a�ne frame of Rn, then prove that for every
vector v 2 Rn, there is a unique (n+1)-tuple (�

0

,�
1

, . . . ,�n) 2 Rn+1, with
�
0

+ �
1

+ · · · + �n = 1, such that

v = �
0

u
0

+ �
1

u
1

+ · · · + �nun.

The scalars (�
0

,�
1

, . . . ,�n) are called the barycentric (or a�ne) coordinates
of v w.r.t. the a�ne frame (u

0

, u
1

, . . . , un).
If we write ei = ui � u

0

, for i = 1, . . . , n, then prove that we have

v = u
0

+ �
1

e
1

+ · · · + �nen,

and since (e
1

, . . . , en) is a basis of Rn (by (1) & (2)), the n-tuple (�
1

, . . . ,�n)
consists of the standard coordinates of v � u

0

over the basis (e
1

, . . . , en).
Conversely, for any vector u

0

2 Rn and for any basis (e
1

, . . . , en) of Rn,
let ui = u

0

+ ei for i = 1, . . . , n. Prove that (u
0

, u
1

, . . . , un) is an a�ne
frame of Rn, and for any v 2 Rn, if

v = u
0

+ x
1

e
1

+ · · · + xnen,

with (x
1

, . . . , xn) 2 Rn (unique), then

v = (1 � (x
1

+ · · · + xx))u0

+ x
1

u
1

+ · · · + xnun,
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so that (1� (x
1

+ · · ·+xx)), x1

, · · · , xn), are the barycentric coordinates of
v w.r.t. the a�ne frame (u

0

, u
1

, . . . , un).
The above shows that there is a one-to-one correspondence between

a�ne frames (u
0

, . . ., un) and pairs (u
0

, (e
1

, . . . , en)), with (e
1

, . . . , en) a
basis. Given an a�ne frame (u

0

, . . . , un), we obtain the basis (e
1

, . . . , en)
with ei = ui � u

0

, for i = 1, . . . , n; given the pair (u
0

, (e
1

, . . ., en))
where (e

1

, . . . , en) is a basis, we obtain the a�ne frame (u
0

, . . . , un), with
ui = u

0

+ ei, for i = 1, . . . , n. There is also a one-to-one correspondence
between barycentric coordinates w.r.t. the a�ne frame (u

0

, . . . , un) and
standard coordinates w.r.t. the basis (e

1

, . . . , en). The barycentric cordi-
nates (�

0

,�
1

, . . . ,�n) of v (with �
0

+ �
1

+ · · ·+ �n = 1) yield the standard
coordinates (�

1

, . . . ,�n) of v � u
0

; the standard coordinates (x
1

, . . . , xn) of
v � u

0

yield the barycentric coordinates (1� (x
1

+ · · ·+ xn), x1

, . . . , xn) of
v.

(4) Let (u
0

, . . . , un) be any a�ne frame in Rn and let (v
0

, . . . , vn) be
any vectors in Rm. Prove that there is a unique a�ne map f : Rn ! Rm

such that

f(ui) = vi, i = 0, . . . , n.

(5) Let (a
0

, . . . , an) be any a�ne frame in Rn and let (b
0

, . . . , bn) be any
n+ 1 points in Rn. Prove that there is a unique (n+ 1) ⇥ (n+ 1) matrix

A =

✓
B w
0 1

◆

corresponding to the unique a�ne map f such that

f(ai) = bi, i = 0, . . . , n,

in the sense that

Abai = bbi, i = 0, . . . , n,

and that A is given by

A =
⇣
bb
0

bb
1

· · · bbn
⌘ �
ba
0

ba
1

· · · ban
��1

.

Make sure to prove that the bottom row of A is (0, . . . , 0, 1).
In the special case where (a

0

, . . . , an) is the canonical a�ne frame with
ai = ei+1

for i = 0, . . . , n � 1 and an = (0, . . . , 0) (where ei is the ith
canonical basis vector), show that

�
ba
0

ba
1

· · · ban
�
=

0

BBBBB@

1 0 · · · 0 0
0 1 · · · 0 0
...
...
. . . 0 0

0 0 · · · 1 0
1 1 · · · 1 1

1

CCCCCA
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and

�
ba
0

ba
1

· · · ban
��1

=

0

BBBBB@

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . . 0 0

0 0 · · · 1 0
�1 �1 · · · �1 1

1

CCCCCA
.

For example, when n = 2, if we write bi = (xi, yi), then we have

A =

0

@
x
1

x
2

x
3

y
1

y
2

y
3

1 1 1

1

A

0

@
1 0 0
0 1 0

�1 �1 1

1

A =

0

@
x
1

� x
3

x
2

� x
3

x
3

y
1

� y
3

y
2

� y
3

y
3

0 0 1

1

A .

(6) Recall that a nonempty a�ne subspace A of Rn is any nonempty
subset of Rn closed under a�ne combinations. For any a�ne map f : Rn !
Rm, for any a�ne subspace A of Rn, and any a�ne subspace B of Rm, prove
that f(A) is an a�ne subspace of Rm, and that f�1(B) is an a�ne subspace
of Rn.
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Chapter 6

Determinants

In this chapter all vector spaces are defined over an arbitrary field K. For
the sake of concreteness, the reader may safely assume that K = R.

6.1 Permutations, Signature of a Permutation

This chapter contains a review of determinants and their use in linear alge-
bra. We begin with permutations and the signature of a permutation. Next
we define multilinear maps and alternating multilinear maps. Determinants
are introduced as alternating multilinear maps taking the value 1 on the
unit matrix (following Emil Artin). It is then shown how to compute a
determinant using the Laplace expansion formula, and the connection with
the usual definition is made. It is shown how determinants can be used to
invert matrices and to solve (at least in theory!) systems of linear equa-
tions (the Cramer formulae). The determinant of a linear map is defined.
We conclude by defining the characteristic polynomial of a matrix (and of a
linear map) and by proving the celebrated Cayley–Hamilton theorem which
states that every matrix is a “zero” of its characteristic polynomial (we give
two proofs; one computational, the other one more conceptual).

Determinants can be defined in several ways. For example, determinants
can be defined in a fancy way in terms of the exterior algebra (or alternating
algebra) of a vector space. We will follow a more algorithmic approach
due to Emil Artin. No matter which approach is followed, we need a few
preliminaries about permutations on a finite set. We need to show that
every permutation on n elements is a product of transpositions and that
the parity of the number of transpositions involved is an invariant of the
permutation. Let [n] = {1, 2 . . . , n}, where n 2 N, and n > 0.

Definition 6.1. A permutation on n elements is a bijection ⇡ : [n] ! [n].

161
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When n = 1, the only function from [1] to [1] is the constant map: 1 7! 1.
Thus, we will assume that n � 2. A transposition is a permutation ⌧ : [n] !
[n] such that, for some i < j (with 1  i < j  n), ⌧(i) = j, ⌧(j) = i, and
⌧(k) = k, for all k 2 [n]� {i, j}. In other words, a transposition exchanges
two distinct elements i, j 2 [n].

If ⌧ is a transposition, clearly, ⌧�⌧ = id. We will also use the terminology
product of permutations (or transpositions) as a synonym for composition
of permutations.

A permutation � on n elements, say �(i) = ki for i = 1, . . . , n, can be
represented in functional notation by the 2 ⇥ n array

✓
1 · · · i · · · n
k
1

· · · ki · · · kn

◆

known as Cauchy two-line notation. For example, we have the permutation
� denoted by

✓
1 2 3 4 5 6
2 4 3 6 5 1

◆
.

A more concise notation often used in computer science and in combi-
natorics is to represent a permutation by its image, namely by the sequence

�(1) �(2) · · · �(n)

written as a row vector without commas separating the entries. The above
is known as the one-line notation. For example, in the one-line notation,
our previous permutation � is represented by

2 4 3 6 5 1.

The reason for not enclosing the above sequence within parentheses is avoid
confusion with the notation for cycles, for which is it customary to include
parentheses.

Clearly, the composition of two permutations is a permutation and every
permutation has an inverse which is also a permutation. Therefore, the set
of permutations on [n] is a group often denotedSn and called the symmetric
group on n elements.

It is easy to show by induction that the group Sn has n! elements. The
following proposition shows the importance of transpositions.

Proposition 6.1. For every n � 2, every permutation ⇡ : [n] ! [n] can be
written as a nonempty composition of transpositions.
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Proof. We proceed by induction on n. If n = 2, there are exactly two per-
mutations on [2], the transposition ⌧ exchanging 1 and 2, and the identity.
However, id

2

= ⌧2. Now let n � 3. If ⇡(n) = n, since by the induction
hypothesis, the restriction of ⇡ to [n � 1] can be written as a product of
transpositions, ⇡ itself can be written as a product of transpositions. If
⇡(n) = k 6= n, letting ⌧ be the transposition such that ⌧(n) = k and
⌧(k) = n, it is clear that ⌧ � ⇡ leaves n invariant, and by the induction
hypothesis, we have ⌧ � ⇡ = ⌧m � . . . � ⌧

1

for some transpositions, and thus

⇡ = ⌧ � ⌧m � . . . � ⌧
1

,

a product of transpositions (since ⌧ � ⌧ = idn).

Remark: When ⇡ = idn is the identity permutation, we can agree that
the composition of 0 transpositions is the identity. Proposition 6.1 shows
that the transpositions generate the group of permutations Sn.

A transposition ⌧ that exchanges two consecutive elements k and k+ 1
of [n] (1  k  n � 1) may be called a basic transposition. We leave it
as a simple exercise to prove that every transposition can be written as a
product of basic transpositions. In fact, the transposition that exchanges k
and k+ p (1  p  n� k) can be realized using 2p� 1 basic transpositions.
Therefore, the group of permutations Sn is also generated by the basic
transpositions.

Given a permutation written as a product of transpositions, we now
show that the parity of the number of transpositions is an invariant. For
this, we introduce the following function.

Definition 6.2. For every n � 2, let � : Zn ! Z be the function given by

�(x
1

, . . . , xn) =
Y

1i<jn

(xi � xj).

More generally, for any permutation � 2 Sn, define �(x�(1), . . . , x�(n)) by

�(x�(1), . . . , x�(n)) =
Y

1i<jn

(x�(i) � x�(j)).

The expression �(x
1

, . . . , xn) is often called the discriminant of
(x

1

, . . . , xn).

�(x
1

, . . . , xn) 6= 0. The discriminant consists of
�
n
2

�
factors. When

n = 3,

�(x
1

, x
2

, x
3

) = (x
1

� x
2

)(x
1

� x
3

)(x
2

� x
3

).
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If � is the permutation
✓
1 2 3
2 3 2

◆
,

then

�(x�(1), x�(2), x�(3)) = (x�(1) � x�(2))(x�(1) � x�(3))(x�(2) � x�(3))

= (x
2

� x
3

)(x
2

� x
1

)(x
3

� x
1

).

Observe that

�(x�(1), x�(2), x�(3)) = (�1)2�(x
1

, x
2

, x
3

),

since two transpositions applied to the identity permutation 1 2 3 (written
in one-line notation) give rise to 2 3 1. This result regarding the parity of
�(x�(1), . . . , x�(n)) is generalized by the following proposition.

Proposition 6.2. For every basic transposition ⌧ of [n] (n � 2), we have

�(x⌧(1), . . . , x⌧(n)) = ��(x
1

, . . . , xn).

The above also holds for every transposition, and more generally, for every
composition of transpositions � = ⌧p � · · · � ⌧

1

, we have

�(x�(1), . . . , x�(n)) = (�1)p�(x
1

, . . . , xn).

Consequently, for every permutation � of [n], the parity of the number p of
transpositions involved in any decomposition of � as � = ⌧p � · · · � ⌧

1

is an
invariant (only depends on �).

Proof. Suppose ⌧ exchanges xk and xk+1

. The terms xi � xj that are
a↵ected correspond to i = k, or i = k + 1, or j = k, or j = k + 1. The
contribution of these terms in �(x

1

, . . . , xn) is

(xk � xk+1

)[(xk � xk+2

) · · · (xk � xn)][(xk+1

� xk+2

) · · · (xk+1

� xn)]

[(x
1

� xk) · · · (xk�1

� xk)][(x1

� xk+1

) · · · (xk�1

� xk+1

)].

When we exchange xk and xk+1

, the first factor is multiplied by �1, the sec-
ond and the third factor are exchanged, and the fourth and the fifth factor
are exchanged, so the whole product �(x

1

, . . . , xn) is is indeed multiplied
by �1, that is,

�(x⌧(1), . . . , x⌧(n)) = ��(x
1

, . . . , xn).

For the second statement, first we observe that since every transposition ⌧
can be written as the composition of an odd number of basic transpositions
(see the the remark following Proposition 6.1), we also have

�(x⌧(1), . . . , x⌧(n)) = ��(x
1

, . . . , xn).
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Next we proceed by induction on the number p of transpositions involved
in the decomposition of a permutation �.

The base case p = 1 has just been proven. If p � 2, if we write ! =
⌧p�1

� · · · � ⌧
1

, then � = ⌧p � ! and

�(x�(1), . . . , x�(n)) = �(x⌧p(!(1)), . . . , x⌧p(!(n)))

= ��(x!(1), . . . , x!(n))

= �(�1)p�1�(x
1

, . . . , xn)

= (�1)p�(x
1

, . . . , xn),

where we used the induction hypothesis from the second to the third line,
establishing the induction hypothesis. Since �(x�(1), . . . , x�(n)) only de-
pends on �, the equation

�(x�(1), . . . , x�(n)) = (�1)p�(x
1

, . . . , xn).

shows that the parity (�1)p of the number of transpositions in any decom-
position of � is an invariant.

In view of Proposition 6.2, the following definition makes sense:

Definition 6.3. For every permutation � of [n], the parity ✏(�) (or sgn(�))
of the number of transpositions involved in any decomposition of � is called
the signature (or sign) of �.

Obviously ✏(⌧) = �1 for every transposition ⌧ (since (�1)1 = �1).
A simple way to compute the signature of a permutation is to count its

number of inversions.

Definition 6.4. Given any permutation � on n elements, we say that a
pair (i, j) of indices i, j 2 {1, . . . , n} such that i < j and �(i) > �(j) is an
inversion of the permutation �.

For example, the permutation � given by
✓
1 2 3 4 5 6
2 4 3 6 5 1

◆

has seven inversions

(1, 6), (2, 3), (2, 6), (3, 6), (4, 5), (4, 6), (5, 6).

Proposition 6.3. The signature ✏(�) of any permutation � is equal to the
parity (�1)I(�) of the number I(�) of inversions in �.
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Proof. In the product

�(x�(1), . . . , x�(n)) =
Y

1i<jn

(x�(i) � x�(j)),

the terms x�(i)�x�(j) for which �(i) < �(j) occur in�(x
1

, . . . , xn), whereas
the terms x�(i) � x�(j) for which �(i) > �(j) occur in �(x

1

, . . . , xn) with a
minus sign. Therefore, the number ⌫ of terms in �(x�(1), . . . , x�(n)) whose
sign is the opposite of a term in �(x

1

, . . . , xn), is equal to the number I(�)
of inversions in �, which implies that

�(x�(1), . . . , x�(n)) = (�1)I(�)�(x
1

, . . . , xn).

By Proposition 6.2, the sign of (�1)I(�) is equal to the signature of �.

For example, the permutation✓
1 2 3 4 5 6
2 4 3 6 5 1

◆

has odd signature since it has seven inversions and (�1)7 = �1.

Remark: When ⇡ = idn is the identity permutation, since we agreed that
the composition of 0 transpositions is the identity, it it still correct that
(�1)0 = ✏(id) = +1. From Proposition 6.2, it is immediate that ✏(⇡0 �⇡) =
✏(⇡0)✏(⇡). In particular, since ⇡�1 � ⇡ = idn, we get ✏(⇡�1) = ✏(⇡).

We can now proceed with the definition of determinants.

6.2 Alternating Multilinear Maps

First we define multilinear maps, symmetric multilinear maps, and alter-
nating multilinear maps.

Remark: Most of the definitions and results presented in this section also
hold when K is a commutative ring and when we consider modules over K
(free modules, when bases are needed).

Let E
1

, . . . , En, and F , be vector spaces over a field K, where n � 1.

Definition 6.5. A function f : E
1

⇥ . . .⇥En ! F is a multilinear map (or
an n-linear map) if it is linear in each argument, holding the others fixed.
More explicitly, for every i, 1  i  n, for all x

1

2 E
1

, . . ., xi�1

2 Ei�1

,
xi+1

2 Ei+1

, . . ., xn 2 En, for all x, y 2 Ei, for all � 2 K,

f(x
1

, . . . , xi�1

, x+ y, xi+1

, . . . , xn) = f(x
1

, . . . , xi�1

, x, xi+1

, . . . , xn)

+ f(x
1

, . . . , xi�1

, y, xi+1

, . . . , xn),

f(x
1

, . . . , xi�1

,�x, xi+1

, . . . , xn) = �f(x
1

, . . . , xi�1

, x, xi+1

, . . . , xn).
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When F = K, we call f an n-linear form (or multilinear form). If n � 2
and E

1

= E
2

= . . . = En, an n-linear map f : E ⇥ . . . ⇥ E ! F is called
symmetric, if f(x

1

, . . . , xn) = f(x⇡(1), . . . , x⇡(n)) for every permutation ⇡
on {1, . . . , n}. An n-linear map f : E ⇥ . . . ⇥ E ! F is called alternating ,
if f(x

1

, . . . , xn) = 0 whenever xi = xi+1

for some i, 1  i  n� 1 (in other
words, when two adjacent arguments are equal). It does no harm to agree
that when n = 1, a linear map is considered to be both symmetric and
alternating, and we will do so.

When n = 2, a 2-linear map f : E
1

⇥ E
2

! F is called a bilinear map.
We have already seen several examples of bilinear maps. Multiplication
· : K ⇥ K ! K is a bilinear map, treating K as a vector space over itself.

The operation h�,�i : E⇤ ⇥ E ! K applying a linear form to a vector
is a bilinear map.

Symmetric bilinear maps (and multilinear maps) play an important role
in geometry (inner products, quadratic forms) and in di↵erential calculus
(partial derivatives).

A bilinear map is symmetric if f(u, v) = f(v, u), for all u, v 2 E.
Alternating multilinear maps satisfy the following simple but crucial

properties.

Proposition 6.4. Let f : E ⇥ . . .⇥E ! F be an n-linear alternating map,
with n � 2. The following properties hold:

(1)

f(. . . , xi, xi+1

, . . .) = �f(. . . , xi+1

, xi, . . .)

(2)

f(. . . , xi, . . . , xj , . . .) = 0,

where xi = xj, and 1  i < j  n.
(3)

f(. . . , xi, . . . , xj , . . .) = �f(. . . , xj , . . . , xi, . . .),

where 1  i < j  n.
(4)

f(. . . , xi, . . .) = f(. . . , xi + �xj , . . .),

for any � 2 K, and where i 6= j.
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Proof. (1) By multilinearity applied twice, we have

f(. . . , xi + xi+1

, xi + xi+1

, . . .) = f(. . . , xi, xi, . . .) + f(. . . , xi, xi+1

, . . .)

+ f(. . . , xi+1

, xi, . . .) + f(. . . , xi+1

, xi+1

, . . .),

and since f is alternating, this yields

0 = f(. . . , xi, xi+1

, . . .) + f(. . . , xi+1

, xi, . . .),

that is, f(. . . , xi, xi+1

, . . .) = �f(. . . , xi+1

, xi, . . .).
(2) If xi = xj and i and j are not adjacent, we can interchange xi and

xi+1

, and then xi and xi+2

, etc, until xi and xj become adjacent. By (1),

f(. . . , xi, . . . , xj , . . .) = ✏f(. . . , xi, xj , . . .),

where ✏ = +1 or �1, but f(. . . , xi, xj , . . .) = 0, since xi = xj , and (2) holds.
(3) follows from (2) as in (1). (4) is an immediate consequence of (2).

Proposition 6.4 will now be used to show a fundamental property of
alternating multilinear maps. First we need to extend the matrix notation
a little bit. Let E be a vector space over K. Given an n ⇥ n matrix
A = (ai j) over K, we can define a map L(A) : En ! En as follows:

L(A)
1

(u) = a
1 1

u
1

+ · · · + a
1nun,

. . .

L(A)n(u) = an 1

u
1

+ · · · + annun,

for all u
1

, . . . , un 2 E and with u = (u
1

, . . . , un). It is immediately verified
that L(A) is linear. Then given two n⇥nmatrices A = (ai j) and B = (bi j),
by repeating the calculations establishing the product of matrices (just
before Definition 2.14), we can show that

L(AB) = L(A) � L(B).

It is then convenient to use the matrix notation to describe the e↵ect of the
linear map L(A), as

0

BBB@

L(A)
1

(u)
L(A)

2

(u)
...

L(A)n(u)

1

CCCA
=

0

BBB@

a
1 1

a
1 2

. . . a
1n

a
2 1

a
2 2

. . . a
2n

...
...

. . .
...

an 1

an 2

. . . ann

1

CCCA

0

BBB@

u
1

u
2

...
un

1

CCCA
.

Lemma 6.1. Let f : E ⇥ . . .⇥E ! F be an n-linear alternating map. Let
(u

1

, . . . , un) and (v
1

, . . . , vn) be two families of n vectors, such that,

v
1

= a
1 1

u
1

+ · · · + an 1

un,

. . .

vn = a
1nu1

+ · · · + annun.
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Equivalently, letting

A =

0

BBB@

a
1 1

a
1 2

. . . a
1n

a
2 1

a
2 2

. . . a
2n

...
...

. . .
...

an 1

an 2

. . . ann

1

CCCA
,

assume that we have 0

BBB@

v
1

v
2

...
vn

1

CCCA
= A>

0

BBB@

u
1

u
2

...
un

1

CCCA
.

Then,

f(v
1

, . . . , vn) =
⇣ X

⇡2Sn

✏(⇡)a⇡(1) 1 · · · a⇡(n)n
⌘
f(u

1

, . . . , un),

where the sum ranges over all permutations ⇡ on {1, . . . , n}.

Proof. Expanding f(v
1

, . . . , vn) by multilinearity, we get a sum of terms
of the form

a⇡(1) 1 · · · a⇡(n)nf(u⇡(1), . . . , u⇡(n)),
for all possible functions ⇡ : {1, . . . , n} ! {1, . . . , n}. However, because f
is alternating, only the terms for which ⇡ is a permutation are nonzero. By
Proposition 6.1, every permutation ⇡ is a product of transpositions, and
by Proposition 6.2, the parity ✏(⇡) of the number of transpositions only
depends on ⇡. Then applying Proposition 6.4 (3) to each transposition in
⇡, we get

a⇡(1) 1 · · · a⇡(n)nf(u⇡(1), . . . , u⇡(n)) = ✏(⇡)a⇡(1) 1 · · · a⇡(n)nf(u1

, . . . , un).

Thus, we get the expression of the lemma.

For the case of n = 2, the proof details of Lemma 6.1 become

f(v
1

, v
2

) = f(a
11

u
1

+ a
21

u
2

, a
12

u
1

+ a
22

u
2

)

= f(a
11

u
1

+ a
21

u
2

, a
12

u
1

) + f(a
11

u
1

+ a
21

u
2

, a
22

u
2

)

= f(a
11

u
1

, a
12

u
1

) + f(a
21

u
2

, a
12

u
1

)

+ f(a
11

ua, a22u2

) + f(a
21

u
2

, a
22

u
2

)

= a
11

a
12

f(u
1

, u
1

) + a
21

a
12

f(u
2

, u
1

) + a
11

a
22

f(u
1

, u
2

)

+ a
21

a
22

f(u
2

, u
2

)

= a
21

a
12

f(u
2

, u
1

) + a
11

a
22

f(u
1

, u
2

)

= (a
11

a
22

� a
12

a
21

) f(u
1

, u
2

).
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Hopefully the reader will recognize the quantity a
11

a
22

� a
12

a
21

. It is the
determinant of the 2 ⇥ 2 matrix

A =

✓
a
11

a
12

a
21

a
22

◆
.

This is no accident. The quantity

det(A) =
X

⇡2Sn

✏(⇡)a⇡(1) 1 · · · a⇡(n)n

is in fact the value of the determinant of A (which, as we shall see shortly,
is also equal to the determinant of A>). However, working directly with
the above definition is quite awkward, and we will proceed via a slightly
indirect route

Remark: The reader might have been puzzled by the fact that it is the
transpose matrix A> rather than A itself that appears in Lemma 6.1. The
reason is that if we want the generic term in the determinant to be

✏(⇡)a⇡(1) 1 · · · a⇡(n)n,

where the permutation applies to the first index, then we have to express
the vjs in terms of the uis in terms of A> as we did. Furthermore, since

vj = a
1 ju1

+ · · · + ai jui + · · · + an jun,

we see that vj corresponds to the jth column of the matrix A, and so the
determinant is viewed as a function of the columns of A.

The literature is split on this point. Some authors prefer to define a
determinant as we did. Others use A itself, which amounts to viewing det
as a function of the rows, in which case we get the expression

X

�2Sn

✏(�)a
1�(1) · · · an�(n).

Corollary 6.1 show that these two expressions are equal, so it doesn’t matter
which is chosen. This is a matter of taste.

6.3 Definition of a Determinant

Recall that the set of all square n ⇥ n-matrices with coe�cients in a field
K is denoted by Mn(K).

Definition 6.6. A determinant is defined as any map

D : Mn(K) ! K,
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which, when viewed as a map on (Kn)n, i.e., a map of the n columns of
a matrix, is n-linear alternating and such that D(In) = 1 for the identity
matrix In. Equivalently, we can consider a vector space E of dimension n,
some fixed basis (e

1

, . . . , en), and define

D : En ! K

as an n-linear alternating map such that D(e
1

, . . . , en) = 1.

First we will show that such maps D exist, using an inductive definition
that also gives a recursive method for computing determinants. Actually,
we will define a family (Dn)n�1

of (finite) sets of maps D : Mn(K) ! K.
Second we will show that determinants are in fact uniquely defined, that
is, we will show that each Dn consists of a single map. This will show
the equivalence of the direct definition det(A) of Lemma 6.1 with the in-
ductive definition D(A). Finally, we will prove some basic properties of
determinants, using the uniqueness theorem.

Given a matrix A 2 Mn(K), we denote its n columns by A1, . . . , An. In
order to describe the recursive process to define a determinant we need the
notion of a minor.

Definition 6.7. Given any n ⇥ n matrix with n � 2, for any two indices
i, j with 1  i, j  n, let Aij be the (n � 1) ⇥ (n � 1) matrix obtained by
deleting Row i and Column j from A and called a minor :

Aij =

0

BBBBBBBBB@

⇥
⇥

⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
⇥
⇥
⇥
⇥

1

CCCCCCCCCA

.

For example, if

A =

0

BBBB@

2 �1 0 0 0
�1 2 �1 0 0
0 �1 2 �1 0
0 0 �1 2 �1
0 0 0 �1 2

1

CCCCA

then

A
2 3

=

0

BB@

2 �1 0 0
0 �1 �1 0
0 0 2 �1
0 0 �1 2

1

CCA .



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 172

172 Determinants

Definition 6.8. For every n � 1, we define a finite set Dn of maps
D : Mn(K) ! K inductively as follows:

When n = 1, D
1

consists of the single map D such that, D(A) = a,
where A = (a), with a 2 K.

Assume that Dn�1

has been defined, where n � 2. Then Dn consists of
all the maps D such that, for some i, 1  i  n,

D(A) = (�1)i+1ai 1D(Ai 1) + · · · + (�1)i+nai nD(Ai n),

where for every j, 1  j  n, D(Ai j) is the result of applying any D in
Dn�1

to the minor Ai j .� We confess that the use of the same letter D for the member of Dn

being defined, and for members of Dn�1

, may be slightly confusing.
We considered using subscripts to distinguish, but this seems to complicate
things unnecessarily. One should not worry too much anyway, since it will
turn out that each Dn contains just one map.

Each (�1)i+jD(Ai j) is called the cofactor of ai j , and the inductive
expression for D(A) is called a Laplace expansion of D according to the i-th
Row . Given a matrix A 2 Mn(K), each D(A) is called a determinant of A.

We can think of each member of Dn as an algorithm to evaluate “the”
determinant of A. The main point is that these algorithms, which recur-
sively evaluate a determinant using all possible Laplace row expansions, all
yield the same result, det(A).

We will prove shortly that D(A) is uniquely defined (at the moment, it
is not clear that Dn consists of a single map). Assuming this fact, given a
n ⇥ n-matrix A = (ai j),

A =

0

BBB@

a
1 1

a
1 2

. . . a
1n

a
2 1

a
2 2

. . . a
2n

...
...

. . .
...

an 1

an 2

. . . ann

1

CCCA
,

its determinant is denoted by D(A) or det(A), or more explicitly by

det(A) =

���������

a
1 1

a
1 2

. . . a
1n

a
2 1

a
2 2

. . . a
2n

...
...

. . .
...

an 1

an 2

. . . ann

���������

.

Let us first consider some examples.

Example 6.1.
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(1) When n = 2, if

A =

✓
a b
c d

◆
,

then by expanding according to any row, we have

D(A) = ad � bc.

(2) When n = 3, if

A =

0

@
a
1 1

a
1 2

a
1 3

a
2 1

a
2 2

a
2 3

a
3 1

a
3 2

a
3 3

1

A ,

then by expanding according to the first row, we have

D(A) = a
1 1

����
a
2 2

a
2 3

a
3 2

a
3 3

����� a
1 2

����
a
2 1

a
2 3

a
3 1

a
3 3

����+ a
1 3

����
a
2 1

a
2 2

a
3 1

a
3 2

���� ,

that is,

D(A) = a
1 1

(a
2 2

a
3 3

� a
3 2

a
2 3

) � a
1 2

(a
2 1

a
3 3

� a
3 1

a
2 3

)

+ a
1 3

(a
2 1

a
3 2

� a
3 1

a
2 2

),

which gives the explicit formula

D(A) = a
1 1

a
2 2

a
3 3

+ a
2 1

a
3 2

a
1 3

+ a
3 1

a
1 2

a
2 3

� a
1 1

a
3 2

a
2 3

� a
2 1

a
1 2

a
3 3

� a
3 1

a
2 2

a
1 3

.

We now show that each D 2 Dn is a determinant (map).

Lemma 6.2. For every n � 1, for every D 2 Dn as defined in Definition
6.8, D is an alternating multilinear map such that D(In) = 1.

Proof. By induction on n, it is obvious that D(In) = 1. Let us now prove
thatD is multilinear. Let us show thatD is linear in each column. Consider
any Column k. Since

D(A) = (�1)i+1ai 1D(Ai 1) + · · · + (�1)i+jai jD(Ai j) + · · ·
+ (�1)i+nai nD(Ai n),

if j 6= k, then by induction, D(Ai j) is linear in Column k, and ai j does not
belong to Column k, so (�1)i+jai jD(Ai j) is linear in Column k. If j = k,
then D(Ai j) does not depend on Column k = j, since Ai j is obtained
from A by deleting Row i and Column j = k, and ai j belongs to Column
j = k. Thus, (�1)i+jai jD(Ai j) is linear in Column k. Consequently, in all



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 174

174 Determinants

cases, (�1)i+jai jD(Ai j) is linear in Column k, and thus, D(A) is linear in
Column k.

Let us now prove that D is alternating. Assume that two adjacent
columns of A are equal, say Ak = Ak+1. Assume that j 6= k and j 6=
k+1. Then the matrix Ai j has two identical adjacent columns, and by the
induction hypothesis, D(Ai j) = 0. The remaining terms of D(A) are

(�1)i+kai kD(Ai k) + (�1)i+k+1ai k+1

D(Ai k+1

).

However, the two matrices Ai k and Ai k+1

are equal, since we are assuming
that Columns k and k+1 of A are identical and Ai k is obtained from A by
deleting Row i and Column k while Ai k+1

is obtained from A by deleting
Row i and Column k + 1. Similarly, ai k = ai k+1

, since Columns k and
k + 1 of A are equal. But then,

(�1)i+kai kD(Ai k) + (�1)i+k+1ai k+1

D(Ai k+1

)

= (�1)i+kai kD(Ai k) � (�1)i+kai kD(Ai k) = 0.

This shows that D is alternating and completes the proof.

Lemma 6.2 shows the existence of determinants. We now prove their
uniqueness.

Theorem 6.1. For every n � 1, for every D 2 Dn, for every matrix
A 2 Mn(K), we have

D(A) =
X

⇡2Sn

✏(⇡)a⇡(1) 1 · · · a⇡(n)n,

where the sum ranges over all permutations ⇡ on {1, . . . , n}. As a conse-
quence, Dn consists of a single map for every n � 1, and this map is given
by the above explicit formula.

Proof. Consider the standard basis (e
1

, . . . , en) of Kn, where (ei)i = 1
and (ei)j = 0, for j 6= i. Then each column Aj of A corresponds to a vector
vj whose coordinates over the basis (e

1

, . . . , en) are the components of Aj ,
that is, we can write

v
1

= a
1 1

e
1

+ · · · + an 1

en,

. . .

vn = a
1ne1 + · · · + annen.

Since by Lemma 6.2, each D is a multilinear alternating map, by applying
Lemma 6.1, we get

D(A) = D(v
1

, . . . , vn) =
⇣ X

⇡2Sn

✏(⇡)a⇡(1) 1 · · · a⇡(n)n
⌘
D(e

1

, . . . , en),
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where the sum ranges over all permutations ⇡ on {1, . . . , n}. But
D(e

1

, . . . , en) = D(In), and by Lemma 6.2, we have D(In) = 1. Thus,

D(A) =
X

⇡2Sn

✏(⇡)a⇡(1) 1 · · · a⇡(n)n,

where the sum ranges over all permutations ⇡ on {1, . . . , n}.

From now on we will favor the notation det(A) over D(A) for the de-
terminant of a square matrix.

Remark: There is a geometric interpretation of determinants which we
find quite illuminating. Given n linearly independent vectors (u

1

, . . . , un)
in Rn, the set

Pn = {�
1

u
1

+ · · · + �nun | 0  �i  1, 1  i  n}
is called a parallelotope. If n = 2, then P

2

is a parallelogram and if n = 3,
then P

3

is a parallelepiped , a skew box having u
1

, u
2

, u
3

as three of its corner
sides. See Figures 6.1 and 6.2.

u = (1,0)1

u = (1,1)
2

Fig. 6.1 The parallelogram in Rw spanned by the vectors u1 = (1, 0) and u2 = (1, 1).

Then it turns out that det(u
1

, . . . , un) is the signed volume of the paral-
lelotope Pn (where volume means n-dimensional volume). The sign of this
volume accounts for the orientation of Pn in Rn.

We can now prove some properties of determinants.

Corollary 6.1. For every matrix A 2 Mn(K), we have det(A) = det(A>).
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u = (1,1,0)
1

u = (0,1,0)
2

u = (1,1,1)
3

Fig. 6.2 The parallelepiped in R3 spanned by the vectors u1 = (1, 1, 0), u2 = (0, 1, 0),
and u3 = (0, 0, 1).

Proof. By Theorem 6.1, we have

det(A) =
X

⇡2Sn

✏(⇡)a⇡(1) 1 · · · a⇡(n)n,

where the sum ranges over all permutations ⇡ on {1, . . . , n}. Since a per-
mutation is invertible, every product

a⇡(1) 1 · · · a⇡(n)n

can be rewritten as

a
1⇡�1

(1)

· · · an⇡�1
(n),

and since ✏(⇡�1) = ✏(⇡) and the sum is taken over all permutations on
{1, . . . , n}, we have

X

⇡2Sn

✏(⇡)a⇡(1) 1 · · · a⇡(n)n =
X

�2Sn

✏(�)a
1�(1) · · · an�(n),
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where ⇡ and � range over all permutations. But it is immediately verified
that

det(A>) =
X

�2Sn

✏(�)a
1�(1) · · · an�(n).

A useful consequence of Corollary 6.1 is that the determinant of a ma-
trix is also a multilinear alternating map of its rows. This fact, combined
with the fact that the determinant of a matrix is a multilinear alternating
map of its columns, is often useful for finding short-cuts in computing de-
terminants. We illustrate this point on the following example which shows
up in polynomial interpolation.

Example 6.2. Consider the so-called Vandermonde determinant

V (x
1

, . . . , xn) =

�����������

1 1 . . . 1
x
1

x
2

. . . xn

x2

1

x2

2

. . . x2

n
...

...
. . .

...
xn�1

1

xn�1

2

. . . xn�1

n

�����������

.

We claim that

V (x
1

, . . . , xn) =
Y

1i<jn

(xj � xi),

with V (x
1

, . . . , xn) = 1, when n = 1. We prove it by induction on n � 1.
The case n = 1 is obvious. Assume n � 2. We proceed as follows: multiply
Row n� 1 by x

1

and subtract it from Row n (the last row), then multiply
Row n � 2 by x

1

and subtract it from Row n � 1, etc, multiply Row i � 1
by x

1

and subtract it from row i, until we reach Row 1. We obtain the
following determinant:

V (x
1

, . . . , xn) =

�����������

1 1 . . . 1
0 x

2

� x
1

. . . xn � x
1

0 x
2

(x
2

� x
1

) . . . xn(xn � x
1

)
...

...
. . .

...
0 xn�2

2

(x
2

� x
1

) . . . xn�2

n (xn � x
1

)

�����������

.

Now expanding this determinant according to the first column and using
multilinearity, we can factor (xi �x

1

) from the column of index i� 1 of the
matrix obtained by deleting the first row and the first column, and thus

V (x
1

, . . . , xn) = (x
2

� x
1

)(x
3

� x
1

) · · · (xn � x
1

)V (x
2

, . . . , xn),

which establishes the induction step.
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Remark: Observe that

�(x
1

, . . . , xn) = V (xn, . . . , x1

) = (�1)(
n
2)V (x

1

, . . . xn),

where �(x
1

, . . . , xn) is the discriminant of (x
1

, . . . , xn) introduced in Defi-
nition 6.2.

Lemma 6.1 can be reformulated nicely as follows.

Proposition 6.5. Let f : E ⇥ . . .⇥E ! F be an n-linear alternating map.
Let (u

1

, . . . , un) and (v
1

, . . . , vn) be two families of n vectors, such that

v
1

= a
1 1

u
1

+ · · · + a
1nun,

. . .

vn = an 1

u
1

+ · · · + annun.

Equivalently, letting

A =

0

BBB@

a
1 1

a
1 2

. . . a
1n

a
2 1

a
2 2

. . . a
2n

...
...

. . .
...

an 1

an 2

. . . ann

1

CCCA
,

assume that we have
0

BBB@

v
1

v
2

...
vn

1

CCCA
= A

0

BBB@

u
1

u
2

...
un

1

CCCA
.

Then,

f(v
1

, . . . , vn) = det(A)f(u
1

, . . . , un).

Proof. The only di↵erence with Lemma 6.1 is that here we are using A>

instead of A. Thus, by Lemma 6.1 and Corollary 6.1, we get the desired
result.

As a consequence, we get the very useful property that the determinant
of a product of matrices is the product of the determinants of these matrices.

Proposition 6.6. For any two n⇥n-matrices A and B, we have det(AB) =
det(A) det(B).
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Proof. We use Proposition 6.5 as follows: let (e
1

, . . . , en) be the standard
basis of Kn, and let

0

BBB@

w
1

w
2

...
wn

1

CCCA
= AB

0

BBB@

e
1

e
2

...
en

1

CCCA
.

Then we get

det(w
1

, . . . , wn) = det(AB) det(e
1

, . . . , en) = det(AB),

since det(e
1

, . . . , en) = 1. Now letting
0

BBB@

v
1

v
2

...
vn

1

CCCA
= B

0

BBB@

e
1

e
2

...
en

1

CCCA
,

we get

det(v
1

, . . . , vn) = det(B),

and since 0

BBB@

w
1

w
2

...
wn

1

CCCA
= A

0

BBB@

v
1

v
2

...
vn

1

CCCA
,

we get

det(w
1

, . . . , wn) = det(A) det(v
1

, . . . , vn) = det(A) det(B).

It should be noted that all the results of this section, up to now, also
hold when K is a commutative ring and not necessarily a field. We can now
characterize when an n⇥n-matrix A is invertible in terms of its determinant
det(A).

6.4 Inverse Matrices and Determinants

In the next two sections, K is a commutative ring and when needed a field.

Definition 6.9. Let K be a commutative ring. Given a matrix A 2
Mn(K), let eA = (bi j) be the matrix defined such that

bi j = (�1)i+j det(Aj i),

the cofactor of aj i. The matrix eA is called the adjugate of A, and each
matrix Aj i is called a minor of the matrix A.
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For example, if

A =

0

@
1 1 1
2 �2 �2
3 3 �3

1

A ,

we have

b
11

= det(A
11

) =

����
�2 �2
3 �3

���� = 12 b
12

= � det(A
21

) = �
����
1 1
3 �3

���� = 6

b
13

= det(A
31

) =

����
1 1

�2 �2

���� = 0 b
21

= � det(A
12

) = �
����
2 �2
3 �3

���� = 0

b
22

= det(A
22

) =

����
1 1
3 �3

���� = �6 b
23

= � det(A
32

) = �
����
1 1
2 �2

���� = 4

b
31

= det(A
13

) =

����
2 �2
3 3

���� = 12 b
32

= � det(A
23

) = �
����
1 1
3 3

���� = 0

b
33

= det(A
33

) =

����
1 1
2 �2

���� = �4,

we find that

eA =

0

@
12 6 0
0 �6 4
12 0 �4

1

A .

� Note the reversal of the indices in

bi j = (�1)i+j det(Aj i).

Thus, eA is the transpose of the matrix of cofactors of elements of A.

We have the following proposition.

Proposition 6.7. Let K be a commutative ring. For every matrix A 2
Mn(K), we have

A eA = eAA = det(A)In.

As a consequence, A is invertible i↵ det(A) is invertible, and if so, A�1 =
(det(A))�1 eA.

Proof. If eA = (bi j) and A eA = (ci j), we know that the entry ci j in row i
and column j of A eA is

ci j = ai 1b1 j + · · · + ai kbk j + · · · + ai nbn j ,
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which is equal to

ai 1(�1)j+1 det(Aj 1) + · · · + ai n(�1)j+n det(Aj n).

If j = i, then we recognize the expression of the expansion of det(A) ac-
cording to the i-th row:

ci i = det(A) = ai 1(�1)i+1 det(Ai 1) + · · · + ai n(�1)i+n det(Ai n).

If j 6= i, we can form the matrix A0 by replacing the j-th row of A by the
i-th row of A. Now the matrix Aj k obtained by deleting row j and column
k from A is equal to the matrix A0

j k obtained by deleting row j and column
k from A0, since A and A0 only di↵er by the j-th row. Thus,

det(Aj k) = det(A0
j k),

and we have

ci j = ai 1(�1)j+1 det(A0
j 1) + · · · + ai n(�1)j+n det(A0

j n).

However, this is the expansion of det(A0) according to the j-th row, since
the j-th row of A0 is equal to the i-th row of A. Furthermore, since A0 has
two identical rows i and j, because det is an alternating map of the rows
(see an earlier remark), we have det(A0) = 0. Thus, we have shown that
ci i = det(A), and ci j = 0, when j 6= i, and so

A eA = det(A)In.

It is also obvious from the definition of eA, that

eA> = fA>.

Then applying the first part of the argument to A>, we have

A>fA> = det(A>)In,

and since det(A>) = det(A), eA> = fA>, and ( eAA)> = A> eA>, we get

det(A)In = A>fA> = A> eA> = ( eAA)>,

that is,

( eAA)> = det(A)In,

which yields

eAA = det(A)In,

since I>n = In. This proves that

A eA = eAA = det(A)In.

As a consequence, if det(A) is invertible, we have A�1 = (det(A))�1 eA.
Conversely, if A is invertible, from AA�1 = In, by Proposition 6.6, we have
det(A) det(A�1) = 1, and det(A) is invertible.
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For example, we saw earlier that

A =

0

@
1 1 1
2 �2 �2
3 3 �3

1

A and eA =

0

@
12 6 0
0 �6 4
12 0 �4

1

A ,

and we have 0

@
1 1 1
2 �2 �2
3 3 �3

1

A

0

@
12 6 0
0 �6 4
12 0 �4

1

A = 24

0

@
1 0 0
0 1 0
0 0 1

1

A

with det(A) = 24.
When K is a field, an element a 2 K is invertible i↵ a 6= 0. In this

case, the second part of the proposition can be stated as A is invertible i↵
det(A) 6= 0. Note in passing that this method of computing the inverse of
a matrix is usually not practical.

6.5 Systems of Linear Equations and Determinants

We now consider some applications of determinants to linear independence
and to solving systems of linear equations. Although these results hold for
matrices over certain rings, their proofs require more sophisticated methods.
Therefore, we assume again that K is a field (usually, K = R or K = C).

Let A be an n⇥n-matrix, x a column vectors of variables, and b another
column vector, and let A1, . . . , An denote the columns of A. Observe that
the system of equations Ax = b,

0

BBB@

a
1 1

a
1 2

. . . a
1n

a
2 1

a
2 2

. . . a
2n

...
...

. . .
...

an 1

an 2

. . . ann

1

CCCA

0

BBB@

x
1

x
2

...
xn

1

CCCA
=

0

BBB@

b
1

b
2

...
bn

1

CCCA

is equivalent to

x
1

A1 + · · · + xjA
j + · · · + xnA

n = b,

since the equation corresponding to the i-th row is in both cases

ai 1x1

+ · · · + ai jxj + · · · + ai nxn = bi.

First we characterize linear independence of the column vectors of a
matrix A in terms of its determinant.

Proposition 6.8. Given an n ⇥ n-matrix A over a field K, the columns
A1, . . . , An of A are linearly dependent i↵ det(A) = det(A1, . . . , An) = 0.
Equivalently, A has rank n i↵ det(A) 6= 0.



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 183

6.5. Systems of Linear Equations and Determinants 183

Proof. First assume that the columns A1, . . . , An of A are linearly depen-
dent. Then there are x

1

, . . . , xn 2 K, such that

x
1

A1 + · · · + xjA
j + · · · + xnA

n = 0,

where xj 6= 0 for some j. If we compute

det(A1, . . . , x
1

A1 + · · · + xjA
j + · · · + xnA

n, . . . , An)

= det(A1, . . . , 0, . . . , An) = 0,

where 0 occurs in the j-th position. By multilinearity, all terms containing
two identical columns Ak for k 6= j vanish, and we get

det(A1, . . . , x
1

A1+· · ·+xjA
j+· · ·+xnA

n, . . . , An) = xj det(A
1, . . . , An) = 0.

Since xj 6= 0 and K is a field, we must have det(A1, . . . , An) = 0.
Conversely, we show that if the columns A1, . . . , An of A are linearly

independent, then det(A1, . . . , An) 6= 0. If the columns A1, . . . , An of A are
linearly independent, then they form a basis of Kn, and we can express the
standard basis (e

1

, . . . , en) of Kn in terms of A1, . . . , An. Thus, we have
0

BBB@

e
1

e
2

...
en

1

CCCA
=

0

BBB@

b
1 1

b
1 2

. . . b
1n

b
2 1

b
2 2

. . . b
2n

...
...

. . .
...

bn 1

bn 2

. . . bnn

1

CCCA

0

BBB@

A1

A2

...
An

1

CCCA
,

for some matrix B = (bi j), and by Proposition 6.5, we get

det(e
1

, . . . , en) = det(B) det(A1, . . . , An),

and since det(e
1

, . . . , en) = 1, this implies that det(A1, . . . , An) 6= 0 (and
det(B) 6= 0). For the second assertion, recall that the rank of a matrix is
equal to the maximum number of linearly independent columns, and the
conclusion is clear.

We now characterize when a system of linear equations of the form
Ax = b has a unique solution.

Proposition 6.9. Given an n ⇥ n-matrix A over a field K, the following
properties hold:

(1) For every column vector b, there is a unique column vector x such that
Ax = b i↵ the only solution to Ax = 0 is the trivial vector x = 0, i↵
det(A) 6= 0.
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(2) If det(A) 6= 0, the unique solution of Ax = b is given by the expressions

xj =
det(A1, . . . , Aj�1, b, Aj+1, . . . , An)

det(A1, . . . , Aj�1, Aj , Aj+1, . . . , An)
,

known as Cramer’s rules.
(3) The system of linear equations Ax = 0 has a nonzero solution i↵

det(A) = 0.

Proof. (1) Assume that Ax = b has a single solution x
0

, and assume that
Ay = 0 with y 6= 0. Then,

A(x
0

+ y) = Ax
0

+Ay = Ax
0

+ 0 = b,

and x
0

+y 6= x
0

is another solution of Ax = b, contradicting the hypothesis
that Ax = b has a single solution x

0

. Thus, Ax = 0 only has the trivial so-
lution. Now assume that Ax = 0 only has the trivial solution. This means
that the columns A1, . . . , An of A are linearly independent, and by Propo-
sition 6.8, we have det(A) 6= 0. Finally, if det(A) 6= 0, by Proposition 6.7,
this means that A is invertible, and then for every b, Ax = b is equivalent
to x = A�1b, which shows that Ax = b has a single solution.

(2) Assume that Ax = b. If we compute

det(A1, . . . , x
1

A1+· · ·+xjA
j+· · ·+xnA

n, . . . , An) = det(A1, . . . , b, . . . , An),

where b occurs in the j-th position, by multilinearity, all terms containing
two identical columns Ak for k 6= j vanish, and we get

xj det(A
1, . . . , An) = det(A1, . . . , Aj�1, b, Aj+1, . . . , An),

for every j, 1  j  n. Since we assumed that det(A) = det(A1, . . . , An) 6=
0, we get the desired expression.

(3) Note that Ax = 0 has a nonzero solution i↵ A1, . . . , An are lin-
early dependent (as observed in the proof of Proposition 6.8), which, by
Proposition 6.8, is equivalent to det(A) = 0.

As pleasing as Cramer’s rules are, it is usually impractical to solve
systems of linear equations using the above expressions. However, these
formula imply an interesting fact, which is that the solution of the system
Ax = b are continuous in A and b. If we assume that the entries in A
are continuous functions aij(t) and the entries in b are are also continuous
functions bj(t) of a real parameter t, since determinants are polynomial
functions of their entries, the expressions

xj(t) =
det(A1, . . . , Aj�1, b, Aj+1, . . . , An)

det(A1, . . . , Aj�1, Aj , Aj+1, . . . , An)
are ratios of polynomials, and thus are also continuous as long as det(A(t))
is nonzero. Similarly, if the functions aij(t) and bj(t) are di↵erentiable, so
are the xj(t).



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 185

6.6. Determinant of a Linear Map 185

6.6 Determinant of a Linear Map

Given a vector space E of finite dimension n, given a basis (u
1

, . . . , un) of
E, for every linear map f : E ! E, if M(f) is the matrix of f w.r.t. the
basis (u

1

, . . . , un), we can define det(f) = det(M(f)). If (v
1

, . . . , vn) is any
other basis of E, and if P is the change of basis matrix, by Corollary 3.1,
the matrix of f with respect to the basis (v

1

, . . . , vn) is P�1M(f)P . By
Proposition 6.6, we have

det(P�1M(f)P ) = det(P�1) det(M(f)) det(P ) =

det(P�1) det(P ) det(M(f)) = det(M(f)).
Thus, det(f) is indeed independent of the basis of E.

Definition 6.10. Given a vector space E of finite dimension, for any linear
map f : E ! E, we define the determinant det(f) of f as the determinant
det(M(f)) of the matrix of f in any basis (since, from the discussion just
before this definition, this determinant does not depend on the basis).

Then we have the following proposition.

Proposition 6.10. Given any vector space E of finite dimension n, a lin-
ear map f : E ! E is invertible i↵ det(f) 6= 0.

Proof. The linear map f : E ! E is invertible i↵ its matrix M(f) in any
basis is invertible (by Proposition 3.2), i↵ det(M(f)) 6= 0, by Proposition
6.7.

Given a vector space of finite dimension n, it is easily seen that the set
of bijective linear maps f : E ! E such that det(f) = 1 is a group under
composition. This group is a subgroup of the general linear group GL(E).
It is called the special linear group (of E), and it is denoted by SL(E), or
when E = Kn, by SL(n,K), or even by SL(n).

6.7 The Cayley–Hamilton Theorem

We next discuss an interesting and important application of Proposition
6.7, the Cayley–Hamilton theorem. The results of this section apply to
matrices over any commutative ring K. First we need the concept of the
characteristic polynomial of a matrix.

Definition 6.11. If K is any commutative ring, for every n ⇥ n matrix
A 2 Mn(K), the characteristic polynomial PA(X) of A is the determinant

PA(X) = det(XI � A).
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The characteristic polynomial PA(X) is a polynomial in K[X], the ring
of polynomials in the indeterminate X with coe�cients in the ring K. For
example, when n = 2, if

A =

✓
a b
c d

◆
,

then

PA(X) =

����
X � a �b

�c X � d

���� = X2 � (a+ d)X + ad � bc.

We can substitute the matrix A for the variableX in the polynomial PA(X),
obtaining a matrix PA. If we write

PA(X) = Xn + c
1

Xn�1 + · · · + cn,

then

PA = An + c
1

An�1 + · · · + cnI.

We have the following remarkable theorem.

Theorem 6.2. (Cayley–Hamilton) If K is any commutative ring, for ev-
ery n ⇥ n matrix A 2 Mn(K), if we let

PA(X) = Xn + c
1

Xn�1 + · · · + cn

be the characteristic polynomial of A, then

PA = An + c
1

An�1 + · · · + cnI = 0.

Proof. We can view the matrix B = XI �A as a matrix with coe�cients
in the polynomial ring K[X], and then we can form the matrix eB which is
the transpose of the matrix of cofactors of elements of B. Each entry in eB
is an (n�1)⇥ (n�1) determinant, and thus a polynomial of degree a most
n � 1, so we can write eB as

eB = Xn�1B
0

+Xn�2B
1

+ · · · +Bn�1

,

for some n⇥ n matrices B
0

, . . . , Bn�1

with coe�cients in K. For example,
when n = 2, we have

B =

✓
X � a �b

�c X � d

◆
, eB =

✓
X � d b

c X � a

◆
= X

✓
1 0
0 1

◆
+

✓
�d b
c �a

◆
.

By Proposition 6.7, we have

B eB = det(B)I = PA(X)I.
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On the other hand, we have

B eB = (XI � A)(Xn�1B
0

+Xn�2B
1

+ · · · +Xn�j�1Bj + · · · +Bn�1

),

and by multiplying out the right-hand side, we get

B eB = XnD
0

+Xn�1D
1

+ · · · +Xn�jDj + · · · +Dn,

with

D
0

= B
0

D
1

= B
1

� AB
0

...

Dj = Bj � ABj�1

...

Dn�1

= Bn�1

� ABn�2

Dn = �ABn�1

.

Since

PA(X)I = (Xn + c
1

Xn�1 + · · · + cn)I,

the equality

XnD
0

+Xn�1D
1

+ · · · +Dn = (Xn + c
1

Xn�1 + · · · + cn)I

is an equality between two matrices, so it requires that all corresponding
entries are equal, and since these are polynomials, the coe�cients of these
polynomials must be identical, which is equivalent to the set of equations

I = B
0

c
1

I = B
1

� AB
0

...

cjI = Bj � ABj�1

...

cn�1

I = Bn�1

� ABn�2

cnI = �ABn�1

,
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for all j, with 1  j  n � 1. If, as in the table below,

An = AnB
0

c
1

An�1 = An�1(B
1

� AB
0

)

...

cjA
n�j = An�j(Bj � ABj�1

)

...

cn�1

A = A(Bn�1

� ABn�2

)

cnI = �ABn�1

,

we multiply the first equation by An, the last by I, and generally the
(j + 1)th by An�j , when we add up all these new equations, we see that
the right-hand side adds up to 0, and we get our desired equation

An + c
1

An�1 + · · · + cnI = 0,

as claimed.

As a concrete example, when n = 2, the matrix

A =

✓
a b
c d

◆

satisfies the equation

A2 � (a+ d)A+ (ad � bc)I = 0.

Most readers will probably find the proof of Theorem 6.2 rather clever
but very mysterious and unmotivated. The conceptual di�culty is that
we really need to understand how polynomials in one variable “act” on
vectors in terms of the matrix A. This can be done and yields a more
“natural” proof. Actually, the reasoning is simpler and more general if we
free ourselves from matrices and instead consider a finite-dimensional vector
space E and some given linear map f : E ! E. Given any polynomial
p(X) = a

0

Xn+a
1

Xn�1+ · · ·+an with coe�cients in the field K, we define
the linear map p(f) : E ! E by

p(f) = a
0

fn + a
1

fn�1 + · · · + anid,

where fk = f � · · · � f , the k-fold composition of f with itself. Note that

p(f)(u) = a
0

fn(u) + a
1

fn�1(u) + · · · + anu,
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for every vector u 2 E. Then we define a new kind of scalar multiplication
· : K[X] ⇥ E ! E by polynomials as follows: for every polynomial p(X) 2
K[X], for every u 2 E,

p(X) · u = p(f)(u).

It is easy to verify that this is a “good action,” which means that

p · (u+ v) = p · u+ p · v
(p+ q) · u = p · u+ q · u

(pq) · u = p · (q · u)
1 · u = u,

for all p, q 2 K[X] and all u, v 2 E. With this new scalar multiplication, E
is a K[X]-module.

If p = � is just a scalar in K (a polynomial of degree 0), then

� · u = (�id)(u) = �u,

which means that K acts on E by scalar multiplication as before. If p(X) =
X (the monomial X), then

X · u = f(u).

Now if we pick a basis (e
1

, . . . , en) of E, if a polynomial p(X) 2 K[X]
has the property that

p(X) · ei = 0, i = 1, . . . , n,

then this means that p(f)(ei) = 0 for i = 1, . . . , n, which means that the
linear map p(f) vanishes on E. We can also check, as we did in Section
6.2, that if A and B are two n ⇥ n matrices and if (u

1

, . . . , un) are any n
vectors, then

A ·

0

B@B ·

0

B@
u
1

...
un

1

CA

1

CA = (AB) ·

0

B@
u
1

...
un

1

CA .

This suggests the plan of attack for our second proof of the Cayley–
Hamilton theorem. For simplicity, we prove the theorem for vector spaces
over a field. The proof goes through for a free module over a commutative
ring.

Theorem 6.3. (Cayley–Hamilton) For every finite-dimensional vector
space over a field K, for every linear map f : E ! E, for every basis
(e

1

, . . . , en), if A is the matrix over f over the basis (e
1

, . . . , en) and if

PA(X) = Xn + c
1

Xn�1 + · · · + cn
is the characteristic polynomial of A, then

PA(f) = fn + c
1

fn�1 + · · · + cnid = 0.
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Proof. Since the columns of A consist of the vector f(ej) expressed over
the basis (e

1

, . . . , en), we have

f(ej) =
nX

i=1

ai jei, 1  j  n.

Using our action of K[X] on E, the above equations can be expressed as

X · ej =
nX

i=1

ai j · ei, 1  j  n,

which yields
j�1X

i=1

�ai j · ei + (X � aj j) · ej +
nX

i=j+1

�ai j · ei = 0, 1  j  n.

Observe that the transpose of the characteristic polynomial shows up, so
the above system can be written as

0

BBB@

X � a
1 1

�a
2 1

· · · �an 1

�a
1 2

X � a
2 2

· · · �an 2

...
...

...
...

�a
1n �a

2n · · · X � ann

1

CCCA
·

0

BBB@

e
1

e
2

...
en

1

CCCA
=

0

BBB@

0
0
...
0

1

CCCA
.

If we let B = XI �A>, then as in the previous proof, if eB is the transpose
of the matrix of cofactors of B, we have

eBB = det(B)I = det(XI � A>)I = det(XI � A)I = PAI.

But since

B ·

0

BBB@

e
1

e
2

...
en

1

CCCA
=

0

BBB@

0
0
...
0

1

CCCA
,

and since eB is matrix whose entries are polynomials in K[X], it makes
sense to multiply on the left by eB and we get

eB · B ·

0

BBB@

e
1

e
2

...
en

1

CCCA
= ( eBB) ·

0

BBB@

e
1

e
2

...
en

1

CCCA
= PAI ·

0

BBB@

e
1

e
2

...
en

1

CCCA
= eB ·

0

BBB@

0
0
...
0

1

CCCA
=

0

BBB@

0
0
...
0

1

CCCA
;

that is,

PA · ej = 0, j = 1, . . . , n,

which proves that PA(f) = 0, as claimed.
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IfK is a field, then the characteristic polynomial of a linear map f : E !
E is independent of the basis (e

1

, . . . , en) chosen in E. To prove this,
observe that the matrix of f over another basis will be of the form P�1AP ,
for some inverible matrix P , and then

det(XI � P�1AP ) = det(XP�1IP � P�1AP )

= det(P�1(XI � A)P )

= det(P�1) det(XI � A) det(P )

= det(XI � A).

Therefore, the characteristic polynomial of a linear map is intrinsic to f ,
and it is denoted by Pf .

The zeros (roots) of the characteristic polynomial of a linear map f are
called the eigenvalues of f . They play an important role in theory and
applications. We will come back to this topic later on.

6.8 Permanents

Recall that the explicit formula for the determinant of an n ⇥ n matrix is

det(A) =
X

⇡2Sn

✏(⇡)a⇡(1) 1 · · · a⇡(n)n.

If we drop the sign ✏(⇡) of every permutation from the above formula, we
obtain a quantity known as the permanent :

per(A) =
X

⇡2Sn

a⇡(1) 1 · · · a⇡(n)n.

Permanents and determinants were investigated as early as 1812 by Cauchy.
It is clear from the above definition that the permanent is a multilinear
symmetric form. We also have

per(A) = per(A>),

and the following unsigned version of the Laplace expansion formula:

per(A) = ai 1per(Ai 1) + · · · + ai jper(Ai j) + · · · + ai nper(Ai n),

for i = 1, . . . , n. However, unlike determinants which have a clear geomet-
ric interpretation as signed volumes, permanents do not have any natural
geometric interpretation. Furthermore, determinants can be evaluated e�-
ciently, for example using the conversion to row reduced echelon form, but
computing the permanent is hard.
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Permanents turn out to have various combinatorial interpretations. One
of these is in terms of perfect matchings of bipartite graphs which we now
discuss.

See Definition 18.5 for the definition of an undirected graph. A bipartite
(undirected) graph G = (V,E) is a graph whose set of nodes V can be
partitioned into two nonempty disjoint subsets V

1

and V
2

, such that every
edge e 2 E has one endpoint in V

1

and one endpoint in V
2

.
An example of a bipartite graph with 14 nodes is shown in Figure 6.3;

its nodes are partitioned into the two sets {x
1

, x
2

, x
3

, x
4

, x
5

, x
6

, x
7

} and
{y

1

, y
2

, y
3

, y
4

, y
5

, y
6

, y
7

}.

x1 x2 x3 x4 x5 x6 x7

y1 y2 y3 y4 y5 y6 y7

Fig. 6.3 A bipartite graph G.

A matching in a graph G = (V,E) (bipartite or not) is a set M of
pairwise non-adjacent edges, which means that no two edges in M share
a common vertex. A perfect matching is a matching such that every node
in V is incident to some edge in the matching M (every node in V is an
endpoint of some edge in M). Figure 6.4 shows a perfect matching (in red)
in the bipartite graph G.

Obviously, a perfect matching in a bipartite graph can exist only if its
set of nodes has a partition in two blocks of equal size, say {x

1

, . . . , xm}
and {y

1

, . . . , ym}. Then there is a bijection between perfect matchings and
bijections ⇡ : {x

1

, . . . , xm} ! {y
1

, . . . , ym} such that ⇡(xi) = yj i↵ there is
an edge between xi and yj .

Now every bipartite graph G with a partition of its nodes into two
sets of equal size as above is represented by an m ⇥ m matrix A = (aij)
such that aij = 1 i↵ there is an edge between xi and yj , and aij = 0
otherwise. Using the interpretation of perfect matchings as bijections
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x1 x2 x3 x4 x5 x6 x7

y1 y2 y3 y4 y5 y6 y7

Fig. 6.4 A perfect matching in the bipartite graph G.

⇡ : {x
1

, . . . , xm} ! {y
1

, . . . , ym}, we see that the permanent per(A) of the
(0, 1)-matrix A representing the bipartite graph G counts the number of
perfect matchings in G.

In a famous paper published in 1979, Leslie Valiant proves that comput-
ing the permanent is a #P-complete problem. Such problems are suspected
to be intractable. It is known that if a polynomial-time algorithm existed
to solve a #P-complete problem, then we would have P = NP , which is
believed to be very unlikely.

Another combinatorial interpretation of the permanent can be given
in terms of systems of distinct representatives. Given a finite set S, let
(A

1

, . . . , An) be any sequence of nonempty subsets of S (not necessarily
distinct). A system of distinct representatives (for short SDR) of the sets
A

1

, . . . , An is a sequence of n distinct elements (a
1

, . . . , an), with ai 2
Ai for i = 1, . . . , n. The number of SDR’s of a sequence of sets plays
an important role in combinatorics. Now, if S = {1, 2, . . . , n} and if we
associate to any sequence (A

1

, . . . , An) of nonempty subsets of S the matrix
A = (aij) defined such that aij = 1 if j 2 Ai and aij = 0 otherwise, then
the permanent per(A) counts the number of SDR’s of the sets A

1

, . . . , An.
This interpretation of permanents in terms of SDR’s can be used to

prove bounds for the permanents of various classes of matrices. Interested
readers are referred to van Lint and Wilson [van Lint and Wilson (2001)]
(Chapters 11 and 12). In particular, a proof of a theorem known as Van
der Waerden conjecture is given in Chapter 12. This theorem states that
for any n⇥n matrix A with nonnegative entries in which all row-sums and
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column-sums are 1 (doubly stochastic matrices), we have

per(A) � n!

nn
,

with equality for the matrix in which all entries are equal to 1/n.

6.9 Summary

The main concepts and results of this chapter are listed below:

• Permutations, transpositions , basics transpositions .
• Every permutation can be written as a composition of permutations.
• The parity of the number of transpositions involved in any decomposi-
tion of a permutation � is an invariant; it is the signature ✏(�) of the
permutation �.

• Multilinear maps (also called n-linear maps); bilinear maps.
• Symmetric and alternating multilinear maps.
• A basic property of alternating multilinear maps (Lemma 6.1) and the
introduction of the formula expressing a determinant.

• Definition of a determinant as a multlinear alternating map
D : Mn(K) ! K such that D(I) = 1.

• We define the set of algorithms Dn, to compute the determinant of an
n ⇥ n matrix.

• Laplace expansion according to the ith row ; cofactors.
• We prove that the algorithms in Dn compute determinants (Lemma
6.2).

• We prove that all algorithms in Dn compute the same determinant
(Theorem 6.1).

• We give an interpretation of determinants as signed volumes.
• We prove that det(A) = det(A>).
• We prove that det(AB) = det(A) det(B).
• The adjugate eA of a matrix A.
• Formula for the inverse in terms of the adjugate.
• A matrix A is invertible i↵ det(A) 6= 0.
• Solving linear equations using Cramer’s rules .
• Determinant of a linear map.
• The characteristic polynomial of a matrix.
• The Cayley–Hamilton theorem.
• The action of the polynomial ring induced by a linear map on a vector
space.
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• Permanents.
• Permanents count the number of perfect matchings in bipartite graphs.
• Computing the permanent is a #P-perfect problem (L. Valiant).
• Permanents count the number of SDRs of sequences of subsets of a
given set.

6.10 Further Readings

Thorough expositions of the material covered in Chapter 2–5 and 6 can be
found in Strang [Strang (1988, 1986)], Lax [Lax (2007)], Lang [Lang (1993)],
Artin [Artin (1991)], Mac Lane and Birkho↵ [Mac Lane and Birkho↵
(1967)], Ho↵man and Kunze [Kenneth and Ray (1971)], Dummit and Foote
[Dummit and Foote (1999)], Bourbaki [Bourbaki (1970, 1981a)], Van Der
Waerden [Van Der Waerden (1973)], Serre [Serre (2010)], Horn and Johnson
[Horn and Johnson (1990)], and Bertin [Bertin (1981)]. These notions of
linear algebra are nicely put to use in classical geometry, see Berger [Berger
(1990a,b)], Tisseron [Tisseron (1994)] and Dieudonné [Dieudonné (1965)].

6.11 Problems

Problem 6.1. Prove that every transposition can be written as a product
of basic transpositions.

Problem 6.2. (1) Given two vectors in R2 of coordinates (c
1

�a
1

, c
2

�a
2

)
and (b

1

� a
1

, b
2

� a
2

), prove that they are linearly dependent i↵������

a
1

b
1

c
1

a
2

b
2

c
2

1 1 1

������
= 0.

(2) Given three vectors in R3 of coordinates (d
1

� a
1

, d
2

� a
2

, d
3

� a
3

),
(c

1

� a
1

, c
2

� a
2

, c
3

� a
3

), and (b
1

� a
1

, b
2

� a
2

, b
3

� a
3

), prove that they are
linearly dependent i↵ ��������

a
1

b
1

c
1

d
1

a
2

b
2

c
2

d
2

a
3

b
3

c
3

d
3

1 1 1 1

��������
= 0.

Problem 6.3. Let A be the (m+n)⇥ (m+n) block matrix (over any field
K) given by

A =

✓
A

1

A
2

0 A
4

◆
,
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where A
1

is an m ⇥ m matrix, A
2

is an m ⇥ n matrix, and A
4

is an n ⇥ n
matrix. Prove that det(A) = det(A

1

) det(A
4

).
Use the above result to prove that if A is an upper triangular n ⇥ n

matrix, then det(A) = a
11

a
22

· · · ann.

Problem 6.4. Prove that if n � 3, then

det

0

BBB@

1 + x
1

y
1

1 + x
1

y
2

· · · 1 + x
1

yn
1 + x

2

y
1

1 + x
2

y
2

· · · 1 + x
2

yn
...

...
...

...
1 + xny1 1 + xny2 · · · 1 + xnyn

1

CCCA
= 0.

Problem 6.5. Prove that
��������

1 4 9 16
4 9 16 25
9 16 25 36
16 25 36 49

��������
= 0.

Problem 6.6. Consider the n ⇥ n symmetric matrix

A =

0

BBBBBBBBBB@

1 2 0 0 . . . 0 0
2 5 2 0 . . . 0 0
0 2 5 2 . . . 0 0
...
...
. . .

. . .
. . .

...
...

0 0 . . . 2 5 2 0
0 0 . . . 0 2 5 2
0 0 . . . 0 0 2 5

1

CCCCCCCCCCA

.

(1) Find an upper-triangular matrix R such that A = R>R.
(2) Prove that det(A) = 1.
(3) Consider the sequence

p
0

(�) = 1

p
1

(�) = 1 � �

pk(�) = (5 � �)pk�1

(�) � 4pk�2

(�) 2  k  n.

Prove that

det(A � �I) = pn(�).

Remark: It can be shown that pn(�) has n distinct (real) roots and that
the roots of pk(�) separate the roots of pk+1

(�).
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Problem 6.7. Let B be the n ⇥ n matrix (n � 3) given by

B =

0

BBBBBBBBBB@

1 �1 �1 �1 · · · �1 �1
1 �1 1 1 · · · 1 1
1 1 �1 1 · · · 1 1
1 1 1 �1 · · · 1 1
...

...
...

...
...

...
...

1 1 1 1 · · · �1 1
1 1 1 1 · · · 1 �1

1

CCCCCCCCCCA

.

Prove that

det(B) = (�1)n(n � 2)2n�1.

Problem 6.8. Given a field K (say K = R or K = C), given any two
polynomials p(X), q(X) 2 K[X], we says that q(X) divides p(X) (and that
p(X) is a multiple of q(X)) i↵ there is some polynomial s(X) 2 K[X] such
that

p(X) = q(X)s(X).

In this case we say that q(X) is a factor of p(X), and if q(X) has degree
at least one, we say that q(X) is a nontrivial factor of p(X).

Let f(X) and g(X) be two polynomials in K[X] with

f(X) = a
0

Xm + a
1

Xm�1 + · · · + am

of degree m � 1 and

g(X) = b
0

Xn + b
1

Xn�1 + · · · + bn

of degree n � 1 (with a
0

, b
0

6= 0).
You will need the following result which you need not prove:
Two polynomials f(X) and g(X) with deg(f) = m � 1 and deg(g) =

n � 1 have some common nontrivial factor i↵ there exist two nonzero
polynomials p(X) and q(X) such that

fp = gq,

with deg(p)  n � 1 and deg(q)  m � 1.
(1) Let Pm denote the vector space of all polynomials in K[X] of degree

at most m � 1, and let T : Pn ⇥ Pm ! Pm+n be the map given by

T (p, q) = fp+ gq, p 2 Pn, q 2 Pm,

where f and g are some fixed polynomials of degree m � 1 and n � 1.
Prove that the map T is linear.
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(2) Prove that T is not injective i↵ f and g have a common nontrivial
factor.

(3) Prove that f and g have a nontrivial common factor i↵ R(f, g) = 0,
where R(f, g) is the determinant given by

R(f, g) =

�����������������������

a
0

a
1

· · · · · · am 0 · · · · · · · · · · · · 0
0 a

0

a
1

· · · · · · am 0 · · · · · · · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · · · · · · · 0 a

0

a
1

· · · · · · am
b
0

b
1

· · · · · · · · · · · · · · · bn 0 · · · 0
0 b

0

b
1

· · · · · · · · · · · · · · · bn 0 · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 b

0

b
1

· · · · · · · · · · · · · · · bn

�����������������������

.

The above determinant is called the resultant of f and g.
Note that the matrix of the resultant is an (n +m) ⇥ (n +m) matrix,

with the first row (involving the ais) occurring n times, each time shifted
over to the right by one column, and the (n+ 1)th row (involving the bjs)
occurring m times, each time shifted over to the right by one column.
Hint . Express the matrix of T over some suitable basis.

(4) Compute the resultant in the following three cases:

(a) m = n = 1, and write f(X) = aX + b and g(X) = cX + d.
(b) m = 1 and n � 2 arbitrary.
(c) f(X) = aX2 + bX + c and g(X) = 2aX + b.

(5) Compute the resultant of f(X) = X3+pX+q and g(X) = 3X2+p,
and

f(X) = a
0

X2 + a
1

X + a
2

g(X) = b
0

X2 + b
1

X + b
2

.

In the second case, you should get

4R(f, g) = (2a
0

b
2

� a
1

b
1

+ 2a
2

b
0

)2 � (4a
0

a
2

� a2
1

)(4b
0

b
2

� b2
1

).

Problem 6.9. Let A,B,C,D be n ⇥ n real or complex matrices.
(1) Prove that if A is invertible and if AC = CA, then

det

✓
A B
C D

◆
= det(AD � CB).
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(2) Prove that if H is an n ⇥ n Hadamard matrix (n � 2), then
| det(H)| = nn/2.

(3) Prove that if H is an n ⇥ n Hadamard matrix (n � 2), then

det

✓
H H
H �H

◆
= (2n)n.

Problem 6.10. Compute the product of the following determinants
��������

a �b �c �d
b a �d c
c d a �b
d �c b a

��������

��������

x �y �z �t
y x �t z
z t x �y
t �z y x

��������

to prove the following identity (due to Euler):

(a2 + b2 + c2 + d2)(x2 + y2 + z2 + t2)

= (ax+ by + cz + dt)2 + (ay � bx+ ct � dz)2

+ (az � bt � cx+ dy)2 + (at+ bz � cy + dx)2.

Problem 6.11. Let A be an n⇥n matrix with integer entries. Prove that
A�1 exists and has integer entries if and only if det(A) = ±1.

Problem 6.12. Let A be an n ⇥ n real or complex matrix.
(1) Prove that if A> = �A (A is skew-symmetric) and if n is odd, then

det(A) = 0.
(2) Prove that

��������

0 a b c
�a 0 d e
�b �d 0 f
�c �e �f 0

��������
= (af � be+ dc)2.

Problem 6.13. A Cauchy matrix is a matrix of the form0

BBBBBBBB@

1

�
1

� �
1

1

�
1

� �
2

· · · 1

�
1

� �n
1

�
2

� �
1

1

�
2

� �
2

· · · 1

�
2

� �n
...

...
...

...
1

�n � �
1

1

�n � �
2

· · · 1

�n � �n

1

CCCCCCCCA

where �i 6= �j , for all i, j, with 1  i, j  n. Prove that the determinant
Cn of a Cauchy matrix as above is given by

Cn =

Qn
i=2

Qi�1

j=1

(�i � �j)(�j � �i)Qn
i=1

Qn
j=1

(�i � �j)
.
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Problem 6.14. Let (↵
1

, . . . ,↵m+1

) be a sequence of pairwise distinct
scalars in R and let (�

1

, . . . ,�m+1

) be any sequence of scalars in R, not
necessarily distinct.

(1) Prove that there is a unique polynomial P of degree at most m such
that

P (↵i) = �i, 1  i  m+ 1.

Hint . Remember Vandermonde!
(2) Let Li(X) be the polynomial of degree m given by

Li(X) =
(X � ↵

1

) · · · (X � ↵i�1

)(X � ↵i+1

) · · · (X � ↵m+1

)

(↵i � ↵
1

) · · · (↵i � ↵i�1

)(↵i � ↵i+1

) · · · (↵i � ↵m+1

)
,

1  i  m+ 1.

The polynomials Li(X) are known as Lagrange polynomial interpolants.
Prove that

Li(↵j) = �i j 1  i, j  m+ 1.

Prove that

P (X) = �
1

L
1

(X) + · · · + �m+1

Lm+1

(X)

is the unique polynomial of degree at most m such that

P (↵i) = �i, 1  i  m+ 1.

(3) Prove that L
1

(X), . . . , Lm+1

(X) are linearly independent, and that
they form a basis of all polynomials of degree at most m.

How is 1 (the constant polynomial 1) expressed over the basis
(L

1

(X), . . . , Lm+1

(X))?
Give the expression of every polynomial P (X) of degree at most m over

the basis (L
1

(X), . . . , Lm+1

(X)).
(4) Prove that the dual basis (L⇤

1

, . . . , L⇤
m+1

) of the basis
(L

1

(X), . . . , Lm+1

(X)) consists of the linear forms L⇤
i given by

L⇤
i (P ) = P (↵i),

for every polynomial P of degree at most m; this is simply evaluation at
↵i.
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Chapter 7

Gaussian Elimination,
LU -Factorization, Cholesky

Factorization, Reduced Row Echelon
Form

In this chapter we assume that all vector spaces are over the field R. All
results that do not rely on the ordering on R or on taking square roots hold
for arbitrary fields.

7.1 Motivating Example: Curve Interpolation

Curve interpolation is a problem that arises frequently in computer graphics
and in robotics (path planning). There are many ways of tackling this
problem and in this section we will describe a solution using cubic splines.
Such splines consist of cubic Bézier curves. They are often used because
they are cheap to implement and give more flexibility than quadratic Bézier
curves.

A cubic Bézier curve C(t) (in R2 or R3) is specified by a list of four
control points (b

0

, b
1

, b
2

, b
3

) and is given parametrically by the equation

C(t) = (1 � t)3 b
0

+ 3(1 � t)2t b
1

+ 3(1 � t)t2 b
2

+ t3 b
3

.

Clearly, C(0) = b
0

, C(1) = b
3

, and for t 2 [0, 1], the point C(t) belongs to
the convex hull of the control points b

0

, b
1

, b
2

, b
3

. The polynomials

(1 � t)3, 3(1 � t)2t, 3(1 � t)t2, t3

are the Bernstein polynomials of degree 3.
Typically, we are only interested in the curve segment corresponding to

the values of t in the interval [0, 1]. Still, the placement of the control points
drastically a↵ects the shape of the curve segment, which can even have a
self-intersection; See Figures 7.1, 7.2, 7.3 illustrating various configurations.

201
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b0

b1

b2

b3

Fig. 7.1 A “standard” Bézier curve.

b0

b1

b2

b3

Fig. 7.2 A Bézier curve with an inflection point.

b0

b1b2

b3

Fig. 7.3 A self-intersecting Bézier curve.
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Interpolation problems require finding curves passing through some
given data points and possibly satisfying some extra constraints.

A Bézier spline curve F is a curve which is made up of curve segments
which are Bézier curves, say C

1

, . . . , Cm (m � 2). We will assume that F
defined on [0,m], so that for i = 1, . . . ,m,

F (t) = Ci(t � i+ 1), i � 1  t  i.

Typically, some smoothness is required between any two junction points,
that is, between any two points Ci(1) and Ci+1

(0), for i = 1, . . . ,m � 1.
We require that Ci(1) = Ci+1

(0) (C0-continuity), and typically that the
derivatives of Ci at 1 and of Ci+1

at 0 agree up to second order derivatives.
This is called C2-continuity , and it ensures that the tangents agree as well
as the curvatures.

There are a number of interpolation problems, and we consider one of
the most common problems which can be stated as follows:

Problem: Given N + 1 data points x
0

, . . . , xN , find a C2 cubic spline
curve F such that F (i) = xi for all i, 0  i  N (N � 2).

A way to solve this problem is to find N + 3 auxiliary points
d�1

, . . . , dN+1

, called de Boor control points, from which N Bézier curves
can be found. Actually,

d�1

= x
0

and dN+1

= xN

so we only need to find N + 1 points d
0

, . . . , dN .
It turns out that the C2-continuity constraints on the N Bézier curves

yield only N � 1 equations, so d
0

and dN can be chosen arbitrarily. In
practice, d

0

and dN are chosen according to various end conditions, such
as prescribed velocities at x

0

and xN . For the time being, we will assume
that d

0

and dN are given.
Figure 7.4 illustrates an interpolation problem involving N+1 = 7+1 =

8 data points. The control points d
0

and d
7

were chosen arbitrarily.
It can be shown that d

1

, . . . , dN�1

are given by the linear system

0

BBBBB@

7

2

1
1 4 1 0
. . .

. . .
. . .

0 1 4 1
1 7

2

1

CCCCCA

0

BBBBB@

d
1

d
2

...
dN�2

dN�1

1

CCCCCA
=

0

BBBBB@

6x
1

� 3

2

d
0

6x
2

...
6xN�2

6xN�1

� 3

2

dN

1

CCCCCA
.

We will show later that the above matrix is invertible because it is
strictly diagonally dominant.
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x0 = d�1

x1

x2

x3

x4

x5

x6

x7 = d8

d0

d1

d2

d3

d4

d5

d6

d7

Fig. 7.4 A C

2 cubic interpolation spline curve passing through the points x0, x1, x2, x3,
x4, x5, x6, x7.

Once the above system is solved, the Bézier cubics C
1

, . . ., CN are de-
termined as follows (we assume N � 2): For 2  i  N � 1, the control
points (bi

0

, bi
1

, bi
2

, bi
3

) of Ci are given by

bi
0

= xi�1

bi
1

=
2

3
di�1

+
1

3
di

bi
2

=
1

3
di�1

+
2

3
di

bi
3

= xi.

The control points (b1
0

, b1
1

, b1
2

, b1
3

) of C
1

are given by

b1
0

= x
0

b1
1

= d
0

b1
2

=
1

2
d
0

+
1

2
d
1

b1
3

= x
1

,
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and the control points (bN
0

, bN
1

, bN
2

, bN
3

) of CN are given by

bN
0

= xN�1

bN
1

=
1

2
dN�1

+
1

2
dN

bN
2

= dN

bN
3

= xN .

Figure 7.5 illustrates this process spline interpolation for N = 7.

x0 = d1

x1

x2

x3

x4

x5

x6

x7 = d8

d0

d1

d2

d3

d4

d5

d6

d7

1
1b =

1
2b

b
2
1

b
2
2

b

b1
3

b2
3

b1
4

b2
4

b1
5

b2
5

b1
6

b2
6

1
7

b
7
2=

Fig. 7.5 A C

2 cubic interpolation of x0, x1, x2, x3, x4, x5, x6, x7 with associated color
coded Bézier cubics.

We will now describe various methods for solving linear systems. Since
the matrix of the above system is tridiagonal, there are specialized methods
which are more e�cient than the general methods. We will discuss a few
of these methods.

7.2 Gaussian Elimination

Let A be an n⇥n matrix, let b 2 Rn be an n-dimensional vector and assume
that A is invertible. Our goal is to solve the system Ax = b. Since A is
assumed to be invertible, we know that this system has a unique solution
x = A�1b. Experience shows that two counter-intuitive facts are revealed:
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(1) One should avoid computing the inverse A�1 of A explicitly. This
is ine�cient since it would amount to solving the n linear systems
Au(j) = ej for j = 1, . . . , n, where ej = (0, . . . , 1, . . . , 0) is the jth
canonical basis vector of Rn (with a 1 is the jth slot). By doing so, we
would replace the resolution of a single system by the resolution of n
systems, and we would still have to multiply A�1 by b.

(2) One does not solve (large) linear systems by computing determinants
(using Cramer’s formulae) since this method requires a number of ad-
ditions (resp. multiplications) proportional to (n+1)! (resp. (n+2)!).

The key idea on which most direct methods (as opposed to iterative
methods, that look for an approximation of the solution) are based is that if
A is an upper-triangular matrix, which means that aij = 0 for 1  j < i  n
(resp. lower-triangular, which means that aij = 0 for 1  i < j  n), then
computing the solution x is trivial. Indeed, say A is an upper-triangular
matrix

A =

0

BBBBBBBBB@

a
1 1

a
1 2

· · · a
1n�2

a
1n�1

a
1n

0 a
2 2

· · · a
2n�2

a
2n�1

a
2n

0 0
. . .

...
...

...
. . .

...
...

0 0 · · · 0 an�1n�1

an�1n

0 0 · · · 0 0 ann

1

CCCCCCCCCA

.

Then det(A) = a
1 1

a
2 2

· · · ann 6= 0, which implies that ai i 6= 0 for i =
1, . . . , n, and we can solve the system Ax = b from bottom-up by back-
substitution. That is, first we compute xn from the last equation, next
plug this value of xn into the next to the last equation and compute xn�1

from it, etc. This yields

xn = a�1

nnbn

xn�1

= a�1

n�1n�1

(bn�1

� an�1nxn)

...

x
1

= a�1

1 1

(b
1

� a
1 2

x
2

� · · · � a
1nxn).

Note that the use of determinants can be avoided to prove that if A is
invertible then ai i 6= 0 for i = 1, . . . , n. Indeed, it can be shown directly
(by induction) that an upper (or lower) triangular matrix is invertible i↵
all its diagonal entries are nonzero.
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If A is lower-triangular, we solve the system from top-down by forward-
substitution.

Thus, what we need is a method for transforming a matrix to an equiv-
alent one in upper-triangular form. This can be done by elimination. Let
us illustrate this method on the following example:

2x + y + z = 5
4x � 6y = �2

�2x + 7y + 2z = 9.

We can eliminate the variable x from the second and the third equation as
follows: Subtract twice the first equation from the second and add the first
equation to the third. We get the new system

2x + y + z = 5
� 8y � 2z = �12

8y + 3z = 14.

This time we can eliminate the variable y from the third equation by adding
the second equation to the third:

2x + y + z = 5
� 8y � 2z = �12

z = 2.

This last system is upper-triangular. Using back-substitution, we find the
solution: z = 2, y = 1, x = 1.

Observe that we have performed only row operations. The general
method is to iteratively eliminate variables using simple row operations
(namely, adding or subtracting a multiple of a row to another row of the
matrix) while simultaneously applying these operations to the vector b,
to obtain a system, MAx = Mb, where MA is upper-triangular. Such a
method is called Gaussian elimination. However, one extra twist is needed
for the method to work in all cases: It may be necessary to permute rows,
as illustrated by the following example:

x + y + z = 1
x + y + 3z = 1
2x + 5y + 8z = 1.

In order to eliminate x from the second and third row, we subtract the first
row from the second and we subtract twice the first row from the third:

x + y + z = 1
2z = 0

3y + 6z = �1.
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Now the trouble is that y does not occur in the second row; so, we can’t
eliminate y from the third row by adding or subtracting a multiple of the
second row to it. The remedy is simple: Permute the second and the third
row! We get the system:

x + y + z = 1
3y + 6z = �1

2z = 0,

which is already in triangular form. Another example where some permu-
tations are needed is:

z = 1
�2x + 7y + 2z = 1
4x � 6y = �1.

First we permute the first and the second row, obtaining

�2x + 7y + 2z = 1
z = 1

4x � 6y = �1,

and then we add twice the first row to the third, obtaining:

�2x + 7y + 2z = 1
z = 1

8y + 4z = 1.

Again we permute the second and the third row, getting

�2x + 7y + 2z = 1
8y + 4z = 1

z = 1,

an upper-triangular system. Of course, in this example, z is already solved
and we could have eliminated it first, but for the general method, we need
to proceed in a systematic fashion.

We now describe the method of Gaussian elimination applied to a linear
system Ax = b, where A is assumed to be invertible. We use the variable
k to keep track of the stages of elimination. Initially, k = 1.

(1) The first step is to pick some nonzero entry ai 1 in the first column of
A. Such an entry must exist, since A is invertible (otherwise, the first
column of A would be the zero vector, and the columns of A would
not be linearly independent. Equivalently, we would have det(A) = 0).
The actual choice of such an element has some impact on the numerical
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stability of the method, but this will be examined later. For the time
being, we assume that some arbitrary choice is made. This chosen
element is called the pivot of the elimination step and is denoted ⇡

1

(so, in this first step, ⇡
1

= ai 1).
(2) Next we permute the row (i) corresponding to the pivot with the first

row. Such a step is called pivoting . So after this permutation, the first
element of the first row is nonzero.

(3) We now eliminate the variable x
1

from all rows except the first by
adding suitable multiples of the first row to these rows. More precisely
we add �ai 1/⇡1 times the first row to the ith row for i = 2, . . . , n. At
the end of this step, all entries in the first column are zero except the
first.

(4) Increment k by 1. If k = n, stop. Otherwise, k < n, and then iteratively
repeat Steps (1), (2), (3) on the (n � k + 1) ⇥ (n � k + 1) subsystem
obtained by deleting the first k � 1 rows and k � 1 columns from the
current system.

If we let A
1

= A and Ak = (a(k)i j ) be the matrix obtained after k � 1
elimination steps (2  k  n), then the kth elimination step is applied to
the matrix Ak of the form

Ak =

0

BBBBBBBBBB@

a(k)
1 1

a(k)
1 2

· · · · · · · · · a(k)
1n

0 a(k)
2 2

· · · · · · · · · a(k)
2n

...
. . .

. . .
...

...

0 0 0 a(k)k k · · · a(k)k n
...

...
...

...
...

0 0 0 a(k)nk · · · a(k)nn

1

CCCCCCCCCCA

.

