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Preface

In recent years, computer vision, robotics, machine learning, and data sci-
ence have been some of the key areas that have contributed to major ad-
vances in technology. Anyone who looks at papers or books in the above ar-
eas will be baffled by a strange jargon involving exotic terms such as kernel
PCA, ridge regression, lasso regression, support vector machines (SVM),
Lagrange multipliers, KKT conditions, etc. Do support vector machines
chase cattle to catch them with some kind of super lasso? No! But one
will quickly discover that behind the jargon which always comes with a new
field (perhaps to keep the outsiders out of the club), lies a lot of “classical”
linear algebra and techniques from optimization theory. And there comes
the main challenge: in order to understand and use tools from machine
learning, computer vision, and so on, one needs to have a firm background
in linear algebra and optimization theory. To be honest, some probablity
theory and statistics should also be included, but we already have enough
to contend with.

Many books on machine learning struggle with the above problem. How
can one understand what are the dual variables of a ridge regression problem
if one doesn’t know about the Lagrangian duality framework? Similarly,
how is it possible to discuss the dual formulation of SVM without a firm
understanding of the Lagrangian framework?

The easy way out is to sweep these difficulties under the rug. If one
is just a consumer of the techniques we mentioned above, the cookbook
recipe approach is probably adequate. But this approach doesn’t work
for someone who really wants to do serious research and make significant
contributions. To do so, we believe that one must have a solid background
in linear algebra and optimization theory.

This is a problem because it means investing a great deal of time and
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energy studying these fields, but we believe that perseverance will be amply
rewarded.

Our main goal is to present fundamentals of linear algebra and optimiza-
tion theory, keeping in mind applications to machine learning, robotics, and
computer vision. This work consists of two volumes, the first one being lin-
ear algebra, the second one optimization theory and applications, especially
to machine learning.

This first volume covers “classical” linear algebra, up to and including
the primary decomposition and the Jordan form. Besides covering the
standard topics, we discuss a few topics that are important for applications.
These include:

(1) Haar bases and the corresponding Haar wavelets.

(2) Hadamard matrices.

(3) Affine maps (see Section 5.4).

(4) Norms and matrix norms (Chapter 8).

(5) Convergence of sequences and series in a normed vector space. The

matrix exponential e and its basic properties (see Section 8.8).

(6) The group of unit quaternions, SU(2), and the representation of rota-
tions in SO(3) by unit quaternions (Chapter 15).

(7) An introduction to algebraic and spectral graph theory.

(8) Applications of SVD and pseudo-inverses, in particular, principal com-
ponent analysis, for short PCA (Chapter 21).

(9) Methods for computing eigenvalues and eigenvectors, with a main focus

on the QR algorithm (Chapter 17).

Four topics are covered in more detail than usual. These are

(1) Duality (Chapter 10).

(2) Dual norms (Section 13.7).

(3) The geometry of the orthogonal groups O(n) and SO(n), and of the
unitary groups U(n) and SU(n).

(4) The spectral theorems (Chapter 16).

Except for a few exceptions we provide complete proofs. We did so
to make this book self-contained, but also because we believe that no
deep knowledge of this material can be acquired without working out some
proofs. However, our advice is to skip some of the proofs upon first reading,
especially if they are long and intricate.

The chapters or sections marked with the symbol ® contain material
that is typically more specialized or more advanced, and they can be omit-
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ted upon first (or second) reading.
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Chapter 1

Introduction

As we explained in the preface, this first volume covers “classical” linear

algebra, up to and including the primary decomposition and the Jordan

form. Besides covering the standard topics, we discuss a few topics that

are important for applications. These include:

(1)
(2)
3)

Haar bases and the corresponding Haar wavelets, a fundamental tool
in signal processing and computer graphics.

Hadamard matrices which have applications in error correcting codes,
signal processing, and low rank approximation.

Affine maps (see Section 5.4). These are usually ignored or treated in a
somewhat obscure fashion. Yet they play an important role in computer
vision and robotics. There is a clean and elegant way to define affine
maps. One simply has to define affine combinations. Linear maps
preserve linear combinations, and similarly affine maps preserve affine
combinations.

Norms and matrix norms (Chapter 8). These are used extensively in
optimization theory.