Actually, note that

a(k)i j = a(i)i j

for all i, j with 1  i  k � 2 and i  j  n, since the first k � 1 rows
remain unchanged after the (k � 1)th step.

We will prove later that det(Ak) = ± det(A). Consequently, Ak is
invertible. The fact that Ak is invertible i↵ A is invertible can also be
shown without determinants from the fact that there is some invertible
matrix Mk such that Ak = MkA, as we will see shortly.

Since Ak is invertible, some entry a(k)i k with k  i  n is nonzero.
Otherwise, the last n � k + 1 entries in the first k columns of Ak would be
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zero, and the first k columns of Ak would yield k vectors in Rk�1. But then
the first k columns of Ak would be linearly dependent and Ak would not
be invertible, a contradiction. This situation is illustrated by the following
matrix for n = 5 and k = 3:

0

BBBBBB@

a(3)
1 1

a(3)
1 2

a(3)
1 3

a(3)
1 3

a(3)
1 5

0 a(3)
2 2

a(3)
2 3

a(3)
2 4

a(3)
2 5

0 0 0 a(3)
3 4

a(3)
3 5

0 0 0 a(3)
4 4

a(3)
4n

0 0 0 a(3)
5 4

a(3)
5 5

1

CCCCCCA
.

The first three columns of the above matrix are linearly dependent.
So one of the entries a(k)i k with k  i  n can be chosen as pivot, and we

permute the kth row with the ith row, obtaining the matrix ↵(k) = (↵(k)
j l ).

The new pivot is ⇡k = ↵(k)
k k , and we zero the entries i = k + 1, . . . , n in

column k by adding �↵(k)
i k /⇡k times row k to row i. At the end of this

step, we have Ak+1

. Observe that the first k � 1 rows of Ak are identical
to the first k � 1 rows of Ak+1

.
The process of Gaussian elimination is illustrated in schematic form

below:
0

BB@

⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥

1

CCA =)

0

BB@

⇥ ⇥ ⇥ ⇥
0 ⇥ ⇥ ⇥
0 ⇥ ⇥ ⇥
0 ⇥ ⇥ ⇥

1

CCA =)

0

BB@

⇥ ⇥ ⇥ ⇥
0 ⇥ ⇥ ⇥
0 0 ⇥ ⇥
0 0 ⇥ ⇥

1

CCA =)

0

BB@

⇥ ⇥ ⇥ ⇥
0 ⇥ ⇥ ⇥
0 0 ⇥ ⇥
0 0 0 ⇥

1

CCA .

7.3 Elementary Matrices and Row Operations

It is easy to figure out what kind of matrices perform the elementary row
operations used during Gaussian elimination. The key point is that if A =
PB, whereA,B arem⇥nmatrices and P is a square matrix of dimensionm,
if (as usual) we denote the rows of A and B by A

1

, . . . , Am and B
1

, . . . , Bm,
then the formula

aij =
mX

k=1

pikbkj

giving the (i, j)th entry in A shows that the ith row of A is a linear com-
bination of the rows of B:

Ai = pi1B1

+ · · · + pimBm.
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Therefore, multiplication of a matrix on the left by a square matrix performs
row operations. Similarly, multiplication of a matrix on the right by a
square matrix performs column operations

The permutation of the kth row with the ith row is achieved by multi-
plying A on the left by the transposition matrix P (i, k), which is the matrix
obtained from the identity matrix by permuting rows i and k, i.e.,

P (i, k) =

0

BBBBBBBBBBBBBB@

1
1
0 1
1
. . .

1
1 0

1
1

1

CCCCCCCCCCCCCCA

.

For example, if m = 3,

P (1, 3) =

0

@
0 0 1
0 1 0
1 0 0

1

A ,

then

P (1, 3)B =

0

@
0 0 1
0 1 0
1 0 0

1

A

0

@
b
11

b
12

· · · · · · · · · b
1n

b
21

b
22

· · · · · · · · · b
2n

b
31

b
32

· · · · · · · · · b
3n

1

A =

0

@
b
31

b
32

· · · · · · · · · b
3n

b
21

b
22

· · · · · · · · · b
2n

b
11

b
12

· · · · · · · · · b
1n

1

A .

Observe that det(P (i, k)) = �1. Furthermore, P (i, k) is symmetric
(P (i, k)> = P (i, k)), and

P (i, k)�1 = P (i, k).

During the permutation Step (2), if row k and row i need to be per-
muted, the matrix A is multiplied on the left by the matrix Pk such that
Pk = P (i, k), else we set Pk = I.

Adding � times row j to row i (with i 6= j) is achieved by multiplying
A on the left by the elementary matrix ,

Ei,j;� = I + �ei j ,

where

(ei j)k l =

⇢
1 if k = i and l = j
0 if k 6= i or l 6= j,
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i.e.,

Ei,j;� =

0

BBBBBBBBBBBBBB@

1
1
1
1
. . .

1
� 1

1
1

1

CCCCCCCCCCCCCCA

or Ei,j;� =

0

BBBBBBBBBBBBBB@

1
1
1 �
1
. . .

1
1
1
1

1

CCCCCCCCCCCCCCA

,

on the left, i > j, and on the right, i < j. The index i is the index of the
row that is changed by the multiplication. For example, if m = 3 and we
want to add twice row 1 to row 3, since � = 2, j = 1 and i = 3, we form

E
3,1;2 = I + 2e

31

=

0

@
1 0 0
0 1 0
0 0 1

1

A+

0

@
0 0 0
0 0 0
2 0 0

1

A =

0

@
1 0 0
0 1 0
2 0 1

1

A ,

and calculate

E
3,1;2B =

0

@
1 0 0
0 1 0
2 0 1

1

A

0

@
b
11

b
12

· · · · · · · · · b
1n

b
21

b
22

· · · · · · · · · b
2n

b
31

b
32

· · · · · · · · · b
3n

1

A

=

0

@
b
11

b
12

· · · · · · · · · b
1n

b
21

b
22

· · · · · · · · · b
2n

2b
11

+ b
31

2b
12

+ b
32

· · · · · · · · · 2b
1n + b

3n

1

A .

Observe that the inverse of Ei,j;� = I +�ei j is Ei,j;�� = I ��ei j and that
det(Ei,j;�) = 1. Therefore, during Step 3 (the elimination step), the matrix
A is multiplied on the left by a product Ek of matrices of the form Ei,k;�i,k ,
with i > k.

Consequently, we see that

Ak+1

= EkPkAk,

and then

Ak = Ek�1

Pk�1

· · ·E
1

P
1

A.

This justifies the claim made earlier that Ak = MkA for some invertible
matrix Mk; we can pick

Mk = Ek�1

Pk�1

· · ·E
1

P
1

,



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 213

7.3. Elementary Matrices and Row Operations 213

a product of invertible matrices.
The fact that det(P (i, k)) = �1 and that det(Ei,j;�) = 1 implies imme-

diately the fact claimed above: We always have

det(Ak) = ± det(A).

Furthermore, since

Ak = Ek�1

Pk�1

· · ·E
1

P
1

A

and since Gaussian elimination stops for k = n, the matrix

An = En�1

Pn�1

· · ·E
2

P
2

E
1

P
1

A

is upper-triangular. Also note that if we let M = En�1

Pn�1

· · ·E
2

P
2

E
1

P
1

,
then det(M) = ±1, and

det(A) = ± det(An).

The matrices P (i, k) and Ei,j;� are called elementary matrices. We can
summarize the above discussion in the following theorem:

Theorem 7.1. (Gaussian elimination) Let A be an n⇥n matrix (invertible
or not). Then there is some invertible matrix M so that U = MA is upper-
triangular. The pivots are all nonzero i↵ A is invertible.

Proof. We already proved the theorem when A is invertible, as well as the
last assertion. Now A is singular i↵ some pivot is zero, say at Stage k of
the elimination. If so, we must have a(k)i k = 0 for i = k, . . . , n; but in this
case, Ak+1

= Ak and we may pick Pk = Ek = I.

Remark: Obviously, the matrix M can be computed as

M = En�1

Pn�1

· · ·E
2

P
2

E
1

P
1

,

but this expression is of no use. Indeed, what we need is M�1; when no per-
mutations are needed, it turns out that M�1 can be obtained immediately
from the matrices Ek’s, in fact, from their inverses, and no multiplications
are necessary.

Remark: Instead of looking for an invertible matrix M so that MA is
upper-triangular, we can look for an invertible matrix M so that MA is a
diagonal matrix. Only a simple change to Gaussian elimination is needed.
At every Stage k, after the pivot has been found and pivoting been per-
formed, if necessary, in addition to adding suitable multiples of the kth
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row to the rows below row k in order to zero the entries in column k for
i = k+1, . . . , n, also add suitable multiples of the kth row to the rows above
row k in order to zero the entries in column k for i = 1, . . . , k � 1. Such
steps are also achieved by multiplying on the left by elementary matrices
Ei,k;�i,k , except that i < k, so that these matrices are not lower-triangular
matrices. Nevertheless, at the end of the process, we find that An = MA,
is a diagonal matrix.

This method is called the Gauss-Jordan factorization. Because it is
more expensive than Gaussian elimination, this method is not used much
in practice. However, Gauss-Jordan factorization can be used to compute
the inverse of a matrix A. Indeed, we find the jth column of A�1 by solving
the system Ax(j) = ej (where ej is the jth canonical basis vector of Rn). By
applying Gauss-Jordan, we are led to a system of the form Djx(j) = Mjej ,
where Dj is a diagonal matrix, and we can immediately compute x(j).

It remains to discuss the choice of the pivot, and also conditions that
guarantee that no permutations are needed during the Gaussian elimination
process. We begin by stating a necessary and su�cient condition for an
invertible matrix to have an LU -factorization (i.e., Gaussian elimination
does not require pivoting).

7.4 LU-Factorization

Definition 7.1. We say that an invertible matrix A has an LU -
factorization if it can be written as A = LU , where U is upper-triangular
invertible and L is lower-triangular, with Li i = 1 for i = 1, . . . , n.

A lower-triangular matrix with diagonal entries equal to 1 is called a
unit lower-triangular matrix. Given an n ⇥ n matrix A = (ai j), for any k
with 1  k  n, let A(1 : k, 1 : k) denote the submatrix of A whose entries
are ai j , where 1  i, j  k.1 For example, if A is the 5 ⇥ 5 matrix

A =

0

BBBB@

a
11

a
12

a
13

a
14

a
15

a
21

a
22

a
23

a
24

a
25

a
31

a
32

a
33

a
34

a
35

a
41

a
42

a
43

a
44

a
45

a
51

a
52

a
53

a
54

a
55

1

CCCCA
,

1We are using Matlab’s notation.
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then

A(1 : 3, 1 : 3) =

0

@
a
11

a
12

a
13

a
21

a
22

a
23

a
31

a
32

a
33

1

A .

Proposition 7.1. Let A be an invertible n ⇥ n-matrix. Then A has an
LU -factorization A = LU i↵ every matrix A(1 : k, 1 : k) is invertible for
k = 1, . . . , n. Furthermore, when A has an LU -factorization, we have

det(A(1 : k, 1 : k)) = ⇡
1

⇡
2

· · ·⇡k, k = 1, . . . , n,

where ⇡k is the pivot obtained after k � 1 elimination steps. Therefore, the
kth pivot is given by

⇡k =

8
<

:

a
11

= det(A(1 : 1, 1 : 1)) if k = 1
det(A(1 : k, 1 : k))

det(A(1 : k � 1, 1 : k � 1))
if k = 2, . . . , n.

Proof. First assume that A = LU is an LU -factorization of A. We can
write

A =

✓
A(1 : k, 1 : k) A

2

A
3

A
4

◆
=

✓
L
1

0
L
3

L
4

◆✓
U
1

U
2

0 U
4

◆
=

✓
L
1

U
1

L
1

U
2

L
3

U
1

L
3

U
2

+ L
4

U
4

◆
,

where L
1

, L
4

are unit lower-triangular and U
1

, U
4

are upper-triangular.
(Note, A(1 : k, 1 : k), L

1

, and U
1

are k ⇥ k matrices; A
2

and U
2

are
k ⇥ (n � k) matrices; A

3

and L
3

are (n � k) ⇥ k matrices; A
4

, L
4

, and U
4

are (n � k) ⇥ (n � k) matrices.) Thus,

A(1 : k, 1 : k) = L
1

U
1

,

and since U is invertible, U
1

is also invertible (the determinant of U is the
product of the diagonal entries in U , which is the product of the diagonal
entries in U

1

and U
4

). As L
1

is invertible (since its diagonal entries are
equal to 1), we see that A(1 : k, 1 : k) is invertible for k = 1, . . . , n.

Conversely, assume that A(1 : k, 1 : k) is invertible for k = 1, . . . , n. We
just need to show that Gaussian elimination does not need pivoting. We
prove by induction on k that the kth step does not need pivoting.

This holds for k = 1, since A(1 : 1, 1 : 1) = (a
1 1

), so a
1 1

6= 0. Assume
that no pivoting was necessary for the first k � 1 steps (2  k  n� 1). In
this case, we have

Ek�1

· · ·E
2

E
1

A = Ak,
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where L = Ek�1

· · ·E
2

E
1

is a unit lower-triangular matrix and Ak(1 : k, 1 :
k) is upper-triangular, so that LA = Ak can be written as

✓
L
1

0
L
3

L
4

◆✓
A(1 : k, 1 : k) A

2

A
3

A
4

◆
=

✓
U
1

B
2

0 B
4

◆
,

where L
1

is unit lower-triangular and U
1

is upper-triangular. (Once again
A(1 : k, 1 : k), L

1

, and U
1

are k ⇥ k matrices; A
2

and B
2

are k ⇥ (n � k)
matrices; A

3

and L
3

are (n� k)⇥ k matrices; A
4

, L
4

, and B
4

are (n� k)⇥
(n � k) matrices.) But then,

L
1

A(1 : k, 1 : k)) = U
1

,

where L
1

is invertible (in fact, det(L
1

) = 1), and since by hypothesis A(1 :
k, 1 : k) is invertible, U

1

is also invertible, which implies that (U
1

)kk 6= 0,
since U

1

is upper-triangular. Therefore, no pivoting is needed in Step k,
establishing the induction step. Since det(L

1

) = 1, we also have

det(U
1

) = det(L
1

A(1 : k, 1 : k)) = det(L
1

) det(A(1 : k, 1 : k))

= det(A(1 : k, 1 : k)),

and since U
1

is upper-triangular and has the pivots ⇡
1

, . . . ,⇡k on its diag-
onal, we get

det(A(1 : k, 1 : k)) = ⇡
1

⇡
2

· · ·⇡k, k = 1, . . . , n,

as claimed.

Remark: The use of determinants in the first part of the proof of Propo-
sition 7.1 can be avoided if we use the fact that a triangular matrix is
invertible i↵ all its diagonal entries are nonzero.

Corollary 7.1. (LU -Factorization) Let A be an invertible n ⇥ n-matrix.
If every matrix A(1 : k, 1 : k) is invertible for k = 1, . . . , n, then Gaussian
elimination requires no pivoting and yields an LU -factorization A = LU .

Proof. We proved in Proposition 7.1 that in this case Gaussian elimination
requires no pivoting. Then since every elementary matrix Ei,k;� is lower-
triangular (since we always arrange that the pivot ⇡k occurs above the
rows that it operates on), since E�1

i,k;� = Ei,k;�� and the Eks are products
of Ei,k;�i,ks, from

En�1

· · ·E
2

E
1

A = U,
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where U is an upper-triangular matrix, we get

A = LU,

where L = E�1

1

E�1

2

· · ·E�1

n�1

is a lower-triangular matrix. Furthermore, as
the diagonal entries of each Ei,k;� are 1, the diagonal entries of each Ek are
also 1.

Example 7.1. The reader should verify that

0

BB@

2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8

1

CCA =

0

BB@

1 0 0 0
2 1 0 0
4 3 1 0
3 4 1 1

1

CCA

0

BB@

2 1 1 0
0 1 1 1
0 0 2 2
0 0 0 2

1

CCA

is an LU -factorization.

One of the main reasons why the existence of an LU -factorization for
a matrix A is interesting is that if we need to solve several linear systems
Ax = b corresponding to the same matrix A, we can do this cheaply by
solving the two triangular systems

Lw = b, and Ux = w.

There is a certain asymmetry in the LU -decomposition A = LU of an
invertible matrix A. Indeed, the diagonal entries of L are all 1, but this is
generally false for U . This asymmetry can be eliminated as follows: if

D = diag(u
11

, u
22

, . . . , unn)

is the diagonal matrix consisting of the diagonal entries in U (the pivots),
then if we let U 0 = D�1U , we can write

A = LDU 0,

where L is lower- triangular, U 0 is upper-triangular, all diagonal entries
of both L and U 0 are 1, and D is a diagonal matrix of pivots. Such a
decomposition leads to the following definition.

Definition 7.2. We say that an invertible n ⇥ n matrix A has an LDU -
factorization if it can be written as A = LDU 0, where L is lower- triangular,
U 0 is upper-triangular, all diagonal entries of both L and U 0 are 1, and D
is a diagonal matrix.
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We will see shortly than if A is real symmetric, then U 0 = L>.
As we will see a bit later, real symmetric positive definite matrices satisfy

the condition of Proposition 7.1. Therefore, linear systems involving real
symmetric positive definite matrices can be solved by Gaussian elimination
without pivoting. Actually, it is possible to do better: this is the Cholesky
factorization.

If a square invertible matrix A has an LU -factorization, then it is pos-
sible to find L and U while performing Gaussian elimination. Recall that
at Step k, we pick a pivot ⇡k = a(k)ik 6= 0 in the portion consisting of the
entries of index j � k of the k-th column of the matrix Ak obtained so far,
we swap rows i and k if necessary (the pivoting step), and then we zero the
entries of index j = k + 1, . . . , n in column k. Schematically, we have the
following steps:

0

BBBBB@

⇥ ⇥ ⇥ ⇥ ⇥
0 ⇥ ⇥ ⇥ ⇥
0 ⇥ ⇥ ⇥ ⇥
0 a(k)ik ⇥ ⇥ ⇥
0 ⇥ ⇥ ⇥ ⇥

1

CCCCCA

pivot
=)

0

BBBBB@

⇥ ⇥ ⇥ ⇥ ⇥
0 a(k)ik ⇥ ⇥ ⇥
0 ⇥ ⇥ ⇥ ⇥
0 ⇥ ⇥ ⇥ ⇥
0 ⇥ ⇥ ⇥ ⇥

1

CCCCCA

elim
=)

0

BBBB@

⇥ ⇥ ⇥ ⇥ ⇥
0 ⇥ ⇥ ⇥ ⇥
0 0 ⇥ ⇥ ⇥
0 0 ⇥ ⇥ ⇥
0 0 ⇥ ⇥ ⇥

1

CCCCA
.

More precisely, after permuting row k and row i (the pivoting step), if the
entries in column k below row k are ↵k+1k, . . . ,↵nk, then we add �↵jk/⇡k
times row k to row j; this process is illustrated below:

0

BBBBBBBBBB@

a(k)kk

a(k)k+1k
...

a(k)ik
...

a(k)nk

1

CCCCCCCCCCA

pivot
=)

0

BBBBBBBBBB@

a(k)ik

a(k)k+1k
...

a(k)kk
...

a(k)nk

1

CCCCCCCCCCA

=

0

BBBBBBBBB@

⇡k
↵k+1k

...
↵ik

...
↵nk

1

CCCCCCCCCA

elim
=)

0

BBBBBBBBB@

⇡k
0
...
0
...
0

1

CCCCCCCCCA

.

Then if we write `jk = ↵jk/⇡k for j = k + 1, . . . , n, the kth column of L is
0

BBBBBBBBBBB@

0
...
0
1

`k+1k

...
`nk

1

CCCCCCCCCCCA

.
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Observe that the signs of the multipliers �↵jk/⇡k have been flipped. Thus,
we obtain the unit lower triangular matrix

L =

0

BBBBB@

1 0 0 · · · 0
`
21

1 0 · · · 0
`
31

`
32

1 · · · 0
...

...
...

. . . 0
`n1 `n2 `n3 · · · 1

1

CCCCCA
.

It is easy to see (and this is proven in Theorem 7.2) that the inverse of L
is obtained from L by flipping the signs of the `ij :

L�1 =

0

BBBBB@

1 0 0 · · · 0
�`

21

1 0 · · · 0
�`

31

�`
32

1 · · · 0
...

...
...

. . . 0
�`n1 �`n2 �`n3 · · · 1

1

CCCCCA
.

Furthermore, if the result of Gaussian elimination (without pivoting) is
U = En�1

· · ·E
1

A, then

Ek =

0

BBBBBBBBB@

1 · · · 0 0 · · · 0
...
. . .

...
...

...
...

0 · · · 1 0 · · · 0
0 · · · �`k+1k 1 · · · 0
...

...
...

...
. . .

...
0 · · · �`nk 0 · · · 1

1

CCCCCCCCCA

and E�1

k =

0

BBBBBBBBB@

1 · · · 0 0 · · · 0
...
. . .

...
...

...
...

0 · · · 1 0 · · · 0
0 · · · `k+1k 1 · · · 0
...

...
...

...
. . .

...
0 · · · `nk 0 · · · 1

1

CCCCCCCCCA

,

so the kth column of Ek is the kth column of L�1.
Here is an example illustrating the method.

Example 7.2. Given

A = A
1

=

0

BB@

1 1 1 0
1 �1 0 1
1 1 �1 0
1 �1 0 �1

1

CCA ,

we have the following sequence of steps: The first pivot is ⇡
1

= 1 in row 1,
and we substract row 1 from rows 2, 3, and 4. We get

A
2

=

0

BB@

1 1 1 0
0 �2 �1 1
0 0 �2 0
0 �2 �1 �1

1

CCA L
1

=

0

BB@

1 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1

1

CCA .
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The next pivot is ⇡
2

= �2 in row 2, and we subtract row 2 from row 4 (and
add 0 times row 2 to row 3). We get

A
3

=

0

BB@

1 1 1 0
0 �2 �1 1
0 0 �2 0
0 0 0 �2

1

CCA L
2

=

0

BB@

1 0 0 0
1 1 0 0
1 0 1 0
1 1 0 1

1

CCA .

The next pivot is ⇡
3

= �2 in row 3, and since the fourth entry in column
3 is already a zero, we add 0 times row 3 to row 4. We get

A
4

=

0

BB@

1 1 1 0
0 �2 �1 1
0 0 �2 0
0 0 0 �2

1

CCA L
3

=

0

BB@

1 0 0 0
1 1 0 0
1 0 1 0
1 1 0 1

1

CCA .

The procedure is finished, and we have

L = L
3

=

0

BB@

1 0 0 0
1 1 0 0
1 0 1 0
1 1 0 1

1

CCA U = A
4

=

0

BB@

1 1 1 0
0 �2 �1 1
0 0 �2 0
0 0 0 �2

1

CCA .

It is easy to check that indeed

LU =

0

BB@

1 0 0 0
1 1 0 0
1 0 1 0
1 1 0 1

1

CCA

0

BB@

1 1 1 0
0 �2 �1 1
0 0 �2 0
0 0 0 �2

1

CCA =

0

BB@

1 1 1 0
1 �1 0 1
1 1 �1 0
1 �1 0 �1

1

CCA = A.

We now show how to extend the above method to deal with pivoting
e�ciently. This is the PA = LU factorization.

7.5 PA = LU Factorization

The following easy proposition shows that, in principle, A can be premul-
tiplied by some permutation matrix P , so that PA can be converted to
upper-triangular form without using any pivoting. Permutations are dis-
cussed in some detail in Section 6.1, but for now we just need this definition.
For the precise connection between the notion of permutation (as discussed
in Section 6.1) and permutation matrices, see Problem 7.16.

Definition 7.3. A permutation matrix is a square matrix that has a single
1 in every row and every column and zeros everywhere else.
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It is shown in Section 6.1 that every permutation matrix is a product of
transposition matrices (the P (i, k)s), and that P is invertible with inverse
P>.

Proposition 7.2. Let A be an invertible n⇥n-matrix. There is some per-
mutation matrix P so that (PA)(1 : k, 1 : k) is invertible for k = 1, . . . , n.

Proof. The case n = 1 is trivial, and so is the case n = 2 (we swap
the rows if necessary). If n � 3, we proceed by induction. Since A is
invertible, its columns are linearly independent; in particular, its first n �
1 columns are also linearly independent. Delete the last column of A.
Since the remaining n� 1 columns are linearly independent, there are also
n � 1 linearly independent rows in the corresponding n ⇥ (n � 1) matrix.
Thus, there is a permutation of these n rows so that the (n � 1) ⇥ (n � 1)
matrix consisting of the first n � 1 rows is invertible. But then there is
a corresponding permutation matrix P

1

, so that the first n � 1 rows and
columns of P

1

A form an invertible matrix A0. Applying the induction
hypothesis to the (n � 1) ⇥ (n � 1) matrix A0, we see that there some
permutation matrix P

2

(leaving the nth row fixed), so that (P
2

P
1

A)(1 :
k, 1 : k) is invertible, for k = 1, . . . , n � 1. Since A is invertible in the first
place and P

1

and P
2

are invertible, P
1

P
2

A is also invertible, and we are
done.

Remark: One can also prove Proposition 7.2 using a clever reordering of
the Gaussian elimination steps suggested by Trefethen and Bau [Trefethen
and Bau III (1997)] (Lecture 21). Indeed, we know that if A is invertible,
then there are permutation matrices Pi and products of elementary matrices
Ei, so that

An = En�1

Pn�1

· · ·E
2

P
2

E
1

P
1

A,

where U = An is upper-triangular. For example, when n = 4, we have
E

3

P
3

E
2

P
2

E
1

P
1

A = U . We can define new matrices E0
1

, E0
2

, E0
3

which are
still products of elementary matrices so that we have

E0
3

E0
2

E0
1

P
3

P
2

P
1

A = U.

Indeed, if we let E0
3

= E
3

, E0
2

= P
3

E
2

P�1

3

, and E0
1

= P
3

P
2

E
1

P�1

2

P�1

3

, we
easily verify that each E0

k is a product of elementary matrices and that

E0
3

E0
2

E0
1

P
3

P
2

P
1

= E
3

(P
3

E
2

P�1

3

)(P
3

P
2

E
1

P�1

2

P�1

3

)P
3

P
2

P
1

= E
3

P
3

E
2

P
2

E
1

P
1

.
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It can also be proven that E0
1

, E0
2

, E0
3

are lower triangular (see Theorem
7.2).

In general, we let

E0
k = Pn�1

· · ·Pk+1

EkP
�1

k+1

· · ·P�1

n�1

,

and we have

E0
n�1

· · ·E0
1

Pn�1

· · ·P
1

A = U,

where each E0
j is a lower triangular matrix (see Theorem 7.2).

It is remarkable that if pivoting steps are necessary during Gaussian
elimination, a very simple modification of the algorithm for finding an LU -
factorization yields the matrices L,U , and P , such that PA = LU . To
describe this new method, since the diagonal entries of L are 1s, it is con-
venient to write

L = I + ⇤.

Then in assembling the matrix ⇤ while performing Gaussian elimination
with pivoting, we make the same transposition on the rows of ⇤ (really
⇤k�1

) that we make on the rows of A (really Ak) during a pivoting step
involving row k and row i. We also assemble P by starting with the identity
matrix and applying to P the same row transpositions that we apply to A
and ⇤. Here is an example illustrating this method.

Example 7.3. Given

A = A
1

=

0

BB@

1 1 1 0
1 1 �1 0
1 �1 0 1
1 �1 0 �1

1

CCA ,

we have the following sequence of steps: We initialize ⇤
0

= 0 and P
0

= I
4

.
The first pivot is ⇡

1

= 1 in row 1, and we subtract row 1 from rows 2, 3,
and 4. We get

A
2

=

0

BB@

1 1 1 0
0 0 �2 0
0 �2 �1 1
0 �2 �1 �1

1

CCA ⇤
1

=

0

BB@

0 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

1

CCA P
1

=

0

BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

CCA .

The next pivot is ⇡
2

= �2 in row 3, so we permute row 2 and 3; we also
apply this permutation to ⇤ and P :

A0
3

=

0

BB@

1 1 1 0
0 �2 �1 1
0 0 �2 0
0 �2 �1 �1

1

CCA ⇤0
2

=

0

BB@

0 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

1

CCA P
2

=

0

BB@

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

1

CCA .
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Next we subtract row 2 from row 4 (and add 0 times row 2 to row 3). We
get

A
3

=

0

BB@

1 1 1 0
0 �2 �1 1
0 0 �2 0
0 0 0 �2

1

CCA ⇤
2

=

0

BB@

0 0 0 0
1 0 0 0
1 0 0 0
1 1 0 0

1

CCA P
2

=

0

BB@

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

1

CCA .

The next pivot is ⇡
3

= �2 in row 3, and since the fourth entry in column
3 is already a zero, we add 0 times row 3 to row 4. We get

A
4

=

0

BB@

1 1 1 0
0 �2 �1 1
0 0 �2 0
0 0 0 �2

1

CCA ⇤
3

=

0

BB@

0 0 0 0
1 0 0 0
1 0 0 0
1 1 0 0

1

CCA P
3

=

0

BB@

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

1

CCA .

The procedure is finished, and we have

L = ⇤
3

+ I =

0

BB@

1 0 0 0
1 1 0 0
1 0 1 0
1 1 0 1

1

CCA U = A
4

=

0

BB@

1 1 1 0
0 �2 �1 1
0 0 �2 0
0 0 0 �2

1

CCA

P = P
3

=

0

BB@

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

1

CCA .

It is easy to check that indeed

LU =

0

BB@

1 0 0 0
1 1 0 0
1 0 1 0
1 1 0 1

1

CCA

0

BB@

1 1 1 0
0 �2 �1 1
0 0 �2 0
0 0 0 �2

1

CCA =

0

BB@

1 1 1 0
1 �1 0 1
1 1 �1 0
1 �1 0 �1

1

CCA

and

PA =

0

BB@

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

1

CCA

0

BB@

1 1 1 0
1 1 �1 0
1 �1 0 1
1 �1 0 �1

1

CCA =

0

BB@

1 1 1 0
1 �1 0 1
1 1 �1 0
1 �1 0 �1

1

CCA .

Using the idea in the remark before the above example, we can prove the
theorem below which shows the correctness of the algorithm for computing
P,L and U using a simple adaptation of Gaussian elimination.
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We are not aware of a detailed proof of Theorem 7.2 in the standard
texts. Although Golub and Van Loan [Golub and Van Loan (1996)] state
a version of this theorem as their Theorem 3.1.4, they say that “The proof
is a messy subscripting argument.” Meyer [Meyer (2000)] also provides a
sketch of proof (see the end of Section 3.10). In view of this situation, we
o↵er a complete proof. It does involve a lot of subscripts and superscripts,
but in our opinion, it contains some techniques that go far beyond symbol
manipulation.

Theorem 7.2. For every invertible n ⇥ n-matrix A, the following hold:

(1) There is some permutation matrix P , some upper-triangular matrix U ,
and some unit lower-triangular matrix L, so that PA = LU (recall,
Li i = 1 for i = 1, . . . , n). Furthermore, if P = I, then L and U
are unique and they are produced as a result of Gaussian elimination
without pivoting.

(2) If En�1

. . . E
1

A = U is the result of Gaussian elimination without piv-
oting, write as usual Ak = Ek�1

. . . E
1

A (with Ak = (a(k)ij )), and let

`ik = a(k)ik /a(k)kk , with 1  k  n � 1 and k + 1  i  n. Then

L =

0

BBBBB@

1 0 0 · · · 0
`
21

1 0 · · · 0
`
31

`
32

1 · · · 0
...

...
...

. . . 0
`n1 `n2 `n3 · · · 1

1

CCCCCA
,

where the kth column of L is the kth column of E�1

k , for k = 1, . . . , n�1.
(3) If En�1

Pn�1

· · ·E
1

P
1

A = U is the result of Gaussian elimination with
some pivoting, write Ak = Ek�1

Pk�1

· · ·E
1

P
1

A, and define Ek
j , with

1  j  n � 1 and j  k  n � 1, such that, for j = 1, . . . , n � 2,

Ej
j = Ej

Ek
j = PkE

k�1

j Pk, for k = j + 1, . . . , n � 1,

and

En�1

n�1

= En�1

.

Then,

Ek
j = PkPk�1

· · ·Pj+1

EjPj+1

· · ·Pk�1

Pk

U = En�1

n�1

· · ·En�1

1

Pn�1

· · ·P
1

A,
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and if we set

P = Pn�1

· · ·P
1

L = (En�1

1

)�1 · · · (En�1

n�1

)�1,

then

PA = LU. (†
1

)

Furthermore,

(Ek
j )

�1 = I + Ek
j , 1  j  n � 1, j  k  n � 1,

where Ek
j is a lower triangular matrix of the form

Ek
j =

0

BBBBBBBBB@

0 · · · 0 0 · · · 0
...
. . .

...
...

...
...

0 · · · 0 0 · · · 0

0 · · · `(k)j+1j 0 · · · 0
...

...
...

...
. . .

...

0 · · · `(k)nj 0 · · · 0

1

CCCCCCCCCA

,

we have

Ek
j = I � Ek

j ,

and

Ek
j = PkEk�1

j , 1  j  n � 2, j + 1  k  n � 1,

where Pk = I or else Pk = P (k, i) for some i such that k + 1 
i  n; if Pk 6= I, this means that (Ek

j )
�1 is obtained from (Ek�1

j )�1

by permuting the entries on rows i and k in column j. Because the
matrices (Ek

j )
�1 are all lower triangular, the matrix L is also lower

triangular.
In order to find L, define lower triangular n ⇥ n matrices ⇤k of the
form

⇤k =

0

BBBBBBBBBBBBBBBB@

0 0 0 0 0 · · · · · · 0

�(k)
21

0 0 0 0
...

... 0

�(k)
31

�(k)
32

. . . 0 0
...

... 0
...

...
. . . 0 0

...
...

...

�(k)k+11

�(k)k+12

· · · �(k)k+1k 0 · · · · · · 0

�(k)k+21

�(k)k+22

· · · �(k)k+2k 0
. . . · · · 0

...
...

. . .
...

...
...

. . .
...

�(k)n1 �(k)n2 · · · �(k)nk 0 · · · · · · 0

1

CCCCCCCCCCCCCCCCA
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to assemble the columns of L iteratively as follows: let

(�`(k)k+1k, . . . ,�`
(k)
nk )

be the last n � k elements of the kth column of Ek, and define ⇤k

inductively by setting

⇤
1

=

0

BBBB@

0 0 · · · 0

`(1)
21

0 · · · 0
...

...
. . .

...

`(1)n1 0 · · · 0

1

CCCCA
,

then for k = 2, . . . , n � 1, define

⇤0
k = Pk⇤k�1

, (†
2

)

and ⇤k = (I + ⇤0
k)E

�1

k � I, with

⇤k =

0

BBBBBBBBBBBBBBBBB@

0 0 0 0 0 · · · · · · 0

�
0
(k�1)

21

0 0 0 0
...

... 0

�
0
(k�1)

31

�
0
(k�1)

32

. . . 0 0
...

... 0
...

...
. . . 0 0

...
...

...

�
0
(k�1)

k1 �
0
(k�1)

k2 · · · �
0
(k�1)

k (k�1)

0 · · · · · · 0

�
0
(k�1)

k+11

�
0
(k�1)

k+12

· · · �
0
(k�1)

k+1 (k�1)

`(k)k+1k

. . . · · · 0
...

...
. . .

...
...

...
. . .

...

�
0
(k�1)

n1 �
0
(k�1)

n2 · · · �
0
(k�1)

nk�1

`(k)nk · · · · · · 0

1

CCCCCCCCCCCCCCCCCA

,

with Pk = I or Pk = P (k, i) for some i > k. This means that in
assembling L, row k and row i of ⇤k�1

need to be permuted when a
pivoting step permuting row k and row i of Ak is required. Then

I + ⇤k = (Ek
1

)�1 · · · (Ek
k )

�1

⇤k = Ek
1

+ · · · + Ek
k ,

for k = 1, . . . , n � 1, and therefore

L = I + ⇤n�1

.

The proof of Theorem 7.2, which is very technical, is given in Section
7.6.

We emphasize again that Part (3) of Theorem 7.2 shows the remarkable
fact that in assembling the matrix L while performing Gaussian elimination
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with pivoting, the only change to the algorithm is to make the same trans-
position on the rows of ⇤k�1

that we make on the rows of A (really Ak)
during a pivoting step involving row k and row i. We can also assemble
P by starting with the identity matrix and applying to P the same row
transpositions that we apply to A and ⇤. Here is an example illustrating
this method.

Example 7.4. Consider the matrix

A =

0

BB@

1 2 �3 4
4 8 12 �8
2 3 2 1

�3 �1 1 �4

1

CCA .

We set P
0

= I
4

, and we can also set ⇤
0

= 0. The first step is to permute
row 1 and row 2, using the pivot 4. We also apply this permutation to P

0

:

A0
1

=

0

BB@

4 8 12 �8
1 2 �3 4
2 3 2 1

�3 �1 1 �4

1

CCA P
1

=

0

BB@

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

1

CCA .

Next we subtract 1/4 times row 1 from row 2, 1/2 times row 1 from row 3,
and add 3/4 times row 1 to row 4, and start assembling ⇤:

A
2

=

0

BB@

4 8 12 �8
0 0 �6 6
0 �1 �4 5
0 5 10 �10

1

CCA ⇤
1

=

0

BB@

0 0 0 0
1/4 0 0 0
1/2 0 0 0

�3/4 0 0 0

1

CCA P
1

=

0

BB@

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

1

CCA .

Next we permute row 2 and row 4, using the pivot 5. We also apply this
permutation to ⇤ and P :

A0
3

=

0

BB@

4 8 12 �8
0 5 10 �10
0 �1 �4 5
0 0 �6 6

1

CCA ⇤0
2

=

0

BB@

0 0 0 0
�3/4 0 0 0
1/2 0 0 0
1/4 0 0 0

1

CCA P
2

=

0

BB@

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

1

CCA .

Next we add 1/5 times row 2 to row 3, and update ⇤0
2

:

A
3

=

0

BB@

4 8 12 �8
0 5 10 �10
0 0 �2 3
0 0 �6 6

1

CCA ⇤
2

=

0

BB@

0 0 0 0
�3/4 0 0 0
1/2 �1/5 0 0
1/4 0 0 0

1

CCA P
2

=

0

BB@

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

1

CCA .
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Next we permute row 3 and row 4, using the pivot �6. We also apply this
permutation to ⇤ and P :

A0
4

=

0

BB@

4 8 12 �8
0 5 10 �10
0 0 �6 6
0 0 �2 3

1

CCA ⇤0
3

=

0

BB@

0 0 0 0
�3/4 0 0 0
1/4 0 0 0
1/2 �1/5 0 0

1

CCA P
3

=

0

BB@

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

1

CCA .

Finally we subtract 1/3 times row 3 from row 4, and update ⇤0
3

:

A
4

=

0

BB@

4 8 12 �8
0 5 10 �10
0 0 �6 6
0 0 0 1

1

CCA ⇤
3

=

0

BB@

0 0 0 0
�3/4 0 0 0
1/4 0 0 0
1/2 �1/5 1/3 0

1

CCA P
3

=

0

BB@

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

1

CCA .

Consequently, adding the identity to ⇤
3

, we obtain

L =

0

BB@

1 0 0 0
�3/4 1 0 0
1/4 0 1 0
1/2 �1/5 1/3 1

1

CCA , U =

0

BB@

4 8 12 �8
0 5 10 �10
0 0 �6 6
0 0 0 1

1

CCA , P =

0

BB@

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

1

CCA .

We check that

PA =

0

BB@

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

1

CCA

0

BB@

1 2 �3 4
4 8 12 �8
2 3 2 1

�3 �1 1 �4

1

CCA =

0

BB@

4 8 12 �8
�3 �1 1 �4
1 2 �3 4
2 3 2 1

1

CCA ,

and that

LU =

0

BB@

1 0 0 0
�3/4 1 0 0
1/4 0 1 0
1/2 �1/5 1/3 1

1

CCA

0

BB@

4 8 12 �8
0 5 10 �10
0 0 �6 6
0 0 0 1

1

CCA =

0

BB@

4 8 12 �8
�3 �1 1 �4
1 2 �3 4
2 3 2 1

1

CCA = PA.

Note that if one willing to overwrite the lower triangular part of the
evolving matrix A, one can store the evolving ⇤ there, since these entries
will eventually be zero anyway! There is also no need to save explicitly the
permutation matrix P . One could instead record the permutation steps in
an extra column (record the vector (⇡(1), . . . ,⇡(n)) corresponding to the
permutation ⇡ applied to the rows). We let the reader write such a bold
and space-e�cient version of LU -decomposition!

Remark: In Matlab the function lu returns the matrices P,L, U involved
in the PA = LU factorization using the call [L,U, P ] = lu(A).
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As a corollary of Theorem 7.2(1), we can show the following result.

Proposition 7.3. If an invertible real symmetric matrix A has an LU -
decomposition, then A has a factorization of the form

A = LDL>,

where L is a lower-triangular matrix whose diagonal entries are equal to 1,
and where D consists of the pivots. Furthermore, such a decomposition is
unique.

Proof. If A has an LU -factorization, then it has an LDU factorization

A = LDU,

where L is lower-triangular, U is upper-triangular, and the diagonal entries
of both L and U are equal to 1. Since A is symmetric, we have

LDU = A = A> = U>DL>,

with U> lower-triangular and DL> upper-triangular. By the uniqueness
of LU -factorization (Part (1) of Theorem 7.2), we must have L = U> (and
DU = DL>), thus U = L>, as claimed.

Remark: It can be shown that Gaussian elimination plus back-
substitution requires n3/3+O(n2) additions, n3/3+O(n2) multiplications
and n2/2 +O(n) divisions.

7.6 Proof of Theorem 7.2 ~

Proof. (1) The only part that has not been proven is the uniqueness part
(when P = I). Assume that A is invertible and that A = L

1

U
1

= L
2

U
2

,
with L

1

, L
2

unit lower-triangular and U
1

, U
2

upper-triangular. Then we
have

L�1

2

L
1

= U
2

U�1

1

.

However, it is obvious that L�1

2

is lower-triangular and that U�1

1

is upper-
triangular, and so L�1

2

L
1

is lower-triangular and U
2

U�1

1

is upper-triangular.
Since the diagonal entries of L

1

and L
2

are 1, the above equality is only
possible if U

2

U�1

1

= I, that is, U
1

= U
2

, and so L
1

= L
2

.
(2) When P = I, we have L = E�1

1

E�1

2

· · ·E�1

n�1

, where Ek is the
product of n � k elementary matrices of the form Ei,k;�`i , where Ei,k;�`i
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subtracts `i times row k from row i, with `ik = a(k)ik /a(k)kk , 1  k  n � 1,
and k + 1  i  n. Then it is immediately verified that

Ek =

0

BBBBBBBBB@

1 · · · 0 0 · · · 0
...
. . .

...
...

...
...

0 · · · 1 0 · · · 0
0 · · · �`k+1k 1 · · · 0
...

...
...

...
. . .

...
0 · · · �`nk 0 · · · 1

1

CCCCCCCCCA

,

and that

E�1

k =

0

BBBBBBBBB@

1 · · · 0 0 · · · 0
...
. . .

...
...

...
...

0 · · · 1 0 · · · 0
0 · · · `k+1k 1 · · · 0
...

...
...

...
. . .

...
0 · · · `nk 0 · · · 1

1

CCCCCCCCCA

.

If we define Lk by

Lk =

0

BBBBBBBBBBBBBB@

1 0 0 0 0
... 0

`
21

1 0 0 0
... 0

`
31

`
32

. . . 0 0
... 0

...
...

. . . 1 0
... 0

`k+11

`k+12

· · · `k+1k 1 · · · 0
...

...
. . .

... 0
... 0

`n1 `n2 · · · `nk 0 · · · 1

1

CCCCCCCCCCCCCCA

for k = 1, . . . , n � 1, we easily check that L
1

= E�1

1

, and that

Lk = Lk�1

E�1

k , 2  k  n � 1,

because multiplication on the right by E�1

k adds `i times column i to column
k (of the matrix Lk�1

) with i > k, and column i of Lk�1

has only the
nonzero entry 1 as its ith element. Since

Lk = E�1

1

· · ·E�1

k , 1  k  n � 1,

we conclude that L = Ln�1

, proving our claim about the shape of L.
(3)
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Step 1. Prove (†
1

).
First we prove by induction on k that

Ak+1

= Ek
k · · ·Ek

1

Pk · · ·P
1

A, k = 1, . . . , n � 2.

For k = 1, we have A
2

= E
1

P
1

A = E1

1

P
1

A, since E1

1

= E
1

, so our
assertion holds trivially.

Now if k � 2,

Ak+1

= EkPkAk,

and by the induction hypothesis,

Ak = Ek�1

k�1

· · ·Ek�1

2

Ek�1

1

Pk�1

· · ·P
1

A.

Because Pk is either the identity or a transposition, P 2

k = I, so by inserting
occurrences of PkPk as indicated below we can write

Ak+1

= EkPkAk

= EkPkE
k�1

k�1

· · ·Ek�1

2

Ek�1

1

Pk�1

· · ·P
1

A

= EkPkE
k�1

k�1

(PkPk) · · · (PkPk)E
k�1

2

(PkPk)E
k�1

1

(PkPk)Pk�1

· · ·P
1

A

= Ek(PkE
k�1

k�1

Pk) · · · (PkE
k�1

2

Pk)(PkE
k�1

1

Pk)PkPk�1

· · ·P
1

A.

Observe that Pk has been “moved” to the right of the elimination steps.
However, by definition,

Ek
j = PkE

k�1

j Pk, j = 1, . . . , k � 1

Ek
k = Ek,

so we get

Ak+1

= Ek
kE

k
k�1

· · ·Ek
2

Ek
1

Pk · · ·P
1

A,

establishing the induction hypothesis. For k = n � 2, we get

U = An�1

= En�1

n�1

· · ·En�1

1

Pn�1

· · ·P
1

A,

as claimed, and the factorization PA = LU with

P = Pn�1

· · ·P
1

L = (En�1

1

)�1 · · · (En�1

n�1

)�1

is clear.
Step 2. Prove that the matrices (Ek

j )
�1 are lower-triangular. To achieve

this, we prove that the matrices Ek
j are strictly lower triangular matrices of

a very special form.
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Since for j = 1, . . . , n � 2, we have Ej
j = Ej ,

Ek
j = PkE

k�1

j Pk, k = j + 1, . . . , n � 1,

since En�1

n�1

= En�1

and P�1

k = Pk, we get (Ej
j )

�1 = E�1

j for j = 1, . . .,
n � 1, and for j = 1, . . . , n � 2, we have

(Ek
j )

�1 = Pk(E
k�1

j )�1Pk, k = j + 1, . . . , n � 1.

Since

(Ek�1

j )�1 = I + Ek�1

j

and Pk = P (k, i) is a transposition or Pk = I, so P 2

k = I, and we get

(Ek
j )

�1 = Pk(E
k�1

j )�1Pk = Pk(I + Ek�1

j )Pk = P 2

k + Pk Ek�1

j Pk

= I + Pk Ek�1

j Pk.

Therefore, we have

(Ek
j )

�1 = I + Pk Ek�1

j Pk, 1  j  n � 2, j + 1  k  n � 1.

We prove for j = 1, . . . , n � 1, that for k = j, . . . , n � 1, each Ek
j is a lower

triangular matrix of the form

Ek
j =

0

BBBBBBBBB@

0 · · · 0 0 · · · 0
...
. . .

...
...

...
...

0 · · · 0 0 · · · 0

0 · · · `(k)j+1j 0 · · · 0
...

...
...

...
. . .

...

0 · · · `(k)nj 0 · · · 0

1

CCCCCCCCCA

,

and that

Ek
j = Pk Ek�1

j , 1  j  n � 2, j + 1  k  n � 1,

with Pk = I or Pk = P (k, i) for some i such that k + 1  i  n.
For each j (1  j  n� 1) we proceed by induction on k = j, . . . , n� 1.

Since (Ej
j )

�1 = E�1

j and since E�1

j is of the above form, the base case
holds.

For the induction step, we only need to consider the case where Pk =
P (k, i) is a transposition, since the case where Pk = I is trivial. We have
to figure out what Pk Ek�1

j Pk = P (k, i) Ek�1

j P (k, i) is. However, since

Ek�1

j =

0

BBBBBBBBB@

0 · · · 0 0 · · · 0
...
. . .

...
...

...
...

0 · · · 0 0 · · · 0

0 · · · `(k�1)

j+1j 0 · · · 0
...

...
...

...
. . .

...

0 · · · `(k�1)

nj 0 · · · 0

1

CCCCCCCCCA

,



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 233

7.6. Proof of Theorem 7.2 ~ 233

and because k+1  i  n and j  k � 1, multiplying Ek�1

j on the right by
P (k, i) will permute columns i and k, which are columns of zeros, so

P (k, i) Ek�1

j P (k, i) = P (k, i) Ek�1

j ,

and thus,

(Ek
j )

�1 = I + P (k, i) Ek�1

j .

But since

(Ek
j )

�1 = I + Ek
j ,

we deduce that

Ek
j = P (k, i) Ek�1

j .

We also know that multiplying Ek�1

j on the left by P (k, i) will permute
rows i and k, which shows that Ek

j has the desired form, as claimed. Since
all Ek

j are strictly lower triangular, all (Ek
j )

�1 = I+Ek
j are lower triangular,

so the product

L = (En�1

1

)�1 · · · (En�1

n�1

)�1

is also lower triangular.
Step 3. Express L as L = I + ⇤n�1

, with ⇤n�1

= E1

1

+ · · · + En�1

n�1

.
From Step 1 of Part (3), we know that

L = (En�1

1

)�1 · · · (En�1

n�1

)�1.

We prove by induction on k that

I + ⇤k = (Ek
1

)�1 · · · (Ek
k )

�1

⇤k = Ek
1

+ · · · + Ek
k ,

for k = 1, . . . , n � 1.
If k = 1, we have E1

1

= E
1

and

E
1

=

0

BBBB@

1 0 · · · 0

�`(1)
21

1 · · · 0
...

...
. . .

...

�`(1)n1 0 · · · 1

1

CCCCA
.

We also get

(E�1

1

)�1 =

0

BBBB@

1 0 · · · 0

`(1)
21

1 · · · 0
...

...
. . .

...

`(1)n1 0 · · · 1

1

CCCCA
= I + ⇤

1

.
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Since (E�1

1

)�1 = I + E1

1

, we find that we get ⇤
1

= E1

1

, and the base step
holds.

Since (Ek
j )

�1 = I + Ek
j with

Ek
j =

0

BBBBBBBBB@

0 · · · 0 0 · · · 0
...
. . .

...
...

...
...

0 · · · 0 0 · · · 0

0 · · · `(k)j+1j 0 · · · 0
...

...
...

...
. . .

...

0 · · · `(k)nj 0 · · · 0

1

CCCCCCCCCA

and Ek
i Ek

j = 0 if i < j, as in part (2) for the computation involving the
products of Lk’s, we get

(Ek�1

1

)�1 · · · (Ek�1

k�1

)�1 = I + Ek�1

1

+ · · · + Ek�1

k�1

, 2  k  n. (⇤)
Similarly, from the fact that Ek�1

j P (k, i) = Ek�1

j if i � k+1 and j  k � 1
and since

(Ek
j )

�1 = I + PkEk�1

j , 1  j  n � 2, j + 1  k  n � 1,

we get

(Ek
1

)�1 · · · (Ek
k�1

)�1 = I + Pk(Ek�1

1

+ · · · + Ek�1

k�1

), 2  k  n � 1. (⇤⇤)
By the induction hypothesis,

I + ⇤k�1

= (Ek�1

1

)�1 · · · (Ek�1

k�1

)�1,

and from (⇤), we get

⇤k�1

= Ek�1

1

+ · · · + Ek�1

k�1

.

Using (⇤⇤), we deduce that

(Ek
1

)�1 · · · (Ek
k�1

)�1 = I + Pk⇤k�1

.

Since Ek
k = Ek, we obtain

(Ek
1

)�1 · · · (Ek
k�1

)�1(Ek
k )

�1 = (I + Pk⇤k�1

)E�1

k .

However, by definition

I + ⇤k = (I + Pk⇤k�1

)E�1

k ,

which proves that

I + ⇤k = (Ek
1

)�1 · · · (Ek
k�1

)�1(Ek
k )

�1, (†)
and finishes the induction step for the proof of this formula.

If we apply Equation (⇤) again with k + 1 in place of k, we have

(Ek
1

)�1 · · · (Ek
k )

�1 = I + Ek
1

+ · · · + Ek
k ,

and together with (†), we obtain,

⇤k = Ek
1

+ · · · + Ek
k ,

also finishing the induction step for the proof of this formula. For k = n�1
in (†), we obtain the desired equation: L = I + ⇤n�1

.
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7.7 Dealing with Roundo↵ Errors; Pivoting Strategies

Let us now briefly comment on the choice of a pivot. Although theoretically,
any pivot can be chosen, the possibility of roundo↵ errors implies that it is
not a good idea to pick very small pivots. The following example illustrates
this point. Consider the linear system

10�4x + y = 1
x + y = 2.

Since 10�4 is nonzero, it can be taken as pivot, and we get

10�4x + y = 1
(1 � 104)y = 2 � 104.

Thus, the exact solution is

x =
104

104 � 1
, y =

104 � 2

104 � 1
.

However, if roundo↵ takes place on the fourth digit, then 104 � 1 = 9999
and 104 � 2 = 9998 will be rounded o↵ both to 9990, and then the solution
is x = 0 and y = 1, very far from the exact solution where x ⇡ 1 and y ⇡ 1.
The problem is that we picked a very small pivot. If instead we permute
the equations, the pivot is 1, and after elimination we get the system

x + y = 2
(1 � 10�4)y = 1 � 2 ⇥ 10�4.

This time, 1� 10�4 = 0.9999 and 1� 2⇥ 10�4 = 0.9998 are rounded o↵ to
0.999 and the solution is x = 1, y = 1, much closer to the exact solution.

To remedy this problem, one may use the strategy of partial pivoting .
This consists of choosing during Step k (1  k  n � 1) one of the entries
a(k)i k such that

|a(k)i k | = max
kpn

|a(k)p k |.

By maximizing the value of the pivot, we avoid dividing by undesirably
small pivots.

Remark: A matrix, A, is called strictly column diagonally dominant i↵

|aj j | >
nX

i=1, i 6=j

|ai j |, for j = 1, . . . , n
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(resp. strictly row diagonally dominant i↵

|ai i| >
nX

j=1, j 6=i

|ai j |, for i = 1, . . . , n.)

For example, the matrix
0

BBBBB@

7

2

1
1 4 1 0
. . .

. . .
. . .

0 1 4 1
1 7

2

1

CCCCCA

of the curve interpolation problem discussed in Section 7.1 is strictly column
(and row) diagonally dominant.

It has been known for a long time (before 1900, say by Hadamard) that
if a matrix A is strictly column diagonally dominant (resp. strictly row
diagonally dominant), then it is invertible. It can also be shown that if
A is strictly column diagonally dominant, then Gaussian elimination with
partial pivoting does not actually require pivoting (see Problem 7.12).

Another strategy, called complete pivoting , consists in choosing some
entry a(k)i j , where k  i, j  n, such that

|a(k)i j | = max
kp,qn

|a(k)p q |.

However, in this method, if the chosen pivot is not in column k, it is also
necessary to permute columns. This is achieved by multiplying on the
right by a permutation matrix. However, complete pivoting tends to be
too expensive in practice, and partial pivoting is the method of choice.

A special case where the LU -factorization is particularly e�cient is the
case of tridiagonal matrices, which we now consider.

7.8 Gaussian Elimination of Tridiagonal Matrices

Consider the tridiagonal matrix

A =

0

BBBBBBBBBB@

b
1

c
1

a
2

b
2

c
2

a
3

b
3

c
3

. . .
. . .

. . .

an�2

bn�2

cn�2

an�1

bn�1

cn�1

an bn

1

CCCCCCCCCCA

.
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Define the sequence

�
0

= 1, �
1

= b
1

, �k = bk�k�1

� akck�1

�k�2

, 2  k  n.

Proposition 7.4. If A is the tridiagonal matrix above, then �k = det(A(1 :
k, 1 : k)) for k = 1, . . . , n.

Proof. By expanding det(A(1 : k, 1 : k)) with respect to its last row, the
proposition follows by induction on k.

Theorem 7.3. If A is the tridiagonal matrix above and �k 6= 0 for k =
1, . . . , n, then A has the following LU -factorization:

A =

0

BBBBBBBBBBBBBB@

1

a
2

�
0

�
1

1

a
3

�
1

�
2

1

. . .
. . .

an�1

�n�3

�n�2

1

an
�n�2

�n�1

1

1

CCCCCCCCCCCCCCA

0

BBBBBBBBBBBBBBB@

�
1

�
0

c
1

�
2

�
1

c
2

�
3

�
2

c
3

. . .
. . .
�n�1

�n�2

cn�1

�n
�n�1

1

CCCCCCCCCCCCCCCA

.

Proof. Since �k = det(A(1 : k, 1 : k)) 6= 0 for k = 1, . . . , n, by Theorem
7.2 (and Proposition 7.1), we know that A has a unique LU -factorization.
Therefore, it su�ces to check that the proposed factorization works. We
easily check that

(LU)k k+1

= ck, 1  k  n � 1

(LU)k k�1

= ak, 2  k  n

(LU)k l = 0, |k � l| � 2

(LU)
1 1

=
�
1

�
0

= b
1

(LU)k k =
akck�1

�k�2

+ �k
�k�1

= bk, 2  k  n,

since �k = bk�k�1

� akck�1

�k�2

.

It follows that there is a simple method to solve a linear system Ax =
d where A is tridiagonal (and �k 6= 0 for k = 1, . . . , n). For this, it is
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convenient to “squeeze” the diagonal matrix � defined such that �k k =
�k/�k�1

into the factorization so that A = (L�)(��1U), and if we let

z
1

=
c
1

b
1

, zk = ck
�k�1

�k
, 2  k  n � 1, zn =

�n
�n�1

= bn � anzn�1

,

A = (L�)(��1U) is written as

A =

0

BBBBBBBBBBBB@

c
1

z
1

a
2

c
2

z
2

a
3

c
3

z
3

. . .
. . .

an�1

cn�1

zn�1

an zn

1

CCCCCCCCCCCCA

0

BBBBBBBBBBBBBBBBBBBBBBB@

1 z
1

1 z
2

1 z
3

. . .
. . .

1 zn�2

1 zn�1

1

1

CCCCCCCCCCCCCCCCCCCCCCCA

.

As a consequence, the system Ax = d can be solved by constructing three
sequences: First, the sequence

z
1

=
c
1

b
1

, zk =
ck

bk � akzk�1

, k = 2, . . . , n � 1, zn = bn � anzn�1

,

corresponding to the recurrence �k = bk�k�1

�akck�1

�k�2

and obtained by
dividing both sides of this equation by �k�1

, next

w
1

=
d
1

b
1

, wk =
dk � akwk�1

bk � akzk�1

, k = 2, . . . , n,

corresponding to solving the system L�w = d, and finally

xn = wn, xk = wk � zkxk+1

, k = n � 1, n � 2, . . . , 1,

corresponding to solving the system ��1Ux = w.

Remark: It can be verified that this requires 3(n � 1) additions, 3(n � 1)
multiplications, and 2n divisions, a total of 8n�6 operations, which is much
less that the O(2n3/3) required by Gaussian elimination in general.

We now consider the special case of symmetric positive definite matrices
(SPD matrices).
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7.9 SPD Matrices and the Cholesky Decomposition

Recall that an n ⇥ n real symmetric matrix A is positive definite i↵

x>Ax > 0 for all x 2 Rn with x 6= 0.

Equivalently, A is symmetric positive definite i↵ all its eigenvalues are
strictly positive. The following facts about a symmetric positive definite
matrix A are easily established (some left as an exercise):

(1) The matrix A is invertible. (Indeed, if Ax = 0, then x>Ax = 0, which
implies x = 0.)

(2) We have ai i > 0 for i = 1, . . . , n. (Just observe that for x = ei, the ith
canonical basis vector of Rn, we have e>i Aei = ai i > 0.)

(3) For every n ⇥ n real invertible matrix Z, the matrix Z>AZ is real
symmetric positive definite i↵ A is real symmetric positive definite.

(4) The set of n ⇥ n real symmetric positive definite matrices is convex.
This means that if A and B are two n ⇥ n symmetric positive definite
matrices, then for any � 2 R such that 0  �  1, the matrix (1 �
�)A+�B is also symmetric positive definite. Clearly since A and B are
symmetric, (1� �)A+ �B is also symmetric. For any nonzero x 2 Rn,
we have x>Ax > 0 and x>Bx > 0, so

x>((1 � �)A+ �B)x = (1 � �)x>Ax+ �x>Bx > 0,

because 0  �  1, so 1 � � � 0 and � � 0, and 1 � � and � can’t be
zero simultaneously.

(5) The set of n ⇥ n real symmetric positive definite matrices is a cone.
This means that if A is symmetric positive definite and if � > 0 is any
real, then �A is symmetric positive definite. Clearly �A is symmetric,
and for nonzero x 2 Rn, we have x>Ax > 0, and since � > 0, we have
x>�Ax = �x>Ax > 0.

Remark: Given a complex m ⇥ n matrix A, we define the matrix A as
the m ⇥ n matrix A = (aij). Then we define A⇤ as the n ⇥ m matrix
A⇤ = (A)> = (A>). The n ⇥ n complex matrix A is Hermitian if A⇤ = A.
This is the complex analog of the notion of a real symmetric matrix. A
Hermitian matrix A is positive definite if

z⇤Az > 0 for all z 2 Cn with z 6= 0.

It is easily verified that Properties (1)-(5) hold for Hermitian positive defi-
nite matrices; replace > by ⇤.
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It is instructive to characterize when a 2 ⇥ 2 real symmetric matrix A
is positive definite. Write

A =

✓
a c
c b

◆
.

Then we have

�
x y
�✓a c

c b

◆✓
x
y

◆
= ax2 + 2cxy + by2.

If the above expression is strictly positive for all nonzero vectors
�
x
y

�
, then

for x = 1, y = 0 we get a > 0 and for x = 0, y = 1 we get b > 0. Then we
can write

ax2 + 2cxy + by2 =

✓p
ax+

cp
a
y

◆
2

+ by2 � c2

a
y2

=

✓p
ax+

cp
a
y

◆
2

+
1

a

�
ab � c2

�
y2. (†)

Since a > 0, if ab � c2  0, then we can choose y > 0 so that the second
term is negative or zero, and we can set x = �(c/a)y to make the first term
zero, in which case ax2 + 2cxy + by2  0, so we must have ab � c2 > 0.

Conversely, if a > 0, b > 0 and ab > c2, then for any (x, y) 6= (0, 0), if
y = 0, then x 6= 0 and the first term of (†) is positive, and if y 6= 0, then
the second term of (†) is positive. Therefore, the symmetric matrix A is
positive definite i↵

a > 0, b > 0, ab > c2. (⇤)

Note that ab � c2 = det(A), so the third condition says that det(A) > 0.
Observe that the condition b > 0 is redundant, since if a > 0 and

ab > c2, then we must have b > 0 (and similarly b > 0 and ab > c2 implies
that a > 0).

We can try to visualize the space of 2⇥2 real symmetric positive definite
matrices in R3, by viewing (a, b, c) as the coordinates along the x, y, z axes.
Then the locus determined by the strict inequalities in (⇤) corresponds to
the region on the side of the cone of equation xy = z2 that does not contain
the origin and for which x > 0 and y > 0. For z = � fixed, the equation
xy = �2 define a hyperbola in the plane z = �. The cone of equation
xy = z2 consists of the lines through the origin that touch the hyperbola
xy = 1 in the plane z = 1. We only consider the branch of this hyperbola
for which x > 0 and y > 0. See Figure 7.6.
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xy = 1

Fig. 7.6 Two views of the surface xy = z

2 in R3. The intersection of the surface with a
constant z plane results in a hyperbola. The region associated with the 2 ⇥ 2 symmetric
positive definite matrices lies in ”front” of the green side.

It is not hard to show that the inverse of a real symmetric positive
definite matrix is also real symmetric positive definite, but the product of
two real symmetric positive definite matrices may not be symmetric positive
definite, as the following example shows:✓

1 1
1 2

◆✓
1/

p
2 �1

p
2

�1/
p
2 3/

p
2

◆
=

✓
0 2/

p
2

�1/
p
2 5/

p
2

◆
.

According to the above criterion, the two matrices on the left-hand side are
real symmetric positive definite, but the matrix on the right-hand side is
not even symmetric, and

�
�6 1

�✓ 0 2/
p
2

�1/
p
2 5/

p
2

◆✓
�6
1

◆
=
�
�6 1

�✓ 2/
p
2

11/
p
2

◆
= �1/

p
5,
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even though its eigenvalues are both real and positive.
Next we show that a real symmetric positive definite matrix has a special

LU -factorization of the form A = BB>, where B is a lower-triangular
matrix whose diagonal elements are strictly positive. This is the Cholesky
factorization.

First we note that a symmetric positive definite matrix satisfies the
condition of Proposition 7.1.

Proposition 7.5. If A is a real symmetric positive definite matrix, then
A(1 : k, 1 : k) is symmetric positive definite and thus invertible for k =
1, . . . , n.

Proof. Since A is symmetric, each A(1 : k, 1 : k) is also symmetric. If
w 2 Rk, with 1  k  n, we let x 2 Rn be the vector with xi = wi for
i = 1, . . . , k and xi = 0 for i = k + 1, . . . , n. Now since A is symmetric
positive definite, we have x>Ax > 0 for all x 2 Rn with x 6= 0. This holds
in particular for all vectors x obtained from nonzero vectors w 2 Rk as
defined earlier, and clearly

x>Ax = w>A(1 : k, 1 : k)w,

which implies that A(1 : k, 1 : k) is positive definite. Thus, by Fact 1 above,
A(1 : k, 1 : k) is also invertible.

Proposition 7.5 also holds for a complex Hermitian positive definite
matrix. Proposition 7.5 can be strengthened as follows: A real symmetric
(or complex Hermitian) matrix A is positive definite i↵ det(A(1 : k, 1 :
k)) > 0 for k = 1, . . . , n.

The above fact is known as Sylvester’s criterion. We will prove it after
establishing the Cholesky factorization.

Let A be an n ⇥ n real symmetric positive definite matrix and write

A =

✓
a
1 1

W>

W C

◆
,

where C is an (n � 1) ⇥ (n � 1) symmetric matrix and W is an (n � 1) ⇥
1 matrix. Since A is symmetric positive definite, a

1 1

> 0, and we can
compute ↵ =

p
a
1 1

. The trick is that we can factor A uniquely as

A =

✓
a
1 1

W>

W C

◆
=

✓
↵ 0

W/↵ I

◆✓
1 0
0 C � WW>/a

1 1

◆✓
↵ W>/↵
0 I

◆
,

i.e., as A = B
1

A
1

B>
1

, where B
1

is lower-triangular with positive diagonal
entries. Thus, B

1

is invertible, and by Fact (3) above, A
1

is also symmetric
positive definite.
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Remark: The matrix C � WW>/a
1 1

is known as the Schur complement
of the matrix (a

11

).

Theorem 7.4. (Cholesky factorization) Let A be a real symmetric positive
definite matrix. Then there is some real lower-triangular matrix B so that
A = BB>. Furthermore, B can be chosen so that its diagonal elements are
strictly positive, in which case B is unique.

Proof. We proceed by induction on the dimension n of A. For n = 1, we
must have a

1 1

> 0, and if we let ↵ =
p
a
1 1

and B = (↵), the theorem holds
trivially. If n � 2, as we explained above, again we must have a

1 1

> 0, and
we can write

A =

✓
a
1 1

W>

W C

◆
=

✓
↵ 0

W/↵ I

◆✓
1 0
0 C � WW>/a

1 1

◆✓
↵ W>/↵
0 I

◆
= B

1

A
1

B>
1

,

where ↵ =
p
a
1 1

, the matrix B
1

is invertible and

A
1

=

✓
1 0
0 C � WW>/a

1 1

◆

is symmetric positive definite. However, this implies that C � WW>/a
1 1

is also symmetric positive definite (consider x>A
1

x for every x 2 Rn with
x 6= 0 and x

1

= 0). Thus, we can apply the induction hypothesis to
C�WW>/a

1 1

(which is an (n�1)⇥ (n�1) matrix), and we find a unique
lower-triangular matrix L with positive diagonal entries so that

C � WW>/a
1 1

= LL>.

But then we get

A =

✓
↵ 0

W/↵ I

◆✓
1 0
0 C � WW>/a

1 1

◆✓
↵ W>/↵
0 I

◆

=

✓
↵ 0

W/↵ I

◆✓
1 0
0 LL>

◆✓
↵ W>/↵
0 I

◆

=

✓
↵ 0

W/↵ I

◆✓
1 0
0 L

◆✓
1 0
0 L>

◆✓
↵ W>/↵
0 I

◆

=

✓
↵ 0

W/↵ L

◆✓
↵ W>/↵
0 L>

◆
.

Therefore, if we let

B =

✓
↵ 0

W/↵ L

◆
,

we have a unique lower-triangular matrix with positive diagonal entries and
A = BB>.
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Remark: The uniqueness of the Cholesky decomposition can also be es-
tablished using the uniqueness of an LU -decomposition. Indeed, if A =
B

1

B>
1

= B
2

B>
2

where B
1

and B
2

are lower triangular with positive diago-
nal entries, if we let �

1

(resp. �
2

) be the diagonal matrix consisting of the
diagonal entries of B

1

(resp. B
2

) so that (�k)ii = (Bk)ii for k = 1, 2, then
we have two LU -decompositions

A = (B
1

��1

1

)(�
1

B>
1

) = (B
2

��1

2

)(�
2

B>
2

)

with B
1

��1

1

, B
2

��1

2

unit lower triangular, and �
1

B>
1

,�
2

B>
2

upper trian-
gular. By uniquenes of LU -factorization (Theorem 7.2(1)), we have

B
1

��1

1

= B
2

��1

2

, �
1

B>
1

= �
2

B>
2

,

and the second equation yields

B
1

�
1

= B
2

�
2

. (⇤)

The diagonal entries of B
1

�
1

are (B
1

)2ii and similarly the diagonal entries
of B

2

�
2

are (B
2

)2ii, so the above equation implies that

(B
1

)2ii = (B
2

)2ii, i = 1, . . . , n.

Since the diagonal entries of both B
1

and B
2

are assumed to be positive,
we must have

(B
1

)ii = (B
2

)ii, i = 1, . . . , n;

that is, �
1

= �
2

, and since both are invertible, we conclude from (⇤) that
B

1

= B
2

.
Theorem 7.4 also holds for complex Hermitian positive definite matrices.

In this case, we have A = BB⇤ for some unique lower triangular matrix B
with positive diagonal entries.

The proof of Theorem 7.4 immediately yields an algorithm to compute
B from A by solving for a lower triangular matrix B such that A = BB>

(where both A and B are real matrices). For j = 1, . . . , n,

bj j =

 
aj j �

j�1X

k=1

b2j k

!
1/2

,

and for i = j + 1, . . . , n (and j = 1, . . . , n � 1)

bi j =

 
ai j �

j�1X

k=1

bi kbj k

!
/bj j .
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The above formulae are used to compute the jth column of B from top-
down, using the first j � 1 columns of B previously computed, and the
matrix A. In the case of n = 3, A = BB> yields

0

@
a
11

a
12

a
31

a
21

a
22

a
32

a
31

a
32

a
33

1

A =

0

@
b
11

0 0
b
21

b
22

0
b
31

b
32

b
33

1

A

0

@
b
11

b
21

b
31

0 b
22

b
32

0 0 b
33

1

A

=

0

@
b2
11

b
11

b
21

b
11

b
31

b
11

b
21

b2
21

+ b2
22

b
21

b
31

+ b
22

b
32

b
11

b
31

b
21

b
31

+ b
22

b
32

b2
31

+ b2
32

+ b2
33

1

A .

We work down the first column of A, compare entries, and discover that

a
11

= b2
11

b
11

=
p
a
11

a
21

= b
11

b
21

b
21

=
a
21

b
11

a
31

= b
11

b
31

b
31

=
a
31

b
11

.

Next we work down the second column of A using previously calculated
expressions for b

21

and b
31

to find that

a
22

= b2
21

+ b2
22

b
22

=
�
a
22

� b2
21

� 1
2

a
32

= b
21

b
31

+ b
22

b
32

b
32

=
a
32

� b
21

b
31

b
22

.

Finally, we use the third column of A and the previously calculated
expressions for b

31

and b
32

to determine b
33

as

a
33

= b2
31

+ b2
32

+ b2
33

b
33

=
�
a
33

� b2
31

� b2
32

� 1
2 .

For another example, if

A =

0

BBBBBBB@

1 1 1 1 1 1
1 2 2 2 2 2
1 2 3 3 3 3
1 2 3 4 4 4
1 2 3 4 5 5
1 2 3 4 5 6

1

CCCCCCCA

,

we find that

B =

0

BBBBBBB@

1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0
1 1 1 1 1 1

1

CCCCCCCA

.
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We leave it as an exercise to find similar formulae (involving conjuga-
tion) to factor a complex Hermitian positive definite matrix A as A = BB⇤.
The following Matlab program implements the Cholesky factorization.

function B = Cholesky(A)

n = size(A,1);

B = zeros(n,n);

for j = 1:n-1;

if j == 1

B(1,1) = sqrt(A(1,1));

for i = 2:n

B(i,1) = A(i,1)/B(1,1);

end

else

B(j,j) = sqrt(A(j,j) - B(j,1:j-1)*B(j,1:j-1)’);

for i = j+1:n

B(i,j) = (A(i,j) - B(i,1:j-1)*B(j,1:j-1)’)/B(j,j);

end

end

end

B(n,n) = sqrt(A(n,n) - B(n,1:n-1)*B(n,1:n-1)’);

end

If we run the above algorithm on the following matrix

A =

0

BBBB@

4 1 0 0 0
1 4 1 0 0
0 1 4 1 0
0 0 1 4 1
0 0 0 1 4

1

CCCCA
,

we obtain

B =

0

BBBB@

2.0000 0 0 0 0
0.5000 1.9365 0 0 0

0 0.5164 1.9322 0 0
0 0 0.5175 1.9319 0
0 0 0 0.5176 1.9319

1

CCCCA
.

The Cholesky factorization can be used to solve linear systems Ax = b
where A is symmetric positive definite: Solve the two systems Bw = b and
B>x = w.
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Remark: It can be shown that this methods requires n3/6 + O(n2) ad-
ditions, n3/6 + O(n2) multiplications, n2/2 + O(n) divisions, and O(n)
square root extractions. Thus, the Cholesky method requires half of the
number of operations required by Gaussian elimination (since Gaussian
elimination requires n3/3+O(n2) additions, n3/3+O(n2) multiplications,
and n2/2 + O(n) divisions). It also requires half of the space (only B is
needed, as opposed to both L and U). Furthermore, it can be shown that
Cholesky’s method is numerically stable (see Trefethen and Bau [Trefethen
and Bau III (1997)], Lecture 23). In Matlab the function chol returns the
lower-triangular matrix B such that A = BB> using the call B = chol(A,
‘lower’).

Remark: If A = BB>, where B is any invertible matrix, then A is sym-
metric positive definite.

Proof. Obviously, BB> is symmetric, and since B is invertible, B> is
invertible, and from

x>Ax = x>BB>x = (B>x)>B>x,

it is clear that x>Ax > 0 if x 6= 0.

We now give three more criteria for a symmetric matrix to be positive
definite.

Proposition 7.6. Let A be any n⇥n real symmetric matrix. The following
conditions are equivalent:

(a) A is positive definite.
(b) All principal minors of A are positive; that is: det(A(1 : k, 1 : k)) > 0

for k = 1, . . . , n (Sylvester’s criterion).
(c) A has an LU -factorization and all pivots are positive.
(d) A has an LDL>-factorization and all pivots in D are positive.

Proof. By Proposition 7.5, if A is symmetric positive definite, then each
matrix A(1 : k, 1 : k) is symmetric positive definite for k = 1, . . . , n. By the
Cholsesky decomposition, A(1 : k, 1 : k) = Q>Q for some invertible matrix
Q, so det(A(1 : k, 1 : k)) = det(Q)2 > 0. This shows that (a) implies (b).

If det(A(1 : k, 1 : k)) > 0 for k = 1, . . . , n, then each A(1 : k, 1 : k) is
invertible. By Proposition 7.1, the matrix A has an LU -factorization, and
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since the pivots ⇡k are given by

⇡k =

8
<

:

a
11

= det(A(1 : 1, 1 : 1)) if k = 1
det(A(1 : k, 1 : k))

det(A(1 : k � 1, 1 : k � 1))
if k = 2, . . . , n,

we see that ⇡k > 0 for k = 1, . . . , n. Thus (b) implies (c).
Assume A has an LU -factorization and that the pivots are all positive.

Since A is symmetric, this implies that A has a factorization of the form

A = LDL>,

with L lower-triangular with 1s on its diagonal, and where D is a diagonal
matrix with positive entries on the diagonal (the pivots). This shows that
(c) implies (d).

Given a factorization A = LDL> with all pivots in D positive, if we
form the diagonal matrix

p
D = diag(

p
⇡
1

, . . . ,
p
⇡n)

and if we let B = L
p
D, then we have

A = BB>,

with B lower-triangular and invertible. By the remark before Proposition
7.6, A is positive definite. Hence, (d) implies (a).

Criterion (c) yields a simple computational test to check whether a
symmetric matrix is positive definite. There is one more criterion for a
symmetric matrix to be positive definite: its eigenvalues must be positive.
We will have to learn about the spectral theorem for symmetric matrices
to establish this criterion.

Proposition 7.6 also holds for complex Hermitian positive definite ma-
trices, where in (d), the factorization LDL> is replaced by LDL⇤.

For more on the stability analysis and e�cient implementation methods
of Gaussian elimination, LU -factoring and Cholesky factoring, see Demmel
[Demmel (1997)], Trefethen and Bau [Trefethen and Bau III (1997)], Cia-
rlet [Ciarlet (1989)], Golub and Van Loan [Golub and Van Loan (1996)],
Meyer [Meyer (2000)], Strang [Strang (1986, 1988)], and Kincaid and Ch-
eney [Kincaid and Cheney (1996)].
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7.10 Reduced Row Echelon Form (RREF)

Gaussian elimination described in Section 7.2 can also be applied to rect-
angular matrices. This yields a method for determining whether a system
Ax = b is solvable and a description of all the solutions when the system is
solvable, for any rectangular m ⇥ n matrix A.

It turns out that the discussion is simpler if we rescale all pivots to be
1, and for this we need a third kind of elementary matrix. For any � 6= 0,
let Ei,� be the n ⇥ n diagonal matrix

Ei,� =

0

BBBBBBBBBBB@

1
. . .

1
�
1
. . .

1

1

CCCCCCCCCCCA

,

with (Ei,�)ii = � (1  i  n). Note that Ei,� is also given by

Ei,� = I + (�� 1)ei i,

and that Ei,� is invertible with

E�1

i,� = Ei,��1 .

Now after k � 1 elimination steps, if the bottom portion

(a(k)kk , a
(k)
k+1k, . . . , a

(k)
mk)

of the kth column of the current matrix Ak is nonzero so that a pivot
⇡k can be chosen, after a permutation of rows if necessary, we also divide
row k by ⇡k to obtain the pivot 1, and not only do we zero all the entries
i = k+1, . . . ,m in column k, but also all the entries i = 1, . . . , k�1, so that
the only nonzero entry in column k is a 1 in row k. These row operations
are achieved by multiplication on the left by elementary matrices.

If a(k)kk = a(k)k+1k = · · · = a(k)mk = 0, we move on to column k + 1.
When the kth column contains a pivot, the kth stage of the procedure for

converting a matrix to rref consists of the following three steps illustrated
below:



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 250

250 Gaussian Elimination, LU, Cholesky, Echelon Form

0

BBBBBBB@

1 ⇥ 0 ⇥ ⇥ ⇥ ⇥
0 0 1 ⇥ ⇥ ⇥ ⇥
0 0 0 ⇥ ⇥ ⇥ ⇥
0 0 0 ⇥ ⇥ ⇥ ⇥
0 0 0 a(k)ik ⇥ ⇥ ⇥
0 0 0 ⇥ ⇥ ⇥ ⇥

1

CCCCCCCA

pivot
=)

0

BBBBBBB@

1 ⇥ 0 ⇥ ⇥ ⇥ ⇥
0 0 1 ⇥ ⇥ ⇥ ⇥
0 0 0 a(k)ik ⇥ ⇥ ⇥
0 0 0 ⇥ ⇥ ⇥ ⇥
0 0 0 ⇥ ⇥ ⇥ ⇥
0 0 0 ⇥ ⇥ ⇥ ⇥

1

CCCCCCCA

rescale
=)

0

BBBBBBB@

1 ⇥ 0 ⇥ ⇥ ⇥ ⇥
0 0 1 ⇥ ⇥ ⇥ ⇥
0 0 0 1 ⇥ ⇥ ⇥
0 0 0 ⇥ ⇥ ⇥ ⇥
0 0 0 ⇥ ⇥ ⇥ ⇥
0 0 0 ⇥ ⇥ ⇥ ⇥

1

CCCCCCCA

elim
=)

0

BBBBBBB@

1 ⇥ 0 0 ⇥ ⇥ ⇥
0 0 1 0 ⇥ ⇥ ⇥
0 0 0 1 ⇥ ⇥ ⇥
0 0 0 0 ⇥ ⇥ ⇥
0 0 0 0 ⇥ ⇥ ⇥
0 0 0 0 ⇥ ⇥ ⇥

1

CCCCCCCA

.

If the kth column does not contain a pivot, we simply move on to the next
column.

The result is that after performing such elimination steps, we obtain a
matrix that has a special shape known as a reduced row echelon matrix , for
short rref.

Here is an example illustrating this process: Starting from the matrix

A
1

=

0

@
1 0 2 1 5
1 1 5 2 7
1 2 8 4 12

1

A ,

we perform the following steps

A
1

�! A
2

=

0

@
1 0 2 1 5
0 1 3 1 2
0 2 6 3 7

1

A ,

by subtracting row 1 from row 2 and row 3;

A
2

�!

0

@
1 0 2 1 5
0 2 6 3 7
0 1 3 1 2

1

A �!

0

@
1 0 2 1 5
0 1 3 3/2 7/2
0 1 3 1 2

1

A �! A
3

=

0

@
1 0 2 1 5
0 1 3 3/2 7/2
0 0 0 �1/2 �3/2

1

A ,

after choosing the pivot 2 and permuting row 2 and row 3, dividing row 2
by 2, and subtracting row 2 from row 3;

A
3

�!

0

@
1 0 2 1 5
0 1 3 3/2 7/2
0 0 0 1 3

1

A �! A
4

=

0

@
1 0 2 0 2
0 1 3 0 �1
0 0 0 1 3

1

A ,



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 251

7.10. Reduced Row Echelon Form 251

after dividing row 3 by �1/2, subtracting row 3 from row 1, and subtracting
(3/2)⇥ row 3 from row 2.

It is clear that columns 1, 2 and 4 are linearly independent, that column
3 is a linear combination of columns 1 and 2, and that column 5 is a linear
combination of columns 1, 2, 4.

In general, the sequence of steps leading to a reduced echelon matrix is
not unique. For example, we could have chosen 1 instead of 2 as the second
pivot in matrix A

2

. Nevertheless, the reduced row echelon matrix obtained
from any given matrix is unique; that is, it does not depend on the the
sequence of steps that are followed during the reduction process. This fact
is not so easy to prove rigorously, but we will do it later.

If we want to solve a linear system of equations of the form Ax = b, we
apply elementary row operations to both the matrix A and the right-hand
side b. To do this conveniently, we form the augmented matrix (A, b), which
is the m ⇥ (n+ 1) matrix obtained by adding b as an extra column to the
matrix A. For example if

A =

0

@
1 0 2 1
1 1 5 2
1 2 8 4

1

A and b =

0

@
5
7
12

1

A ,

then the augmented matrix is

(A, b) =

0

@
1 0 2 1 5
1 1 5 2 7
1 2 8 4 12

1

A .

Now for any matrix M , since

M(A, b) = (MA,Mb),

performing elementary row operations on (A, b) is equivalent to simultane-
ously performing operations on both A and b. For example, consider the
system

x
1

+ 2x
3

+ x
4

= 5
x
1

+ x
2

+ 5x
3

+ 2x
4

= 7
x
1

+ 2x
2

+ 8x
3

+ 4x
4

= 12.

Its augmented matrix is the matrix

(A, b) =

0

@
1 0 2 1 5
1 1 5 2 7
1 2 8 4 12

1

A
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considered above, so the reduction steps applied to this matrix yield the
system

x
1

+ 2x
3

= 2
x
2

+ 3x
3

= �1
x
4

= 3.

This reduced system has the same set of solutions as the original, and
obviously x

3

can be chosen arbitrarily. Therefore, our system has infinitely
many solutions given by

x
1

= 2 � 2x
3

, x
2

= �1 � 3x
3

, x
4

= 3,

where x
3

is arbitrary.
The following proposition shows that the set of solutions of a system

Ax = b is preserved by any sequence of row operations.

Proposition 7.7. Given any m ⇥ n matrix A and any vector b 2 Rm, for
any sequence of elementary row operations E

1

, . . . , Ek, if P = Ek · · ·E
1

and (A0, b0) = P (A, b), then the solutions of Ax = b are the same as the
solutions of A0x = b0.

Proof. Since each elementary row operation Ei is invertible, so is P , and
since (A0, b0) = P (A, b), then A0 = PA and b0 = Pb. If x is a solution of the
original system Ax = b, then multiplying both sides by P we get PAx = Pb;
that is, A0x = b0, so x is a solution of the new system. Conversely, assume
that x is a solution of the new system, that is A0x = b0. Then because
A0 = PA, b0 = Pb, and P is invertible, we get

Ax = P�1A0x = P�1b0 = b,

so x is a solution of the original system Ax = b.

Another important fact is this:

Proposition 7.8. Given an m ⇥ n matrix A, for any sequence of row
operations E

1

, . . . , Ek, if P = Ek · · ·E
1

and B = PA, then the subspaces
spanned by the rows of A and the rows of B are identical. Therefore, A and
B have the same row rank. Furthermore, the matrices A and B also have
the same (column) rank.

Proof. Since B = PA, from a previous observation, the rows of B are
linear combinations of the rows of A, so the span of the rows of B is a
subspace of the span of the rows of A. Since P is invertible, A = P�1B, so
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by the same reasoning the span of the rows of A is a subspace of the span
of the rows of B. Therefore, the subspaces spanned by the rows of A and
the rows of B are identical, which implies that A and B have the same row
rank.

Proposition 7.7 implies that the systems Ax = 0 and Bx = 0 have the
same solutions. Since Ax is a linear combinations of the columns of A and
Bx is a linear combinations of the columns of B, the maximum number
of linearly independent columns in A is equal to the maximum number
of linearly independent columns in B; that is, A and B have the same
rank.

Remark: The subspaces spanned by the columns of A and B can be dif-
ferent! However, their dimension must be the same.

We will show in Section 7.14 that the row rank is equal to the column
rank. This will also be proven in Proposition 10.11 Let us now define
precisely what is a reduced row echelon matrix.

Definition 7.4. An m⇥n matrix A is a reduced row echelon matrix i↵ the
following conditions hold:

(a) The first nonzero entry in every row is 1. This entry is called a pivot .
(b) The first nonzero entry of row i+ 1 is to the right of the first nonzero

entry of row i.
(c) The entries above a pivot are zero.

If a matrix satisfies the above conditions, we also say that it is in reduced
row echelon form, for short rref .

Note that Condition (b) implies that the entries below a pivot are also
zero. For example, the matrix

A =

0

@
1 6 0 1
0 0 1 2
0 0 0 0

1

A

is a reduced row echelon matrix. In general, a matrix in rref has the fol-



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 254

254 Gaussian Elimination, LU, Cholesky, Echelon Form

lowing shape: 0

BBBBBBBBB@

1 0 0 ⇥ ⇥ 0 0 ⇥
0 1 0 ⇥ ⇥ 0 0 ⇥
0 0 1 ⇥ ⇥ 0 0 ⇥
0 0 0 0 0 1 0 ⇥
0 0 0 0 0 0 1 ⇥
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1

CCCCCCCCCA

if the last row consists of zeros, or0

BBBBBBB@

1 0 0 ⇥ ⇥ 0 0 ⇥ 0 ⇥
0 1 0 ⇥ ⇥ 0 0 ⇥ 0 ⇥
0 0 1 ⇥ ⇥ 0 0 ⇥ 0 ⇥
0 0 0 0 0 1 0 ⇥ 0 ⇥
0 0 0 0 0 0 1 ⇥ ⇥ 0
0 0 0 0 0 0 0 0 1 ⇥

1

CCCCCCCA

if the last row contains a pivot.
The following proposition shows that every matrix can be converted to

a reduced row echelon form using row operations.

Proposition 7.9. Given any m ⇥ n matrix A, there is a sequence of row
operations E

1

, . . . , Ek such that if P = Ek · · ·E
1

, then U = PA is a reduced
row echelon matrix.

Proof. We proceed by induction on m. If m = 1, then either all entries
on this row are zero, so A = 0, or if aj is the first nonzero entry in A, let
P = (a�1

j ) (a 1 ⇥ 1 matrix); clearly, PA is a reduced row echelon matrix.
Let us now assume that m � 2. If A = 0, we are done, so let us assume

that A 6= 0. Since A 6= 0, there is a leftmost column j which is nonzero,
so pick any pivot ⇡ = aij in the jth column, permute row i and row 1 if
necessary, multiply the new first row by ⇡�1, and clear out the other entries
in column j by subtracting suitable multiples of row 1. At the end of this
process, we have a matrix A

1

that has the following shape:

A
1

=

0

BBB@

0 · · · 0 1 ⇤ · · · ⇤
0 · · · 0 0 ⇤ · · · ⇤
...

...
...
...

...
0 · · · 0 0 ⇤ · · · ⇤

1

CCCA
,

where ⇤ stands for an arbitrary scalar, or more concisely

A
1

=

✓
0 1 B
0 0 D

◆
,
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where D is a (m�1)⇥(n�j) matrix (and B is a 1⇥n�j matrix). If j = n,
we are done. Otherwise, by the induction hypothesis applied to D, there
is a sequence of row operations that converts D to a reduced row echelon
matrix R0, and these row operations do not a↵ect the first row of A

1

, which
means that A

1

is reduced to a matrix of the form

R =

✓
0 1 B
0 0 R0

◆
.