Convergence of sequences and series in a normed vector space. Ba-
nach spaces (see Section 8.7). The matrix exponential e and its basic
properties (see Section 8.8). In particular, we prove the Rodrigues
formula for rotations in SO(3) and discuss the surjectivity of the expo-
nential map exp: s0(3) — SO(3), where s0(3) is the real vector space
of 3 x 3 skew symmetric matrices (see Section 11.7). We also show that
det(e?) = "4 (see Section 14.5).

The group of unit quaternions, SU(2), and the representation of rota-
tions in SO(3) by unit quaternions (Chapter 15). We define a homo-
morphism 7: SU(2) — SO(3) and prove that it is surjective and that
its kernel is {—1,I}. We compute the rotation matrix R, associated
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with a unit quaternion ¢, and give an algorithm to construct a quater-
nion from a rotation matrix. We also show that the exponential map
exp: su(2) — SU(2) is surjective, where su(2) is the real vector space of
skew-Hermitian 2 x 2 matrices with zero trace. We discuss quaternion
interpolation and prove the famous slerp interpolation formula due to
Ken Shoemake.

An introduction to algebraic and spectral graph theory. We define the
graph Laplacian and prove some of its basic properties (see Chapter 18).
In Chapter 19, we explain how the eigenvectors of the graph Laplacian
can be used for graph drawing.

Applications of SVD and pseudo-inverses, in particular, principal com-
ponent analysis, for short PCA (Chapter 21).

Methods for computing eigenvalues and eigenvectors are discussed in
Chapter 17. We first focus on the QR algorithm due to Rutishauser,
Francis, and Kublanovskaya. See Sections 17.1 and 17.3. We then
discuss how to use an Arnoldi iteration, in combination with the QR
algorithm, to approximate eigenvalues for a matrix A of large dimen-
sion. See Section 17.4. The special case where A is a symmetric (or
Hermitian) tridiagonal matrix, involves a Lanczos iteration, and is dis-
cussed in Section 17.6. In Section 17.7, we present power iterations and
inverse (power) iterations.

Five topics are covered in more detail than usual. These are

Matrix factorizations such as LU, PA = LU, Cholesky, and reduced
row echelon form (rref). Deciding the solvablity of a linear system
Ax = b, and describing the space of solutions when a solution exists.
See Chapter 7.

Duality (Chapter 10).

Dual norms (Section 13.7).

The geometry of the orthogonal groups O(n) and SO(n), and of the
unitary groups U(n) and SU(n).

The spectral theorems (Chapter 16).

Most texts omit the proof that the PA = LU factorization can be

obtained by a simple modification of Gaussian elimination. We give a
complete proof of Theorem 7.2 in Section 7.6. We also prove the uniqueness
of the rref of a matrix; see Proposition 7.13.

ity

At the most basic level, duality corresponds to transposition. But dual-
is really the bijection between subspaces of a vector space E (say finite-
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dimensional) and subspaces of linear forms (subspaces of the dual space
E*) established by two maps: the first map assigns to a subspace V of F
the subspace V? of linear forms that vanish on V; the second map assigns
to a subspace U of linear forms the subspace U° consisting of the vectors
in F on which all linear forms in U vanish. The above maps define a bijec-
tion such that dim(V) 4+ dim(V?) = dim(E), dim(U) + dim(U°) = dim(E),
V0 =V and U =U.

Another important fact is that if E is a finite-dimensional space with
an inner product u,v — (u,v) (or a Hermitian inner product if E is a
complex vector space), then there is a canonical isomorphism between F
and its dual E*. This means that every linear form f € E* is uniquely
represented by some vector v € E, in the sense that f(v) = (v,u) for all
v € E. As a consequence, every linear map f has an adjoint f* such that
(f(u), vy = (u, f*(v)) for all u,v € E.

Dual norms show up in convex optimization; see Boyd and Vanden-
berghe [Boyd and Vandenberghe (2004)].

Because of their importance in robotics and computer vision, we discuss
in some detail the groups of isometries O(E) and SO(FE) of a vector space
with an inner product. The isometries in O(F) are the linear maps such
that fo f* = f* o f =id, and the direct isometries in SO(E), also called
rotations, are the isometries in O(FE) whose determinant is equal to +1.
We also discuss the hermitian counterparts U(E) and SU(E).

We prove the spectral theorems not only for real symmetric matrices,
but also for real and complex normal matrices.

We stress the importance of linear maps. Matrices are of course invalu-
able for computing and one needs to develop skills for manipulating them.
But matrices are used to represent a linear map over a basis (or two bases),
and the same linear map has different matrix representations. In fact, we
can view the various normal forms of a matrix (Schur, SVD, Jordan) as a
suitably convenient choice of bases.

We have listed most of the Matlab functions relevant to numerical lin-
ear algebra and have included Matlab programs implementing most of the
algorithms discussed in this book.
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Chapter 2

Vector Spaces, Bases, Linear Maps

2.1 Motivations: Linear Combinations, Linear Indepen-
dence and Rank

In linear optimization problems, we often encounter systems of linear equa-
tions. For example, consider the problem of solving the following system of
three linear equations in the three variables z,zs,x3 € R:

.’E1+2£L'2—(L'3:1
221 + 22 + 23 =2
T, — 229 — 223 = 3.

3

One way to approach this problem is introduce the “vectors” wu,v,w,

and b, given by

1 2 -1 1
u= |2 v=| 1 w= |1 b=12
1 -2 -2 3

and to write our linear system as
T1U + T2v + z3w = b.

In the above equation, we used implicitly the fact that a vector z can be
multiplied by a scalar A € R, where

Z1 /\2’1
X=Xz =[],
Z3 )\2’3

and two vectors y and and z can be added, where

Y1 21 Y1+ 21
yt+z=y2| + 22 = | y2+ 22
Y3 z3 Y3 + 23

ws-book-1-9x6
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Also, given a vector
T
Tr = T 1,
T3
we define the additive inverse —zx of x (pronounced minus x) as
—11
—X = —X2
—23
Observe that —x = (—1)x, the scalar multiplication of z by —1.

The set of all vectors with three components is denoted by R3*!. The
reason for using the notation R3*! rather than the more conventional no-
tation R? is that the elements of R3*! are column vectors; they consist of
three rows and a single column, which explains the superscript 3 x 1. On
the other hand, R3 = R xR xR consists of all triples of the form (z1, 22, 23),
with x1,z9, 23 € R, and these are row vectors. However, there is an ob-
vious bijection between R3*! and R? and they are usually identified. For
the sake of clarity, in this introduction, we will denote the set of column
vectors with n components by R?*1.

An expression such as

T1U + T2 + x3W

where u,v,w are vectors and the z;s are scalars (in R) is called a linear
combination. Using this notion, the problem of solving our linear system

T1U + T2V + T3w = b.

is equivalent to determining whether b can be expressed as a linear combi-
nation of u,v,w.

Now if the vectors u,v,w are linearly independent, which means that
there is no triple (z1, z2,x3) # (0,0,0) such that

T1u + xov + x3w = O3,

it can be shown that every vector in R3*! can be written as a linear com-
bination of u, v, w. Here, 03 is the zero vector

0
03=10
0
It is customary to abuse notation and to write 0 instead of 03. This rarely
causes a problem because in most cases, whether 0 denotes the scalar zero
or the zero vector can be inferred from the context.
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2.1. Motivations: Linear Combinations, Linear Independence, Rank 9

V V “ W . . . .
In fact, every vector z € R3*! can be written in a unique way as a linear
combination

2 = 21U + T2V + T3W.

This is because if

Z = T1U + ToU + T3W = Y1U + Y2U + Y3w,
then by using our (linear!) operations on vectors, we get

(y1 —z)u+ (y2 — x2)v + (y3 — 23)w = 0,
which implies that

Yr— 21 =Yz — 22 =Yz —x3 =0,
by linear independence. Thus,
Y1 =721, Y2 =7T2, Y3=12T3,

which shows that z has a unique expression as a linear combination, as
claimed. Then our equation

U+ Tov + x3w = b

has a unique solution, and indeed, we can check that

T = 1.4
T = —0.4
Ir3 = —0.4

is the solution.

But then, how do we determine that some vectors are linearly indepen-
dent?

One answer is to compute a numerical quantity det(u, v, w), called the
determinant of (u,v,w), and to check that it is nonzero. In our case, it
turns out that

12 -1
det(u,v,w) =12 1 1 |=15,
1-2-2

which confirms that u, v, w are linearly independent.

Other methods, which are much better for systems with a large num-
ber of variables, consist of computing an LU-decomposition or a QR-
decomposition, or an SVD of the matriz consisting of the three columns
U, U, W,

1 2 -1
A= (u v w) =121 1
1-2-2
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If we form the vector of unknowns
Z1
xr = To s
T3

then our linear combination xiu+ x2v + x3w can be written in matrix form

as
12 -1 x1
Tiut+xovt+axsw= |21 1 z2 |,
1-2-2 T3
so our linear system is expressed by
12 -1 1 1
21 1 x| =121,
1-2-2 T3 3
or more concisely as
Ax =b.