Because R0 is a reduced row echelon matrix, the matrix R satisfies Con-
ditions (a) and (b) of the reduced row echelon form. Finally, the entries
above all pivots in R0 can be cleared out by subtracting suitable multiples
of the rows of R0 containing a pivot. The resulting matrix also satisfies
Condition (c), and the induction step is complete.

Remark: There is a Matlab function named rref that converts any matrix
to its reduced row echelon form.

If A is any matrix and if R is a reduced row echelon form of A, the
second part of Proposition 7.8 can be sharpened a little, since the structure
of a reduced row echelon matrix makes it clear that its rank is equal to the
number of pivots.

Proposition 7.10. The rank of a matrix A is equal to the number of pivots
in its rref R.

7.11 RREF, Free Variables, and Homogenous Linear Sys-
tems

Given a system of the form Ax = b, we can apply the reduction procedure
to the augmented matrix (A, b) to obtain a reduced row echelon matrix
(A0, b0) such that the system A0x = b0 has the same solutions as the original
system Ax = b. The advantage of the reduced system A0x = b0 is that
there is a simple test to check whether this system is solvable, and to find
its solutions if it is solvable.

Indeed, if any row of the matrix A0 is zero and if the corresponding
entry in b0 is nonzero, then it is a pivot and we have the “equation”

0 = 1,

which means that the system A0x = b0 has no solution. On the other hand,
if there is no pivot in b0, then for every row i in which b0i 6= 0, there is some
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column j in A0 where the entry on row i is 1 (a pivot). Consequently, we
can assign arbitrary values to the variable xk if column k does not contain
a pivot, and then solve for the pivot variables.

For example, if we consider the reduced row echelon matrix

(A0, b0) =

0

@
1 6 0 1 0
0 0 1 2 0
0 0 0 0 1

1

A ,

there is no solution to A0x = b0 because the third equation is 0 = 1. On
the other hand, the reduced system

(A0, b0) =

0

@
1 6 0 1 1
0 0 1 2 3
0 0 0 0 0

1

A

has solutions. We can pick the variables x
2

, x
4

corresponding to nonpivot
columns arbitrarily, and then solve for x

3

(using the second equation) and
x
1

(using the first equation).
The above reasoning proves the following theorem:

Theorem 7.5. Given any system Ax = b where A is a m⇥n matrix, if the
augmented matrix (A, b) is a reduced row echelon matrix, then the system
Ax = b has a solution i↵ there is no pivot in b. In that case, an arbitrary
value can be assigned to the variable xj if column j does not contain a pivot.

Definition 7.5. Nonpivot variables are often called free variables .

Putting Proposition 7.9 and Theorem 7.5 together we obtain a criterion
to decide whether a system Ax = b has a solution: Convert the augmented
system (A, b) to a row reduced echelon matrix (A0, b0) and check whether
b0 has no pivot.

Remark: When writing a program implementing row reduction, we may
stop when the last column of the matrix A is reached. In this case, the test
whether the system Ax = b is solvable is that the row-reduced matrix A0

has no zero row of index i > r such that b0i 6= 0 (where r is the number of
pivots, and b0 is the row-reduced right-hand side).

If we have a homogeneous system Ax = 0, which means that b = 0,
of course x = 0 is always a solution, but Theorem 7.5 implies that if the
system Ax = 0 has more variables than equations, then it has some nonzero
solution (we call it a nontrivial solution).

Proposition 7.11. Given any homogeneous system Ax = 0 of m equations
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in n variables, if m < n, then there is a nonzero vector x 2 Rn such that
Ax = 0.

Proof. Convert the matrix A to a reduced row echelon matrix A0. We
know that Ax = 0 i↵ A0x = 0. If r is the number of pivots of A0, we must
have r  m, so by Theorem 7.5 we may assign arbitrary values to n�r > 0
nonpivot variables and we get nontrivial solutions.

Theorem 7.5 can also be used to characterize when a square matrix is
invertible. First, note the following simple but important fact:

If a square n⇥ n matrix A is a row reduced echelon matrix, then either
A is the identity or the bottom row of A is zero.

Proposition 7.12. Let A be a square matrix of dimension n. The following
conditions are equivalent:

(a) The matrix A can be reduced to the identity by a sequence of elementary
row operations.

(b) The matrix A is a product of elementary matrices.
(c) The matrix A is invertible.
(d) The system of homogeneous equations Ax = 0 has only the trivial so-

lution x = 0.

Proof. First we prove that (a) implies (b). If (a) can be reduced to
the identity by a sequence of row operations E

1

, . . . , Ep, this means that
Ep · · ·E

1

A = I. Since each Ei is invertible, we get

A = E�1

1

· · ·E�1

p ,

where each E�1

i is also an elementary row operation, so (b) holds. Now
if (b) holds, since elementary row operations are invertible, A is invertible
and (c) holds. If A is invertible, we already observed that the homogeneous
system Ax = 0 has only the trivial solution x = 0, because from Ax = 0,
we get A�1Ax = A�10; that is, x = 0. It remains to prove that (d) implies
(a) and for this we prove the contrapositive: if (a) does not hold, then (d)
does not hold.

Using our basic observation about reducing square matrices, if A does
not reduce to the identity, then A reduces to a row echelon matrix A0 whose
bottom row is zero. Say A0 = PA, where P is a product of elementary row
operations. Because the bottom row of A0 is zero, the system A0x = 0 has
at most n � 1 nontrivial equations, and by Proposition 7.11, this system
has a nontrivial solution x. But then, Ax = P�1A0x = 0 with x 6= 0,
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contradicting the fact that the system Ax = 0 is assumed to have only the
trivial solution. Therefore, (d) implies (a) and the proof is complete.

Proposition 7.12 yields a method for computing the inverse of an invert-
ible matrix A: reduce A to the identity using elementary row operations,
obtaining

Ep · · ·E
1

A = I.

Multiplying both sides by A�1 we get

A�1 = Ep · · ·E
1

.

From a practical point of view, we can build up the product Ep · · ·E
1

by
reducing to row echelon form the augmented n⇥2n matrix (A, In) obtained
by adding the n columns of the identity matrix to A. This is just another
way of performing the Gauss–Jordan procedure.

Here is an example: let us find the inverse of the matrix

A =

✓
5 4
6 5

◆
.

We form the 2 ⇥ 4 block matrix

(A, I) =

✓
5 4 1 0
6 5 0 1

◆

and apply elementary row operations to reduce A to the identity. For
example:

(A, I) =

✓
5 4 1 0
6 5 0 1

◆
�!

✓
5 4 1 0
1 1 �1 1

◆

by subtracting row 1 from row 2,
✓
5 4 1 0
1 1 �1 1

◆
�!

✓
1 0 5 �4
1 1 �1 1

◆

by subtracting 4⇥ row 2 from row 1,
✓
1 0 5 �4
1 1 �1 1

◆
�!

✓
1 0 5 �4
0 1 �6 5

◆
= (I, A�1),

by subtracting row 1 from row 2. Thus

A�1 =

✓
5 �4

�6 5

◆
.

Proposition 7.12 can also be used to give an elementary proof of the
fact that if a square matrix A has a left inverse B (resp. a right inverse B),
so that BA = I (resp. AB = I), then A is invertible and A�1 = B. This
is an interesting exercise, try it!
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7.12 Uniqueness of RREF Form

For the sake of completeness, we prove that the reduced row echelon form
of a matrix is unique. The neat proof given below is borrowed and adapted
from W. Kahan.

Proposition 7.13. Let A be any m ⇥ n matrix. If U and V are two
reduced row echelon matrices obtained from A by applying two sequences of
elementary row operations E

1

, . . . , Ep and F
1

, . . . , Fq, so that

U = Ep · · ·E
1

A and V = Fq · · ·F
1

A,

then U = V and Ep · · ·E
1

= Fq · · ·F
1

. In other words, the reduced row
echelon form of any matrix is unique.

Proof. Let

C = Ep · · ·E
1

F�1

1

· · ·F�1

q

so that

U = CV and V = C�1U.

We prove by induction on n that U = V (and C = I).
Let `j denote the jth column of the identity matrix In, and let uj = U`j ,

vj = V `j , cj = C`j , and aj = A`j , be the jth column of U , V , C, and A
respectively.

First I claim that uj = 0 i↵ vj = 0 i↵ aj = 0.
Indeed, if vj = 0, then (because U = CV ) uj = Cvj = 0, and if uj = 0,

then vj = C�1uj = 0. Since U = Ep · · ·E
1

A, we also get aj = 0 i↵ uj = 0.
Therefore, we may simplify our task by striking out columns of zeros

from U, V , and A, since they will have corresponding indices. We still use
n to denote the number of columns of A. Observe that because U and
V are reduced row echelon matrices with no zero columns, we must have
u
1

= v
1

= `
1

.
Claim. If U and V are reduced row echelon matrices without zero

columns such that U = CV , for all k � 1, if k  n, then `k occurs in U i↵
`k occurs in V , and if `k does occur in U , then

(1) `k occurs for the same column index jk in both U and V ;
(2) the first jk columns of U and V match;
(3) the subsequent columns in U and V (of column index > jk) whose

coordinates of index k+1 through m are all equal to 0 also match. Let
nk be the rightmost index of such a column, with nk = jk if there is
none.
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(4) the first nk columns of C match the first nk columns of In.

We prove this claim by induction on k.
For the base case k = 1, we already know that u

1

= v
1

= `
1

. We also
have

c
1

= C`
1

= Cv
1

= u
1

= `
1

.

If vj = �`
1

for some � 2 R, then

uj = U`j = CV `j = Cvj = �C`
1

= �c
1

= �`
1

= vj .

A similar argument using C�1 shows that if uj = �`
1

, then vj = uj .
Therefore, all the columns of U and V proportional to `

1

match, which
establishes the base case. Observe that if `

2

appears in U , then it must
appear in both U and V for the same index, and if not then n

1

= n and
U = V .

Next us now prove the induction step. If nk = n, then U = V and we
are done. Otherwise, `k+1

appears in both U and V , in which case, by (2)
and (3) of the induction hypothesis, it appears in both U and V for the
same index, say jk+1

. Thus, ujk+1 = vjk+1 = `k+1

. It follows that

ck+1

= C`k+1

= Cvjk+1 = ujk+1 = `k+1

,

so the first jk+1

columns of C match the first jk+1

columns of In.
Consider any subsequent column vj (with j > jk+1

) whose elements
beyond the (k+1)th all vanish. Then vj is a linear combination of columns
of V to the left of vj , so

uj = Cvj = vj .

because the first k+1 columns of C match the first column of In. Similarly,
any subsequent column uj (with j > jk+1

) whose elements beyond the
(k+1)th all vanish is equal to vj . Therefore, all the subsequent columns in
U and V (of index > jk+1

) whose elements beyond the (k+1)th all vanish
also match, so the first nk+1

columns of C match the first nk+1

columns of
C, which completes the induction hypothesis.

We can now prove that U = V (recall that we may assume that U and
V have no zero columns). We noted earlier that u

1

= v
1

= `
1

, so there is
a largest k  n such that `k occurs in U . Then the previous claim implies
that all the columns of U and V match, which means that U = V .

The reduction to row echelon form also provides a method to describe
the set of solutions of a linear system of the form Ax = b.
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7.13 Solving Linear Systems Using RREF

First we have the following simple result.

Proposition 7.14. Let A be any m ⇥ n matrix and let b 2 Rm be any
vector. If the system Ax = b has a solution, then the set Z of all solutions
of this system is the set

Z = x
0

+Ker (A) = {x
0

+ x | Ax = 0},

where x
0

2 Rn is any solution of the system Ax = b, which means that
Ax

0

= b (x
0

is called a special solution), and where Ker (A) = {x 2 Rn |
Ax = 0}, the set of solutions of the homogeneous system associated with
Ax = b.

Proof. Assume that the system Ax = b is solvable and let x
0

and x
1

be
any two solutions so that Ax

0

= b and Ax
1

= b. Subtracting the first
equation from the second, we get

A(x
1

� x
0

) = 0,

which means that x
1

� x
0

2 Ker (A). Therefore, Z ✓ x
0

+ Ker (A), where
x
0

is a special solution of Ax = b. Conversely, if Ax
0

= b, then for any
z 2 Ker (A), we have Az = 0, and so

A(x
0

+ z) = Ax
0

+Az = b+ 0 = b,

which shows that x
0

+Ker (A) ✓ Z. Therefore, Z = x
0

+Ker (A).

Given a linear system Ax = b, reduce the augmented matrix (A, b) to
its row echelon form (A0, b0). As we showed before, the system Ax = b has
a solution i↵ b0 contains no pivot. Assume that this is the case. Then, if
(A0, b0) has r pivots, which means that A0 has r pivots since b0 has no pivot,
we know that the first r columns of Im appear in A0.

We can permute the columns of A0 and renumber the variables in x
correspondingly so that the first r columns of Im match the first r columns
of A0, and then our reduced echelon matrix is of the form (R, b0) with

R =

✓
Ir F

0m�r,r 0m�r,n�r

◆

and

b0 =

✓
d

0m�r

◆
,
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where F is a r ⇥ (n � r) matrix and d 2 Rr. Note that R has m � r zero
rows.

Then because
✓

Ir F
0m�r,r 0m�r,n�r

◆✓
d

0n�r

◆
=

✓
d

0m�r

◆
= b0,

we see that

x
0

=

✓
d

0n�r

◆

is a special solution of Rx = b0, and thus to Ax = b. In other words, we
get a special solution by assigning the first r components of b0 to the pivot
variables and setting the nonpivot variables (the free variables) to zero.

Here is an example of the preceding construction taken from Kumpel
and Thorpe [Kumpel and Thorpe (1983)]. The linear system

x
1

� x
2

+ x
3

+ x
4

� 2x
5

= �1

�2x
1

+ 2x
2

� x
3

+ x
5

= 2

x
1

� x
2

+ 2x
3

+ 3x
4

� 5x
5

= �1,

is represented by the augmented matrix

(A, b) =

0

@
1 �1 1 1 �2 �1

�2 2 �1 0 1 2
1 �1 2 3 �5 �1

1

A ,

where A is a 3 ⇥ 5 matrix. The reader should find that the row echelon
form of this system is

(A0, b0) =

0

@
1 �1 0 �1 1 �1
0 0 1 2 �3 0
0 0 0 0 0 0

1

A .

The 3⇥5 matrix A0 has rank 2. We permute the second and third columns
(which is equivalent to interchanging variables x

2

and x
3

) to form

R =

✓
I
2

F
0
1,2 0

1,3

◆
, F =

✓
�1 �1 1
0 2 �3

◆
.

Then a special solution to this linear system is given by

x
0

=

✓
d
0
3

◆
=

0

@
�1
0
0
3

1

A .
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We can also find a basis of the kernel (nullspace) of A using F . If
x = (u, v) is in the kernel of A, with u 2 Rr and v 2 Rn�r, then x is also
in the kernel of R, which means that Rx = 0; that is,

✓
Ir F

0m�r,r 0m�r,n�r

◆✓
u
v

◆
=

✓
u+ Fv
0m�r

◆
=

✓
0r

0m�r

◆
.

Therefore, u = �Fv, and Ker (A) consists of all vectors of the form
✓

�Fv
v

◆
=

✓
�F
In�r

◆
v,

for any arbitrary v 2 Rn�r. It follows that the n� r columns of the matrix

N =

✓
�F
In�r

◆

form a basis of the kernel of A. This is because N contains the identity ma-
trix In�r as a submatrix, so the columns of N are linearly independent. In
summary, if N1, . . . , Nn�r are the columns of N , then the general solution
of the equation Ax = b is given by

x =

✓
d

0n�r

◆
+ xr+1

N1 + · · · + xnN
n�r,

where xr+1

, . . . , xn are the free variables; that is, the nonpivot variables.
Going back to our example from Kumpel and Thorpe [Kumpel and

Thorpe (1983)], we see that

N =

✓
�F
I
3

◆
=

0

BBBB@

1 1 �1
0 �2 �3
1 0 0
0 1 0
0 0 1

1

CCCCA
,

and that the general solution is given by

x =

0

BBBB@

�1
0
0
0
0

1

CCCCA
+ x

3

0

BBBB@

1
0
1
0
0

1

CCCCA
+ x

4

0

BBBB@

1
�2
0
1
0

1

CCCCA
+ x

5

0

BBBB@

�1
�3
0
0
1

1

CCCCA
.

In the general case where the columns corresponding to pivots are mixed
with the columns corresponding to free variables, we find the special solu-
tion as follows. Let i

1

< · · · < ir be the indices of the columns correspond-
ing to pivots. Assign b0k to the pivot variable xik for k = 1, . . . , r, and set all
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other variables to 0. To find a basis of the kernel, we form the n� r vectors
Nk obtained as follows. Let j

1

< · · · < jn�r be the indices of the columns
corresponding to free variables. For every column jk corresponding to a
free variable (1  k  n�r), form the vector Nk defined so that the entries
Nk

i1
, . . . , Nk

ir
are equal to the negatives of the first r entries in column jk

(flip the sign of these entries); let Nk
jk

= 1, and set all other entries to zero.
Schematically, if the column of index jk (corresponding to the free variable
xjk) is 0

BBBBBBBBB@

↵
1

...
↵r

0
...
0

1

CCCCCCCCCA

,

then the vector Nk is given by

1
...

i
1

� 1
i
1

i
1

+ 1
...

ir � 1
ir

ir + 1
...

jk � 1
jk

jk + 1
...
n

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0
...
0

�↵
1

0
...
0

�↵r

0
...
0
1
0
...
0

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

.

The presence of the 1 in position jk guarantees that N1, . . . , Nn�r are
linearly independent.

As an illustration of the above method, consider the problem of finding
a basis of the subspace V of n ⇥ n matrices A 2 Mn(R) satisfying the
following properties:
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(1) The sum of the entries in every row has the same value (say c
1

);
(2) The sum of the entries in every column has the same value (say c

2

).

It turns out that c
1

= c
2

and that the 2n � 2 equations corresponding to
the above conditions are linearly independent. We leave the proof of these
facts as an interesting exercise. It can be shown using the duality theorem
(Theorem 10.1) that the dimension of the space V of matrices satisying the
above equations is n2 � (2n� 2). Let us consider the case n = 4. There are
6 equations, and the space V has dimension 10. The equations are

a
11

+ a
12

+ a
13

+ a
14

� a
21

� a
22

� a
23

� a
24

= 0

a
21

+ a
22

+ a
23

+ a
24

� a
31

� a
32

� a
33

� a
34

= 0

a
31

+ a
32

+ a
33

+ a
34

� a
41

� a
42

� a
43

� a
44

= 0

a
11

+ a
21

+ a
31

+ a
41

� a
12

� a
22

� a
32

� a
42

= 0

a
12

+ a
22

+ a
32

+ a
42

� a
13

� a
23

� a
33

� a
43

= 0

a
13

+ a
23

+ a
33

+ a
43

� a
14

� a
24

� a
34

� a
44

= 0,

and the corresponding matrix is

A =

0

BBBBBBB@

1 1 1 1 �1 �1 �1 �1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 �1 �1 �1 �1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 �1 �1 �1 �1
1 �1 0 0 1 �1 0 0 1 �1 0 0 1 �1 0 0
0 1 �1 0 0 1 �1 0 0 1 �1 0 0 1 �1 0
0 0 1 �1 0 0 1 �1 0 0 1 �1 0 0 1 �1

1

CCCCCCCA

.

The result of performing the reduction to row echelon form yields the
following matrix in rref:

U =

0

BBBBBBB@

1 0 0 0 0 �1 �1 �1 0 �1 �1 �1 2 1 1 1
0 1 0 0 0 1 0 0 0 1 0 0 �1 0 �1 �1
0 0 1 0 0 0 1 0 0 0 1 0 �1 �1 0 �1
0 0 0 1 0 0 0 1 0 0 0 1 �1 �1 �1 0
0 0 0 0 1 1 1 1 0 0 0 0 �1 �1 �1 �1
0 0 0 0 0 0 0 0 1 1 1 1 �1 �1 �1 �1

1

CCCCCCCA

The list pivlist of indices of the pivot variables and the list freelist of
indices of the free variables is given by

pivlist = (1, 2, 3, 4, 5, 9),

freelist = (6,7,8,10,11,12,13,14,15,16).
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After applying the algorithm to find a basis of the kernel of U , we find the
following 16 ⇥ 10 matrix

BK =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 1 1 1 1 1 �2 �1 �1 �1
�1 0 0 �1 0 0 1 0 1 1
0 �1 0 0 �1 0 1 1 0 1
0 0 �1 0 0 �1 1 1 1 0

�1 �1 �1 0 0 0 1 1 1 1
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 �1 �1 �1 1 1 1 1
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

.

The reader should check that that in each column j of BK, the lowest
bold 1 belongs to the row whose index is the jth element in freelist , and that
in each column j of BK, the signs of the entries whose indices belong to
pivlist are the flipped signs of the 6 entries in the column U corresponding
to the jth index in freelist . We can now read o↵ from BK the 4⇥4 matrices
that form a basis of V : every column of BK corresponds to a matrix whose
rows have been concatenated. We get the following 10 matrices:

M
1

=

0

BB@

1 �1 0 0
�1 1 0 0
0 0 0 0
0 0 0 0

1

CCA , M
2

=

0

BB@

1 0 �1 0
�1 0 1 0
0 0 0 0
0 0 0 0

1

CCA , M
3

=

0

BB@

1 0 0 �1
�1 0 0 1
0 0 0 0
0 0 0 0

1

CCA ,

M
4

=

0

BB@

1 �1 0 0
0 0 0 0

�1 1 0 0
0 0 0 0

1

CCA , M
5

=

0

BB@

1 0 �1 0
0 0 0 0

�1 0 1 0
0 0 0 0

1

CCA , M
6

=

0

BB@

1 0 0 �1
0 0 0 0

�1 0 0 1
0 0 0 0

1

CCA ,
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M
7

=

0

BB@

�2 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

1

CCA , M
8

=

0

BB@

�1 0 1 1
1 0 0 0
1 0 0 0
0 1 0 0

1

CCA , M
9

=

0

BB@

�1 1 0 1
1 0 0 0
1 0 0 0
0 0 1 0

1

CCA ,

M
10

=

0

BB@

�1 1 1 0
1 0 0 0
1 0 0 0
0 0 0 1

1

CCA .

Recall that a magic square is a square matrix that satisfies the two
conditions about the sum of the entries in each row and in each column
to be the same number, and also the additional two constraints that the
main descending and the main ascending diagonals add up to this common
number. Furthermore, the entries are also required to be positive integers.
For n = 4, the additional two equations are

a
22

+ a
33

+ a
44

� a
12

� a
13

� a
14

= 0

a
41

+ a
32

+ a
23

� a
11

� a
12

� a
13

= 0,

and the 8 equations stating that a matrix is a magic square are linearly
independent. Again, by running row elimination, we get a basis of the
“generalized magic squares” whose entries are not restricted to be positive
integers. We find a basis of 8 matrices. For n = 3, we find a basis of 3
matrices.

A magic square is said to be normal if its entries are precisely the
integers 1, 2 . . . , n2. Then since the sum of these entries is

1 + 2 + 3 + · · · + n2 =
n2(n2 + 1)

2
,

and since each row (and column) sums to the same number, this common
value (the magic sum) is

n(n2 + 1)

2
.

It is easy to see that there are no normal magic squares for n = 2. For
n = 3, the magic sum is 15, for n = 4, it is 34, and for n = 5, it is 65.

In the case n = 3, we have the additional condition that the rows and
columns add up to 15, so we end up with a solution parametrized by two
numbers x

1

, x
2

; namely,
0

@
x
1

+ x
2

� 5 10 � x
2

10 � x
1

20 � 2x
1

� x
2

5 2x
1

+ x
2

� 10
x
1

x
2

15 � x
1

� x
2

1

A .
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Thus, in order to find a normal magic square, we have the additional
inequality constraints

x
1

+ x
2

> 5

x
1

< 10

x
2

< 10

2x
1

+ x
2

< 20

2x
1

+ x
2

> 10

x
1

> 0

x
2

> 0

x
1

+ x
2

< 15,

and all 9 entries in the matrix must be distinct. After a tedious case
analysis, we discover the remarkable fact that there is a unique normal
magic square (up to rotations and reflections):

0

@
2 7 6
9 5 1
4 3 8

1

A .

It turns out that there are 880 di↵erent normal magic squares for n = 4,
and 275, 305, 224 normal magic squares for n = 5 (up to rotations and
reflections). Even for n = 4, it takes a fair amount of work to enumerate
them all! Finding the number of magic squares for n > 5 is an open
problem!

7.14 Elementary Matrices and Columns Operations

Instead of performing elementary row operations on a matrix A, we can
perform elementary columns operations, which means that we multiply
A by elementary matrices on the right. As elementary row and column
operations, P (i, k), Ei,j;� , Ei,� perform the following actions:

(1) As a row operation, P (i, k) permutes row i and row k.
(2) As a column operation, P (i, k) permutes column i and column k.
(3) The inverse of P (i, k) is P (i, k) itself.
(4) As a row operation, Ei,j;� adds � times row j to row i.
(5) As a column operation, Ei,j;� adds � times column i to column j (note

the switch in the indices).
(6) The inverse of Ei,j;� is Ei,j;�� .
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(7) As a row operation, Ei,� multiplies row i by �.
(8) As a column operation, Ei,� multiplies column i by �.
(9) The inverse of Ei,� is Ei,��1 .

We can define the notion of a reduced column echelon matrix and show
that every matrix can be reduced to a unique reduced column echelon form.
Now given any m ⇥ n matrix A, if we first convert A to its reduced row
echelon form R, it is easy to see that we can apply elementary column
operations that will reduce R to a matrix of the form

✓
Ir 0r,n�r

0m�r,r 0m�r,n�r

◆
,

where r is the number of pivots (obtained during the row reduction). There-
fore, for every m ⇥ n matrix A, there exist two sequences of elementary
matrices E

1

, . . . , Ep and F
1

, . . . , Fq, such that

Ep · · ·E
1

AF
1

· · ·Fq =

✓
Ir 0r,n�r

0m�r,r 0m�r,n�r

◆
.

The matrix on the right-hand side is called the rank normal form of A.
Clearly, r is the rank of A. As a corollary we obtain the following important
result whose proof is immediate.

Proposition 7.15. A matrix A and its transpose A> have the same rank.

7.15 Transvections and Dilatations ~

In this section we characterize the linear isomorphisms of a vector space
E that leave every vector in some hyperplane fixed. These maps turn out
to be the linear maps that are represented in some suitable basis by ele-
mentary matrices of the form Ei,j;� (transvections) or Ei,� (dilatations).
Furthermore, the transvections generate the group SL(E), and the dilata-
tions generate the group GL(E).

Let H be any hyperplane in E, and pick some (nonzero) vector v 2 E
such that v /2 H, so that

E = H � Kv.

Assume that f : E ! E is a linear isomorphism such that f(u) = u for all
u 2 H, and that f is not the identity. We have

f(v) = h+ ↵v, for some h 2 H and some ↵ 2 K,
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with ↵ 6= 0, because otherwise we would have f(v) = h = f(h) since h 2 H,
contradicting the injectivity of f (v 6= h since v /2 H). For any x 2 E, if
we write

x = y + tv, for some y 2 H and some t 2 K,

then

f(x) = f(y) + f(tv) = y + tf(v) = y + th+ t↵v,

and since ↵x = ↵y + t↵v, we get

f(x) � ↵x = (1 � ↵)y + th

f(x) � x = t(h+ (↵� 1)v).

Observe that if E is finite-dimensional, by picking a basis of E consisting of
v and basis vectors of H, then the matrix of f is a lower triangular matrix
whose diagonal entries are all 1 except the first entry which is equal to ↵.
Therefore, det(f) = ↵.

Case 1 . ↵ 6= 1.
We have f(x) = ↵x i↵ (1 � ↵)y + th = 0 i↵

y =
t

↵� 1
h.

Then if we let w = h+ (↵� 1)v, for y = (t/(↵� 1))h, we have

x = y + tv =
t

↵� 1
h+ tv =

t

↵� 1
(h+ (↵� 1)v) =

t

↵� 1
w,

which shows that f(x) = ↵x i↵ x 2 Kw. Note that w /2 H, since ↵ 6= 1
and v /2 H. Therefore,

E = H � Kw,

and f is the identity on H and a magnification by ↵ on the line D = Kw.

Definition 7.6. Given a vector space E, for any hyperplane H in E, any
nonzero vector u 2 E such that u 62 H, and any scalar ↵ 6= 0, 1, a linear map
f such that f(x) = x for all x 2 H and f(x) = ↵x for every x 2 D = Ku
is called a dilatation of hyperplane H, direction D, and scale factor ↵.

If ⇡H and ⇡D are the projections of E onto H and D, then we have

f(x) = ⇡H(x) + ↵⇡D(x).

The inverse of f is given by

f�1(x) = ⇡H(x) + ↵�1⇡D(x).
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When ↵ = �1, we have f2 = id, and f is a symmetry about the hyperplane
H in the direction D. This situation includes orthogonal reflections about
H.

Case 2 . ↵ = 1.
In this case,

f(x) � x = th,

that is, f(x) � x 2 Kh for all x 2 E. Assume that the hyperplane H is
given as the kernel of some linear form ', and let a = '(v). We have a 6= 0,
since v /2 H. For any x 2 E, we have

'(x � a�1'(x)v) = '(x) � a�1'(x)'(v) = '(x) � '(x) = 0,

which shows that x� a�1'(x)v 2 H for all x 2 E. Since every vector in H
is fixed by f , we get

x � a�1'(x)v = f(x � a�1'(x)v)

= f(x) � a�1'(x)f(v),

so

f(x) = x+ '(x)(f(a�1v) � a�1v).

Since f(z)� z 2 Kh for all z 2 E, we conclude that u = f(a�1v)� a�1v =
�h for some � 2 K, so '(u) = 0, and we have

f(x) = x+ '(x)u, '(u) = 0. (⇤)

A linear map defined as above is denoted by ⌧',u.
Conversely for any linear map f = ⌧',u given by Equation (⇤), where '

is a nonzero linear form and u is some vector u 2 E such that '(u) = 0,
if u = 0 , then f is the identity, so assume that u 6= 0. If so, we have
f(x) = x i↵ '(x) = 0, that is, i↵ x 2 H. We also claim that the inverse of
f is obtained by changing u to �u. Actually, we check the slightly more
general fact that

⌧',u � ⌧',w = ⌧',u+w.

Indeed, using the fact that '(w) = 0, we have

⌧',u(⌧',w(x)) = ⌧',w(x) + '(⌧',w(x))u

= ⌧',w(x) + ('(x) + '(x)'(w))u

= ⌧',w(x) + '(x)u

= x+ '(x)w + '(x)u

= x+ '(x)(u+ w).
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For v = �u, we have ⌧',u+v = '',0 = id, so ⌧�1

',u = ⌧',�u, as claimed.
Therefore, we proved that every linear isomorphism of E that leaves

every vector in some hyperplane H fixed and has the property that f(x)�
x 2 H for all x 2 E is given by a map ⌧',u as defined by Equation (⇤),
where ' is some nonzero linear form defining H and u is some vector in H.
We have ⌧',u = id i↵ u = 0.

Definition 7.7. Given any hyperplane H in E, for any nonzero nonlinear
form ' 2 E⇤ defining H (which means that H = Ker (')) and any nonzero
vector u 2 H, the linear map f = ⌧',u given by

⌧',u(x) = x+ '(x)u, '(u) = 0,

for all x 2 E is called a transvection of hyperplane H and direction u. The
map f = ⌧',u leaves every vector in H fixed, and f(x) � x 2 Ku for all
x 2 E.

The above arguments show the following result.

Proposition 7.16. Let f : E ! E be a bijective linear map and assume
that f 6= id and that f(x) = x for all x 2 H, where H is some hyperplane in
E. If there is some nonzero vector u 2 E such that u /2 H and f(u)�u 2 H,
then f is a transvection of hyperplane H; otherwise, f is a dilatation of
hyperplane H.

Proof. Using the notation as above, for some v /2 H, we have f(v) = h+↵v
with ↵ 6= 0, and write u = y + tv with y 2 H and t 6= 0 since u /2 H. If
f(u) � u 2 H, from

f(u) � u = t(h+ (↵� 1)v),

we get (↵� 1)v 2 H, and since v /2 H, we must have ↵ = 1, and we proved
that f is a transvection. Otherwise, ↵ 6= 0, 1, and we proved that f is a
dilatation.

If E is finite-dimensional, then ↵ = det(f), so we also have the following
result.

Proposition 7.17. Let f : E ! E be a bijective linear map of a finite-
dimensional vector space E and assume that f 6= id and that f(x) = x for
all x 2 H, where H is some hyperplane in E. If det(f) = 1, then f is a
transvection of hyperplane H; otherwise, f is a dilatation of hyperplane H.



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 273

7.15. Transvections and Dilatations ~ 273

Suppose that f is a dilatation of hyperplane H and direction u, and say
det(f) = ↵ 6= 0, 1. Pick a basis (u, e

2

, . . . , en) of E where (e
2

, . . . , en) is a
basis of H. Then the matrix of f is of the form

0

BBB@

↵ 0 · · · 0
0 1 0
...

. . .
...

0 0 · · · 1

1

CCCA
,

which is an elementary matrix of the form E
1,↵. Conversely, it is clear that

every elementary matrix of the form Ei,↵ with ↵ 6= 0, 1 is a dilatation.
Now, assume that f is a transvection of hyperplane H and direction

u 2 H. Pick some v /2 H, and pick some basis (u, e
3

, . . . , en) of H, so that
(v, u, e

3

, . . . , en) is a basis of E. Since f(v) � v 2 Ku, the matrix of f is of
the form

0

BBB@

1 0 · · · 0
↵ 1 0
...

. . .
...

0 0 · · · 1

1

CCCA
,

which is an elementary matrix of the form E
2,1;↵. Conversely, it is clear

that every elementary matrix of the form Ei,j;↵ (↵ 6= 0) is a transvection.
The following proposition is an interesting exercise that requires good

mastery of the elementary row operations Ei,j;� ; see Problems 7.10 and
7.11.

Proposition 7.18. Given any invertible n⇥n matrix A, there is a matrix
S such that

SA =

✓
In�1

0
0 ↵

◆
= En,↵,

with ↵ = det(A), and where S is a product of elementary matrices of the
form Ei,j;�; that is, S is a composition of transvections.

Surprisingly, every transvection is the composition of two dilatations!

Proposition 7.19. If the field K is not of characteristic 2, then every
transvection f of hyperplane H can be written as f = d

2

� d
1

, where d
1

, d
2

are dilatations of hyperplane H, where the direction of d
1

can be chosen
arbitrarily.
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Proof. Pick some dilatation d
1

of hyperplane H and scale factor ↵ 6= 0, 1.
Then, d

2

= f � d�1

1

leaves every vector in H fixed, and det(d
2

) = ↵�1 6= 1.
By Proposition 7.17, the linear map d

2

is a dilatation of hyperplane H, and
we have f = d

2

� d
1

, as claimed.

Observe that in Proposition 7.19, we can pick ↵ = �1; that is, every
transvection of hyperplane H is the compositions of two symmetries about
the hyperplane H, one of which can be picked arbitrarily.

Remark: Proposition 7.19 holds as long as K 6= {0, 1}.
The following important result is now obtained.

Theorem 7.6. Let E be any finite-dimensional vector space over a field K
of characteristic not equal to 2. Then the group SL(E) is generated by the
transvections, and the group GL(E) is generated by the dilatations.

Proof. Consider any f 2 SL(E), and let A be its matrix in any basis. By
Proposition 7.18, there is a matrix S such that

SA =

✓
In�1

0
0 ↵

◆
= En,↵,

with ↵ = det(A), and where S is a product of elementary matrices of the
form Ei,j;� . Since det(A) = 1, we have ↵ = 1, and the result is proven.
Otherwise, if f is invertible but f /2 SL(E), the above equation shows En,↵

is a dilatation, S is a product of transvections, and by Proposition 7.19,
every transvection is the composition of two dilatations. Thus, the second
result is also proven.

We conclude this section by proving that any two transvections are
conjugate in GL(E). Let ⌧',u (u 6= 0) be a transvection and let g 2 GL(E)
be any invertible linear map. We have

(g � ⌧',u � g�1)(x) = g(g�1(x) + '(g�1(x))u)

= x+ '(g�1(x))g(u).

Let us find the hyperplane determined by the linear form x 7! '(g�1(x)).
This is the set of vectors x 2 E such that '(g�1(x)) = 0, which holds i↵
g�1(x) 2 H i↵ x 2 g(H). Therefore, Ker (' � g�1) = g(H) = H 0, and we
have g(u) 2 g(H) = H 0, so g � ⌧',u � g�1 is the transvection of hyperplane
H 0 = g(H) and direction u0 = g(u) (with u0 2 H 0).
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Conversely, let ⌧ ,u0 be some transvection (u0 6= 0). Pick some vectors
v, v0 such that '(v) =  (v0) = 1, so that

E = H � Kv = H 0 � Kv0.

There is a linear map g 2 GL(E) such that g(u) = u0, g(v) = v0,
and g(H) = H 0. To define g, pick a basis (v, u, e

2

, . . . , en�1

) where
(u, e

2

, . . . , en�1

) is a basis of H and pick a basis (v0, u0, e0
2

, . . . , e0n�1

) where
(u0, e0

2

, . . . , e0n�1

) is a basis of H 0; then g is defined so that g(v) = v0,
g(u) = u0, and g(ei) = g(e0i), for i = 2, . . . , n � 1. If n = 2, then ei and e0i
are missing. Then, we have

(g � ⌧',u � g�1)(x) = x+ '(g�1(x))u0.

Now '�g�1 also determines the hyperplaneH 0 = g(H), so we have '�g�1 =
� for some nonzero � in K. Since v0 = g(v), we get

'(v) = ' � g�1(v0) = � (v0),

and since '(v) =  (v0) = 1, we must have � = 1. It follows that

(g � ⌧',u � g�1)(x) = x+  (x)u0 = ⌧ ,u0(x).

In summary, we proved almost all parts the following result.

Proposition 7.20. Let E be any finite-dimensional vector space. For every
transvection ⌧',u (u 6= 0) and every linear map g 2 GL(E), the map g �
⌧',u � g�1 is the transvection of hyperplane g(H) and direction g(u) (that
is, g � ⌧',u � g�1 = ⌧'�g�1,g(u)). For every other transvection ⌧ ,u0 (u0 6= 0),
there is some g 2 GL(E) such ⌧ ,u0 = g � ⌧',u � g�1; in other words any
two transvections ( 6= id) are conjugate in GL(E). Moreover, if n � 3, then
the linear isomorphism g as above can be chosen so that g 2 SL(E).

Proof. We just need to prove that if n � 3, then for any two transvections
⌧',u and ⌧ ,u0 (u, u0 6= 0), there is some g 2 SL(E) such that ⌧ ,u0 = g�⌧',u�
g�1. As before, we pick a basis (v, u, e

2

, . . . , en�1

) where (u, e
2

, . . . , en�1

) is
a basis of H, we pick a basis (v0, u0, e0

2

, . . . , e0n�1

) where (u0, e0
2

, . . . , e0n�1

) is
a basis of H 0, and we define g as the unique linear map such that g(v) = v0,
g(u) = u0, and g(ei) = e0i, for i = 1, . . . , n � 1. But in this case, both H
and H 0 = g(H) have dimension at least 2, so in any basis of H 0 including
u0, there is some basis vector e0

2

independent of u0, and we can rescale e0
2

in
such a way that the matrix of g over the two bases has determinant +1.
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7.16 Summary

The main concepts and results of this chapter are listed below:

• One does not solve (large) linear systems by computing determinants.
• Upper-triangular (lower-triangular) matrices.
• Solving by back-substitution (forward-substitution).
• Gaussian elimination.
• Permuting rows.
• The pivot of an elimination step; pivoting .
• Transposition matrix ; elementary matrix .
• The Gaussian elimination theorem (Theorem 7.1).
• Gauss-Jordan factorization.
• LU -factorization; Necessary and su�cient condition for the existence
of an
LU -factorization (Proposition 7.1).

• LDU -factorization.
• “PA = LU theorem” (Theorem 7.2).
• LDL>-factorization of a symmetric matrix.
• Avoiding small pivots: partial pivoting ; complete pivoting .
• Gaussian elimination of tridiagonal matrices.
• LU -factorization of tridiagonal matrices.
• Symmetric positive definite matrices (SPD matrices).
• Cholesky factorization (Theorem 7.4).
• Criteria for a symmetric matrix to be positive definite; Sylvester’s cri-
terion.

• Reduced row echelon form.
• Reduction of a rectangular matrix to its row echelon form.
• Using the reduction to row echelon form to decide whether a system
Ax = b is solvable, and to find its solutions, using a special solution
and a basis of the homogeneous system Ax = 0.

• Magic squares.
• Transvections and dilatations.
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7.17 Problems

Problem 7.1. Solve the following linear systems by Gaussian elimination:
0

@
2 3 1
1 2 �1

�3 �5 1

1

A

0

@
x
y
z

1

A =

0

@
6
2

�7

1

A ,

0

@
1 1 1
1 1 2
1 2 3

1

A

0

@
x
y
z

1

A =

0

@
6
9
14

1

A .

Problem 7.2. Solve the following linear system by Gaussian elimination:
0

BB@

1 2 1 1
2 3 2 3

�1 0 1 �1
�2 �1 4 0

1

CCA

0

BB@

x
1

x
2

x
3

x
4

1

CCA =

0

BB@

7
14
�1
2

1

CCA .

Problem 7.3. Consider the matrix

A =

0

@
1 c 0
2 4 1
3 5 1

1

A .

When applying Gaussian elimination, which value of c yields zero in the
second pivot position? Which value of c yields zero in the third pivot
position? In this case, what can you say about the matrix A?

Problem 7.4. Solve the system
0

BB@

2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8

1

CCA

0

BB@

x
1

x
2

x
3

x
4

1

CCA =

0

BB@

1
�1
�1
1

1

CCA

using the LU -factorization of Example 7.1.

Problem 7.5. Apply rref to the matrix

A
2

=

0

BB@

1 2 1 1
2 3 2 3

�1 0 1 �1
�2 �1 3 0

1

CCA .

Problem 7.6. Apply rref to the matrix
0

BB@

1 4 9 16
4 9 16 25
9 16 25 36
16 25 36 49

1

CCA .
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Problem 7.7. (1) Prove that the dimension of the subspace of 2 ⇥ 2 ma-
trices A, such that the sum of the entries of every row is the same (say c

1

)
and the sum of entries of every column is the same (say c

2

) is 2.
(2) Prove that the dimension of the subspace of 2 ⇥ 2 matrices A, such

that the sum of the entries of every row is the same (say c
1

), the sum of
entries of every column is the same (say c

2

), and c
1

= c
2

is also 2. Prove
that every such matrix is of the form

✓
a b
b a

◆
,

and give a basis for this subspace.
(3) Prove that the dimension of the subspace of 3 ⇥ 3 matrices A, such

that the sum of the entries of every row is the same (say c
1

), the sum of
entries of every column is the same (say c

2

), and c
1

= c
2

is 5. Begin by
showing that the above constraints are given by the set of equations

0

BBBB@

1 1 1 �1 �1 �1 0 0 0
0 0 0 1 1 1 �1 �1 �1
1 �1 0 1 �1 0 1 �1 0
0 1 �1 0 1 �1 0 1 �1
0 1 1 �1 0 0 �1 0 0

1

CCCCA

0

BBBBBBBBBBBBB@

a
11

a
12

a
13

a
21

a
22

a
23

a
31

a
32

a
33

1

CCCCCCCCCCCCCA

=

0

BBBB@

0
0
0
0
0

1

CCCCA
.

Prove that every matrix satisfying the above constraints is of the form
0

@
a+ b � c �a+ c+ e �b+ c+ d

�a � b+ c+ d+ e a b
c d e

1

A ,

with a, b, c, d, e 2 R. Find a basis for this subspace. (Use the method to
find a basis for the kernel of a matrix).

Problem 7.8. If A is an n ⇥ n symmetric matrix and B is any n ⇥ n
invertible matrix, prove that A is positive definite i↵ B>AB is positive
definite.

Problem 7.9. (1) Consider the matrix

A
4

=

0

BB@

2 �1 0 0
�1 2 �1 0
0 �1 2 �1
0 0 �1 2

1

CCA .
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Find three matrices of the form E
2,1;�1 , E3,2;�2 , E4,3;�3 , such that

E
4,3;�3E3,2;�2E2,1;�1A4

= U
4

where U
4

is an upper triangular matrix. Compute

M = E
4,3;�3E3,2;�2E2,1;�1

and check that

MA
4

= U
4

=

0

BB@

2 �1 0 0
0 3/2 �1 0
0 0 4/3 �1
0 0 0 5/4

1

CCA .

(2) Now consider the matrix

A
5

=

0

BBBB@

2 �1 0 0 0
�1 2 �1 0 0
0 �1 2 �1 0
0 0 �1 2 �1
0 0 0 �1 2

1

CCCCA
.

Find four matrices of the form E
2,1;�1 , E3,2;�2 , E4,3;�3 , E5,4;�4 , such that

E
5,4;�4E4,3;�3E3,2;�2E2,1;�1A5

= U
5

where U
5

is an upper triangular matrix. Compute

M = E
5,4;�4E4,3;�3E3,2;�2E2,1;�1

and check that

MA
5

= U
5

=

0

BBBB@

2 �1 0 0 0
0 3/2 �1 0 0
0 0 4/3 �1 0
0 0 0 5/4 �1
0 0 0 0 6/5

1

CCCCA
.

(3) Write a Matlab program defining the function Ematrix(n, i, j, b)
which is the n ⇥ n matrix that adds b times row j to row i. Also write
some Matlab code that produces an n ⇥ n matrix An generalizing the ma-
trices A

4

and A
5

.
Use your program to figure out which five matrices Ei,j;� reduce A

6

to
the upper triangular matrix

U
6

=

0

BBBBBBB@

2 �1 0 0 0 0
0 3/2 �1 0 0 0
0 0 4/3 �1 0 0
0 0 0 5/4 �1 0
0 0 0 0 6/5 �1
0 0 0 0 0 7/6

1

CCCCCCCA

.
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Also use your program to figure out which six matrices Ei,j;� reduce A
7

to
the upper triangular matrix

U
7

=

0

BBBBBBBBB@

2 �1 0 0 0 0 0
0 3/2 �1 0 0 0 0
0 0 4/3 �1 0 0 0
0 0 0 5/4 �1 0 0
0 0 0 0 6/5 �1 0
0 0 0 0 0 7/6 �1
0 0 0 0 0 0 8/7

1

CCCCCCCCCA

.

(4) Find the lower triangular matrices L
6

and L
7

such that

L
6

U
6

= A
6

and

L
7

U
7

= A
7

.

(5) It is natural to conjecture that there are n� 1 matrices of the form
Ei,j;� that reduce An to the upper triangular matrix

Un =

0

BBBBBBBBBBB@

2 �1 0 0 0 0 0
0 3/2 �1 0 0 0 0
0 0 4/3 �1 0 0 0
0 0 0 5/4 �1 0 0

0 0 0 0 6/5
. . .

...
...

...
...

...
. . .

. . . �1
0 0 0 0 · · · 0 (n+ 1)/n

1

CCCCCCCCCCCA

,

namely,

E
2,1;1/2, E3,2;2/3, E4,3;3/4, · · · , En,n�1;(n�1)/n.

It is also natural to conjecture that the lower triangular matrix Ln such
that

LnUn = An

is given by

Ln = E
2,1;�1/2E3,2;�2/3E4,3;�3/4 · · ·En,n�1;�(n�1)/n,
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that is,

Ln =

0

BBBBBBBBBBB@

1 0 0 0 0 0 0
�1/2 1 0 0 0 0 0
0 �2/3 1 0 0 0 0
0 0 �3/4 1 0 0 0

0 0 0 �4/5 1
. . .

...
...

...
...

...
. . .

. . . 0
0 0 0 0 · · · �(n � 1)/n 1

1

CCCCCCCCCCCA

.

Prove the above conjectures.
(6) Prove that the last column of A�1

n is
0

BBB@

1/(n+ 1)
2/(n+ 1)

...
n/(n+ 1)

1

CCCA
.

Problem 7.10. (1) Let A be any invertible 2 ⇥ 2 matrix

A =

✓
a b
c d

◆
.

Prove that there is an invertible matrix S such that

SA =

✓
1 0
0 ad � bc

◆
,

where S is the product of at most four elementary matrices of the form
Ei,j;� .

Conclude that every matrix A in SL(2) (the group of invertible 2 ⇥ 2
matrices A with det(A) = +1) is the product of at most four elementary
matrices of the form Ei,j;� .

For any a 6= 0, 1, give an explicit factorization as above for

A =

✓
a 0
0 a�1

◆
.

What is this decomposition for a = �1?
(2) Recall that a rotation matrix R (a member of the group SO(2)) is

a matrix of the form

R =

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆
.
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Prove that if ✓ 6= k⇡ (with k 2 Z), any rotation matrix can be written as a
product

R = ULU,

where U is upper triangular and L is lower triangular of the form

U =

✓
1 u
0 1

◆
, L =

✓
1 0
v 1

◆
.

Therefore, every plane rotation (except a flip about the origin when
✓ = ⇡) can be written as the composition of three shear transformations!

Problem 7.11. (1) Recall that Ei,d is the diagonal matrix

Ei,d = diag(1, . . . , 1, d, 1, . . . , 1),

whose diagonal entries are all +1, except the (i, i)th entry which is equal
to d.

Given any n ⇥ n matrix A, for any pair (i, j) of distinct row indices
(1  i, j  n), prove that there exist two elementary matrices E

1

(i, j) and
E

2

(i, j) of the form Ek,`;� , such that

Ej,�1

E
1

(i, j)E
2

(i, j)E
1

(i, j)A = P (i, j)A,

the matrix obtained from the matrix A by permuting row i and row j.
Equivalently, we have

E
1

(i, j)E
2

(i, j)E
1

(i, j)A = Ej,�1

P (i, j)A,

the matrix obtained from A by permuting row i and row j and multiplying
row j by �1.

Prove that for every i = 2, . . . , n, there exist four elementary matrices
E

3

(i, d), E
4

(i, d), E
5

(i, d), E
6

(i, d) of the form Ek,`;� , such that

E
6

(i, d)E
5

(i, d)E
4

(i, d)E
3

(i, d)En,d = Ei,d.

What happens when d = �1, that is, what kind of simplifications occur?
Prove that all permutation matrices can be written as products of ele-

mentary operations of the form Ek,`;� and the operation En,�1

.
(2) Prove that for every invertible n ⇥ n matrix A, there is a matrix S

such that

SA =

✓
In�1

0
0 d

◆
= En,d,

with d = det(A), and where S is a product of elementary matrices of the
form Ek,`;� .
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In particular, every matrix in SL(n) (the group of invertible n⇥n matri-
ces A with det(A) = +1) can be written as a product of elementary matrices
of the form Ek,`;� . Prove that at most n(n + 1) � 2 such transformations
are needed.

(3) Prove that every matrix in SL(n) can be written as a product of at
most (n � 1)(max{n, 3} + 1) elementary matrices of the form Ek,`;� .

Problem 7.12. A matrix A is called strictly column diagonally dominant
i↵

|aj j | >
nX

i=1, i 6=j

|ai j |, for j = 1, . . . , n

Prove that if A is strictly column diagonally dominant, then Gaussian
elimination with partial pivoting does not require pivoting, and A is invert-
ible.

Problem 7.13. (1) Find a lower triangular matrix E such that

E

0

BB@

1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1

1

CCA =

0

BB@

1 0 0 0
0 1 0 0
0 1 1 0
0 1 2 1

1

CCA .

(2) What is the e↵ect of the product (on the left) with

E
4,3;�1

E
3,2;�1

E
4,3;�1

E
2,1;�1

E
3,2;�1

E
4,3;�1

on the matrix

Pa
3

=

0

BB@

1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1

1

CCA .

(3) Find the inverse of the matrix Pa
3

.
(4) Consider the (n+ 1) ⇥ (n+ 1) Pascal matrix Pan whose ith row is

given by the binomial coe�cients
✓
i � 1

j � 1

◆
,

with 1  i  n+ 1, 1  j  n+ 1, and with the usual convention that
✓
0

0

◆
= 1,

✓
i

j

◆
= 0 if j > i.
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The matrix Pa
3

is shown in Question (c) and Pa
4

is shown below:

Pa
4

=

0

BBBB@

1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 6 4 1

1

CCCCA
.

Find n elementary matrices Eik,jk;�k such that

Ein,jn;�n · · ·Ei1,j1;�1Pan =

✓
1 0
0 Pan�1

◆
.

Use the above to prove that the inverse of Pan is the lower triangular
matrix whose ith row is given by the signed binomial coe�cients

(�1)i+j�2

✓
i � 1

j � 1

◆
,

with 1  i  n+ 1, 1  j  n+ 1. For example,

Pa�1

4

=

0

BBBB@

1 0 0 0 0
�1 1 0 0 0
1 �2 1 0 0

�1 3 �3 1 0
1 �4 6 �4 1

1

CCCCA
.

Hint . Given any n ⇥ n matrix A, multiplying A by the elementary matrix
Ei,j;� on the right yields the matrix AEi,j;� in which � times the ith column
is added to the jth column.

Problem 7.14. (1) Implement the method for converting a rectangular
matrix to reduced row echelon form in Matlab.

(2) Use the above method to find the inverse of an invertible n ⇥ n
matrix A by applying it to the the n⇥ 2n matrix [A I] obtained by adding
the n columns of the identity matrix to A.

(3) Consider the matrix

A =

0

BBBBB@

1 2 3 4 · · · n
2 3 4 5 · · · n+ 1
3 4 5 6 · · · n+ 2
...

...
...

. . .
...

n n+ 1 n+ 2 n+ 3 · · · 2n � 1

1

CCCCCA
.

Using your program, find the row reduced echelon form of A for n =
4, . . . , 20.
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Also run the Matlab rref function and compare results.
Your program probably disagrees with rref even for small values of n.

The problem is that some pivots are very small and the normalization step
(to make the pivot 1) causes roundo↵ errors. Use a tolerance parameter to
fix this problem.

What can you conjecture about the rank of A?
(4) Prove that the matrix A has the following row reduced form:

R =

0

BBBBB@

1 0 �1 �2 · · · �(n � 2)
0 1 2 3 · · · n � 1
0 0 0 0 · · · 0
...
...

...
. . .

...
0 0 0 0 · · · 0

1

CCCCCA
.

Deduce from the above that A has rank 2.
Hint . Some well chosen sequence of row operations.

(5) Use your program to show that if you add any number greater than
or equal to (2/25)n2 to every diagonal entry of A you get an invertible
matrix! In fact, running the Matlab fuction chol should tell you that these
matrices are SPD (symmetric, positive definite).

Problem 7.15. Let A be an n ⇥ n complex Hermitian positive definite
matrix. Prove that the lower-triangular matrix B with positive diagonal
entries such that A = BB⇤ is given by the following formulae: For j =
1, . . . , n,

bj j =

 
aj j �

j�1X

k=1

|bj k|2
!

1/2

,

and for i = j + 1, . . . , n (and j = 1, . . . , n � 1)

bi j =

 
ai j �

j�1X

k=1

bi kbj k

!
/bj j .

Problem 7.16. (Permutations and permutation matrices) A permutation
can be viewed as an operation permuting the rows of a matrix. For example,
the permutation

✓
1 2 3 4
3 4 2 1

◆
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corresponds to the matrix

P⇡ =

0

BB@

0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

1

CCA .

Observe that the matrix P⇡ has a single 1 on every row and every
column, all other entries being zero, and that if we multiply any 4 ⇥ 4
matrix A by P⇡ on the left, then the rows of A are permuted according to
the permutation ⇡; that is, the ⇡(i)th row of P⇡A is the ith row of A. For
example,

P⇡A =

0

BB@

0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

1

CCA

0

BB@

a
11

a
12

a
13

a
14

a
21

a
22

a
23

a
24

a
31

a
32

a
33

a
34

a
41

a
42

a
43

a
44

1

CCA =

0

BB@

a
41

a
42

a
43

a
44

a
31

a
32

a
33

a
34

a
11

a
12

a
13

a
14

a
21

a
22

a
23

a
24

1

CCA .

Equivalently, the ith row of P⇡A is the ⇡�1(i)th row of A. In order for the
matrix P⇡ to move the ith row of A to the ⇡(i)th row, the ⇡(i)th row of
P⇡ must have a 1 in column i and zeros everywhere else; this means that
the ith column of P⇡ contains the basis vector e⇡(i), the vector that has a
1 in position ⇡(i) and zeros everywhere else.

This is the general situation and it leads to the following definition.

Definition 7.8. Given any permutation ⇡ : [n] ! [n], the permutation
matrix P⇡ = (pij) representing ⇡ is the matrix given by

pij =

(
1 if i = ⇡(j)

0 if i 6= ⇡(j);

equivalently, the jth column of P⇡ is the basis vector e⇡(j). A permutation
matrix P is any matrix of the form P⇡ (where P is an n ⇥ n matrix, and
⇡ : [n] ! [n] is a permutation, for some n � 1).

Remark: There is a confusing point about the notation for permutation
matrices. A permutation matrix P acts on a matrix A by multiplication
on the left by permuting the rows of A. As we said before, this means that
the ⇡(i)th row of P⇡A is the ith row of A, or equivalently that the ith row
of P⇡A is the ⇡�1(i)th row of A. But then observe that the row index of
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the entries of the ith row of PA is ⇡�1(i), and not ⇡(i)! See the following
example:

0

BB@

0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

1

CCA

0

BB@

a
11

a
12

a
13

a
14

a
21

a
22

a
23

a
24

a
31

a
32

a
33

a
34

a
41

a
42

a
43

a
44

1

CCA =

0

BB@

a
41

a
42

a
43

a
44

a
31

a
32

a
33

a
34

a
11

a
12

a
13

a
14

a
21

a
22

a
23

a
24

1

CCA ,

where

⇡�1(1) = 4

⇡�1(2) = 3

⇡�1(3) = 1

⇡�1(4) = 2.

Prove the following results

(1) Given any two permutations ⇡
1

,⇡
2

: [n] ! [n], the permutation matrix
P⇡2�⇡1 representing the composition of ⇡

1

and ⇡
2

is equal to the product
P⇡2P⇡1 of the permutation matrices P⇡1 and P⇡2 representing ⇡

1

and
⇡
2

; that is,

P⇡2�⇡1 = P⇡2P⇡1 .

(2) The matrix P⇡�1
1

representing the inverse of the permutation ⇡
1

is the

inverse P�1

⇡1
of the matrix P⇡1 representing the permutation ⇡

1

; that
is,

P⇡�1
1

= P�1

⇡1
.

Furthermore,

P�1

⇡1
= (P⇡1)

>.

(3) Prove that if P is the matrix associated with a transposition, then
det(P ) = �1.

(4) Prove that if P is a permutation matrix, then det(P ) = ±1.
(5) Use permutation matrices to give another proof of the fact that the

parity of the number of transpositions used to express a permutation
⇡ depends only on ⇡.
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Chapter 8

Vector Norms and Matrix Norms

8.1 Normed Vector Spaces

In order to define how close two vectors or two matrices are, and in order
to define the convergence of sequences of vectors or matrices, we can use
the notion of a norm. Recall that R

+

= {x 2 R | x � 0}. Also recall that
if z = a + ib 2 C is a complex number, with a, b 2 R, then z = a � ib and
|z| =

p
zz =

p
a2 + b2 (|z| is the modulus of z).

Definition 8.1. Let E be a vector space over a field K, where K is either
the field R of reals, or the field C of complex numbers. A norm on E is
a function k k : E ! R

+

, assigning a nonnegative real number kuk to any
vector u 2 E, and satisfying the following conditions for all x, y, z 2 E and
� 2 K:

(N1) kxk � 0, and kxk = 0 i↵ x = 0. (positivity)
(N2) k�xk = |�| kxk. (homogeneity (or scaling))
(N3) kx+ yk  kxk + kyk. (triangle inequality)

A vector space E together with a norm k k is called a normed vector
space.

By (N2), setting � = �1, we obtain

k�xk = k(�1)xk = | � 1| kxk = kxk ;

that is, k�xk = kxk. From (N3), we have

kxk = kx � y + yk  kx � yk + kyk ,

which implies that

kxk � kyk  kx � yk .

289
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By exchanging x and y and using the fact that by (N2),

ky � xk = k�(x � y)k = kx � yk ,

we also have

kyk � kxk  kx � yk .

Therefore,

|kxk � kyk|  kx � yk, for all x, y 2 E. (⇤)

Observe that setting � = 0 in (N2), we deduce that k0k = 0 without
assuming (N1). Then by setting y = 0 in (⇤), we obtain

|kxk|  kxk , for all x 2 E.

Therefore, the condition kxk � 0 in (N1) follows from (N2) and (N3), and
(N1) can be replaced by the weaker condition

(N1’) For all x 2 E, if kxk = 0, then x = 0,

A function k k : E ! R satisfying Axioms (N2) and (N3) is called a semi-
norm. From the above discussion, a seminorm also has the properties

kxk � 0 for all x 2 E, and k0k = 0.
However, there may be nonzero vectors x 2 E such that kxk = 0.
Let us give some examples of normed vector spaces.

Example 8.1.

(1) Let E = R, and kxk = |x|, the absolute value of x.
(2) Let E = C, and kzk = |z|, the modulus of z.
(3) Let E = Rn (or E = Cn). There are three standard norms. For every

(x
1

, . . . , xn) 2 E, we have the norm kxk
1

, defined such that,

kxk
1

= |x
1

| + · · · + |xn|,

we have the Euclidean norm kxk
2

, defined such that,

kxk
2

=
�
|x

1

|2 + · · · + |xn|2
� 1

2 ,

and the sup-norm kxk1, defined such that,

kxk1 = max{|xi| | 1  i  n}.

More generally, we define the `p-norm (for p � 1) by

kxkp = (|x
1

|p + · · · + |xn|p)1/p.

See Figures 8.1 through 8.4.
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K1 K0.5 0 0.5 1

K1

K0.5

0.5

1

Fig. 8.1 The top figure is {x 2 R2 | kxk1  1}, while the bottom figure is {x 2 R3 |
kxk1  1}.

There are other norms besides the `p-norms. Here are some examples.

(1) For E = R2,

k(u
1

, u
2

)k = |u
1

| + 2|u
2

|.
See Figure 8.5.

(2) For E = R2,

k(u
1

, u
2

)k =
�
(u

1

+ u
2

)2 + u2

1

�
1/2

.

See Figure 8.6.
(3) For E = C2,

k(u
1

, u
2

)k = |u
1

+ iu
2

| + |u
1

� iu
2

|.
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K1 K0.5 0 0.5 1

K1

K0.5

0.5

1

Fig. 8.2 The top figure is {x 2 R2 | kxk2  1}, while the bottom figure is {x 2 R3 |
kxk2  1}.

The reader should check that they satisfy all the axioms of a norm.
Some work is required to show the triangle inequality for the `p-norm.

Proposition 8.1. If E = Cn or E = Rn, for every real number p � 1, the
`p-norm is indeed a norm.

Proof. The cases p = 1 and p = 1 are easy and left to the reader. If
p > 1, then let q > 1 such that

1

p
+

1

q
= 1.
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K1 K0.5 0 0.5 1

K1

K0.5

0.5

1

Fig. 8.3 The top figure is {x 2 R2 | kxk1  1}, while the bottom figure is {x 2 R3 |
kxk1  1}.

We will make use of the following fact: for all ↵,� 2 R, if ↵,� � 0, then

↵�  ↵p

p
+
�q

q
. (⇤)

To prove the above inequality, we use the fact that the exponential function
t 7! et satisfies the following convexity inequality:

e✓x+(1�✓)y  ✓ex + (1 � ✓)ey,

for all x, y 2 R and all ✓ with 0  ✓  1.
Since the case ↵� = 0 is trivial, let us assume that ↵ > 0 and � > 0. If

we replace ✓ by 1/p, x by p log↵ and y by q log �, then we get

e
1
pp log↵+ 1

q q log �  1

p
ep log↵ +

1

q
eq log � ,
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K1 K0.5 0 0.5 1

K1

K0.5

0.5

1

Fig. 8.4 The relationships between the closed unit balls from the `1-norm, the Euclidean
norm, and the sup-norm.

which simplifies to

↵�  ↵p

p
+
�q

q
,

as claimed.
We will now prove that for any two vectors u, v 2 E, (where E is of

dimension n), we have

nX

i=1

|uivi|  kukp kvkq . (⇤⇤)

Since the above is trivial if u = 0 or v = 0, let us assume that u 6= 0 and



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 295

8.1. Normed Vector Spaces 295

Fig. 8.5 The unit closed unit ball {(u1, u2) 2 R2 | k(u1, u2)k  1}, where k(u1, u2)k =
|u1| + 2|u2|.

v 6= 0. Then Inequality (⇤) with ↵ = |ui|/ kukp and � = |vi|/ kvkq yields

|uivi|
kukp kvkq

 |ui|p

p kukpp
+

|vi|q

q kukqq
,

for i = 1, . . . , n, and by summing up these inequalities, we get
nX

i=1

|uivi|  kukp kvkq ,

as claimed. To finish the proof, we simply have to prove that property (N3)
holds, since (N1) and (N2) are clear. For i = 1, . . . , n, we can write

(|ui| + |vi|)p = |ui|(|ui| + |vi|)p�1 + |vi|(|ui| + |vi|)p�1,

so that by summing up these equations we get
nX

i=1

(|ui| + |vi|)p =
nX

i=1

|ui|(|ui| + |vi|)p�1 +
nX

i=1

|vi|(|ui| + |vi|)p�1,

and using Inequality (⇤⇤), with V 2 E where Vi = (|ui| + |vi|)p�1, we get

nX

i=1

(|ui| + |vi|)p  kukp kV kq + kvkp kV kq

= (kukp + kvkp)
✓ nX

i=1

(|ui| + |vi|)(p�1)q

◆
1/q

.
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Fig. 8.6 The unit closed unit ball {(u1, u2) 2 R2 | k(u1, u2)k  1}, where k(u1, u2)k =�
(u1 + u2)2 + u

2
1

�1/2
.

However, 1/p+1/q = 1 implies pq = p+ q, that is, (p�1)q = p, so we have

nX

i=1

(|ui| + |vi|)p  (kukp + kvkp)
✓ nX

i=1

(|ui| + |vi|)p
◆

1/q

,

which yields
✓ nX

i=1

(|ui| + |vi|)p
◆

1�1/q

=

✓ nX

i=1

(|ui| + |vi|)p
◆

1/p

 kukp + kvkp .

Since |ui + vi|  |ui| + |vi|, the above implies the triangle inequality
ku+ vkp  kukp + kvkp, as claimed.

For p > 1 and 1/p+ 1/q = 1, the inequality

nX

i=1

|uivi| 
✓ nX

i=1

|ui|p
◆

1/p✓ nX

i=1

|vi|q
◆

1/q

is known as Hölder’s inequality . For p = 2, it is the Cauchy–Schwarz
inequality .

Actually, if we define the Hermitian inner product h�,�i on Cn by

hu, vi =
nX

i=1

uivi,



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 297

8.1. Normed Vector Spaces 297

where u = (u
1

, . . . , un) and v = (v
1

, . . . , vn), then

|hu, vi| 
nX

i=1

|uivi| =
nX

i=1

|uivi|,

so Hölder’s inequality implies the following inequalities.

Corollary 8.1. (Hölder’s inequalities) For any real numbers p, q, such
that p, q � 1 and

1

p
+

1

q
= 1,

(with q = +1 if p = 1 and p = +1 if q = 1), we have the inequalities

nX

i=1

|uivi| 
✓ nX

i=1

|ui|p
◆

1/p✓ nX

i=1

|vi|q
◆

1/q

and

|hu, vi|  kukp kvkq , u, v 2 Cn.

For p = 2, this is the standard Cauchy–Schwarz inequality. The triangle
inequality for the `p-norm,

✓ nX

i=1

(|ui + vi|)p
◆

1/p


✓ nX

i=1

|ui|p
◆

1/p

+

✓ nX

i=1

|vi|q
◆

1/q

,

is known as Minkowski’s inequality .
When we restrict the Hermitian inner product to real vectors, u, v 2 Rn,

we get the Euclidean inner product

hu, vi =
nX

i=1

uivi.

It is very useful to observe that if we represent (as usual) u = (u
1

, . . . , un)
and v = (v

1

, . . . , vn) (in Rn) by column vectors, then their Euclidean inner
product is given by

hu, vi = u>v = v>u,

and when u, v 2 Cn, their Hermitian inner product is given by

hu, vi = v⇤u = u⇤v.

In particular, when u = v, in the complex case we get

kuk2
2

= u⇤u,
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and in the real case this becomes

kuk2
2

= u>u.

As convenient as these notations are, we still recommend that you do not
abuse them; the notation hu, vi is more intrinsic and still “works” when our
vector space is infinite dimensional.

Remark: If 0 < p < 1, then x 7! kxkp is not a norm because the triangle
inequality fails. For example, consider x = (2, 0) and y = (0, 2). Then
x+y = (2, 2), and we have kxkp = (2p+0p)1/p = 2, kykp = (0p+2p)1/p = 2,

and kx+ ykp = (2p + 2p)1/p = 2(p+1)/p. Thus

kx+ ykp = 2(p+1)/p, kxkp + kykp = 4 = 22.

Since 0 < p < 1, we have 2p < p + 1, that is, (p + 1)/p > 2, so 2(p+1)/p >
22 = 4, and the triangle inequality kx+ ykp  kxkp + kykp fails.

Observe that

k(1/2)xkp = (1/2) kxkp = k(1/2)ykp = (1/2) kykp = 1,

k(1/2)(x+ y)kp = 21/p,

and since p < 1, we have 21/p > 2, so

k(1/2)(x+ y)kp = 21/p > 2 = (1/2) kxkp + (1/2) kykp ,

and the map x 7! kxkp is not convex.
For p = 0, for any x 2 Rn, we have

kxk
0

= |{i 2 {1, . . . , n} | xi 6= 0}|,

the number of nonzero components of x. The map x 7! kxk
0

is not a norm
this time because Axiom (N2) fails. For example,

k(1, 0)k
0

= k(10, 0)k
0

= 1 6= 10 = 10 k(1, 0)k
0

.

The map x 7! kxk
0

is also not convex. For example,

k(1/2)(2, 2)k
0

= k(1, 1)k
0

= 2,

and

k(2, 0)k
0

= k(0, 2)k
0

= 1,

but

k(1/2)(2, 2)k
0

= 2 > 1 = (1/2) k(2, 0)k
0

+ (1/2) k(0, 2)k
0

.
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Nevertheless, the “zero-norm” x 7! kxk
0

is used in machine learning as
a regularizing term which encourages sparsity, namely increases the number
of zero components of the vector x.

The following proposition is easy to show.

Proposition 8.2. The following inequalities hold for all x 2 Rn (or x 2
Cn):

kxk1  kxk
1

 nkxk1,

kxk1  kxk
2


p
nkxk1,

kxk
2

 kxk
1


p
nkxk

2

.

Proposition 8.2 is actually a special case of a very important result: in
a finite-dimensional vector space, any two norms are equivalent.

Definition 8.2. Given any (real or complex) vector space E, two norms
k ka and k kb are equivalent i↵ there exists some positive reals C

1

, C
2

> 0,
such that

kuka  C
1

kukb and kukb  C
2

kuka , for all u 2 E.

Given any norm k k on a vector space of dimension n, for any basis
(e

1

, . . . , en) of E, observe that for any vector x = x
1

e
1

+ · · · + xnen, we
have

kxk = kx
1

e
1

+ · · · + xnenk  |x
1

| ke
1

k + · · · + |xn| kenk
 C(|x

1

| + · · · + |xn|) = C kxk
1

,

with C = max
1in keik and with the norm kxk

1

defined as

kxk
1

= kx
1

e
1

+ · · · + xnenk = |x
1

| + · · · + |xn|.

The above implies that

| kuk � kvk |  ku � vk  C ku � vk
1

,

and this implies the following corollary.

Corollary 8.2. For any norm u 7! kuk on a finite-dimensional (complex
or real) vector space E, the map u 7! kuk is continuous with respect to the
norm k k

1

.

Let Sn�1

1

be the unit sphere with respect to the norm k k
1

, namely

Sn�1

1

= {x 2 E | kxk
1

= 1}.
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Now Sn�1

1

is a closed and bounded subset of a finite-dimensional vector
space, so by Heine–Borel (or equivalently, by Bolzano–Weiertrass), Sn�1

1

is
compact. On the other hand, it is a well known result of analysis that any
continuous real-valued function on a nonempty compact set has a minimum
and a maximum, and that they are achieved. Using these facts, we can
prove the following important theorem:

Theorem 8.1. If E is any real or complex vector space of finite dimension,
then any two norms on E are equivalent.

Proof. It is enough to prove that any norm k k is equivalent to the 1-norm.
We already proved that the function x 7! kxk is continuous with respect
to the norm k k

1

, and we observed that the unit sphere Sn�1

1

is compact.
Now we just recalled that because the function f : x 7! kxk is continuous
and because Sn�1

1

is compact, the function f has a minimum m and a
maximum M , and because kxk is never zero on Sn�1

1

, we must have m > 0.
Consequently, we just proved that if kxk

1

= 1, then

0 < m  kxk  M,

so for any x 2 E with x 6= 0, we get

m  kx/ kxk
1

k  M,

which implies

m kxk
1

 kxk  M kxk
1

.

Since the above inequality holds trivially if x = 0, we just proved that k k
and k k

1

are equivalent, as claimed.

Remark: Let P be a n ⇥ n symmetric positive definite matrix. It is im-
mediately verified that the map x 7! kxkP given by

kxkP = (x>Px)1/2

is a norm on Rn called a quadratic norm. Using some convex analysis (the
Löwner–John ellipsoid), it can be shown that any norm k k on Rn can be
approximated by a quadratic norm in the sense that there is a quadratic
norm k kP such that

kxkP  kxk 
p
n kxkP for all x 2 Rn;

see Boyd and Vandenberghe [Boyd and Vandenberghe (2004)], Section 8.4.1.
Next we will consider norms on matrices.
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8.2 Matrix Norms

For simplicity of exposition, we will consider the vector spaces Mn(R) and
Mn(C) of square n ⇥ n matrices. Most results also hold for the spaces
Mm,n(R) and Mm,n(C) of rectangular m⇥n matrices. Since n⇥n matrices
can be multiplied, the idea behind matrix norms is that they should behave
“well” with respect to matrix multiplication.

Definition 8.3. A matrix norm k k on the space of square n⇥ n matrices
in Mn(K), with K = R or K = C, is a norm on the vector space Mn(K),
with the additional property called submultiplicativity that

kABk  kAk kBk ,

for all A,B 2 Mn(K). A norm on matrices satisfying the above property
is often called a submultiplicative matrix norm.

Since I2 = I, from kIk =
��I2
��  kIk2, we get kIk � 1, for every matrix

norm.
Before giving examples of matrix norms, we need to review some basic

definitions about matrices. Given any matrix A = (aij) 2 Mm,n(C), the
conjugate A of A is the matrix such that

Aij = aij , 1  i  m, 1  j  n.

The transpose of A is the n ⇥ m matrix A> such that

A>
ij = aji, 1  i  m, 1  j  n.

The adjoint of A is the n ⇥ m matrix A⇤ such that

A⇤ = (A>) = (A)>.

When A is a real matrix, A⇤ = A>. A matrix A 2 Mn(C) is Hermitian if

A⇤ = A.

If A is a real matrix (A 2 Mn(R)), we say that A is symmetric if

A> = A.

A matrix A 2 Mn(C) is normal if

AA⇤ = A⇤A,

and if A is a real matrix, it is normal if

AA> = A>A.
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A matrix U 2 Mn(C) is unitary if

UU⇤ = U⇤U = I.

A real matrix Q 2 Mn(R) is orthogonal if

QQ> = Q>Q = I.

Given any matrix A = (aij) 2 Mn(C), the trace tr(A) of A is the sum
of its diagonal elements

tr(A) = a
11

+ · · · + ann.

It is easy to show that the trace is a linear map, so that

tr(�A) = �tr(A)

and

tr(A+B) = tr(A) + tr(B).

Moreover, if A is an m⇥n matrix and B is an n⇥m matrix, it is not hard
to show that

tr(AB) = tr(BA).

We also review eigenvalues and eigenvectors. We content ourselves with
definition involving matrices. A more general treatment will be given later
on (see Chapter 14).

Definition 8.4. Given any square matrix A 2 Mn(C), a complex number
� 2 C is an eigenvalue of A if there is some nonzero vector u 2 Cn, such
that

Au = �u.

If � is an eigenvalue of A, then the nonzero vectors u 2 Cn such that
Au = �u are called eigenvectors of A associated with �; together with the
zero vector, these eigenvectors form a subspace of Cn denoted by E�(A),
and called the eigenspace associated with �.

Remark: Note that Definition 8.4 requires an eigenvector to be nonzero.
A somewhat unfortunate consequence of this requirement is that the set
of eigenvectors is not a subspace, since the zero vector is missing! On the
positive side, whenever eigenvectors are involved, there is no need to say
that they are nonzero. The fact that eigenvectors are nonzero is implicitly
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used in all the arguments involving them, so it seems safer (but perhaps
not as elegant) to stipulate that eigenvectors should be nonzero.

If A is a square real matrix A 2 Mn(R), then we restrict Definition
8.4 to real eigenvalues � 2 R and real eigenvectors. However, it should be
noted that although every complex matrix always has at least some complex
eigenvalue, a real matrix may not have any real eigenvalues. For example,
the matrix

A =

✓
0 �1
1 0

◆

has the complex eigenvalues i and �i, but no real eigenvalues. Thus, typi-
cally even for real matrices, we consider complex eigenvalues.

Observe that � 2 C is an eigenvalue of A

• i↵ Au = �u for some nonzero vector u 2 Cn

• i↵ (�I � A)u = 0
• i↵ the matrix �I � A defines a linear map which has a nonzero kernel,
that is,

• i↵ �I � A not invertible.

However, from Proposition 6.7, �I � A is not invertible i↵

det(�I � A) = 0.

Now det(�I � A) is a polynomial of degree n in the indeterminate �, in
fact, of the form

�n � tr(A)�n�1 + · · · + (�1)n det(A).

Thus we see that the eigenvalues of A are the zeros (also called roots) of the
above polynomial. Since every complex polynomial of degree n has exactly
n roots, counted with their multiplicity, we have the following definition:

Definition 8.5. Given any square n⇥nmatrix A 2 Mn(C), the polynomial

det(�I � A) = �n � tr(A)�n�1 + · · · + (�1)n det(A)

is called the characteristic polynomial of A. The n (not necessarily distinct)
roots �

1

, . . . ,�n of the characteristic polynomial are all the eigenvalues of
A and constitute the spectrum of A. We let

⇢(A) = max
1in

|�i|

be the largest modulus of the eigenvalues of A, called the spectral radius of
A.
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Since the eigenvalue �
1

, . . . ,�n of A are the zeros of the polynomial

det(�I � A) = �n � tr(A)�n�1 + · · · + (�1)n det(A),

we deduce (see Section 14.1 for details) that

tr(A) = �
1

+ · · · + �n

det(A) = �
1

· · ·�n.

Proposition 8.3. For any matrix norm k k on Mn(C) and for any square
n ⇥ n matrix A 2 Mn(C), we have

⇢(A)  kAk .

Proof. Let � be some eigenvalue of A for which |�| is maximum, that is,
such that |�| = ⇢(A). If u ( 6= 0) is any eigenvector associated with � and if
U is the n ⇥ n matrix whose columns are all u, then Au = �u implies

AU = �U,

and since

|�| kUk = k�Uk = kAUk  kAk kUk

and U 6= 0, we have kUk 6= 0, and get

⇢(A) = |�|  kAk ,

as claimed.

Proposition 8.3 also holds for any real matrix norm k k on Mn(R) but
the proof is more subtle and requires the notion of induced norm. We prove
it after giving Definition 8.7.

It turns out that if A is a real n ⇥ n symmetric matrix, then the eigen-
values of A are all real and there is some orthogonal matrix Q such that

A = Qdiag(�
1

, . . . ,�n)Q
>,

where diag(�
1

, . . . ,�n) denotes the matrix whose only nonzero entries (if
any) are its diagonal entries, which are the (real) eigenvalues of A. Similarly,
if A is a complex n⇥n Hermitian matrix, then the eigenvalues of A are all
real and there is some unitary matrix U such that

A = Udiag(�
1

, . . . ,�n)U
⇤,

where diag(�
1

, . . . ,�n) denotes the matrix whose only nonzero entries (if
any) are its diagonal entries, which are the (real) eigenvalues of A. See
Chapter 16 for the proof of these results.
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We now return to matrix norms. We begin with the so-called Frobenius
norm, which is just the norm k k

2

on Cn2

, where the n ⇥ n matrix A is
viewed as the vector obtained by concatenating together the rows (or the
columns) of A. The reader should check that for any n⇥n complex matrix
A = (aij),

✓ nX

i,j=1

|aij |2
◆

1/2

=
p
tr(A⇤A) =

p
tr(AA⇤).

Definition 8.6. The Frobenius norm k kF is defined so that for every
square n ⇥ n matrix A 2 Mn(C),

kAkF =

✓ nX

i,j=1

|aij |2
◆

1/2

=
p
tr(AA⇤) =

p
tr(A⇤A).

The following proposition show that the Frobenius norm is a matrix
norm satisfying other nice properties.

Proposition 8.4. The Frobenius norm k kF on Mn(C) satisfies the follow-
ing properties:

(1) It is a matrix norm; that is, kABkF  kAkF kBkF , for all A,B 2
Mn(C).

(2) It is unitarily invariant, which means that for all unitary matrices U, V ,
we have

kAkF = kUAkF = kAV kF = kUAV kF .

(3)
p
⇢(A⇤A)  kAkF 

p
n
p
⇢(A⇤A), for all A 2 Mn(C).

Proof. (1) The only property that requires a proof is the fact kABkF 
kAkF kBkF . This follows from the Cauchy–Schwarz inequality:

kABk2F =
nX

i,j=1

����
nX

k=1

aikbkj

����
2


nX

i,j=1

✓ nX

h=1

|aih|2
◆✓ nX

k=1

|bkj |2
◆

=

✓ nX

i,h=1

|aih|2
◆✓ nX

k,j=1

|bkj |2
◆

= kAk2F kBk2F .

(2) We have

kAk2F = tr(A⇤A) = tr(V V ⇤A⇤A) = tr(V ⇤A⇤AV ) = kAV k2F ,
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and

kAk2F = tr(A⇤A) = tr(A⇤U⇤UA) = kUAk2F .

The identity

kAkF = kUAV kF
follows from the previous two.

(3) It is well known that the trace of a matrix is equal to the sum
of its eigenvalues. Furthermore, A⇤A is symmetric positive semidefinite
(which means that its eigenvalues are nonnegative), so ⇢(A⇤A) is the largest
eigenvalue of A⇤A and

⇢(A⇤A)  tr(A⇤A)  n⇢(A⇤A),

which yields (3) by taking square roots.

Remark: The Frobenius norm is also known as the Hilbert-Schmidt norm
or the Schur norm. So many famous names associated with such a simple
thing!

8.3 Subordinate Norms

We now give another method for obtaining matrix norms using subordinate
norms. First we need a proposition that shows that in a finite-dimensional
space, the linear map induced by a matrix is bounded, and thus continuous.

Proposition 8.5. For every norm k k on Cn (or Rn), for every matrix
A 2 Mn(C) (or A 2 Mn(R)), there is a real constant CA � 0, such that

kAuk  CA kuk ,
for every vector u 2 Cn (or u 2 Rn if A is real).

Proof. For every basis (e
1

, . . . , en) of Cn (or Rn), for every vector u =
u
1

e
1

+ · · · + unen, we have

kAuk = ku
1

A(e
1

) + · · · + unA(en)k
 |u

1

| kA(e
1

)k + · · · + |un| kA(en)k
 C

1

(|u
1

| + · · · + |un|) = C
1

kuk
1

,

where C
1

= max
1in kA(ei)k. By Theorem 8.1, the norms k k and k k

1

are equivalent, so there is some constant C
2

> 0 so that kuk
1

 C
2

kuk for
all u, which implies that

kAuk  CA kuk ,
where CA = C

1

C
2

.
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Proposition 8.5 says that every linear map on a finite-dimensional space
is bounded . This implies that every linear map on a finite-dimensional
space is continuous. Actually, it is not hard to show that a linear map on
a normed vector space E is bounded i↵ it is continuous, regardless of the
dimension of E.

Proposition 8.5 implies that for every matrix A 2 Mn(C) (or A 2
Mn(R)),

sup
x2Cn

x 6=0

kAxk
kxk  CA.

Since k�uk = |�| kuk, for every nonzero vector x, we have

kAxk
kxk =

kxk kA(x/ kxk)k
kxk = kA(x/ kxk)k ,

which implies that

sup
x2Cn

x 6=0

kAxk
kxk = sup

x2Cn

kxk=1

kAxk .

Similarly

sup
x2Rn

x 6=0

kAxk
kxk = sup

x2Rn

kxk=1

kAxk .

The above considerations justify the following definition.

Definition 8.7. If k k is any norm on Cn, we define the function k k
op

on
Mn(C) by

kAk
op

= sup
x2Cn

x 6=0

kAxk
kxk = sup

x2Cn

kxk=1

kAxk .

The function A 7! kAk
op

is called the subordinate matrix norm or op-
erator norm induced by the norm k k.

Another notation for the operator norm of a matrix A (in particular,
used by Horn and Johnson [Horn and Johnson (1990)]), is |||A|||.

It is easy to check that the function A 7! kAk
op

is indeed a norm, and
by definition, it satisfies the property

kAxk  kAk
op

kxk , for all x 2 Cn.
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A norm k k
op

on Mn(C) satisfying the above property is said to be sub-
ordinate to the vector norm k k on Cn. As a consequence of the above
inequality, we have

kABxk  kAk
op

kBxk  kAk
op

kBk
op

kxk ,

for all x 2 Cn, which implies that

kABk
op

 kAk
op

kBk
op

for all A,B 2 Mn(C),

showing that A 7! kAk
op

is a matrix norm (it is submultiplicative).
Observe that the operator norm is also defined by

kAk
op

= inf{� 2 R | kAxk  � kxk , for all x 2 Cn}.

Since the function x 7! kAxk is continuous (because | kAyk � kAxk | 
kAy � Axk  CA kx � yk) and the unit sphere Sn�1 = {x 2 Cn | kxk = 1}
is compact, there is some x 2 Cn such that kxk = 1 and

kAxk = kAk
op

.

Equivalently, there is some x 2 Cn such that x 6= 0 and

kAxk = kAk
op

kxk .

The definition of an operator norm also implies that

kIk
op

= 1.

The above shows that the Frobenius norm is not a subordinate matrix norm
(why?).

If k k is a vector norm on Cn, the operator norm k k
op

that it induces
applies to matrices in Mn(C). If we are careful to denote vectors and
matrices so that no confusion arises, for example, by using lower case letters
for vectors and upper case letters for matrices, it should be clear that kAk

op

is the operator norm of the matrix A and that kxk is the vector norm of
x. Consequently, following common practice to alleviate notation, we will
drop the subscript “op” and simply write kAk instead of kAk

op

.
The notion of subordinate norm can be slightly generalized.

Definition 8.8. If K = R or K = C, for any norm k k on Mm,n(K), and
for any two norms k ka on Kn and k kb on Km, we say that the norm k k
is subordinate to the norms k ka and k kb if

kAxkb  kAk kxka for all A 2 Mm,n(K) and all x 2 Kn.



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 309

8.3. Subordinate Norms 309

Remark: For any norm k k on Cn, we can define the function k kR on
Mn(R) by

kAkR = sup
x2Rn

x 6=0

kAxk
kxk = sup

x2Rn

kxk=1

kAxk .

The function A 7! kAkR is a matrix norm on Mn(R), and

kAkR  kAk ,
for all real matrices A 2 Mn(R). However, it is possible to construct vector
norms k k on Cn and real matrices A such that

kAkR < kAk .
In order to avoid this kind of di�culties, we define subordinate matrix
norms over Mn(C). Luckily, it turns out that kAkR = kAk for the vector
norms, k k

1

, k k
2

, and k k1.
We now prove Proposition 8.3 for real matrix norms.

Proposition 8.6. For any matrix norm k k on Mn(R) and for any square
n ⇥ n matrix A 2 Mn(R), we have

⇢(A)  kAk .

Proof. We follow the proof in Denis Serre’s book [Serre (2010)]. If A is
a real matrix, the problem is that the eigenvectors associated with the
eigenvalue of maximum modulus may be complex. We use a trick based on
the fact that for every matrix A (real or complex),

⇢(Ak) = (⇢(A))k,

which is left as an exercise (use Proposition 14.4 which shows that
if (�

1

, . . . ,�n) are the (not necessarily distinct) eigenvalues of A, then
(�k

1

, . . . ,�kn) are the eigenvalues of Ak, for k � 1).
Pick any complex matrix norm k kc on Cn (for example, the Frobenius

norm, or any subordinate matrix norm induced by a norm on Cn). The
restriction of k kc to real matrices is a real norm that we also denote by
k kc. Now by Theorem 8.1, since Mn(R) has finite dimension n2, there is
some constant C > 0 so that

kBkc  C kBk , for all B 2 Mn(R).

Furthermore, for every k � 1 and for every real n⇥n matrix A, by Proposi-
tion 8.3, ⇢(Ak) 

��Ak
��
c
, and because k k is a matrix norm,

��Ak
��  kAkk,

so we have

(⇢(A))k = ⇢(Ak) 
��Ak

��
c

 C
��Ak

��  C kAkk ,
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for all k � 1. It follows that

⇢(A)  C1/k kAk , for all k � 1.

However because C > 0, we have limk 7!1 C1/k = 1 (we have
limk 7!1

1

k log(C) = 0). Therefore, we conclude that

⇢(A)  kAk ,

as desired.

We now determine explicitly what are the subordinate matrix norms
associated with the vector norms k k

1

, k k
2

, and k k1.

Proposition 8.7. For every square matrix A = (aij) 2 Mn(C), we have

kAk
1

= sup
x2Cn

kxk1=1

kAxk
1

= max
j

nX

i=1

|aij |

kAk1 = sup
x2Cn

kxk1=1

kAxk1 = max
i

nX

j=1

|aij |

kAk
2

= sup
x2Cn

kxk2=1

kAxk
2

=
p
⇢(A⇤A) =

p
⇢(AA⇤).

Note that kAk
1

is the maximum of the `1-norms of the columns of A and
kAk1 is the maximum of the `1-norms of the rows of A. Furthermore,
kA⇤k

2

= kAk
2

, the norm k k
2

is unitarily invariant, which means that

kAk
2

= kUAV k
2

for all unitary matrices U, V , and if A is a normal matrix, then kAk
2

=
⇢(A).

Proof. For every vector u, we have

kAuk
1

=
X

i

����
X

j

aijuj

���� 
X

j

|uj |
X

i

|aij | 
✓
max

j

X

i

|aij |
◆

kuk
1

,

which implies that

kAk
1

 max
j

nX

i=1

|aij |.

It remains to show that equality can be achieved. For this let j
0

be some
index such that

max
j

X

i

|aij | =
X

i

|aij0 |,
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and let ui = 0 for all i 6= j
0

and uj0 = 1.
In a similar way, we have

kAuk1 = max
i

����
X

j

aijuj

���� 
✓
max

i

X

j

|aij |
◆

kuk1 ,

which implies that

kAk1  max
i

nX

j=1

|aij |.

To achieve equality, let i
0

be some index such that

max
i

X

j

|aij | =
X

j

|ai0j |.

The reader should check that the vector given by

uj =

(
ai0j

|ai0j | if ai0j 6= 0

1 if ai0j = 0

works.
We have

kAk2
2

= sup
x2Cn

x⇤x=1

kAxk2
2

= sup
x2Cn

x⇤x=1

x⇤A⇤Ax.

Since the matrix A⇤A is symmetric, it has real eigenvalues and it can be
diagonalized with respect to a unitary matrix. These facts can be used to
prove that the function x 7! x⇤A⇤Ax has a maximum on the sphere x⇤x = 1
equal to the largest eigenvalue of A⇤A, namely, ⇢(A⇤A). We postpone the
proof until we discuss optimizing quadratic functions. Therefore,

kAk
2

=
p
⇢(A⇤A).

Let use now prove that ⇢(A⇤A) = ⇢(AA⇤). First assume that ⇢(A⇤A) > 0.
In this case, there is some eigenvector u ( 6= 0) such that

A⇤Au = ⇢(A⇤A)u,

and since ⇢(A⇤A) > 0, we must have Au 6= 0. Since Au 6= 0,

AA⇤(Au) = A(A⇤Au) = ⇢(A⇤A)Au

which means that ⇢(A⇤A) is an eigenvalue of AA⇤, and thus

⇢(A⇤A)  ⇢(AA⇤).

Because (A⇤)⇤ = A, by replacing A by A⇤, we get

⇢(AA⇤)  ⇢(A⇤A),
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and so ⇢(A⇤A) = ⇢(AA⇤).
If ⇢(A⇤A) = 0, then we must have ⇢(AA⇤) = 0, since otherwise by the

previous reasoning we would have ⇢(A⇤A) = ⇢(AA⇤) > 0. Hence, in all
case

kAk2
2

= ⇢(A⇤A) = ⇢(AA⇤) = kA⇤k2
2

.

For any unitary matrices U and V , it is an easy exercise to prove that
V ⇤A⇤AV and A⇤A have the same eigenvalues, so

kAk2
2

= ⇢(A⇤A) = ⇢(V ⇤A⇤AV ) = kAV k2
2

,

and also

kAk2
2

= ⇢(A⇤A) = ⇢(A⇤U⇤UA) = kUAk2
2

.

Finally, if A is a normal matrix (AA⇤ = A⇤A), it can be shown that there
is some unitary matrix U so that

A = UDU⇤,

where D = diag(�
1

, . . . ,�n) is a diagonal matrix consisting of the eigenval-
ues of A, and thus

A⇤A = (UDU⇤)⇤UDU⇤ = UD⇤U⇤UDU⇤ = UD⇤DU⇤.

However, D⇤D = diag(|�
1

|2, . . . , |�n|2), which proves that

⇢(A⇤A) = ⇢(D⇤D) = max
i

|�i|2 = (⇢(A))2,

so that kAk
2

= ⇢(A).

Definition 8.9. For A = (aij) 2 Mn(C), the norm kAk
2

is often called the
spectral norm.

Observe that Property (3) of Proposition 8.4 says that

kAk
2

 kAkF 
p
n kAk

2

,

which shows that the Frobenius norm is an upper bound on the spectral
norm. The Frobenius norm is much easier to compute than the spectral
norm.

The reader will check that the above proof still holds if the matrix A is
real (change unitary to orthogonal), confirming the fact that kAkR = kAk
for the vector norms k k

1

, k k
2

, and k k1. It is also easy to verify that the
proof goes through for rectangular m⇥n matrices, with the same formulae.
Similarly, the Frobenius norm given by

kAkF =

✓ mX

i=1

nX

j=1

|aij |2
◆

1/2

=
p

tr(A⇤A) =
p

tr(AA⇤)
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is also a norm on rectangular matrices. For these norms, whenever AB
makes sense, we have

kABk  kAk kBk .

Remark: It can be shown that for any two real numbers p, q � 1 such that
1

p
+

1

q
= 1, we have

kA⇤kq = kAkp = sup{<(y⇤Ax) | kxkp = 1, kykq = 1}

= sup{|hAx, yi| | kxkp = 1, kykq = 1},
where kA⇤kq and kAkp are the operator norms.

Remark: Let (E, k k) and (F, k k) be two normed vector spaces (for sim-
plicity of notation, we use the same symbol k k for the norms on E and F ;
this should not cause any confusion). Recall that a function f : E ! F is
continuous if for every a 2 E, for every ✏ > 0, there is some ⌘ > 0 such
that for all x 2 E,

if kx � ak  ⌘ then kf(x) � f(a)k  ✏.

It is not hard to show that a linear map f : E ! F is continuous i↵ there
is some constant C � 0 such that

kf(x)k  C kxk for all x 2 E.

If so, we say that f is bounded (or a linear bounded operator). We let
L(E;F ) denote the set of all continuous (equivalently, bounded) linear maps
from E to F . Then we can define the operator norm (or subordinate norm)
k k on L(E;F ) as follows: for every f 2 L(E;F ),

kfk = sup
x2E
x 6=0

kf(x)k
kxk = sup

x2E
kxk=1

kf(x)k ,

or equivalently by

kfk = inf{� 2 R | kf(x)k  � kxk , for all x 2 E}.
It is not hard to show that the map f 7! kfk is a norm on L(E;F ) satisfying
the property

kf(x)k  kfk kxk
for all x 2 E, and that if f 2 L(E;F ) and g 2 L(F ;G), then

kg � fk  kgk kfk .
Operator norms play an important role in functional analysis, especially
when the spaces E and F are complete.
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8.4 Inequalities Involving Subordinate Norms

In this section we discuss two technical inequalities which will be needed
for certain proofs in the last three sections of this chapter. First we prove a
proposition which will be needed when we deal with the condition number
of a matrix.

Proposition 8.8. Let k k be any matrix norm, and let B 2 Mn(C) such
that kBk < 1.

(1) If k k is a subordinate matrix norm, then the matrix I +B is invertible
and

��(I +B)�1

��  1

1 � kBk .

(2) If a matrix of the form I+B is singular, then kBk � 1 for every matrix
norm (not necessarily subordinate).

Proof. (1) Observe that (I +B)u = 0 implies Bu = �u, so

kuk = kBuk .

Recall that

kBuk  kBk kuk

for every subordinate norm. Since kBk < 1, if u 6= 0, then

kBuk < kuk ,

which contradicts kuk = kBuk. Therefore, we must have u = 0, which
proves that I + B is injective, and thus bijective, i.e., invertible. Then we
have

(I +B)�1 +B(I +B)�1 = (I +B)(I +B)�1 = I,

so we get

(I +B)�1 = I � B(I +B)�1,

which yields
��(I +B)�1

��  1 + kBk
��(I +B)�1

�� ,

and finally,
��(I +B)�1

��  1

1 � kBk .

(2) If I +B is singular, then �1 is an eigenvalue of B, and by Proposition
8.3, we get ⇢(B)  kBk, which implies 1  ⇢(B)  kBk.
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The second inequality is a result is that is needed to deal with the
convergence of sequences of powers of matrices.

Proposition 8.9. For every matrix A 2 Mn(C) and for every ✏ > 0, there
is some subordinate matrix norm k k such that

kAk  ⇢(A) + ✏.

Proof. By Theorem 14.1, there exists some invertible matrix U and some
upper triangular matrix T such that

A = UTU�1,

and say that

T =

0

BBBBB@

�
1

t
12

t
13

· · · t
1n

0 �
2

t
23

· · · t
2n

...
...

. . .
...

...
0 0 · · · �n�1

tn�1n

0 0 · · · 0 �n

1

CCCCCA
,

where �
1

, . . . ,�n are the eigenvalues of A. For every � 6= 0, define the
diagonal matrix

D� = diag(1, �, �2, . . . , �n�1),

and consider the matrix

(UD�)
�1A(UD�) = D�1

� TD� =

0

BBBBB@

�
1

�t
12

�2t
13

· · · �n�1t
1n

0 �
2

�t
23

· · · �n�2t
2n

...
...

. . .
...

...
0 0 · · · �n�1

�tn�1n

0 0 · · · 0 �n

1

CCCCCA
.

Now define the function k k : Mn(C) ! R by

kBk =
��(UD�)

�1B(UD�)
��
1 ,

for every B 2 Mn(C). Then it is easy to verify that the above function is
the matrix norm subordinate to the vector norm

v 7!
��(UD�)

�1v
��
1 .

Furthermore, for every ✏ > 0, we can pick � so that
nX

j=i+1

|�j�itij |  ✏, 1  i  n � 1,

and by definition of the norm k k1, we get

kAk  ⇢(A) + ✏,

which shows that the norm that we have constructed satisfies the required
properties.
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Note that equality is generally not possible; consider the matrix

A =

✓
0 1
0 0

◆
,

for which ⇢(A) = 0 < kAk, since A 6= 0.

8.5 Condition Numbers of Matrices

Unfortunately, there exist linear systems Ax = b whose solutions are not
stable under small perturbations of either b or A. For example, consider
the system

0

BB@

10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10

1

CCA

0

BB@

x
1

x
2

x
3

x
4

1

CCA =

0

BB@

32
23
33
31

1

CCA .

The reader should check that it has the solution x = (1, 1, 1, 1). If we
perturb slightly the right-hand side as b+�b, where

�b =

0

BB@

0.1
�0.1
0.1

�0.1

1

CCA ,

we obtain the new system
0

BB@

10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10

1

CCA

0

BB@

x
1

+�x
1

x
2

+�x
2

x
3

+�x
3

x
4

+�x
4

1

CCA =

0

BB@

32.1
22.9
33.1
30.9

1

CCA .

The new solution turns out to be x+�x = (9.2,�12.6, 4.5,�1.1), where

�x = (9.2,�12.6, 4.5,�1.1) � (1, 1, 1, 1) = (8.2,�13.6, 3.5,�2.1).

Then a relative error of the data in terms of the one-norm,

k�bk
1

kbk
1

=
0.4

119
=

4

1190
⇡ 1

300
,

produces a relative error in the input

k�xk
1

kxk
1

=
27.4

4
⇡ 7.
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So a relative error of the order 1/300 in the data produces a relative error
of the order 7/1 in the solution, which represents an amplification of the
relative error of the order 2100.

Now let us perturb the matrix slightly, obtaining the new system
0

BB@

10 7 8.1 7.2
7.08 5.04 6 5
8 5.98 9.98 9

6.99 4.99 9 9.98

1

CCA

0

BB@

x
1

+�x
1

x
2

+�x
2

x
3

+�x
3

x
4

+�x
4

1

CCA =

0

BB@

32
23
33
31

1

CCA .

This time the solution is x+�x = (�81, 137,�34, 22). Again a small change
in the data alters the result rather drastically. Yet the original system is
symmetric, has determinant 1, and has integer entries. The problem is that
the matrix of the system is badly conditioned, a concept that we will now
explain.

Given an invertible matrix A, first assume that we perturb b to b+�b,
and let us analyze the change between the two exact solutions x and x+�x
of the two systems

Ax = b

A(x+�x) = b+�b.

We also assume that we have some norm k k and we use the subordinate
matrix norm on matrices. From

Ax = b

Ax+A�x = b+�b,

we get

�x = A�1�b,

and we conclude that

k�xk 
��A�1

�� k�bk
kbk  kAk kxk .

Consequently, the relative error in the result k�xk / kxk is bounded in terms
of the relative error k�bk / kbk in the data as follows:

k�xk
kxk 

�
kAk

��A�1

�� �k�bk
kbk .

Now let us assume that A is perturbed to A +�A, and let us analyze
the change between the exact solutions of the two systems

Ax = b

(A+�A)(x+�x) = b.
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The second equation yields Ax+A�x+�A(x+�x) = b, and by subtracting
the first equation we get

�x = �A�1�A(x+�x).

It follows that

k�xk 
��A�1

�� k�Ak kx+�xk ,
which can be rewritten as

k�xk
kx+�xk 

�
kAk

��A�1

�� �k�Ak
kAk .

Observe that the above reasoning is valid even if the matrix A+�A is
singular, as long as x+�x is a solution of the second system. Furthermore,
if k�Ak is small enough, it is not unreasonable to expect that the ratio
k�xk / kx+�xk is close to k�xk / kxk. This will be made more precise
later.

In summary, for each of the two perturbations, we see that the relative
error in the result is bounded by the relative error in the data, multiplied
the number kAk

��A�1

��. In fact, this factor turns out to be optimal and
this suggests the following definition:

Definition 8.10. For any subordinate matrix norm k k, for any invertible
matrix A, the number

cond(A) = kAk
��A�1

��

is called the condition number of A relative to k k.

The condition number cond(A) measures the sensitivity of the linear
system Ax = b to variations in the data b and A; a feature referred to as
the condition of the system. Thus, when we says that a linear system is
ill-conditioned , we mean that the condition number of its matrix is large.
We can sharpen the preceding analysis as follows:

Proposition 8.10. Let A be an invertible matrix and let x and x+�x be
the solutions of the linear systems

Ax = b

A(x+�x) = b+�b.

If b 6= 0, then the inequality

k�xk
kxk  cond(A)

k�bk
kbk

holds and is the best possible. This means that for a given matrix A, there
exist some vectors b 6= 0 and �b 6= 0 for which equality holds.
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Proof. We already proved the inequality. Now, because k k is a subordi-
nate matrix norm, there exist some vectors x 6= 0 and �b 6= 0 for which

��A�1�b
�� =

��A�1

�� k�bk and kAxk = kAk kxk .

Proposition 8.11. Let A be an invertible matrix and let x and x+�x be
the solutions of the two systems

Ax = b

(A+�A)(x+�x) = b.

If b 6= 0, then the inequality

k�xk
kx+�xk  cond(A)

k�Ak
kAk

holds and is the best possible. This means that given a matrix A, there exist
a vector b 6= 0 and a matrix �A 6= 0 for which equality holds. Furthermore,
if k�Ak is small enough (for instance, if k�Ak < 1/

��A�1

��), we have

k�xk
kxk  cond(A)

k�Ak
kAk (1 +O(k�Ak));

in fact, we have

k�xk
kxk  cond(A)

k�Ak
kAk

✓
1

1 � kA�1k k�Ak

◆
.

Proof. The first inequality has already been proven. To show that equality
can be achieved, let w be any vector such that w 6= 0 and

��A�1w
�� =

��A�1

�� kwk ,

and let � 6= 0 be any real number. Now the vectors

�x = ��A�1w

x+�x = w

b = (A+ �I)w

and the matrix

�A = �I

sastisfy the equations

Ax = b

(A+�A)(x+�x) = b

k�xk = |�|
��A�1w

�� = k�Ak
��A�1

�� kx+�xk .
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Finally we can pick � so that �� is not equal to any of the eigenvalues of
A, so that A+�A = A+ �I is invertible and b is is nonzero.

If k�Ak < 1/
��A�1

��, then
��A�1�A

�� 
��A�1

�� k�Ak < 1,

so by Proposition 8.8, the matrix I +A�1�A is invertible and

��(I +A�1�A)�1

��  1

1 � kA�1�Ak  1

1 � kA�1k k�Ak .

Recall that we proved earlier that

�x = �A�1�A(x+�x),

and by adding x to both sides and moving the right-hand side to the left-
hand side yields

(I +A�1�A)(x+�x) = x,

and thus

x+�x = (I +A�1�A)�1x,

which yields

�x = ((I +A�1�A)�1 � I)x = (I +A�1�A)�1(I � (I +A�1�A))x

= �(I +A�1�A)�1A�1(�A)x.

From this and
��(I +A�1�A)�1

��  1

1 � kA�1k k�Ak ,

we get

k�xk 
��A�1

�� k�Ak
1 � kA�1k k�Ak kxk ,

which can be written as

k�xk
kxk  cond(A)

k�Ak
kAk

✓
1

1 � kA�1k k�Ak

◆
,

which is the kind of inequality that we were seeking.

Remark: If A and b are perturbed simultaneously, so that we get the
“perturbed” system

(A+�A)(x+�x) = b+�b,
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it can be shown that if k�Ak < 1/
��A�1

�� (and b 6= 0), then

k�xk
kxk  cond(A)

1 � kA�1k k�Ak

✓
k�Ak
kAk +

k�bk
kbk

◆
;

see Demmel [Demmel (1997)], Section 2.2 and Horn and Johnson [Horn and
Johnson (1990)], Section 5.8.

We now list some properties of condition numbers and figure out what
cond(A) is in the case of the spectral norm (the matrix norm induced by
k k

2

). First, we need to introduce a very important factorization of matrices,
the singular value decomposition, for short, SVD .

It can be shown (see Section 20.2) that given any n ⇥ n matrix A 2
Mn(C), there exist two unitary matrices U and V , and a real diagonal
matrix ⌃ = diag(�

1

, . . . ,�n), with �1 � �
2

� · · · � �n � 0, such that

A = V ⌃U⇤.

Definition 8.11. Given a complex n ⇥ n matrix A, a triple (U, V,⌃) such
that A = V ⌃U>, where U and V are n ⇥ n unitary matrices and ⌃ =
diag(�

1

, . . . ,�n) is a diagonal matrix of real numbers �
1

� �
2

� · · · � �n �
0, is called a singular decomposition (for short SVD) of A. If A is a real
matrix, then U and V are orthogonal matrices The nonnegative numbers
�
1

, . . . ,�n are called the singular values of A.

The factorization A = V ⌃U⇤ implies that

A⇤A = U⌃2U⇤ and AA⇤ = V ⌃2V ⇤,

which shows that �2

1

, . . . ,�2

n are the eigenvalues of both A⇤A and AA⇤, that
the columns of U are corresponding eivenvectors for A⇤A, and that the
columns of V are corresponding eivenvectors for AA⇤.

Since �2

1

is the largest eigenvalue of A⇤A (and AA⇤), note thatp
⇢(A⇤A) =

p
⇢(AA⇤) = �

1

.

Corollary 8.3. The spectral norm kAk
2

of a matrix A is equal to the largest
singular value of A. Equivalently, the spectral norm kAk

2

of a matrix A is
equal to the `1-norm of its vector of singular values,

kAk
2

= max
1in

�i = k(�
1

, . . . ,�n)k1 .

Since the Frobenius norm of a matrix A is defined by kAkF =
p
tr(A⇤A)

and since

tr(A⇤A) = �2

1

+ · · · + �2

n
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where �2

1

, . . . ,�2

n are the eigenvalues of A⇤A, we see that

kAkF = (�2

1

+ · · · + �2

n)
1/2 = k(�

1

, . . . ,�n)k
2

.

Corollary 8.4. The Frobenius norm of a matrix is given by the `2-norm
of its vector of singular values; kAkF = k(�

1

, . . . ,�n)k
2

.

In the case of a normal matrix if �
1

, . . . ,�n are the (complex) eigenvalues
of A, then

�i = |�i|, 1  i  n.

Proposition 8.12. For every invertible matrix A 2 Mn(C), the following
properties hold:

(1)

cond(A) � 1,

cond(A) = cond(A�1)

cond(↵A) = cond(A) for all ↵ 2 C � {0}.

(2) If cond
2

(A) denotes the condition number of A with respect to the spec-
tral norm, then

cond
2

(A) =
�
1

�n
,

where �
1

� · · · � �n are the singular values of A.
(3) If the matrix A is normal, then

cond
2

(A) =
|�

1

|
|�n| ,

where �
1

, . . . ,�n are the eigenvalues of A sorted so that |�
1

| � · · · �
|�n|.

(4) If A is a unitary or an orthogonal matrix, then

cond
2

(A) = 1.

(5) The condition number cond
2

(A) is invariant under unitary transfor-
mations, which means that

cond
2

(A) = cond
2

(UA) = cond
2

(AV ),

for all unitary matrices U and V .
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Proof. The properties in (1) are immediate consequences of the properties
of subordinate matrix norms. In particular, AA�1 = I implies

1 = kIk  kAk
��A�1

�� = cond(A).

(2) We showed earlier that kAk2
2

= ⇢(A⇤A), which is the square of the
modulus of the largest eigenvalue of A⇤A. Since we just saw that the
eigenvalues of A⇤A are �2

1

� · · · � �2

n, where �1, . . . ,�n are the singular
values of A, we have

kAk
2

= �
1

.

Now if A is invertible, then �
1

� · · · � �n > 0, and it is easy to show that
the eigenvalues of (A⇤A)�1 are ��2

n � · · · � ��2

1

, which shows that
��A�1

��
2

= ��1

n ,

and thus

cond
2

(A) =
�
1

�n
.

(3) This follows from the fact that kAk
2

= ⇢(A) for a normal matrix.
(4) If A is a unitary matrix, then A⇤A = AA⇤ = I, so ⇢(A⇤A) = 1, and

kAk
2

=
p
⇢(A⇤A) = 1. We also have

��A�1

��
2

= kA⇤k
2

=
p
⇢(AA⇤) = 1,

and thus cond(A) = 1.
(5) This follows immediately from the unitary invariance of the spectral

norm.

Proposition 8.12 (4) shows that unitary and orthogonal transformations
are very well-conditioned, and Part (5) shows that unitary transformations
preserve the condition number.

In order to compute cond
2

(A), we need to compute the top and bottom
singular values of A, which may be hard. The inequality

kAk
2

 kAkF 
p
n kAk

2

,

may be useful in getting an approximation of cond
2

(A) = kAk
2

��A�1

��
2

, if
A�1 can be determined.

Remark: There is an interesting geometric characterization of cond
2

(A).
If ✓(A) denotes the least angle between the vectors Au and Av as u and v
range over all pairs of orthonormal vectors, then it can be shown that

cond
2

(A) = cot(✓(A)/2)).

Thus if A is nearly singular, then there will be some orthonormal pair u, v
such that Au and Av are nearly parallel; the angle ✓(A) will the be small
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and cot(✓(A)/2)) will be large. For more details, see Horn and Johnson
[Horn and Johnson (1990)] (Section 5.8 and Section 7.4).

It should be noted that in general (if A is not a normal matrix) a
matrix could have a very large condition number even if all its eigenvalues
are identical! For example, if we consider the n ⇥ n matrix

A =

0

BBBBBBBBBB@

1 2 0 0 . . . 0 0
0 1 2 0 . . . 0 0
0 0 1 2 . . . 0 0
...
...
. . .

. . .
. . .

...
...

0 0 . . . 0 1 2 0
0 0 . . . 0 0 1 2
0 0 . . . 0 0 0 1

1

CCCCCCCCCCA

,

it turns out that cond
2

(A) � 2n�1.
A classical example of matrix with a very large condition number is the

Hilbert matrix H(n), the n ⇥ n matrix with

H(n)
ij =

✓
1

i+ j � 1

◆
.

For example, when n = 5,

H(5) =

0

BBBBBBB@

1 1

2

1

3

1

4

1

5

1

2

1

3

1

4

1

5

1

6

1

3

1

4

1

5

1

6

1

7

1

4

1

5

1

6

1

7

1

8

1

5

1

6

1

7

1

8

1

9

1

CCCCCCCA

.

It can be shown that

cond
2

(H(5)) ⇡ 4.77 ⇥ 105.

Hilbert introduced these matrices in 1894 while studying a problem
in approximation theory. The Hilbert matrix H(n) is symmetric positive
definite. A closed-form formula can be given for its determinant (it is a
special form of the so-called Cauchy determinant); see Problem 8.15. The
inverse of H(n) can also be computed explicitly; see Problem 8.15. It can
be shown that

cond
2

(H(n)) = O((1 +
p
2)4n/

p
n).
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Going back to our matrix

A =

0

BB@

10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10

1

CCA ,

which is a symmetric positive definite matrix, it can be shown that its
eigenvalues, which in this case are also its singular values because A is
SPD, are

�
1

⇡ 30.2887 > �
2

⇡ 3.858 > �
3

⇡ 0.8431 > �
4

⇡ 0.01015,

so that

cond
2

(A) =
�
1

�
4

⇡ 2984.

The reader should check that for the perturbation of the right-hand side
b used earlier, the relative errors k�xk /kxk and k�xk /kxk satisfy the
inequality

k�xk
kxk  cond(A)

k�bk
kbk

and comes close to equality.

8.6 An Application of Norms: Solving Inconsistent
Linear Systems

The problem of solving an inconsistent linear system Ax = b often arises
in practice. This is a system where b does not belong to the column space
of A, usually with more equations than variables. Thus, such a system
has no solution. Yet we would still like to “solve” such a system, at least
approximately.

Such systems often arise when trying to fit some data. For example, we
may have a set of 3D data points

{p
1

, . . . , pn},

and we have reason to believe that these points are nearly coplanar. We
would like to find a plane that best fits our data points. Recall that the
equation of a plane is

↵x+ �y + �z + � = 0,
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with (↵,�, �) 6= (0, 0, 0). Thus, every plane is either not parallel to the
x-axis (↵ 6= 0) or not parallel to the y-axis (� 6= 0) or not parallel to the
z-axis (� 6= 0).

Say we have reasons to believe that the plane we are looking for is not
parallel to the z-axis. If we are wrong, in the least squares solution, one of
the coe�cients, ↵,�, will be very large. If � 6= 0, then we may assume that
our plane is given by an equation of the form

z = ax+ by + d,

and we would like this equation to be satisfied for all the pi’s, which leads
to a system of n equations in 3 unknowns a, b, d, with pi = (xi, yi, zi);

ax
1

+ by
1

+ d = z
1

...
...

axn + byn + d = zn.

However, if n is larger than 3, such a system generally has no solution.
Since the above system can’t be solved exactly, we can try to find a solution
(a, b, d) that minimizes the least-squares error

nX

i=1

(axi + byi + d � zi)
2.

This is what Legendre and Gauss figured out in the early 1800’s!
In general, given a linear system

Ax = b,

we solve the least squares problem: minimize kAx � bk2
2

.
Fortunately, every n ⇥ m-matrix A can be written as

A = V DU>

where U and V are orthogonal and D is a rectangular diagonal matrix with
non-negative entries (singular value decomposition, or SVD); see Chapter
20.

The SVD can be used to solve an inconsistent system. It is shown in
Chapter 21 that there is a vector x of smallest norm minimizing kAx � bk

2

.
It is given by the (Penrose) pseudo-inverse of A (itself given by the SVD).

It has been observed that solving in the least-squares sense may give
too much weight to “outliers,” that is, points clearly outside the best-fit
plane. In this case, it is preferable to minimize (the `1-norm)

nX

i=1

|axi + byi + d � zi|.
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This does not appear to be a linear problem, but we can use a trick to
convert this minimization problem into a linear program (which means a
problem involving linear constraints).

Note that |x| = max{x,�x}. So by introducing new variables e
1

, . . . , en,
our minimization problem is equivalent to the linear program (LP):

minimize e
1

+ · · · + en

subject to axi + byi + d � zi  ei

�(axi + byi + d � zi)  ei

1  i  n.

Observe that the constraints are equivalent to

ei � |axi + byi + d � zi|, 1  i  n.

For an optimal solution, we must have equality, since otherwise we could
decrease some ei and get an even better solution. Of course, we are no longer
dealing with “pure” linear algebra, since our constraints are inequalities.

We prefer not getting into linear programming right now, but the above
example provides a good reason to learn more about linear programming!

8.7 Limits of Sequences and Series

If x 2 R or x 2 C and if |x| < 1, it is well known that the sums
Pn

k=0

xk =
1+x+x2+ · · ·+xn converge to the limit 1/(1�x) when n goes to infinity,
and we write

1X

k=0

xk =
1

1 � x
.

For example,

1X

k=0

1

2k
= 2.

Similarly, the sums

Sn =
nX

k=0

xk

k!

converge to ex when n goes to infinity, for every x (in R or C). What if we
replace x by a real of complex n ⇥ n matrix A?
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The partial sums
Pn

k=0

Ak and
Pn

k=0

Ak

k! still make sense, but we have
to define what is the limit of a sequence of matrices. This can be done in
any normed vector space.

Definition 8.12. Let (E, kk) be a normed vector space. A sequence
(un)n2N in E is any function u : N ! E. For any v 2 E, the sequence
(un) converges to v (and v is the limit of the sequence (un)) if for every
✏ > 0, there is some integer N > 0 such that

kun � vk < ✏ for all n � N.

Often we assume that a sequence is indexed by N� {0}, that is, its first
term is u

1

rather than u
0

.
If the sequence (un) converges to v, then since by the triangle inequality

kum � unk  kum � vk + kv � unk ,

we see that for every ✏ > 0, we can find N > 0 such that kum � vk < ✏/2
and kun � vk < ✏/2, and so

kum � unk < ✏ for all m,n � N.

The above property is necessary for a convergent sequence, but not
necessarily su�cient. For example, if E = Q, there are sequences of ra-
tionals satisfying the above condition, but whose limit is not a rational
number. For example, the sequence

Pn
k=1

1

k! converges to e, and the se-
quence

Pn
k=0

(�1)k 1

2k+1

converges to ⇡/4, but e and ⇡/4 are not rational
(in fact, they are transcendental). However, R is constructed from Q to
guarantee that sequences with the above property converge, and so is C.

Definition 8.13. Given a normed vector space (E, k k), a sequence (un) is
a Cauchy sequence if for every ✏ > 0, there is some N > 0 such that

kum � unk < ✏ for all m,n � N.

If every Cauchy sequence converges, then we say that E is complete. A
complete normed vector spaces is also called a Banach space.

A fundamental property of R is that it is complete. It follows immedi-
ately that C is also complete. If E is a finite-dimensional real or complex
vector space, since any two norms are equivalent, we can pick the `1 norm,
and then by picking a basis in E, a sequence (un) of vectors in E con-
verges i↵ the n sequences of coordinates (ui

n) (1  i  n) converge, so any
finite-dimensional real or complex vector space is a Banach space.
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Let us now consider the convergence of series.

Definition 8.14. Given a normed vector space (E, k k), a series is an in-
finite sum

P1
k=0

uk of elements uk 2 E. We denote by Sn the partial sum
of the first n+ 1 elements,

Sn =
nX

k=0

uk.

Definition 8.15. We say that the series
P1

k=0

uk converges to the limit
v 2 E if the sequence (Sn) converges to v, i.e., given any ✏ > 0, there exists
a positive integer N such that for all n � N ,

kSn � vk < ✏.

In this case, we say that the series is convergent . We say that the seriesP1
k=0

uk converges absolutely if the series of norms
P1

k=0

kukk is conver-
gent.

If the series
P1

k=0

uk converges to v, since for all m,n with m > n we
have

mX

k=0

uk � Sn =
mX

k=0

uk �
nX

k=0

uk =
mX

k=n+1

uk,

if we let m go to infinity (with n fixed), we see that the series
P1

k=n+1

uk

converges and that

v � Sn =
1X

k=n+1

uk.

There are series that are convergent but not absolutely convergent; for
example, the series

1X

k=1

(�1)k�1

k

converges to ln 2, but
P1

k=1

1

k does not converge (this sum is infinite).
If E is complete, the converse is an enormously useful result.

Proposition 8.13. Assume (E, k k) is a complete normed vector space. If
a series

P1
k=0

uk is absolutely convergent, then it is convergent.
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Proof. If
P1

k=0

uk is absolutely convergent, then we prove that the se-
quence (Sm) is a Cauchy sequence; that is, for every ✏ > 0, there is some
p > 0 such that for all n � m � p,

kSn � Smk  ✏.

Observe that

kSn � Smk = kum+1

+ · · · + unk  kum+1

k + · · · + kunk ,
and since the sequence

P1
k=0

kukk converges, it satisfies Cauchy’s criterion.
Thus, the sequence (Sm) also satisfies Cauchy’s criterion, and since E is a
complete vector space, the sequence (Sm) converges.

Remark: It can be shown that if (E, k k) is a normed vector space such
that every absolutely convergent series is also convergent, then E must be
complete (see Schwartz [Schwartz (1991)]).

An important corollary of absolute convergence is that if the terms in
series

P1
k=0

uk are rearranged, then the resulting series is still absolutely
convergent and has the same sum. More precisely, let � be any permuta-
tion (bijection) of the natural numbers. The series

P1
k=0

u�(k) is called a
rearrangement of the original series. The following result can be shown (see
Schwartz [Schwartz (1991)]).

Proposition 8.14. Assume (E, k k) is a normed vector space. If a se-
ries

P1
k=0

uk is convergent as well as absolutely convergent, then for every
permutation � of N, the series

P1
k=0

u�(k) is convergent and absolutely
convergent, and its sum is equal to the sum of the original series:

1X

k=0

u�(k) =
1X

k=0

uk.

In particular, if (E, k k) is a complete normed vector space, then Propo-
sition 8.14 holds.

We now apply Proposition 8.13 to the matrix exponential.

8.8 The Matrix Exponential

Proposition 8.15. For any n ⇥ n real or complex matrix A, the series
1X

k=0

Ak

k!

converges absolutely for any operator norm on Mn(C) (or Mn(R)).
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Proof. Pick any norm on Cn (or Rn) and let kk be the corresponding
operator norm on Mn(C). Since Mn(C) has dimension n2, it is complete.
By Proposition 8.13, it su�ces to show that the series of nonnegative reals
Pn

k=0

���Ak

k!

��� converges. Since k k is an operator norm, this a matrix norm,

so we have
nX

k=0

����
Ak

k!

���� 
nX

k=0

kAkk

k!
 ekAk.

Thus, the nondecreasing sequence of positive real numbers
Pn

k=0

���Ak

k!

��� is

bounded by ekAk, and by a fundamental property of R, it has a least upper
bound which is its limit.

Definition 8.16. Let E be a finite-dimensional real of complex normed
vector space. For any n ⇥ n matrix A, the limit of the series

1X

k=0

Ak

k!

is the exponential of A and is denoted eA.

A basic property of the exponential x 7! ex with x 2 C is

ex+y = exey, for all x, y 2 C.

As a consequence, ex is always invertible and (ex)�1 = e�x. For matrices,
because matrix multiplication is not commutative, in general,

eA+B = eAeB

fails! This result is salvaged as follows.

Proposition 8.16. For any two n ⇥ n complex matrices A and B, if A
and B commute, that is, AB = BA, then

eA+B = eAeB .

A proof of Proposition 8.16 can be found in Gallier [Gallier (2011b)].
Since A and �A commute, as a corollary of Proposition 8.16, we see

that eA is always invertible and that

(eA)�1 = e�A.

It is also easy to see that

(eA)> = eA
>
.
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In general, there is no closed-form formula for the exponential eA of a
matrix A, but for skew symmetric matrices of dimension 2 and 3, there
are explicit formulae. Everyone should enjoy computing the exponential
eA where

A =

✓
0 �✓
✓ 0

◆
.

If we write

J =

✓
0 �1
1 0

◆
,

then

A = ✓J

The key property is that

J2 = �I.

Proposition 8.17. If A = ✓J , then

eA = cos ✓I + sin ✓J =

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆
.

Proof. We have

A4n = ✓4nI
2

,

A4n+1 = ✓4n+1J,

A4n+2 = �✓4n+2I
2

,

A4n+3 = �✓4n+3J,

and so

eA = I
2

+
✓

1!
J � ✓2

2!
I
2

� ✓3

3!
J +

✓4

4!
I
2

+
✓5

5!
J � ✓6

6!
I
2

� ✓7

7!
J + · · · .

Rearranging the order of the terms, we have

eA =

✓
1 � ✓2

2!
+
✓4

4!
� ✓6

6!
+ · · ·

◆
I
2

+

✓
✓

1!
� ✓3

3!
+
✓5

5!
� ✓7

7!
+ · · ·

◆
J.

We recognize the power series for cos ✓ and sin ✓, and thus

eA = cos ✓I
2

+ sin ✓J,

that is

eA =

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆
,

as claimed.
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Thus, we see that the exponential of a 2 ⇥ 2 skew-symmetric matrix is
a rotation matrix. This property generalizes to any dimension. An explicit
formula when n = 3 (the Rodrigues’ formula) is given in Section 11.7.

Proposition 8.18. If B is an n ⇥ n (real) skew symmetric matrix, that
is, B> = �B, then Q = eB is an orthogonal matrix, that is

Q>Q = QQ> = I.

Proof. Since B> = �B, we have

Q> = (eB)> = eB
>
= e�B .

Since B and �B commute, we have

Q>Q = e�BeB = e�B+B = e0 = I.

Similarly,

QQ> = eBe�B = eB�B = e0 = I,

which concludes the proof.

It can also be shown that det(Q) = det(eB) = 1, but this requires a
better understanding of the eigenvalues of eB (see Section 14.5). Further-
more, for every n⇥n rotation matrix Q (an orthogonal matrix Q such that
det(Q) = 1), there is a skew symmetric matrix B such that Q = eB . This
is a fundamental property which has applications in robotics for n = 3.

All familiar series have matrix analogs. For example, if kAk < 1 (where
k k is an operator norm), then the series

P1
k=0

Ak converges absolutely, and
it can be shown that its limit is (I � A)�1.

Another interesting series is the logarithm. For any n ⇥ n complex
matrix A, if kAk < 1 (where k k is an operator norm), then the series

log(I +A) =
1X

k=1

(�1)k+1

Ak

k

converges absolutely.

8.9 Summary

The main concepts and results of this chapter are listed below:

• Norms and normed vector spaces.
• The triangle inequality .
• The Euclidean norm; the `p-norms .



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 334

334 Vector Norms and Matrix Norms

• Hölder’s inequality ; the Cauchy–Schwarz inequality ; Minkowski’s in-
equality .

• Hermitian inner product and Euclidean inner product .
• Equivalent norms.
• All norms on a finite-dimensional vector space are equivalent (Theorem
8.1).

• Matrix norms.
• Hermitian, symmetric and normal matrices. Orthogonal and unitary
matrices.

• The trace of a matrix.
• Eigenvalues and eigenvectors of a matrix.
• The characteristic polynomial of a matrix.
• The spectral radius ⇢(A) of a matrix A.
• The Frobenius norm.
• The Frobenius norm is a unitarily invariant matrix norm.
• Bounded linear maps.
• Subordinate matrix norms .
• Characterization of the subordinate matrix norms for the vector norms

k k
1

, k k
2

, and k k1.
• The spectral norm.
• For every matrix A 2 Mn(C) and for every ✏ > 0, there is some subor-
dinate matrix norm k k such that kAk  ⇢(A) + ✏.

• Condition numbers of matrices.
• Perturbation analysis of linear systems.
• The singular value decomposition (SVD).
• Properties of conditions numbers. Characterization of cond

2

(A) in
terms of the largest and smallest singular values of A.

• The Hilbert matrix : a very badly conditioned matrix.
• Solving inconsistent linear systems by the method of least-squares; lin-
ear programming .

• Convergence of sequences of vectors in a normed vector space.
• Cauchy sequences, complex normed vector spaces, Banach spaces.
• Convergence of series. Absolute convergence.
• The matrix exponential.
• Skew symmetric matrices and orthogonal matrices.
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8.10 Problems

Problem 8.1. Let A be the following matrix:

A =

✓
1 1/

p
2

1/
p
2 3/2

◆
.

Compute the operator 2-norm kAk
2

of A.

Problem 8.2. Prove Proposition 8.2, namely that the following inequali-
ties hold for all x 2 Rn (or x 2 Cn):

kxk1  kxk
1

 nkxk1,

kxk1  kxk
2


p
nkxk1,

kxk
2

 kxk
1


p
nkxk

2

.

Problem 8.3. For any p � 1, prove that for all x 2 Rn,

lim
p 7!1

kxkp = kxk1 .

Problem 8.4. Let A be an n ⇥ n matrix which is strictly row diagonally
dominant, which means that

|ai i| >
X

j 6=i

|ai j |,

for i = 1, . . . , n, and let

� = min
i

⇢
|ai i| �

X

j 6=i

|ai j |
�
.

The fact that A is strictly row diagonally dominant is equivalent to the
condition � > 0.

(1) For any nonzero vector v, prove that

kAvk1 � kvk1 �.

Use the above to prove that A is invertible.
(2) Prove that

��A�1

��
1  ��1.

Hint . Prove that

sup
v 6=0

��A�1v
��
1

kvk1
= sup

w 6=0

kwk1
kAwk1

.
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Problem 8.5. Let A be any invertible complex n ⇥ n matrix.
(1) For any vector norm k k on Cn, prove that the function k kA : Cn !

R given by

kxkA = kAxk for all x 2 Cn,

is a vector norm.
(2) Prove that the operator norm induced by k kA, also denoted by k kA,

is given by

kBkA =
��ABA�1

�� for every n ⇥ n matrix B,

where
��ABA�1

�� uses the operator norm induced by k k.

Problem 8.6. Give an example of a norm on Cn and of a real matrix A
such that

kAkR < kAk ,
where k�kR and k�k are the operator norms associated with the vector
norm k�k.
Hint . This can already be done for n = 2.

Problem 8.7. Let k k be any operator norm. Given an invertible n ⇥ n
matrix A, if c = 1/(2

��A�1

��), then for every n ⇥ n matrix H, if kHk 
c, then A + H is invertible. Furthermore, show that if kHk  c, then��(A+H)�1

��  1/c.

Problem 8.8. Let A be any m ⇥ n matrix and let � 2 R be any positive
real number � > 0.

(1) Prove that A>A+ �In and AA> + �Im are invertible.
(2) Prove that

A>(AA> + �Im)�1 = (A>A+ �In)
�1A>.

Remark: The expressions above correspond to the matrix for which the
function

�(x) = (Ax � b)>(Ax � b) + �x>x

achieves a minimum. It shows up in machine learning (kernel methods).

Problem 8.9. Let Z be a q ⇥ p real matrix. Prove that if Ip � Z>Z is
positive definite, then the (p+ q) ⇥ (p+ q) matrix

S =

✓
Ip Z>

Z Iq

◆

is symmetric positive definite.
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Problem 8.10. Prove that for any real or complex square matrix A, we
have

kAk2
2

 kAk
1

kAk1 ,

where the above norms are operator norms.
Hint . Use Proposition 8.7 (among other things, it shows that kAk

1

=��A>
��
1).

Problem 8.11. Show that the map A 7! ⇢(A) (where ⇢(A) is the spectral
radius of A) is neither a norm nor a matrix norm. In particular, find two
2 ⇥ 2 matrices A and B such that

⇢(A+B) > ⇢(A) + ⇢(B) = 0 and ⇢(AB) > ⇢(A)⇢(B) = 0.

Problem 8.12. Define the map A 7! M(A) (defined on n ⇥ n real or
complex n ⇥ n matrices) by

M(A) = max{|aij | | 1  i, j  n}.

(1) Prove that

M(AB)  nM(A)M(B)

for all n ⇥ n matrices A and B.
(2) Give a counter-example of the inequality

M(AB)  M(A)M(B).

(3) Prove that the map A 7! kAkM given by

kAkM = nM(A) = nmax{|aij | | 1  i, j  n}

is a matrix norm.

Problem 8.13. Let S be a real symmetric positive definite matrix.
(1) Use the Cholesky factorization to prove that there is some upper-

triangular matrix C, unique if its diagonal elements are strictly positive,
such that S = C>C.

(2) For any x 2 Rn, define

kxkS = (x>Sx)1/2.

Prove that

kxkS = kCxk
2

,

and that the map x 7! kxkS is a norm.
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Problem 8.14. Let A be a real 2 ⇥ 2 matrix

A =

✓
a
1 1

a
1 2

a
2 1

a
2 2

◆
.

(1) Prove that the squares of the singular values �
1

� �
2

of A are the
roots of the quadratic equation

X2 � tr(A>A)X + | det(A)|2 = 0.

(2) If we let

µ(A) =
a2
1 1

+ a2
1 2

+ a2
2 1

+ a2
2 2

2|a
1 1

a
2 2

� a
1 2

a
2 1

| ,

prove that

cond
2

(A) =
�
1

�
2

= µ(A) + (µ(A)2 � 1)1/2.

(3) Consider the subset S of 2⇥ 2 invertible matrices whose entries ai j
are integers such that 0  aij  100.

Prove that the functions cond
2

(A) and µ(A) reach a maximum on the
set S for the same values of A.

Check that for the matrix

Am =

✓
100 99
99 98

◆

we have

µ(Am) = 19, 603 det(Am) = �1

and

cond
2

(Am) ⇡ 39, 206.

(4) Prove that for all A 2 S, if | det(A)| � 2 then µ(A)  10, 000.
Conclude that the maximum of µ(A) on S is achieved for matrices such
that det(A) = ±1. Prove that finding matrices that maximize µ on S is
equivalent to finding some integers n

1

, n
2

, n
3

, n
4

such that

0  n
4

 n
3

 n
2

 n
1

 100

n2

1

+ n2

2

+ n2

3

+ n2

4

� 1002 + 992 + 992 + 982 = 39, 206

|n
1

n
4

� n
2

n
3

| = 1.

You may use without proof that the fact that the only solution to the
above constraints is the multiset

{100, 99, 99, 98}.
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(5) Deduce from part (4) that the matrices in S for which µ has a
maximum value are

Am =

✓
100 99
99 98

◆ ✓
98 99
99 100

◆ ✓
99 100
98 99

◆ ✓
99 98
100 99

◆

and check that µ has the same value for these matrices. Conclude that

max
A2S

cond
2

(A) = cond
2

(Am).

(6) Solve the system
✓
100 99
99 98

◆✓
x
1

x
2

◆
=

✓
199
197

◆
.

Perturb the right-hand side b by

�b =

✓
�0.0097
0.0106

◆

and solve the new system

Amy = b+�b

where y = (y
1

, y
2

). Check that

�x = y � x =

✓
2

�2.0203

◆
.

Compute kxk
2

, k�xk
2

, kbk
2

, k�bk
2

, and estimate

c =
k�xk

2

kxk
2

✓
k�bk

2

kbk
2

◆�1

.

Check that

c ⇡ cond
2

(Am) = 39, 206.

Problem 8.15. Consider a real 2 ⇥ 2 matrix with zero trace of the form

A =

✓
a b
c �a

◆
.

(1) Prove that

A2 = (a2 + bc)I
2

= � det(A)I
2

.

If a2 + bc = 0, prove that

eA = I
2

+A.
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(2) If a2 + bc < 0, let ! > 0 be such that !2 = �(a2 + bc). Prove that

eA = cos! I
2

+
sin!

!
A.

(3) If a2 + bc > 0, let ! > 0 be such that !2 = a2 + bc. Prove that

eA = cosh! I
2

+
sinh!

!
A.

(3) Prove that in all cases

det
�
eA
�
= 1 and tr(A) � �2.

(4) Prove that there exist some real 2 ⇥ 2 matrix B with det(B) = 1
such that there is no real 2⇥ 2 matrix A with zero trace such that eA = B.

Problem 8.16. Recall that the Hilbert matrix is given by

H(n)
ij =

✓
1

i+ j � 1

◆
.

(1) Prove that

det(H(n)) =
(1!2! · · · (n � 1)!)4

1!2! · · · (2n � 1)!
,

thus the reciprocal of an integer.
Hint . Use Problem 6.13.

(2) Amazingly, the entries of the inverse of H(n) are integers. Prove
that (H(n))�1 = (↵ij), with

↵ij = (�1)i+j(i+ j � 1)

✓
n+ i � 1

n � j

◆✓
n+ j � 1

n � i

◆✓
i+ j � 2

i � 1

◆
2

.
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Chapter 9

Iterative Methods for Solving Linear
Systems

9.1 Convergence of Sequences of Vectors and Matrices

In Chapter 7 we discussed some of the main methods for solving systems of
linear equations. These methods are direct methods, in the sense that they
yield exact solutions (assuming infinite precision!).

Another class of methods for solving linear systems consists in approx-
imating solutions using iterative methods. The basic idea is this: Given a
linear system Ax = b (with A a square invertible matrix in Mn(C)), find
another matrix B 2 Mn(C) and a vector c 2 Cn, such that

(1) The matrix I � B is invertible
(2) The unique solution ex of the system Ax = b is identical to the unique

solution eu of the system

u = Bu+ c,

and then starting from any vector u
0

, compute the sequence (uk) given by

uk+1

= Buk + c, k 2 N.
Under certain conditions (to be clarified soon), the sequence (uk) con-

verges to a limit eu which is the unique solution of u = Bu+ c, and thus of
Ax = b.

Consequently, it is important to find conditions that ensure the conver-
gence of the above sequences and to have tools to compare the “rate” of
convergence of these sequences. Thus, we begin with some general results
about the convergence of sequences of vectors and matrices.

Let (E, k k) be a normed vector space. Recall from Section 8.7 that a
sequence (uk) of vectors uk 2 E converges to a limit u 2 E, if for every
✏ > 0, there some natural number N such that

kuk � uk  ✏, for all k � N.

341
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We write

u = lim
k 7!1

uk.

If E is a finite-dimensional vector space and dim(E) = n, we know
from Theorem 8.1 that any two norms are equivalent, and if we choose the
norm k k1, we see that the convergence of the sequence of vectors uk is
equivalent to the convergence of the n sequences of scalars formed by the
components of these vectors (over any basis). The same property applies to
the finite-dimensional vector space Mm,n(K) ofm⇥nmatrices (withK = R
or K = C), which means that the convergence of a sequence of matrices
Ak = (a(k)ij ) is equivalent to the convergence of the m ⇥ n sequences of

scalars (a(k)ij ), with i, j fixed (1  i  m, 1  j  n).
The first theorem below gives a necessary and su�cient condition for

the sequence (Bk) of powers of a matrix B to converge to the zero matrix.
Recall that the spectral radius ⇢(B) of a matrix B is the maximum of the
moduli |�i| of the eigenvalues of B.

Theorem 9.1. For any square matrix B, the following conditions are
equivalent:

(1) limk 7!1 Bk = 0,
(2) limk 7!1 Bkv = 0, for all vectors v,
(3) ⇢(B) < 1,
(4) kBk < 1, for some subordinate matrix norm k k.

Proof. Assume (1) and let k k be a vector norm on E and k k be the
corresponding matrix norm. For every vector v 2 E, because k k is a
matrix norm, we have

kBkvk  kBkkkvk,

and since limk 7!1 Bk = 0 means that limk 7!1 kBkk = 0, we conclude that
limk 7!1 kBkvk = 0, that is, limk 7!1 Bkv = 0. This proves that (1) implies
(2).

Assume (2). If we had ⇢(B) � 1, then there would be some eigenvector
u ( 6= 0) and some eigenvalue � such that

Bu = �u, |�| = ⇢(B) � 1,

but then the sequence (Bku) would not converge to 0, because Bku = �ku
and |�k| = |�|k � 1. It follows that (2) implies (3).



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 343

9.1. Convergence of Sequences of Vectors and Matrices 343

Assume that (3) holds, that is, ⇢(B) < 1. By Proposition 8.9, we can
find ✏ > 0 small enough that ⇢(B) + ✏ < 1, and a subordinate matrix norm
k k such that

kBk  ⇢(B) + ✏,

which is (4).
Finally, assume (4). Because k k is a matrix norm,

kBkk  kBkk,
and since kBk < 1, we deduce that (1) holds.

The following proposition is needed to study the rate of convergence of
iterative methods.

Proposition 9.1. For every square matrix B 2 Mn(C) and every matrix
norm k k, we have

lim
k 7!1

kBkk1/k = ⇢(B).

Proof. We know from Proposition 8.3 that ⇢(B)  kBk, and since ⇢(B) =
(⇢(Bk))1/k, we deduce that

⇢(B)  kBkk1/k for all k � 1,

and so

⇢(B)  lim
k 7!1

kBkk1/k.
Now let us prove that for every ✏ > 0, there is some integer N(✏) such

that

kBkk1/k  ⇢(B) + ✏ for all k � N(✏),

which proves that

lim
k 7!1

kBkk1/k  ⇢(B),

and our proposition.
For any given ✏ > 0, let B✏ be the matrix

B✏ =
B

⇢(B) + ✏
.

Since kB✏k < 1, Theorem 9.1 implies that limk 7!1 Bk
✏ = 0. Consequently,

there is some integer N(✏) such that for all k � N(✏), we have

kBk
✏ k =

kBkk
(⇢(B) + ✏)k

 1,

which implies that

kBkk1/k  ⇢(B) + ✏,

as claimed.

We now apply the above results to the convergence of iterative methods.
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9.2 Convergence of Iterative Methods

Recall that iterative methods for solving a linear system Ax = b (with
A 2 Mn(C) invertible) consists in finding some matrix B and some vector
c, such that I�B is invertible, and the unique solution ex of Ax = b is equal
to the unique solution eu of u = Bu+ c. Then starting from any vector u

0

,
compute the sequence (uk) given by

uk+1

= Buk + c, k 2 N,
and say that the iterative method is convergent i↵

lim
k 7!1

uk = eu,

for every initial vector u
0

.
Here is a fundamental criterion for the convergence of any iterative

methods based on a matrix B, called the matrix of the iterative method .

Theorem 9.2. Given a system u = Bu + c as above, where I � B is
invertible, the following statements are equivalent:

(1) The iterative method is convergent.
(2) ⇢(B) < 1.
(3) kBk < 1, for some subordinate matrix norm k k.

Proof. Define the vector ek (error vector) by

ek = uk � eu,
where eu is the unique solution of the system u = Bu + c. Clearly, the
iterative method is convergent i↵

lim
k 7!1

ek = 0.

We claim that

ek = Bke
0

, k � 0,

where e
0

= u
0

� eu.
This is proven by induction on k. The base case k = 0 is trivial. By the

induction hypothesis, ek = Bke
0

, and since uk+1

= Buk + c, we get

uk+1

� eu = Buk + c � eu,
and because eu = Beu+ c and ek = Bke

0

(by the induction hypothesis), we
obtain

uk+1

� eu = Buk � Beu = B(uk � eu) = Bek = BBke
0

= Bk+1e
0

,

proving the induction step. Thus, the iterative method converges i↵

lim
k 7!1

Bke
0

= 0.

Consequently, our theorem follows by Theorem 9.1.
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The next proposition is needed to compare the rate of convergence of
iterative methods. It shows that asymptotically, the error vector ek = Bke

0

behaves at worst like (⇢(B))k.

Proposition 9.2. Let k k be any vector norm, let B 2 Mn(C) be a matrix
such that I�B is invertible, and let eu be the unique solution of u = Bu+c.

(1) If (uk) is any sequence defined iteratively by

uk+1

= Buk + c, k 2 N,

then

lim
k 7!1


sup

ku0�euk=1

kuk � euk1/k
�
= ⇢(B).

(2) Let B
1

and B
2

be two matrices such that I � B
1

and I � B
2

are
invertibe, assume that both u = B

1

u+ c
1

and u = B
2

u+ c
2

have the same
unique solution eu, and consider any two sequences (uk) and (vk) defined
inductively by

uk+1

= B
1

uk + c
1

vk+1

= B
2

vk + c
2

,

with u
0

= v
0

. If ⇢(B
1

) < ⇢(B
2

), then for any ✏ > 0, there is some integer
N(✏), such that for all k � N(✏), we have

sup
ku0�euk=1


kvk � euk
kuk � euk

�
1/k

� ⇢(B
2

)

⇢(B
1

) + ✏
.

Proof. Let k k be the subordinate matrix norm. Recall that

uk � eu = Bke
0

,

with e
0

= u
0

� eu. For every k 2 N, we have

(⇢(B
1

))k = ⇢(Bk
1

)  kBk
1

k = sup
ke0k=1

kBk
1

e
0

k,

which implies

⇢(B
1

) = sup
ke0k=1

kBk
1

e
0

k1/k = kBk
1

k1/k,

and Statement (1) follows from Proposition 9.1.
Because u

0

= v
0

, we have

uk � eu = Bk
1

e
0

vk � eu = Bk
2

e
0

,
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with e
0

= u
0

� eu = v
0

� eu. Again, by Proposition 9.1, for every ✏ > 0, there
is some natural number N(✏) such that if k � N(✏), then

sup
ke0k=1

kBk
1

e
0

k1/k  ⇢(B
1

) + ✏.

Furthermore, for all k � N(✏), there exists a vector e
0

= e
0

(k) such that

ke
0

k = 1 and kBk
2

e
0

k1/k = kBk
2

k1/k � ⇢(B
2

),

which implies Statement (2).

In light of the above, we see that when we investigate new iterative
methods, we have to deal with the following two problems:

(1) Given an iterative method with matrix B, determine whether the
method is convergent. This involves determining whether ⇢(B) < 1,
or equivalently whether there is a subordinate matrix norm such that
kBk < 1. By Proposition 8.8, this implies that I�B is invertible (since
k � Bk = kBk, Proposition 8.8 applies).

(2) Given two convergent iterative methods, compare them. The iterative
method which is faster is that whose matrix has the smaller spectral
radius.

We now discuss three iterative methods for solving linear systems:

(1) Jacobi’s method
(2) Gauss–Seidel’s method
(3) The relaxation method.

9.3 Description of the Methods of Jacobi,
Gauss–Seidel, and Relaxation

The methods described in this section are instances of the following scheme:
Given a linear system Ax = b, with A invertible, suppose we can write A
in the form

A = M � N,

with M invertible, and “easy to invert,” which means that M is close to
being a diagonal or a triangular matrix (perhaps by blocks). Then Au = b
is equivalent to

Mu = Nu+ b,
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that is,

u = M�1Nu+M�1b.

Therefore, we are in the situation described in the previous sections with
B = M�1N and c = M�1b. In fact, since A = M � N , we have

B = M�1N = M�1(M � A) = I � M�1A, (⇤)
which shows that I � B = M�1A is invertible. The iterative method
associated with the matrix B = M�1N is given by

uk+1

= M�1Nuk +M�1b, k � 0, (†)
starting from any arbitrary vector u

0

. From a practical point of view, we
do not invert M , and instead we solve iteratively the systems

Muk+1

= Nuk + b, k � 0.

Various methods correspond to various ways of choosing M and N from
A. The first two methods choose M and N as disjoint submatrices of A,
but the relaxation method allows some overlapping of M and N .

To describe the various choices of M and N , it is convenient to write A
in terms of three submatrices D,E, F , as

A = D � E � F,

where the only nonzero entries in D are the diagonal entries in A, the only
nonzero entries in E are entries in A below the the diagonal, and the only
nonzero entries in F are entries in A above the diagonal. More explicitly, if

A =

0

BBBBBBBBBBBBB@

a
11

a
12

a
13

· · · a
1n�1

a
1n

a
21

a
22

a
23

· · · a
2n�1

a
2n

a
31

a
32

a
33

· · · a
3n�1

a
3n

...
...

...
. . .

...
...

an�1 1

an�1 2

an�1 3

· · · an�1n�1

an�1n

an 1

an 2

an 3

· · · ann�1

ann

1

CCCCCCCCCCCCCA

,

then

D =

0

BBBBBBBBBBBBB@

a
11

0 0 · · · 0 0

0 a
22

0 · · · 0 0

0 0 a
33

· · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · an�1n�1

0

0 0 0 · · · 0 ann

1

CCCCCCCCCCCCCA

,
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�E =

0

BBBBBBBBBBBBBB@

0 0 0 · · · 0 0

a
21

0 0 · · · 0 0

a
31

a
32

0 · · · 0 0

...
...

. . .
. . .

...
...

an�1 1

an�1 2

an�1 3

. . . 0 0

an 1

an 2

an 3

· · · ann�1

0

1

CCCCCCCCCCCCCCA

,

�F =

0

BBBBBBBBBBBBBB@

0 a
12

a
13

· · · a
1n�1

a
1n

0 0 a
23

· · · a
2n�1

a
2n

0 0 0
. . . a

3n�1

a
3n

...
...

...
. . .

. . .
...

0 0 0 · · · 0 an�1n

0 0 0 · · · 0 0

1

CCCCCCCCCCCCCCA

.

In Jacobi’s method , we assume that all diagonal entries in A are nonzero,
and we pick

M = D

N = E + F,

so that by (⇤),

B = M�1N = D�1(E + F ) = I � D�1A.

As a matter of notation, we let

J = I � D�1A = D�1(E + F ),

which is called Jacobi’s matrix . The corresponding method, Jacobi’s iter-
ative method , computes the sequence (uk) using the recurrence

uk+1

= D�1(E + F )uk +D�1b, k � 0.

In practice, we iteratively solve the systems

Duk+1

= (E + F )uk + b, k � 0.
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If we write uk = (uk
1

, . . . , uk
n), we solve iteratively the following system:

a
11

uk+1

1

= �a
12

uk
2

· · · �a
1nuk

n + b
1

a
22

uk+1

2

= �a
21

uk
1

· · · �a
2nuk

n + b
2

...
...

...
an�1n�1

uk+1

n�1

= �an�1 1

uk
1

· · · �an�1nuk
n + bn�1

annuk+1

n = �an 1

uk
1

�an 2

uk
2

�ann�1

uk
n�1

+ bn

.

In Matlab one step of Jacobi iteration is achieved by the following func-
tion:

function v = Jacobi2(A,b,u)

n = size(A,1);

v = zeros(n,1);

for i = 1:n

v(i,1) = u(i,1) + (-A(i,:)*u + b(i))/A(i,i);

end

end

In order to run m iteration steps, run the following function:

function u = jacobi(A,b,u0,m)

u = u0;

for j = 1:m

u = Jacobi2(A,b,u);

end

end

Example 9.1. Consider the linear system
0

BB@

2 �1 0 0
�1 2 �1 0
0 �1 2 �1
0 0 �1 2

1

CCA

0

BB@

x
1

x
2

x
3

x
4

1

CCA =

0

BB@

25
�24
21

�15

1

CCA .

We check immediately that the solution is

x
1

= 11, x
2

= �3, x
3

= 7, x
4

= �4.

It is easy to see that the Jacobi matrix is

J =
1

2

0

BB@

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

1

CCA .
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After 10 Jacobi iterations, we find the approximate solution

x
1

= 10.2588, x
2

= �2.5244, x
3

= 5.8008, x
4

= �3.7061.

After 20 iterations, we find the approximate solution

x
1

= 10.9110, x
2

= �2.9429, x
3

= 6.8560, x
4

= �3.9647.

After 50 iterations, we find the approximate solution

x
1

= 10.9998, x
2

= �2.9999, x
3

= 6.9998, x
4

= �3.9999,

and After 60 iterations, we find the approximate solution

x
1

= 11.0000, x
2

= �3.0000, x
3

= 7.0000, x
4

= �4.0000,

correct up to at least four decimals.
It can be shown (see Problem 9.6) that the eigenvalues of J are

cos
⇣⇡
5

⌘
, cos

✓
2⇡

5

◆
, cos

✓
3⇡

5

◆
, cos

✓
4⇡

5

◆
,

so the spectral radius of J = B is

⇢(J) = cos
⇣⇡
5

⌘
= 0.8090 < 1.

By Theorem 9.2, Jacobi’s method converges for the matrix of this example.

Observe that we can try to “speed up” the method by using the new
value uk+1

1

instead of uk
1

in solving for uk+2

2

using the second equations,
and more generally, use uk+1

1

, . . . , uk+1

i�1

instead of uk
1

, . . . , uk
i�1

in solving
for uk+1

i in the ith equation. This observation leads to the system

a
11

uk+1

1

= �a
12

uk
2

· · · �a
1nuk

n + b
1

a
22

uk+1

2

= �a
21

uk+1

1

· · · �a
2nuk

n + b
2

...
...

...
an�1n�1

uk+1

n�1

= �an�1 1

uk+1

1

· · · �an�1nuk
n + bn�1

annuk+1

n = �an 1

uk+1

1

�an 2

uk+1

2

�ann�1

uk+1

n�1

+ bn

,

which, in matrix form, is written

Duk+1

= Euk+1

+ Fuk + b.

Because D is invertible and E is lower triangular, the matrix D � E is
invertible, so the above equation is equivalent to

uk+1

= (D � E)�1Fuk + (D � E)�1b, k � 0.
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The above corresponds to choosing M and N to be

M = D � E

N = F,

and the matrix B is given by

B = M�1N = (D � E)�1F.

Since M = D � E is invertible, we know that I � B = M�1A is also
invertible.

The method that we just described is the iterative method of Gauss–
Seidel , and the matrix B is called the matrix of Gauss–Seidel and denoted
by L

1

, with

L
1

= (D � E)�1F.

One of the advantages of the method of Gauss–Seidel is that is requires
only half of the memory used by Jacobi’s method, since we only need

uk+1

1

, . . . , uk+1

i�1

, uk
i+1

, . . . , uk
n

to compute uk+1

i . We also show that in certain important cases (for ex-
ample, if A is a tridiagonal matrix), the method of Gauss–Seidel converges
faster than Jacobi’s method (in this case, they both converge or diverge
simultaneously).

In Matlab one step of Gauss–Seidel iteration is achieved by the following
function:

function u = GaussSeidel3(A,b,u)

n = size(A,1);

for i = 1:n

u(i,1) = u(i,1) + (-A(i,:)*u + b(i))/A(i,i);

end

end

It is remarkable that the only di↵erence with Jacobi2 is that the same
variable u is used on both sides of the assignment. In order to run m
iteration steps, run the following function:

function u = GaussSeidel1(A,b,u0,m)

u = u0;

for j = 1:m

u = GaussSeidel3(A,b,u);

end

end
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Example 9.2. Consider the same linear system
0

BB@

2 �1 0 0
�1 2 �1 0
0 �1 2 �1
0 0 �1 2

1

CCA

0

BB@

x
1

x
2

x
3

x
4

1

CCA =

0

BB@

25
�24
21

�15

1

CCA

as in Example 9.1, whose solution is

x
1

= 11, x
2

= �3, x
3

= 7, x
4

= �4.

After 10 Gauss–Seidel iterations, we find the approximate solution

x
1

= 10.9966, x
2

= �3.0044, x
3

= 6.9964, x
4

= �4.0018.

After 20 iterations, we find the approximate solution

x
1

= 11.0000, x
2

= �3.0001, x
3

= 6.9999, x
4

= �4.0000.

After 25 iterations, we find the approximate solution

x
1

= 11.0000, x
2

= �3.0000, x
3

= 7.0000, x
4

= �4.0000,

correct up to at least four decimals. We observe that for this example,
Gauss–Seidel’s method converges about twice as fast as Jacobi’s method.
It will be shown in Proposition 9.5 that for a tridiagonal matrix, the spectral
radius of the Gauss–Seidel matrix L

1

is given by

⇢(L
1

) = (⇢(J))2,

so our observation is consistent with the theory.

The new ingredient in the relaxation method is to incorporate part of
the matrix D into N : we define M and N by

M =
D

!
� E

N =
1 � !

!
D + F,

where ! 6= 0 is a real parameter to be suitably chosen. Actually, we show
in Section 9.4 that for the relaxation method to converge, we must have
! 2 (0, 2). Note that the case ! = 1 corresponds to the method of Gauss–
Seidel.

If we assume that all diagonal entries of D are nonzero, the matrix M
is invertible. The matrix B is denoted by L! and called the matrix of
relaxation, with

L! =

✓
D

!
� E

◆�1

✓
1 � !

!
D + F

◆
= (D � !E)�1((1 � !)D + !F ).
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The number ! is called the parameter of relaxation.
When ! > 1, the relaxation method is known as successive overrelax-

ation, abbreviated as SOR.
At first glance the relaxation matrix L! seems at lot more complicated

than the Gauss–Seidel matrix L
1

, but the iterative system associated with
the relaxation method is very similar to the method of Gauss–Seidel, and
is quite simple. Indeed, the system associated with the relaxation method
is given by

✓
D

!
� E

◆
uk+1

=

✓
1 � !

!
D + F

◆
uk + b,

which is equivalent to

(D � !E)uk+1

= ((1 � !)D + !F )uk + !b,

and can be written

Duk+1

= Duk � !(Duk � Euk+1

� Fuk � b).

Explicitly, this is the system

a
11

uk+1

1

= a
11

uk
1

� !(a
11

uk
1

+ · · · + a
1n�1

uk
n�1

+ a
1nu

k
n � b

1

)

a
22

uk+1

2

= a
22

uk
2

� !(a
21

uk+1

1

+ · · · + a
2n�1

uk
n�1

+ a
2nu

k
n � b

2

)

...

annu
k+1

n = annu
k
n � !(an 1

uk+1

1

++ · · · + ann�1

uk+1

n�1

+ annu
k
n � bn).

In Matlab one step of relaxation iteration is achieved by the following
function:

function u = relax3(A,b,u,omega)

n = size(A,1);

for i = 1:n

u(i,1) = u(i,1) + omega*(-A(i,:)*u + b(i))/A(i,i);

end

end

Observe that function relax3 is obtained from the function GaussSeidel3

by simply inserting ! in front of the expression (�A(i, :) ⇤ u+ b(i))/A(i, i).
In order to run m iteration steps, run the following function:

function u = relax(A,b,u0,omega,m)

u = u0;

for j = 1:m
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u = relax3(A,b,u,omega);

end

end

Example 9.3. Consider the same linear system as in Examples 9.1 and
9.2, whose solution is

x
1

= 11, x
2

= �3, x
3

= 7, x
4

= �4.

After 10 relaxation iterations with ! = 1.1, we find the approximate solu-
tion

x
1

= 11.0026, x
2

= �2.9968, x
3

= 7.0024, x
4

= �3.9989.

After 10 iterations with ! = 1.2, we find the approximate solution

x
1

= 11.0014, x
2

= �2.9985, x
3

= 7.0010, x
4

= �3.9996.

After 10 iterations with ! = 1.3, we find the approximate solution

x
1

= 10.9996, x
2

= �3.0001, x
3

= 6.9999, x
4

= �4.0000.

After 10 iterations with ! = 1.27, we find the approximate solution

x
1

= 11.0000, x
2

= �3.0000, x
3

= 7.0000, x
4

= �4.0000,

correct up to at least four decimals. We observe that for this example the
method of relaxation with ! = 1.27 converges faster than the method of
Gauss–Seidel. This observation will be confirmed by Proposition 9.7.

What remains to be done is to find conditions that ensure the conver-
gence of the relaxation method (and the Gauss–Seidel method), that is:

(1) Find conditions on !, namely some interval I ✓ R so that ! 2 I implies
⇢(L!) < 1; we will prove that ! 2 (0, 2) is a necessary condition.

(2) Find if there exist some optimal value !
0

of ! 2 I, so that

⇢(L!0) = inf
!2I

⇢(L!).

We will give partial answers to the above questions in the next section.
It is also possible to extend the methods of this section by using block

decompositions of the form A = D � E � F , where D,E, and F consist of
blocks, and D is an invertible block-diagonal matrix. See Figure 9.1.
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D

D

D

D

E

E

E

F

F

F
1

11

2

22

3

33

4

Fig. 9.1 A schematic representation of a block decomposition A = D � E � F , where
D = [4

i=1Di, E = [3
i=1Ei, and F = [3

i=1Fi.

9.4 Convergence of the Methods of Gauss–Seidel and Re-
laxation

We begin with a general criterion for the convergence of an iterative method
associated with a (complex) Hermitian positive definite matrix, A = M�N .
Next we apply this result to the relaxation method.

Proposition 9.3. Let A be any Hermitian positive definite matrix, written
as

A = M � N,

with M invertible. Then M⇤+N is Hermitian, and if it is positive definite,
then

⇢(M�1N) < 1,

so that the iterative method converges.

Proof. Since M = A+N and A is Hermitian, A⇤ = A, so we get

M⇤ +N = A⇤ +N⇤ +N = A+N +N⇤ = M +N⇤ = (M⇤ +N)⇤,

which shows that M⇤ +N is indeed Hermitian.
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Because A is Hermitian positive definite, the function

v 7! (v⇤Av)1/2

from Cn to R is a vector norm k k, and let k k also denote its subordinate
matrix norm. We prove that

kM�1Nk < 1,

which by Theorem 9.1 proves that ⇢(M�1N) < 1. By definition

kM�1Nk = kI � M�1Ak = sup
kvk=1

kv � M�1Avk,

which leads us to evaluate kv � M�1Avk when kvk = 1. If we write w =
M�1Av, using the facts that kvk = 1, v = A�1Mw, A⇤ = A, and A =
M � N , we have

kv � wk2 = (v � w)⇤A(v � w)

= kvk2 � v⇤Aw � w⇤Av + w⇤Aw

= 1 � w⇤M⇤w � w⇤Mw + w⇤Aw

= 1 � w⇤(M⇤ +N)w.

Now since we assumed that M⇤ + N is positive definite, if w 6= 0, then
w⇤(M⇤ +N)w > 0, and we conclude that

if kvk = 1, then kv � M�1Avk < 1.

Finally, the function

v 7! kv � M�1Avk

is continuous as a composition of continuous functions, therefore it achieves
its maximum on the compact subset {v 2 Cn | kvk = 1}, which proves that

sup
kvk=1

kv � M�1Avk < 1,

and completes the proof.

Now as in the previous sections, we assume that A is written as A =
D � E � F , with D invertible, possibly in block form. The next theorem
provides a su�cient condition (which turns out to be also necessary) for the
relaxation method to converge (and thus, for the method of Gauss–Seidel
to converge). This theorem is known as the Ostrowski-Reich theorem.

Theorem 9.3. If A = D � E � F is Hermitian positive definite, and if
0 < ! < 2, then the relaxation method converges. This also holds for a
block decomposition of A.



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 357

9.4. Convergence of the Methods 357

Proof. Recall that for the relaxation method, A = M � N with

M =
D

!
� E

N =
1 � !

!
D + F,

and because D⇤ = D, E⇤ = F (since A is Hermitian) and ! 6= 0 is real, we
have

M⇤ +N =
D⇤

!
� E⇤ +

1 � !

!
D + F =

2 � !

!
D.

If D consists of the diagonal entries of A, then we know from Section 7.8
that these entries are all positive, and since ! 2 (0, 2), we see that the
matrix ((2�!)/!)D is positive definite. If D consists of diagonal blocks of
A, because A is positive, definite, by choosing vectors z obtained by picking
a nonzero vector for each block of D and padding with zeros, we see that
each block of D is positive definite, and thus D itself is positive definite.
Therefore, in all cases, M⇤ + N is positive definite, and we conclude by
using Proposition 9.3.

Remark: What if we allow the parameter ! to be a nonzero complex
number ! 2 C? In this case, we get

M⇤ +N =
D⇤

!
� E⇤ +

1 � !

!
D + F =

✓
1

!
+

1

!
� 1

◆
D.

But,

1

!
+

1

!
� 1 =

! + ! � !!

!!
=

1 � (! � 1)(! � 1)

|!|2 =
1 � |! � 1|2

|!|2 ,

so the relaxation method also converges for ! 2 C, provided that

|! � 1| < 1.

This condition reduces to 0 < ! < 2 if ! is real.
Unfortunately, Theorem 9.3 does not apply to Jacobi’s method, but in

special cases, Proposition 9.3 can be used to prove its convergence. On the
positive side, if a matrix is strictly column (or row) diagonally dominant,
then it can be shown that the method of Jacobi and the method of Gauss–
Seidel both converge. The relaxation method also converges if ! 2 (0, 1],
but this is not a very useful result because the speed-up of convergence
usually occurs for ! > 1.
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We now prove that, without any assumption on A = D � E � F , other
than the fact that A andD are invertible, in order for the relaxation method
to converge, we must have ! 2 (0, 2).

Proposition 9.4. Given any matrix A = D � E � F , with A and D in-
vertible, for any ! 6= 0, we have

⇢(L!) � |! � 1|,

where L! =

✓
D
! � E

◆�1

✓
1�!
! D + F

◆
. Therefore, the relaxation method

(possibly by blocks) does not converge unless ! 2 (0, 2). If we allow ! to be
complex, then we must have

|! � 1| < 1

for the relaxation method to converge.

Proof. Observe that the product �
1

· · ·�n of the eigenvalues of L!, which
is equal to det(L!), is given by

�
1

· · ·�n = det(L!) =
det

✓
1 � !

!
D + F

◆

det

✓
D

!
� E

◆ = (1 � !)n.

It follows that

⇢(L!) � |�
1

· · ·�n|1/n = |! � 1|.

The proof is the same if ! 2 C.

9.5 Convergence of the Methods of Jacobi,
Gauss–Seidel, and Relaxation for
Tridiagonal Matrices

We now consider the case where A is a tridiagonal matrix , possibly by
blocks. In this case, we obtain precise results about the spectral radius of
J and L!, and as a consequence, about the convergence of these methods.
We also obtain some information about the rate of convergence of these
methods. We begin with the case ! = 1, which is technically easier to deal
with. The following proposition gives us the precise relationship between
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the spectral radii ⇢(J) and ⇢(L
1

) of the Jacobi matrix and the Gauss–Seidel
matrix.

Proposition 9.5. Let A be a tridiagonal matrix (possibly by blocks). If
⇢(J) is the spectral radius of the Jacobi matrix and ⇢(L

1

) is the spectral
radius of the Gauss–Seidel matrix, then we have

⇢(L
1

) = (⇢(J))2.

Consequently, the method of Jacobi and the method of Gauss–Seidel both
converge or both diverge simultaneously (even when A is tridiagonal by
blocks); when they converge, the method of Gauss–Seidel converges faster
than Jacobi’s method.

Proof. We begin with a preliminary result. Let A(µ) with a tridiagonal
matrix by block of the form

A(µ) =

0

BBBBBBBBB@

A
1

µ�1C
1

0 0 · · · 0
µB

1

A
2

µ�1C
2

0 · · · 0

0
. . .

. . .
. . . · · ·

...
... · · ·

. . .
. . .

. . . 0
0 · · · 0 µBp�2

Ap�1

µ�1Cp�1

0 · · · · · · 0 µBp�1

Ap

1

CCCCCCCCCA

,

then

det(A(µ)) = det(A(1)), µ 6= 0.

To prove this fact, form the block diagonal matrix

P (µ) = diag(µI
1

, µ2I
2

, . . . , µpIp),

where Ij is the identity matrix of the same dimension as the block Aj . Then
it is easy to see that

A(µ) = P (µ)A(1)P (µ)�1,

and thus,

det(A(µ)) = det(P (µ)A(1)P (µ)�1) = det(A(1)).

Since the Jacobi matrix is J = D�1(E + F ), the eigenvalues of J are
the zeros of the characteristic polynomial

pJ(�) = det(�I � D�1(E + F )),
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and thus, they are also the zeros of the polynomial

qJ(�) = det(�D � E � F ) = det(D)pJ(�).

Similarly, since the Gauss–Seidel matrix is L
1

= (D � E)�1F , the zeros of
the characteristic polynomial

pL1(�) = det(�I � (D � E)�1F )

are also the zeros of the polynomial

qL1(�) = det(�D � �E � F ) = det(D � E)pL1(�).

Since A = D�E�F is tridiagonal (or tridiagonal by blocks), �2D��2E�F
is also tridiagonal (or tridiagonal by blocks), and by using our preliminary
result with µ = � 6= 0, we get

qL1(�
2) = det(�2D � �2E � F ) = det(�2D � �E � �F ) = �nqJ(�).

By continuity, the above equation also holds for � = 0. But then we deduce
that:

(1) For any � 6= 0, if � is an eigenvalue of L
1

, then �1/2 and ��1/2 are
both eigenvalues of J , where �1/2 is one of the complex square roots of
�.

(2) For any ↵ 6= 0, if ↵ and �↵ are both eigenvalues of J , then ↵2 is an
eigenvalue of L

1

.

The above immediately implies that ⇢(L
1

) = (⇢(J))2.

We now consider the more general situation where ! is any real in (0, 2).

Proposition 9.6. Let A be a tridiagonal matrix (possibly by blocks), and
assume that the eigenvalues of the Jacobi matrix are all real. If ! 2 (0, 2),
then the method of Jacobi and the method of relaxation both converge or both
diverge simultaneously (even when A is tridiagonal by blocks). When they
converge, the function ! 7! ⇢(L!) (for ! 2 (0, 2)) has a unique minimum
equal to !

0

� 1 for

!
0

=
2

1 +
p
1 � (⇢(J))2

,

where 1 < !
0

< 2 if ⇢(J) > 0. We also have ⇢(L
1

) = (⇢(J))2, as before.
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Proof. The proof is very technical and can be found in Serre [Serre (2010)]
and Ciarlet [Ciarlet (1989)]. As in the proof of the previous proposition,
we begin by showing that the eigenvalues of the matrix L! are the zeros of
the polynomial

qL! (�) = det

✓
�+ ! � 1

!
D � �E � F

◆
= det

✓
D

!
� E

◆
pL! (�),

where pL! (�) is the characteristic polynomial of L!. Then using the pre-
liminary fact from Proposition 9.5, it is easy to show that

qL! (�
2) = �nqJ

✓
�2 + ! � 1

�!

◆
,

for all � 2 C, with � 6= 0. This time we cannot extend the above equation
to � = 0. This leads us to consider the equation

�2 + ! � 1

�!
= ↵,

which is equivalent to

�2 � ↵!�+ ! � 1 = 0,

for all � 6= 0. Since � 6= 0, the above equivalence does not hold for ! = 1,
but this is not a problem since the case ! = 1 has already been considered
in the previous proposition. Then we can show the following:

(1) For any � 6= 0, if � is an eigenvalue of L!, then
� + ! � 1

�1/2!
, �� + ! � 1

�1/2!

are eigenvalues of J .
(2) For every ↵ 6= 0, if ↵ and �↵ are eigenvalues of J , then µ

+

(↵,!) and
µ�(↵,!) are eigenvalues of L!, where µ

+

(↵,!) and µ�(↵,!) are the
squares of the roots of the equation

�2 � ↵!�+ ! � 1 = 0.

It follows that

⇢(L!) = max
� | pJ (�)=0

{max(|µ
+

(↵,!)|, |µ�(↵,!)|)},

and since we are assuming that J has real roots, we are led to study the
function

M(↵,!) = max{|µ
+

(↵,!)|, |µ�(↵,!)|},
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where ↵ 2 R and ! 2 (0, 2). Actually, because M(�↵,!) = M(↵,!), it is
only necessary to consider the case where ↵ � 0.

Note that for ↵ 6= 0, the roots of the equation

�2 � ↵!�+ ! � 1 = 0.

are

↵! ±
p
↵2!2 � 4! + 4

2
.

In turn, this leads to consider the roots of the equation

!2↵2 � 4! + 4 = 0,

which are

2(1 ±
p
1 � ↵2)

↵2

,

for ↵ 6= 0. Since we have

2(1 +
p
1 � ↵2)

↵2

=
2(1 +

p
1 � ↵2)(1 �

p
1 � ↵2)

↵2(1 �
p
1 � ↵2)

=
2

1 �
p
1 � ↵2

and

2(1 �
p
1 � ↵2)

↵2

=
2(1 +

p
1 � ↵2)(1 �

p
1 � ↵2)

↵2(1 +
p
1 � ↵2)

=
2

1 +
p
1 � ↵2

,

these roots are

!
0

(↵) =
2

1 +
p
1 � ↵2

, !
1

(↵) =
2

1 �
p
1 � ↵2

.

Observe that the expression for !
0

(↵) is exactly the expression in the state-
ment of our proposition! The rest of the proof consists in analyzing the
variations of the function M(↵,!) by considering various cases for ↵. In
the end, we find that the minimum of ⇢(L!) is obtained for !

0

(⇢(J)). The
details are tedious and we omit them. The reader will find complete proofs
in Serre [Serre (2010)] and Ciarlet [Ciarlet (1989)].

Combining the results of Theorem 9.3 and Proposition 9.6, we obtain
the following result which gives precise information about the spectral radii
of the matrices J , L

1

, and L!.

Proposition 9.7. Let A be a tridiagonal matrix (possibly by blocks) which
is Hermitian positive definite. Then the methods of Jacobi, Gauss–Seidel,
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and relaxation, all converge for ! 2 (0, 2). There is a unique optimal
relaxation parameter

!
0

=
2

1 +
p
1 � (⇢(J))2

,

such that

⇢(L!0) = inf
0<!<2

⇢(L!) = !
0

� 1.

Furthermore, if ⇢(J) > 0, then

⇢(L!0) < ⇢(L
1

) = (⇢(J))2 < ⇢(J),

and if ⇢(J) = 0, then !
0

= 1 and ⇢(L
1

) = ⇢(J) = 0.

Proof. In order to apply Proposition 9.6, we have to check that J =
D�1(E + F ) has real eigenvalues. However, if ↵ is any eigenvalue of J
and if u is any corresponding eigenvector, then

D�1(E + F )u = ↵u

implies that

(E + F )u = ↵Du,

and since A = D �E �F , the above shows that (D �A)u = ↵Du, that is,

Au = (1 � ↵)Du.

Consequently,

u⇤Au = (1 � ↵)u⇤Du,

and since A and D are Hermitian positive definite, we have u⇤Au > 0
and u⇤Du > 0 if u 6= 0, which proves that ↵ 2 R. The rest follows from
Theorem 9.3 and Proposition 9.6.

Remark: It is preferable to overestimate rather than underestimate the
relaxation parameter when the optimum relaxation parameter is not known
exactly.
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9.6 Summary

The main concepts and results of this chapter are listed below:

• Iterative methods. Splitting A as A = M � N .
• Convergence of a sequence of vectors or matrices.
• A criterion for the convergence of the sequence (Bk) of powers of a
matrix B to zero in terms of the spectral radius ⇢(B).

• A characterization of the spectral radius ⇢(B) as the limit of the se-
quence (kBkk1/k).

• A criterion of the convergence of iterative methods.
• Asymptotic behavior of iterative methods.
• Splitting A as A = D�E�F , and the methods of Jacobi , Gauss–Seidel ,
and relaxation (and SOR).

• The Jacobi matrix, J = D�1(E + F ).
• The Gauss–Seidel matrix , L

1

= (D � E)�1F .
• The matrix of relaxation, L! = (D � !E)�1((1 � !)D + !F ).
• Convergence of iterative methods: a general result when A = M � N
is Hermitian positive definite.

• A su�cient condition for the convergence of the methods of Jacobi,
Gauss–Seidel, and relaxation. The Ostrowski-Reich theorem: A is Her-
mitian positive definite and ! 2 (0, 2).

• A necessary condition for the convergence of the methods of Jacobi ,
Gauss–Seidel, and relaxation: ! 2 (0, 2).

• The case of tridiagonal matrices (possibly by blocks). Simultane-
ous convergence or divergence of Jacobi’s method and Gauss–Seidel’s
method, and comparison of the spectral radii of ⇢(J) and ⇢(L

1

):
⇢(L

1

) = (⇢(J))2.
• The case of tridiagonal Hermitian positive definite matrices (possibly
by blocks). The methods of Jacobi, Gauss–Seidel, and relaxation, all
converge.

• In the above case, there is a unique optimal relaxation parameter for
which ⇢(L!0) < ⇢(L

1

) = (⇢(J))2 < ⇢(J) (if ⇢(J) 6= 0).
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9.7 Problems

Problem 9.1. Consider the matrix

A =

0

@
1 2 �2
1 1 1
2 2 1

1

A .

Prove that ⇢(J) = 0 and ⇢(L
1

) = 2, so

⇢(J) < 1 < ⇢(L
1

),

where J is Jacobi’s matrix and L
1

is the matrix of Gauss–Seidel.

Problem 9.2. Consider the matrix

A =

0

@
2 �1 1
2 2 2

�1 �1 2

1

A .

Prove that ⇢(J) =
p
5/2 and ⇢(L

1

) = 1/2, so

⇢(L
1

) < ⇢(J),

where where J is Jacobi’s matrix and L
1

is the matrix of Gauss–Seidel.

Problem 9.3. Consider the following linear system:
0

BB@

2 �1 0 0
�1 2 �1 0
0 �1 2 �1
0 0 �1 2

1

CCA

0

BB@

x
1

x
2

x
3

x
4

1

CCA =

0

BB@

19
19
�3
�12

1

CCA .

(1) Solve the above system by Gaussian elimination.
(2) Compute the sequences of vectors uk = (uk

1

, uk
2

, uk
3

, uk
4

) for k =
1, . . . , 10, using the methods of Jacobi, Gauss–Seidel, and relaxation for
the following values of !: ! = 1.1, 1.2, . . . , 1.9. In all cases, the initial
vector is u

0

= (0, 0, 0, 0).

Problem 9.4. Recall that a complex or real n⇥n matrix A is strictly row
diagonally dominant if |aii| >

Pn
j=1,j 6=i |aij | for i = 1, . . . , n.

(1) Prove that if A is strictly row diagonally dominant, then Jacobi’s
method converges.

(2) Prove that if A is strictly row diagonally dominant, then Gauss–
Seidel’s method converges.
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Problem 9.5. Prove that the converse of Proposition 9.3 holds. That is,
if A is a Hermitian positive definite matrix writen as A = M � N with
M invertible, if the Hermitan matrix M⇤ + N is positive definite, and if
⇢(M�1N) < 1, then A is positive definite.

Problem 9.6. Consider the following tridiagonal n ⇥ n matrix:

A =
1

(n+ 1)2

0

BBBBB@

2 �1 0
�1 2 �1

. . .
. . .

. . .

�1 2 �1
0 �1 2

1

CCCCCA
.

(1) Prove that the eigenvalues of the Jacobi matrix J are given by

�k = cos

✓
k⇡

n+ 1

◆
, k = 1, . . . , n.

Hint . First show that the Jacobi matrix is

J =
1

2

0

BBBBB@

0 1 0
1 0 1
. . .

. . .
. . .

1 0 1
0 1 0

1

CCCCCA
.

Then the eigenvalues and the eigenvectors of J are solutions of the system
of equations

y
0

= 0

yk+1

+ yk�1

= 2�yk, k = 1, . . . , n

yn+1

= 0.

It is well known that the general solution to the above recurrence is given
by

yk = ↵zk
1

+ �zk
2

, k = 0, . . . , n+ 1,

(with ↵,� 6= 0) where z
1

and z
2

are the zeros of the equation

z2 � 2�z + 1 = 0.

It follows that z
2

= z�1

1

and z
1

+ z
2

= 2�. The boundary condition y
0

= 0
yields ↵+� = 0, so yk = ↵(zk

1

�z�k
1

), and the boundary condition yn+1

= 0
yields

z2(n+1)

1

= 1.
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Deduce that we may assume that the n possible values (z
1

)k for z
1

are given
by

(z
1

)k = e
k⇡i
n+1 , k = 1, . . . , n,

and find

2�k = (z
1

)k + (z
1

)�1

k .