Now what if the vectors u,v,w are linearly dependent? For example, if
we consider the vectors

1 2 -1
u = 2 v = 1 w = 1 )
1 -1 2
we see that
u—v=w,

a nontrivial linear dependence. It can be verified that v and v are still
linearly independent. Now for our problem

iU+ Tov + x3W = b

it must be the case that b can be expressed as linear combination of v and
v. However, it turns out that w,v,b are linearly independent (one way to
see this is to compute the determinant det(u,v,b) = —6), so b cannot be
expressed as a linear combination of u and v and thus, our system has no
solution.

If we change the vector b to
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then
b=u+wv,
and so the system
U+ XU + 3w =D
has the solution
1’1:1, SCQZL I3:O.
Actually, since w = u — v, the above system is equivalent to
(1 + z3)u + (T2 — 23)v = b,
and because v and v are linearly independent, the unique solution in x1 +x3
and r9 — x3 is
T +x3=1
T2 — T3 = 17
which yields an infinite number of solutions parameterized by x3, namely
T = 1-— I3
To = 1 —+ xIs.

In summary, a 3 x 3 linear system may have a unique solution, no
solution, or an infinite number of solutions, depending on the linear inde-
pendence (and dependence) or the vectors u, v, w,b. This situation can be
generalized to any n X n system, and even to any n X m system (n equations
in m variables), as we will see later.

The point of view where our linear system is expressed in matrix form

as Ax = b stresses the fact that the map x — Az is a linear transformation.
This means that

A(Ax) = A\(Ax)
for all z € R**! and all A € R and that
A(u+v) = Au + Av,

for all u,v € R®*!. We can view the matrix A as a way of expressing a
linear map from R3*! to R3*! and solving the system Az = b amounts to
determining whether b belongs to the image of this linear map.
Given a 3 X 3 matrix
ail @12 a3
A= | a2 ax a3 |,
a1 as2 ass
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whose columns are three vectors denoted A', A2, A3, and given any vector
x = (1,22, 23), we defined the product Az as the linear combination

a1121 + a12%2 + a13T3

1 2 3
Ax = .TlA + JTQA + l‘3A = (211 + ag2x9 + a93x3
a31T1 + aze2T2 + a33T3

The common pattern is that the ith coordinate of Ax is given by a certain
kind of product called an inner product, of a row vector, the ith row of A,
times the column vector x:

T
(ai1 aiz aiz) - | 22 | = ainz1 + anws + aisws.
T3
More generally, given any two vectors z = (z1,...,2z,) and y =

(Y1,-.-,Yn) € R™, their inner product denoted x -y, or (z,y), is the number

Y1

Y2 n
zoy= (v 22 @) : =Z$iyi.

: i=1

Yn

Inner products play a very important role. First, the quantity
lzll, = V&~ z = (@ + - +2})"/?

is a generalization of the length of a vector, called the Fuclidean norm, or
?-norm. Second, it can be shown that we have the inequality

|z -yl < =l 9]l

so if z,y # 0, the ratio (z - y)/(||z||||y|]) can be viewed as the cosine of
an angle, the angle between = and y. In particular, if x -y = 0 then the
vectors x and y make the angle /2, that is, they are orthogonal. The
(square) matrices @ that preserve the inner product, in the sense that
(Qx,Qy) = (x,y) for all z,y € R™, also play a very important role. They
can be thought of as generalized rotations.

Returning to matrices, if A is an m X n matrix consisting of n columns
Al .. A" (in R™), and B is a n x p matrix consisting of p columns
Bl,...,BP (in R") we can form the p vectors (in R™)

AB',... ABP.
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These p vectors constitute the m x p matrix denoted AB, whose jth column
is ABJ. But we know that the ith coordinate of AB7 is the inner product
of the ith row of A by the jth column of B,

b]j
b2j n
(ail Q2 - ain) : . = E @ik -
: k=1
bnj

Thus we have defined a multiplication operation on matrices, namely if
A = (a;;) is a m x n matrix and if B = (bjz) if n x p matrix, then their
product AB is the m x n matrix whose entry on the ith row and the jth
column is given by the inner product of the ith row of A by the jth column
of B,