Show that an eigenvector (y(k)
1

, . . . , y(k)n ) associated wih the eigenvalue �k
is given by

y(k)j = sin

✓
kj⇡

n+ 1

◆
, j = 1, . . . , n.

(2) Find the spectral radius ⇢(J), ⇢(L
1

), and ⇢(L!0), as functions of
h = 1/(n+ 1).
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Chapter 10

The Dual Space and Duality

In this chapter all vector spaces are defined over an arbitrary field K. For
the sake of concreteness, the reader may safely assume that K = R.

10.1 The Dual Space E⇤ and Linear Forms

In Section 2.8 we defined linear forms, the dual space E⇤ = Hom(E,K) of
a vector space E, and showed the existence of dual bases for vector spaces
of finite dimension.

In this chapter we take a deeper look at the connection between a space
E and its dual space E⇤. As we will see shortly, every linear map f : E ! F
gives rise to a linear map f> : F ⇤ ! E⇤, and it turns out that in a suitable
basis, the matrix of f> is the transpose of the matrix of f . Thus, the
notion of dual space provides a conceptual explanation of the phenomena
associated with transposition.

But it does more, because it allows us to view a linear equation as an
element of the dual space E⇤, and thus to view subspaces of E as solutions of
sets of linear equations and vice-versa. The relationship between subspaces
and sets of linear forms is the essence of duality , a term which is often used
loosely, but can be made precise as a bijection between the set of subspaces
of a given vector space E and the set of subspaces of its dual E⇤. In this
correspondence, a subspace V of E yields the subspace V 0 of E⇤ consisting
of all linear forms that vanish on V (that is, have the value zero for all
input in V ).

Consider the following set of two “linear equations” in R3,

x � y + z = 0

x � y � z = 0,

369
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and let us find out what is their set V of common solutions (x, y, z) 2 R3.
By subtracting the second equation from the first, we get 2z = 0, and by
adding the two equations, we find that 2(x�y) = 0, so the set V of solutions
is given by

y = x

z = 0.

This is a one dimensional subspace of R3. Geometrically, this is the line of
equation y = x in the plane z = 0 as illustrated by Figure 10.1.

Fig. 10.1 The intersection of the magenta plane x� y + z = 0 with the blue-gray plane
x � y � z = 0 is the pink line y = x.

Now why did we say that the above equations are linear? Because as
functions of (x, y, z), both maps f

1

: (x, y, z) 7! x�y+z and f
2

: (x, y, z) 7!
x � y � z are linear. The set of all such linear functions from R3 to R
is a vector space; we used this fact to form linear combinations of the
“equations” f

1

and f
2

. Observe that the dimension of the subspace V is 1.
The ambient space has dimension n = 3 and there are two “independent”
equations f

1

, f
2

, so it appears that the dimension dim(V ) of the subspace
V defined by m independent equations is

dim(V ) = n � m,

which is indeed a general fact (proven in Theorem 10.1).
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More generally, in Rn, a linear equation is determined by an n-tuple
(a

1

, . . . , an) 2 Rn, and the solutions of this linear equation are given by the
n-tuples (x

1

, . . . , xn) 2 Rn such that

a
1

x
1

+ · · · + anxn = 0;

these solutions constitute the kernel of the linear map (x
1

, . . . , xn) 7! a
1

x
1

+
· · · + anxn. The above considerations assume that we are working in the
canonical basis (e

1

, . . . , en) of Rn, but we can define “linear equations”
independently of bases and in any dimension, by viewing them as elements
of the vector space Hom(E,K) of linear maps from E to the field K.

Definition 10.1. Given a vector space E, the vector space Hom(E,K) of
linear maps from E to the field K is called the dual space (or dual) of E.
The space Hom(E,K) is also denoted by E⇤, and the linear maps in E⇤

are called the linear forms, or covectors. The dual space E⇤⇤ of the space
E⇤ is called the bidual of E.

As a matter of notation, linear forms f : E ! K will also be denoted
by starred symbol, such as u⇤, x⇤, etc.

Given a vector space E and any basis (ui)i2I for E, we can associate to
each ui a linear form u⇤

i 2 E⇤, and the u⇤
i have some remarkable properties.

Definition 10.2. Given a vector space E and any basis (ui)i2I for E, by
Proposition 2.14, for every i 2 I, there is a unique linear form u⇤

i such that

u⇤
i (uj) =

⇢
1 if i = j
0 if i 6= j,

for every j 2 I. The linear form u⇤
i is called the coordinate form of index i

w.r.t. the basis (ui)i2I .

The reason for the terminology coordinate form was explained in Section
2.8.

We proved in Theorem 2.3 that if (u
1

, . . . , un) is a basis of E, then
(u⇤

1

, . . . , u⇤
n) is a basis of E⇤ called the dual basis.

If (u
1

, . . . , un) is a basis of Rn (more generally Kn), it is possible to find
explicitly the dual basis (u⇤

1

, . . . , u⇤
n), where each u⇤

i is represented by a row
vector.

Example 10.1. For example, consider the columns of the Bézier matrix

B
4

=

0

BB@

1 �3 3 �1
0 3 �6 3
0 0 3 �3
0 0 0 1

1

CCA .
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In other words, we have the basis

u
1

=

0

BB@

1
0
0
0

1

CCA u
2

=

0

BB@

�3
3
0
0

1

CCA u
3

=

0

BB@

3
�6
3
0

1

CCA u
4

=

0

BB@

�1
3

�3
1

1

CCA .

Since the form u⇤
1

is defined by the conditions u⇤
1

(u
1

) = 1, u⇤
1

(u
2

) =
0, u⇤

1

(u
3

) = 0, u⇤
1

(u
4

) = 0, it is represented by a row vector (�
1

�
2

�
3

�
4

)
such that

�
�
1

�
2

�
3

�
4

�

0

BB@

1 �3 3 �1
0 3 �6 3
0 0 3 �3
0 0 0 1

1

CCA =
�
1 0 0 0

�
.

This implies that u⇤
1

is the first row of the inverse of B
4

. Since

B�1

4

=

0

BB@

1 1 1 1
0 1/3 2/3 1
0 0 1/3 1
0 0 0 1

1

CCA ,

the linear forms (u⇤
1

, u⇤
2

, u⇤
3

, u⇤
4

) correspond to the rows of B�1

4

. In particu-
lar, u⇤

1

is represented by (1 1 1 1).

The above method works for any n. Given any basis (u
1

, . . . , un) of Rn,
if P is the n ⇥ n matrix whose jth column is uj , then the dual form u⇤

i is
given by the ith row of the matrix P�1.

When E is of finite dimension n and (u
1

, . . . , un) is a basis of E, by
Theorem 10.1 (1), the family (u⇤

1

, . . . , u⇤
n) is a basis of the dual space E⇤.

Let us see how the coordinates of a linear form '⇤ 2 E⇤ over the dual basis
(u⇤

1

, . . . , u⇤
n) vary under a change of basis.

Let (u
1

, . . . , un) and (v
1

, . . . , vn) be two bases of E, and let P = (ai j)
be the change of basis matrix from (u

1

, . . . , un) to (v
1

, . . . , vn), so that

vj =
nX

i=1

ai jui,

and let P�1 = (bi j) be the inverse of P , so that

ui =
nX

j=1

bj ivj .

For fixed j, where 1  j  n, we want to find scalars (ci)ni=1

such that

v⇤j = c
1

u⇤
1

+ c
2

u⇤
2

+ · · · + cnu
⇤
n.
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To find each ci, we evaluate the above expression at ui. Since u⇤
i (uj) = �i j

and v⇤i (vj) = �i j , we get

v⇤j (ui) = (c
1

u⇤
1

+ c
2

u⇤
2

+ · · · + cnu
⇤
n)(ui) = ci

v⇤j (ui) = v⇤j (
nX

k=1

bk ivk) = bj i,

and thus

v⇤j =
nX

i=1

bj iu
⇤
i .

Similar calculations show that

u⇤
i =

nX

j=1

ai jv
⇤
j .

This means that the change of basis from the dual basis (u⇤
1

, . . . , u⇤
n) to the

dual basis (v⇤
1

, . . . , v⇤n) is (P
�1)>. Since

'⇤ =
nX

i=1

'iu
⇤
i =

nX

i=1

'i

nX

j=1

aijv
⇤
j =

nX

j=1

 
nX

i=1

aij'i

!
vj =

nX

i=1

'0
iv

⇤
i ,

we get

'0
j =

nX

i=1

ai j'i,

so the new coordinates '0
j are expressed in terms of the old coordinates

'i using the matrix P>. If we use the row vectors ('
1

, . . . ,'n) and
('0

1

, . . . ,'0
n), we have

('0
1

, . . . ,'0
n) = ('

1

, . . . ,'n)P.

These facts are summarized in the following proposition.

Proposition 10.1. Let (u
1

, . . . , un) and (v
1

, . . . , vn) be two bases of E, and
let P = (ai j) be the change of basis matrix from (u

1

, . . . , un) to (v
1

, . . . , vn),
so that

vj =
nX

i=1

ai jui.

Then the change of basis from the dual basis (u⇤
1

, . . . , u⇤
n) to the dual basis

(v⇤
1

, . . . , v⇤n) is (P�1)>, and for any linear form ', the new coordinates '0
j

of ' are expressed in terms of the old coordinates 'i of ' using the matrix
P>; that is,

('0
1

, . . . ,'0
n) = ('

1

, . . . ,'n)P.
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To best understand the preceding paragraph, recall Example 3.1, in
which E = R2, u

1

= (1, 0), u
2

= (0, 1), and v
1

= (1, 1), v
2

= (�1, 1). Then
P , the change of basis matrix from (u

1

, u
2

) to (v
1

, v
2

), is given by

P =

✓
1 �1
1 1

◆
,

with (v
1

, v
2

) = (u
1

, u
2

)P , and (u
1

, u
2

) = (v
1

, v
2

)P�1, where

P�1 =

✓
1/2 1/2

�1/2 1/2

◆
.

Let (u⇤
1

, u⇤
2

) be the dual basis for (u
1

, u
2

) and (v⇤
1

, v⇤
2

) be the dual basis for
(v

1

, v
2

). We claim that

(v⇤
1

, v⇤
2

) = (u⇤
1

, u⇤
2

)

✓
1/2 �1/2
1/2 1/2

◆
= (u⇤

1

, u⇤
2

)(P�1)>,

Indeed, since v⇤
1

= c
1

u⇤
1

+ c
2

u⇤
2

and v⇤
2

= C
1

u⇤
1

+ C
2

u⇤
2

we find that

c
1

= v⇤
1

(u
1

) = v⇤
1

(1/2v
1

� 1/2v
2

) = 1/2

c
2

= v⇤
1

(u
2

) = v⇤
1

(1/2v
1

+ 1/2v
2

) = 1/2

C
1

= v⇤
2

(u
1

) = v⇤
2

(1/2v
1

� 1/2v
2

) = �1/2

C
2

= v⇤
2

(u
2

) = v⇤
1

(1/2v
1

+ 1/2v
2

) = 1/2.

Furthermore, since (u⇤
1

, u⇤
2

) = (v⇤
1

, v⇤
2

)P> (since (v⇤
1

, v⇤
2

) = (u⇤
1

, u⇤
2

)(P>)�1),
we find that

'⇤ = '
1

u⇤
1

+ '
2

u⇤
2

= '
1

(v⇤
1

� v⇤
2

) + '
(

v⇤
1

+ v⇤
2

)

= ('
1

+ '
2

)v⇤
1

+ (�'
1

+ '
2

)v⇤
2

= '0
1

v⇤
1

+ '0
2

v.
2

Hence
✓

1 1
�1 1

◆✓
'
1

'
2

◆
=

✓
'0
1

'0
2

◆
,

where

P> =

✓
1 1

�1 1

◆
.

Comparing with the change of basis

vj =
nX

i=1

ai jui,

we note that this time, the coordinates ('i) of the linear form '⇤ change in
the same direction as the change of basis. For this reason, we say that the
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coordinates of linear forms are covariant . By abuse of language, it is often
said that linear forms are covariant , which explains why the term covector
is also used for a linear form.

Observe that if (e
1

, . . . , en) is a basis of the vector space E, then, as a
linear map from E to K, every linear form f 2 E⇤ is represented by a 1⇥n
matrix, that is, by a row vector

(�
1

· · · �n),
with respect to the basis (e

1

, . . . , en) of E, and 1 of K, where f(ei) = �i.
A vector u =

Pn
i=1

uiei 2 E is represented by a n⇥ 1 matrix, that is, by a
column vector

0

B@
u
1

...
un

1

CA ,

and the action of f on u, namely f(u), is represented by the matrix product

�
�
1

· · · �n
�
0

B@
u
1

...
un

1

CA = �
1

u
1

+ · · · + �nun.

On the other hand, with respect to the dual basis (e⇤
1

, . . . , e⇤n) of E⇤, the
linear form f is represented by the column vector

0

B@
�
1

...
�n

1

CA .

Remark: In many texts using tensors, vectors are often indexed with lower
indices. If so, it is more convenient to write the coordinates of a vector x
over the basis (u

1

, . . . , un) as (xi), using an upper index, so that

x =
nX

i=1

xiui,

and in a change of basis, we have

vj =
nX

i=1

aijui

and

xi =
nX

j=1

aijx
0j .
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Dually, linear forms are indexed with upper indices. Then it is more
convenient to write the coordinates of a covector '⇤ over the dual basis
(u⇤1, . . . , u⇤n) as ('i), using a lower index, so that

'⇤ =
nX

i=1

'iu
⇤i

and in a change of basis, we have

u⇤i =
nX

j=1

aijv
⇤j

and

'0
j =

nX

i=1

aij'i.

With these conventions, the index of summation appears once in upper
position and once in lower position, and the summation sign can be safely
omitted, a trick due to Einstein. For example, we can write

'0
j = aij'i

as an abbreviation for

'0
j =

nX

i=1

aij'i.

For another example of the use of Einstein’s notation, if the vectors
(v

1

, . . . , vn) are linear combinations of the vectors (u
1

, . . . , un), with

vi =
nX

j=1

aijuj , 1  i  n,

then the above equations are written as

vi = ajiuj , 1  i  n.

Thus, in Einstein’s notation, the n ⇥ n matrix (aij) is denoted by (aji ), a
(1, 1)-tensor .� Beware that some authors view a matrix as a mapping between coor-

dinates, in which case the matrix (aij) is denoted by (aij).
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10.2 Pairing and Duality Between E and E⇤

Given a linear form u⇤ 2 E⇤ and a vector v 2 E, the result u⇤(v) of
applying u⇤ to v is also denoted by hu⇤, vi. This defines a binary operation
h�,�i : E⇤ ⇥ E ! K satisfying the following properties:

hu⇤
1

+ u⇤
2

, vi = hu⇤
1

, vi + hu⇤
2

, vi
hu⇤, v

1

+ v
2

i = hu⇤, v
1

i + hu⇤, v
2

i
h�u⇤, vi = �hu⇤, vi
hu⇤,�vi = �hu⇤, vi.

The above identities mean that h�,�i is a bilinear map, since it is linear
in each argument. It is often called the canonical pairing between E⇤ and
E. In view of the above identities, given any fixed vector v 2 E, the map
evalv : E⇤ ! K (evaluation at v) defined such that

evalv(u
⇤) = hu⇤, vi = u⇤(v) for every u⇤ 2 E⇤

is a linear map from E⇤ to K, that is, evalv is a linear form in E⇤⇤. Again,
from the above identities, the map evalE : E ! E⇤⇤, defined such that

evalE(v) = evalv for every v 2 E,

is a linear map. Observe that

evalE(v)(u
⇤) = evalv(u

⇤) = hu⇤, vi = u⇤(v), for all v 2 E and all u⇤ 2 E⇤.

We shall see that the map evalE is injective, and that it is an isomorphism
when E has finite dimension.

We now formalize the notion of the set V 0 of linear equations vanishing
on all vectors in a given subspace V ✓ E, and the notion of the set U0 of
common solutions of a given set U ✓ E⇤ of linear equations. The duality
theorem (Theorem 10.1) shows that the dimensions of V and V 0, and the
dimensions of U and U0, are related in a crucial way. It also shows that,
in finite dimension, the maps V 7! V 0 and U 7! U0 are inverse bijections
from subspaces of E to subspaces of E⇤.

Definition 10.3. Given a vector space E and its dual E⇤, we say that a
vector v 2 E and a linear form u⇤ 2 E⇤ are orthogonal i↵ hu⇤, vi = 0.
Given a subspace V of E and a subspace U of E⇤, we say that V and U are
orthogonal i↵ hu⇤, vi = 0 for every u⇤ 2 U and every v 2 V . Given a subset
V of E (resp. a subset U of E⇤), the orthogonal V 0 of V is the subspace
V 0 of E⇤ defined such that

V 0 = {u⇤ 2 E⇤ | hu⇤, vi = 0, for every v 2 V }
(resp. the orthogonal U0 of U is the subspace U0 of E defined such that

U0 = {v 2 E | hu⇤, vi = 0, for every u⇤ 2 U}).
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The subspace V 0 ✓ E⇤ is also called the annihilator of V . The subspace
U0 ✓ E annihilated by U ✓ E⇤ does not have a special name. It seems
reasonable to call it the linear subspace (or linear variety) defined by U .

Informally, V 0 is the set of linear equations that vanish on V , and U0

is the set of common zeros of all linear equations in U . We can also define
V 0 by

V 0 = {u⇤ 2 E⇤ | V ✓ Keru⇤}
and U0 by

U0 =
\

u⇤2U

Keru⇤.

Observe that E0 = {0} = (0), and {0}0 = E⇤.

Proposition 10.2. If V
1

✓ V
2

✓ E, then V 0

2

✓ V 0

1

✓ E⇤, and if U
1

✓
U
2

✓ E⇤, then U0

2

✓ U0

1

✓ E. See Figure 10.2.

E

E

E*

E*

V VVV 12 1
00
2V V

U U1
2 U1

0U2
0

Fig. 10.2 The top pair of figures schematically illustrates the relation if V1 ✓ V2 ✓ E,
then V

0
2 ✓ V

0
1 ✓ E

⇤, while the bottom pair of figures illustrates the relationship if
U1 ✓ U2 ✓ E

⇤, then U

0
2 ✓ U

0
1 ✓ E.

Proof. Indeed, if V
1

✓ V
2

✓ E, then for any f⇤ 2 V 0

2

we have f⇤(v) = 0
for all v 2 V

2

, and thus f⇤(v) = 0 for all v 2 V
1

, so f⇤ 2 V 0

1

. Similarly, if
U
1

✓ U
2

✓ E⇤, then for any v 2 U0

2

, we have f⇤(v) = 0 for all f⇤ 2 U
2

, so
f⇤(v) = 0 for all f⇤ 2 U

1

, which means that v 2 U0

1

.
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Here are some examples.

Example 10.2. Let E = M
2

(R), the space of real 2 ⇥ 2 matrices, and let
V be the subspace of M

2

(R) spanned by the matrices
✓
0 1
1 0

◆
,

✓
1 0
0 0

◆
,

✓
0 0
0 1

◆
.

We check immediately that the subspace V consists of all matrices of the
form ✓

b a
a c

◆
,

that is, all symmetric matrices. The matrices
✓
a
11

a
12

a
21

a
22

◆

in V satisfy the equation

a
12

� a
21

= 0,

and all scalar multiples of these equations, so V 0 is the subspace of E⇤

spanned by the linear form given by u⇤(a
11

, a
12

, a
21

, a
22

) = a
12

� a
21

. By
the duality theorem (Theorem 10.1) we have

dim(V 0) = dim(E) � dim(V ) = 4 � 3 = 1.

Example 10.3. The above example generalizes to E = Mn(R) for any
n � 1, but this time, consider the space U of linear forms asserting that a
matrix A is symmetric; these are the linear forms spanned by the n(n�1)/2
equations

aij � aji = 0, 1  i < j  n;

Note there are no constraints on diagonal entries, and half of the equations

aij � aji = 0, 1  i 6= j  n

are redundant. It is easy to check that the equations (linear forms) for
which i < j are linearly independent. To be more precise, let U be the
space of linear forms in E⇤ spanned by the linear forms

u⇤
ij(a11, . . . , a1n, a21, . . . , a2n, . . . , an1, . . . , ann) = aij �aji, 1  i < j  n.

The dimension of U is n(n � 1)/2. Then the set U0 of common solutions
of these equations is the space S(n) of symmetric matrices. By the duality
theorem (Theorem 10.1), this space has dimension

n(n+ 1)

2
= n2 � n(n � 1)

2
.

We leave it as an exercise to find a basis of S(n).
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Example 10.4. If E = Mn(R), consider the subspace U of linear forms in
E⇤ spanned by the linear forms

u⇤
ij(a11, . . . , a1n, a21, . . . , a2n, . . . , an1, . . . , ann) = aij + aji, 1  i < j  n

u⇤
ii(a11, . . . , a1n, a21, . . . , a2n, . . . , an1, . . . , ann) = aii, 1  i  n.

It is easy to see that these linear forms are linearly independent, so
dim(U) = n(n + 1)/2. The space U0 of matrices A 2 Mn(R) satifying
all of the above equations is clearly the space Skew(n) of skew-symmetric
matrices. By the duality theorem (Theorem 10.1), the dimension of U0 is

n(n � 1)

2
= n2 � n(n+ 1)

2
.

We leave it as an exercise to find a basis of Skew(n).

Example 10.5. For yet another example with E = Mn(R), for any A 2
Mn(R), consider the linear form in E⇤ given by

tr(A) = a
11

+ a
22

+ · · · + ann,

called the trace of A. The subspace U0 of E consisting of all matrices A
such that tr(A) = 0 is a space of dimension n2 � 1. We leave it as an
exercise to find a basis of this space.

The dimension equations

dim(V ) + dim(V 0) = dim(E)

dim(U) + dim(U0) = dim(E)

are always true (if E is finite-dimensional). This is part of the duality
theorem (Theorem 10.1).

Remark: In contrast with the previous examples, given a matrix A 2
Mn(R), the equations asserting that A>A = I are not linear constraints.
For example, for n = 2, we have

a2
11

+ a2
21

= 1

a2
21

+ a2
22

= 1

a
11

a
12

+ a
21

a
22

= 0.

Remarks:
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(1) The notation V 0 (resp. U0) for the orthogonal of a subspace V of E
(resp. a subspace U of E⇤) is not universal. Other authors use the
notation V ? (resp. U?). However, the notation V ? is also used to
denote the orthogonal complement of a subspace V with respect to an
inner product on a space E, in which case V ? is a subspace of E and
not a subspace of E⇤ (see Chapter 11). To avoid confusion, we prefer
using the notation V 0.

(2) Since linear forms can be viewed as linear equations (at least in finite
dimension), given a subspace (or even a subset) U of E⇤, we can define
the set Z(U) of common zeros of the equations in U by

Z(U) = {v 2 E | u⇤(v) = 0, for all u⇤ 2 U}.

Of course Z(U) = U0, but the notion Z(U) can be generalized to more
general kinds of equations, namely polynomial equations. In this more
general setting, U is a set of polynomials in n variables with coe�cients
in a field K (where n = dim(E)). Sets of the form Z(U) are called
algebraic varieties. Linear forms correspond to the special case where
homogeneous polynomials of degree 1 are considered.
If V is a subset of E, it is natural to associate with V the set of poly-
nomials in K[X

1

, . . . , Xn] that vanish on V . This set, usually denoted
I(V ), has some special properties that make it an ideal . If V is a linear
subspace of E, it is natural to restrict our attention to the space V 0 of
linear forms that vanish on V , and in this case we identify I(V ) and
V 0 (although technically, I(V ) is no longer an ideal).
For any arbitrary set of polynomials U ✓ K[X

1

, . . . , Xn] (resp. subset
V ✓ E), the relationship between I(Z(U)) and U (resp. Z(I(V )) and
V ) is generally not simple, even though we always have

U ✓ I(Z(U)) (resp. V ✓ Z(I(V ))).

However, when the field K is algebraically closed, then I(Z(U)) is
equal to the radical of the ideal U , a famous result due to Hilbert
known as the Nullstellensatz (see Lang [Lang (1993)] or Dummit and
Foote [Dummit and Foote (1999)]). The study of algebraic varieties
is the main subject of algebraic geometry , a beautiful but formidable
subject. For a taste of algebraic geometry, see Lang [Lang (1993)] or
Dummit and Foote [Dummit and Foote (1999)].
The duality theorem (Theorem 10.1) shows that the situation is much
simpler if we restrict our attention to linear subspaces; in this case

U = I(Z(U)) and V = Z(I(V )).
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Proposition 10.3. We have V ✓ V 00 for every subspace V of E, and
U ✓ U00 for every subspace U of E⇤.

Proof. Indeed, for any v 2 V , to show that v 2 V 00 we need to prove that
u⇤(v) = 0 for all u⇤ 2 V 0. However, V 0 consists of all linear forms u⇤ such
that u⇤(y) = 0 for all y 2 V ; in particular, for a fixed v 2 V , we have
u⇤(v) = 0 for all u⇤ 2 V 0, as required.

Similarly, for any u⇤ 2 U , to show that u⇤ 2 U00 we need to prove
that u⇤(v) = 0 for all v 2 U0. However, U0 consists of all vectors v such
that f⇤(v) = 0 for all f⇤ 2 U ; in particular, for a fixed u⇤ 2 U , we have
u⇤(v) = 0 for all v 2 U0, as required.

We will see shortly that in finite dimension, we have V = V 00 and
U = U00.

10.3 The Duality Theorem and Some Consequences

Given a vector space E of dimension n � 1 and a subspace U of E, by
Theorem 2.2, every basis (u

1

, . . . , um) of U can be extended to a basis
(u

1

, . . . , un) of E. We have the following important theorem adapted from
E. Artin [Artin (1957)] (Chapter 1).

Theorem 10.1. (Duality theorem) Let E be a vector space of dimension
n. The following properties hold:

(a) For every basis (u
1

, . . . , un) of E, the family of coordinate forms
(u⇤

1

, . . . , u⇤
n) is a basis of E⇤ (called the dual basis of (u

1

, . . . , un)).

(b) For every subspace V of E, we have V 00 = V .
(c) For every pair of subspaces V and W of E such that E = V � W ,

with V of dimension m, for every basis (u
1

, . . . , un) of E such that
(u

1

, . . . , um) is a basis of V and (um+1

, . . . , un) is a basis of W , the
family (u⇤

1

, . . . , u⇤
m) is a basis of the orthogonal W 0 of W in E⇤, so that

dim(W ) + dim(W 0) = dim(E).

Furthermore, we have W 00 = W .
(d) For every subspace U of E⇤, we have

dim(U) + dim(U0) = dim(E),

where U0 is the orthogonal of U in E, and U00 = U .
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Proof. (a) This part was proven in Theorem 2.3.
(b) By Proposition 10.3 we have V ✓ V 00. If V 6= V 00, then let

(u
1

, . . . , up) be a basis of V 00 such that (u
1

, . . . , um) is a basis of V , with
m < p. Since um+1

2 V 00, um+1

is orthogonal to every linear form in
V 0. By definition we have u⇤

m+1

(ui) = 0 for all i = 1, . . . ,m, and thus
u⇤
m+1

2 V 0. However, u⇤
m+1

(um+1

) = 1, contradicting the fact that um+1

is orthogonal to every linear form in V 0. Thus, V = V 00.
(c) Every linear form f⇤ 2 W 0 is orthogonal to every uj for j = m +

1, . . . , n, and thus, f⇤(uj) = 0 for j = m+ 1, . . . , n. For such a linear form
f⇤ 2 W 0, let

g⇤ = f⇤(u
1

)u⇤
1

+ · · · + f⇤(um)u⇤
m.

We have g⇤(ui) = f⇤(ui), for every i, 1  i  m. Furthermore, by defini-
tion, g⇤ vanishes on all uj with j = m+1, . . . , n. Thus, f⇤ and g⇤ agree on
the basis (u

1

, . . . , un) of E, and so g⇤ = f⇤. This shows that (u⇤
1

, . . . , u⇤
m)

generatesW 0, and since it is also a linearly independent family, (u⇤
1

, . . . , u⇤
m)

is a basis of W 0. It is then obvious that dim(W ) + dim(W 0) = dim(E),
and by Part (b), we have W 00 = W .

(d) The only remaining fact to prove is that U00 = U . Let (f⇤
1

, . . . , f⇤
m)

be a basis of U . Note that the map h : E ! Km defined such that

h(v) = (f⇤
1

(v), . . . , f⇤
m(v))

for every v 2 E is a linear map, and that its kernel Kerh is precisely U0.
Then by Proposition 5.1,

n = dim(E) = dim(Kerh) + dim(Imh)  dim(U0) +m,

since dim(Imh)  m. Thus, n � dim(U0)  m. By (c), we have
dim(U0) + dim(U00) = dim(E) = n, so we get dim(U00)  m. However,
by Proposition 10.3 it is clear that U ✓ U00, which implies m = dim(U) 
dim(U00), so dim(U) = dim(U00) = m, and we must have U = U00.

Part (a) of Theorem 10.1 shows that

dim(E) = dim(E⇤),

and if (u
1

, . . . , un) is a basis of E, then (u⇤
1

, . . . , u⇤
n) is a basis of the dual

space E⇤ called the dual basis of (u
1

, . . . , un).
Define the function E (E for equations) from subspaces of E to subspaces

of E⇤ and the function Z (Z for zeros) from subspaces of E⇤ to subspaces
of E by

E(V ) = V 0, V ✓ E

Z(U) = U0, U ✓ E⇤.
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By Parts (c) and (d) of Theorem 10.1,

(Z � E)(V ) = V 00 = V

(E � Z)(U) = U00 = U,

so Z � E = id and E � Z = id, and the maps E and Z are inverse bijections.
These maps set up a duality between subspaces of E and subspaces of E⇤. In
particular, every subspace V ✓ E of dimensionm is the set of common zeros
of the space of linear forms (equations) V 0, which has dimension n�m. This
confirms the claim we made about the dimension of the subpsace defined
by a set of linear equations.� One should be careful that this bijection does not hold if E has infinite

dimension. Some restrictions on the dimensions of U and V are needed.

Remark: However, even if E is infinite-dimensional, the identity V = V 00

holds for every subspace V of E. The proof is basically the same but uses
an infinite basis of V 00 extending a basis of V .

We now discuss some applications of the duality theorem.
Problem 1 . Suppose that V is a subspace of Rn of dimension m and

that (v
1

, . . . , vm) is a basis of V . The problem is to find a basis of V 0.
We first extend (v

1

, . . . , vm) to a basis (v
1

, . . . , vn) of Rn, and then by
part (c) of Theorem 10.1, we know that (v⇤m+1

, . . . , v⇤n) is a basis of V 0.

Example 10.6. For example, suppose that V is the subspace of R4 spanned
by the two linearly independent vectors

v
1

=

0

BB@

1
1
1
1

1

CCA v
2

=

0

BB@

1
1

�1
�1

1

CCA ,

the first two vectors of the Haar basis in R4. The four columns of the Haar
matrix

W =

0

BB@

1 1 1 0
1 1 �1 0
1 �1 0 1
1 �1 0 �1

1

CCA

form a basis of R4, and the inverse of W is given by

W�1 =

0

BB@

1/4 0 0 0
0 1/4 0 0
0 0 1/2 0
0 0 0 1/2

1

CCA

0

BB@

1 1 1 1
1 1 �1 �1
1 �1 0 0
0 0 1 �1

1

CCA =

0

BB@

1/4 1/4 1/4 1/4
1/4 1/4 �1/4 �1/4
1/2 �1/2 0 0
0 0 1/2 �1/2

1

CCA .



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 385

10.3. The Duality Theorem and Some Consequences 385

Since the dual basis (v⇤
1

, v⇤
2

, v⇤
3

, v⇤
4

) is given by the rows of W�1, the last
two rows of W�1,

✓
1/2 �1/2 0 0
0 0 1/2 �1/2

◆
,

form a basis of V 0. We also obtain a basis by rescaling by the factor 1/2,
so the linear forms given by the row vectors

✓
1 �1 0 0
0 0 1 �1

◆

form a basis of V 0, the space of linear forms (linear equations) that vanish
on the subspace V .

The method that we described to find V 0 requires first extending a basis
of V and then inverting a matrix, but there is a more direct method. Indeed,
let A be the n⇥m matrix whose columns are the basis vectors (v

1

, . . . , vm)
of V . Then a linear form u represented by a row vector belongs to V 0 i↵
uvi = 0 for i = 1, . . . ,m i↵

uA = 0

i↵

A>u> = 0.

Therefore, all we need to do is to find a basis of the nullspace of A>. This
can be done quite e↵ectively using the reduction of a matrix to reduced row
echelon form (rref); see Section 7.10.

Example 10.7. For example, if we reconsider the previous example,
A>u> = 0 becomes

✓
1 1 1 1
1 1 �1 �1

◆
0

BB@

u
1

u
2

u
3

u
4

1

CCA =

✓
0
0

◆
.

Since the rref of A> is ✓
1 1 0 0
0 0 1 1

◆
,

the above system is equivalent to

✓
1 1 0 0
0 0 1 1

◆
0

BB@

u
1

u
2

u
3

u
4

1

CCA =

✓
u
1

+ u
2

u
3

+ u
4

◆
=

✓
0
0

◆
,
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where the free variables are associated with u
2

and u
4

. Thus to determine
a basis for the kernel of A>, we set u

2

= 1, u
4

= 0 and u
2

= 0, u
4

= 1 and
obtain a basis for V 0 as

�
1 �1 0 0

�
,

�
0 0 1 �1

�
.

Problem 2 . Let us now consider the problem of finding a basis of the
hyperplane H in Rn defined by the equation

c
1

x
1

+ · · · + cnxn = 0.

More precisely, if u⇤(x
1

, . . . , xn) is the linear form in (Rn)⇤ given by
u⇤(x

1

, . . . , xn) = c
1

x
1

+ · · · + cnxn, then the hyperplane H is the ker-
nel of u⇤. Of course we assume that some cj is nonzero, in which case the
linear form u⇤ spans a one-dimensional subspace U of (Rn)⇤, and U0 = H
has dimension n � 1.

Since u⇤ is not the linear form which is identically zero, there is a small-
est positive index j  n such that cj 6= 0, so our linear form is really
u⇤(x

1

, . . . , xn) = cjxj + · · · + cnxn. We claim that the following n � 1
vectors (in Rn) form a basis of H:

1 2 . . . j � 1 j j + 1 . . . n � 1

1
2
...

j � 1
j

j + 1
j + 2
...
n

0

BBBBBBBBBBBBBBB@

1 0 . . . 0 0 0 . . . 0
0 1 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 0 0 . . . 0
0 0 . . . 0 �cj+1

/cj �cj+2

/cj . . . �cn/cj
0 0 . . . 0 1 0 . . . 0
0 0 . . . 0 0 1 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . 1

1

CCCCCCCCCCCCCCCA

.

Observe that the (n � 1) ⇥ (n � 1) matrix obtained by deleting row
j is the identity matrix, so the columns of the above matrix are lin-
early independent. A simple calculation also shows that the linear form
u⇤(x

1

, . . . , xn) = cjxj+· · ·+cnxn vanishes on every column of the above ma-
trix. For a concrete example in R6, if u⇤(x

1

, . . . , x
6

) = x
3

+2x
4

+3x
5

+4x
6

,
we obtain the basis for the hyperplane H of equation

x
3

+ 2x
4

+ 3x
5

+ 4x
6

= 0
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given by the following matrix:0

BBBBBBB@

1 0 0 0 0
0 1 0 0 0
0 0 �2 �3 �4
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

1

CCCCCCCA

.

Problem 3 . Conversely, given a hyperplane H in Rn given as the span
of n� 1 linearly vectors (u

1

, . . . , un�1

), it is possible using determinants to
find a linear form (�

1

, . . . ,�n) that vanishes on H.
In the case n = 3, we are looking for a row vector (�

1

,�
2

,�
3

) such that
if

u =

0

@
u
1

u
2

u
3

1

A and v =

0

@
v
1

v
2

v
3

1

A

are two linearly independent vectors, then
✓
u
1

u
2

u
2

v
1

v
2

v
2

◆0

@
�
1

�
2

�
3

1

A =

✓
0
0

◆
,

and the cross-product u ⇥ v of u and v given by

u ⇥ v =

0

@
u
2

v
3

� u
3

v
2

u
3

v
1

� u
1

v
3

u
1

v
2

� u
2

v
1

1

A

is a solution. In other words, the equation of the plane spanned by u and
v is

(u
2

v
3

� u
3

v
2

)x+ (u
3

v
1

� u
1

v
3

)y + (u
1

v
2

� u
2

v
1

)z = 0.

Problem 4 . Here is another example illustrating the power of Theorem
10.1. Let E = Mn(R), and consider the equations asserting that the sum
of the entries in every row of a matrix A 2 Mn(R) is equal to the same
number. We have n � 1 equations

nX

j=1

(aij � ai+1j) = 0, 1  i  n � 1,

and it is easy to see that they are linearly independent. Therefore, the space
U of linear forms in E⇤ spanned by the above linear forms (equations) has
dimension n�1, and the space U0 of matrices satisfying all these equations
has dimension n2 �n+1. It is not so obvious to find a basis for this space.

We will now pin down the relationship between a vector space E and
its bidual E⇤⇤.
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10.4 The Bidual and Canonical Pairings

Proposition 10.4. Let E be a vector space. The following properties hold:

(a) The linear map evalE : E ! E⇤⇤ defined such that

evalE(v) = evalv for all v 2 E,

that is, evalE(v)(u⇤) = hu⇤, vi = u⇤(v) for every u⇤ 2 E⇤, is injective.
(b) When E is of finite dimension n, the linear map evalE : E ! E⇤⇤ is

an isomorphism (called the canonical isomorphism).

Proof. (a) Let (ui)i2I be a basis of E, and let v =
P

i2I viui. If evalE(v) =
0, then in particular evalE(v)(u⇤

i ) = 0 for all u⇤
i , and since

evalE(v)(u
⇤
i ) = hu⇤

i , vi = vi,

we have vi = 0 for all i 2 I, that is, v = 0, showing that evalE : E ! E⇤⇤

is injective.
If E is of finite dimension n, by Theorem 10.1, for every basis

(u
1

, . . . , un), the family (u⇤
1

, . . . , u⇤
n) is a basis of the dual space E⇤, and

thus the family (u⇤⇤
1

, . . . , u⇤⇤
n ) is a basis of the bidual E⇤⇤. This shows

that dim(E) = dim(E⇤⇤) = n, and since by Part (a), we know that
evalE : E ! E⇤⇤ is injective, in fact, evalE : E ! E⇤⇤ is bijective (by
Proposition 5.10).

When E is of finite dimension and (u
1

, . . . , un) is a basis of E, in view
of the canonical isomorphism evalE : E ! E⇤⇤, the basis (u⇤⇤

1

, . . . , u⇤⇤
n ) of

the bidual is identified with (u
1

, . . . , un).
Proposition 10.4 can be reformulated very fruitfully in terms of pairings,

a remarkably useful concept discovered by Pontrjagin in 1931 (adapted from
E. Artin [Artin (1957)], Chapter 1). Given two vector spaces E and F over
a field K, we say that a function ' : E ⇥ F ! K is bilinear if for every
v 2 V , the map u 7! '(u, v) (from E to K) is linear, and for every u 2 E,
the map v 7! '(u, v) (from F to K) is linear.

Definition 10.4. Given two vector spaces E and F over K, a pairing
between E and F is a bilinear map ' : E ⇥ F ! K. Such a pairing is
nondegenerate i↵

(1) for every u 2 E, if '(u, v) = 0 for all v 2 F , then u = 0, and
(2) for every v 2 F , if '(u, v) = 0 for all u 2 E, then v = 0.
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A pairing ' : E ⇥ F ! K is often denoted by h�,�i : E ⇥ F ! K. For
example, the map h�,�i : E⇤ ⇥ E ! K defined earlier is a nondegenerate
pairing (use the proof of (a) in Proposition 10.4). If E = F and K = R, any
inner product on E is a nondegenerate pairing (because an inner product is
positive definite); see Chapter 11. Other interesting nondegenerate pairings
arise in exterior algebra and di↵erential geometry.

Given a pairing ' : E ⇥ F ! K, we can define two maps l' : E ! F ⇤

and r' : F ! E⇤ as follows: For every u 2 E, we define the linear form
l'(u) in F ⇤ such that

l'(u)(y) = '(u, y) for every y 2 F ,

and for every v 2 F , we define the linear form r'(v) in E⇤ such that

r'(v)(x) = '(x, v) for every x 2 E.

We have the following useful proposition.

Proposition 10.5. Given two vector spaces E and F over K, for every
nondegenerate pairing ' : E⇥F ! K between E and F , the maps l' : E !
F ⇤ and r' : F ! E⇤ are linear and injective. Furthermore, if E and F
have finite dimension, then this dimension is the same and l' : E ! F ⇤

and r' : F ! E⇤ are bijections.

Proof. The maps l' : E ! F ⇤ and r' : F ! E⇤ are linear because a pairing
is bilinear. If l'(u) = 0 (the null form), then

l'(u)(v) = '(u, v) = 0 for every v 2 F ,

and since ' is nondegenerate, u = 0. Thus, l' : E ! F ⇤ is injective.
Similarly, r' : F ! E⇤ is injective. When F has finite dimension n, we
have seen that F and F ⇤ have the same dimension. Since l' : E ! F ⇤ is
injective, we have m = dim(E)  dim(F ) = n. The same argument applies
to E, and thus n = dim(F )  dim(E) = m. But then, dim(E) = dim(F ),
and l' : E ! F ⇤ and r' : F ! E⇤ are bijections.

When E has finite dimension, the nondegenerate pairing h�,�i : E⇤ ⇥
E ! K yields another proof of the existence of a natural isomorphism
between E and E⇤⇤. When E = F , the nondegenerate pairing induced by
an inner product on E yields a natural isomorphism between E and E⇤

(see Section 11.2).
We now show the relationship between hyperplanes and linear forms.
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10.5 Hyperplanes and Linear Forms

Actually Proposition 10.6 below follows from Parts (c) and (d) of Theorem
10.1, but we feel that it is also interesting to give a more direct proof.

Proposition 10.6. Let E be a vector space. The following properties hold:

(a) Given any nonnull linear form f⇤ 2 E⇤, its kernel H = Ker f⇤ is a
hyperplane.

(b) For any hyperplane H in E, there is a (nonnull) linear form f⇤ 2 E⇤

such that H = Ker f⇤.
(c) Given any hyperplane H in E and any (nonnull) linear form f⇤ 2 E⇤

such that H = Ker f⇤, for every linear form g⇤ 2 E⇤, H = Ker g⇤ i↵
g⇤ = �f⇤ for some � 6= 0 in K.

Proof. (a) If f⇤ 2 E⇤ is nonnull, there is some vector v
0

2 E such that
f⇤(v

0

) 6= 0. Let H = Ker f⇤. For every v 2 E, we have

f⇤
✓
v � f⇤(v)

f⇤(v
0

)
v
0

◆
= f⇤(v) � f⇤(v)

f⇤(v
0

)
f⇤(v

0

) = f⇤(v) � f⇤(v) = 0.

Thus,

v � f⇤(v)

f⇤(v
0

)
v
0

= h 2 H,

and

v = h+
f⇤(v)

f⇤(v
0

)
v
0

,

that is, E = H + Kv
0

. Also since f⇤(v
0

) 6= 0, we have v
0

/2 H, that is,
H \ Kv

0

= 0. Thus, E = H � Kv
0

, and H is a hyperplane.
(b) If H is a hyperplane, E = H � Kv

0

for some v
0

/2 H. Then every
v 2 E can be written in a unique way as v = h+ �v

0

. Thus there is a well-
defined function f⇤ : E ! K, such that, f⇤(v) = �, for every v = h+ �v

0

.
We leave as a simple exercise the verification that f⇤ is a linear form. Since
f⇤(v

0

) = 1, the linear form f⇤ is nonnull. Also, by definition, it is clear
that � = 0 i↵ v 2 H, that is, Ker f⇤ = H.

(c) Let H be a hyperplane in E, and let f⇤ 2 E⇤ be any (nonnull)
linear form such that H = Ker f⇤. Clearly, if g⇤ = �f⇤ for some � 6= 0,
then H = Ker g⇤. Conversely, assume that H = Ker g⇤ for some nonnull
linear form g⇤. From (a), we have E = H � Kv

0

, for some v
0

such that
f⇤(v

0

) 6= 0 and g⇤(v
0

) 6= 0. Then observe that

g⇤ � g⇤(v
0

)

f⇤(v
0

)
f⇤
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is a linear form that vanishes on H, since both f⇤ and g⇤ vanish on H, but
also vanishes on Kv

0

. Thus, g⇤ = �f⇤, with

� =
g⇤(v

0

)

f⇤(v
0

)
.

We leave as an exercise the fact that every subspace V 6= E of a vector
space E is the intersection of all hyperplanes that contain V . We now
consider the notion of transpose of a linear map and of a matrix.

10.6 Transpose of a Linear Map and of a Matrix

Given a linear map f : E ! F , it is possible to define a map f> : F ⇤ ! E⇤

which has some interesting properties.

Definition 10.5. Given a linear map f : E ! F , the transpose f> : F ⇤ !
E⇤ of f is the linear map defined such that

f>(v⇤) = v⇤ � f, for every v⇤ 2 F ⇤,

as shown in the diagram below:

E
f //

f>
(v⇤

)   A
AA

AA
AA

A F

v⇤

✏✏
K.

Equivalently, the linear map f> : F ⇤ ! E⇤ is defined such that

hv⇤, f(u)i = hf>(v⇤), ui, (⇤)

for all u 2 E and all v⇤ 2 F ⇤.

It is easy to verify that the following properties hold:

(f + g)> = f> + g>

(g � f)> = f> � g>

id>E = idE⇤ .� Note the reversal of composition on the right-hand side of (g � f)> =
f> � g>.



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 392

392 The Dual Space and Duality

The equation (g�f)> = f>�g> implies the following useful proposition.

Proposition 10.7. If f : E ! F is any linear map, then the following
properties hold:

(1) If f is injective, then f> is surjective.
(2) If f is surjective, then f> is injective.

Proof. If f : E ! F is injective, then it has a retraction r : F ! E such
that r � f = idE , and if f : E ! F is surjective, then it has a section
s : F ! E such that f � s = idF . Now if f : E ! F is injective, then we
have

(r � f)> = f> � r> = idE⇤ ,

which implies that f> is surjective, and if f is surjective, then we have

(f � s)> = s> � f> = idF⇤ ,

which implies that f> is injective.

The following proposition shows the relationship between orthogonality
and transposition.

Proposition 10.8. Given a linear map f : E ! F , for any subspace V of
E, we have

f(V )0 = (f>)�1(V 0) = {w⇤ 2 F ⇤ | f>(w⇤) 2 V 0}.

As a consequence,

Ker f> = (Im f)0.

We also have

Ker f = (Im f>)0.

Proof. We have

hw⇤, f(v)i = hf>(w⇤), vi,

for all v 2 E and all w⇤ 2 F ⇤, and thus, we have hw⇤, f(v)i = 0 for every
v 2 V , i.e. w⇤ 2 f(V )0 i↵ hf>(w⇤), vi = 0 for every v 2 V i↵ f>(w⇤) 2 V 0,
i.e. w⇤ 2 (f>)�1(V 0), proving that

f(V )0 = (f>)�1(V 0).
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Since we already observed that E0 = (0), letting V = E in the above
identity we obtain that

Ker f> = (Im f)0.

From the equation

hw⇤, f(v)i = hf>(w⇤), vi,

we deduce that v 2 (Im f>)0 i↵ hf>(w⇤), vi = 0 for all w⇤ 2 F ⇤ i↵
hw⇤, f(v)i = 0 for all w⇤ 2 F ⇤. Assume that v 2 (Im f>)0. If we pick
a basis (wi)i2I of F , then we have the linear forms w⇤

i : F ! K such that
w⇤

i (wj) = �ij , and since we must have hw⇤
i , f(v)i = 0 for all i 2 I and

(wi)i2I is a basis of F , we conclude that f(v) = 0, and thus v 2 Ker f (this
is because hw⇤

i , f(v)i is the coe�cient of f(v) associated with the basis vec-
tor wi). Conversely, if v 2 Ker f , then hw⇤, f(v)i = 0 for all w⇤ 2 F ⇤, so
we conclude that v 2 (Im f>)0. Therefore, v 2 (Im f>)0 i↵ v 2 Ker f ; that
is,

Ker f = (Im f>)0,

as claimed.

The following theorem shows the relationship between the rank of f and
the rank of f>.

Theorem 10.2. Given a linear map f : E ! F , the following properties
hold.

(a) The dual (Im f)⇤ of Im f is isomorphic to Im f> = f>(F ⇤); that is,

(Im f)⇤ ⇠= Im f>.

(b) If F is finite dimensional, then rk(f) = rk(f>).

Proof. (a) Consider the linear maps

E
p�! Im f

j�! F,

where E
p�! Im f is the surjective map induced by E

f�! F , and

Im f
j�! F is the injective inclusion map of Im f into F . By definition,

f = j � p. To simplify the notation, let I = Im f . By Proposition 10.7,

since E
p�! I is surjective, I⇤

p>

�! E⇤ is injective, and since Im f
j�! F

is injective, F ⇤ j>�! I⇤ is surjective. Since f = j � p, we also have

f> = (j � p)> = p> � j>,
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and since F ⇤ j>�! I⇤ is surjective, and I⇤
p>

�! E⇤ is injective, we have an
isomorphism between (Im f)⇤ and f>(F ⇤).

(b) We already noted that Part (a) of Theorem 10.1 shows that
dim(F ) = dim(F ⇤), for every vector space F of finite dimension. Con-
sequently, dim(Im f) = dim((Im f)⇤), and thus, by Part (a) we have
rk(f) = rk(f>).

Remark: When both E and F are finite-dimensional, there is also a simple
proof of (b) that doesn’t use the result of Part (a). By Theorem 10.1(c)

dim(Im f) + dim((Im f)0) = dim(F ),

and by Theorem 5.1

dim(Ker f>) + dim(Im f>) = dim(F ⇤).

Furthermore, by Proposition 10.8, we have

Ker f> = (Im f)0,

and since F is finite-dimensional dim(F ) = dim(F ⇤), so we deduce

dim(Im f) + dim((Im f)0) = dim((Im f)0) + dim(Im f>),

which yields dim(Im f) = dim(Im f>); that is, rk(f) = rk(f>).

The following proposition can be shown, but it requires a generalization
of the duality theorem, so its proof is omitted.

Proposition 10.9. If f : E ! F is any linear map, then the following
identities hold:

Im f> = (Ker (f))0

Ker (f>) = (Im f)0

Im f = (Ker (f>)0

Ker (f) = (Im f>)0.

Observe that the second and the fourth equation have already be
proven in Proposition 10.8. Since for any subspace V ✓ E, even infinite-
dimensional, we have V 00 = V , the third equation follows from the second
equation by taking orthogonals. Actually, the fourth equation follows from
the first also by taking orthogonals. Thus the only equation to be proven
is the first equation. We will give a proof later in the case where E is
finite-dimensional (see Proposition 10.16).
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The following proposition shows the relationship between the matrix
representing a linear map f : E ! F and the matrix representing its trans-
pose f> : F ⇤ ! E⇤.

Proposition 10.10. Let E and F be two vector spaces, and let (u
1

, . . . , un)
be a basis for E and (v

1

, . . . , vm) be a basis for F . Given any linear map
f : E ! F , if M(f) is the m ⇥ n-matrix representing f w.r.t. the bases
(u

1

, . . . , un) and (v
1

, . . . , vm), then the n ⇥ m-matrix M(f>) representing
f> : F ⇤ ! E⇤ w.r.t. the dual bases (v⇤

1

, . . . , v⇤m) and (u⇤
1

, . . . , u⇤
n) is the

transpose M(f)> of M(f).

Proof. Recall that the entry ai j in row i and column j of M(f) is the i-th
coordinate of f(uj) over the basis (v1, . . . , vm). By definition of v⇤i , we have
hv⇤i , f(uj)i = ai j . The entry a>j i in row j and column i of M(f>) is the
j-th coordinate of

f>(v⇤i ) = a>
1 iu

⇤
1

+ · · · + a>j iu
⇤
j + · · · + a>n iu

⇤
n

over the basis (u⇤
1

, . . . , u⇤
n), which is just a>j i = f>(v⇤i )(uj) = hf>(v⇤i ), uji.

Since

hv⇤i , f(uj)i = hf>(v⇤i ), uji,
we have ai j = a>j i, proving that M(f>) = M(f)>.

We now can give a very short proof of the fact that the rank of a matrix
is equal to the rank of its transpose.

Proposition 10.11. Given an m ⇥ n matrix A over a field K, we have
rk(A) = rk(A>).

Proof. The matrix A corresponds to a linear map f : Kn ! Km, and
by Theorem 10.2, rk(f) = rk(f>). By Proposition 10.10, the linear map
f> corresponds to A>. Since rk(A) = rk(f), and rk(A>) = rk(f>), we
conclude that rk(A) = rk(A>).

Thus, given an m⇥n-matrix A, the maximum number of linearly inde-
pendent columns is equal to the maximum number of linearly independent
rows. There are other ways of proving this fact that do not involve the dual
space, but instead some elementary transformations on rows and columns.

Proposition 10.11 immediately yields the following criterion for deter-
mining the rank of a matrix:

Proposition 10.12. Given any m ⇥ n matrix A over a field K (typically
K = R or K = C), the rank of A is the maximum natural number r such
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that there is an invertible r⇥ r submatrix of A obtained by selecting r rows
and r columns of A.

For example, the 3 ⇥ 2 matrix

A =

0

@
a
11

a
12

a
21

a
22

a
31

a
32

1

A

has rank 2 i↵ one of the three 2 ⇥ 2 matrices
✓
a
11

a
12

a
21

a
22

◆ ✓
a
11

a
12

a
31

a
32

◆ ✓
a
21

a
22

a
31

a
32

◆

is invertible.
If we combine Proposition 6.8 with Proposition 10.12, we obtain the

following criterion for finding the rank of a matrix.

Proposition 10.13. Given any m ⇥ n matrix A over a field K (typically
K = R or K = C), the rank of A is the maximum natural number r such
that there is an r ⇥ r submatrix B of A obtained by selecting r rows and r
columns of A, such that det(B) 6= 0.

This is not a very e�cient way of finding the rank of a matrix. We will
see that there are better ways using various decompositions such as LU,
QR, or SVD.

10.7 Properties of the Double Transpose

First we have the following property showing the naturality of the eval map.

Proposition 10.14. For any linear map f : E ! F , we have

f>> � evalE = evalF � f,

or equivalently the following diagram commutes:

E⇤⇤ f>>
// F ⇤⇤

E

evalE

OO

f
// F.

evalF

OO
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Proof. For every u 2 E and every ' 2 F ⇤, we have

(f>> � evalE)(u)(') = hf>>(evalE(u)),'i
= hevalE(u), f>(')i
= hf>('), ui
= h', f(u)i
= hevalF (f(u)),'i
= h(evalF � f)(u),'i
= (evalF � f)(u)('),

which proves that f>> � evalE = evalF � f , as claimed.

If E and F are finite-dimensional, then evalE and evalF are isomor-
phisms, so Proposition 10.14 shows that

f>> = evalF � f � eval�1

E . (⇤)

The above equation is often interpreted as follows: if we identify E with its
bidual E⇤⇤ and F with its bidual F ⇤⇤, then f>> = f . This is an abuse of
notation; the rigorous statement is (⇤).

As a corollary of Proposition 10.14, we obtain the following result.

Proposition 10.15. If dim(E) is finite, then we have

Ker (f>>) = evalE(Ker (f)).

Proof. Indeed, if E is finite-dimensional, the map evalE : E ! E⇤⇤ is an
isomorphism, so every ' 2 E⇤⇤ is of the form ' = evalE(u) for some u 2 E,
the map evalF : F ! F ⇤⇤ is injective, and we have

f>>(') = 0 i↵ f>>(evalE(u)) = 0

i↵ evalF (f(u)) = 0

i↵ f(u) = 0

i↵ u 2 Ker (f)

i↵ ' 2 evalE(Ker (f)),

which proves that Ker (f>>) = evalE(Ker (f)).

Remarks: If dim(E) is finite, following an argument of Dan Guralnik, the
fact that rk(f) = rk(f>) can be proven using Proposition 10.15.
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Proof. We know from Proposition 10.8 applied to f> : F ⇤ ! E⇤ that

Ker (f>>) = (Im f>)0,

and we showed in Proposition 10.15 that

Ker (f>>) = evalE(Ker (f)).

It follows (since evalE is an isomorphism) that

dim((Im f>)0) = dim(Ker (f>>)) = dim(Ker (f)) = dim(E) � dim(Im f),

and since

dim(Im f>) + dim((Im f>)0) = dim(E),

we get

dim(Im f>) = dim(Im f).

As indicated by Dan Guralnik, if dim(E) is finite, the above result can
be used to prove the following result.

Proposition 10.16. If dim(E) is finite, then for any linear map f : E !
F , we have

Im f> = (Ker (f))0.

Proof. From

hf>('), ui = h', f(u)i
for all ' 2 F ⇤ and all u 2 E, we see that if u 2 Ker (f), then hf>('), ui =
h', 0i = 0, which means that f>(') 2 (Ker (f))0, and thus, Im f> ✓
(Ker (f))0. For the converse, since dim(E) is finite, we have

dim((Ker (f))0) = dim(E) � dim(Ker (f)) = dim(Im f),

but we just proved that dim(Im f>) = dim(Im f), so we get

dim((Ker (f))0) = dim(Im f>),

and since Im f> ✓ (Ker (f))0, we obtain

Im f> = (Ker (f))0,

as claimed.

Remarks:

(1) By the duality theorem, since (Ker (f))00 = Ker (f), the above equation
yields another proof of the fact that

Ker (f) = (Im f>)0,

when E is finite-dimensional.
(2) The equation

Im f> = (Ker (f))0

is actually valid even if when E if infinite-dimensional, but we will not
prove this here.
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10.8 The Four Fundamental Subspaces

Given a linear map f : E ! F (where E and F are finite-dimensional),
Proposition 10.8 revealed that the four spaces

Im f, Im f>, Ker f, Ker f>

play a special role. They are often called the fundamental subspaces as-
sociated with f . These spaces are related in an intimate manner, since
Proposition 10.8 shows that

Ker f = (Im f>)0

Ker f> = (Im f)0,

and Theorem 10.2 shows that

rk(f) = rk(f>).

It is instructive to translate these relations in terms of matrices (actually,
certain linear algebra books make a big deal about this!). If dim(E) = n
and dim(F ) = m, given any basis (u

1

, . . . , un) of E and a basis (v
1

, . . . , vm)
of F , we know that f is represented by anm⇥nmatrix A = (ai j), where the
jth column of A is equal to f(uj) over the basis (v1, . . . , vm). Furthermore,
the transpose map f> is represented by the n⇥m matrix A> (with respect
to the dual bases). Consequently, the four fundamental spaces

Im f, Im f>, Ker f, Ker f>

correspond to

(1) The column space of A, denoted by ImA or R(A); this is the subspace
of Rm spanned by the columns of A, which corresponds to the image
Im f of f .

(2) The kernel or nullspace of A, denoted by KerA or N (A); this is the
subspace of Rn consisting of all vectors x 2 Rn such that Ax = 0.

(3) The row space of A, denoted by ImA> or R(A>); this is the subspace of
Rn spanned by the rows of A, or equivalently, spanned by the columns
of A>, which corresponds to the image Im f> of f>.

(4) The left kernel or left nullspace of A denoted by KerA> or N (A>);
this is the kernel (nullspace) of A>, the subspace of Rm consisting of
all vectors y 2 Rm such that A>y = 0, or equivalently, y>A = 0.

Recall that the dimension r of Im f , which is also equal to the dimension
of the column space ImA = R(A), is the rank of A (and f). Then, some
our previous results can be reformulated as follows:
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(1) The column space R(A) of A has dimension r.
(2) The nullspace N (A) of A has dimension n � r.
(3) The row space R(A>) has dimension r.
(4) The left nullspace N (A>) of A has dimension m � r.

The above statements constitute what Strang calls the Fundamental
Theorem of Linear Algebra, Part I (see Strang [Strang (1988)]).

The two statements

Ker f = (Im f>)0

Ker f> = (Im f)0

translate to

(1) The nullspace of A is the orthogonal of the row space of A.
(2) The left nullspace of A is the orthogonal of the column space of A.

The above statements constitute what Strang calls the Fundamental The-
orem of Linear Algebra, Part II (see Strang [Strang (1988)]).

Since vectors are represented by column vectors and linear forms by row
vectors (over a basis in E or F ), a vector x 2 Rn is orthogonal to a linear
form y i↵

yx = 0.

Then, a vector x 2 Rn is orthogonal to the row space of A i↵ x is orthogonal
to every row of A, namely Ax = 0, which is equivalent to the fact that x
belong to the nullspace of A. Similarly, the column vector y 2 Rm (repre-
senting a linear form over the dual basis of F ⇤) belongs to the nullspace of
A> i↵ A>y = 0, i↵ y>A = 0, which means that the linear form given by
y> (over the basis in F ) is orthogonal to the column space of A.

Since (2) is equivalent to the fact that the column space of A is equal
to the orthogonal of the left nullspace of A, we get the following criterion
for the solvability of an equation of the form Ax = b:

The equation Ax = b has a solution i↵ for all y 2 Rm, if A>y = 0, then
y>b = 0.

Indeed, the condition on the right-hand side says that b is orthogonal
to the left nullspace of A; that is, b belongs to the column space of A.

This criterion can be cheaper to check that checking directly that b is
spanned by the columns of A. For example, if we consider the system

x
1

� x
2

= b
1

x
2

� x
3

= b
2

x
3

� x
1

= b
3
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which, in matrix form, is written Ax = b as below:0

@
1 �1 0
0 1 �1

�1 0 1

1

A

0

@
x
1

x
2

x
3

1

A =

0

@
b
1

b
2

b
3

1

A ,

we see that the rows of the matrix A add up to 0. In fact, it is easy to
convince ourselves that the left nullspace of A is spanned by y = (1, 1, 1),
and so the system is solvable i↵ y>b = 0, namely

b
1

+ b
2

+ b
3

= 0.

Note that the above criterion can also be stated negatively as follows:
The equation Ax = b has no solution i↵ there is some y 2 Rm such that

A>y = 0 and y>b 6= 0.
Since A>y = 0 i↵ y>A = 0, we can view y> as a row vector representing

a linear form, and y>A = 0 asserts that the linear form y> vanishes on the
columns A1, . . . , An of A but does not vanish on b. Since the linear form y>

defines the hyperplane H of equation y>z = 0 (with z 2 Rm), geometrically
the equation Ax = b has no solution i↵ there is a hyperplane H containing
A1, . . . , An and not containing b.

10.9 Summary

The main concepts and results of this chapter are listed below:

• The dual space E⇤ and linear forms (covector). The bidual E⇤⇤.
• The bilinear pairing h�,�i : E⇤ ⇥ E ! K (the canonical pairing).
• Evaluation at v: evalv : E⇤ ! K.
• The map evalE : E ! E⇤⇤.
• Othogonality between a subspace V of E and a subspace U of E⇤; the
orthogonal V 0 and the orthogonal U0.

• Coordinate forms .
• The Duality theorem (Theorem 10.1).
• The dual basis of a basis.
• The isomorphism evalE : E ! E⇤⇤ when dim(E) is finite.
• Pairing between two vector spaces; nondegenerate pairing ; Proposition
10.5.

• Hyperplanes and linear forms.
• The transpose f> : F ⇤ ! E⇤ of a linear map f : E ! F .
• The fundamental identities:

Ker f> = (Im f)0 and Ker f = (Im f>)0

(Proposition 10.8).
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• If F is finite-dimensional, then

rk(f) = rk(f>).

(Theorem 10.2).
• The matrix of the transpose map f> is equal to the transpose of the
matrix of the map f (Proposition 10.10).

• For any m ⇥ n matrix A,

rk(A) = rk(A>).

• Characterization of the rank of a matrix in terms of a maximal invert-
ible submatrix (Proposition 10.12).

• The four fundamental subspaces:

Im f, Im f>, Ker f, Ker f>.

• The column space, the nullspace, the row space, and the left nullspace
(of a matrix).

• Criterion for the solvability of an equation of the form Ax = b in terms
of the left nullspace.

10.10 Problems

Problem 10.1. Prove the following properties of transposition:

(f + g)> = f> + g>

(g � f)> = f> � g>

id>E = idE⇤ .

Problem 10.2. Let (u
1

, . . . , un�1

) be n � 1 linearly independent vectors
ui 2 Cn. Prove that the hyperplane H spanned by (u

1

, . . . , un�1

) is the
nullspace of the linear form

x 7! det(u
1

, . . . , un�1

, x), x 2 Cn.

Prove that if A is the n ⇥ n matrix whose columns are (u
1

, . . . , un�1

, x),
and if ci = (�1)i+n det(Ain) is the cofactor of ain = xi for i = 1, . . . , n,
then H is defined by the equation

c
1

x
1

+ · · · + cnxn = 0.



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 403

10.10. Problems 403

Problem 10.3. (1) Let ' : Rn ⇥ Rn ! R be the map defined by

'((x
1

, . . . , xn), (y1, . . . , yn)) = x
1

y
1

+ · · · + xnyn.

Prove that ' is a bilinear nondegenerate pairing. Deduce that (Rn)⇤ is
isomorphic to Rn.

Prove that '(x, x) = 0 i↵ x = 0.
(2) Let 'L : R4 ⇥ R4 ! R be the map defined by

'L((x1

, x
2

, x
3

, x
4

), (y
1

, y
2

, y
3

, , y
4

)) = x
1

y
1

� x
2

y
2

� x
3

y
3

� x
4

y
4

.

Prove that ' is a bilinear nondegenerate pairing.
Show that there exist nonzero vectors x 2 R4 such that 'L(x, x) = 0.

Remark: The vector space R4 equipped with the above bilinear form called
the Lorentz form is called Minkowski space.

Problem 10.4. Given any two subspaces V
1

, V
2

of a finite-dimensional
vector space E, prove that

(V
1

+ V
2

)0 = V 0

1

\ V 0

2

(V
1

\ V
2

)0 = V 0

1

+ V 0

2

.

Beware that in the second equation, V
1

and V
2

are subspaces of E, not
E⇤.

Hint . To prove the second equation, prove the inclusions V 0

1

+ V 0

2

✓
(V

1

\V
2

)0 and (V
1

\V
2

)0 ✓ V 0

1

+V 0

2

. Proving the second inclusion is a little
tricky. First, prove that we can pick a subspace W

1

of V
1

and a subspace
W

2

of V
2

such that

(1) V
1

is the direct sum V
1

= (V
1

\ V
2

) � W
1

.
(2) V

2

is the direct sum V
2

= (V
1

\ V
2

) � W
2

.
(3) V

1

+ V
2

is the direct sum V
1

+ V
2

= (V
1

\ V
2

) � W
1

� W
2

.

Problem 10.5. (1) Let A be any n ⇥ n matrix such that the sum of the
entries of every row of A is the same (say c

1

), and the sum of entries of
every column of A is the same (say c

2

). Prove that c
1

= c
2

.
(2) Prove that for any n � 2, the 2n � 2 equations asserting that the

sum of the entries of every row of A is the same, and the sum of entries of
every column of A is the same are lineary independent. For example, when
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n = 4, we have the following 6 equations

a
11

+ a
12

+ a
13

+ a
14

� a
21

� a
22

� a
23

� a
24

= 0

a
21

+ a
22

+ a
23

+ a
24

� a
31

� a
32

� a
33

� a
34

= 0

a
31

+ a
32

+ a
33

+ a
34

� a
41

� a
42

� a
43

� a
44

= 0

a
11

+ a
21

+ a
31

+ a
41

� a
12

� a
22

� a
32

� a
42

= 0

a
12

+ a
22

+ a
32

+ a
42

� a
13

� a
23

� a
33

� a
43

= 0

a
13

+ a
23

+ a
33

+ a
43

� a
14

� a
24

� a
34

� a
44

= 0.

Hint . Group the equations as above; that is, first list the n � 1 equations
relating the rows, and then list the n � 1 equations relating the columns.
Prove that the first n � 1 equations are linearly independent, and that the
last n�1 equations are also linearly independent. Then, find a relationship
between the two groups of equations that will allow you to prove that they
span subspace V r and V c such that V r \ V c = (0).

(3) Now consider magic squares. Such matrices satisfy the two condi-
tions about the sum of the entries in each row and in each column to be
the same number, and also the additional two constraints that the main
descending and the main ascending diagonals add up to this common num-
ber. Traditionally, it is also required that the entries in a magic square are
positive integers, but we will consider generalized magic square with arbi-
trary real entries. For example, in the case n = 4, we have the following
system of 8 equations:

a
11

+ a
12

+ a
13

+ a
14

� a
21

� a
22

� a
23

� a
24

= 0

a
21

+ a
22

+ a
23

+ a
24

� a
31

� a
32

� a
33

� a
34

= 0

a
31

+ a
32

+ a
33

+ a
34

� a
41

� a
42

� a
43

� a
44

= 0

a
11

+ a
21

+ a
31

+ a
41

� a
12

� a
22

� a
32

� a
42

= 0

a
12

+ a
22

+ a
32

+ a
42

� a
13

� a
23

� a
33

� a
43

= 0

a
13

+ a
23

+ a
33

+ a
43

� a
14

� a
24

� a
34

� a
44

= 0

a
22

+ a
33

+ a
44

� a
12

� a
13

� a
14

= 0

a
41

+ a
32

+ a
23

� a
11

� a
12

� a
13

= 0.

In general, the equation involving the descending diagonal is

a
22

+ a
33

+ · · · + ann � a
12

� a
13

� · · · � a
1n = 0 (r)

and the equation involving the ascending diagonal is

an1 + an�12

+ · · · + a
2n�1

� a
11

� a
12

� · · · � a
1n�1

= 0. (c)
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Prove that if n � 3, then the 2n equations asserting that a matrix is a
generalized magic square are linearly independent.
Hint . Equations are really linear forms, so find some matrix annihilated
by all equations except equation r, and some matrix annihilated by all
equations except equation c.

Problem 10.6. Let U
1

, . . . , Up be some subspaces of a vector space E,
and assume that they form a direct sum U = U

1

� · · · � Up. Let ji : Ui !
U
1

� · · · � Up be the canonical injections, and let ⇡i : U⇤
1

⇥ · · · ⇥ U⇤
p ! U⇤

i

be the canonical projections. Prove that there is an isomorphism f from
(U

1

� · · · � Up)⇤ to U⇤
1

⇥ · · · ⇥ U⇤
p such that

⇡i � f = j>i , 1  i  p.

Problem 10.7. Let U and V be two subspaces of a vector space E such
that E = U � V . Prove that

E⇤ = U0 � V 0.
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Chapter 11

Euclidean Spaces

Rien n’est beau que le vrai.

—Hermann Minkowski

11.1 Inner Products, Euclidean Spaces

So far the framework of vector spaces allows us to deal with ratios of vectors
and linear combinations, but there is no way to express the notion of angle
or to talk about orthogonality of vectors. A Euclidean structure allows us
to deal with metric notions such as angles, orthogonality, and length (or
distance).

This chapter covers the bare bones of Euclidean geometry. Deeper as-
pects of Euclidean geometry are investigated in Chapter 12. One of our
main goals is to give the basic properties of the transformations that pre-
serve the Euclidean structure, rotations and reflections, since they play an
important role in practice. Euclidean geometry is the study of properties
invariant under certain a�ne maps called rigid motions. Rigid motions are
the maps that preserve the distance between points.

We begin by defining inner products and Euclidean spaces. The
Cauchy–Schwarz inequality and the Minkowski inequality are shown. We
define orthogonality of vectors and of subspaces, orthogonal bases, and or-
thonormal bases. We prove that every finite-dimensional Euclidean space
has orthonormal bases. The first proof uses duality and the second one the
Gram–Schmidt orthogonalization procedure. The QR-decomposition for
invertible matrices is shown as an application of the Gram–Schmidt proce-
dure. Linear isometries (also called orthogonal transformations) are defined
and studied briefly. We conclude with a short section in which some ap-
plications of Euclidean geometry are sketched. One of the most important

407
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applications, the method of least squares, is discussed in Chapter 21.
For a more detailed treatment of Euclidean geometry see Berger [Berger

(1990a,b)], Snapper and Troyer [Snapper and Troyer (1989)], or any other
book on geometry, such as Pedoe [Pedoe (1988)], Coxeter [Coxeter (1989)],
Fresnel [Fresnel (1998)], Tisseron [Tisseron (1994)], or Cagnac, Ramis, and
Commeau [Cagnac et al. (1965)]. Serious readers should consult Emil
Artin’s famous book [Artin (1957)], which contains an in-depth study of
the orthogonal group, as well as other groups arising in geometry. It is still
worth consulting some of the older classics, such as Hadamard [Hadamard
(1947, 1949)] and Rouché and de Comberousse [Rouché and de Comber-
ousse (1900)]. The first edition of [Hadamard (1947)] was published in 1898
and finally reached its thirteenth edition in 1947! In this chapter it is as-
sumed that all vector spaces are defined over the field R of real numbers
unless specified otherwise (in a few cases, over the complex numbers C).

First we define a Euclidean structure on a vector space. Technically,
a Euclidean structure over a vector space E is provided by a symmetric
bilinear form on the vector space satisfying some extra properties. Recall
that a bilinear form ' : E ⇥ E ! R is definite if for every u 2 E, u 6= 0
implies that '(u, u) 6= 0, and positive if for every u 2 E, '(u, u) � 0.

Definition 11.1. A Euclidean space is a real vector space E equipped with
a symmetric bilinear form ' : E ⇥ E ! R that is positive definite. More
explicitly, ' : E ⇥ E ! R satisfies the following axioms:

'(u
1

+ u
2

, v) = '(u
1

, v) + '(u
2

, v),

'(u, v
1

+ v
2

) = '(u, v
1

) + '(u, v
2

),

'(�u, v) = �'(u, v),

'(u,�v) = �'(u, v),

'(u, v) = '(v, u),

u 6= 0 implies that '(u, u) > 0.

The real number '(u, v) is also called the inner product (or scalar product)
of u and v. We also define the quadratic form associated with ' as the
function � : E ! R

+

such that

�(u) = '(u, u),

for all u 2 E.

Since ' is bilinear, we have '(0, 0) = 0, and since it is positive definite,
we have the stronger fact that

'(u, u) = 0 i↵ u = 0,
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that is, �(u) = 0 i↵ u = 0.
Given an inner product ' : E ⇥ E ! R on a vector space E, we also

denote '(u, v) by

u · v or hu, vi or (u|v),
and

p
�(u) by kuk.

Example 11.1. The standard example of a Euclidean space is Rn, under
the inner product · defined such that

(x
1

, . . . , xn) · (y
1

, . . . , yn) = x
1

y
1

+ x
2

y
2

+ · · · + xnyn.

This Euclidean space is denoted by En.

There are other examples.

Example 11.2. For instance, let E be a vector space of dimension 2, and
let (e

1

, e
2

) be a basis of E. If a > 0 and b2 � ac < 0, the bilinear form
defined such that

'(x
1

e
1

+ y
1

e
2

, x
2

e
1

+ y
2

e
2

) = ax
1

x
2

+ b(x
1

y
2

+ x
2

y
1

) + cy
1

y
2

yields a Euclidean structure on E. In this case,

�(xe
1

+ ye
2

) = ax2 + 2bxy + cy2.

Example 11.3. Let C[a, b] denote the set of continuous functions
f : [a, b] ! R. It is easily checked that C[a, b] is a vector space of infinite
dimension. Given any two functions f, g 2 C[a, b], let

hf, gi =
Z b

a

f(t)g(t)dt.

We leave it as an easy exercise that h�,�i is indeed an inner product on
C[a, b]. In the case where a = �⇡ and b = ⇡ (or a = 0 and b = 2⇡, this
makes basically no di↵erence), one should compute

hsin px, sin qxi, hsin px, cos qxi, and hcos px, cos qxi,
for all natural numbers p, q � 1. The outcome of these calculations is what
makes Fourier analysis possible!

Example 11.4. Let E = Mn(R) be the vector space of real n⇥n matrices.
If we view a matrix A 2 Mn(R) as a “long” column vector obtained by
concatenating together its columns, we can define the inner product of two
matrices A,B 2 Mn(R) as

hA,Bi =
nX

i,j=1

aijbij ,



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 410

410 Euclidean Spaces

which can be conveniently written as

hA,Bi = tr(A>B) = tr(B>A).

Since this can be viewed as the Euclidean product on Rn2

, it is an inner
product on Mn(R). The corresponding norm

kAkF =
q
tr(A>A)

is the Frobenius norm (see Section 8.2).

Let us observe that ' can be recovered from �.

Proposition 11.1. We have

'(u, v) =
1

2
[�(u+ v) � �(u) � �(v)]

for all u, v 2 E. We say that ' is the polar form of �.

Proof. By bilinearity and symmetry, we have

�(u+ v) = '(u+ v, u+ v)

= '(u, u+ v) + '(v, u+ v)

= '(u, u) + 2'(u, v) + '(v, v)

= �(u) + 2'(u, v) + �(v).

If E is finite-dimensional and if ' : E ⇥ E ! R is a bilinear form on
E, given any basis (e

1

, . . . , en) of E, we can write x =
Pn

i=1

xiei and
y =

Pn
j=1

yjej , and we have

'(x, y) = '

✓ nX

i=1

xiei,
nX

j=1

yjej

◆
=

nX

i,j=1

xiyj'(ei, ej).

If we let G be the matrix G = ('(ei, ej)), and if x and y are the column
vectors associated with (x

1

, . . . , xn) and (y
1

, . . . , yn), then we can write

'(x, y) = x>Gy = y>G>x.

Note that we are committing an abuse of notation since x =
Pn

i=1

xiei
is a vector in E, but the column vector associated with (x

1

, . . . , xn) be-
longs to Rn. To avoid this minor abuse, we could denote the column vector
associated with (x

1

, . . . , xn) by x (and similarly y for the column vector as-
sociated with (y

1

, . . . , yn)), in wich case the “correct” expression for '(x, y)
is

'(x, y) = x>Gy.
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However, in view of the isomorphism between E and Rn, to keep notation
as simple as possible, we will use x and y instead of x and y.

Also observe that ' is symmetric i↵ G = G>, and ' is positive definite
i↵ the matrix G is positive definite, that is,

x>Gx > 0 for all x 2 Rn, x 6= 0.

The matrix G associated with an inner product is called the Gram matrix
of the inner product with respect to the basis (e

1

, . . . , en).
Conversely, if A is a symmetric positive definite n⇥n matrix, it is easy

to check that the bilinear form

hx, yi = x>Ay

is an inner product. If we make a change of basis from the basis (e
1

, . . . , en)
to the basis (f

1

, . . . , fn), and if the change of basis matrix is P (where the
jth column of P consists of the coordinates of fj over the basis (e1, . . . , en)),
then with respect to coordinates x0 and y0 over the basis (f

1

, . . . , fn), we
have

x>Gy = x0>P>GPy0,

so the matrix of our inner product over the basis (f
1

, . . . , fn) is P>GP . We
summarize these facts in the following proposition.

Proposition 11.2. Let E be a finite-dimensional vector space, and let
(e

1

, . . . , en) be a basis of E.

(1) For any inner product h�,�i on E, if G = (hei, eji) is the Gram matrix
of the inner product h�,�i w.r.t. the basis (e

1

, . . . , en), then G is
symmetric positive definite.

(2) For any change of basis matrix P , the Gram matrix of h�,�i with
respect to the new basis is P>GP .

(3) If A is any n ⇥ n symmetric positive definite matrix, then

hx, yi = x>Ay

is an inner product on E.

We will see later that a symmetric matrix is positive definite i↵ its
eigenvalues are all positive.

One of the very important properties of an inner product ' is that the
map u 7!

p
�(u) is a norm.

Proposition 11.3. Let E be a Euclidean space with inner product ', and
let � be the corresponding quadratic form. For all u, v 2 E, we have the
Cauchy–Schwarz inequality

'(u, v)2  �(u)�(v),
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the equality holding i↵ u and v are linearly dependent.
We also have the Minkowski inequality

p
�(u+ v) 

p
�(u) +

p
�(v),

the equality holding i↵ u and v are linearly dependent, where in addition if
u 6= 0 and v 6= 0, then u = �v for some � > 0.

Proof. For any vectors u, v 2 E, we define the function T : R ! R such
that

T (�) = �(u+ �v),

for all � 2 R. Using bilinearity and symmetry, we have

�(u+ �v) = '(u+ �v, u+ �v)

= '(u, u+ �v) + �'(v, u+ �v)

= '(u, u) + 2�'(u, v) + �2'(v, v)

= �(u) + 2�'(u, v) + �2�(v).

Since ' is positive definite, � is nonnegative, and thus T (�) � 0 for all
� 2 R. If �(v) = 0, then v = 0, and we also have '(u, v) = 0. In this
case, the Cauchy–Schwarz inequality is trivial, and v = 0 and u are linearly
dependent.

Now assume �(v) > 0. Since T (�) � 0, the quadratic equation

�2�(v) + 2�'(u, v) + �(u) = 0

cannot have distinct real roots, which means that its discriminant

� = 4('(u, v)2 � �(u)�(v))

is null or negative, which is precisely the Cauchy–Schwarz inequality

'(u, v)2  �(u)�(v).

Let us now consider the case where we have the equality

'(u, v)2 = �(u)�(v).

There are two cases. If �(v) = 0, then v = 0 and u and v are linearly
dependent. If �(v) 6= 0, then the above quadratic equation has a double
root �

0

, and we have �(u + �
0

v) = 0. Since ' is positive definite, �(u +
�
0

v) = 0 implies that u + �
0

v = 0, which shows that u and v are linearly
dependent. Conversely, it is easy to check that we have equality when u
and v are linearly dependent.
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The Minkowski inequality
p
�(u+ v) 

p
�(u) +

p
�(v)

is equivalent to

�(u+ v)  �(u) + �(v) + 2
p
�(u)�(v).

However, we have shown that

2'(u, v) = �(u+ v) � �(u) � �(v),

and so the above inequality is equivalent to

'(u, v) 
p
�(u)�(v),

which is trivial when '(u, v)  0, and follows from the Cauchy–Schwarz
inequality when '(u, v) � 0. Thus, the Minkowski inequality holds. Finally
assume that u 6= 0 and v 6= 0, and that

p
�(u+ v) =

p
�(u) +

p
�(v).

When this is the case, we have

'(u, v) =
p
�(u)�(v),

and we know from the discussion of the Cauchy–Schwarz inequality that the
equality holds i↵ u and v are linearly dependent. The Minkowski inequality
is an equality when u or v is null. Otherwise, if u 6= 0 and v 6= 0, then
u = �v for some � 6= 0, and since

'(u, v) = �'(v, v) =
p
�(u)�(v),

by positivity, we must have � > 0.

Note that the Cauchy–Schwarz inequality can also be written as

|'(u, v)| 
p

�(u)
p
�(v).

Remark: It is easy to prove that the Cauchy–Schwarz and the Minkowski
inequalities still hold for a symmetric bilinear form that is positive, but not
necessarily definite (i.e., '(u, v) � 0 for all u, v 2 E). However, u and v
need not be linearly dependent when the equality holds.

The Minkowski inequality
p
�(u+ v) 

p
�(u) +

p
�(v)
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shows that the map u 7!
p
�(u) satisfies the convexity inequality (also

known as triangle inequality), condition (N3) of Definition 8.1, and since '
is bilinear and positive definite, it also satisfies conditions (N1) and (N2)
of Definition 8.1, and thus it is a norm on E. The norm induced by ' is
called the Euclidean norm induced by '.

The Cauchy–Schwarz inequality can be written as

|u · v|  kukkvk,

and the Minkowski inequality as

ku+ vk  kuk + kvk.

If u and v are nonzero vectors then the Cauchy–Schwarz inequality
implies that

�1  u · v
kuk kvk  +1.

Then there is a unique ✓ 2 [0,⇡] such that

cos ✓ =
u · v

kuk kvk .

We have u = v i↵ ✓ = 0 and u = �v i↵ ✓ = ⇡. For 0 < ✓ < ⇡, the vectors
u and v are linearly independent and there is an orientation of the plane
spanned by u and v such that ✓ is the angle between u and v. See Problem
11.8 for the precise notion of orientation. If u is a unit vector (which means
that kuk = 1), then the vector

(kvk cos ✓)u = (u · v)u = (v · u)u

is called the orthogonal projection of v onto the space spanned by u.

Remark: One might wonder if every norm on a vector space is induced
by some Euclidean inner product. In general this is false, but remarkably,
there is a simple necessary and su�cient condition, which is that the norm
must satisfy the parallelogram law :

ku+ vk2 + ku � vk2 = 2(kuk2 + kvk2).

See Figure 11.1.
If h�,�i is an inner product, then we have

ku+ vk2 = kuk2 + kvk2 + 2hu, vi

ku � vk2 = kuk2 + kvk2 � 2hu, vi,
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u

v

u + vu
-v

Fig. 11.1 The parallelogram law states that the sum of the lengths of the diagonals of
the parallelogram determined by vectors u and v equals the sum of all the sides.

and by adding and subtracting these identities, we get the parallelogram
law and the equation

hu, vi = 1

4
(ku+ vk2 � ku � vk2),

which allows us to recover h�,�i from the norm.
Conversely, if k k is a norm satisfying the parallelogram law, and if it

comes from an inner product, then this inner product must be given by

hu, vi = 1

4
(ku+ vk2 � ku � vk2).

We need to prove that the above form is indeed symmetric and bilinear.
Symmetry holds because ku � vk = k�(u � v)k = kv � uk. Let us prove

additivity in the variable u. By the parallelogram law, we have

2(kx+ zk2 + kyk2) = kx+ y + zk2 + kx � y + zk2

which yields

kx+ y + zk2 = 2(kx+ zk2 + kyk2) � kx � y + zk2

kx+ y + zk2 = 2(ky + zk2 + kxk2) � ky � x+ zk2 ,
where the second formula is obtained by swapping x and y. Then by adding
up these equations, we get

kx+ y + zk2 = kxk2 + kyk2 + kx+ zk2 + ky + zk2

� 1

2
kx � y + zk2 � 1

2
ky � x+ zk2 .



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 416

416 Euclidean Spaces

Replacing z by �z in the above equation, we get

kx+ y � zk2 = kxk2 + kyk2 + kx � zk2 + ky � zk2

� 1

2
kx � y � zk2 � 1

2
ky � x � zk2 ,

Since kx � y + zk = k�(x � y + z)k = ky � x � zk and ky � x+ zk =
k�(y � x+ z)k = kx � y � zk, by subtracting the last two equations, we
get

hx+ y, zi = 1

4
(kx+ y + zk2 � kx+ y � zk2)

=
1

4
(kx+ zk2 � kx � zk2) + 1

4
(ky + zk2 � ky � zk2)

= hx, zi + hy, zi,
as desired.

Proving that

h�x, yi = �hx, yi for all � 2 R
is a little tricky. The strategy is to prove the identity for � 2 Z, then to
promote it to Q, and then to R by continuity.

Since

h�u, vi = 1

4
(k�u+ vk2 � k�u � vk2)

=
1

4
(ku � vk2 � ku+ vk2)

= �hu, vi,
the property holds for � = �1. By linearity and by induction, for any n 2 N
with n � 1, writing n = n � 1 + 1, we get

h�x, yi = �hx, yi for all � 2 N,
and since the above also holds for � = �1, it holds for all � 2 Z. For
� = p/q with p, q 2 Z and q 6= 0, we have

qh(p/q)u, vi = hpu, vi = phu, vi,
which shows that

h(p/q)u, vi = (p/q)hu, vi,
and thus

h�x, yi = �hx, yi for all � 2 Q.

To finish the proof, we use the fact that a norm is a continuous map x 7!
kxk. Then, the continuous function t 7! 1

t htu, vi defined on R� {0} agrees
with hu, vi on Q � {0}, so it is equal to hu, vi on R � {0}. The case � = 0
is trivial, so we are done.

We now define orthogonality.
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11.2 Orthogonality and Duality in Euclidean Spaces

An inner product on a vector space gives the ability to define the notion
of orthogonality. Families of nonnull pairwise orthogonal vectors must be
linearly independent. They are called orthogonal families. In a vector space
of finite dimension it is always possible to find orthogonal bases. This is
very useful theoretically and practically. Indeed, in an orthogonal basis,
finding the coordinates of a vector is very cheap: It takes an inner product.
Fourier series make crucial use of this fact. When E has finite dimension, we
prove that the inner product on E induces a natural isomorphism between
E and its dual space E⇤. This allows us to define the adjoint of a linear
map in an intrinsic fashion (i.e., independently of bases). It is also possible
to orthonormalize any basis (certainly when the dimension is finite). We
give two proofs, one using duality, the other more constructive using the
Gram–Schmidt orthonormalization procedure.

Definition 11.2. Given a Euclidean space E, any two vectors u, v 2 E are
orthogonal, or perpendicular , if u · v = 0. Given a family (ui)i2I of vectors
in E, we say that (ui)i2I is orthogonal if ui · uj = 0 for all i, j 2 I, where
i 6= j. We say that the family (ui)i2I is orthonormal if ui · uj = 0 for all
i, j 2 I, where i 6= j, and kuik = ui · ui = 1, for all i 2 I. For any subset F
of E, the set

F? = {v 2 E | u · v = 0, for all u 2 F},

of all vectors orthogonal to all vectors in F , is called the orthogonal com-
plement of F .

Since inner products are positive definite, observe that for any vector
u 2 E, we have

u · v = 0 for all v 2 E i↵ u = 0.

It is immediately verified that the orthogonal complement F? of F is a
subspace of E.

Example 11.5. Going back to Example 11.3 and to the inner product

hf, gi =
Z ⇡

�⇡
f(t)g(t)dt

on the vector space C[�⇡,⇡], it is easily checked that

hsin px, sin qxi =
⇢
⇡ if p = q, p, q � 1,
0 if p 6= q, p, q � 1,
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hcos px, cos qxi =
⇢
⇡ if p = q, p, q � 1,
0 if p 6= q, p, q � 0,

and

hsin px, cos qxi = 0,

for all p � 1 and q � 0, and of course, h1, 1i =
R ⇡
�⇡ dx = 2⇡.

As a consequence, the family (sin px)p�1

[(cos qx)q�0

is orthogonal. It is
not orthonormal, but becomes so if we divide every trigonometric function
by

p
⇡, and 1 by

p
2⇡.

Proposition 11.4. Given a Euclidean space E, for any family (ui)i2I of
nonnull vectors in E, if (ui)i2I is orthogonal, then it is linearly independent.

Proof. Assume there is a linear dependence
X

j2J

�juj = 0

for some �j 2 R and some finite subset J of I. By taking the inner product
with ui for any i 2 J , and using the the bilinearity of the inner product
and the fact that ui · uj = 0 whenever i 6= j, we get

0 = ui · 0 = ui ·

0

@
X

j2J

�juj

1

A

=
X

j2J

�j(ui · uj) = �i(ui · ui),

so

�i(ui · ui) = 0, for all i 2 J,

and since ui 6= 0 and an inner product is positive definite, ui ·ui 6= 0, so we
obtain

�i = 0, for all i 2 J,

which shows that the family (ui)i2I is linearly independent.

We leave the following simple result as an exercise.

Proposition 11.5. Given a Euclidean space E, any two vectors u, v 2 E
are orthogonal i↵

ku+ vk2 = kuk2 + kvk2.

See Figure 11.2 for a geometrical interpretation.
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u + vu

v

Fig. 11.2 The sum of the lengths of the two sides of a right triangle is equal to the
length of the hypotenuse; i.e. the Pythagorean theorem.

One of the most useful features of orthonormal bases is that they a↵ord
a very simple method for computing the coordinates of a vector over any
basis vector. Indeed, assume that (e

1

, . . . , em) is an orthonormal basis. For
any vector

x = x
1

e
1

+ · · · + xmem,

if we compute the inner product x · ei, we get

x · ei = x
1

e
1

· ei + · · · + xiei · ei + · · · + xmem · ei = xi,

since

ei · ej =
⇢
1 if i = j,
0 if i 6= j

is the property characterizing an orthonormal family. Thus,

xi = x · ei,

which means that xiei = (x · ei)ei is the orthogonal projection of x onto
the subspace generated by the basis vector ei. See Figure 11.3. If the basis
is orthogonal but not necessarily orthonormal, then

xi =
x · ei
ei · ei

=
x · ei
keik2

.

All this is true even for an infinite orthonormal (or orthogonal) basis (ei)i2I .



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 420

420 Euclidean Spaces

e i

x

x ei i

Θ

Fig. 11.3 The orthogonal projection of the red vector x onto the black basis vector ei

is the maroon vector xiei. Observe that x · ei = kxk cos ✓.

� However, remember that every vector x is expressed as a linear
combination

x =
X

i2I

xiei

where the family of scalars (xi)i2I has finite support, which means that
xi = 0 for all i 2 I � J , where J is a finite set. Thus, even though the
family (sin px)p�1

[ (cos qx)q�0

is orthogonal (it is not orthonormal, but
becomes so if we divide every trigonometric function by

p
⇡, and 1 by

p
2⇡;

we won’t because it looks messy!), the fact that a function f 2 C0[�⇡,⇡]
can be written as a Fourier series as

f(x) = a
0

+
1X

k=1

(ak cos kx+ bk sin kx)

does not mean that (sin px)p�1

[ (cos qx)q�0

is a basis of this vector space
of functions, because in general, the families (ak) and (bk) do not have
finite support! In order for this infinite linear combination to make sense,
it is necessary to prove that the partial sums

a
0

+
nX

k=1

(ak cos kx+ bk sin kx)

of the series converge to a limit when n goes to infinity. This requires a
topology on the space.
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A very important property of Euclidean spaces of finite dimension is
that the inner product induces a canonical bijection (i.e., independent of
the choice of bases) between the vector space E and its dual E⇤. The reason
is that an inner product · : E ⇥ E ! R defines a nondegenerate pairing, as
defined in Definition 10.4. Indeed, if u · v = 0 for all v 2 E then u = 0, and
similarly if u · v = 0 for all u 2 E then v = 0 (since an inner product is
positive definite and symmetric). By Proposition 10.5, there is a canonical
isomorphism between E and E⇤. We feel that the reader will appreciate if
we exhibit this mapping explicitly and reprove that it is an isomorphism.

The mapping from E to E⇤ is defined as follows.

Definition 11.3. For any vector u 2 E, let 'u : E ! R be the map defined
such that

'u(v) = u · v, for all v 2 E.

Since the inner product is bilinear, the map 'u is a linear form in E⇤. Thus,
we have a map [ : E ! E⇤, defined such that

[(u) = 'u.

Theorem 11.1. Given a Euclidean space E, the map [ : E ! E⇤ defined
such that

[(u) = 'u

is linear and injective. When E is also of finite dimension, the map [ : E !
E⇤ is a canonical isomorphism.

Proof. That [ : E ! E⇤ is a linear map follows immediately from the fact
that the inner product is bilinear. If 'u = 'v, then 'u(w) = 'v(w) for all
w 2 E, which by definition of 'u means that u · w = v · w for all w 2 E,
which by bilinearity is equivalent to

(v � u) · w = 0

for all w 2 E, which implies that u = v, since the inner product is positive
definite. Thus, [ : E ! E⇤ is injective. Finally, when E is of finite dimen-
sion n, we know that E⇤ is also of dimension n, and then [ : E ! E⇤ is
bijective.

The inverse of the isomorphism [ : E ! E⇤ is denoted by ] : E⇤ ! E.



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 422

422 Euclidean Spaces

As a consequence of Theorem 11.1 we have the following corollary.

Corollary 11.1. If E is a Euclidean space of finite dimension, every linear
form f 2 E⇤ corresponds to a unique u 2 E such that

f(v) = u · v, for every v 2 E.

In particular, if f is not the zero form, the kernel of f , which is a hyperplane
H, is precisely the set of vectors that are orthogonal to u.

Remarks:

(1) The “musical map” [ : E ! E⇤ is not surjective when E has infinite
dimension. The result can be salvaged by restricting our attention to
continuous linear maps, and by assuming that the vector space E is
a Hilbert space (i.e., E is a complete normed vector space w.r.t. the
Euclidean norm). This is the famous “little” Riesz theorem (or Riesz
representation theorem).

(2) Theorem 11.1 still holds if the inner product on E is replaced by a
nondegenerate symmetric bilinear form '. We say that a symmetric
bilinear form ' : E ⇥ E ! R is nondegenerate if for every u 2 E,

if '(u, v) = 0 for all v 2 E, then u = 0.

For example, the symmetric bilinear form on R4 (the Lorentz form)
defined such that

'((x
1

, x
2

, x
3

, x
4

), (y
1

, y
2

, y
3

, y
4

)) = x
1

y
1

+ x
2

y
2

+ x
3

y
3

� x
4

y
4

is nondegenerate. However, there are nonnull vectors u 2 R4 such that
'(u, u) = 0, which is impossible in a Euclidean space. Such vectors are
called isotropic.

Example 11.6. Consider Rn with its usual Euclidean inner product. Given
any di↵erentiable function f : U ! R, where U is some open subset of Rn,
by definition, for any x 2 U , the total derivative dfx of f at x is the linear
form defined so that for all u = (u

1

, . . . , un) 2 Rn,

dfx(u) =

✓
@f

@x
1

(x) · · · @f

@xn
(x)

◆
0

B@
u
1

...
un

1

CA =
nX

i=1

@f

@xi
(x)ui.

The unique vector v 2 Rn such that

v · u = dfx(u) for all u 2 Rn
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is the transpose of the Jacobian matrix of f at x, the 1 ⇥ n matrix
✓
@f

@x
1

(x) · · · @f

@xn
(x)

◆
.

This is the gradient grad(f)x of f at x, given by

grad(f)x =

0

BBBB@

@f

@x
1

(x)

...
@f

@xn
(x)

1

CCCCA
.

Example 11.7. Given any two vectors u, v 2 R3, let c(u, v) be the linear
form given by

c(u, v)(w) = det(u, v, w) for all w 2 R3.

Since

det(u, v, w) =

������

u
1

v
1

w
1

u
2

v
2

w
2

u
3

v
3

w
3

������
= w

1

����
u
2

v
2

u
3

v
3

����� w
2

����
u
1

v
1

u
3

v
3

����+ w
3

����
u
1

v
1

u
2

v
2

����

= w
1

(u
2

v
3

� u
3

v
2

) + w
2

(u
3

v
1

� u
1

v
3

) + w
3

(u
1

v
2

� u
2

v
1

),

we see that the unique vector z 2 R3 such that

z · w = c(u, v)(w) = det(u, v, w) for all w 2 R3

is the vector

z =

0

@
u
2

v
3

� u
3

v
2

u
3

v
1

� u
1

v
3

u
1

v
2

� u
2

v
1

1

A .

This is just the cross-product u ⇥ v of u and v. Since det(u, v, u) =
det(u, v, v) = 0, we see that u ⇥ v is orthogonal to both u and v. The
above allows us to generalize the cross-product to Rn. Given any n � 1
vectors u

1

, . . . , un�1

2 Rn, the cross-product u
1

⇥ · · · ⇥ un�1

is the unique
vector in Rn such that

(u
1

⇥ · · · ⇥ un�1

) · w = det(u
1

, . . . , un�1

, w) for all w 2 Rn.

Example 11.8. Consider the vector space Mn(R) of real n ⇥ n matrices
with the inner product

hA,Bi = tr(A>B).
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Let s : Mn(R) ! R be the function given by

s(A) =
nX

i,j=1

aij ,

where A = (aij). It is immediately verified that s is a linear form. It is
easy to check that the unique matrix Z such that

hZ,Ai = s(A) for all A 2 Mn(R)

is the matrix Z = ones(n, n) whose entries are all equal to 1.

11.3 Adjoint of a Linear Map

The existence of the isomorphism [ : E ! E⇤ is crucial to the existence
of adjoint maps. The importance of adjoint maps stems from the fact
that the linear maps arising in physical problems are often self-adjoint,
which means that f = f⇤. Moreover, self-adjoint maps can be diagonalized
over orthonormal bases of eigenvectors. This is the key to the solution of
many problems in mechanics and engineering in general (see Strang [Strang
(1986)]).

Let E be a Euclidean space of finite dimension n, and let f : E ! E be
a linear map. For every u 2 E, the map

v 7! u · f(v)

is clearly a linear form in E⇤, and by Theorem 11.1, there is a unique vector
in E denoted by f⇤(u) such that

f⇤(u) · v = u · f(v),

for every v 2 E. The following simple proposition shows that the map f⇤

is linear.

Proposition 11.6. Given a Euclidean space E of finite dimension, for
every linear map f : E ! E, there is a unique linear map f⇤ : E ! E such
that

f⇤(u) · v = u · f(v), for all u, v 2 E.

Proof. Given u
1

, u
2

2 E, since the inner product is bilinear, we have

(u
1

+ u
2

) · f(v) = u
1

· f(v) + u
2

· f(v),

for all v 2 E, and

(f⇤(u
1

) + f⇤(u
2

)) · v = f⇤(u
1

) · v + f⇤(u
2

) · v,
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for all v 2 E, and since by assumption,

f⇤(u
1

) · v = u
1

· f(v) and f⇤(u
2

) · v = u
2

· f(v),

for all v 2 E. Thus we get

(f⇤(u
1

) + f⇤(u
2

)) · v = (u
1

+ u
2

) · f(v) = f⇤(u
1

+ u
2

) · v,

for all v 2 E. Since [ is bijective, this implies that

f⇤(u
1

+ u
2

) = f⇤(u
1

) + f⇤(u
2

).

Similarly,

(�u) · f(v) = �(u · f(v)),

for all v 2 E, and

(�f⇤(u)) · v = �(f⇤(u) · v),

for all v 2 E, and since by assumption,

f⇤(u) · v = u · f(v),

for all v 2 E, we get

(�f⇤(u)) · v = �(u · f(v)) = (�u) · f(v) = f⇤(�u) · v

for all v 2 E. Since [ is bijective, this implies that

f⇤(�u) = �f⇤(u).

Thus, f⇤ is indeed a linear map, and it is unique since [ is a bijection.

Definition 11.4. Given a Euclidean space E of finite dimension, for every
linear map f : E ! E, the unique linear map f⇤ : E ! E such that

f⇤(u) · v = u · f(v), for all u, v 2 E

given by Proposition 11.6 is called the adjoint of f (w.r.t. to the inner
product). Linear maps f : E ! E such that f = f⇤ are called self-adjoint
maps.

Self-adjoint linear maps play a very important role because they have
real eigenvalues, and because orthonormal bases arise from their eigenvec-
tors. Furthermore, many physical problems lead to self-adjoint linear maps
(in the form of symmetric matrices).

Remark: Proposition 11.6 still holds if the inner product on E is replaced
by a nondegenerate symmetric bilinear form '.
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Linear maps such that f�1 = f⇤, or equivalently

f⇤ � f = f � f⇤ = id,

also play an important role. They are linear isometries , or isometries.
Rotations are special kinds of isometries. Another important class of linear
maps are the linear maps satisfying the property

f⇤ � f = f � f⇤,

called normal linear maps . We will see later on that normal maps can
always be diagonalized over orthonormal bases of eigenvectors, but this
will require using a Hermitian inner product (over C).

Given two Euclidean spaces E and F , where the inner product on E
is denoted by h�,�i

1

and the inner product on F is denoted by h�,�i
2

,
given any linear map f : E ! F , it is immediately verified that the proof
of Proposition 11.6 can be adapted to show that there is a unique linear
map f⇤ : F ! E such that

hf(u), vi
2

= hu, f⇤(v)i
1

for all u 2 E and all v 2 F . The linear map f⇤ is also called the adjoint of
f .

The following properties immediately follow from the definition of the
adjoint map:

(1) For any linear map f : E ! F , we have

f⇤⇤ = f.

(2) For any two linear maps f, g : E ! F and any scalar � 2 R:
(f + g)⇤ = f⇤ + g⇤

(�f)⇤ = �f⇤.

(3) If E,F,G are Euclidean spaces with respective inner products
h�,�i

1

, h�,�i
2

, and h�,�i
3

, and if f : E ! F and g : F ! G are
two linear maps, then

(g � f)⇤ = f⇤ � g⇤.

Remark: Given any basis for E and any basis for F , it is possible to
characterize the matrix of the adjoint f⇤ of f in terms of the matrix of f
and the Gram matrices defining the inner products; see Problem 11.5. We
will do so with respect to orthonormal bases in Proposition 11.12(2). Also,
since inner products are symmetric, the adjoint f⇤ of f is also characterized
by

f(u) · v = u · f⇤(v),

for all u, v 2 E.
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11.4 Existence and Construction of Orthonormal
Bases

We can also use Theorem 11.1 to show that any Euclidean space of finite
dimension has an orthonormal basis.

Proposition 11.7. Given any nontrivial Euclidean space E of finite di-
mension n � 1, there is an orthonormal basis (u

1

, . . . , un) for E.

Proof. We proceed by induction on n. When n = 1, take any nonnull
vector v 2 E, which exists since we assumed E nontrivial, and let

u =
v

kvk .

If n � 2, again take any nonnull vector v 2 E, and let

u
1

=
v

kvk .

Consider the linear form 'u1 associated with u
1

. Since u
1

6= 0, by Theorem
11.1, the linear form 'u1 is nonnull, and its kernel is a hyperplane H. Since
'u1(w) = 0 i↵ u

1

·w = 0, the hyperplane H is the orthogonal complement of
{u

1

}. Furthermore, since u
1

6= 0 and the inner product is positive definite,
u
1

· u
1

6= 0, and thus, u
1

/2 H, which implies that E = H � Ru
1

. However,
since E is of finite dimension n, the hyperplane H has dimension n�1, and
by the induction hypothesis, we can find an orthonormal basis (u

2

, . . . , un)
for H. Now because H and the one dimensional space Ru

1

are orthogonal
and E = H � Ru

1

, it is clear that (u
1

, . . . , un) is an orthonormal basis for
E.

As a consequence of Proposition 11.7, given any Euclidean space of finite
dimension n, if (e

1

, . . . , en) is an orthonormal basis for E, then for any two
vectors u = u

1

e
1

+ · · ·+ unen and v = v
1

e
1

+ · · ·+ vnen, the inner product
u · v is expressed as

u · v = (u
1

e
1

+ · · · + unen) · (v
1

e
1

+ · · · + vnen) =
nX

i=1

uivi,

and the norm kuk as

kuk = ku
1

e
1

+ · · · + unenk =

✓ nX

i=1

u2

i

◆
1/2

.
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The fact that a Euclidean space always has an orthonormal basis implies
that any Gram matrix G can be written as

G = Q>Q,

for some invertible matrix Q. Indeed, we know that in a change of basis
matrix, a Gram matrix G becomes G0 = P>GP . If the basis corresponding
to G0 is orthonormal, then G0 = I, so G = (P�1)>P�1.

There is a more constructive way of proving Proposition 11.7, using
a procedure known as the Gram–Schmidt orthonormalization procedure.
Among other things, the Gram–Schmidt orthonormalization procedure
yields the QR-decomposition for matrices , an important tool in numeri-
cal methods.

Proposition 11.8. Given any nontrivial Euclidean space E of finite di-
mension n � 1, from any basis (e

1

, . . . , en) for E we can construct an
orthonormal basis (u

1

, . . . , un) for E, with the property that for every k,
1  k  n, the families (e

1

, . . . , ek) and (u
1

, . . . , uk) generate the same
subspace.

Proof. We proceed by induction on n. For n = 1, let

u
1

=
e
1

ke
1

k .

For n � 2, we also let

u
1

=
e
1

ke
1

k ,

and assuming that (u
1

, . . . , uk) is an orthonormal system that generates
the same subspace as (e

1

, . . . , ek), for every k with 1  k < n, we note that
the vector

u0
k+1

= ek+1

�
kX

i=1

(ek+1

· ui)ui

is nonnull, since otherwise, because (u
1

, . . . , uk) and (e
1

, . . . , ek) generate
the same subspace, (e

1

, . . . , ek+1

) would be linearly dependent, which is
absurd, since (e

1

, . . ., en) is a basis. Thus, the norm of the vector u0
k+1

being nonzero, we use the following construction of the vectors uk and u0
k:

u0
1

= e
1

, u
1

=
u0
1

ku0
1

k ,

and for the inductive step

u0
k+1

= ek+1

�
kX

i=1

(ek+1

· ui)ui, uk+1

=
u0
k+1

ku0
k+1

k ,
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where 1  k  n � 1. It is clear that kuk+1

k = 1, and since (u
1

, . . . , uk) is
an orthonormal system, we have

u0
k+1

· ui = ek+1

· ui � (ek+1

· ui)ui · ui = ek+1

· ui � ek+1

· ui = 0,

for all i with 1  i  k. This shows that the family (u
1

, . . . , uk+1

) is
orthonormal, and since (u

1

, . . . , uk) and (e
1

, . . . , ek) generates the same
subspace, it is clear from the definition of uk+1

that (u
1

, . . . , uk+1

) and
(e

1

, . . . , ek+1

) generate the same subspace. This completes the induction
step and the proof of the proposition.

Note that u0
k+1

is obtained by subtracting from ek+1

the projection of
ek+1

itself onto the orthonormal vectors u
1

, . . . , uk that have already been
computed. Then u0

k+1

is normalized.

Example 11.9. For a specific example of this procedure, let E = R3 with
the standard Euclidean norm. Take the basis

e
1

=

0

@
1
1
1

1

A e
2

=

0

@
1
0
1

1

A e
3

=

0

@
1
1
0

1

A .

Then

u
1

=
1p
3

0

@
1
1
1

1

A ,

and

u0
2

= e
2

� (e
2

· u
1

)u
1

=

0

@
1
0
1

1

A� 2

3

0

@
1
1
1

1

A =
1

3

0

@
1

�2
1

1

A .

This implies that

u
2

=
1p
6

0

@
1

�2
1

1

A ,

and that

u0
3

= e
3

� (e
3

·u
1

)u
1

� (e
3

·u
2

)u
2

=

0

@
1
1
0

1

A� 2

3

0

@
1
1
1

1

A+
1

6

0

@
1

�2
1

1

A =
1

2

0

@
1
0

�1

1

A .

To complete the orthonormal basis, normalize u0
3

to obtain

u
3

=
1p
2

0

@
1
0

�1

1

A .

An illustration of this example is provided by Figure 11.4.
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e2
u

u 1

‘
2

u 1direction
u2

direction

e3 u3
‘

Fig. 11.4 The top figure shows the construction of the blue u

0
2 as perpendicular to the

orthogonal projection of e2 onto u1, while the bottom figure shows the construction of
the green u

0
3 as normal to the plane determined by u1 and u2.

Remarks:

(1) The QR-decomposition can now be obtained very easily, but we post-
pone this until Section 11.6.

(2) The proof of Proposition 11.8 also works for a countably infinite basis
for E, producing a countably infinite orthonormal basis.

It should also be said that the Gram–Schmidt orthonormalization pro-
cedure that we have presented is not very stable numerically, and instead,
one should use the modified Gram–Schmidt method . To compute u0

k+1

,
instead of projecting ek+1

onto u
1

, . . . , uk in a single step, it is better to
perform k projections. We compute uk+1

1

, uk+1

2

, . . . , uk+1

k as follows:

uk+1

1

= ek+1

� (ek+1

· u
1

)u
1

,

uk+1

i+1

= uk+1

i � (uk+1

i · ui+1

)ui+1

,

where 1  i  k � 1. It is easily shown that u0
k+1

= uk+1

k .

Example 11.10. Let us apply the modified Gram–Schmidt method to the
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(e
1

, e
2

, e
3

) basis of Example 11.9. The only change is the computation of
u0
3

. For the modified Gram–Schmidt procedure, we first calculate

u3

1

= e
3

� (e
3

· u
1

)u
1

=

0

@
1
1
0

1

A� 2

3

0

@
1
1
1

1

A =
1

3

0

@
1
1

�2

1

A .

Then

u3

2

= u3

1

� (u3

1

· u
2

)u
2

=
1

3

0

@
1
1

�2

1

A+
1

6

0

@
1

�2
1

1

A =
1

2

0

@
1
0

�1

1

A ,

and observe that u3

2

= u0
3

. See Figure 11.5.

u 1direction
u2

direction

e3
u3

1

u 1direction
u2

direction

u1
3

u3
2

Fig. 11.5 The top figure shows the construction of the blue u

3
1 as perpendicular to the

orthogonal projection of e3 onto u1, while the bottom figure shows the construction of
the sky blue u

3
2 as perpendicular to the orthogonal projection of u3

1 onto u2.

The following Matlab program implements the modified Gram–Schmidt
procedure.

function q = gramschmidt4(e)

n = size(e,1);
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for i = 1:n

q(:,i) = e(:,i);

for j = 1:i-1

r = q(:,j)’*q(:,i);

q(:,i) = q(:,i) - r*q(:,j);

end

r = sqrt(q(:,i)’*q(:,i));

q(:,i) = q(:,i)/r;

end

end

If we apply the above function to the matrix
0

@
1 1 1
1 0 1
1 1 0

1

A ,

the ouput is the matrix
0

@
0.5774 0.4082 0.7071
0.5774 �0.8165 �0.0000
0.5774 0.4082 �0.7071

1

A ,

which matches the result of Example 11.9.

Example 11.11. If we consider polynomials and the inner product

hf, gi =
Z

1

�1

f(t)g(t)dt,

applying the Gram–Schmidt orthonormalization procedure to the polyno-
mials

1, x, x2, . . . , xn, . . . ,

which form a basis of the polynomials in one variable with real coe�cients,
we get a family of orthonormal polynomials Qn(x) related to the Legendre
polynomials.

The Legendre polynomials Pn(x) have many nice properties. They are
orthogonal, but their norm is not always 1. The Legendre polynomials
Pn(x) can be defined as follows. Letting fn be the function

fn(x) = (x2 � 1)n,

we define Pn(x) as follows:

P
0

(x) = 1, and Pn(x) =
1

2nn!
f (n)
n (x),
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where f (n)
n is the nth derivative of fn.

They can also be defined inductively as follows:

P
0

(x) = 1,

P
1

(x) = x,

Pn+1

(x) =
2n+ 1

n+ 1
xPn(x) � n

n+ 1
Pn�1

(x).

Here is an explicit summation for Pn(x):

Pn(x) =
1

2n

bn/2cX

k=0

(�1)k
✓
n

k

◆✓
2n � 2k

n

◆
xn�2k.

The polynomials Qn are related to the Legendre polynomials Pn as
follows:

Qn(x) =

r
2n+ 1

2
Pn(x).

Example 11.12. Consider polynomials over [�1, 1], with the symmetric
bilinear form

hf, gi =
Z

1

�1

1p
1 � t2

f(t)g(t)dt.

We leave it as an exercise to prove that the above defines an inner product.
It can be shown that the polynomials Tn(x) given by

Tn(x) = cos(n arccosx), n � 0,

(equivalently, with x = cos ✓, we have Tn(cos ✓) = cos(n✓)) are orthogo-
nal with respect to the above inner product. These polynomials are the
Chebyshev polynomials. Their norm is not equal to 1. Instead, we have

hTn, Tni =
(
⇡
2

if n > 0,

⇡ if n = 0.

Using the identity (cos ✓ + i sin ✓)n = cosn✓ + i sinn✓ and the binomial
formula, we obtain the following expression for Tn(x):

Tn(x) =

bn/2cX

k=0

✓
n

2k

◆
(x2 � 1)kxn�2k.

The Chebyshev polynomials are defined inductively as follows:

T
0

(x) = 1

T
1

(x) = x

Tn+1

(x) = 2xTn(x) � Tn�1

(x), n � 1.
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Using these recurrence equations, we can show that

Tn(x) =
(x �

p
x2 � 1)n + (x+

p
x2 � 1)n

2
.

The polynomial Tn has n distinct roots in the interval [�1, 1]. The Cheby-
shev polynomials play an important role in approximation theory. They
are used as an approximation to a best polynomial approximation of a
continuous function under the sup-norm (1-norm).

The inner products of the last two examples are special cases of an inner
product of the form

hf, gi =
Z

1

�1

W (t)f(t)g(t)dt,

where W (t) is a weight function. If W is a nonzero continuous function
such that W (x) � 0 on (�1, 1), then the above bilinear form is indeed
positive definite. Families of orthogonal polynomials used in approximation
theory and in physics arise by a suitable choice of the weight function W .
Besides the previous two examples, the Hermite polynomials correspond to
W (x) = e�x2

, the Laguerre polynomials to W (x) = e�x, and the Jacobi
polynomials to W (x) = (1 � x)↵(1 + x)� , with ↵,� > �1. Comprehensive
treatments of orthogonal polynomials can be found in Lebedev [Lebedev
(1972)], Sansone [Sansone (1991)], and Andrews, Askey and Roy [Andrews
et al. (2000)].

We can also prove the following proposition regarding orthogonal spaces.

Proposition 11.9. Given any nontrivial Euclidean space E of finite di-
mension n � 1, for any subspace F of dimension k, the orthogonal comple-
ment F? of F has dimension n � k, and E = F � F?. Furthermore, we
have F?? = F .

Proof. From Proposition 11.7, the subspace F has some orthonormal basis
(u

1

, . . . , uk). This linearly independent family (u
1

, . . . , uk) can be extended
to a basis (u

1

, . . . , uk, vk+1

, . . . , vn), and by Proposition 11.8, it can be
converted to an orthonormal basis (u

1

, . . . , un), which contains (u
1

, . . . , uk)
as an orthonormal basis of F . Now any vector w = w

1

u
1

+ · · ·+wnun 2 E
is orthogonal to F i↵ w · ui = 0, for every i, where 1  i  k, i↵ wi = 0 for
every i, where 1  i  k. Clearly, this shows that (uk+1

, . . . , un) is a basis
of F?, and thus E = F �F?, and F? has dimension n� k. Similarly, any
vector w = w

1

u
1

+ · · · + wnun 2 E is orthogonal to F? i↵ w · ui = 0, for
every i, where k + 1  i  n, i↵ wi = 0 for every i, where k + 1  i  n.
Thus, (u

1

, . . . , uk) is a basis of F??, and F?? = F .
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11.5 Linear Isometries (Orthogonal Transformations)

In this section we consider linear maps between Euclidean spaces that pre-
serve the Euclidean norm. These transformations, sometimes called rigid
motions , play an important role in geometry.

Definition 11.5. Given any two nontrivial Euclidean spaces E and F of
the same finite dimension n, a function f : E ! F is an orthogonal trans-
formation, or a linear isometry , if it is linear and

kf(u)k = kuk, for all u 2 E.

Remarks:

(1) A linear isometry is often defined as a linear map such that

kf(v) � f(u)k = kv � uk,

for all u, v 2 E. Since the map f is linear, the two definitions are
equivalent. The second definition just focuses on preserving the dis-
tance between vectors.

(2) Sometimes, a linear map satisfying the condition of Definition 11.5 is
called a metric map, and a linear isometry is defined as a bijective
metric map.

An isometry (without the word linear) is sometimes defined as a function
f : E ! F (not necessarily linear) such that

kf(v) � f(u)k = kv � uk,

for all u, v 2 E, i.e., as a function that preserves the distance. This require-
ment turns out to be very strong. Indeed, the next proposition shows that
all these definitions are equivalent when E and F are of finite dimension,
and for functions such that f(0) = 0.

Proposition 11.10. Given any two nontrivial Euclidean spaces E and F
of the same finite dimension n, for every function f : E ! F , the following
properties are equivalent:

(1) f is a linear map and kf(u)k = kuk, for all u 2 E;
(2) kf(v) � f(u)k = kv � uk, for all u, v 2 E, and f(0) = 0;
(3) f(u) · f(v) = u · v, for all u, v 2 E.

Furthermore, such a map is bijective.
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Proof. Clearly, (1) implies (2), since in (1) it is assumed that f is linear.
Assume that (2) holds. In fact, we shall prove a slightly stronger result.

We prove that if

kf(v) � f(u)k = kv � uk

for all u, v 2 E, then for any vector ⌧ 2 E, the function g : E ! F defined
such that

g(u) = f(⌧ + u) � f(⌧)

for all u 2 E is a linear map such that g(0) = 0 and (3) holds. Clearly,
g(0) = f(⌧) � f(⌧) = 0.

Note that from the hypothesis

kf(v) � f(u)k = kv � uk

for all u, v 2 E, we conclude that

kg(v) � g(u)k = kf(⌧ + v) � f(⌧) � (f(⌧ + u) � f(⌧))k,
= kf(⌧ + v) � f(⌧ + u)k,
= k⌧ + v � (⌧ + u)k,
= kv � uk,

for all u, v 2 E. Since g(0) = 0, by setting u = 0 in

kg(v) � g(u)k = kv � uk,

we get

kg(v)k = kvk

for all v 2 E. In other words, g preserves both the distance and the norm.
To prove that g preserves the inner product, we use the simple fact that

2u · v = kuk2 + kvk2 � ku � vk2

for all u, v 2 E. Then since g preserves distance and norm, we have

2g(u) · g(v) = kg(u)k2 + kg(v)k2 � kg(u) � g(v)k2

= kuk2 + kvk2 � ku � vk2

= 2u · v,

and thus g(u) · g(v) = u · v, for all u, v 2 E, which is (3). In particular,
if f(0) = 0, by letting ⌧ = 0, we have g = f , and f preserves the scalar
product, i.e., (3) holds.
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Now assume that (3) holds. Since E is of finite dimension, we can pick
an orthonormal basis (e

1

, . . . , en) for E. Since f preserves inner products,
(f(e

1

), . . ., f(en)) is also orthonormal, and since F also has dimension n,
it is a basis of F . Then note that since (e

1

, . . . , en) and (f(e
1

), . . . , f(en))
are orthonormal bases, for any u 2 E we have

u =
nX

i=1

(u · ei)ei =
nX

i=1

uiei

and

f(u) =
nX

i=1

(f(u) · f(ei))f(ei),

and since f preserves inner products, this shows that

f(u) =
nX

i=1

(f(u) · f(ei))f(ei) =
nX

i=1

(u · ei)f(ei) =
nX

i=1

uif(ei),

which proves that f is linear. Obviously, f preserves the Euclidean norm,
and (3) implies (1).

Finally, if f(u) = f(v), then by linearity f(v�u) = 0, so that kf(v�u)k
= 0, and since f preserves norms, we must have kv�uk = 0, and thus u = v.
Thus, f is injective, and since E and F have the same finite dimension, f
is bijective.

Remarks:

(i) The dimension assumption is needed only to prove that (3) implies (1)
when f is not known to be linear, and to prove that f is surjective, but
the proof shows that (1) implies that f is injective.

(ii) The implication that (3) implies (1) holds if we also assume that f is
surjective, even if E has infinite dimension.

In (2), when f does not satisfy the condition f(0) = 0, the proof shows
that f is an a�ne map. Indeed, taking any vector ⌧ as an origin, the map
g is linear, and

f(⌧ + u) = f(⌧) + g(u) for all u 2 E.

By Proposition 5.14, this shows that f is a�ne with associated linear map
g.
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This fact is worth recording as the following proposition.

Proposition 11.11. Given any two nontrivial Euclidean spaces E and F
of the same finite dimension n, for every function f : E ! F , if

kf(v) � f(u)k = kv � uk for all u, v 2 E,

then f is an a�ne map, and its associated linear map g is an isometry.

In view of Proposition 11.10, we usually abbreviate “linear isometry”
as “isometry,” unless we wish to emphasize that we are dealing with a map
between vector spaces.

We are now going to take a closer look at the isometries f : E ! E of
a Euclidean space of finite dimension.

11.6 The Orthogonal Group, Orthogonal Matrices

In this section we explore some of the basic properties of the orthogonal
group and of orthogonal matrices.

Proposition 11.12. Let E be any Euclidean space of finite dimension n,
and let f : E ! E be any linear map. The following properties hold:

(1) The linear map f : E ! E is an isometry i↵

f � f⇤ = f⇤ � f = id.

(2) For every orthonormal basis (e
1

, . . . , en) of E, if the matrix of f is A,
then the matrix of f⇤ is the transpose A> of A, and f is an isometry
i↵ A satisfies the identities

AA> = A>A = In,

where In denotes the identity matrix of order n, i↵ the columns of A
form an orthonormal basis of Rn, i↵ the rows of A form an orthonormal
basis of Rn.

Proof. (1) The linear map f : E ! E is an isometry i↵

f(u) · f(v) = u · v,

for all u, v 2 E, i↵

f⇤(f(u)) · v = f(u) · f(v) = u · v

for all u, v 2 E, which implies

(f⇤(f(u)) � u) · v = 0
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for all u, v 2 E. Since the inner product is positive definite, we must have

f⇤(f(u)) � u = 0

for all u 2 E, that is,

f⇤ � f = id.

But an endomorphism f of a finite-dimensional vector space that has a left
inverse is an isomorphism, so f � f⇤ = id. The converse is established by
doing the above steps backward.

(2) If (e
1

, . . . , en) is an orthonormal basis for E, let A = (ai j) be the
matrix of f , and let B = (bi j) be the matrix of f⇤. Since f⇤ is characterized
by

f⇤(u) · v = u · f(v)

for all u, v 2 E, using the fact that if w = w
1

e
1

+ · · · + wnen we have
wk = w · ek for all k, 1  k  n, letting u = ei and v = ej , we get

bj i = f⇤(ei) · ej = ei · f(ej) = ai j ,

for all i, j, 1  i, j  n. Thus, B = A>. Now if X and Y are arbitrary
matrices over the basis (e

1

, . . . , en), denoting as usual the jth column of X
by Xj , and similarly for Y , a simple calculation shows that

X>Y = (Xi · Y j)
1i,jn.

Then it is immediately verified that if X = Y = A, then

A>A = AA> = In

i↵ the column vectors (A1, . . . , An) form an orthonormal basis. Thus, from
(1), we see that (2) is clear (also because the rows of A are the columns of
A>).

Proposition 11.12 shows that the inverse of an isometry f is its adjoint
f⇤. Recall that the set of all real n ⇥ n matrices is denoted by Mn(R).
Proposition 11.12 also motivates the following definition.

Definition 11.6. A real n ⇥ n matrix is an orthogonal matrix if

AA> = A>A = In.

Remark: It is easy to show that the conditions AA> = In, A>A = In, and
A�1 = A>, are equivalent. Given any two orthonormal bases (u

1

, . . . , un)
and (v

1

, . . . , vn), if P is the change of basis matrix from (u
1

, . . . , un) to
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(v
1

, . . . , vn), since the columns of P are the coordinates of the vectors vj
with respect to the basis (u

1

, . . . , un), and since (v
1

, . . . , vn) is orthonormal,
the columns of P are orthonormal, and by Proposition 11.12 (2), the matrix
P is orthogonal.

The proof of Proposition 11.10 (3) also shows that if f is an isometry,
then the image of an orthonormal basis (u

1

, . . . , un) is an orthonormal basis.
Students often ask why orthogonal matrices are not called orthonormal
matrices, since their columns (and rows) are orthonormal bases! I have
no good answer, but isometries do preserve orthogonality, and orthogonal
matrices correspond to isometries.

Recall that the determinant det(f) of a linear map f : E ! E is inde-
pendent of the choice of a basis in E. Also, for every matrix A 2 Mn(R), we
have det(A) = det(A>), and for any two n⇥ n matrices A and B, we have
det(AB) = det(A) det(B). Then if f is an isometry, and A is its matrix
with respect to any orthonormal basis, AA> = A>A = In implies that
det(A)2 = 1, that is, either det(A) = 1, or det(A) = �1. It is also clear
that the isometries of a Euclidean space of dimension n form a group, and
that the isometries of determinant +1 form a subgroup. This leads to the
following definition.

Definition 11.7. Given a Euclidean space E of dimension n, the set of
isometries f : E ! E forms a subgroup of GL(E) denoted by O(E), or
O(n) when E = Rn, called the orthogonal group (of E). For every isometry
f , we have det(f) = ±1, where det(f) denotes the determinant of f . The
isometries such that det(f) = 1 are called rotations, or proper isometries, or
proper orthogonal transformations , and they form a subgroup of the special
linear group SL(E) (and of O(E)), denoted by SO(E), or SO(n) when
E = Rn, called the special orthogonal group (of E). The isometries such
that det(f) = �1 are called improper isometries, or improper orthogonal
transformations, or flip transformations .

11.7 The Rodrigues Formula

When n = 3 and A is a skew symmetric matrix, it is possible to work out
an explicit formula for eA. For any 3 ⇥ 3 real skew symmetric matrix

A =

0

@
0 �c b
c 0 �a

�b a 0

1

A ,



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 441

11.7. The Rodrigues Formula 441

if we let ✓ =
p
a2 + b2 + c2 and

B =

0

@
a2 ab ac
ab b2 bc
ac bc c2

1

A ,

then we have the following result known as Rodrigues’ formula (1840). The
(real) vector space of n⇥ n skew symmetric matrices is denoted by so(n).

Proposition 11.13. The exponential map exp: so(3) ! SO(3) is given
by

eA = cos ✓ I
3

+
sin ✓

✓
A+

(1 � cos ✓)

✓2
B,

or, equivalently, by

eA = I
3

+
sin ✓

✓
A+

(1 � cos ✓)

✓2
A2

if ✓ 6= 0, with e03 = I
3

.

Proof sketch. First observe that

A2 = �✓2I
3

+B,

since

A2 =

0

@
0 �c b
c 0 �a

�b a 0

1

A

0

@
0 �c b
c 0 �a

�b a 0

1

A =

0

@
�c2 � b2 ba ca

ab �c2 � a2 cb
ac cb �b2 � a2

1

A

=

0

@
�a2 � b2 � c2 0 0

0 �a2 � b2 � c2 0
0 0 �a2 � b2 � c2

1

A+

0

@
a2 ba ca
ab b2 cb
ac cb c2

1

A

= �✓2I
3

+B,

and that

AB = BA = 0.

From the above, deduce that

A3 = �✓2A,

and for any k � 0,

A4k+1 = ✓4kA,

A4k+2 = ✓4kA2,

A4k+3 = �✓4k+2A,

A4k+4 = �✓4k+2A2.
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Then prove the desired result by writing the power series for eA and re-
grouping terms so that the power series for cos ✓ and sin ✓ show up. In
particular

eA = I
3

+
X

p�1

Ap

p!
= I

3

+
X

p�0

A2p+1

(2p+ 1)!
+
X

p�1

A2p

(2p)!

= I
3

+
X

p�0

(�1)p✓2p

(2p+ 1)!
A+

X

p�1

(�1)p�1✓2(p�1)

(2p)!
A2

= I
3

+
A

✓

X

p�0

(�1)p✓2p+1

(2p+ 1)!
� A2

✓2

X

p�1

(�1)p✓2p

(2p)!

= I
3

+
sin ✓

✓
A � A2

✓2

X

p�0

(�1)p✓2p

(2p)!
+

A2

✓2

= I
3

+
sin ✓

✓
A+

(1 � cos ✓)

✓2
A2,

as claimed.

The above formulae are the well-known formulae expressing a rotation
of axis specified by the vector (a, b, c) and angle ✓.

The Rodrigues formula can used to show that the exponential map
exp: so(3) ! SO(3) is surjective.

Given any rotation matrix R 2 SO(3), we have the following cases:

(1) The case R = I is trivial.
(2) If R 6= I and tr(R) 6= �1, then

exp�1(R) =

⇢
✓

2 sin ✓
(R � RT )

���� 1 + 2 cos ✓ = tr(R)

�
.

(Recall that tr(R) = r
1 1

+ r
2 2

+ r
3 3

, the trace of the matrix R).
Then there is a unique skew-symmetric B with corresponding ✓ satis-
fying 0 < ✓ < ⇡ such that eB = R.

(3) If R 6= I and tr(R) = �1, then R is a rotation by the angle ⇡ and
things are more complicated, but a matrix B can be found. We leave
this part as a good exercise: see Problem 16.8.

The computation of a logarithm of a rotation in SO(3) as sketched
above has applications in kinematics, robotics, and motion interpolation.

As an immediate corollary of the Gram–Schmidt orthonormalization
procedure, we obtain the QR-decomposition for invertible matrices.
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11.8 QR-Decomposition for Invertible Matrices

Now that we have the definition of an orthogonal matrix, we can explain
how the Gram–Schmidt orthonormalization procedure immediately yields
the QR-decomposition for matrices.

Definition 11.8. Given any real n ⇥ n matrix A, a QR-decomposition of
A is any pair of n ⇥ n matrices (Q,R), where Q is an orthogonal matrix
and R is an upper triangular matrix such that A = QR.

Note that if A is not invertible, then some diagonal entry in R must be
zero.

Proposition 11.14. Given any real n ⇥ n matrix A, if A is invertible,
then there is an orthogonal matrix Q and an upper triangular matrix R
with positive diagonal entries such that A = QR.

Proof. We can view the columns of A as vectors A1, . . . , An in Rn. If A
is invertible, then they are linearly independent, and we can apply Propo-
sition 11.8 to produce an orthonormal basis using the Gram–Schmidt or-
thonormalization procedure. Recall that we construct vectors Qk and Q

0k

as follows:

Q
0
1 = A1, Q1 =

Q
0
1

kQ0
1k ,

and for the inductive step

Q
0k+1 = Ak+1 �

kX

i=1

(Ak+1 · Qi)Qi, Qk+1 =
Q

0k+1

kQ0k+1k ,

where 1  k  n � 1. If we express the vectors Ak in terms of the Qi and
Q

0i, we get the triangular system

A1 = kQ
0
1kQ1,

...

Aj = (Aj · Q1)Q1 + · · · + (Aj · Qi)Qi + · · · + (Aj · Qj�1)Qj�1 + kQ
0jkQj ,

...

An = (An · Q1)Q1 + · · · + (An · Qn�1)Qn�1 + kQ
0nkQn.

Letting rk k = kQ0kk, and ri j = Aj · Qi (the reversal of i and j on
the right-hand side is intentional!), where 1  k  n, 2  j  n, and
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1  i  j � 1, and letting qi j be the ith component of Qj , we note that
ai j , the ith component of Aj , is given by

ai j = r
1 jqi 1+ · · ·+ri jqi i+ · · ·+rj jqi j = qi 1r1 j+ · · ·+qi iri j+ · · ·+qi jrj j .

If we let Q = (qi j), the matrix whose columns are the components of the
Qj , and R = (ri j), the above equations show that A = QR, where R is
upper triangular. The diagonal entries rk k = kQ0kk = Ak · Qk are indeed
positive.

The reader should try the above procedure on some concrete examples
for 2 ⇥ 2 and 3 ⇥ 3 matrices.

Remarks:

(1) Because the diagonal entries of R are positive, it can be shown that Q
and R are unique. More generally, if A is invertible and if A = Q

1

R
1

=
Q

2

R
2

are two QR-decompositions for A, then

R
1

R�1

2

= Q>
1

Q
2

.

The matrix Q>
1

Q
2

is orthogonal and it is easy to see that R
1

R�1

2

is
upper triangular. But an upper triangular matrix which is orthogonal
must be a diagonal matrix D with diagonal entries ±1, so Q

2

= Q
1

D
and R

2

= DR
1

.
(2) The QR-decomposition holds even when A is not invertible. In this

case, R has some zero on the diagonal. However, a di↵erent proof
is needed. We will give a nice proof using Householder matrices (see
Proposition 12.1, and also Strang [Strang (1986, 1988)], Golub and
Van Loan [Golub and Van Loan (1996)], Trefethen and Bau [Trefethen
and Bau III (1997)], Demmel [Demmel (1997)], Kincaid and Cheney
[Kincaid and Cheney (1996)], or Ciarlet [Ciarlet (1989)]).

For better numerical stability, it is preferable to use the modified Gram–
Schmidt method to implement the QR-factorization method. Here is a
Matlab program implementing QR-factorization using modified Gram–
Schmidt.

function [Q,R] = qrv4(A)

n = size(A,1);

for i = 1:n

Q(:,i) = A(:,i);

for j = 1:i-1
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R(j,i) = Q(:,j)’*Q(:,i);

Q(:,i) = Q(:,i) - R(j,i)*Q(:,j);

end

R(i,i) = sqrt(Q(:,i)’*Q(:,i));

Q(:,i) = Q(:,i)/R(i,i);

end

end

Example 11.13. Consider the matrix

A =

0

@
0 0 5
0 4 1
1 1 1

1

A .

To determine the QR-decomposition of A, we first use the Gram-Schmidt
orthonormalization procedure to calculate Q = (Q1Q2Q3). By definition

A1 = Q01 = Q1 =

0

@
0
0
1

1

A ,

and since A2 =

0

@
0
4
1

1

A, we discover that

Q02 = A2 � (A2 · Q1)Q1 =

0

@
0
4
1

1

A�

0

@
0
0
1

1

A =

0

@
0
4
0

1

A .

Hence, Q2 =

0

@
0
1
0

1

A. Finally,

Q03 = A
3

� (A3 · Q1)Q1 � (A3 · Q2)Q2 =

0

@
5
1
1

1

A�

0

@
0
0
1

1

A�

0

@
0
1
0

1

A =

0

@
5
0
0

1

A ,

which implies that Q3 =

0

@
1
0
0

1

A. According to Proposition 11.14, in order

to determine R we need to calculate

r
11

=
��Q01�� = 1 r

12

= A2 · Q1 = 1 r
13

= A3 · Q1 = 1

r
22

=
��Q02�� = 4 r

23

= A
3

· Q2 = 1

r
33

=
��Q03�� = 5.
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In summary, we have found that the QR-decomposition of A =

0

@
0 0 5
0 4 1
1 1 1

1

A is

Q =

0

@
0 0 1
0 1 0
1 0 0

1

A and R =

0

@
1 1 1
0 4 1
0 0 5

1

A .

Example 11.14. Another example of QR-decomposition is

A =

0

@
1 1 2
0 0 1
1 0 0

1

A =

0

@
1/

p
2 1/

p
2 0

0 0 1
1/

p
2 �1/

p
2 0

1

A

0

@

p
2 1/

p
2

p
2

0 1/
p
2

p
2

0 0 1

1

A .

Example 11.15. If we apply the above Matlab function to the matrix

A =

0

BBBB@

4 1 0 0 0
1 4 1 0 0
0 1 4 1 0
0 0 1 4 1
0 0 0 1 4

1

CCCCA
,

we obtain

Q =

0

BBBB@

0.9701 �0.2339 0.0619 �0.0166 0.0046
0.2425 0.9354 �0.2477 0.0663 �0.0184

0 0.2650 0.9291 �0.2486 0.0691
0 0 0.2677 0.9283 �0.2581
0 0 0 0.2679 0.9634

1

CCCCA

and

R =

0

BBBB@

4.1231 1.9403 0.2425 0 0
0 3.7730 1.9956 0.2650 0
0 0 3.7361 1.9997 0.2677
0 0 073.7324 2.0000
0 0 0 0 3.5956

1

CCCCA
.

Remark: The Matlab function qr, called by [Q, R] = qr(A), does not
necessarily return an upper-triangular matrix whose diagonal entries are
positive.

The QR-decomposition yields a rather e�cient and numerically stable
method for solving systems of linear equations. Indeed, given a system
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Ax = b, where A is an n⇥ n invertible matrix, writing A = QR, since Q is
orthogonal, we get

Rx = Q>b,

and since R is upper triangular, we can solve it by Gaussian elimination, by
solving for the last variable xn first, substituting its value into the system,
then solving for xn�1

, etc. The QR-decomposition is also very useful in
solving least squares problems (we will come back to this in Chapter 21),
and for finding eigenvalues; see Chapter 17. It can be easily adapted to
the case where A is a rectangular m⇥ n matrix with independent columns
(thus, n  m). In this case, Q is not quite orthogonal. It is an m⇥n matrix
whose columns are orthogonal, and R is an invertible n⇥n upper triangular
matrix with positive diagonal entries. For more on QR, see Strang [Strang
(1986, 1988)], Golub and Van Loan [Golub and Van Loan (1996)], Demmel
[Demmel (1997)], Trefethen and Bau [Trefethen and Bau III (1997)], or
Serre [Serre (2010)].

A somewhat surprising consequence of the QR-decomposition is a fa-
mous determinantal inequality due to Hadamard.

Proposition 11.15. (Hadamard) For any real n⇥n matrix A = (aij), we
have

| det(A)| 
nY

i=1

✓ nX

j=1

a2ij

◆
1/2

and | det(A)| 
nY

j=1

✓ nX

i=1

a2ij

◆
1/2

.

Moreover, equality holds i↵ either A has orthogonal rows in the left inequal-
ity or orthogonal columns in the right inequality.

Proof. If det(A) = 0, then the inequality is trivial. In addition, if the
righthand side is also 0, then either some column or some row is zero. If
det(A) 6= 0, then we can factor A as A = QR, with Q is orthogonal and
R = (rij) upper triangular with positive diagonal entries. Then since Q is
orthogonal det(Q) = ±1, so

| det(A)| = | det(Q)| | det(R)| =
Y

j=1

rjj .

Now as Q is orthogonal, it preserves the Euclidean norm, so
nX

i=1

a2ij =
��Aj

��2
2

=
��QRj

��2
2

=
��Rj

��2
2

=
nX

i=1

r2ij � r2jj ,

which implies that

| det(A)| =
nY

j=1

rjj 
nY

j=1

��Rj
��
2

=
nY

j=1

✓ nX

i=1

a2ij

◆
1/2

.
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The other inequality is obtained by replacing A by A>. Finally, if det(A) 6=
0 and equality holds, then we must have

rjj =
��Aj

��
2

, 1  j  n,

which can only occur if A has orthogonal columns.

Another version of Hadamard’s inequality applies to symmetric positive
semidefinite matrices.

Proposition 11.16. (Hadamard) For any real n ⇥ n matrix A = (aij), if
A is symmetric positive semidefinite, then we have

det(A) 
nY

i=1

aii.

Moreover, if A is positive definite, then equality holds i↵ A is a diagonal
matrix.

Proof. If det(A) = 0, the inequality is trivial. Otherwise, A is positive
definite, and by Theorem 7.4 (the Cholesky Factorization), there is a unique
upper triangular matrix B with positive diagonal entries such that

A = B>B.

Thus, det(A) = det(B>B) = det(B>) det(B) = det(B)2. If we apply the
Hadamard inequality (Proposition 11.15) to B, we obtain

det(B) 
nY

j=1

✓ nX

i=1

b2ij

◆
1/2

. (⇤)

However, the diagonal entries ajj of A = B>B are precisely the square

norms
��Bj

��2
2

=
Pn

i=1

b2ij , so by squaring (⇤), we obtain

det(A) = det(B)2 
nY

j=1

✓ nX

i=1

b2ij

◆
=

nY

j=1

ajj .

If det(A) 6= 0 and equality holds, then B must have orthogonal columns,
which implies that B is a diagonal matrix, and so is A.

We derived the second Hadamard inequality (Proposition 11.16) from
the first (Proposition 11.15). We leave it as an exercise to prove that
the first Hadamard inequality can be deduced from the second Hadamard
inequality.
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11.9 Some Applications of Euclidean Geometry

Euclidean geometry has applications in computational geometry, in par-
ticular Voronoi diagrams and Delaunay triangulations. In turn, Voronoi
diagrams have applications in motion planning (see O’Rourke [O’Rourke
(1998)]).

Euclidean geometry also has applications to matrix analysis. Recall
that a real n ⇥ n matrix A is symmetric if it is equal to its transpose A>.
One of the most important properties of symmetric matrices is that they
have real eigenvalues and that they can be diagonalized by an orthogonal
matrix (see Chapter 16). This means that for every symmetric matrix A,
there is a diagonal matrix D and an orthogonal matrix P such that

A = PDP>.

Even though it is not always possible to diagonalize an arbitrary matrix,
there are various decompositions involving orthogonal matrices that are of
great practical interest. For example, for every real matrix A, there is the
QR-decomposition, which says that a real matrix A can be expressed as

A = QR,

where Q is orthogonal and R is an upper triangular matrix. This can be
obtained from the Gram–Schmidt orthonormalization procedure, as we saw
in Section 11.8, or better, using Householder matrices, as shown in Section
12.2. There is also the polar decomposition, which says that a real matrix
A can be expressed as

A = QS,

where Q is orthogonal and S is symmetric positive semidefinite (which
means that the eigenvalues of S are nonnegative). Such a decomposition
is important in continuum mechanics and in robotics, since it separates
stretching from rotation. Finally, there is the wonderful singular value
decomposition, abbreviated as SVD, which says that a real matrix A can
be expressed as

A = V DU>,

where U and V are orthogonal and D is a diagonal matrix with nonneg-
ative entries (see Chapter 20). This decomposition leads to the notion of
pseudo-inverse, which has many applications in engineering (least squares
solutions, etc). For an excellent presentation of all these notions, we highly
recommend Strang [Strang (1988, 1986)], Golub and Van Loan [Golub and



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 450

450 Euclidean Spaces

Van Loan (1996)], Demmel [Demmel (1997)], Serre [Serre (2010)], and Tre-
fethen and Bau [Trefethen and Bau III (1997)].

The method of least squares, invented by Gauss and Legendre around
1800, is another great application of Euclidean geometry. Roughly speak-
ing, the method is used to solve inconsistent linear systems Ax = b, where
the number of equations is greater than the number of variables. Since
this is generally impossible, the method of least squares consists in finding
a solution x minimizing the Euclidean norm kAx � bk2, that is, the sum
of the squares of the “errors.” It turns out that there is always a unique
solution x+ of smallest norm minimizing kAx�bk2, and that it is a solution
of the square system

A>Ax = A>b,

called the system of normal equations. The solution x+ can be found either
by using the QR-decomposition in terms of Householder transformations,
or by using the notion of pseudo-inverse of a matrix. The pseudo-inverse
can be computed using the SVD decomposition. Least squares methods are
used extensively in computer vision. More details on the method of least
squares and pseudo-inverses can be found in Chapter 21.

11.10 Summary

The main concepts and results of this chapter are listed below:

• Bilinear forms; positive definite bilinear forms.
• Inner products, scalar products , Euclidean spaces .
• Quadratic form associated with a bilinear form.
• The Euclidean space En.
• The polar form of a quadratic form.
• Gram matrix associated with an inner product.
• The Cauchy–Schwarz inequality ; the Minkowski inequality .
• The parallelogram law .
• Orthogonality , orthogonal complement F?; orthonormal family .
• The musical isomorphisms [ : E ! E⇤ and ] : E⇤ ! E (when E is
finite-dimensional); Theorem 11.1.

• The adjoint of a linear map (with respect to an inner product).
• Existence of an orthonormal basis in a finite-dimensional Euclidean
space (Proposition 11.7).

• The Gram–Schmidt orthonormalization procedure (Proposition 11.8).
• The Legendre and the Chebyshev polynomials.
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• Linear isometries (orthogonal transformations, rigid motions).
• The orthogonal group, orthogonal matrices .
• The matrix representing the adjoint f⇤ of a linear map f is the trans-
pose of the matrix representing f .

• The orthogonal group O(n) and the special orthogonal group SO(n).
• QR-decomposition for invertible matrices.
• The Hadamard inequality for arbitrary real matrices.
• The Hadamard inequality for symmetric positive semidefinite matrices.
• The Rodrigues formula for rotations in SO(3).

11.11 Problems

Problem 11.1. E be a vector space of dimension 2, and let (e
1

, e
2

) be a
basis of E. Prove that if a > 0 and b2 � ac < 0, then the bilinear form
defined such that

'(x
1

e
1

+ y
1

e
2

, x
2

e
1

+ y
2

e
2

) = ax
1

x
2

+ b(x
1

y
2

+ x
2

y
1

) + cy
1

y
2

is a Euclidean inner product.

Problem 11.2. Let C[a, b] denote the set of continuous functions
f : [a, b] ! R. Given any two functions f, g 2 C[a, b], let

hf, gi =
Z b

a

f(t)g(t)dt.

Prove that the above bilinear form is indeed a Euclidean inner product.

Problem 11.3. Consider the inner product

hf, gi =
Z ⇡

�⇡
f(t)g(t)dt

of Problem 11.2 on the vector space C[�⇡,⇡]. Prove that

hsin px, sin qxi =
⇢
⇡ if p = q, p, q � 1,
0 if p 6= q, p, q � 1,

hcos px, cos qxi =
⇢
⇡ if p = q, p, q � 1,
0 if p 6= q, p, q � 0,

hsin px, cos qxi = 0,

for all p � 1 and q � 0, and h1, 1i =
R ⇡
�⇡ dx = 2⇡.
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Problem 11.4. Prove that the following matrix is orthogonal and skew-
symmetric:

M =
1p
3

0

BB@

0 1 1 1
�1 0 �1 1
�1 1 0 �1
�1 �1 1 0

1

CCA .

Problem 11.5. Let E and F be two finite Euclidean spaces, let
(u

1

, . . . , un) be a basis of E, and let (v
1

, . . . , vm) be a basis of F . For any
linear map f : E ! F , if A is the matrix of f w.r.t. the basis (u

1

, . . . , un)
and B is the matrix of f⇤ w.r.t. the basis (v

1

, . . . , vm), if G
1

is the Gram
matrix of the inner product on E (w.r.t. (u

1

, . . . , un)) and if G
2

is the
Gram matrix of the inner product on F (w.r.t. (v

1

, . . . , vm)), then

B = G�1

1

A>G
2

.

Problem 11.6. Let A be an invertible matrix. Prove that if A = Q
1

R
1

=
Q

2

R
2

are two QR-decompositions of A and if the diagonal entries of R
1

and R
2

are positive, then Q
1

= Q
2

and R
1

= R
2

.

Problem 11.7. Prove that the first Hadamard inequality can be deduced
from the second Hadamard inequality.

Problem 11.8. Let E be a real vector space of finite dimension, n � 1.
Say that two bases, (u

1

, . . . , un) and (v
1

, . . . , vn), of E have the same orien-
tation i↵ det(P ) > 0, where P the change of basis matrix from (u

1

, . . . , un)
and (v

1

, . . . , vn), namely, the matrix whose jth columns consist of the co-
ordinates of vj over the basis (u

1

, . . . , un).
(1) Prove that having the same orientation is an equivalence relation

with two equivalence classes.
An orientation of a vector space, E, is the choice of any fixed basis, say

(e
1

, . . . , en), of E. Any other basis, (v
1

, . . . , vn), has the same orientation
as (e

1

, . . . , en) (and is said to be positive or direct) i↵ det(P ) > 0, else it
is said to have the opposite orientation of (e

1

, . . . , en) (or to be negative
or indirect), where P is the change of basis matrix from (e

1

, . . . , en) to
(v

1

, . . . , vn). An oriented vector space is a vector space with some chosen
orientation (a positive basis).

(2) Let B
1

= (u
1

, . . . , un) and B
2

= (v
1

, . . . , vn) be two or-
thonormal bases. For any sequence of vectors, (w

1

, . . . , wn), in E,
let detB1(w1

, . . . , wn) be the determinant of the matrix whose columns
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are the coordinates of the wj ’s over the basis B
1

and similarly for
detB2(w1

, . . . , wn).
Prove that if B

1

and B
2

have the same orientation, then

detB1(w1

, . . . , wn) = detB2(w1

, . . . , wn).

Given any oriented vector space, E, for any sequence of vectors,
(w

1

, . . . , wn), in E, the common value, detB(w1

, . . . , wn), for all positive
orthonormal bases, B, of E is denoted

�E(w1

, . . . , wn)

and called a volume form of (w
1

, . . . , wn).
(3) Given any Euclidean oriented vector space, E, of dimension n for

any n � 1 vectors, w
1

, . . . , wn�1

, in E, check that the map

x 7! �E(w1

, . . . , wn�1

, x)

is a linear form. Then prove that there is a unique vector, denoted w
1

⇥
· · · ⇥ wn�1

, such that

�E(w1

, . . . , wn�1

, x) = (w
1

⇥ · · · ⇥ wn�1

) · x,

for all x 2 E. The vector w
1

⇥ · · · ⇥ wn�1

is called the cross-product of
(w

1

, . . . , wn�1

). It is a generalization of the cross-product in R3 (when
n = 3).

Problem 11.9. Given p vectors (u
1

, . . . , up) in a Euclidean space E of
dimension n � p, the Gram determinant (or Gramian) of the vectors
(u

1

, . . . , up) is the determinant

Gram(u
1

, . . . , up) =

����������

ku
1

k2 hu
1

, u
2

i . . . hu
1

, upi
hu

2

, u
1

i ku
2

k2 . . . hu
2

, upi
...

...
. . .

...

hup, u1

i hup, u2

i . . . kupk2

����������

.

(1) Prove that

Gram(u
1

, . . . , un) = �E(u1

, . . . , un)
2.

Hint . If (e
1

, . . . , en) is an orthonormal basis and A is the matrix of the
vectors (u

1

, . . . , un) over this basis,

det(A)2 = det(A>A) = det(Ai · Aj),

where Ai denotes the ith column of the matrix A, and (Ai ·Aj) denotes the
n ⇥ n matrix with entries Ai · Aj .
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(2) Prove that

ku
1

⇥ · · · ⇥ un�1

k2 = Gram(u
1

, . . . , un�1

).

Hint . Letting w = u
1

⇥ · · · ⇥ un�1

, observe that

�E(u1

, . . . , un�1

, w) = hw,wi = kwk2,

and show that

kwk4 = �E(u1

, . . . , un�1

, w)2 = Gram(u
1

, . . . , un�1

, w)

= Gram(u
1

, . . . , un�1

)kwk2.

Problem 11.10. Let ' : E ⇥ E ! R be a bilinear form on a real vector
space E of finite dimension n. Given any basis (e

1

, . . . , en) of E, let A =
(ai j) be the matrix defined such that

ai j = '(ei, ej),

1  i, j  n. We call A the matrix of ' w.r.t. the basis (e
1

, . . . , en).
(1) For any two vectors x and y, if X and Y denote the column vectors

of coordinates of x and y w.r.t. the basis (e
1

, . . . , en), prove that

'(x, y) = X>AY.

(2) Recall that A is a symmetric matrix if A = A>. Prove that ' is
symmetric if A is a symmetric matrix.

(3) If (f
1

, . . . , fn) is another basis of E and P is the change of basis
matrix from (e

1

, . . . , en) to (f
1

, . . . , fn), prove that the matrix of ' w.r.t.
the basis (f

1

, . . . , fn) is

P>AP.

The common rank of all matrices representing ' is called the rank of '.

Problem 11.11. Let ' : E ⇥ E ! R be a symmetric bilinear form on a
real vector space E of finite dimension n. Two vectors x and y are said to
be conjugate or orthogonal w.r.t. ' if '(x, y) = 0. The main purpose of
this problem is to prove that there is a basis of vectors that are pairwise
conjugate w.r.t. '.

(1) Prove that if '(x, x) = 0 for all x 2 E, then ' is identically null on
E.

Otherwise, we can assume that there is some vector x 2 E such that
'(x, x) 6= 0.

Use induction to prove that there is a basis of vectors (u
1

, . . . , un) that
are pairwise conjugate w.r.t. '.
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Hint . For the induction step, proceed as follows. Let (u
1

, e
2

, . . . , en) be a
basis of E, with '(u

1

, u
1

) 6= 0. Prove that there are scalars �
2

, . . . ,�n such
that each of the vectors

vi = ei + �iu1

is conjugate to u
1

w.r.t. ', where 2  i  n, and that (u
1

, v
2

, . . . , vn) is a
basis.

(2) Let (e
1

, . . . , en) be a basis of vectors that are pairwise conjugate
w.r.t. ' and assume that they are ordered such that

'(ei, ei) =

⇢
✓i 6= 0 if 1  i  r,
0 if r + 1  i  n,

where r is the rank of '. Show that the matrix of ' w.r.t. (e
1

, . . . , en) is a
diagonal matrix, and that

'(x, y) =
rX

i=1

✓ixiyi,

where x =
Pn

i=1

xiei and y =
Pn

i=1

yiei.
Prove that for every symmetric matrix A, there is an invertible matrix

P such that

P>AP = D,

where D is a diagonal matrix.
(3) Prove that there is an integer p, 0  p  r (where r is the rank of '),

such that '(ui, ui) > 0 for exactly p vectors of every basis (u
1

, . . . , un) of
vectors that are pairwise conjugate w.r.t. ' (Sylvester’s inertia theorem).

Proceed as follows. Assume that in the basis (u
1

, . . . , un), for any x 2 E,
we have

'(x, x) = ↵
1

x2

1

+ · · · + ↵px
2

p � ↵p+1

x2

p+1

� · · · � ↵rx
2

r,

where x =
Pn

i=1

xiui, and that in the basis (v
1

, . . . , vn), for any x 2 E, we
have

'(x, x) = �
1

y2
1

+ · · · + �qy
2

q � �q+1

y2q+1

� · · · � �ry
2

r ,

where x =
Pn

i=1

yivi, with ↵i > 0, �i > 0, 1  i  r.
Assume that p > q and derive a contradiction. First consider x in the

subspace F spanned by

(u
1

, . . . , up, ur+1

, . . . , un),
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and observe that '(x, x) � 0 if x 6= 0. Next consider x in the subspace G
spanned by

(vq+1

, . . . , vr),

and observe that '(x, x) < 0 if x 6= 0. Prove that F \ G is nontrivial (i.e.,
contains some nonnull vector), and derive a contradiction. This implies
that p  q. Finish the proof.

The pair (p, r � p) is called the signature of '.
(4) A symmetric bilinear form ' is definite if for every x 2 E, if '(x, x) =

0, then x = 0.
Prove that a symmetric bilinear form is definite i↵ its signature is either

(n, 0) or (0, n). In other words, a symmetric definite bilinear form has rank
n and is either positive or negative.

Problem 11.12. Consider the n ⇥ n matrices Ri,j defined for all i, j with
1  i < j  n and n � 3, such that the only nonzero entries are

Ri,j(i, j) = �1

Ri,j(i, i) = 0

Ri,j(j, i) = 1

Ri,j(j, j) = 0

Ri,j(k, k) = 1, 1  k  n, k 6= i, j.

For example,

Ri,j =

0

BBBBBBBBBBBBBBBBBBBB@

1
. . .

1
0 0 · · · 0 �1
0 1 · · · 0 0
...
...
. . .

...
...

0 0 · · · 1 0
1 0 · · · 0 0

1
. . .

1

1

CCCCCCCCCCCCCCCCCCCCA

.

(1) Prove that the Ri,j are rotation matrices. Use the matrices Rij to
form a basis of the n ⇥ n skew-symmetric matrices.
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(2) Consider the n ⇥ n symmetric matrices Si,j defined for all i, j with
1  i < j  n and n � 3, such that the only nonzero entries are

Si,j(i, j) = 1

Si,j(i, i) = 0

Si,j(j, i) = 1

Si,j(j, j) = 0

Si,j(k, k) = 1, 1  k  n, k 6= i, j,

and if i+2  j then Si,j(i+1, i+1) = �1, else if i > 1 and j = i+1 then
Si,j(1, 1) = �1, and if i = 1 and j = 2, then Si,j(3, 3) = �1.

For example,

Si,j =

0

BBBBBBBBBBBBBBBBBBBB@

1
. . .

1
0 0 · · · 0 1
0 �1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
1 0 · · · 0 0

1
. . .

1

1

CCCCCCCCCCCCCCCCCCCCA

.

Note that Si,j has a single diagonal entry equal to �1. Prove that the
Si,j are rotations matrices.

Use Problem 2.15 together with the Si,j to form a basis of the n ⇥ n
symmetric matrices.

(3) Prove that if n � 3, the set of all linear combinations of matrices in
SO(n) is the space Mn(R) of all n ⇥ n matrices.

Prove that if n � 3 and if a matrix A 2 Mn(R) commutes with all
rotations matrices, then A commutes with all matrices in Mn(R).

What happens for n = 2?

Problem 11.13. (1) Let H be the a�ne hyperplane in Rn given by the
equation

a
1

x
1

+ · · · + anxn = c,
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with ai 6= 0 for some i, 1  i  n. The linear hyperplane H
0

parallel to H
is given by the equation

a
1

x
1

+ · · · + anxn = 0,

and we say that a vector y 2 Rn is orthogonal (or perpendicular) to H i↵ y
is orthogonal to H

0

. Let h be the intersection of H with the line through
the origin and perpendicular to H. Prove that the coordinates of h are
given by

c

a2
1

+ · · · + a2n
(a

1

, . . . , an).

(2) For any point p 2 H, prove that khk  kpk. Thus, it is natural
to define the distance d(O,H) from the origin O to the hyperplane H as
d(O,H) = khk. Prove that

d(O,H) =
|c|

(a2
1

+ · · · + a2n)
1
2

.

(3) Let S be a finite set of n � 3 points in the plane (R2). Prove that
if for every pair of distinct points pi, pj 2 S, there is a third point pk 2 S
(distinct from pi and pj) such that pi, pj , pk belong to the same (a�ne)
line, then all points in S belong to a common (a�ne) line.
Hint . Proceed by contradiction and use a minimality argument. This is
either 1-hard or relatively easy, depending how you proceed!

Problem 11.14. (The space of closed polygons in R2, after Hausmann and
Knutson)

An open polygon P in the plane is a sequence P = (v
1

, . . . , vn+1

) of
points vi 2 R2 called vertices (with n � 1). A closed polygon, for short a
polygon, is an open polygon P = (v

1

, . . . , vn+1

) such that vn+1

= v
1

. The
sequence of edge vectors (e

1

, . . . , en) associated with the open (or closed)
polygon P = (v

1

, . . . , vn+1

) is defined by

ei = vi+1

� vi, i = 1, . . . , n.

Thus, a closed or open polygon is also defined by a pair (v
1

, (e
1

, . . . , en)),
with the vertices given by

vi+1

= vi + ei, i = 1, . . . , n.

Observe that a polygon (v
1

, (e
1

, . . . , en)) is closed i↵

e
1

+ · · · + en = 0.
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Since every polygon (v
1

, (e
1

, . . . , en)) can be translated by �v
1

, so that
v
1

= (0, 0), we may assume that our polygons are specified by a sequence
of edge vectors.

Recall that the plane R2 is isomorphic to C, via the isomorphism

(x, y) 7! x+ iy.

We will represent each edge vector ek by the square of a complex number
wk = ak + ibk. Thus, every sequence of complex numbers (w

1

, . . . , wn)
defines a polygon (namely, (w2

1

, . . . , w2

n)). This representation is many-to-
one: the sequences (±w

1

, . . . ,±wn) describe the same polygon. To every
sequence of complex numbers (w

1

, . . . , wn), we associate the pair of vectors
(a, b), with a, b 2 Rn, such that if wk = ak + ibk, then

a = (a
1

, . . . , an), b = (b
1

, . . . , bn).

The mapping

(w
1

, . . . , wn) 7! (a, b)

is clearly a bijection, so we can also represent polygons by pairs of vectors
(a, b) 2 Rn ⇥ Rn.

(1) Prove that a polygon P represented by a pair of vectors (a, b) 2
Rn ⇥ Rn is closed i↵ a · b = 0 and kak

2

= kbk
2

.
(2) Given a polygon P represented by a pair of vectors (a, b) 2 Rn⇥Rn,

the length l(P ) of the polygon P is defined by l(P ) = |w
1

|2 + · · · + |wn|2,
with wk = ak + ibk. Prove that

l(P ) = kak2
2

+ kbk2
2

.

Deduce from (a) and (b) that every closed polygon of length 2 with n
edges is represented by a n ⇥ 2 matrix A such that A>A = I.

Remark: The space of all a n ⇥ 2 real matrices A such that A>A = I is
a space known as the Stiefel manifold S(2, n).

(3) Recall that in R2, the rotation of angle ✓ specified by the matrix

R✓ =

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆

is expressed in terms of complex numbers by the map

z 7! zei✓.
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Let P be a polygon represented by a pair of vectors (a, b) 2 Rn ⇥ Rn.
Prove that the polygon R✓(P ) obtained by applying the rotation R✓ to
every vertex w2

k = (ak + ibk)2 of P is specified by the pair of vectors

(cos(✓/2)a � sin(✓/2)b, sin(✓/2)a+ cos(✓/2)b)

=

0

BBB@

a
1

b
1

a
2

b
2

...
...

an bn

1

CCCA

✓
cos(✓/2) sin(✓/2)

� sin(✓/2) cos(✓/2)

◆
.

(4) The reflection ⇢x about the x-axis corresponds to the map

z 7! z,

whose matrix is, ✓
1 0
0 �1

◆
.

Prove that the polygon ⇢x(P ) obtained by applying the reflection ⇢x to
every vertex w2

k = (ak + ibk)2 of P is specified by the pair of vectors

(a,�b) =

0

BBB@

a
1

b
1

a
2

b
2

...
...

an bn

1

CCCA

✓
1 0
0 �1

◆
.

(5) Let Q 2 O(2) be any isometry such that det(Q) = �1 (a reflection).
Prove that there is a rotation R�✓ 2 SO(2) such that

Q = ⇢x � R�✓.

Prove that the isometry Q, which is given by the matrix

Q =

✓
cos ✓ sin ✓
sin ✓ � cos ✓

◆
,

is the reflection about the line corresponding to the angle ✓/2 (the line of
equation y = tan(✓/2)x).

Prove that the polygon Q(P ) obtained by applying the reflection Q =
⇢x � R�✓ to every vertex w2

k = (ak + ibk)2 of P , is specified by the pair of
vectors

(cos(✓/2)a+ sin(✓/2)b, sin(✓/2)a � cos(✓/2)b)

=

0

BBB@

a
1

b
1

a
2

b
2

...
...

an bn

1

CCCA

✓
cos(✓/2) sin(✓/2)
sin(✓/2) � cos(✓/2)

◆
.
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(6) Define an equivalence relation ⇠ on S(2, n) such that if A
1

, A
2

2
S(2, n) are any n ⇥ 2 matrices such that A>

1

A
1

= A>
2

A
2

= I, then

A
1

⇠ A
2

i↵ A
2

= A
1

Q for some Q 2 O(2).

Prove that the quotient G(2, n) = S(2, n)/ ⇠ is in bijection with the set of
all 2-dimensional subspaces (the planes) of Rn. The space G(2, n) is called
a Grassmannian manifold .

Prove that up to translations and isometries in O(2) (rotations and re-
flections), the n-sided closed polygons of length 2 are represented by planes
in G(2, n).

Problem 11.15. (1) Find two symmetric matrices, A and B, such that
AB is not symmetric.

(2) Find two matrices A and B such that

eAeB 6= eA+B .

Hint . Try

A = ⇡

0

@
0 0 0
0 0 �1
0 1 0

1

A and B = ⇡

0

@
0 0 1
0 0 0

�1 0 0

1

A ,

and use the Rodrigues formula.
(3) Find some square matrices A,B such that AB 6= BA, yet

eAeB = eA+B .

Hint . Look for 2 ⇥ 2 matrices with zero trace and use Problem 8.15.

Problem 11.16. Given a field K and any nonempty set I, let K(I) be the
subset of the cartesian product KI consisting of all functions � : I ! K
with finite support , which means that �(i) = 0 for all but finitely many
i 2 I. We usually denote the function defined by � as (�i)i2I , and call is a
family indexed by I. We define addition and multiplication by a scalar as
follows:

(�i)i2I + (µi)i2I = (�i + µi)i2I ,

and

↵ · (µi)i2I = (↵µi)i2I .

(1) Check that K(I) is a vector space.
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(2) If I is any nonempty subset, for any i 2 I, we denote by ei the
family (ej)j2I defined so that

ej =

(
1 if j = i

0 if j 6= i.

Prove that the family (ei)i2I is linearly independent and spans K(I), so
that it is a basis of K(I) called the canonical basis of K(I). When I is
finite, say of cardinality n, then prove that K(I) is isomorphic to Kn.

(3) The function ◆ : I ! K(I), such that ◆(i) = ei for every i 2 I, is
clearly an injection.

For any other vector space F , for any function f : I ! F , prove that
there is a unique linear map f : K(I) ! F , such that

f = f � ◆,

as in the following commutative diagram:

I
◆ //

f !!C
CC

CC
CC

CC
K(I)

f

✏✏
F

.

We call the vector space K(I) the vector space freely generated by the set
I.

Problem 11.17. (Some pitfalls of infinite dimension) Let E be the vector
space freely generated by the set of natural numbers, N = {0, 1, 2, . . .}, and
let (e

0

, e
1

, e
2

, . . . , en, . . .) be its canonical basis. We define the function '
such that

'(ei, ej) =

8
>>>><

>>>>:

�ij if i, j � 1,

1 if i = j = 0,

1/2j if i = 0, j � 1,

1/2i if i � 1, j = 0,

and we extend ' by bilinearity to a function ' : E ⇥ E ! K. This means
that if u =

P
i2N �iei and v =

P
j2N µjej , then

'

✓X

i2N
�iei,

X

j2N
µjej

◆
=
X

i,j2N
�iµj'(ei, ej),

but remember that �i 6= 0 and µj 6= 0 only for finitely many indices i, j.
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(1) Prove that ' is positive definite, so that it is an inner product on
E.

What would happen if we changed 1/2j to 1 (or any constant)?
(2) Let H be the subspace of E spanned by the family (ei)i�1

, a hyper-
plane in E. Find H? and H??, and prove that

H 6= H??.

(3) Let U be the subspace of E spanned by the family (e
2i)i�1

, and let
V be the subspace of E spanned by the family (e

2i�1

)i�1

. Prove that

U? = V

V ? = U

U?? = U

V ?? = V,

yet

(U \ V )? 6= U? + V ?

and

(U + V )?? 6= U + V.

If W is the subspace spanned by e
0

and e
1

, prove that

(W \ H)? 6= W? +H?.

(4) Consider the dual space E⇤ of E, and let (e⇤i )i2N be the family of
dual forms of the basis (ei)i2N . Check that the family (e⇤i )i2N is linearly
independent.

(5) Let f 2 E⇤ be the linear form defined by

f(ei) = 1 for all i 2 N.

Prove that f is not in the subspace spanned by the e⇤i . If F is the subspace
of E⇤ spanned by the e⇤i and f , find F 0 and F 00, and prove that

F 6= F 00.
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Chapter 12

QR-Decomposition for Arbitrary
Matrices

12.1 Orthogonal Reflections

Hyperplane reflections are represented by matrices called Householder ma-
trices. These matrices play an important role in numerical methods, for
instance for solving systems of linear equations, solving least squares prob-
lems, for computing eigenvalues, and for transforming a symmetric matrix
into a tridiagonal matrix. We prove a simple geometric lemma that im-
mediately yields the QR-decomposition of arbitrary matrices in terms of
Householder matrices.

Orthogonal symmetries are a very important example of isometries.
First let us review the definition of projections, introduced in Section 5.2,
just after Proposition 5.5. Given a vector space E, let F and G be sub-
spaces of E that form a direct sum E = F � G. Since every u 2 E can
be written uniquely as u = v + w, where v 2 F and w 2 G, we can define
the two projections pF : E ! F and pG : E ! G such that pF (u) = v and
pG(u) = w. In Section 5.2 we used the notation ⇡

1

and ⇡
2

, but in this
section it is more convenient to use pF and pG.

It is immediately verified that pG and pF are linear maps, and that

p2F = pF , p
2

G = pG, pF � pG = pG � pF = 0, and pF + pG = id.

.

Definition 12.1. Given a vector space E, for any two subspaces F and
G that form a direct sum E = F � G, the symmetry (or reflection) with
respect to F and parallel to G is the linear map s : E ! E defined such that

s(u) = 2pF (u) � u,

for every u 2 E.

465
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Because pF + pG = id, note that we also have

s(u) = pF (u) � pG(u)

and

s(u) = u � 2pG(u),

s2 = id, s is the identity on F , and s = �id on G.
We now assume that E is a Euclidean space of finite dimension.

Definition 12.2. Let E be a Euclidean space of finite dimension n. For
any two subspaces F and G, if F and G form a direct sum E = F � G
and F and G are orthogonal, i.e., F = G?, the orthogonal symmetry (or
reflection) with respect to F and parallel to G is the linear map s : E ! E
defined such that

s(u) = 2pF (u) � u = pF (u) � pG(u),

for every u 2 E. When F is a hyperplane, we call s a hyperplane symmetry
with respect to F (or reflection about F ), and when G is a plane (and thus
dim(F ) = n � 2), we call s a flip about F .

A reflection about a hyperplane F is shown in Figure 12.1.

u

s(u)

pG (u)

− pG (u)

pF (u)

F

G

Fig. 12.1 A reflection about the peach hyperplane F . Note that u is purple, pF (u) is
blue and pG(u) is red.

For any two vectors u, v 2 E, it is easily verified using the bilinearity of
the inner product that

ku+ vk2 � ku � vk2 = 4(u · v). (⇤)
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In particular, if u · v = 0, then ku+ vk = ku � vk. Then since

u = pF (u) + pG(u)

and

s(u) = pF (u) � pG(u),

and since F and G are orthogonal, it follows that

pF (u) · pG(v) = 0,

and thus by (⇤)

ks(u)k = kpF (u) � pG(u)k = kpF (u) + pG(u)k = kuk,

so that s is an isometry.
Using Proposition 11.8, it is possible to find an orthonormal basis

(e
1

, . . . , en) of E consisting of an orthonormal basis of F and an orthonor-
mal basis of G. Assume that F has dimension p, so that G has dimension
n � p. With respect to the orthonormal basis (e

1

, . . . , en), the symmetry s
has a matrix of the form

✓
Ip 0
0 �In�p

◆
.

Thus, det(s) = (�1)n�p, and s is a rotation i↵ n� p is even. In particular,
when F is a hyperplane H, we have p = n � 1 and n � p = 1, so that s is
an improper orthogonal transformation. When F = {0}, we have s = �id,
which is called the symmetry with respect to the origin. The symmetry
with respect to the origin is a rotation i↵ n is even, and an improper
orthogonal transformation i↵ n is odd. When n is odd, since s � s = id
and det(s) = (�1)n = �1, we observe that every improper orthogonal
transformation f is the composition f = (f �s)�s of the rotation f �s with
s, the symmetry with respect to the origin. When G is a plane, p = n � 2,
and det(s) = (�1)2 = 1, so that a flip about F is a rotation. In particular,
when n = 3, F is a line, and a flip about the line F is indeed a rotation of
measure ⇡ as illustrated by Figure 12.2.

Remark: Given any two orthogonal subspaces F,G forming a direct sum
E = F � G, let f be the symmetry with respect to F and parallel to G,
and let g be the symmetry with respect to G and parallel to F . We leave
as an exercise to show that

f � g = g � f = �id.
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F

G

up  (u)Fs(u)

Fig. 12.2 A flip in R3 is a rotation of ⇡ about the F axis.

When F = H is a hyperplane, we can give an explicit formula for s(u)
in terms of any nonnull vector w orthogonal to H. Indeed, from

u = pH(u) + pG(u),

since pG(u) 2 G and G is spanned by w, which is orthogonal to H, we have

pG(u) = �w

for some � 2 R, and we get

u · w = �kwk2,
and thus

pG(u) =
(u · w)
kwk2 w.

Since

s(u) = u � 2pG(u),

we get

s(u) = u � 2
(u · w)
kwk2 w.

Since the above formula is important, we record it in the following propo-
sition.

Proposition 12.1. Let E be a finite-dimensional Euclidean space and let
H be a hyperplane in E. For any nonzero vector w orthogonal to H, the
hyperplane reflection s about H is given by

s(u) = u � 2
(u · w)
kwk2 w, u 2 E.
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Such reflections are represented by matrices called Householder matri-
ces, which play an important role in numerical matrix analysis (see Kincaid
and Cheney [Kincaid and Cheney (1996)] or Ciarlet [Ciarlet (1989)]).

Definition 12.3. A Householder matrix is a matrix of the form

H = In � 2
WW>

kWk2 = In � 2
WW>

W>W
,

where W 2 Rn is a nonzero vector.

Householder matrices are symmetric and orthogonal. It is easily checked
that over an orthonormal basis (e

1

, . . . , en), a hyperplane reflection about
a hyperplane H orthogonal to a nonzero vector w is represented by the
matrix

H = In � 2
WW>

kWk2 ,

where W is the column vector of the coordinates of w over the basis
(e

1

, . . . , en). Since

pG(u) =
(u · w)
kwk2 w,

the matrix representing pG is

WW>

W>W
,

and since pH + pG = id, the matrix representing pH is

In � WW>

W>W
.

These formulae can be used to derive a formula for a rotation of R3, given
the direction w of its axis of rotation and given the angle ✓ of rotation.

The following fact is the key to the proof that every isometry can be
decomposed as a product of reflections.

Proposition 12.2. Let E be any nontrivial Euclidean space. For any two
vectors u, v 2 E, if kuk = kvk, then there is a hyperplane H such that
the reflection s about H maps u to v, and if u 6= v, then this reflection is
unique. See Figure 12.3.
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H
v-u

us(u) = v

Fig. 12.3 In R3, the (hyper)plane perpendicular to v � u reflects u onto v.

Proof. If u = v, then any hyperplane containing u does the job. Otherwise,
we must have H = {v � u}?, and by the above formula,

s(u) = u � 2
(u · (v � u))

k(v � u)k2 (v � u) = u+
2kuk2 � 2u · v

k(v � u)k2 (v � u),

and since

k(v � u)k2 = kuk2 + kvk2 � 2u · v

and kuk = kvk, we have

k(v � u)k2 = 2kuk2 � 2u · v,

and thus, s(u) = v.� If E is a complex vector space and the inner product is Hermitian,
Proposition 12.2 is false. The problem is that the vector v � u

does not work unless the inner product u · v is real! The proposition can
be salvaged enough to yield the QR-decomposition in terms of Householder
transformations; see Section 13.5.
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We now show that hyperplane reflections can be used to obtain another
proof of the QR-decomposition.

12.2 QR-Decomposition Using Householder Matrices

First we state the result geometrically. When translated in terms of House-
holder matrices, we obtain the fact advertised earlier that every matrix (not
necessarily invertible) has a QR-decomposition.

Proposition 12.3. Let E be a nontrivial Euclidean space of dimension
n. For any orthonormal basis (e

1

, . . ., en) and for any n-tuple of vectors
(v

1

, . . ., vn), there is a sequence of n isometries h
1

, . . . , hn such that hi is
a hyperplane reflection or the identity, and if (r

1

, . . . , rn) are the vectors
given by

rj = hn � · · · � h
2

� h
1

(vj),

then every rj is a linear combination of the vectors (e
1

, . . . , ej), 1  j  n.
Equivalently, the matrix R whose columns are the components of the rj
over the basis (e

1

, . . . , en) is an upper triangular matrix. Furthermore, the
hi can be chosen so that the diagonal entries of R are nonnegative.

Proof. We proceed by induction on n. For n = 1, we have v
1

= �e
1

for
some � 2 R. If � � 0, we let h

1

= id, else if � < 0, we let h
1

= �id, the
reflection about the origin.

For n � 2, we first have to find h
1

. Let

r
1,1 = kv

1

k.

If v
1

= r
1,1e1, we let h

1

= id. Otherwise, there is a unique hyperplane
reflection h

1

such that

h
1

(v
1

) = r
1,1 e1,

defined such that

h
1

(u) = u � 2
(u · w

1

)

kw
1

k2 w
1

for all u 2 E, where

w
1

= r
1,1 e1 � v

1

.

The map h
1

is the reflection about the hyperplane H
1

orthogonal to the
vector w

1

= r
1,1 e1 � v

1

. See Figure 12.4. Letting

r
1

= h
1

(v
1

) = r
1,1 e1,
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e2

v1 H1

r
1,1

e1

Fig. 12.4 The construction of h1 in Proposition 12.3.

it is obvious that r
1

belongs to the subspace spanned by e
1

, and r
1,1 = kv

1

k
is nonnegative.

Next assume that we have found k linear maps h
1

, . . . , hk, hyperplane
reflections or the identity, where 1  k  n� 1, such that if (r

1

, . . . , rk) are
the vectors given by

rj = hk � · · · � h
2

� h
1

(vj),

then every rj is a linear combination of the vectors (e
1

, . . . , ej), 1  j  k.
See Figure 12.5. The vectors (e

1

, . . . , ek) form a basis for the subspace
denoted by U 0

k, the vectors (ek+1

, . . . , en) form a basis for the subspace
denoted by U 00

k , the subspaces U
0
k and U 00

k are orthogonal, and E = U 0
k�U 00

k .
Let

uk+1

= hk � · · · � h
2

� h
1

(vk+1

).

We can write

uk+1

= u0
k+1

+ u00
k+1

,

where u0
k+1

2 U 0
k and u00

k+1

2 U 00
k . See Figure 12.6. Let

rk+1,k+1

= ku00
k+1

k.