(AB)” = Z aikbkj.
k=1

Beware that unlike the multiplication of real (or complex) numbers, if A
and B are two n X n matrices, in general, AB # BA.
Suppose that A is an n x n matrix and that we are trying to solve the
linear system
Az =0,
with b € R™. Suppose we can find an n X n matrix B such that
BA'=¢;, i=1,...,n,

with e; = (0,...,0,1,0...,0), where the only nonzero entry is 1 in the ith
slot. If we form the n x n matrix

100---00
010---00
001---00
In: .. 5
000---10
000---01

called the identity matriz, whose ith column is e;, then the above is equiv-
alent to

BA=1,.
If Az = b, then multiplying both sides on the left by B, we get
B(Az) = Bb.
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But is is easy to see that B(Az) = (BA)x = I,x = x, so we must have
x = Bb.

We can verify that £ = Bb is indeed a solution, because it can be shown
that

A(Bb) = (AB)b = I,b = b.

What is not obvious is that BA = I,, implies AB = I,,, but this is indeed
provable. The matrix B is usually denoted A=! and called the inverse of
A. It can be shown that it is the unique matrix such that

AAT Y =A"TA=1T,.

If a square matrix A has an inverse, then we say that it is invertible or
nonsingular, otherwise we say that it is singular. We will show later that
a square matrix is invertible iff its columns are linearly independent iff its
determinant is nonzero.

In summary, if A is a square invertible matrix, then the linear system
Axz = b has the unique solution x = A~'b. In practice, this is not a good
way to solve a linear system because computing A~! is too expensive. A
practical method for solving a linear system is Gaussian elimination, dis-
cussed in Chapter 7. Other practical methods for solving a linear system
Az = b make use of a factorization of A (QR decomposition, SVD decom-
position), using orthogonal matrices defined next.

Given an m x n matrix A = (ag), the n x m matrix AT = (a;) whose

ith row is the ith column of A, which means that aiTj =a; fori=1,...,n
and j = 1,...,m, is called the transpose of A. An n x n matrix @ such
that

QRT=Q'Q=1,

is called an orthogonal matriz. Equivalently, the inverse Q' of an orthog-
onal matrix Q is equal to its transpose Q. Orthogonal matrices play an
important role. Geometrically, they correspond to linear transformation
that preserve length. A major result of linear algebra states that every
m X n matrix A can be written as

A=VXUT,

where V' is an m xm orthogonal matrix, U is an n xn orthogonal matrix, and
> is an m X n matrix whose only nonzero entries are nonnegative diagonal
entries o1 > g9 > -+ > 0y, where p = min(m, n), called the singular values

ws-book-1-9x6
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of A. The factorization A = VXU is called a singular decomposition of
A, or SVD.

The SVD can be used to “solve” a linear system Az = b where A is an
m X n matrix, even when this system has no solution. This may happen
when there are more equations than variables (m > n) , in which case the
system is overdetermined.

Of course, there is no miracle, an unsolvable system has no solution.
But we can look for a good approximate solution, namely a vector x that
minimizes some measure of the error Ax — b. Legendre and Gauss used
||Az — b||§, which is the squared Euclidean norm of the error. This quan-
tity is differentiable, and it turns out that there is a unique vector ™ of
minimum Euclidean norm that minimizes ||Ax — b||§ Furthermore, % is
given by the expression T = ATbh, where AT is the pseudo-inverse of
A, and A" can be computed from an SVD A = VXU of A. Indeed,
AT = US*VT, where 7 is the matrix obtained from ¥ by replacing every
positive singular value o; by its inverse ;" 1 leaving all zero entries intact,
and transposing.

Instead of searching for the vector of least Euclidean norm minimizing
||Az — b||§, we can add the penalty term K Hx||§ (for some positive K > 0)
to ||Az — b||3 and minimize the quantity || Az — b||§+K Hm||§ This approach
is called ridge regression. It turns out that there is a unique minimizer x™
given by 7 = (ATA+ KI,,) ' ATb, as shown in the second volume.

Another approach is to replace the penalty term K ||:CH§ by K |z||,,
where |z||, = |z1| + - + |z, (the f*-norm of z). The remarkable fact
is that the minimizers  of ||Az — b||> + K ||z[|, tend to be sparse, which
means that many components of = are equal to zero. This approach known
as lasso is popular in machine learning and will be discussed in the second
volume.

Another important application of the SVD is principal component anal-
ysis (or PCA), an important tool in data analysis.