If u00
k+1

= rk+1,k+1

ek+1

, we let hk+1

= id. Otherwise, there is a unique
hyperplane reflection hk+1

such that

hk+1

(u00
k+1

) = rk+1,k+1

ek+1

,
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e direction

e direction

e direction

1

2

3

v

v

1

2

e direction

e direction

e direction

1

2

3

v1

h
1

r1

Fig. 12.5 The construction of r1 = h1(v1) in Proposition 12.3.

e direction

e direction

e direction

2

3

v2
h1

(v2)

e direction

e direction

e direction

1

2

3

h1
(v2)

u
2

u2 ‘
‘’

2

Fig. 12.6 The construction of u2 = h1(v2) and its decomposition as u2 = u

0
2 + u

00
2 .

defined such that

hk+1

(u) = u � 2
(u · wk+1

)

kwk+1

k2 wk+1

for all u 2 E, where

wk+1

= rk+1,k+1

ek+1

� u00
k+1

.



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 474

474 QR-Decomposition for Arbitrary Matrices

The map hk+1

is the reflection about the hyperplane Hk+1

orthogonal to
the vector wk+1

= rk+1,k+1

ek+1

� u00
k+1

. However, since u00
k+1

, ek+1

2 U 00
k

and U 0
k is orthogonal to U 00

k , the subspace U 0
k is contained in Hk+1

, and
thus, the vectors (r

1

, . . . , rk) and u0
k+1

, which belong to U 0
k, are invariant

under hk+1

. This proves that

hk+1

(uk+1

) = hk+1

(u0
k+1

) + hk+1

(u00
k+1

) = u0
k+1

+ rk+1,k+1

ek+1

is a linear combination of (e
1

, . . . , ek+1

). Letting

rk+1

= hk+1

(uk+1

) = u0
k+1

+ rk+1,k+1

ek+1

,

since uk+1

= hk � · · · � h
2

� h
1

(vk+1

), the vector

rk+1

= hk+1

� · · · � h
2

� h
1

(vk+1

)

is a linear combination of (e
1

, . . . , ek+1

). See Figure 12.7. The coe�cient of
rk+1

over ek+1

is rk+1,k+1

= ku00
k+1

k, which is nonnegative. This concludes
the induction step, and thus the proof.

Remarks:

(1) Since every hi is a hyperplane reflection or the identity,

⇢ = hn � · · · � h
2

� h
1

is an isometry.
(2) If we allow negative diagonal entries in R, the last isometry hn may be

omitted.
(3) Instead of picking rk,k = ku00

kk, which means that

wk = rk,k ek � u00
k ,

where 1  k  n, it might be preferable to pick rk,k = �ku00
kk if this

makes kwkk2 larger, in which case

wk = rk,k ek + u00
k .

Indeed, since the definition of hk involves division by kwkk2, it is de-
sirable to avoid division by very small numbers.

(4) The method also applies to any m-tuple of vectors (v
1

, . . . , vm), with
m  n. Then R is an upper triangular m ⇥ m matrix and Q is an
n ⇥ m matrix with orthogonal columns (Q>Q = Im). We leave the
minor adjustments to the method as an exercise to the reader
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(v2)
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h2 h1
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2

Fig. 12.7 The construction of h2 and r2 = h2 � h1(v2) in Proposition 12.3.

Proposition 12.3 directly yields the QR-decomposition in terms of
Householder transformations (see Strang [Strang (1986, 1988)], Golub and
Van Loan [Golub and Van Loan (1996)], Trefethen and Bau [Trefethen
and Bau III (1997)], Kincaid and Cheney [Kincaid and Cheney (1996)], or
Ciarlet [Ciarlet (1989)]).

Theorem 12.1. For every real n⇥n matrix A, there is a sequence H
1

, . . .,
Hn of matrices, where each Hi is either a Householder matrix or the iden-
tity, and an upper triangular matrix R such that

R = Hn · · ·H
2

H
1

A.

As a corollary, there is a pair of matrices Q,R, where Q is orthogonal
and R is upper triangular, such that A = QR (a QR-decomposition of A).
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Furthermore, R can be chosen so that its diagonal entries are nonnegative.

Proof. The jth column of A can be viewed as a vector vj over the canonical
basis (e

1

, . . . , en) of En (where (ej)i = 1 if i = j, and 0 otherwise, 1 
i, j  n). Applying Proposition 12.3 to (v

1

, . . . , vn), there is a sequence
of n isometries h

1

, . . . , hn such that hi is a hyperplane reflection or the
identity, and if (r

1

, . . . , rn) are the vectors given by

rj = hn � · · · � h
2

� h
1

(vj),

then every rj is a linear combination of the vectors (e
1

, . . . , ej), 1  j  n.
Letting R be the matrix whose columns are the vectors rj , and Hi the
matrix associated with hi, it is clear that

R = Hn · · ·H
2

H
1

A,

where R is upper triangular and every Hi is either a Householder matrix
or the identity. However, hi � hi = id for all i, 1  i  n, and so

vj = h
1

� h
2

� · · · � hn(rj)

for all j, 1  j  n. But ⇢ = h
1

�h
2

� · · · �hn is an isometry represented by
the orthogonal matrix Q = H

1

H
2

· · ·Hn. It is clear that A = QR, where R
is upper triangular. As we noted in Proposition 12.3, the diagonal entries
of R can be chosen to be nonnegative.

Remarks:

(1) Letting

Ak+1

= Hk · · ·H
2

H
1

A,

with A
1

= A, 1  k  n, the proof of Proposition 12.3 can be
interpreted in terms of the computation of the sequence of matrices
A

1

, . . . , An+1

= R. The matrix Ak+1

has the shape

Ak+1

=

0

BBBBBBBBBBBBB@

⇥ ⇥ ⇥ uk+1

1

⇥ ⇥ ⇥ ⇥

0 ⇥
...

...
...

...
...

...
0 0 ⇥ uk+1

k ⇥ ⇥ ⇥ ⇥
0 0 0 uk+1

k+1

⇥ ⇥ ⇥ ⇥
0 0 0 uk+1

k+2

⇥ ⇥ ⇥ ⇥
...

...
...

...
...

...
...

...
0 0 0 uk+1

n�1

⇥ ⇥ ⇥ ⇥
0 0 0 uk+1

n ⇥ ⇥ ⇥ ⇥

1

CCCCCCCCCCCCCA

,
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where the (k + 1)th column of the matrix is the vector

uk+1

= hk � · · · � h
2

� h
1

(vk+1

),

and thus

u0
k+1

=
�
uk+1

1

, . . . , uk+1

k

�

and

u00
k+1

=
�
uk+1

k+1

, uk+1

k+2

, . . . , uk+1

n

�
.

If the last n�k�1 entries in column k+1 are all zero, there is nothing
to do, and we let Hk+1

= I. Otherwise, we kill these n�k�1 entries by
multiplying Ak+1

on the left by the Householder matrix Hk+1

sending
�
0, . . . , 0, uk+1

k+1

, . . . , uk+1

n

�
to (0, . . . , 0, rk+1,k+1

, 0, . . . , 0),

where rk+1,k+1

= k(uk+1

k+1

, . . . , uk+1

n )k.
(2) If A is invertible and the diagonal entries of R are positive, it can be

shown that Q and R are unique.
(3) If we allow negative diagonal entries in R, the matrix Hn may be omit-

ted (Hn = I).
(4) The method allows the computation of the determinant of A. We have

det(A) = (�1)mr
1,1 · · · rn,n,

where m is the number of Householder matrices (not the identity)
among the Hi.

(5) The “condition number” of the matrix A is preserved (see Strang
[Strang (1988)], Golub and Van Loan [Golub and Van Loan (1996)],
Trefethen and Bau [Trefethen and Bau III (1997)], Kincaid and Ch-
eney [Kincaid and Cheney (1996)], or Ciarlet [Ciarlet (1989)]). This is
very good for numerical stability.

(6) The method also applies to a rectangular m⇥n matrix. If m � n, then
R is an n ⇥ n upper triangular matrix and Q is an m ⇥ n matrix such
that Q>Q = In.

The following Matlab functions implement theQR-factorization method
of a real square (possibly singular) matrix A using Householder reflections

The main function houseqr computes the upper triangular matrix R
obtained by applying Householder reflections to A. It makes use of the
function house, which computes a unit vector u such that given a vector
x 2 Rp, the Householder transformation P = I�2uu> sets to zero all entries
in x but the first entry x

1

. It only applies if kx(2 : p)k
1

= |x
2

|+· · ·+|xp| > 0.
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Since computations are done in floating point, we use a tolerance factor
tol, and if kx(2 : p)k

1

 tol, then we return u = 0, which indicates that the
corresponding Householder transformation is the identity. To make sure
that kPxk is as large as possible, we pick uu = x+ sign(x

1

) kxk
2

e
1

, where
sign(z) = 1 if z � 0 and sign(z) = �1 if z < 0. Note that as a result,
diagonal entries in R may be negative. We will take care of this issue later.

function s = signe(x)

% if x >= 0, then signe(x) = 1

% else if x < 0 then signe(x) = -1

%

if x < 0

s = -1;

else

s = 1;

end

end

function [uu, u] = house(x)

% This constructs the unnormalized vector uu

% defining the Householder reflection that

% zeros all but the first entries in x.

% u is the normalized vector uu/||uu||

%

tol = 2*10^(-15); % tolerance

uu = x;

p = size(x,1);

% computes l^1-norm of x(2:p,1)

n1 = sum(abs(x(2:p,1)));

if n1 <= tol

u = zeros(p,1); uu = u;

else

l = sqrt(x’*x); % l^2 norm of x

uu(1) = x(1) + signe(x(1))*l;

u = uu/sqrt(uu’*uu);

end

end
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The Householder transformations are recorded in an array u of n � 1
vectors. There are more e�cient implementations, but for the sake of clarity
we present the following version.

function [R, u] = houseqr(A)

% This function computes the upper triangular R in the QR

% factorization of A using Householder reflections, and an

% implicit representation of Q as a sequence of n - 1

% vectors u_i representing Householder reflections

n = size(A, 1);

R = A;

u = zeros(n,n-1);

for i = 1:n-1

[~, u(i:n,i)] = house(R(i:n,i));

if u(i:n,i) == zeros(n - i + 1,1)

R(i+1:n,i) = zeros(n - i,1);

else

R(i:n,i:n) = R(i:n,i:n)

- 2*u(i:n,i)*(u(i:n,i)’*R(i:n,i:n));

end

end

end

If only R is desired, then houseqr does the job. In order to obtain R,
we need to compose the Householder transformations. We present a simple
method which is not the most e�cient (there is a way to avoid multiplying
explicity the Householder matrices).

The function buildhouse creates a Householder reflection from a vector
v.

function P = buildhouse(v,i)

% This function builds a Householder reflection

% [I 0 ]

% [0 PP]

% from a Householder reflection

% PP = I - 2uu*uu’

% where uu = v(i:n)

% If uu = 0 then P - I

%
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n = size(v,1);

if v(i:n) == zeros(n - i + 1,1)

P = eye(n);

else

PP = eye(n - i + 1) - 2*v(i:n)*v(i:n)’;

P = [eye(i-1) zeros(i-1, n - i + 1);

zeros(n - i + 1, i - 1) PP];

end

end

The function buildQ builds the matrix Q in the QR-decomposition of
A.

function Q = buildQ(u)

% Builds the matrix Q in the QR decomposition

% of an nxn matrix A using Householder matrices,

% where u is a representation of the n - 1

% Householder reflection by a list u of vectors produced by

% houseqr

n = size(u,1);

Q = buildhouse(u(:,1),1);

for i = 2:n-1

Q = Q*buildhouse(u(:,i),i);

end

end

The function buildhouseQR computes a QR-factorization of A. At the
end, if some entries on the diagonal of R are negative, it creates a diagonal
orthogonal matrix P such that PR has nonnegative diagonal entries, so
that A = (QP )(PR) is the desired QR-factorization of A.

function [Q,R] = buildhouseQR(A)

%

% Computes the QR decomposition of a square

% matrix A (possibly singular) using Householder reflections

n = size(A,1);

[R,u] = houseqr(A);

Q = buildQ(u);
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% Produces a matrix R whose diagonal entries are

% nonnegative

P = eye(n);

for i = 1:n

if R(i,i) < 0

P(i,i) = -1;

end

end

Q = Q*P; R = P*R;

end

Example 12.1. Consider the matrix

A =

0

BB@

1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7

1

CCA .

Running the function buildhouseQR, we get

Q =

0

BB@

0.1826 0.8165 0.4001 0.3741
0.3651 0.4082 �0.2546 �0.7970
0.5477 �0.0000 �0.6910 0.4717
0.7303 �0.4082 0.5455 �0.0488

1

CCA

and

R =

0

BB@

5.4772 7.3030 9.1287 10.9545
0 0.8165 1.6330 2.4495
0 �0.0000 0.0000 0.0000
0 �0.0000 0 0.0000

1

CCA .

Observe that A has rank 2. The reader should check that A = QR.

Remark: Curiously, running Matlab built-in function qr, the same R is
obtained (up to column signs) but a di↵erent Q is obtained (the last two
columns are di↵erent).

12.3 Summary

The main concepts and results of this chapter are listed below:

• Symmetry (or reflection) with respect to F and parallel to G.
• Orthogonal symmetry (or reflection) with respect to F and parallel to
G; reflections, flips.
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• Hyperplane reflections and Householder matrices .
• A key fact about reflections (Proposition 12.2).
• QR-decomposition in terms of Householder transformations (Theorem
12.1).

12.4 Problems

Problem 12.1. (1) Given a unit vector (� sin ✓, cos ✓), prove that the
Householder matrix determined by the vector (� sin ✓, cos ✓) is

✓
cos 2✓ sin 2✓
sin 2✓ � cos 2✓

◆
.

Give a geometric interpretation (i.e., why the choice (� sin ✓, cos ✓)?).
(2) Given any matrix

A =

✓
a b
c d

◆
,

Prove that there is a Householder matrix H such that AH is lower trian-
gular, i.e.,

AH =

✓
a0 0
c0 d0

◆

for some a0, c0, d0 2 R.

Problem 12.2. Given a Euclidean space E of dimension n, if h is a re-
flection about some hyperplane orthogonal to a nonzero vector u and f is
any isometry, prove that f � h � f�1 is the reflection about the hyperplane
orthogonal to f(u).

Problem 12.3. (1) Given a matrix

A =

✓
a b
c d

◆
,

prove that there are Householder matrices G,H such that

GAH =

✓
cos ✓ sin ✓
sin ✓ � cos ✓

◆✓
a b
c d

◆✓
cos' sin'
sin' � cos'

◆
= D,

where D is a diagonal matrix, i↵ the following equations hold:

(b+ c) cos(✓ + ') = (a � d) sin(✓ + '),

(c � b) cos(✓ � ') = (a+ d) sin(✓ � ').
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(2) Discuss the solvability of the system. Consider the following cases:
Case 1: a � d = a+ d = 0.
Case 2a: a � d = b+ c = 0, a+ d 6= 0.
Case 2b: a � d = 0, b+ c 6= 0, a+ d 6= 0.
Case 3a: a+ d = c � b = 0, a � d 6= 0.
Case 3b: a+ d = 0, c � b 6= 0, a � d 6= 0.
Case 4: a+ d 6= 0, a � d 6= 0. Show that the solution in this case is

✓ =
1

2


arctan

✓
b+ c

a � d

◆
+ arctan

✓
c � b

a+ d

◆�
,

' =
1

2


arctan

✓
b+ c

a � d

◆
� arctan

✓
c � b

a+ d

◆�
.

If b = 0, show that the discussion is simpler: basically, consider c = 0
or c 6= 0.

(3) Expressing everything in terms of u = cot ✓ and v = cot', show
that the equations in (2) become

(b+ c)(uv � 1) = (u+ v)(a � d),

(c � b)(uv + 1) = (�u+ v)(a+ d).

Problem 12.4. Let A be an n ⇥ n real invertible matrix.
(1) Prove that A>A is symmetric positive definite.
(2) Use the Cholesky factorization A>A = R>R withR upper triangular

with positive diagonal entries to prove that Q = AR�1 is orthogonal, so
that A = QR is the QR-factorization of A.

Problem 12.5. Modify the function houseqr so that it applies to an m⇥n
matrix with m � n, to produce an m ⇥ n upper-triangular matrix whose
last m � n rows are zeros.

Problem 12.6. The purpose of this problem is to prove that given any
self-adjoint linear map f : E ! E (i.e., such that f⇤ = f), where E is a Eu-
clidean space of dimension n � 3, given an orthonormal basis (e

1

, . . . , en),
there are n � 2 isometries hi, hyperplane reflections or the identity, such
that the matrix of

hn�2

� · · · � h
1

� f � h
1

� · · · � hn�2

is a symmetric tridiagonal matrix.
(1) Prove that for any isometry f : E ! E, we have f = f⇤ = f�1 i↵

f � f = id.
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Prove that if f and h are self-adjoint linear maps (f⇤ = f and h⇤ = h),
then h � f � h is a self-adjoint linear map.

(2) Let Vk be the subspace spanned by (ek+1

, . . . , en). Proceed by in-
duction. For the base case, proceed as follows.

Let

f(e
1

) = a0
1

e
1

+ · · · + a0nen,

and let

r
1, 2 =

��a0
2

e
2

+ · · · + a0nen
�� .

Find an isometry h
1

(reflection or id) such that

h
1

(f(e
1

) � a0
1

e
1

) = r
1, 2 e2.

Observe that

w
1

= r
1, 2 e2 + a0

1

e
1

� f(e
1

) 2 V
1

,

and prove that h
1

(e
1

) = e
1

, so that

h
1

� f � h
1

(e
1

) = a0
1

e
1

+ r
1, 2 e2.

Let f
1

= h
1

� f � h
1

.
Assuming by induction that

fk = hk � · · · � h
1

� f � h
1

� · · · � hk

has a tridiagonal matrix up to the kth row and column, 1  k  n � 3, let

fk(ek+1

) = akkek + akk+1

ek+1

+ · · · + aknen,

and let

rk+1, k+2

=
��akk+2

ek+2

+ · · · + aknen
�� .

Find an isometry hk+1

(reflection or id) such that

hk+1

(fk(ek+1

) � akkek � akk+1

ek+1

) = rk+1, k+2

ek+2

.

Observe that

wk+1

= rk+1, k+2

ek+2

+ akkek + akk+1

ek+1

� fk(ek+1

) 2 Vk+1

,

and prove that hk+1

(ek) = ek and hk+1

(ek+1

) = ek+1

, so that

hk+1

� fk � hk+1

(ek+1

) = akkek + akk+1

ek+1

+ rk+1, k+2

ek+2

.

Let fk+1

= hk+1

� fk � hk+1

, and finish the proof.
(3) Prove that given any symmetric n ⇥ n-matrix A, there are n � 2

matrices H
1

, . . . , Hn�2

, Householder matrices or the identity, such that

B = Hn�2

· · ·H
1

AH
1

· · ·Hn�2

is a symmetric tridiagonal matrix.
(4) Write a computer program implementing the above method.
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Problem 12.7. Recall from Problem 5.6 that an n⇥ n matrix H is upper
Hessenberg if hjk = 0 for all (j, k) such that j � k � 0. Adapt the proof of
Problem 12.6 to prove that given any n ⇥ n-matrix A, there are n � 2 � 1
matrices H

1

, . . . , Hn�2

, Householder matrices or the identity, such that

B = Hn�2

· · ·H
1

AH
1

· · ·Hn�2

is upper Hessenberg.

Problem 12.8. The purpose of this problem is to prove that given any
linear map f : E ! E, where E is a Euclidean space of dimension n � 2,
given an orthonormal basis (e

1

, . . . , en), there are isometries gi, hi, hyper-
plane reflections or the identity, such that the matrix of

gn � · · · � g
1

� f � h
1

� · · · � hn

is a lower bidiagonal matrix, which means that the nonzero entries (if any)
are on the main descending diagonal and on the diagonal below it.

(1) Let U 0
k be the subspace spanned by (e

1

, . . . , ek) and U 00
k be the sub-

space spanned by (ek+1

, . . . , en), 1  k  n � 1. Proceed by induction For
the base case, proceed as follows.

Let v
1

= f⇤(e
1

) and r
1, 1 = kv

1

k. Find an isometry h
1

(reflection or id)
such that

h
1

(f⇤(e
1

)) = r
1, 1e1.

Observe that h
1

(f⇤(e
1

)) 2 U 0
1

, so that

hh
1

(f⇤(e
1

)), eji = 0

for all j, 2  j  n, and conclude that

he
1

, f � h
1

(ej)i = 0

for all j, 2  j  n.
Next let

u
1

= f � h
1

(e
1

) = u0
1

+ u00
1

,

where u0
1

2 U 0
1

and u00
1

2 U 00
1

, and let r
2, 1 = ku00

1

k. Find an isometry g
1

(reflection or id) such that

g
1

(u00
1

) = r
2, 1e2.

Show that g
1

(e
1

) = e
1

,

g
1

� f � h
1

(e
1

) = u0
1

+ r
2, 1e2,
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and that

he
1

, g
1

� f � h
1

(ej)i = 0

for all j, 2  j  n. At the end of this stage, show that g
1

� f � h
1

has
a matrix such that all entries on its first row except perhaps the first are
zero, and that all entries on the first column, except perhaps the first two,
are zero.

Assume by induction that some isometries g
1

, . . . , gk and h
1

, . . . , hk have
been found, either reflections or the identity, and such that

fk = gk � · · · � g
1

� f � h
1

· · · � hk

has a matrix which is lower bidiagonal up to and including row and column
k, where 1  k  n � 2.

Let

vk+1

= f⇤
k (ek+1

) = v0k+1

+ v00k+1

,

where v0k+1

2 U 0
k and v00k+1

2 U 00
k , and let rk+1, k+1

=
��v00k+1

��. Find an
isometry hk+1

(reflection or id) such that

hk+1

(v00k+1

) = rk+1, k+1

ek+1

.

Show that if hk+1

is a reflection, then U 0
k ✓ Hk+1

, where Hk+1

is the
hyperplane defining the reflection hk+1

. Deduce that hk+1

(v0k+1

) = v0k+1

,
and that

hk+1

(f⇤
k (ek+1

)) = v0k+1

+ rk+1, k+1

ek+1

.

Observe that hk+1

(f⇤
k (ek+1

)) 2 U 0
k+1

, so that

hhk+1

(f⇤
k (ek+1

)), eji = 0

for all j, k + 2  j  n, and thus,

hek+1

, fk � hk+1

(ej)i = 0

for all j, k + 2  j  n.
Next let

uk+1

= fk � hk+1

(ek+1

) = u0
k+1

+ u00
k+1

,

where u0
k+1

2 U 0
k+1

and u00
k+1

2 U 00
k+1

, and let rk+2, k+1

=
��u00

k+1

��. Find an
isometry gk+1

(reflection or id) such that

gk+1

(u00
k+1

) = rk+2, k+1

ek+2

.
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Show that if gk+1

is a reflection, then U 0
k+1

✓ Gk+1

, where Gk+1

is the
hyperplane defining the reflection gk+1

. Deduce that gk+1

(ei) = ei for all
i, 1  i  k + 1, and that

gk+1

� fk � hk+1

(ek+1

) = u0
k+1

+ rk+2, k+1

ek+2

.

Since by induction hypothesis,

hei, fk � hk+1

(ej)i = 0

for all i, j, 1  i  k + 1, k + 2  j  n, and since gk+1

(ei) = ei for all i,
1  i  k + 1, conclude that

hei, gk+1

� fk � hk+1

(ej)i = 0

for all i, j, 1  i  k + 1, k + 2  j  n. Finish the proof.



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 488



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 489

Chapter 13

Hermitian Spaces

13.1 Sesquilinear and Hermitian Forms, Pre-Hilbert
Spaces and Hermitian Spaces

In this chapter we generalize the basic results of Euclidean geometry pre-
sented in Chapter 11 to vector spaces over the complex numbers. Such a
generalization is inevitable and not simply a luxury. For example, linear
maps may not have real eigenvalues, but they always have complex eigen-
values. Furthermore, some very important classes of linear maps can be
diagonalized if they are extended to the complexification of a real vector
space. This is the case for orthogonal matrices and, more generally, nor-
mal matrices. Also, complex vector spaces are often the natural framework
in physics or engineering, and they are more convenient for dealing with
Fourier series. However, some complications arise due to complex conjuga-
tion.

Recall that for any complex number z 2 C, if z = x+ iy where x, y 2 R,
we let <z = x, the real part of z, and =z = y, the imaginary part of z. We
also denote the conjugate of z = x + iy by z = x � iy, and the absolute
value (or length, or modulus) of z by |z|. Recall that |z|2 = zz = x2 + y2.

There are many natural situations where a map ' : E ⇥ E ! C is
linear in its first argument and only semilinear in its second argument,
which means that '(u, µv) = µ'(u, v), as opposed to '(u, µv) = µ'(u, v).
For example, the natural inner product to deal with functions f : R ! C,
especially Fourier series, is

hf, gi =
Z ⇡

�⇡
f(x)g(x)dx,

which is semilinear (but not linear) in g. Thus, when generalizing a result
from the real case of a Euclidean space to the complex case, we always

489
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have to check very carefully that our proofs do not rely on linearity in the
second argument. Otherwise, we need to revise our proofs, and sometimes
the result is simply wrong!

Before defining the natural generalization of an inner product, it is
convenient to define semilinear maps.

Definition 13.1. Given two vector spaces E and F over the complex field
C, a function f : E ! F is semilinear if

f(u+ v) = f(u) + f(v),

f(�u) = �f(u),

for all u, v 2 E and all � 2 C.

Remark: Instead of defining semilinear maps, we could have defined the
vector space E as the vector space with the same carrier set E whose
addition is the same as that of E, but whose multiplication by a complex
number is given by

(�, u) 7! �u.

Then it is easy to check that a function f : E ! C is semilinear i↵ f : E ! C
is linear.

We can now define sesquilinear forms and Hermitian forms.

Definition 13.2. Given a complex vector space E, a function ' : E⇥E !
C is a sesquilinear form if it is linear in its first argument and semilinear
in its second argument, which means that

'(u
1

+ u
2

, v) = '(u
1

, v) + '(u
2

, v),

'(u, v
1

+ v
2

) = '(u, v
1

) + '(u, v
2

),

'(�u, v) = �'(u, v),

'(u, µv) = µ'(u, v),

for all u, v, u
1

, u
2

, v
1

, v
2

2 E, and all �, µ 2 C. A function ' : E ⇥ E ! C
is a Hermitian form if it is sesquilinear and if

'(v, u) = '(u, v)

for all all u, v 2 E.
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Obviously, '(0, v) = '(u, 0) = 0. Also note that if ' : E ⇥ E ! C is
sesquilinear, we have

'(�u+ µv,�u+ µv) = |�|2'(u, u) + �µ'(u, v) + �µ'(v, u) + |µ|2'(v, v),

and if ' : E ⇥ E ! C is Hermitian, we have

'(�u+ µv,�u+ µv) = |�|2'(u, u) + 2<(�µ'(u, v)) + |µ|2'(v, v).

Note that restricted to real coe�cients, a sesquilinear form is bilinear
(we sometimes say R-bilinear).

Definition 13.3. Given a sesquilinear form ' : E ⇥ E ! C, the function
� : E ! C defined such that �(u) = '(u, u) for all u 2 E is called the
quadratic form associated with '.

The standard example of a Hermitian form on Cn is the map ' defined
such that

'((x
1

, . . . , xn), (y1, . . . , yn)) = x
1

y
1

+ x
2

y
2

+ · · · + xnyn.

This map is also positive definite, but before dealing with these issues, we
show the following useful proposition.

Proposition 13.1. Given a complex vector space E, the following proper-
ties hold:

(1) A sesquilinear form ' : E⇥E ! C is a Hermitian form i↵ '(u, u) 2 R
for all u 2 E.

(2) If ' : E ⇥ E ! C is a sesquilinear form, then

4'(u, v) = '(u+ v, u+ v) � '(u � v, u � v)

+ i'(u+ iv, u+ iv) � i'(u � iv, u � iv),

and

2'(u, v) = (1+ i)('(u, u)+'(v, v))�'(u�v, u�v)� i'(u� iv, u� iv).

These are called polarization identities.

Proof. (1) If ' is a Hermitian form, then

'(v, u) = '(u, v)

implies that

'(u, u) = '(u, u),
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and thus '(u, u) 2 R. If ' is sesquilinear and '(u, u) 2 R for all u 2 E,
then

'(u+ v, u+ v) = '(u, u) + '(u, v) + '(v, u) + '(v, v),

which proves that

'(u, v) + '(v, u) = ↵,

where ↵ is real, and changing u to iu, we have

i('(u, v) � '(v, u)) = �,

where � is real, and thus

'(u, v) =
↵� i�

2
and '(v, u) =

↵+ i�

2
,

proving that ' is Hermitian.
(2) These identities are verified by expanding the right-hand side, and

we leave them as an exercise.

Proposition 13.1 shows that a sesquilinear form is completely deter-
mined by the quadratic form �(u) = '(u, u), even if ' is not Hermitian.
This is false for a real bilinear form, unless it is symmetric. For example,
the bilinear form ' : R2 ⇥ R2 ! R defined such that

'((x
1

, y
1

), (x
2

, y
2

)) = x
1

y
2

� x
2

y
1

is not identically zero, and yet it is null on the diagonal. However, a real
symmetric bilinear form is indeed determined by its values on the diagonal,
as we saw in Chapter 11.

As in the Euclidean case, Hermitian forms for which '(u, u) � 0 play
an important role.

Definition 13.4. Given a complex vector space E, a Hermitian form
' : E ⇥ E ! C is positive if '(u, u) � 0 for all u 2 E, and positive definite
if '(u, u) > 0 for all u 6= 0. A pair hE,'i where E is a complex vector
space and ' is a Hermitian form on E is called a pre-Hilbert space if ' is
positive, and a Hermitian (or unitary) space if ' is positive definite.

We warn our readers that some authors, such as Lang [Lang (1996)],
define a pre-Hilbert space as what we define as a Hermitian space. We prefer
following the terminology used in Schwartz [Schwartz (1991)] and Bourbaki
[Bourbaki (1981b)]. The quantity '(u, v) is usually called the Hermitian
product of u and v. We will occasionally call it the inner product of u and
v.
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Given a pre-Hilbert space hE,'i, as in the case of a Euclidean space,
we also denote '(u, v) by

u · v or hu, vi or (u|v),
and

p
�(u) by kuk.

Example 13.1. The complex vector space Cn under the Hermitian form

'((x
1

, . . . , xn), (y1, . . . , yn)) = x
1

y
1

+ x
2

y
2

+ · · · + xnyn

is a Hermitian space.

Example 13.2. Let `2 denote the set of all countably infinite sequences
x = (xi)i2N of complex numbers such that

P1
i=0

|xi|2 is defined (i.e., the
sequence

Pn
i=0

|xi|2 converges as n ! 1). It can be shown that the map
' : `2 ⇥ `2 ! C defined such that

' ((xi)i2N, (yi)i2N) =
1X

i=0

xiyi

is well defined, and `2 is a Hermitian space under '. Actually, `2 is even a
Hilbert space.

Example 13.3. Let C
piece

[a, b] be the set of bounded piecewise continuous
functions
f : [a, b] ! C under the Hermitian form

hf, gi =
Z b

a

f(x)g(x)dx.

It is easy to check that this Hermitian form is positive, but it is not definite.
Thus, under this Hermitian form, C

piece

[a, b] is only a pre-Hilbert space.

Example 13.4. Let C[a, b] be the set of complex-valued continuous func-
tions f : [a, b] ! C under the Hermitian form

hf, gi =
Z b

a

f(x)g(x)dx.

It is easy to check that this Hermitian form is positive definite. Thus, C[a, b]
is a Hermitian space.

Example 13.5. Let E = Mn(C) be the vector space of complex n ⇥ n
matrices. If we view a matrix A 2 Mn(C) as a “long” column vector ob-
tained by concatenating together its columns, we can define the Hermitian
product of two matrices A,B 2 Mn(C) as

hA,Bi =
nX

i,j=1

aijbij ,
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which can be conveniently written as

hA,Bi = tr(A>B) = tr(B⇤A).

Since this can be viewed as the standard Hermitian product on Cn2

, it is a
Hermitian product on Mn(C). The corresponding norm

kAkF =
p
tr(A⇤A)

is the Frobenius norm (see Section 8.2).

If E is finite-dimensional and if ' : E ⇥ E ! R is a sequilinear form
on E, given any basis (e

1

, . . . , en) of E, we can write x =
Pn

i=1

xiei and
y =

Pn
j=1

yjej , and we have

'(x, y) = '

✓ nX

i=1

xiei,
nX

j=1

yjej

◆
=

nX

i,j=1

xiyj'(ei, ej).

If we let G = (gij) be the matrix given by gij = '(ej , ei), and if x and y
are the column vectors associated with (x

1

, . . . , xn) and (y
1

, . . . , yn), then
we can write

'(x, y) = x>G> y = y⇤Gx,

where y corresponds to (y
1

, . . . , yn). As in Section 11.1, we are com-
mitting the slight abuse of notation of letting x denote both the vector
x =

Pn
i=1

xiei and the column vector associated with (x
1

, . . . , xn) (and
similarly for y). The “correct” expression for '(x, y) is

'(x, y) = y⇤Gx = x>G>y.� Observe that in '(x, y) = y⇤Gx, the matrix involved is the transpose
of the matrix ('(ei, ej)). The reason for this is that we want G to be

positive definite when ' is positive definite, not G>.

Furthermore, observe that ' is Hermitian i↵ G = G⇤, and ' is positive
definite i↵ the matrix G is positive definite, that is,

(Gx)>x = x⇤Gx > 0 for all x 2 Cn, x 6= 0.

Definition 13.5. The matrix G associated with a Hermitian product is
called the Gram matrix of the Hermitian product with respect to the basis
(e

1

, . . . , en).
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Conversely, if A is a Hermitian positive definite n⇥ n matrix, it is easy
to check that the Hermitian form

hx, yi = y⇤Ax

is positive definite. If we make a change of basis from the basis (e
1

, . . . , en)
to the basis (f

1

, . . . , fn), and if the change of basis matrix is P (where the
jth column of P consists of the coordinates of fj over the basis (e1, . . . , en)),
then with respect to coordinates x0 and y0 over the basis (f

1

, . . . , fn), we
have

y⇤Gx = (y0)⇤P ⇤GPx0,

so the matrix of our inner product over the basis (f
1

, . . . , fn) is P ⇤GP . We
summarize these facts in the following proposition.

Proposition 13.2. Let E be a finite-dimensional vector space, and let
(e

1

, . . . , en) be a basis of E.

(1) For any Hermitian inner product h�,�i on E, if G = (gij) with gij =
hej , eii is the Gram matrix of the Hermitian product h�,�i w.r.t. the
basis (e

1

, . . . , en), then G is Hermitian positive definite.
(2) For any change of basis matrix P , the Gram matrix of h�,�i with

respect to the new basis is P ⇤GP .
(3) If A is any n ⇥ n Hermitian positive definite matrix, then

hx, yi = y⇤Ax

is a Hermitian product on E.

We will see later that a Hermitian matrix is positive definite i↵ its
eigenvalues are all positive.

The following result reminiscent of the first polarization identity of
Proposition 13.1 can be used to prove that two linear maps are identical.

Proposition 13.3. Given any Hermitian space E with Hermitian product
h�,�i, for any linear map f : E ! E, if hf(x), xi = 0 for all x 2 E, then
f = 0.

Proof. Compute hf(x+ y), x+ yi and hf(x � y), x � yi:

hf(x+ y), x+ yi = hf(x), xi + hf(x), yi + hf(y), xi + hy, yi
hf(x � y), x � yi = hf(x), xi � hf(x), yi � hf(y), xi + hy, yi;

then subtract the second equation from the first to obtain

hf(x+ y), x+ yi � hf(x � y), x � yi = 2(hf(x), yi + hf(y), xi).
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If hf(u), ui = 0 for all u 2 E, we get

hf(x), yi + hf(y), xi = 0 for all x, y 2 E.

Then the above equation also holds if we replace x by ix, and we obtain

ihf(x), yi � ihf(y), xi = 0, for all x, y 2 E,

so we have

hf(x), yi + hf(y), xi = 0

hf(x), yi � hf(y), xi = 0,

which implies that hf(x), yi = 0 for all x, y 2 E. Since h�,�i is positive
definite, we have f(x) = 0 for all x 2 E; that is, f = 0.

One should be careful not to apply Proposition 13.3 to a linear map
on a real Euclidean space because it is false! The reader should find a
counterexample.

The Cauchy–Schwarz inequality and the Minkowski inequalities extend
to pre-Hilbert spaces and to Hermitian spaces.

Proposition 13.4. Let hE,'i be a pre-Hilbert space with associated
quadratic form �. For all u, v 2 E, we have the Cauchy–Schwarz inequality

|'(u, v)| 
p

�(u)
p
�(v).

Furthermore, if hE,'i is a Hermitian space, the equality holds i↵ u and v
are linearly dependent.

We also have the Minkowski inequality
p
�(u+ v) 

p
�(u) +

p
�(v).

Furthermore, if hE,'i is a Hermitian space, the equality holds i↵ u and v
are linearly dependent, where in addition, if u 6= 0 and v 6= 0, then u = �v
for some real � such that � > 0.

Proof. For all u, v 2 E and all µ 2 C, we have observed that

'(u+ µv, u+ µv) = '(u, u) + 2<(µ'(u, v)) + |µ|2'(v, v).

Let '(u, v) = ⇢ei✓, where |'(u, v)| = ⇢ (⇢ � 0). Let F : R ! R be the
function defined such that

F (t) = �(u+ tei✓v),
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for all t 2 R. The above shows that

F (t) = '(u, u) + 2t|'(u, v)| + t2'(v, v) = �(u) + 2t|'(u, v)| + t2�(v).

Since ' is assumed to be positive, we have F (t) � 0 for all t 2 R. If
�(v) = 0, we must have '(u, v) = 0, since otherwise, F (t) could be made
negative by choosing t negative and small enough. If �(v) > 0, in order for
F (t) to be nonnegative, the equation

�(u) + 2t|'(u, v)| + t2�(v) = 0

must not have distinct real roots, which is equivalent to

|'(u, v)|2  �(u)�(v).

Taking the square root on both sides yields the Cauchy–Schwarz inequality.
For the second part of the claim, if ' is positive definite, we argue as

follows. If u and v are linearly dependent, it is immediately verified that
we get an equality. Conversely, if

|'(u, v)|2 = �(u)�(v),

then there are two cases. If �(v) = 0, since ' is positive definite, we must
have v = 0, so u and v are linearly dependent. Otherwise, the equation

�(u) + 2t|'(u, v)| + t2�(v) = 0

has a double root t
0

, and thus

�(u+ t
0

ei✓v) = 0.

Since ' is positive definite, we must have

u+ t
0

ei✓v = 0,

which shows that u and v are linearly dependent.
If we square the Minkowski inequality, we get

�(u+ v)  �(u) + �(v) + 2
p
�(u)

p
�(v).

However, we observed earlier that

�(u+ v) = �(u) + �(v) + 2<('(u, v)).

Thus, it is enough to prove that

<('(u, v)) 
p
�(u)

p
�(v),

but this follows from the Cauchy–Schwarz inequality

|'(u, v)| 
p

�(u)
p

�(v)
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and the fact that <z  |z|.
If ' is positive definite and u and v are linearly dependent, it is imme-

diately verified that we get an equality. Conversely, if equality holds in the
Minkowski inequality, we must have

<('(u, v)) =
p
�(u)

p
�(v),

which implies that

|'(u, v)| =
p

�(u)
p
�(v),

since otherwise, by the Cauchy–Schwarz inequality, we would have

<('(u, v))  |'(u, v)| <
p
�(u)

p
�(v).

Thus, equality holds in the Cauchy–Schwarz inequality, and

<('(u, v)) = |'(u, v)|.

But then we proved in the Cauchy–Schwarz case that u and v are linearly
dependent. Since we also just proved that '(u, v) is real and nonnegative,
the coe�cient of proportionality between u and v is indeed nonnegative.

As in the Euclidean case, if hE,'i is a Hermitian space, the Minkowski
inequality

p
�(u+ v) 

p
�(u) +

p
�(v)

shows that the map u 7!
p
�(u) is a norm on E. The norm induced by '

is called the Hermitian norm induced by '. We usually denote
p

�(u) by
kuk, and the Cauchy–Schwarz inequality is written as

|u · v|  kukkvk.

Since a Hermitian space is a normed vector space, it is a topological
space under the topology induced by the norm (a basis for this topology is
given by the open balls B

0

(u, ⇢) of center u and radius ⇢ > 0, where

B
0

(u, ⇢) = {v 2 E | kv � uk < ⇢}.

If E has finite dimension, every linear map is continuous; see Chapter 8 (or
Lang [Lang (1996, 1997)], Dixmier [Dixmier (1984)], or Schwartz [Schwartz
(1991, 1992)]). The Cauchy–Schwarz inequality

|u · v|  kukkvk

shows that ' : E ⇥ E ! C is continuous, and thus, that k k is continuous.
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If hE,'i is only pre-Hilbertian, kuk is called a seminorm. In this case,
the condition

kuk = 0 implies u = 0

is not necessarily true. However, the Cauchy–Schwarz inequality shows that
if kuk = 0, then u · v = 0 for all v 2 E.

Remark: As in the case of real vector spaces, a norm on a complex vector
space is induced by some positive definite Hermitian product h�,�i i↵ it
satisfies the parallelogram law :

ku+ vk2 + ku � vk2 = 2(kuk2 + kvk2).

This time the Hermitian product is recovered using the polarization identity
from Proposition 13.1:

4hu, vi = ku+ vk2 � ku � vk2 + i ku+ ivk2 � i ku � ivk2 .

It is easy to check that hu, ui = kuk2, and

hv, ui = hu, vi
hiu, vi = ihu, vi,

so it is enough to check linearity in the variable u, and only for real scalars.
This is easily done by applying the proof from Section 11.1 to the real and
imaginary part of hu, vi; the details are left as an exercise.

We will now basically mirror the presentation of Euclidean geometry
given in Chapter 11 rather quickly, leaving out most proofs, except when
they need to be seriously amended.

13.2 Orthogonality, Duality, Adjoint of a Linear Map

In this section we assume that we are dealing with Hermitian spaces. We
denote the Hermitian inner product by u · v or hu, vi. The concepts of
orthogonality, orthogonal family of vectors, orthonormal family of vectors,
and orthogonal complement of a set of vectors are unchanged from the
Euclidean case (Definition 11.2).

For example, the set C[�⇡,⇡] of continuous functions f : [�⇡,⇡] ! C is
a Hermitian space under the product

hf, gi =
Z ⇡

�⇡
f(x)g(x)dx,

and the family (eikx)k2Z is orthogonal.
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Propositions 11.4 and 11.5 hold without any changes. It is easy to show
that �����

nX

i=1

ui

�����

2

=
nX

i=1

kuik2 +
X

1i<jn

2<(ui · uj).

Analogously to the case of Euclidean spaces of finite dimension, the
Hermitian product induces a canonical bijection (i.e., independent of the
choice of bases) between the vector space E and the space E⇤. This is one
of the places where conjugation shows up, but in this case, troubles are
minor.

Given a Hermitian space E, for any vector u 2 E, let 'l
u : E ! C be

the map defined such that

'l
u(v) = u · v, for all v 2 E.

Similarly, for any vector v 2 E, let 'r
v : E ! C be the map defined such

that

'r
v(u) = u · v, for all u 2 E.

Since the Hermitian product is linear in its first argument u, the map
'r
v is a linear form in E⇤, and since it is semilinear in its second argument v,

the map 'l
u is also a linear form in E⇤. Thus, we have two maps [l : E ! E⇤

and [r : E ! E⇤, defined such that

[l(u) = 'l
u, and [r(v) = 'r

v.

Proposition 13.5. The equations 'l
u = 'r

u and [l = [r hold.

Proof. Indeed, for all u, v 2 E, we have

[l(u)(v) = 'l
u(v)

= u · v
= v · u
= 'r

u(v)

= [r(u)(v).

Therefore, we use the notation 'u for both 'l
u and 'r

u, and [ for both [l

and [r.

Theorem 13.1. Let E be a Hermitian space E. The map [ : E ! E⇤

defined such that

[(u) = 'l
u = 'r

u for all u 2 E

is semilinear and injective. When E is also of finite dimension, the map
[ : E ! E⇤ is a canonical isomorphism.
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Proof. That [ : E ! E⇤ is a semilinear map follows immediately from the
fact that [ = [r, and that the Hermitian product is semilinear in its second
argument. If 'u = 'v, then 'u(w) = 'v(w) for all w 2 E, which by
definition of 'u and 'v means that

w · u = w · v

for all w 2 E, which by semilinearity on the right is equivalent to

w · (v � u) = 0 for all w 2 E,

which implies that u = v, since the Hermitian product is positive definite.
Thus, [ : E ! E⇤ is injective. Finally, when E is of finite dimension n, E⇤

is also of dimension n, and then [ : E ! E⇤ is bijective. Since [ is semilinar,
the map [ : E ! E⇤ is an isomorphism.

The inverse of the isomorphism [ : E ! E⇤ is denoted by ] : E⇤ ! E.
As a corollary of the isomorphism [ : E ! E⇤ we have the following

result.

Proposition 13.6. If E is a Hermitian space of finite dimension, then
every linear form f 2 E⇤ corresponds to a unique v 2 E, such that

f(u) = u · v, for every u 2 E.

In particular, if f is not the zero form, the kernel of f , which is a hyperplane
H, is precisely the set of vectors that are orthogonal to v.

Remarks:

(1) The “musical map” [ : E ! E⇤ is not surjective when E has infinite
dimension. This result can be salvaged by restricting our attention to
continuous linear maps and by assuming that the vector space E is a
Hilbert space.

(2) Dirac’s “bra-ket” notation. Dirac invented a notation widely used in
quantum mechanics for denoting the linear form 'u = [(u) associated
to the vector u 2 E via the duality induced by a Hermitian inner
product. Dirac’s proposal is to denote the vectors u in E by |ui, and
call them kets; the notation |ui is pronounced “ket u.” Given two kets
(vectors) |ui and |vi, their inner product is denoted by

hu|vi

(instead of |ui · |vi). The notation hu|vi for the inner product of |ui
and |vi anticipates duality. Indeed, we define the dual (usually called



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 502

502 Hermitian Spaces

adjoint) bra u of ket u, denoted by hu|, as the linear form whose value
on any ket v is given by the inner product, so

hu|(|vi) = hu|vi.

Thus, bra u = hu| is Dirac’s notation for our [(u). Since the map [ is
semi-linear, we have

h�u| = �hu|.

Using the bra-ket notation, given an orthonormal basis (|u
1

i, . . . , |uni),
ket v (a vector) is written as

|vi =
nX

i=1

hv|uii|uii,

and the corresponding linear form bra v is written as

hv| =
nX

i=1

hv|uiihui| =
nX

i=1

hui|vihui|

over the dual basis (hu
1

|, . . . , hun|). As cute as it looks, we do not
recommend using the Dirac notation.

The existence of the isomorphism [ : E ! E⇤ is crucial to the existence
of adjoint maps. Indeed, Theorem 13.1 allows us to define the adjoint of
a linear map on a Hermitian space. Let E be a Hermitian space of finite
dimension n, and let f : E ! E be a linear map. For every u 2 E, the map

v 7! u · f(v)

is clearly a linear form in E⇤, and by Theorem 13.1, there is a unique vector
in E denoted by f⇤(u), such that

f⇤(u) · v = u · f(v),

that is,

f⇤(u) · v = u · f(v), for every v 2 E.

The following proposition shows that the map f⇤ is linear.

Proposition 13.7. Given a Hermitian space E of finite dimension, for
every linear map f : E ! E there is a unique linear map f⇤ : E ! E such
that

f⇤(u) · v = u · f(v), for all u, v 2 E.



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 503

13.2. Orthogonality, Duality, Adjoint of a Linear Map 503

Proof. Careful inspection of the proof of Proposition 11.6 reveals that it
applies unchanged. The only potential problem is in proving that f⇤(�u) =
�f⇤(u), but everything takes place in the first argument of the Hermitian
product, and there, we have linearity.

Definition 13.6. Given a Hermitian space E of finite dimension, for every
linear map f : E ! E, the unique linear map f⇤ : E ! E such that

f⇤(u) · v = u · f(v), for all u, v 2 E

given by Proposition 13.7 is called the adjoint of f (w.r.t. to the Hermitian
product).

The fact that

v · u = u · v

implies that the adjoint f⇤ of f is also characterized by

f(u) · v = u · f⇤(v),

for all u, v 2 E.
Given two Hermitian spaces E and F , where the Hermitian product on

E is denoted by h�,�i
1

and the Hermitian product on F is denoted by
h�,�i

2

, given any linear map f : E ! F , it is immediately verified that
the proof of Proposition 13.7 can be adapted to show that there is a unique
linear map f⇤ : F ! E such that

hf(u), vi
2

= hu, f⇤(v)i
1

for all u 2 E and all v 2 F . The linear map f⇤ is also called the adjoint of
f .

As in the Euclidean case, the following properties immediately follow
from the definition of the adjoint map.

Proposition 13.8.

(1) For any linear map f : E ! F , we have

f⇤⇤ = f.

(2) For any two linear maps f, g : E ! F and any scalar � 2 R:

(f + g)⇤ = f⇤ + g⇤

(�f)⇤ = �f⇤.
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(3) If E,F,G are Hermitian spaces with respective inner products
h�,�i

1

, h�,�i
2

, and h�,�i
3

, and if f : E ! F and g : F ! G are
two linear maps, then

(g � f)⇤ = f⇤ � g⇤.

As in the Euclidean case, a linear map f : E ! E (where E is a finite-
dimensional Hermitian space) is self-adjoint if f = f⇤. The map f is
positive semidefinite i↵

hf(x), xi � 0 all x 2 E;

positive definite i↵

hf(x), xi > 0 all x 2 E, x 6= 0.

An interesting corollary of Proposition 13.3 is that a positive semidefinite
linear map must be self-adjoint. In fact, we can prove a slightly more
general result.

Proposition 13.9. Given any finite-dimensional Hermitian space E with
Hermitian product h�,�i, for any linear map f : E ! E, if hf(x), xi 2 R
for all x 2 E, then f is self-adjoint. In particular, any positive semidefinite
linear map f : E ! E is self-adjoint.

Proof. Since hf(x), xi 2 R for all x 2 E, we have

hf(x), xi = hf(x), xi
= hx, f(x)i
= hf⇤(x), xi,

so we have

h(f � f⇤)(x), xi = 0 all x 2 E,

and Proposition 13.3 implies that f � f⇤ = 0.

Beware that Proposition 13.9 is false if E is a real Euclidean space.
As in the Euclidean case, Theorem 13.1 can be used to show that any

Hermitian space of finite dimension has an orthonormal basis. The proof
is unchanged.

Proposition 13.10. Given any nontrivial Hermitian space E of finite di-
mension n � 1, there is an orthonormal basis (u

1

, . . . , un) for E.
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The Gram–Schmidt orthonormalization procedure also applies to Her-
mitian spaces of finite dimension, without any changes from the Euclidean
case!

Proposition 13.11. Given a nontrivial Hermitian space E of finite di-
mension n � 1, from any basis (e

1

, . . . , en) for E we can construct an
orthonormal basis (u

1

, . . . , un) for E with the property that for every k,
1  k  n, the families (e

1

, . . . , ek) and (u
1

, . . . , uk) generate the same
subspace.

Remark: The remarks made after Proposition 11.8 also apply here, except
that in the QR-decomposition, Q is a unitary matrix.

As a consequence of Proposition 11.7 (or Proposition 13.11), given any
Hermitian space of finite dimension n, if (e

1

, . . . , en) is an orthonormal
basis for E, then for any two vectors u = u

1

e
1

+ · · · + unen and v =
v
1

e
1

+ · · · + vnen, the Hermitian product u · v is expressed as

u · v = (u
1

e
1

+ · · · + unen) · (v
1

e
1

+ · · · + vnen) =
nX

i=1

uivi,

and the norm kuk as

kuk = ku
1

e
1

+ · · · + unenk =

✓ nX

i=1

|ui|2
◆

1/2

.

The fact that a Hermitian space always has an orthonormal basis implies
that any Gram matrix G can be written as

G = Q⇤Q,

for some invertible matrix Q. Indeed, we know that in a change of basis
matrix, a Gram matrix G becomes G0 = P ⇤GP . If the basis corresponding
to G0 is orthonormal, then G0 = I, so G = (P�1)⇤P�1.

Proposition 11.9 also holds unchanged.

Proposition 13.12. Given any nontrivial Hermitian space E of finite di-
mension n � 1, for any subspace F of dimension k, the orthogonal comple-
ment F? of F has dimension n � k, and E = F � F?. Furthermore, we
have F?? = F .



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 506

506 Hermitian Spaces

13.3 Linear Isometries (Also Called Unitary Transforma-
tions)

In this section we consider linear maps between Hermitian spaces that pre-
serve the Hermitian norm. All definitions given for Euclidean spaces in
Section 11.5 extend to Hermitian spaces, except that orthogonal transfor-
mations are called unitary transformation, but Proposition 11.10 extends
only with a modified Condition (2). Indeed, the old proof that (2) implies
(3) does not work, and the implication is in fact false! It can be repaired
by strengthening Condition (2). For the sake of completeness, we state the
Hermitian version of Definition 11.5.

Definition 13.7. Given any two nontrivial Hermitian spaces E and F of
the same finite dimension n, a function f : E ! F is a unitary transforma-
tion, or a linear isometry , if it is linear and

kf(u)k = kuk, for all u 2 E.

Proposition 11.10 can be salvaged by strengthening Condition (2).

Proposition 13.13. Given any two nontrivial Hermitian spaces E and F
of the same finite dimension n, for every function f : E ! F , the following
properties are equivalent:

(1) f is a linear map and kf(u)k = kuk, for all u 2 E;
(2) kf(v) � f(u)k = kv � uk and f(iu) = if(u), for all u, v 2 E.
(3) f(u) · f(v) = u · v, for all u, v 2 E.

Furthermore, such a map is bijective.

Proof. The proof that (2) implies (3) given in Proposition 11.10 needs to
be revised as follows. We use the polarization identity

2'(u, v) = (1 + i)(kuk2 + kvk2) � ku � vk2 � iku � ivk2.
Since f(iv) = if(v), we get f(0) = 0 by setting v = 0, so the function f
preserves distance and norm, and we get

2'(f(u), f(v)) = (1 + i)(kf(u)k2 + kf(v)k2) � kf(u) � f(v)k2

� ikf(u) � if(v)k2

= (1 + i)(kf(u)k2 + kf(v)k2) � kf(u) � f(v)k2

� ikf(u) � f(iv)k2

= (1 + i)(kuk2 + kvk2) � ku � vk2 � iku � ivk2

= 2'(u, v),
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which shows that f preserves the Hermitian inner product as desired. The
rest of the proof is unchanged.

Remarks:

(i) In the Euclidean case, we proved that the assumption

kf(v) � f(u)k = kv � uk for all u, v 2 E and f(0) = 0 (20)

implies (3). For this we used the polarization identity

2u · v = kuk2 + kvk2 � ku � vk2.
In the Hermitian case the polarization identity involves the complex
number i. In fact, the implication (20) implies (3) is false in the Her-
mitian case! Conjugation z 7! z satisfies (20) since

|z
2

� z
1

| = |z
2

� z
1

| = |z
2

� z
1

|,
and yet, it is not linear!

(ii) If we modify (2) by changing the second condition by now requiring
that there be some ⌧ 2 E such that

f(⌧ + iu) = f(⌧) + i(f(⌧ + u) � f(⌧))

for all u 2 E, then the function g : E ! E defined such that

g(u) = f(⌧ + u) � f(⌧)

satisfies the old conditions of (2), and the implications (2) ! (3) and
(3) ! (1) prove that g is linear, and thus that f is a�ne. In view of
the first remark, some condition involving i is needed on f , in addition
to the fact that f is distance-preserving.

13.4 The Unitary Group, Unitary Matrices

In this section, as a mirror image of our treatment of the isometries of a Eu-
clidean space, we explore some of the fundamental properties of the unitary
group and of unitary matrices. As an immediate corollary of the Gram–
Schmidt orthonormalization procedure, we obtain the QR-decomposition
for invertible matrices. In the Hermitian framework, the matrix of the ad-
joint of a linear map is not given by the transpose of the original matrix,
but by the conjugate of the original matrix.

Definition 13.8. Given a complex m ⇥ n matrix A, the transpose A> of
A is the n ⇥ m matrix A> =

�
a>i j
�
defined such that

a>i j = aj i,
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and the conjugate A of A is the m ⇥ n matrix A = (bi j) defined such that

bi j = ai j

for all i, j, 1  i  m, 1  j  n. The adjoint A⇤ of A is the matrix defined
such that

A⇤ = (A>) =
�
A
�>

.

Proposition 13.14. Let E be any Hermitian space of finite dimension n,
and let f : E ! E be any linear map. The following properties hold:

(1) The linear map f : E ! E is an isometry i↵

f � f⇤ = f⇤ � f = id.

(2) For every orthonormal basis (e
1

, . . . , en) of E, if the matrix of f is A,
then the matrix of f⇤ is the adjoint A⇤ of A, and f is an isometry i↵
A satisfies the identities

AA⇤ = A⇤A = In,

where In denotes the identity matrix of order n, i↵ the columns of A
form an orthonormal basis of Cn, i↵ the rows of A form an orthonormal
basis of Cn.

Proof. (1) The proof is identical to that of Proposition 11.12 (1).
(2) If (e

1

, . . . , en) is an orthonormal basis for E, let A = (ai j) be the
matrix of f , and let B = (bi j) be the matrix of f⇤. Since f⇤ is characterized
by

f⇤(u) · v = u · f(v)

for all u, v 2 E, using the fact that if w = w
1

e
1

+ · · · + wnen, we have
wk = w · ek, for all k, 1  k  n; letting u = ei and v = ej , we get

bj i = f⇤(ei) · ej = ei · f(ej) = f(ej) · ei = ai j ,

for all i, j, 1  i, j  n. Thus, B = A⇤. Now if X and Y are arbitrary
matrices over the basis (e

1

, . . . , en), denoting as usual the jth column of X
by Xj , and similarly for Y , a simple calculation shows that

Y ⇤X = (Xj · Y i)
1i,jn.

Then it is immediately verified that if X = Y = A, then A⇤A = AA⇤ = In
i↵ the column vectors (A1, . . . , An) form an orthonormal basis. Thus, from
(1), we see that (2) is clear.
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Proposition 11.12 shows that the inverse of an isometry f is its adjoint
f⇤. Proposition 11.12 also motivates the following definition.

Definition 13.9. A complex n ⇥ n matrix is a unitary matrix if

AA⇤ = A⇤A = In.

Remarks:

(1) The conditions AA⇤ = In, A⇤A = In, and A�1 = A⇤ are equivalent.
Given any two orthonormal bases (u

1

, . . . , un) and (v
1

, . . . , vn), if P is
the change of basis matrix from (u

1

, . . . , un) to (v
1

, . . . , vn), it is easy to
show that the matrix P is unitary. The proof of Proposition 13.13 (3)
also shows that if f is an isometry, then the image of an orthonormal
basis (u

1

, . . . , un) is an orthonormal basis.
(2) Using the explicit formula for the determinant, we see immediately that

det(A) = det(A).

If f is a unitary transformation and A is its matrix with respect to any
orthonormal basis, from AA⇤ = I, we get

det(AA⇤) = det(A) det(A⇤) = det(A)det(A>)

= det(A)det(A) = | det(A)|2,

and so | det(A)| = 1. It is clear that the isometries of a Hermitian space
of dimension n form a group, and that the isometries of determinant
+1 form a subgroup.

This leads to the following definition.

Definition 13.10. Given a Hermitian space E of dimension n, the set of
isometries f : E ! E forms a subgroup of GL(E,C) denoted by U(E), or
U(n) when E = Cn, called the unitary group (of E). For every isometry
f we have | det(f)| = 1, where det(f) denotes the determinant of f . The
isometries such that det(f) = 1 are called rotations, or proper isometries,
or proper unitary transformations, and they form a subgroup of the spe-
cial linear group SL(E,C) (and of U(E)), denoted by SU(E), or SU(n)
when E = Cn, called the special unitary group (of E). The isometries
such that det(f) 6= 1 are called improper isometries, or improper unitary
transformations, or flip transformations .
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A very important example of unitary matrices is provided by Fourier
matrices (up to a factor of

p
n), matrices that arise in the various versions

of the discrete Fourier transform. For more on this topic, see the problems,
and Strang [Strang (1986); Strang and Truong (1997)].

The group SU(2) turns out to be the group of unit quaternions, invented
by Hamilton. This group plays an important role in the representation of
rotations in SO(3) used in computer graphics and robotics; see Chapter 15.

Now that we have the definition of a unitary matrix, we can explain
how the Gram–Schmidt orthonormalization procedure immediately yields
the QR-decomposition for matrices.

Definition 13.11. Given any complex n⇥nmatrix A, a QR-decomposition
of A is any pair of n ⇥ n matrices (U,R), where U is a unitary matrix and
R is an upper triangular matrix such that A = UR.

Proposition 13.15. Given any n⇥n complex matrix A, if A is invertible,
then there is a unitary matrix U and an upper triangular matrix R with
positive diagonal entries such that A = UR.

The proof is absolutely the same as in the real case!

Remark: If A is invertible and if A = U
1

R
1

= U
2

R
2

are two QR-
decompositions for A, then

R
1

R�1

2

= U⇤
1

U
2

.

Then it is easy to show that there is a diagonal matrix D with diagonal
entries such that |dii| = 1 for i = 1, . . . , n, and U

2

= U
1

D, R
2

= D⇤R
1

.
We have the following version of the Hadamard inequality for complex

matrices. The proof is essentially the same as in the Euclidean case but it
uses Proposition 13.15 instead of Proposition 11.14.

Proposition 13.16. (Hadamard) For any complex n⇥n matrix A = (aij),
we have

| det(A)| 
nY

i=1

✓ nX

j=1

|aij |2
◆

1/2

and | det(A)| 
nY

j=1

✓ nX

i=1

|aij |2
◆

1/2

.

Moreover, equality holds i↵ either A has orthogonal rows in the left inequal-
ity or orthogonal columns in the right inequality.

We also have the following version of Proposition 11.16 for Hermitian
matrices. The proof of Proposition 11.16 goes through because the Cholesky
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decomposition for a Hermitian positive definite A matrix holds in the form
A = B⇤B, where B is upper triangular with positive diagonal entries. The
details are left to the reader.

Proposition 13.17. (Hadamard) For any complex n⇥n matrix A = (aij),
if A is Hermitian positive semidefinite, then we have

det(A) 
nY

i=1

aii.

Moreover, if A is positive definite, then equality holds i↵ A is a diagonal
matrix.

13.5 Hermitian Reflections and QR-Decomposition

If A is an n ⇥ n complex singular matrix, there is some (not necessarily
unique) QR-decomposition A = QR with Q a unitary matrix which is
a product of Householder reflections and R an upper triangular matrix,
but the proof is more involved. One way to proceed is to generalize the
notion of hyperplane reflection. This is not really surprising since in the
Hermitian case there are improper isometries whose determinant can be any
unit complex number. Hyperplane reflections are generalized as follows.

Definition 13.12. Let E be a Hermitian space of finite dimension. For
any hyperplane H, for any nonnull vector w orthogonal to H, so that
E = H �G, where G = Cw, a Hermitian reflection about H of angle ✓ is a
linear map of the form ⇢H, ✓ : E ! E, defined such that

⇢H, ✓(u) = pH(u) + ei✓pG(u),

for any unit complex number ei✓ 6= 1 (i.e. ✓ 6= k2⇡). For any nonzero
vector w 2 E, we denote by ⇢w,✓ the Hermitian reflection given by ⇢H,✓,
where H is the hyperplane orthogonal to w.

Since u = pH(u)+pG(u), the Hermitian reflection ⇢w, ✓ is also expressed
as

⇢w, ✓(u) = u+ (ei✓ � 1)pG(u),

or as

⇢w, ✓(u) = u+ (ei✓ � 1)
(u · w)
kwk2

w.
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Note that the case of a standard hyperplane reflection is obtained when
ei✓ = �1, i.e., ✓ = ⇡. In this case,

⇢w,⇡(u) = u � 2
(u · w)
kwk2

w,

and the matrix of such a reflection is a Householder matrix, as in Section
12.1, except that w may be a complex vector.

We leave as an easy exercise to check that ⇢w, ✓ is indeed an isometry,
and that the inverse of ⇢w, ✓ is ⇢w,�✓. If we pick an orthonormal basis
(e

1

, . . . , en) such that (e
1

, . . . , en�1

) is an orthonormal basis of H, the ma-
trix of ⇢w, ✓ is

✓
In�1

0
0 ei✓

◆

We now come to the main surprise. Given any two distinct vectors u and
v such that kuk = kvk, there isn’t always a hyperplane reflection mapping
u to v, but this can be done using two Hermitian reflections!

Proposition 13.18. Let E be any nontrivial Hermitian space.

(1) For any two vectors u, v 2 E such that u 6= v and kuk = kvk, if
u · v = ei✓|u · v|, then the (usual) reflection s about the hyperplane
orthogonal to the vector v � e�i✓u is such that s(u) = ei✓v.

(2) For any nonnull vector v 2 E, for any unit complex number ei✓ 6= 1,
there is a Hermitian reflection ⇢v,✓ such that

⇢v,✓(v) = ei✓v.

As a consequence, for u and v as in (1), we have ⇢v,�✓ � s(u) = v.

Proof. (1) Consider the (usual) reflection about the hyperplane orthogonal
to w = v � e�i✓u. We have

s(u) = u � 2
(u · (v � e�i✓u))

kv � e�i✓uk2
(v � e�i✓u).

We need to compute

�2u · (v � e�i✓u) and (v � e�i✓u) · (v � e�i✓u).

Since u · v = ei✓|u · v|, we have

e�i✓u · v = |u · v| and ei✓v · u = |u · v|.
Using the above and the fact that kuk = kvk, we get

�2u · (v � e�i✓u) = 2ei✓ kuk2 � 2u · v,

= 2ei✓(kuk2 � |u · v|),
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and

(v � e�i✓u) · (v � e�i✓u) = kvk2 + kuk2 � e�i✓u · v � ei✓v · u,

= 2(kuk2 � |u · v|),
and thus,

�2
(u · (v � e�i✓u))

k(v � e�i✓u)k2
(v � e�i✓u) = ei✓(v � e�i✓u).

But then,

s(u) = u+ ei✓(v � e�i✓u) = u+ ei✓v � u = ei✓v,

and s(u) = ei✓v, as claimed.
(2) This part is easier. Consider the Hermitian reflection

⇢v,✓(u) = u+ (ei✓ � 1)
(u · v)
kvk2

v.

We have

⇢v,✓(v) = v + (ei✓ � 1)
(v · v)
kvk2

v,

= v + (ei✓ � 1)v,

= ei✓v.

Thus, ⇢v,✓(v) = ei✓v. Since ⇢v,✓ is linear, changing the argument v to ei✓v,
we get

⇢v,�✓(e
i✓v) = v,

and thus, ⇢v,�✓ � s(u) = v.

Remarks:

(1) If we use the vector v+e�i✓u instead of v�e�i✓u, we get s(u) = �ei✓v.
(2) Certain authors, such as Kincaid and Cheney [Kincaid and Cheney

(1996)] and Ciarlet [Ciarlet (1989)], use the vector u + ei✓v instead of
the vector v + e�i✓u. The e↵ect of this choice is that they also get
s(u) = �ei✓v.

(3) If v = kuk e
1

, where e
1

is a basis vector, u ·e
1

= a
1

, where a
1

is just the
coe�cient of u over the basis vector e

1

. Then, since u · e
1

= ei✓|a
1

|, the
choice of the plus sign in the vector kuk e

1

+e�i✓u has the e↵ect that the
coe�cient of this vector over e

1

is kuk+ |a
1

|, and no cancellations takes
place, which is preferable for numerical stability (we need to divide by
the square norm of this vector).
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We now show that the QR-decomposition in terms of (complex) House-
holder matrices holds for complex matrices. We need the version of Propo-
sition 13.18 and a trick at the end of the argument, but the proof is basically
unchanged.

Proposition 13.19. Let E be a nontrivial Hermitian space of dimension
n. Given any orthonormal basis (e

1

, . . . , en), for any n-tuple of vectors
(v

1

, . . . , vn), there is a sequence of n� 1 isometries h
1

, . . . , hn�1

, such that
hi is a (standard) hyperplane reflection or the identity, and if (r

1

, . . . , rn)
are the vectors given by

rj = hn�1

� · · · � h
2

� h
1

(vj), 1  j  n,

then every rj is a linear combination of the vectors (e
1

, . . . , ej), (1  j  n).
Equivalently, the matrix R whose columns are the components of the rj
over the basis (e

1

, . . . , en) is an upper triangular matrix. Furthermore, if
we allow one more isometry hn of the form

hn = ⇢en,'n � · · · � ⇢e1,'1

after h
1

, . . . , hn�1

, we can ensure that the diagonal entries of R are non-
negative.

Proof. The proof is very similar to the proof of Proposition 12.3, but it
needs to be modified a little bit since Proposition 13.18 is weaker than
Proposition 12.2. We explain how to modify the induction step, leaving the
base case and the rest of the proof as an exercise.

As in the proof of Proposition 12.3, the vectors (e
1

, . . . , ek) form a basis
for the subspace denoted as U 0

k, the vectors (ek+1

, . . . , en) form a basis for
the subspace denoted as U 00

k , the subspaces U 0
k and U 00

k are orthogonal, and
E = U 0

k � U 00
k . Let

uk+1

= hk � · · · � h
2

� h
1

(vk+1

).

We can write

uk+1

= u0
k+1

+ u00
k+1

,

where u0
k+1

2 U 0
k and u00

k+1

2 U 00
k . Let

rk+1,k+1

=
��u00

k+1

�� , and ei✓k+1 |u00
k+1

· ek+1

| = u00
k+1

· ek+1

.

If u00
k+1

= ei✓k+1rk+1,k+1

ek+1

, we let hk+1

= id. Otherwise, by Proposi-
tion 13.18(1) (with u = u00

k+1

and v = rk+1,k+1

ek+1

), there is a unique
hyperplane reflection hk+1

such that

hk+1

(u00
k+1

) = ei✓k+1rk+1,k+1

ek+1

,
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where hk+1

is the reflection about the hyperplane Hk+1

orthogonal to the
vector

wk+1

= rk+1,k+1

ek+1

� e�i✓k+1u00
k+1

.

At the end of the induction, we have a triangular matrix R, but the
diagonal entries ei✓jrj, j of R may be complex. Letting

hn = ⇢en,�✓n � · · · � ⇢e1,�✓1 ,
we observe that the diagonal entries of the matrix of vectors

r0j = hn � hn�1

� · · · � h
2

� h
1

(vj)

is triangular with nonnegative entries.

Remark: For numerical stability, it is preferable to use wk+1

=
rk+1,k+1

ek+1

+e�i✓k+1u00
k+1

instead of wk+1

= rk+1,k+1

ek+1

�e�i✓k+1u00
k+1

.
The e↵ect of that choice is that the diagonal entries in R will be of the form
�ei✓jrj, j = ei(✓j+⇡)rj, j . Of course, we can make these entries nonegative
by applying

hn = ⇢en,⇡�✓n � · · · � ⇢e1,⇡�✓1
after hn�1

.
As in the Euclidean case, Proposition 13.19 immediately implies the

QR-decomposition for arbitrary complex n ⇥ n-matrices, where Q is now
unitary (see Kincaid and Cheney [Kincaid and Cheney (1996)] and Ciarlet
[Ciarlet (1989)]).

Proposition 13.20. For every complex n⇥n-matrix A, there is a sequence
H

1

, . . . , Hn�1

of matrices, where each Hi is either a Householder matrix or
the identity, and an upper triangular matrix R, such that

R = Hn�1

· · ·H
2

H
1

A.

As a corollary, there is a pair of matrices Q,R, where Q is unitary and
R is upper triangular, such that A = QR (a QR-decomposition of A).
Furthermore, R can be chosen so that its diagonal entries are nonnegative.
This can be achieved by a diagonal matrix D with entries such that |dii| = 1
for i = 1, . . . , n, and we have A = eQ eR with

eQ = H
1

· · ·Hn�1

D, eR = D⇤R,

where eR is upper triangular and has nonnegative diagonal entries.

Proof. It is essentially identical to the proof of Proposition 12.1, and we
leave the details as an exercise. For the last statement, observe that hn �
· · · � h

1

is also an isometry.
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13.6 Orthogonal Projections and Involutions

In this section we begin by assuming that the field K is not a field of
characteristic 2. Recall that a linear map f : E ! E is an involution i↵
f2 = id, and is idempotent i↵ f2 = f . We know from Proposition 5.7 that
if f is idempotent, then

E = Im(f) � Ker (f),

and that the restriction of f to its image is the identity. For this reason,
a linear idempotent map is called a projection. The connection between
involutions and projections is given by the following simple proposition.

Proposition 13.21. For any linear map f : E ! E, we have f2 = id i↵
1

2

(id�f) is a projection i↵ 1

2

(id+f) is a projection; in this case, f is equal
to the di↵erence of the two projections 1

2

(id + f) and 1

2

(id � f).

Proof. We have
✓
1

2
(id � f)

◆
2

=
1

4
(id � 2f + f2)

so
✓
1

2
(id � f)

◆
2

=
1

2
(id � f) i↵ f2 = id.

We also have
✓
1

2
(id + f)

◆
2

=
1

4
(id + 2f + f2),

so
✓
1

2
(id + f)

◆
2

=
1

2
(id + f) i↵ f2 = id.

Obviously, f = 1

2

(id + f) � 1

2

(id � f).

Proposition 13.22. For any linear map f : E ! E, let U+ = Ker ( 1
2

(id�
f)) and let U� = Im( 1

2

(id � f)). If f2 = id, then

U+ = Ker

✓
1

2
(id � f)

◆
= Im

✓
1

2
(id + f)

◆
,

and so, f(u) = u on U+ and f(u) = �u on U�.
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Proof. If f2 = id, then

(id + f) � (id � f) = id � f2 = id � id = 0,

which implies that

Im

✓
1

2
(id + f)

◆
✓ Ker

✓
1

2
(id � f)

◆
.

Conversely, if u 2 Ker
�
1

2

(id � f)
�
, then f(u) = u, so

1

2
(id + f)(u) =

1

2
(u+ u) = u,

and thus

Ker

✓
1

2
(id � f)

◆
✓ Im

✓
1

2
(id + f)

◆
.

Therefore,

U+ = Ker

✓
1

2
(id � f)

◆
= Im

✓
1

2
(id + f)

◆
,

and so, f(u) = u on U+ and f(u) = �u on U�.

We now assume that K = C. The involutions of E that are unitary
transformations are characterized as follows.

Proposition 13.23. Let f 2 GL(E) be an involution. The following prop-
erties are equivalent:

(a) The map f is unitary; that is, f 2 U(E).
(b) The subspaces U� = Im( 1

2

(id � f)) and U+ = Im( 1
2

(id + f)) are or-
thogonal.
Furthermore, if E is finite-dimensional, then (a) and (b) are equivalent
to (c) below:

(c) The map is self-adjoint; that is, f = f⇤.

Proof. If f is unitary, then from hf(u), f(v)i = hu, vi for all u, v 2 E, we
see that if u 2 U+ and v 2 U�, we get

hu, vi = hf(u), f(v)i = hu,�vi = �hu, vi,
so 2hu, vi = 0, which implies hu, vi = 0, that is, U+ and U� are orthogonal.
Thus, (a) implies (b).

Conversely, if (b) holds, since f(u) = u on U+ and f(u) = �u on U�, we
see that hf(u), f(v)i = hu, vi if u, v 2 U+ or if u, v 2 U�. Since E = U+ �
U� and since U+ and U� are orthogonal, we also have hf(u), f(v)i = hu, vi
for all u, v 2 E, and (b) implies (a).

If E is finite-dimensional, the adjoint f⇤ of f exists, and we know that
f�1 = f⇤. Since f is an involution, f2 = id, which implies that f⇤ = f�1 =
f .
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A unitary involution is the identity on U+ = Im( 1
2

(id+ f)), and f(v) =
�v for all v 2 U� = Im( 1

2

(id� f)). Furthermore, E is an orthogonal direct
sum E = U+ � U�. We say that f is an orthogonal reflection about U+.
In the special case where U+ is a hyperplane, we say that f is a hyperplane
reflection. We already studied hyperplane reflections in the Euclidean case;
see Chapter 12.

If f : E ! E is a projection (f2 = f), then

(id � 2f)2 = id � 4f + 4f2 = id � 4f + 4f = id,

so id � 2f is an involution. As a consequence, we get the following result.

Proposition 13.24. If f : E ! E is a projection (f2 = f), then Ker (f)
and Im(f) are orthogonal i↵ f⇤ = f .

Proof. Apply Proposition 13.23 to g = id� 2f . Since id� g = 2f we have

U+ = Ker

✓
1

2
(id � g)

◆
= Ker (f)

and

U� = Im

✓
1

2
(id � g)

◆
= Im(f),

which proves the proposition.

A projection such that f = f⇤ is called an orthogonal projection.
If (a

1

. . . , ak) are k linearly independent vectors in Rn, let us determine
the matrix P of the orthogonal projection onto the subspace of Rn spanned
by (a

1

, . . . , ak). Let A be the n ⇥ k matrix whose jth column consists of
the coordinates of the vector aj over the canonical basis (e

1

, . . . , en).
Any vector in the subspace (a

1

, . . . , ak) is a linear combination of the
form Ax, for some x 2 Rk. Given any y 2 Rn, the orthogonal projection
Py = Ax of y onto the subspace spanned by (a

1

, . . . , ak) is the vector Ax
such that y � Ax is orthogonal to the subspace spanned by (a

1

, . . . , ak)
(prove it). This means that y � Ax is orthogonal to every aj , which is
expressed by

A>(y � Ax) = 0;

that is,

A>Ax = A>y.

The matrix A>A is invertible because A has full rank k, thus we get

x = (A>A)�1A>y,
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and so

Py = Ax = A(A>A)�1A>y.

Therefore, the matrix P of the projection onto the subspace spanned by
(a

1

. . . , ak) is given by

P = A(A>A)�1A>.

The reader should check that P 2 = P and P> = P .

13.7 Dual Norms

In the remark following the proof of Proposition 8.7, we explained that if
(E, k k) and (F, k k) are two normed vector spaces and if we let L(E;F )
denote the set of all continuous (equivalently, bounded) linear maps from
E to F , then, we can define the operator norm (or subordinate norm) k k
on L(E;F ) as follows: for every f 2 L(E;F ),

kfk = sup
x2E
x 6=0

kf(x)k
kxk = sup

x2E
kxk=1

kf(x)k .

In particular, if F = C, then L(E;F ) = E0 is the dual space of E, and we
get the operator norm denoted by k k⇤ given by

kfk⇤ = sup
x2E
kxk=1

|f(x)|.

The norm k k⇤ is called the dual norm of k k on E0.
Let us now assume that E is a finite-dimensional Hermitian space, in

which case E0 = E⇤. Theorem 13.1 implies that for every linear form
f 2 E⇤, there is a unique vector y 2 E so that

f(x) = hx, yi,

for all x 2 E, and so we can write

kfk⇤ = sup
x2E
kxk=1

|hx, yi|.

The above suggests defining a norm k kD on E.

Definition 13.13. If E is a finite-dimensional Hermitian space and k k is
any norm on E, for any y 2 E we let

kykD = sup
x2E
kxk=1

|hx, yi|,
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be the dual norm of k k (on E). If E is a real Euclidean space, then the
dual norm is defined by

kykD = sup
x2E
kxk=1

hx, yi

for all y 2 E.

Beware that k k is generally not the Hermitian norm associated with the
Hermitian inner product. The dual norm shows up in convex programming;
see Boyd and Vandenberghe [Boyd and Vandenberghe (2004)], Chapters 2,
3, 6, 9.

The fact that k kD is a norm follows from the fact that k k⇤ is a norm and
can also be checked directly. It is worth noting that the triangle inequality
for k kD comes “for free,” in the sense that it holds for any function p : E !
R.

Proposition 13.25. For any function p : E ! R, if we define pD by

pD(x) = sup
p(z)=1

|hz, xi|,

then we have

pD(x+ y)  pD(x) + pD(y).

Proof. We have

pD(x+ y) = sup
p(z)=1

|hz, x+ yi|

= sup
p(z)=1

(|hz, xi + hz, yi|)

 sup
p(z)=1

(|hz, xi| + |hz, yi|)

 sup
p(z)=1

|hz, xi| + sup
p(z)=1

|hz, yi|

= pD(x) + pD(y).

Definition 13.14. If p : E ! R is a function such that

(1) p(x) � 0 for all x 2 E, and p(x) = 0 i↵ x = 0;
(2) p(�x) = |�|p(x), for all x 2 E and all � 2 C;
(3) p is continuous, in the sense that for some basis (e

1

, . . . , en) of E, the
function

(x
1

, . . . , xn) 7! p(x
1

e
1

+ · · · + xnen)

from Cn to R is continuous,
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then we say that p is a pre-norm.

Obviously, every norm is a pre-norm, but a pre-norm may not satisfy
the triangle inequality.

Corollary 13.1. The dual norm of any pre-norm is actually a norm.

Proposition 13.26. For all y 2 E, we have

kykD = sup
x2E
kxk=1

|hx, yi| = sup
x2E
kxk=1

<hx, yi.

Proof. Since E is finite dimensional, the unit sphere Sn�1 = {x 2 E |
kxk = 1} is compact, so there is some x

0

2 Sn�1 such that

kykD = |hx
0

, yi|.

If hx
0

, yi = ⇢ei✓, with ⇢ � 0, then

|he�i✓x
0

, yi| = |e�i✓hx
0

, yi| = |e�i✓⇢ei✓| = ⇢,

so

kykD = ⇢ = he�i✓x
0

, yi, (⇤)

with
��e�i✓x

0

�� = kx
0

k = 1. On the other hand,

<hx, yi  |hx, yi|,

so by (⇤) we get

kykD = sup
x2E
kxk=1

|hx, yi| = sup
x2E
kxk=1

<hx, yi,

as claimed.

Proposition 13.27. For all x, y 2 E, we have

|hx, yi|  kxk kykD

|hx, yi|  kxkD kyk .

Proof. If x = 0, then hx, yi = 0 and these inequalities are trivial. If x 6= 0,
since kx/ kxkk = 1, by definition of kykD, we have

|hx/ kxk , yi|  sup
kzk=1

|hz, yi| = kykD ,

which yields

|hx, yi|  kxk kykD .

The second inequality holds because |hx, yi| = |hy, xi|.
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It is not hard to show that for all y 2 Cn,

kykD
1

= kyk1
kykD1 = kyk

1

kykD
2

= kyk
2

.

Thus, the Euclidean norm is autodual. More generally, the following propo-
sition holds.

Proposition 13.28. If p, q � 1 and 1/p+1/q = 1, then for all y 2 Cn, we
have

kykDp = kykq .

Proof. By Hölder’s inequality (Corollary 8.1), for all x, y 2 Cn, we have

|hx, yi|  kxkp kykq ,

so

kykDp = sup
x2Cn

kxkp=1

|hx, yi|  kykq .

For the converse, we consider the cases p = 1, 1 < p < +1, and p = +1.
First assume p = 1. The result is obvious for y = 0, so assume y 6= 0. Given
y, if we pick xj = 1 for some index j such that kyk1 = max

1in |yi| = |yj |,
and xk = 0 for k 6= j, then |hx, yi| = |yj | = kyk1, so kykD

1

= kyk1.
Now we turn to the case 1 < p < +1. Then we also have 1 < q <

+1, and the equation 1/p + 1/q = 1 is equivalent to pq = p + q, that is,
p(q � 1) = q. Pick zj = yj |yj |q�2 for j = 1, . . . , n, so that

kzkp =

0

@
nX

j=1

|zj |p
1

A
1/p

=

0

@
nX

j=1

|yj |(q�1)p

1

A
1/p

=

0

@
nX

j=1

|yj |q
1

A
1/p

.

Then if x = z/ kzkp, we have

|hx, yi| =

���
Pn

j=1

zjyj
���

kzkp
=

���
Pn

j=1

yjyj |yj |q�2

���
kzkp

=

Pn
j=1

|yj |q
⇣Pn

j=1

|yj |q
⌘
1/p

=

0

@
nX

j=1

|yj |q
1

A
1/q

= kykq .

Thus kykDp = kykq.
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Finally, if p = 1, then pick xj = yj/|yj | if yj 6= 0, and xj = 0 if yj = 0.
Then

|hx, yi| =

������

nX

yj 6=0

yjyj/|yj |

������
=
X

yj 6=0

|yj | = kyk
1

.

Thus kykD1 = kyk
1

.

We can show that the dual of the spectral norm is the trace norm (or
nuclear norm) also discussed in Section 20.5. Recall from Proposition 8.7
that the spectral norm kAk

2

of a matrix A is the square root of the largest
eigenvalue of A⇤A, that is, the largest singular value of A.

Proposition 13.29. The dual of the spectral norm is given by

kAkD
2

= �
1

+ · · · + �r,

where �
1

> · · · > �r > 0 are the singular values of A 2 Mn(C) (which has
rank r).

Proof. In this case the inner product on Mn(C) is the Frobenius inner
product hA,Bi = tr(B⇤A), and the dual norm of the spectral norm is given
by

kAkD
2

= sup{|tr(A⇤B)| | kBk
2

= 1}.
If we factor A using an SVD as A = V ⌃U⇤, where U and V are unitary
and ⌃ is a diagonal matrix whose r nonzero entries are the singular values
�
1

> · · · > �r > 0, where r is the rank of A, then

|tr(A⇤B)| = |tr(U⌃V ⇤B)| = |tr(⌃V ⇤BU)|,
so if we pick B = V U⇤, a unitary matrix such that kBk

2

= 1, we get

|tr(A⇤B)| = tr(⌃) = �
1

+ · · · + �r,

and thus

kAkD
2

� �
1

+ · · · + �r.

Since kBk
2

= 1 and U and V are unitary, by Proposition 8.7 we have
kV ⇤BUk

2

= kBk
2

= 1. If Z = V ⇤BU , by definition of the operator norm

1 = kZk
2

= sup{kZxk
2

| kxk
2

= 1},
so by picking x to be the canonical vector ej , we see that

��Zj
��
2

 1 where
Zj is the jth column of Z, so |zjj |  1, and since

|tr(⌃V ⇤BU)| = |tr(⌃Z)| =

������

rX

j=1

�jzjj

������


rX

j=1

�j |zjj | 
rX

j=1

�j ,
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and we conclude that

|tr(⌃V ⇤BU)| 
rX

j=1

�j .

The above implies that

kAkD
2

 �
1

+ · · · + �r,

and since we also have kAkD
2

� �
1

+ · · · + �r, we conclude that

kAkD
2

= �
1

+ · · · + �r,

proving our proposition.

Definition 13.15. Given any complex matrix n ⇥ n matrix A of rank r,
its nuclear norm (or trace norm) is given by

kAkN = �
1

+ · · · + �r.

The nuclear norm can be generalized to m ⇥ n matrices (see Section
20.5). The nuclear norm �

1

+ · · ·+�r of an m⇥n matrix A (where r is the
rank of A) is denoted by kAkN . The nuclear norm plays an important role
in matrix completion. The problem is this. Given a matrix A

0

with missing
entries (missing data), one would like to fill in the missing entries in A

0

to
obtain a matrix A of minimal rank. For example, consider the matrices

A
0

=

✓
1 2
⇤ ⇤

◆
, B

0

=

✓
1 ⇤
⇤ 4

◆
, C

0

=

✓
1 2
3 ⇤

◆
.

All can be completed with rank 1. For A
0

, use any multiple of (1, 2) for
the second row. For B

0

, use any numbers b and c such that bc = 4. For
C

0

, the only possibility is d = 6.
A famous example of this problem is the Netflix competition. The rat-

ings of m films by n viewers goes into A
0

. But the customers didn’t see all
the movies. Many ratings were missing. Those had to be predicted by a
recommender system. The nuclear norm gave a good solution that needed
to be adjusted for human psychology.

Since the rank of a matrix is not a norm, in order to solve the matrix
completion problem we can use the following “convex relaxation.” Let A

0

be an incomplete m ⇥ n matrix:
Minimize kAkN subject to A = A

0

in the known entries.
The above problem has been extensively studied, in particular by

Candès and Recht. Roughly, they showed that if A is an n ⇥ n ma-
trix of rank r and K entries are known in A, then if K is large enough
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(K > Cn5/4r log n), with high probability, the recovery of A is perfect. See
Strang [Strang (2019)] for details (Section III.5).

We close this section by stating the following duality theorem.

Theorem 13.2. If E is a finite-dimensional Hermitian space, then for any
norm k k on E, we have

kykDD = kyk

for all y 2 E.

Proof. By Proposition 13.27, we have

|hx, yi|  kxkD kyk ,

so we get

kykDD = sup
kxkD

=1

|hx, yi|  kyk , for all y 2 E.

It remains to prove that

kyk  kykDD , for all y 2 E.

Proofs of this fact can be found in Horn and Johnson [Horn and Johnson
(1990)] (Section 5.5), and in Serre [Serre (2010)] (Chapter 7). The proof
makes use of the fact that a nonempty, closed, convex set has a support-
ing hyperplane through each of its boundary points, a result known as
Minkowski’s lemma. For a geometric interpretation of supporting hyper-
plane see Figure 13.1. This result is a consequence of the Hahn–Banach
theorem; see Gallier [Gallier (2011b)]. We give the proof in the case where
E is a real Euclidean space. Some minor modifications have to be made
when dealing with complex vector spaces and are left as an exercise.

Since the unit ball B = {z 2 E | kzk  1} is closed and convex, the
Minkowski lemma says for every x such that kxk = 1, there is an a�ne
map g of the form

g(z) = hz, wi � hx,wi

with kwk = 1, such that g(x) = 0 and g(z)  0 for all z such that kzk  1.
Then it is clear that

sup
kzk=1

hz, wi = hx,wi,

and so

kwkD = hx,wi.
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x

Fig. 13.1 The orange tangent plane is a supporting hyperplane to the unit ball in R3

since this ball is entirely contained in “one side” of the tangent plane.

It follows that

kxkDD � hw/ kwkD , xi = hx,wi
kwkD

= 1 = kxk

for all x such that kxk = 1. By homogeneity, this is true for all y 2 E,
which completes the proof in the real case. When E is a complex vector
space, we have to view the unit ball B as a closed convex set in R2n and
we use the fact that there is real a�ne map of the form

g(z) = <hz, wi � <hx,wi

such that g(x) = 0 and g(z)  0 for all z with kzk = 1, so that kwkD =
<hx,wi.

More details on dual norms and unitarily invariant norms can be found
in Horn and Johnson [Horn and Johnson (1990)] (Chapters 5 and 7).

13.8 Summary

The main concepts and results of this chapter are listed below:

• Semilinear maps.
• Sesquilinear forms ; Hermitian forms.
• Quadratic form associated with a sesquilinear form.



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 527

13.9. Problems 527

• Polarization identities.
• Positive and positive definite Hermitian forms; pre-Hilbert spaces , Her-
mitian spaces.

• Gram matrix associated with a Hermitian product.
• The Cauchy–Schwarz inequality and the Minkowski inequality .
• Hermitian inner product , Hermitian norm.
• The parallelogram law .
• The musical isomorphisms [ : E ! E⇤ and ] : E⇤ ! E; Theorem 13.1
(E is finite-dimensional).

• The adjoint of a linear map (with respect to a Hermitian inner product).
• Existence of orthonormal bases in a Hermitian space (Proposition
13.10).

• Gram–Schmidt orthonormalization procedure.
• Linear isometries (unitary transformations).
• The unitary group, unitary matrices.
• The unitary group U(n).
• The special unitary group SU(n).
• QR-Decomposition for arbitrary complex matrices.
• The Hadamard inequality for complex matrices.
• The Hadamard inequality for Hermitian positive semidefinite matrices.
• Orthogonal projections and involutions; orthogonal reflections.
• Dual norms.
• Nuclear norm (also called trace norm).
• Matrix completion.

13.9 Problems

Problem 13.1. Let (E, h�,�i) be a Hermitian space of finite dimension.
Prove that if f : E ! E is a self-adjoint linear map (that is, f⇤ = f), then
hf(x), xi 2 R for all x 2 E.

Problem 13.2. Prove the polarization identities of Proposition 13.1.

Problem 13.3. Let E be a real Euclidean space. Give an example of a
nonzero linear map f : E ! E such that hf(u), ui = 0 for all u 2 E.

Problem 13.4. Prove Proposition 13.8.



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 528

528 Hermitian Spaces

Problem 13.5. (1) Prove that every matrix in SU(2) is of the form

A =

✓
a+ ib c+ id

�c+ id a � ib

◆
, a2 + b2 + c2 + d2 = 1, a, b, c, d 2 R,

(2) Prove that the matrices✓
1 0
0 1

◆
,

✓
i 0
0 �i

◆
,

✓
0 1

�1 0

◆
,

✓
0 i
i 0

◆

all belong to SU(2) and are linearly independent over C.
(3) Prove that the linear span of SU(2) over C is the complex vector

space M
2

(C) of all complex 2 ⇥ 2 matrices.

Problem 13.6. The purpose of this problem is to prove that the linear
span of SU(n) over C is Mn(C) for all n � 3. One way to prove this result
is to adapt the method of Problem 11.12, so please review this problem.

Every complex matrix A 2 Mn(C) can be written as

A =
A+A⇤

2
+

A � A⇤

2
where the first matrix is Hermitian and the second matrix is skew-
Hermitian. Observe that if A = (zij) is a Hermitian matrix, that is A⇤ = A,
then zji = zij , so if zij = aij + ibij with aij , bij 2 R, then aij = aji and
bij = �bji. On the other hand, if A = (zij) is a skew-Hermitian matrix,
that is A⇤ = �A, then zji = �zij , so aij = �aji and bij = bji.

The Hermitian and the skew-Hermitian matrices do not form complex
vector spaces because they are not closed under multiplication by a complex
number, but we can get around this problem by treating the real part and
the complex part of these matrices separately and using multiplication by
reals.

(1) Consider the matrices of the form

Ri,j
c =

0

BBBBBBBBBBBBBBBBBBBB@

1
. . .

1
0 0 · · · 0 i
0 1 · · · 0 0
...
...
. . .

...
...

0 0 · · · 1 0
i 0 · · · 0 0

1
. . .

1

1

CCCCCCCCCCCCCCCCCCCCA

.
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Prove that (Ri,j
c )⇤Ri,j

c = I and det(Ri,j
c ) = +1. Use the matrices

Ri,j , Ri,j
c 2 SU(n) and the matrices (Ri,j � (Ri,j)⇤)/2 (from Problem

11.12) to form the real part of a skew-Hermitian matrix and the matrices
(Ri,j

c � (Ri,j
c )⇤)/2 to form the imaginary part of a skew-Hermitian matrix.

Deduce that the matrices in SU(n) span all skew-Hermitian matrices.
(2) Consider matrices of the form
Type 1

S1,2
c =

0

BBBBBBBB@

0 �i 0 0 . . . 0
i 0 0 0 . . . 0
0 0 �1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1

1

CCCCCCCCA

.

Type 2

Si,i+1

c =

0

BBBBBBBBBBBBBBB@

�1
1
. . .

1
0 �i
i 0

1
. . .

1

1

CCCCCCCCCCCCCCCA

.

Type 3

Si,j
c =

0

BBBBBBBBBBBBBBBBBBBB@

1
. . .

1
0 0 · · · 0 �i
0 �1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
i 0 · · · 0 0

1
. . .

1

1

CCCCCCCCCCCCCCCCCCCCA

.
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Prove that Si,j , Si,j
c 2 SU(n), and using diagonal matrices as in Prob-

lem 11.12, prove that the matrices Si,j can be used to form the real part of
a Hermitian matrix and the matrices Si,j

c can be used to form the imaginary
part of a Hermitian matrix.

(3) Use (1) and (2) to prove that the matrices in SU(n) span all Her-
mitian matrices. It follows that SU(n) spans Mn(C) for n � 3.

Problem 13.7. Consider the complex matrix

A =

✓
i 1
1 �i

◆
.

Check that this matrix is symmetric but not Hermitian. Prove that

det(�I � A) = �2,

and so the eigenvalues of A are 0, 0.

Problem 13.8. Let (E, h�,�i) be a Hermitian space of finite dimension
and let f : E ! E be a linear map. Prove that the following conditions are
equivalent.

(1) f � f⇤ = f⇤ � f (f is normal).
(2) hf(x), f(y)i = hf⇤(x), f⇤(y)i for all x, y 2 E.
(3) kf(x)k = kf⇤(x)k for all x 2 E.
(4) The map f can be diagonalized with respect to an orthonormal basis

of eigenvectors.
(5) There exist some linear maps g, h : E ! E such that, g = g⇤,

hx, g(x)i � 0 for all x 2 E, h�1 = h⇤, and f = g � h = h � g.
(6) There exist some linear map h : E ! E such that h�1 = h⇤ and f⇤ =

h � f .
(7) There is a polynomial P (with complex coe�cients) such that f⇤ =

P (f).

Problem 13.9. Recall from Problem 12.7 that a complex n⇥ n matrix H
is upper Hessenberg if hjk = 0 for all (j, k) such that j � k � 0. Adapt
the proof of Problem 12.7 to prove that given any complex n⇥n-matrix A,
there are n � 2 � 1 complex matrices H

1

, . . . , Hn�2

, Householder matrices
or the identity, such that

B = Hn�2

· · ·H
1

AH
1

· · ·Hn�2

is upper Hessenberg.
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Problem 13.10. Prove that all y 2 Cn,

kykD
1

= kyk1
kykD1 = kyk

1

kykD
2

= kyk
2

.

Problem 13.11. The purpose of this problem is to complete each of the
matrices A

0

, B
0

, C
0

of Section 13.7 to a matrix A in such way that the
nuclear norm kAkN is minimized.

(1) Prove that the squares �2

1

and �2

2

of the singular values of

A =

✓
1 2
c d

◆

are the zeros of the equation

�2 � (5 + c2 + d2)�+ (2c � d)2 = 0.

(2) Using the fact that

kAkN = �
1

+ �
2

=
q
�2

1

+ �2

2

+ 2�
1

�
2

,

prove that

kAk2N = 5 + c2 + d2 + 2|2c � d|.

Consider the cases where 2c � d � 0 and 2c � d  0, and show that in
both cases we must have c = �2d, and that the minimum of f(c, d) =
5 + c2 + d2 + 2|2c � d| is achieved by c = d = 0. Conclude that the matrix
A completing A

0

that minimizes kAkN is

A =

✓
1 2
0 0

◆
.

(3) Prove that the squares �2

1

and �2

2

of the singular values of

A =

✓
1 b
c 4

◆

are the zeros of the equation

�2 � (17 + b2 + c2)�+ (4 � bc)2 = 0.

(4) Prove that

kAk2N = 17 + b2 + c2 + 2|4 � bc|.

Consider the cases where 4� bc � 0 and 4� bc  0, and show that in both
cases we must have b2 = c2. Then show that the minimum of f(c, d) =
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17 + b2 + c2 + 2|4 � bc| is achieved by b = c with �2  b  2. Conclude
that the matrices A completing B

0

that minimize kAkN are given by

A =

✓
1 b
b 4

◆
, �2  b  2.

(5) Prove that the squares �2

1

and �2

2

of the singular values of

A =

✓
1 2
3 d

◆

are the zeros of the equation

�2 � (14 + d2)�+ (6 � d)2 = 0

(6) Prove that

kAk2N = 14 + d2 + 2|6 � d|.

Consider the cases where 6 � d � 0 and 6 � d  0, and show that the
minimum of f(c, d) = 14 + d2 + 2|6 � d| is achieved by d = 1. Conclude
that the the matrix A completing C

0

that minimizes kAkN is given by

A =

✓
1 2
3 1

◆
.

Problem 13.12. Prove Theorem 13.2 when E is a finite-dimensional Her-
mitian space.
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Eigenvectors and Eigenvalues

In this chapter all vector spaces are defined over an arbitrary field K. For
the sake of concreteness, the reader may safely assume that K = R or
K = C.

14.1 Eigenvectors and Eigenvalues of a Linear Map

Given a finite-dimensional vector space E, let f : E ! E be any linear
map. If by luck there is a basis (e

1

, . . . , en) of E with respect to which f is
represented by a diagonal matrix

D =

0

BBBB@

�
1

0 . . . 0

0 �
2

. . .
...

...
. . .

. . . 0
0 . . . 0 �n

1

CCCCA
,

then the action of f on E is very simple; in every “direction” ei, we have

f(ei) = �iei.

We can think of f as a transformation that stretches or shrinks space along
the direction e

1

, . . . , en (at least if E is a real vector space). In terms
of matrices, the above property translates into the fact that there is an
invertible matrix P and a diagonal matrix D such that a matrix A can be
factored as

A = PDP�1.

When this happens, we say that f (or A) is diagonalizable, the �i’s are called
the eigenvalues of f , and the ei’s are eigenvectors of f . For example, we

533
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will see that every symmetric matrix can be diagonalized. Unfortunately,
not every matrix can be diagonalized. For example, the matrix

A
1

=

✓
1 1
0 1

◆

can’t be diagonalized. Sometimes a matrix fails to be diagonalizable be-
cause its eigenvalues do not belong to the field of coe�cients, such as

A
2

=

✓
0 �1
1 0

◆
,

whose eigenvalues are ±i. This is not a serious problem because A
2

can
be diagonalized over the complex numbers. However, A

1

is a “fatal” case!
Indeed, its eigenvalues are both 1 and the problem is that A

1

does not have
enough eigenvectors to span E.

The next best thing is that there is a basis with respect to which f is
represented by an upper triangular matrix. In this case we say that f can
be triangularized , or that f is triangulable. As we will see in Section 14.2,
if all the eigenvalues of f belong to the field of coe�cients K, then f can
be triangularized. In particular, this is the case if K = C.

Now an alternative to triangularization is to consider the representation
of f with respect to two bases (e

1

, . . . , en) and (f
1

, . . . , fn), rather than a
single basis. In this case, if K = R or K = C, it turns out that we can even
pick these bases to be orthonormal , and we get a diagonal matrix ⌃ with
nonnegative entries, such that

f(ei) = �ifi, 1  i  n.

The nonzero �i’s are the singular values of f , and the corresponding rep-
resentation is the singular value decomposition, or SVD . The SVD plays
a very important role in applications, and will be considered in detail in
Chapter 20.

In this section we focus on the possibility of diagonalizing a linear map,
and we introduce the relevant concepts to do so. Given a vector space E
over a field K, let id denote the identity map on E.

The notion of eigenvalue of a linear map f : E ! E defined on an
infinite-dimensional space E is quite subtle because it cannot be defined
in terms of eigenvectors as in the finite-dimensional case. The problem is
that the map � id � f (with � 2 C) could be noninvertible (because it is
not surjective) and yet injective. In finite dimension this cannot happen,
so until further notice we assume that E is of finite dimension n.

Definition 14.1. Given any vector space E of finite dimension n and any
linear map f : E ! E, a scalar � 2 K is called an eigenvalue, or proper
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value, or characteristic value of f if there is some nonzero vector u 2 E
such that

f(u) = �u.

Equivalently, � is an eigenvalue of f if Ker (� id � f) is nontrivial (i.e.,
Ker (� id � f) 6= {0}) i↵ � id � f is not invertible (this is where the fact
that E is finite-dimensional is used; a linear map from E to itself is injective
i↵ it is invertible). A vector u 2 E is called an eigenvector, or proper vector,
or characteristic vector of f if u 6= 0 and if there is some � 2 K such that

f(u) = �u;

the scalar � is then an eigenvalue, and we say that u is an eigenvector
associated with �. Given any eigenvalue � 2 K, the nontrivial subspace
Ker (� id � f) consists of all the eigenvectors associated with � together
with the zero vector; this subspace is denoted by E�(f), or E(�, f), or even
by E�, and is called the eigenspace associated with �, or proper subspace
associated with �.

Note that distinct eigenvectors may correspond to the same eigenvalue,
but distinct eigenvalues correspond to disjoint sets of eigenvectors.

Remark: As we emphasized in the remark following Definition 8.4, we re-
quire an eigenvector to be nonzero. This requirement seems to have more
benefits than inconveniences, even though it may considered somewhat in-
elegant because the set of all eigenvectors associated with an eigenvalue is
not a subspace since the zero vector is excluded.

The next proposition shows that the eigenvalues of a linear map f : E !
E are the roots of a polynomial associated with f .

Proposition 14.1. Let E be any vector space of finite dimension n and let
f be any linear map f : E ! E. The eigenvalues of f are the roots (in K)
of the polynomial

det(� id � f).

Proof. A scalar � 2 K is an eigenvalue of f i↵ there is some vector u 6= 0
in E such that

f(u) = �u

i↵

(� id � f)(u) = 0

i↵ (� id � f) is not invertible i↵, by Proposition 6.10,

det(� id � f) = 0.
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In view of the importance of the polynomial det(� id � f), we have the
following definition.

Definition 14.2. Given any vector space E of dimension n, for any linear
map f : E ! E, the polynomial Pf (X) = �f (X) = det(X id � f) is called
the characteristic polynomial of f . For any square matrix A, the polynomial
PA(X) = �A(X) = det(XI � A) is called the characteristic polynomial of
A.

Note that we already encountered the characteristic polynomial in Sec-
tion 6.7; see Definition 6.11.

Given any basis (e
1

, . . . , en), if A = M(f) is the matrix of f w.r.t.
(e

1

, . . . , en), we can compute the characteristic polynomial �f (X) =
det(X id � f) of f by expanding the following determinant:

det(XI � A) =

���������

X � a
1 1

�a
1 2

. . . �a
1n

�a
2 1

X � a
2 2

. . . �a
2n

...
...

. . .
...

�an 1

�an 2

. . . X � ann

���������

.

If we expand this determinant, we find that

�A(X) = det(XI �A) = Xn � (a
1 1

+ · · ·+ann)X
n�1+ · · ·+(�1)n det(A).

The sum tr(A) = a
1 1

+ · · ·+ann of the diagonal elements of A is called the
trace of A. Since we proved in Section 6.7 that the characteristic polynomial
only depends on the linear map f , the above shows that tr(A) has the same
value for all matrices A representing f . Thus, the trace of a linear map is
well-defined; we have tr(f) = tr(A) for any matrix A representing f .

Remark: The characteristic polynomial of a linear map is sometimes de-
fined as det(f � X id). Since

det(f � X id) = (�1)n det(X id � f),

this makes essentially no di↵erence but the version det(X id � f) has the
small advantage that the coe�cient of Xn is +1.

If we write

�A(X) = det(XI � A)

= Xn � ⌧
1

(A)Xn�1 + · · · + (�1)k⌧k(A)Xn�k + · · · + (�1)n⌧n(A),
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then we just proved that

⌧
1

(A) = tr(A) and ⌧n(A) = det(A).

It is also possible to express ⌧k(A) in terms of determinants of certain
submatrices of A. For any nonempty subset, I ✓ {1, . . . , n}, say I = {i

1

<
. . . < ik}, let AI,I be the k ⇥ k submatrix of A whose jth column consists
of the elements aih ij , where h = 1, . . . , k. Equivalently, AI,I is the matrix
obtained from A by first selecting the columns whose indices belong to I,
and then the rows whose indices also belong to I. Then it can be shown
that

⌧k(A) =
X

I✓{1,...,n}
|I|=k

det(AI,I).

If all the roots, �
1

, . . . ,�n, of the polynomial det(XI �A) belong to the
field K, then we can write

�A(X) = det(XI � A) = (X � �
1

) · · · (X � �n),

where some of the �i’s may appear more than once. Consequently,

�A(X) = det(XI � A)

= Xn � �
1

(�)Xn�1 + · · · + (�1)k�k(�)X
n�k + · · · + (�1)n�n(�),

where

�k(�) =
X

I✓{1,...,n}
|I|=k

Y

i2I

�i,

the kth elementary symmetric polynomial (or function) of the �i’s, where
� = (�

1

, . . . ,�n). The elementary symmetric polynomial �k(�) is often
denoted Ek(�), but this notation may be confusing in the context of linear
algebra. For n = 5, the elementary symmetric polynomials are listed below:

�
0

(�) = 1

�
1

(�) = �
1

+ �
2

+ �
3

+ �
4

+ �
5

�
2

(�) = �
1

�
2

+ �
1

�
3

+ �
1

�
4

+ �
1

�
5

+ �
2

�
3

+ �
2

�
4

+ �
2

�
5

+ �
3

�
4

+ �
3

�
5

+ �
4

�
5

�
3

(�) = �
3

�
4

�
5

+ �
2

�
4

�
5

+ �
2

�
3

�
5

+ �
2

�
3

�
4

+ �
1

�
4

�
5

+ �
1

�
3

�
5

+ �
1

�
3

�
4

+ �
1

�
2

�
5

+ �
1

�
2

�
4

+ �
1

�
2

�
3

�
4

(�) = �
1

�
2

�
3

�
4

+ �
1

�
2

�
3

�
5

+ �
1

�
2

�
4

�
5

+ �
1

�
3

�
4

�
5

+ �
2

�
3

�
4

�
5

�
5

(�) = �
1

�
2

�
3

�
4

�
5

.
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Since

�A(X) = Xn � ⌧
1

(A)Xn�1 + · · · + (�1)k⌧k(A)Xn�k + · · · + (�1)n⌧n(A)

= Xn � �
1

(�)Xn�1 + · · · + (�1)k�k(�)X
n�k + · · · + (�1)n�n(�),

we have

�k(�) = ⌧k(A), k = 1, . . . , n,

and in particular, the product of the eigenvalues of f is equal to det(A) =
det(f), and the sum of the eigenvalues of f is equal to the trace tr(A) =
tr(f), of f ; for the record,

tr(f) = �
1

+ · · · + �n

det(f) = �
1

· · ·�n,

where �
1

, . . . ,�n are the eigenvalues of f (and A), where some of the �i’s
may appear more than once. In particular, f is not invertible i↵ it admits
0 has an eigenvalue (since f is singular i↵ �

1

· · ·�n = det(f) = 0).

Remark: Depending on the field K, the characteristic polynomial
�A(X) = det(XI � A) may or may not have roots in K. This motivates
considering algebraically closed fields, which are fields K such that every
polynomial with coe�cients in K has all its root in K. For example, over
K = R, not every polynomial has real roots. If we consider the matrix

A =

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆
,

then the characteristic polynomial det(XI � A) has no real roots unless
✓ = k⇡. However, over the field C of complex numbers, every polynomial
has roots. For example, the matrix above has the roots cos ✓±i sin ✓ = e±i✓.

Remark: It is possible to show that every linear map f over a complex vec-
tor space E must have some (complex) eigenvalue without having recourse
to determinants (and the characteristic polynomial). Let n = dim(E), pick
any nonzero vector u 2 E, and consider the sequence

u, f(u), f2(u), . . . , fn(u).

Since the above sequence has n + 1 vectors and E has dimension n, these
vectors must be linearly dependent, so there are some complex numbers
c
0

, . . . , cm, not all zero, such that

c
0

fm(u) + c
1

fm�1(u) + · · · + cmu = 0,



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning ws-book-I-9x6

page 539

14.1. Eigenvectors and Eigenvalues of a Linear Map 539

where m  n is the largest integer such that the coe�cient of fm(u) is
nonzero (m must exits since we have a nontrivial linear dependency). Now
because the field C is algebraically closed, the polynomial

c
0

Xm + c
1

Xm�1 + · · · + cm

can be written as a product of linear factors as

c
0

Xm + c
1

Xm�1 + · · · + cm = c
0

(X � �
1

) · · · (X � �m)

for some complex numbers �
1

, . . . ,�m 2 C, not necessarily distinct. But
then since c

0

6= 0,

c
0

fm(u) + c
1

fm�1(u) + · · · + cmu = 0

is equivalent to

(f � �
1

id) � · · · � (f � �m id)(u) = 0.

If all the linear maps f��i id were injective, then (f��
1

id)�· · ·�(f��m id)
would be injective, contradicting the fact that u 6= 0. Therefore, some linear
map f��i id must have a nontrivial kernel, which means that there is some
v 6= 0 so that

f(v) = �iv;

that is, �i is some eigenvalue of f and v is some eigenvector of f .
As nice as the above argument is, it does not provide a method for

finding the eigenvalues of f , and even if we prefer avoiding determinants as
a much as possible, we are forced to deal with the characteristic polynomial
det(X id � f).

Definition 14.3. Let A be an n ⇥ n matrix over a field K. Assume that
all the roots of the characteristic polynomial �A(X) = det(XI � A) of A
belong to K, which means that we can write

det(XI � A) = (X � �
1

)k1 · · · (X � �m)km ,

where �
1

, . . . ,�m 2 K are the distinct roots of det(XI �A) and k
1

+ · · ·+
km = n. The integer ki is called the algebraic multiplicity of the eigenvalue
�i, and the dimension of the eigenspace E�i = Ker(�iI � A) is called the
geometric multiplicity of �i. We denote the algebraic multiplicity of �i by
alg(�i), and its geometric multiplicity by geo(�i).
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By definition, the sum of the algebraic multiplicities is equal to n, but
the sum of the geometric multiplicities can be strictly smaller.

Proposition 14.2. Let A be an n ⇥ n matrix over a field K and assume
that all the roots of the characteristic polynomial �A(X) = det(XI �A) of
A belong to K. For every eigenvalue �i of A, the geometric multiplicity of
�i is always less than or equal to its algebraic multiplicity, that is,

geo(�i)  alg(�i).

Proof. To see this, if ni is the dimension of the eigenspace E�i associated
with the eigenvalue �i, we can form a basis of Kn obtained by picking a
basis of E�i and completing this linearly independent family to a basis of
Kn. With respect to this new basis, our matrix is of the form

A0 =

✓
�iIni B
0 D

◆
,

and a simple determinant calculation shows that

det(XI � A) = det(XI � A0) = (X � �i)
ni det(XIn�ni � D).

Therefore, (X ��i)ni divides the characteristic polynomial of A0, and thus,
the characteristic polynomial of A. It follows that ni is less than or equal
to the algebraic multiplicity of �i.

The following proposition shows an interesting property of eigenspaces.

Proposition 14.3. Let E be any vector space of finite dimension n and
let f be any linear map. If u

1

, . . . , um are eigenvectors associated with
pairwise distinct eigenvalues �

1

, . . . ,�m, then the family (u
1

, . . . , um) is
linearly independent.

Proof. Assume that (u
1

, . . . , um) is linearly dependent. Then there exists
µ
1

, . . . , µk 2 K such that

µ
1

ui1 + · · · + µkuik = 0,

where 1  k  m, µi 6= 0 for all i, 1  i  k, {i
1

, . . . , ik} ✓ {1, . . . ,m}, and
no proper subfamily of (ui1 , . . . , uik) is linearly dependent (in other words,
we consider a dependency relation with k minimal). Applying f to this
dependency relation, we get

µ
1

�i1ui1 + · · · + µk�ikuik = 0,
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and if we multiply the original dependency relation by �i1 and subtract it
from the above, we get

µ
2

(�i2 � �i1)ui2 + · · · + µk(�ik � �i1)uik = 0,

which is a nontrivial linear dependency among a proper subfamily of
(ui1 , . . . , uik) since the �j are all distinct and the µi are nonzero, a contra-
diction.

As a corollary of Proposition 14.3 we have the following result.

Corollary 14.1. If �
1

, . . . ,�m are all the pairwise distinct eigenvalues of
f (where m  n), we have a direct sum

E�1 � · · · � E�m

of the eigenspaces E�i .

Unfortunately, it is not always the case that

E = E�1 � · · · � E�m .

Definition 14.4. When

E = E�1 � · · · � E�m ,

we say that f is diagonalizable (and similarly for any matrix associated
with f).

Indeed, picking a basis in each E�i , we obtain a matrix which is a
diagonal matrix consisting of the eigenvalues, each �i occurring a number
of times equal to the dimension of E�i . This happens if the algebraic
multiplicity and the geometric multiplicity of every eigenvalue are equal.
In particular, when the characteristic polynomial has n distinct roots, then
f is diagonalizable. It can also be shown that symmetric matrices have real
eigenvalues and can be diagonalized.

For a negative example, we leave it as exercise to show that the matrix

M =

✓
1 1
0 1

◆

cannot be diagonalized, even though 1 is an eigenvalue. The problem is
that the eigenspace of 1 only has dimension 1. The matrix

A =

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆

cannot be diagonalized either, because it has no real eigenvalues, unless
✓ = k⇡. However, over the field of complex numbers, it can be diagonalized.
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14.2 Reduction to Upper Triangular Form

Unfortunately, not every linear map on a complex vector space can be
diagonalized. The next best thing is to “triangularize,” which means to
find a basis over which the matrix has zero entries below the main diagonal.
Fortunately, such a basis always exist.

We say that a square matrix A is an upper triangular matrix if it has
the following shape,0

BBBBBBBB@

a
1 1

a
1 2

a
1 3

. . . a
1n�1

a
1n

0 a
2 2

a
2 3

. . . a
2n�1

a
2n

0 0 a
3 3

. . . a
3n�1

a
3n

...
...

...
. . .

...
...

0 0 0 . . . an�1n�1

an�1n

0 0 0 . . . 0 ann

1

CCCCCCCCA

,

i.e., ai j = 0 whenever j < i, 1  i, j  n.

Theorem 14.1. Given any finite dimensional vector space over a field K,
for any linear map f : E ! E, there is a basis (u

1

, . . . , un) with respect
to which f is represented by an upper triangular matrix (in Mn(K)) i↵
all the eigenvalues of f belong to K. Equivalently, for every n ⇥ n matrix
A 2 Mn(K), there is an invertible matrix P and an upper triangular matrix
T (both in Mn(K)) such that

A = PTP�1

i↵ all the eigenvalues of A belong to K.

Proof. If there is a basis (u
1

, . . . , un) with respect to which f is represented
by an upper triangular matrix T in Mn(K), then since the eigenvalues of f
are the diagonal entries of T , all the eigenvalues of f belong to K.

For the converse, we proceed by induction on the dimension n of E.
For n = 1 the result is obvious. If n > 1, since by assumption f has all
its eigenvalue in K, pick some eigenvalue �

1

2 K of f , and let u
1

be some
corresponding (nonzero) eigenvector. We can find n�1 vectors (v

2

, . . . , vn)
such that (u

1

, v
2

, . . . , vn) is a basis of E, and let F be the subspace of
dimension n � 1 spanned by (v

2

, . . . , vn). In the basis (u
1

, v
2

. . . , vn), the
matrix of f is of the form

U =

0

BBB@

�
1

a
1 2

. . . a
1n

0 a
2 2

. . . a
2n

...
...

. . .
...

0 an 2

. . . ann

1

CCCA
,
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since its first column contains the coordinates of �
1

u
1

over the basis (u
1

, v
2

,
. . . , vn). If we let p : E ! F be the projection defined such that p(u

1

) = 0
and p(vi) = vi when 2  i  n, the linear map g : F ! F defined as the
restriction of p � f to F is represented by the (n � 1) ⇥ (n � 1) matrix
V = (ai j)2i,jn over the basis (v

2

, . . . , vn). We need to prove that all the
eigenvalues of g belong to K. However, since the first column of U has a
single nonzero entry, we get

�U (X) = det(XI � U) = (X � �
1

) det(XI � V ) = (X � �
1

)�V (X),

where �U (X) is the characteristic polynomial of U and �V (X) is the char-
acteristic polynomial of V . It follows that �V (X) divides �U (X), and since
all the roots of �U (X) are in K, all the roots of �V (X) are also in K.
Consequently, we can apply the induction hypothesis, and there is a basis
(u

2

, . . . , un) of F such that g is represented by an upper triangular matrix
(bi j)1i,jn�1

. However,

E = Ku
1

� F,

and thus (u
1

, . . . , un) is a basis for E. Since p is the projection from E =
Ku

1

� F onto F and g : F ! F is the restriction of p � f to F , we have

f(u
1

) = �
1

u
1

and

f(ui+1

) = a
1 iu1

+
iX

j=1

bi juj+1

for some a
1 i 2 K, when 1  i  n � 1. But then the matrix of f with

respect to (u
1

, . . . , un) is upper triangular.
For the matrix version, we assume that A is the matrix of f with respect

to some basis, Then we just proved that there is a change of basis matrix
P such that A = PTP�1 where T is upper triangular.

If A = PTP�1 where T is upper triangular, note that the diagonal
entries of T are the eigenvalues �

1

, . . . ,�n of A. Indeed, A and T have the
same characteristic polynomial. Also, if A is a real matrix whose eigenvalues
are all real, then P can be chosen to real, and if A is a rational matrix
whose eigenvalues are all rational, then P can be chosen rational. Since
any polynomial over C has all its roots in C, Theorem 14.1 implies that
every complex n ⇥ n matrix can be triangularized.

If E is a Hermitian space (see Chapter 13), the proof of Theorem
14.1 can be easily adapted to prove that there is an orthonormal basis
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(u
1

, . . . , un) with respect to which the matrix of f is upper triangular.
This is usually known as Schur’s lemma.

Theorem 14.2. (Schur decomposition) Given any linear map f : E !
E over a complex Hermitian space E, there is an orthonormal basis
(u

1

, . . . , un) with respect to which f is represented by an upper triangu-
lar matrix. Equivalently, for every n ⇥ n matrix A 2 Mn(C), there is a
unitary matrix U and an upper triangular matrix T such that

A = UTU⇤.

If A is real and if all its eigenvalues are real, then there is an orthogonal
matrix Q and a real upper triangular matrix T such that

A = QTQ>.

Proof. During the induction, we choose F to be the orthogonal comple-
ment of Cu

1

and we pick orthonormal bases (use Propositions 13.12 and
13.11). If E is a real Euclidean space and if the eigenvalues of f are all
real, the proof also goes through with real matrices (use Propositions 11.9
and 11.8).

If � is an eigenvalue of the matrix A and if u is an eigenvector associated
with �, from

Au = �u,

we obtain

A2u = A(Au) = A(�u) = �Au = �2u,

which shows that �2 is an eigenvalue of A2 for the eigenvector u. An obvious
induction shows that �k is an eigenvalue of Ak for the eigenvector u, for
all k � 1. Now, if all eigenvalues �

1

, . . . ,�n of A are in K, it follows that
�k
1

, . . . ,�kn are eigenvalues of Ak. However, it is not obvious that Ak does
not have other eigenvalues. In fact, this can’t happen, and this can be
proven using Theorem 14.1.

Proposition 14.4. Given any n⇥n matrix A 2 Mn(K) with coe�cients in
a field K, if all eigenvalues �

1

, . . . ,�n of A are in K, then for every polyno-
mial q(X) 2 K[X], the eigenvalues of q(A) are exactly (q(�

1

), . . . , q(�n)).

Proof. By Theorem 14.1, there is an upper triangular matrix T and an
invertible matrix P (both in Mn(K)) such that

A = PTP�1.
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Since A and T are similar, they have the same eigenvalues (with the same
multiplicities), so the diagonal entries of T are the eigenvalues of A. Since

Ak = PT kP�1, k � 1,

for any polynomial q(X) = c
0

Xm + · · · + cm�1

X + cm, we have

q(A) = c
0

Am + · · · + cm�1

A+ cmI

= c
0

PTmP�1 + · · · + cm�1

PTP�1 + cmPIP�1

= P (c
0

Tm + · · · + cm�1

T + cmI)P�1

= Pq(T )P�1.

Furthermore, it is easy to check that q(T ) is upper triangular and that
its diagonal entries are q(�

1

), . . . , q(�n), where �1, . . . ,�n are the diagonal
entries of T , namely the eigenvalues of A. It follows that q(�

1

), . . . , q(�n)
are the eigenvalues of q(A).

Remark: There is another way to prove Proposition 14.4 that does not
use Theorem 14.1, but instead uses the fact that given any field K, there
is field extension K of K (K ✓ K) such that every polynomial q(X) =
c
0

Xm + · · · + cm�1

X + cm (of degree m � 1) with coe�cients ci 2 K
factors as

q(X) = c
0

(X � ↵
1

) · · · (X � ↵n), ↵i 2 K, i = 1, . . . , n.

The field K is called an algebraically closed field (and an algebraic closure
of K).

Assume that all eigenvalues �
1

, . . . ,�n of A belong to K. Let q(X) be
any polynomial (in K[X]) and let µ 2 K be any eigenvalue of q(A) (this
means that µ is a zero of the characteristic polynomial �q(A)

(X) 2 K[X]
of q(A). Since K is algebraically closed, �q(A)

(X) has all its roots in K).
We claim that µ = q(�i) for some eigenvalue �i of A.

Proof. (After Lax [Lax (2007)], Chapter 6). Since K is algebraically
closed, the polynomial µ � q(X) factors as

µ � q(X) = c
0

(X � ↵
1

) · · · (X � ↵n),

for some ↵i 2 K. Now µI � q(A) is a matrix in Mn(K), and since µ is an
eigenvalue of q(A), it must be singular. We have

µI � q(A) = c
0

(A � ↵
1

I) · · · (A � ↵nI),
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and since the left-hand side is singular, so is the right-hand side, which
implies that some factor A � ↵iI is singular. This means that ↵i is an
eigenvalue of A, say ↵i = �i. As ↵i = �i is a zero of µ � q(X), we get

µ = q(�i),

which proves that µ is indeed of the form q(�i) for some eigenvalue �i of
A.

Using Theorem 14.2, we can derive two very important results.

Proposition 14.5. If A is a Hermitian matrix (i.e. A⇤ = A), then its
eigenvalues are real and A can be diagonalized with respect to an orthonor-
mal basis of eigenvectors. In matrix terms, there is a unitary matrix U and
a real diagonal matrix D such that A = UDU⇤. If A is a real symmetric
matrix (i.e. A> = A), then its eigenvalues are real and A can be diagonal-
ized with respect to an orthonormal basis of eigenvectors. In matrix terms,
there is an orthogonal matrix Q and a real diagonal matrix D such that
A = QDQ>.

Proof. By Theorem 14.2, we can write A = UTU⇤ where T = (tij) is
upper triangular and U is a unitary matrix. If A⇤ = A, we get

UTU⇤ = UT ⇤U⇤,

and this implies that T = T ⇤. Since T is an upper triangular matrix, T ⇤

is a lower triangular matrix, which implies that T is a diagonal matrix.
Furthermore, since T = T ⇤, we have tii = tii for i = 1, . . . , n, which means
that the tii are real, so T is indeed a real diagonal matrix, say D.

If we apply this result to a (real) symmetric matrix A, we obtain the
fact that all the eigenvalues of a symmetric matrix are real, and by applying
Theorem 14.2 again, we conclude that A = QDQ>, where Q is orthogonal
and D is a real diagonal matrix.

More general versions of Proposition 14.5 are proven in Chapter 16.
When a real matrix A has complex eigenvalues, there is a version of

Theorem 14.2 involving only real matrices provided that we allow T to be
block upper-triangular (the diagonal entries may be 2 ⇥ 2 matrices or real
entries).

Theorem 14.2 is not a very practical result but it is a useful theoretical
result to cope with matrices that cannot be diagonalized. For example, it
can be used to prove that every complex matrix is the limit of a sequence
of diagonalizable matrices that have distinct eigenvalues!
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14.3 Location of Eigenvalues

If A is an n ⇥ n complex (or real) matrix A, it would be useful to know,
even roughly, where the eigenvalues of A are located in the complex plane
C. The Gershgorin discs provide some precise information about this.

Definition 14.5. For any complex n ⇥ n matrix A, for i = 1, . . . , n, let

R0
i(A) =

nX

j=1

j 6=i

|ai j |

and let

G(A) =
n[

i=1

{z 2 C | |z � ai i|  R0
i(A)}.

Each disc {z 2 C | |z � ai i|  R0
i(A)} is called a Gershgorin disc and their

union G(A) is called the Gershgorin domain. An example of Gershgorin

domain for A =

0

@
1 2 3
4 i 6
7 8 1 + i

1

A is illustrated in Figure 14.1.

Fig. 14.1 Let A be the 3 ⇥ 3 matrix specified at the end of Definition 14.5. For this
particular A, we find that R

0
1(A) = 5, R0

2(A) = 10, and R

0
3(A) = 15. The blue/purple

disk is |z � 1|  5, the pink disk is |z � i|  10, the peach disk is |z � 1 � i|  15, and
G(A) is the union of these three disks.
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Although easy to prove, the following theorem is very useful:

Theorem 14.3. (Gershgorin’s disc theorem) For any complex n ⇥ n ma-
trix A, all the eigenvalues of A belong to the Gershgorin domain G(A).
Furthermore the following properties hold:

(1) If A is strictly row diagonally dominant, that is

|ai i| >
nX

j=1, j 6=i

|ai j |, for i = 1, . . . , n,

then A is invertible.
(2) If A is strictly row diagonally dominant, and if ai i > 0 for i = 1, . . . , n,

then every eigenvalue of A has a strictly positive real part.

Proof. Let � be any eigenvalue of A and let u be a corresponding eigen-
vector (recall that we must have u 6= 0). Let k be an index such that

|uk| = max
1in

|ui|.

Since Au = �u, we have

(�� ak k)uk =
nX

j=1

j 6=k

ak juj ,

which implies that

|�� ak k||uk| 
nX

j=1

j 6=k

|ak j ||uj |  |uk|
nX

j=1

j 6=k

|ak j |.

Since u 6= 0 and |uk| = max
1in |ui|, we must have |uk| 6= 0, and it follows

that

|�� ak k| 
nX

j=1

j 6=k

|ak j | = R0
k(A),

and thus

� 2 {z 2 C | |z � ak k|  R0
k(A)} ✓ G(A),

as claimed.
(1) Strict row diagonal dominance implies that 0 does not belong to

any of the Gershgorin discs, so all eigenvalues of A are nonzero, and A is
invertible.

(2) If A is strictly row diagonally dominant and ai i > 0 for i = 1, . . . , n,
then each of the Gershgorin discs lies strictly in the right half-plane, so
every eigenvalue of A has a strictly positive real part.
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In particular, Theorem 14.3 implies that if a symmetric matrix is strictly
row diagonally dominant and has strictly positive diagonal entries, then it
is positive definite. Theorem 14.3 is sometimes called the Gershgorin–
Hadamard theorem.

Since A and A> have the same eigenvalues (even for complex matrices)
we also have a version of Theorem 14.3 for the discs of radius

C 0
j(A) =

nX

i=1

i 6=j

|ai j |,

whose domain G(A>) is given by

G(A>) =
n[

i=1

{z 2 C | |z � ai i|  C 0
i(A)}.

Figure 14.2 shows G(A>) for A =

0

@
1 2 3
4 i 6
7 8 1 + i

1

A.

Fig. 14.2 Let A be the 3 ⇥ 3 matrix specified at the end of Definition 14.5. For this
particular A, we find that C

0
1(A) = 11, C0

2(A) = 10, and C

0
3(A) = 9. The pale blue disk

is |z � 1|  1, the pink disk is |z � i|  10, the ocher disk is |z � 1 � i|  9, and G(A>)
is the union of these three disks.

Thus we get the following:

Theorem 14.4. For any complex n⇥n matrix A, all the eigenvalues of A
belong to the intersection of the Gershgorin domains G(A) \ G(A>). See
Figure 14.3. Furthermore the following properties hold:
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(1) If A is strictly column diagonally dominant, that is

|ai i| >
nX

i=1, i 6=j

|ai j |, for j = 1, . . . , n,

then A is invertible.
(2) If A is strictly column diagonally dominant, and if ai i > 0 for i =

1, . . . , n, then every eigenvalue of A has a strictly positive real part.

Fig. 14.3 Let A be the 3 ⇥ 3 matrix specified at the end of Definition 14.5. The dusty
rose region is G(A) \ G(A>).

There are refinements of Gershgorin’s theorem and eigenvalue location
results involving other domains besides discs; for more on this subject, see
Horn and Johnson [Horn and Johnson (1990)], Sections 6.1 and 6.2.

Remark: Neither strict row diagonal dominance nor strict column diag-
onal dominance are necessary for invertibility. Also, if we relax all strict
inequalities to inequalities, then row diagonal dominance (or column diag-
onal dominance) is not a su�cient condition for invertibility.
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14.4 Conditioning of Eigenvalue Problems

The following n ⇥ n matrix

A =

0

BBBBBBBB@

0
1 0
1 0
. . .

. . .

1 0
1 0

1

CCCCCCCCA

has the eigenvalue 0 with multiplicity n. However, if we perturb the top
rightmost entry of A by ✏, it is easy to see that the characteristic polynomial
of the matrix

A(✏) =

0

BBBBBBBB@

0 ✏
1 0
1 0
. . .

. . .

1 0
1 0

1

CCCCCCCCA

is Xn � ✏. It follows that if n = 40 and ✏ = 10�40, A(10�40) has the
eigenvalues 10�1ek2⇡i/40 with k = 1, . . . , 40. Thus, we see that a very
small change (✏ = 10�40) to the matrix A causes a significant change to
the eigenvalues of A (from 0 to 10�1ek2⇡i/40 ). Indeed, the relative error
is 10�39. Worse, due to machine precision, since very small numbers are
treated as 0, the error on the computation of eigenvalues (for example, of
the matrix A(10�40)) can be very large.

This phenomenon is similar to the phenomenon discussed in Section 8.5
where we studied the e↵ect of a small perturbation of the coe�cients of
a linear system Ax = b on its solution. In Section 8.5, we saw that the
behavior of a linear system under small perturbations is governed by the
condition number cond(A) of the matrix A. In the case of the eigenvalue
problem (finding the eigenvalues of a matrix), we will see that the condition-
ing of the problem depends on the condition number of the change of basis
matrix P used in reducing the matrix A to its diagonal form D = P�1AP ,
rather than on the condition number of A itself. The following proposition
in which we assume that A is diagonalizable and that the matrix norm
k k satisfies a special condition (satisfied by the operator norms k kp for
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p = 1, 2,1), is due to Bauer and Fike (1960).

Proposition 14.6. Let A 2 Mn(C) be a diagonalizable matrix, P be an
invertible matrix, and D be a diagonal matrix D = diag(�

1

, . . . ,�n) such
that

A = PDP�1,

and let k k be a matrix norm such that

kdiag(↵
1

, . . . ,↵n)k = max
1in

|↵i|,

for every diagonal matrix. Then for every perturbation matrix �A, if we
write

Bi = {z 2 C | |z � �i|  cond(P ) k�Ak},
for every eigenvalue � of A+�A, we have

� 2
n[

k=1

Bk.

Proof. Let � be any eigenvalue of the matrix A+�A. If � = �j for some
j, then the result is trivial. Thus assume that � 6= �j for j = 1, . . . , n. In
this case the matrix D � �I is invertible (since its eigenvalues are � � �j
for j = 1, . . . , n), and we have

P�1(A+�A � �I)P = D � �I + P�1(�A)P

= (D � �I)(I + (D � �I)�1P�1(�A)P ).

Since � is an eigenvalue of A+�A, the matrix A+�A��I is singular, so
the matrix

I + (D � �I)�1P�1(�A)P

must also be singular. By Proposition 8.8(2), we have

1 
��(D � �I)�1P�1(�A)P

�� ,
and since k k is a matrix norm,

��(D � �I)�1P�1(�A)P
�� 

��(D � �I)�1

�� ��P�1

�� k�Ak kPk ,
so we have

1 
��(D � �I)�1

�� ��P�1

�� k�Ak kPk .
Now (D � �I)�1 is a diagonal matrix with entries 1/(�i � �), so by our
assumption on the norm,

��(D � �I)�1

�� =
1

mini(|�i � �|) .
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As a consequence, since there is some index k for which mini(|�i � �|) =
|�k � �|, we have

��(D � �I)�1

�� =
1

|�k � �| ,

and we obtain

|�� �k| 
��P�1

�� k�Ak kPk = cond(P ) k�Ak ,
which proves our result.

Proposition 14.6 implies that for any diagonalizable matrix A, if we
define �(A) by

�(A) = inf{cond(P ) | P�1AP = D},
then for every eigenvalue � of A+�A, we have

� 2
n[

k=1

{z 2 Cn | |z � �k|  �(A) k�Ak}.

Definition 14.6. The number �(A) = inf{cond(P ) | P�1AP = D} is
called the conditioning of A relative to the eigenvalue problem.

If A is a normal matrix, since by Theorem 16.12, A can be diagonal-
ized with respect to a unitary matrix U , and since for the spectral norm
kUk

2

= 1, we see that �(A) = 1. Therefore, normal matrices are very well
conditionned w.r.t. the eigenvalue problem. In fact, for every eigenvalue �
of A+�A (with A normal), we have

� 2
n[

k=1

{z 2 Cn | |z � �k|  k�Ak
2

}.

If A and A + �A are both symmetric (or Hermitian), there are sharper
results; see Proposition 16.15.

Note that the matrix A(✏) from the beginning of the section is not
normal.

14.5 Eigenvalues of the Matrix Exponential

The Schur decomposition yields a characterization of the eigenvalues of the
matrix exponential eA in terms of the eigenvalues of the matrix A. First
we have the following proposition.

Proposition 14.7. Let A and U be (real or complex) matrices and assume
that U is invertible. Then

eUAU�1

= UeAU�1.
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Proof. A trivial induction shows that

UApU�1 = (UAU�1)p,

and thus

eUAU�1

=
X

p�0

(UAU�1)p

p!
=
X

p�0

UApU�1

p!

= U

0

@
X

p�0

Ap

p!

1

AU�1 = UeAU�1,

as claimed.

Proposition 14.8. Given any complex n⇥n matrix A, if �
1

, . . . ,�n are the
eigenvalues of A, then e�1 , . . . , e�n are the eigenvalues of eA. Furthermore,
if u is an eigenvector of A for �i, then u is an eigenvector of eA for e�i .

Proof. By Theorem 14.1, there is an invertible matrix P and an upper
triangular matrix T such that

A = PTP�1.

By Proposition 14.7,

ePTP�1

= PeTP�1.

Note that eT =
P

p�0

Tp

p! is upper triangular since T p is upper triangular
for all p � 0. If �

1

,�
2

, . . . ,�n are the diagonal entries of T , the properties of
matrix multiplication, when combined with an induction on p, imply that
the diagonal entries of T p are �p

1

,�p
2

, . . . ,�pn. This in turn implies that the

diagonal entries of eT are
P

p�0

�p
i
p! = e�i for 1  i  n. Since A and T

are similar matrices, we know that they have the same eigenvalues, namely
the diagonal entries �

1

, . . . ,�n of T . Since eA = ePTP�1

= PeTP�1, and
eT is upper triangular, we use the same argument to conclude that both
eA and eT have the same eigenvalues, which are the diagonal entries of eT ,
where the diagonal entries of eT are of the form e�1 , . . . , e�n . Now, if u is
an eigenvector of A for the eigenvalue �, a simple induction shows that u
is an eigenvector of An for the eigenvalue �n, from which is follows that

eAu =


I +

A

1!
+

A2

2!
+

A3

3!
+ . . .

�
u = u+Au+

A2

2!
u+

A3

3!
u+ . . .

= u+ �u+
�2

2!
u+

�3

3!
u+ · · · =


1 + �+

�2

2!
+
�3

3!
+ . . .

�
u = e�u,

which shows that u is an eigenvector of eA for e�.
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As a consequence, we obtain the following result.

Proposition 14.9. For every complex (or real) square matrix A, we have

det(eA) = etr(A),

where tr(A) is the trace of A, i.e., the sum a
1 1

+ · · · + ann of its diagonal
entries.

Proof. The trace of a matrix A is equal to the sum of the eigenvalues of A.
The determinant of a matrix is equal to the product of its eigenvalues, and
if �

1

, . . . ,�n are the eigenvalues of A, then by Proposition 14.8, e�1 , . . . , e�n

are the eigenvalues of eA, and thus

det
�
eA
�
= e�1 · · · e�n = e�1+···+�n = etr(A),

as desired.

If B is a skew symmetric matrix, since tr(B) = 0, we deduce that
det(eB) = e0 = 1. This allows us to obtain the following result. Recall that
the (real) vector space of skew symmetric matrices is denoted by so(n).

Proposition 14.10. For every skew symmetric matrix B 2 so(n), we have
eB 2 SO(n), that is, eB is a rotation.

Proof. By Proposition 8.18, eB is an orthogonal matrix. Since tr(B) = 0,
we deduce that det(eB) = e0 = 1. Therefore, eB 2 SO(n).

Proposition 14.10 shows that the map B 7! eB is a map exp: so(n) !
SO(n). It is not injective, but it can be shown (using one of the spectral
theorems) that it is surjective.

If B is a (real) symmetric matrix, then

(eB)> = eB
>
= eB ,

so eB is also symmetric. Since the eigenvalues �
1

, . . . ,�n of B are real, by
Proposition 14.8, since the eigenvalues of eB are e�1 , . . . , e�n and the �i are
real, we have e�i > 0 for i = 1, . . . , n, which implies that eB is symmetric
positive definite. In fact, it can be shown that for every symmetric positive
definite matrix A, there is a unique symmetric matrix B such that A = eB ;
see Gallier [Gallier (2011b)].
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14.6 Summary

The main concepts and results of this chapter are listed below:

• Diagonal matrix .
• Eigenvalues, eigenvectors; the eigenspace associated with an eigen-
value.

• Characteristic polynomial .
• Trace.
• Algebraic and geometric multiplicity .
• Eigenspaces associated with distinct eigenvalues form a direct sum
(Proposition 14.3).

• Reduction of a matrix to an upper-triangular matrix.
• Schur decomposition.
• The Gershgorin’s discs can be used to locate the eigenvalues of a com-
plex matrix; see Theorems 14.3 and 14.4.

• The conditioning of eigenvalue problems.
• Eigenvalues of the matrix exponential. The formula det(eA) = etr(A).

14.7 Problems

Problem 14.1. Let A be the following 2 ⇥ 2 matrix

A =

✓
1 �1
1 �1

◆
.

(1) Prove that A has the eigenvalue 0 with multiplicity 2 and that
A2 = 0.

(2) Let A be any real 2 ⇥ 2 matrix

A =

✓
a b
c d

◆
.

Prove that if bc > 0, then A has two distinct real eigenvalues. Prove that
if a, b, c, d > 0, then there is a positive eigenvector u associated with the
largest of the two eigenvalues of A, which means that if u = (u

1

, u
2

), then
u
1

> 0 and u
2

> 0.
(3) Suppose now that A is any complex 2 ⇥ 2 matrix as in (2). Prove

that if A has the eigenvalue 0 with multiplicity 2, then A2 = 0. Prove that
if A is real symmetric, then A = 0.
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Problem 14.2. Let A be any complex n ⇥ n matrix. Prove that if A has
the eigenvalue 0 with multiplicity n, then An = 0. Give an example of a
matrix A such that An = 0 but A 6= 0.

Problem 14.3. Let A be a complex 2 ⇥ 2 matrix, and let �
1

and �
2

be
the eigenvalues of A. Prove that if �

1

6= �
2

, then

eA =
�
1

e�2 � �
2

e�1

�
1

� �
2

I +
e�1 � e�2

�
1

� �
2

A.

Problem 14.4. Let A be the real symmetric 2 ⇥ 2 matrix

A =

✓
a b
b c

◆
.

(1) Prove that the eigenvalues of A are real and given by

�
1

=
a+ c+

p
4b2 + (a � c)2

2
, �

2

=
a+ c �

p
4b2 + (a � c)2

2
.

(2) Prove that A has a double eigenvalue (�
1

= �
2

= a) if and only if
b = 0 and a = c; that is, A is a diagonal matrix.

(3) Prove that the eigenvalues of A are nonnegative i↵ b2  ac and
a+ c � 0.

(4) Prove that the eigenvalues of A are positive i↵ b2 < ac, a > 0 and
c > 0.

Problem 14.5. Find the eigenvalues of the matrices

A =

✓
3 0
1 1

◆
, B =

✓
1 1
0 3

◆
, C = A+B =

✓
4 1
1 4

◆
.

Check that the eigenvalues of A+B are not equal to the sums of eigenvalues
of A plus eigenvalues of B.

Problem 14.6. Let A be a real symmetric n ⇥ n matrix and B be a
real symmetric positive definite n ⇥ n matrix. We would like to solve the
generalized eigenvalue problem: find � 2 R and u 6= 0 such that

Au = �Bu. (⇤)
(1) Use the Cholseky decomposition B = CC> to show that � and u are

solutions of the generalized eigenvalue problem (⇤) i↵ � and v are solutions
the (ordinary) eigenvalue problem

C�1A(C>)�1v = �v, with v = C>u.

Check that C�1A(C>)�1 is symmetric.
(2) Prove that if Au

1

= �
1

Bu
1

, Au
2

= �
2

Bu
2

, with u
1

6= 0, u
2

6= 0 and
�
1

6= �
2

, then u>
1

Bu
2

= 0.
(3) Prove that B�1A and C�1A(C>)�1 have the same eigenvalues.
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Problem 14.7. The sequence of Fibonacci numbers , 0, 1, 1, 2, 3, 5, 8, 13,
21, 34, 55, . . . , is given by the recurrence

Fn+2

= Fn+1

+ Fn,

with F
0

= 0 and F
1

= 1. In matrix form, we can write
✓
Fn+1

Fn

◆
=

✓
1 1
1 0

◆✓
Fn

Fn�1

◆
, n � 1,

✓
F
1

F
0

◆
=

✓
1
0

◆
.

(1) Show that
✓
Fn+1

Fn

◆
=

✓
1 1
1 0

◆n✓
1
0

◆
.

(2) Prove that the eigenvalues of the matrix

A =

✓
1 1
1 0

◆

are

� =
1 ±

p
5

2
.

The number

' =
1 +

p
5

2

is called the golden ratio. Show that the eigenvalues of A are ' and �'�1.
(3) Prove that A is diagonalized as

A =

✓
1 1
1 0

◆
=

1p
5

✓
' �'�1

1 1

◆✓
' 0
0 �'�1

◆✓
1 '�1

�1 '

◆
.

Prove that ✓
Fn+1

Fn

◆
=

1p
5

✓
' �'�1

1 1

◆✓
'n

�(�'�1)n

◆
,

and thus

Fn =
1p
5
('n � (�'�1)n) =

1p
5

" 
1 +

p
5

2

!n

�
 
1 �

p
5

2

!n#
, n � 0.

Problem 14.8. Let A be an n⇥ n matrix. For any subset I of {1, . . . , n},
let AI,I be the matrix obtained from A by first selecting the columns whose
indices belong to I, and then the rows whose indices also belong to I. Prove
that

⌧k(A) =
X

I✓{1,...,n}
|I|=k

det(AI,I).
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Problem 14.9. (1) Consider the matrix

A =

0

@
0 0 �a

3

1 0 �a
2

0 1 �a
1

1

A .

Prove that the characteristic polynomial �A(z) = det(zI � A) of A is
given by

�A(z) = z3 + a
1

z2 + a
2

z + a
3

.

(2) Consider the matrix

A =

0

BB@

0 0 0 �a
4

1 0 0 �a
3

0 1 0 �a
2

0 0 1 �a
1

1

CCA .

Prove that the characteristic polynomial �A(z) = det(zI � A) of A is
given by

�A(z) = z4 + a
1

z3 + a
2

z2 + a
3

z + a
4

.

(3) Consider the n ⇥ n matrix (called a companion matrix )

A =

0

BBBBBBBBB@

0 0 0 · · · 0 �an
1 0 0 · · · 0 �an�1

0 1 0 · · · 0 �an�2

...
. . .

. . .
. . .

...
...

0 0 0
. . . 0 �a

2

0 0 0 · · · 1 �a
1

1

CCCCCCCCCA

.

Prove that the characteristic polynomial �A(z) = det(zI � A) of A is
given by

�A(z) = zn + a
1

zn�1 + a
2

zn�2 + · · · + an�1

z + an.

Hint . Use induction.
Explain why finding the roots of a polynomial (with real or complex

coe�cients) and finding the eigenvalues of a (real or complex) matrix are
equivalent problems, in the sense that if we have a method for solving one
of these problems, then we have a method to solve the other.

Problem 14.10. Let A be a complex n ⇥ n matrix. Prove that if A is
invertible and if the eigenvalues of A are (�

1

, . . . ,�n), then the eigenvalues
of A�1 are (��1

1

, . . . ,��1

n ). Prove that if u is an eigenvector of A for �i,
then u is an eigenvector of A�1 for ��1

i .
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Problem 14.11. Prove that every complex matrix is the limit of a sequence
of diagonalizable matrices that have distinct eigenvalues

Problem 14.12. Consider the following tridiagonal n ⇥ n matrices

A =

0

BBBBB@

2 �1 0
�1 2 �1

. . .
. . .

. . .

�1 2 �1
0 �1 2

1

CCCCCA
, S =

0

BBBBB@

0 1 0
1 0 1
. . .

. . .
. . .

1 0 1
0 1 0

1

CCCCCA
.

Observe that A = 2I�S and show that the eigenvalues of A are �k = 2�µk,
where the µk are the eigenvalues of S.

(2) Using Problem 9.6, prove that the eigenvalues of the matrix A are
given by

�k = 4 sin2
✓

k⇡

2(n+ 1)

◆
, k = 1, . . . , n.

Show that A is symmetric positive definite.
(3) Find the condition number of A with respect to the 2-norm.
(4) Show that an eigenvector (y(k)

1

, . . . , y(k)n ) associated wih the eigen-
value �k is given by

y(k)j = sin

✓
kj⇡

n+ 1

◆
, j = 1, . . . , n.

Problem 14.13. Consider the following real tridiagonal symmetric n ⇥ n
matrix

A =

0

BBBBB@

c 1 0
1 c 1
. . .

. . .
. . .

1 c 1
0 1 c

1

CCCCCA
.

(1) Using Problem 9.6, prove that the eigenvalues of the matrix A are
given by

�k = c+ 2 cos

✓
k⇡

n+ 1

◆
, k = 1, . . . , n.

(2) Find a condition on c so that A is positive definite. It is satisfied by
c = 4?
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Problem 14.14. Let A be an m ⇥ n matrix and B be an n ⇥ m matrix
(over C).

(1) Prove that

det(Im � AB) = det(In � BA).

Hint . Consider the matrices

X =

✓
Im A
B In

◆
and Y =

✓
Im 0
�B In

◆
.

(2) Prove that

�n det(�Im � AB) = �m det(�In � BA).

Hint . Consider the matrices

X =

✓
�Im A
B In

◆
and Y =

✓
Im 0
�B �In

◆
.

Deduce that AB and BA have the same nonzero eigenvalues with the same
multiplicity.

Problem 14.15. The purpose of this problem is to prove that the charac-
teristic polynomial of the matrix

A =

0

BBBBB@

1 2 3 4 · · · n
2 3 4 5 · · · n+ 1
3 4 5 6 · · · n+ 2
...

...
...

. . .
...

n n+ 1 n+ 2 n+ 3 · · · 2n � 1

1

CCCCCA

is

PA(�) = �n�2

✓
�2 � n2�� 1

12
n2(n2 � 1)

◆
.

(1) Prove that the characteristic polynomial PA(�) is given by

PA(�) = �n�2P (�),
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with

P (�) =

������������������������������

�� 1 �2 �3 �4 · · · �n+ 3 �n+ 2 �n+ 1 �n

��� 1 �� 1 �1 �1 · · · �1 �1 �1 �1

1 �2 1 0 · · · 0 0 0 0

0 1 �2 1 · · · 0 0 0 0

...
...

. . .
. . .

. . .
...

...
...

...

0 0 0 0
. . . 1 0 0 0

0 0 0 0
. . . �2 1 0 0

0 0 0 0 · · · 1 �2 1 0

0 0 0 0 · · · 0 1 �2 1

������������������������������

.

(2) Prove that the sum of the roots �
1

,�
2

of the (degree two) polynomial
P (�) is

�
1

+ �
2

= n2.

The problem is thus to compute the product �
1

�
2

of these roots. Prove
that

�
1

�
2

= P (0).

(3) The problem is now to evaluate dn = P (0), where

dn =

�����������������������������

�1 �2 �3 �4 · · · �n+ 3 �n+ 2 �n+ 1 �n

�1 �1 �1 �1 · · · �1 �1 �1 �1

1 �2 1 0 · · · 0 0 0 0

0 1 �2 1 · · · 0 0 0 0

...
...

. . .
. . .

. . .
...

...
...

...

0 0 0 0
. . . 1 0 0 0

0 0 0 0
. . . �2 1 0 0

0 0 0 0 · · · 1 �2 1 0

0 0 0 0 · · · 0 1 �2 1

�����������������������������
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I suggest the following strategy: cancel out the first entry in row 1 and
row 2 by adding a suitable multiple of row 3 to row 1 and row 2, and then
subtract row 2 from row 1.

Do this twice.
You will notice that the first two entries on row 1 and the first two

entries on row 2 change, but the rest of the matrix looks the same, except
that the dimension is reduced.

This suggests setting up a recurrence involving the entries uk, vk, xk, yk
in the determinant

Dk =

�����������������������������

uk xk �3 �4 · · · �n+ k � 3 �n+ k � 2 �n+ k � 1 �n+ k

vk yk �1 �1 · · · �1 �1 �1 �1

1 �2 1 0 · · · 0 0 0 0

0 1 �2 1 · · · 0 0 0 0

...
...

. . .
. . .

. . .
...

...
...

...

0 0 0 0
. . . 1 0 0 0

0 0 0 0
. . . �2 1 0 0

0 0 0 0 · · · 1 �2 1 0

0 0 0 0 · · · 0 1 �2 1

�����������������������������

,

starting with k = 0, with

u
0

= �1, v
0

= �1, x
0

= �2, y
0

= �1,

and ending with k = n � 2, so that

dn = Dn�2

=

������

un�3

xn�3

�3
vn�3

yn�3

�1
1 �2 1

������
=

����
un�2

xn�2

vn�2

yn�2

���� .

Prove that we have the recurrence relations
0

BB@

uk+1

vk+1

xk+1

yk+1

1

CCA =

0

BB@

2 �2 1 �1
0 2 0 1

�1 1 0 0
0 �1 0 0

1

CCA

0

BB@

uk

vk
xk

yk

1

CCA+

0

BB@

0
0

�2
�1

1

CCA .

These appear to be nasty a�ne recurrence relations, so we will use the
trick to convert this a�ne map to a linear map.
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(4) Consider the linear map given by
0

BBBB@

uk+1

vk+1

xk+1

yk+1

1

1

CCCCA
=

0

BBBB@

2 �2 1 �1 0
0 2 0 1 0

�1 1 0 0 �2
0 �1 0 0 �1
0 0 0 0 1

1

CCCCA

0

BBBB@

uk

vk
xk

yk
1

1

CCCCA
,

and show that its action on uk, vk, xk, yk is the same as the a�ne action of
Part (3).

Use Matlab to find the eigenvalues of the matrix

T =

0

BBBB@

2 �2 1 �1 0
0 2 0 1 0

�1 1 0 0 �2
0 �1 0 0 �1
0 0 0 0 1

1

CCCCA
.

You will be stunned!
Let N be the matrix given by

N = T � I.

Prove that

N4 = 0.

Use this to prove that

T k = I + kN +
1

2
k(k � 1)N2 +

1

6
k(k � 1)(k � 2)N3,

for all k � 0.
(5) Prove that

0

BBBB@

uk

vk
xk

yk
1

1

CCCCA
= T k

0

BBBB@

�1
�1
�2
�1
1

1

CCCCA
=

0

BBBB@

2 �2 1 �1 0
0 2 0 1 0

�1 1 0 0 �2
0 �1 0 0 �1
0 0 0 0 1

1

CCCCA

k0

BBBB@

�1
�1
�2
�1
1

1

CCCCA
,

for k � 0.
Prove that

T k =

0

BBBBBBBB@

k + 1 �k(k + 1) k �k2 1

6

(k � 1)k(2k � 7)

0 k + 1 0 k � 1

2

(k � 1)k

�k k2 1 � k (k � 1)k � 1

3

k((k � 6)k + 11)

0 �k 0 1 � k 1

2

(k � 3)k

0 0 0 0 1

1

CCCCCCCCA

,
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and thus that
0

BBBBB@

uk

vk

xk

yk

1

CCCCCA
=

0

BBBBB@

1

6

(2k3 + 3k2 � 5k � 6)

� 1

2

(k2 + 3k + 2)

1

3

(�k3 + k � 6)

1

2

(k2 + k � 2)

1

CCCCCA
,

and that
����
uk xk

vk yk

���� = �1 � 7

3
k � 23

12
k2 � 2

3
k3 � 1

12
k4.

As a consequence, prove that amazingly

dn = Dn�2

= � 1

12
n2(n2 � 1).

(6) Prove that the characteristic polynomial of A is indeed

PA(�) = �n�2

✓
�2 � n2�� 1

12
n2(n2 � 1)

◆
.

Use the above to show that the two nonzero eigenvalues of A are

� =
n

2

 
n ±

p
3

3

p
4n2 � 1

!
.

The negative eigenvalue �
1

can also be expressed as

�
1

= n2

(3 � 2
p
3)

6

r
1 � 1

4n2

.

Use this expression to explain the following phenomenon: if we add any
number greater than or equal to (2/25)n2 to every diagonal entry of A we
get an invertible matrix. What about 0.077351n2? Try it!

Problem 14.16. Let A be a symmetric tridiagonal n ⇥ n-matrix

A =

0

BBBBBBBB@

b
1

c
1

c
1

b
2

c
2

c
2

b
3

c
3

. . .
. . .

. . .

cn�2

bn�1

cn�1

cn�1

bn

1

CCCCCCCCA

,
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where it is assumed that ci 6= 0 for all i, 1  i  n � 1, and let Ak be the
k⇥k-submatrix consisting of the first k rows and columns of A, 1  k  n.
We define the polynomials Pk(x) as follows: (0  k  n).

P
0

(x) = 1,

P
1

(x) = b
1

� x,

Pk(x) = (bk � x)Pk�1

(x) � c2k�1

Pk�2

(x),

where 2  k  n.
(1) Prove the following properties:
(i) Pk(x) is the characteristic polynomial of Ak, where 1  k  n.
(ii) limx!�1 Pk(x) = +1, where 1  k  n.
(iii) If Pk(x) = 0, then Pk�1

(x)Pk+1

(x) < 0, where 1  k  n � 1.
(iv) Pk(x) has k distinct real roots that separate the k + 1 roots of

Pk+1

(x), where 1  k  n � 1.
(2) Given any real number µ > 0, for every k, 1  k  n, define the

function sgk(µ) as follows:

sgk(µ) =

⇢
sign of Pk(µ) if Pk(µ) 6= 0,
sign of Pk�1

(µ) if Pk(µ) = 0.

We encode the sign of a positive number as +, and the sign of a negative
number as �. Then let E(k, µ) be the ordered list

E(k, µ) = h+, sg
1

(µ), sg
2

(µ), . . . , sgk(µ)i ,

and let N(k, µ) be the number changes of sign between consecutive signs
in E(k, µ).

Prove that sgk(µ) is well defined and that N(k, µ) is the number of roots
� of Pk(x) such that � < µ.

Remark: The above can be used to compute the eigenvalues of a (tridi-
agonal) symmetric matrix (the method of Givens-Householder).
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(k + 1)th principal component
of X, 742

3-sphere S

3, 579
C

0-continuity, 203
C

2-continuity, 203
I-indexed family, 28

I-sequence, 29
I-sequence, 29
K-vector space, 26
LDU -factorization, 217
LU -factorization, 214, 216
QR algorithm, 629

deflation, 644
double shift, 643, 646
Francis shift, 647
implicit Q theorem, 648
implicit shift, 643

bulge chasing, 643
shift, 643, 645
Wilkinson shift, 646

QR-decomposition, 443, 510
Hom(E,F ), 62
SO(2), 585
SU(2), 568

adjoint representation, 569, 570
U(1), 585
so(n), 441
su(2), 569

inner product, 582
f -conductor of u into W , 767
k-plane, 48

kth elementary symmetric
polynomial, 537

n-linear form, see multilinear form
n-linear map, see multilinear map
(real) projective space RP3, 579
(upper) Hessenberg matrix, 637

reduced, 640
unreduced, 640

“musical map”, 422

`

2-norm, 12
I-indexed family

subfamily, 35
Gauss-Jordan factorization, 214
permanent

Van der Waerden conjecture, 193

abelian group, 21
adjacency matrix, 661, 668

di↵usion operator, 669
adjoint map, 424, 502
adjoint of f , 424, 426, 503
adjoint of a matrix, 508
adjugate, 179
a�ne combination, 145
a�ne frame, 151
a�ne map, 148, 437

unique linear map, 148
a�ne space, 149

free vectors, 149
points, 149

797
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translations, 149
algebraic varieties, 381
algebraically closed field, 545
alternating multilinear map, 167
annihilating polynomials, 757
annihilator

linear map, 764
of a polynomial, 757

applications
of Euclidean geometry, 449

Arnoldi iteration, 650
breakdown, 650
Rayleigh–Ritz method, 652

Arnoldi estimates, 652
Ritz values, 652

attribute, 737
automorphism, 63
average, 737

Bézier curve, 201
control points, 201

Bézier spline, 203
back-substitution, 206
Banach space, 328
barycentric combination, see a�ne

combination
basis, 41

dimension, 44, 48
Beltrami, 705
Bernstein polynomials, 42, 91, 201
best (d� k)-dimensional a�ne

approximation, 750, 751
best a�ne approximation, 747
best approximation, 747
Bezout’s identity, 762, 763
bidual, 63, 371
bijection between E and its dual E⇤,

421
bilinear form, see bilinear map
bilinear map, 167, 377

canonical pairing, 377
definite, 408
positive, 408
symmetric, 167

block diagonalization
of a normal linear map, 600

of a normal matrix, 610
of a skew-self-adjoint linear map,

605
of a skew-symmetric matrix, 611
of an orthogonal linear map, 606
of an orthogonal matrix, 611

canonical
isomorphism, 421

canonical pairing, 377
evaluation at v, 377

Cartan–Dieudonné theorem, 607
sharper version, 607

Cauchy determinant, 324
Cauchy sequence

normed vector space, 328
Cauchy–Schwarz inequality, 296, 297,

411, 496
Cayley–Hamilton theorem, 186, 189
center of gravity, 739
centered data point, 738
centroid, 739, 748, 750
chain, see graph path
change of basis matrix, 89, 90
characteristic polynomial, 185, 303,

536
characteristic value, see eigenvalue
characteristic vector, see eigenvector
Chebyshev polynomials, 433
Cholesky factorization, 242, 243
cofactor, 172
column vector, 8, 50, 375
commutative group, see abelian group
commuting family

linear maps, 770
complete normed vector space, see

Banach space
complex number

conjugate, 489
imaginary part, 489
modulus, 489
real part, 489

complex vector space, 26
complexification

of a vector space, 594
of an inner product, 595
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complexification of vector space, 594
computational geometry, 449
condition number, 318, 477
conductor, 768
conjugate

of a complex number, 489
of a matrix, 508

continuous
function, 313
linear map, 313

contravariant, 90
Courant–Fishcer theorem, 617
covariance, 738
covariance matrix, 739
covariant, 375
covector, see linear form, see linear

form
Cramer’s rules, 184
cross-product, 423
curve interpolation, 201, 203

de Boor control points, 203

data compression, 19, 715, 735
low-rank decomposition, 19

de Boor control points, 203
QR-decomposition, 430, 443, 449,

465, 471, 476, 505, 510
QR-decomposition, in terms of

Householder matrices, 471
degree matrix, 661, 662, 665, 667, 672
degree of a vertex, 662
Delaunay triangulation, 449, 695
Demmel, 736
determinant, 170, 172

Laplace expansion, 172
linear map, 185

determinant of a linear map, 440
determining orbits of asteroids, 722
diagonal matrix, 533
diagonalizable, 541
diagonalizable matrix, 533
diagonalization, 93

of a normal linear map, 602
of a normal matrix, 612
of a self-adjoint linear map, 603
of a symmetric matrix, 610

diagonalize a matrix, 449
di↵erential equations

system of first order, 788
dilation of hyperplane, 270

direction, 270
scale factor, 270

direct graph
strongly connected components,

666
direct product

inclusion map, 132
projection map, 131
vector spaces, 131

direct sum
inclusion map, 135
projection map, 136
vector space, 132

directed graph, 664
closed, 665
path, 665

length, 665
simply connected, 665
source, 664
target, 664

discriminant, 163
dual basis, 66
dual norm, 519, 520
dual space, 63, 371, 519

annihilator, 378
canonical pairing, 377
coordinate form, 65, 371
dual basis, 66, 371, 382, 383
Duality theorem, 382
linear form, 63, 371
orthogonal, 377

duality
in Euclidean spaces, 421

Duality theorem, 382

edge of a graph, 664, 666
eigenfaces, 754
eigenspace, 302, 535
eigenvalue, 93, 302, 303, 534, 593

algebraic multiplicity, 539
Arnoldi iteration, 651
basic QR algorithm, 629
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conditioning number, 553
extreme, 652
geometric multiplicity, 539
interlace, 615
spectrum, 303

eigenvector, 93, 302, 535, 593
generalized, 758

elementary matrix, 211, 213
endomorphism, 63
Euclid’s proposition, 762
Euclidean geometry, 407
Euclidean norm, 12, 290

induced by an inner product, 414
Euclidean space, 599

definition, 408
Euclidean structure, 408
evaluation at v, 377

face recognition, 754
family, see I-indexed family
feature, 737

vector, 737
Fiedler number, 677
field, 25
finding eigenvalues

inverse iteration method, 657
power iteration, 655
Rayleigh quotient iteration, 658
Rayleigh–Ritz method, 652, 655

finite support, 420
first principal component

of X, 742
flip

transformations, 440, 509
flip about F

definition, 466
forward-substitution, 207
Fourier analysis, 409
Fourier matrix, 510
free module, 53
free variables, 256
Frobenius norm, 305, 410, 494
from polar form to SVD, 709
from SVD to polar form, 709

Gauss, 450, 721

Gauss–Jordan factorization, 258
Gaussian elimination, 207, 208, 213

complete pivoting, 236
partial pivoting, 235
pivot, 209
pivoting, 209

gcd, see greatest common divisor, see
greatest common divisor

general linear group, 22
vector space, 63

generalized eigenvector, 758, 779
index, 779

geodesic dome, 696
Gershgorin disc, 547
Gershgorin domain, 547
Gershgorin–Hadamard theorem, 549
Givens rotation, 648
gradient, 423
Gram–Schmidt

orthonormalization, 442, 505
orthonormalization procedure, 428

graph
bipartite, 192
connected, 667
connected component, 667
cut, 681
degree of a vertex, 667
directed, 664
edge, 666
edges, 664
isolated vertex, 677
links between vertex subsets, 681
matching, 192
orientation, 669

relationship to directed graph,
669

oriented, 669
path, 667

closed, 667
length, 667

perfect matching, 192
simple, 664, 667
vertex, 666
vertex degree, 665
vertices, 664
volume of set of vertices, 681
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weighted, 671
graph clustering, 683
graph clustering method, 661

normalized cut, 661
graph drawing, 663, 689

balanced, 689
energy, 663, 690
function, 689
matrix, 663, 689
orthogonal drawing, 664, 691
relationship to graph clustering,

663
weighted energy function, 690

graph embedding, see graph drawing
graph Laplacian, 662
Grassmann’s relation, 140
greatest common divisor

polynomial, 761, 763
relatively prime, 761, 763

group, 20
abelian, 21
identity element, 21

Hölder’s inequality, 296, 297
Haar basis, 42, 103, 106, 107
Haar matrix, 107
Haar wavelets, 103, 108
Hadamard, 408
Hadamard matrix, 124

Sylvester–Hadamard, 125
Hahn–Banach theorem, 525
Hermite polynomials, 434
Hermitian form

definition, 490
positive, 492
positive definite, 492

Hermitian geometry, 489
Hermitian norm, 498
Hermitian reflection, 511
Hermitian space, 489

definition, 492
Hermitian product, 492

Hilbert matrix, 324
Hilbert space, 422, 501
Hilbert’s Nullstellensatz, 381

Hilbert-Schmidt norm, see Frobenius
norm

homogenous system, 256
nontrivial solution, 256

Householder matrices, 444, 465
definition, 469

Householder matrix, 512
hyperplane, 48, 422, 501
hyperplane symmetry

definition, 466

ideal, 381, 760
null, 761
principal, 761
radical, 381
zero, 761

idempotent function, 137
identity matrix, 13, 52
image

linear map, 56
image Im f of f , 703
image compression, 736
implicit Q theorem, 648, 659
improper

isometry, 440, 509
orthogonal transformation, 440
unitary transformation, 509

incidence matrix, 661, 666, 668
boundary map, 666
coboundary map, 666
weighted graph, 675

inner product, 12, 56, 407
definition, 408
Euclidean, 297
Gram matrix, 411
Hermitian, 296
weight function, 434

invariant subspace, 766
inverse map, 61
inverse matrix, 52
isometry, 426
isomorphism, 61
isotropic

vector, 422

Jacobi polynomials, 434
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Jacobian matrix, 423
Jordan, 705
Jordan block, 787
Jordan blocks, 759
Jordan decomposition, 781
Jordan form, 759, 787
Jordan matrix, 787

Kernel
linear map, 56

Kronecker product, 112
Kronecker symbol, 65
Krylov subspace, 650
Ky Fan k-norm, 716
Ky Fan p-k-norm, 716

Laguerre polynomials, 434
Lanczos iteration, 654

Rayleigh–Ritz method, 655
Laplacian

connection to energy function, 690
Fiedler number, 677
normalized Lrw, 678
normalized Lsym, 678
unnormalized, 673
unnormalized weighted graph, 674

lasso, 15
least squares, 715, 721

method, 450
problems, 447
recursive, 728
weighted, 728

least squares solution x

+, 723
least-squares

error, 326
least-squares problem

generalized minimal residuals, 653
GMRES method, 653, 654
residual, 653

Legen¿dre, 450
Legendre, 721

polynomials, 432
length of a line segment, 407
Lie algebra, 580
Lie bracket, 580
line, 48

linear combination, 8, 35
linear equation, 64
linear form, 63, 371
linear isometry, 407, 426, 435, 506

definition, 435
linear map, 55

automorphism, 63
bounded, 307, 313
continuous, 313
determinant, 185
endomorphism, 63
idempotent, 516
identity map, 55
image, 56
invariant subspace, 134
inverse, 61
involution, 516
isomorphism, 61
Jordan form, 787
matrix representation, 80
nilpotent, 758, 779
nullity, 140
projection, 516
rank, 57
retraction, 143
section, 143
transpose, 391

linear subspace, 38
linear system

condition, 318
ill-conditioned, 318

linear transformation, 11
linearly dependent, 10, 35
linearly independent, 8, 35
liner map

Kernel, 56
Lorentz form, 422

magic square, 267
magic sum, 267
normal, 267

matrix, 9, 50
adjoint, 301, 612
analysis, 449
bidiagonal, 715
block diagonal, 135, 600
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change of basis, 89
conjugate, 301, 611
determinant, 170, 172
diagonal, 533
Hermitian, 301, 612
identity, 13, 52
inverse, 14, 52
invertible, 14
Jordan, 787
minor, 171, 179
nonsingular, 14, 53
normal, 301, 612
orthogonal, 14, 302, 609
permanent, 191
product, 51
pseudo-inverse, 15
rank, 144
rank normal form, 269
reduced row echelon, 250, 253
similar, 93
singular, 14, 53
skew-Hermitian, 612
skew-symmetric, 609
square, 50
strictly column diagonally

dominant, 235
strictly row diagonally dominant,

236
sum, 50
symmetric, 135, 301, 609
trace, 65, 536
transpose, 301
tridiagonal, 236, 715
unit lower-triangular, 214
unitary, 302, 612
upper triangular, 443, 534, 542

matrix addition, 50
matrix completion, 524

Netflix competition, 524
matrix exponential, 331

eigenvalue, 554
eigenvector, 554
skew symmetric matrix, 333, 555
surjectivity exp: su(2) ! SU(2),

581

surjectivity exp: so(3) ! SO(3),
442

matrix multiplication, 51
matrix norm, 301, 735

Frobenius, 305
spectral, 312
submultiplicativity, 301

matrix norms, 19
matrix of the iterative method, 344

error vector, 344
Gauss–Seidel method, 351

Gauss–Seidel matrix, 351
Jacobi’s method, 348

Jacobi’s matrix, 348
relaxation method, 352

matrix of relaxation, 352
Ostrowski-Reich theorem, 356
parameter of relaxation, 353
successive overrelaxation, 353

maximal linearly independent family,
43

mean, 737
metric map, 435
metric notions, 407
minimal generating family, 43
minimal polynomial, 757, 764
minimizing kAx� bk2, 723
Minkowski inequality, 412, 496
Minkowski’s inequality, 297
Minkowski’s lemma, 525
minor, 171, 179

cofactor, 172
modified Gram–Schmidt method, 430
module, 53

free, 53
modulus

complex number, 289
monoid, 21
Moore–Penrose pseudo-inverse, 726
motion

planning, 449
mulitset, 29
multilinear form, 167
multilinear map, 166, 167

symmetric, 167
multiresolution signal analysis, 113
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nilpotent, 758
linear map, 779

nodes, see vertex
nondegenerate

symmetric bilinear form, 422
norm, 289, 409, 411, 414, 432, 498

1-norm, 290
`

2-norm, 12
`

p-norm, 290
dual, 519, 520
equivalent, 299
Euclidean, 12, 290
Frobenius, 410
matrix, 301
nuclear, 523
parallelogram law, 414
quadratic norm, 300
subordinate, 307, 308
sup-norm, 290
triangle inequality, 289

normal
matrix, 732

normal equations, 450, 723
definition, 723

normal linear map, 426, 591, 599, 602
definition, 592

normal matrix, 301
normalized cuts, 682
normalized Haar coe�cients, 117
normalized Haar transform matrix,

117
normed vector space, 289, 498

1-norm, 290
`

p-norm, 290
complete, 328
Euclidean norm, 290
norm, 289
sup-norm, 290
triangle inequality, 289

nuclear norm, 523
matrix completion, 524

nullity, 140
nullspace, see Kernel

operator norm, see subordinate norm
L(E;F ), 313

seesubordinate norm, 307
optimization problems, 721
orthogonal, 725

basis, 440
complement, 417, 597
family, 417
linear map, 592, 606
reflection, 466
spaces, 434
symmetry, 466
transformation

definition, 435
vectors, 417, 499

orthogonal group, 438
definition, 440

orthogonal matrix, 14, 302, 440
definition, 439

orthogonal projection, 730
orthogonal vectors, 12
orthogonal versus orthonormal, 440
orthogonality, 407, 417

and linear independence, 418
orthonormal

basis, 438, 504
family, 417

orthonormal basis
existence, 427
existence, second proof, 428

overdetermined linear system, 721

pairing
bilinear, 388
nondegenerate, 388

parallelepiped, 175
parallelogram, 175
parallelogram law, 414, 499
parallelotope, 175
partial sums, 420
Pauli spin matrices, 571
PCA, 737, 742, 744
permanent, 191
permutation, 21
permutation matrix, 286
permutation metrix, 220
permutation on n elements, 161

Cauchy two-line notation, 162
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inversion, 165
one-line notation, 162
sign, 165
signature, 165
symmetric group, 162
transposition, 162

basic, 163
perpendicular

vectors, 417
piecewise linear function, 107
plane, 48
Poincaré separation theorem, 617
polar decomposition, 449

of A, 708
polar form, 701

definition, 708
of a quadratic form, 410

polynomial
degree, 759
greatest common divisor, 761, 763
indecomposable, 763
irreducible, 763
monic, 759
prime, 763
relatively prime, 761, 763

positive
self-adjoint linear map, 702

positive definite
bilinear form, 408
self-adjoint linear map, 702

positive definite matrix, 239
positive semidefinite

self-adjoint linear map, 702
pre-Hilbert space, 492

Hermitian product, 492
pre-norm, 521
Primary Decomposition Theorem,

773, 778
principal axes, 715
principal components, 737
principal components analysis, 737
principal directions, 20, 742, 746
principal ideal, 761

generator, 761
projection

linear, 465

projection map, 131, 465
proper

isometry, 440
orthogonal transformations, 440
unitary transformations, 509

proper subspace, see eigenspace
proper value, see eigenvalue
proper vector, see eigenvector
pseudo-inverse, 15, 450, 715

definition, 725
Penrose properties, 734

quadratic form, 491
associated with ', 408

quaternions, 568
conjugate, 569
Hamilton’s identities, 568
interpolation formula, 584
multiplication of, 568
pure quaternions, 570
scalar part, 569
unit, 510
vector part, 569

rank
linear map, 57
matrix, 144, 396
of a linear map, 703

rank normal form, 269
Rank-nullity theorem, 138
ratio, 407
Rayleigh ratio, 613
Rayleigh–Ritz

ratio, 744
theorem, 744

Rayleigh–Ritz theorem, 613, 614
real eigenvalues, 425, 449
real vector space, 25
reduced QR factorization, 650
reduced row echelon form, see rref
reduced row echelon matrix, 250, 253
reflection, 407

with respect to F and parallel to
G, 465

reflection about F
definition, 466
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replacement lemma, 44, 46
ridge regression, 15
Riesz representation theorem, 422
rigid motion, 407, 435
ring, 24
Rodrigues, 569
Rodrigues’ formula, 441, 579
rotation, 407

definition, 440
row vector, 8, 50, 375
rref, see reduced row echelon matrix

augmented matrix, 251
pivot, 253

sample, 737
covariance, 738
covariance matrix, 739
mean, 737
variance, 738

scalar product
definition, 408

Schatten p-norm, 716
Schmidt, 705
Schur complement, 243
Schur norm, see Frobenius norm
Schur’s lemma, 544
SDR, see system of distinct

representatives
self-adjoint linear map, 592, 603, 605

definition, 425
semilinear map, 490
seminorm, 290, 499
sequence, 28

normed vector space, 328
convergent, 328, 341

series
absolutely convergent

rearrangement property, 330
normed vector space, 329

absolutely convergent, 329
convergent, 329
rearrangement, 330

sesquilinear form
definition, 490

signal compression, 103
compressed signal, 104

reconstruction, 104
signed volume, 175
similar matrix, 93
simple graph, 664, 667
singular decomposition, 15

pseudo-inverse, 15
singular value decomposition, 321,

449, 701, 714
case of a rectangular matrix, 712
definition, 707
singular value, 321
square matrices, 708
square matrix, 705

singular values, 15
Weyl’s inequalities, 711

singular values of f , 702
skew field, 569
skew-self-adjoint linear map, 592
skew-symmetric matrix, 135
SOR, see successive overrelaxation
spanning set, 41
special linear group, 22, 185, 440
special orthogonal group, 22

definition, 440
special unitary group

definition, 509
spectral graph theory, 677
spectral norm, 312

dual, 523
spectral radius, 303
spectral theorem, 597
spectrum, 303

spectral radius, 303
spline

Bézier spline, 203
spline curves, 42
splines, 201
square matrix, 50
SRHT, see subsampled randomized

Hadamard transform
subordinate matrix norm, 307, 308
subordinate norm, 519
subsampled randomized Hadamard

transform, 126
subspace, see linear subspace

k-plane, 48
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finitely generated, 41
generators, 41
hyperplane, 48
invariant, 766
line, 48
plane, 48
spanning set, 41

sum of vector spaces, 132
SVD, see singular decomposition, see

singular value decomposition, 449,
705, 714, 744, 750

Sylvester, 705
Sylvester’s criterion, 242, 247
Sylvester–Hadamard matrix, 125

Walsh function, 126
symmetric bilinear form, 408
symmetric group, 162
symmetric matrix, 135, 425, 449

positive definite, 239
symmetric multilinear map, 167
symmetry

with respect to F and parallel to
G, 465

with respect to the origin, 467
system of distinct representatives, 193

tensor product of matrices, see
Kronecker product

total derivative, 64, 422
Jacobian matrix, 423

trace, 65, 302, 536
trace norm, see nuclear norm
translation, 145

translation vector, 145
transporter, see conductor
transpose map, 391
transpose of a matrix, 14, 52, 438,

507, 609, 611
transposition, 162

basic, 163
transposition matrix, 211
transvection of hyperplane, 272

direction, 272
triangle inequality, 289, 414

Minkowski’s inequality, 297
triangularized matrix, 534

tridiagonal matrix, 236

uncorrelated, 738
undirected graph, 666
unit quaternions, 568
unitary

group, 507
map, 602
matrix, 507

unitary group
definition, 509

unitary matrix, 302
definition, 509

unitary space
definition, 492

unitary transformation, 506
definition, 506

unreduced Hessenberg matrix, 640
upper triangular matrix, 534

Vandermonde determinant, 177
variance, 738
vector space

basis, 41
component, 49
coordinate, 49

complex, 26
complexification, 594
dimension, 44, 48
direct product, 131
direct sum, 132
field of scalars, 26
infinite dimension, 48
norm, 289
real, 25
scalar multiplication, 25
sum, 132
vector addition, 25
vectors, 25

vertex
adjacent, 668

vertex of a graph, 664, 666
degree, 665

Voronoi diagram, 449

walk, see directed graph path, see
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graph path
Walsh function, 126
wavelets

Haar, 103
weight matrix

isolated vertex, 677
weighted graph, 661, 671

adjacent vertex, 672

degree of vertex, 672
edge, 671
underlying graph, 671
weight matrix, 671

Weyl, 705
Weyl’s inequalities, 711

zero vector, 8
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