Yet another fruitful way of interpreting the resolution of the system
Az = b is to view this problem as an intersection problem. Indeed, each of
the equations

T, 4+ 2x9 —x3 =1
201 + a9 +x3 = 2
T — 2x9 — 223 =3
defines a subset of R? which is actually a plane. The first equation

$1+2(E2—$3:1
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defines the plane H; passing through the three points (1,0,0), (0,1/2,0),
(0,0, —1), on the coordinate axes, the second equation

201 +x9 +x3 =2

defines the plane Hs passing through the three points (1,0,0), (0,2,0),
(0,0,2), on the coordinate axes, and the third equation

$1—2$2—2IL‘3=3

defines the plane Hj passing through the three points (3,0, 0), (0,—3/2,0),
(0,0,—3/2), on the coordinate axes. See Figure 2.1.

2%+ 2% = 1

X2X,2%= 3

Fig. 2.1 The planes defined by the preceding linear equations.

The intersection H; N H; of any two distinct planes H; and Hj is a line,
and the intersection Hy N Hy N H3 of the three planes consists of the single
point (1.4,—0.4, —0.4), as illustrated in Figure 2.2.

The planes corresponding to the system

ZL‘1+2I2—IE3:1
201+ a0 + 13 =2
$1—1’2+21’3:3,

are illustrated in Figure 2.3. This system has no solution since there is no
point simultaneously contained in all three planes; see Figure 2.4.
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. 4J%‘;\'\'\

¥

Fig. 2.2 The solution of the system is the point in common with each of the three
planes.

2+ 2% X= 1 3&
20

—Aj
o] xx=3

Fig. 2.3 The planes defined by the equations 1 + 2z9 — z3 = 1, 221 + z2 + z3 = 2,
and x1 — x2 + 2x3 = 3.

Finally, the planes corresponding to the system

T+ 209 —x3 =3
201 + 29 +x3 =3

x1 —x2 + 223 =0,
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Fig. 2.4 The linear system z1 + 222 —x3 =1, 221 + 22 + 23 = 2, 1 — 22 + 223 = 3
has no solution.

are illustrated in Figure 2.5.

XXt 2620 7%]

2+ xFx=3

Fig. 2.5 The planes defined by the equations z1 + 2x2 — 3 = 3, 221 + 22 + 3 = 3,
and 1 — x2 + 2x3 = 0.

This system has infinitely many solutions, given parametrically by (1 —
x3, 1+ z3,23). Geometrically, this is a line common to all three planes; see
Figure 2.6.

Under the above interpretation, observe that we are focusing on the
rows of the matrix A, rather than on its columns, as in the previous inter-
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Fig. 2.6 The linear system z1 + 222 —x3 = 3, 221 + 22 + 23 = 3, x1 — 22 + 223 =0
has the red line common to all three planes.

pretations.

Another great example of a real-world problem where linear algebra
proves to be very effective is the problem of data compression, that is, of
representing a very large data set using a much smaller amount of storage.

Typically the data set is represented as an m x n matrix A where each
row corresponds to an n-dimensional data point and typically, m > n. In
most applications, the data are not independent so the rank of A is a lot
smaller than min{m,n}, and the the goal of low-rank decomposition is to
factor A as the product of two matrices B and C, where B is a m X k
matrix and C is a k x n matrix, with & < min{m,n} (here, < means
“much smaller than”):

mXmn m X k kxn

Now it is generally too costly to find an exact factorization as above,
so we look for a low-rank matrix A’ which is a “good” approzimation of
A. In order to make this statement precise, we need to define a mechanism
to determine how close two matrices are. This can be done using matriz
norms, a notion discussed in Chapter 8. The norm of a matrix A is a
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nonnegative real number ||A|| which behaves a lot like the absolute value
|z| of a real number x. Then our goal is to find some low-rank matrix A’
that minimizes the norm
jA - A7,
over all matrices A’ of rank at most k, for some given k < min{m,n}.
Some advantages of a low-rank approximation are:

(1) Fewer elements are required to represent A; namely, k(m+n) instead of
mn. Thus less storage and fewer operations are needed to reconstruct
A.

(2) Often, the process for obtaining the decomposition exposes the under-
lying structure of the data. Thus, it may turn out that “most” of the
significant data are concentrated along some directions called principal
directions.

Low-rank decompositions of a set of data have a multitude of applica-
tions in engineering, including computer science (especially computer vi-
sion), statistics, and machine learning. As we will see later in Chapter
21, the singular value decomposition (SVD) provides a very satisfactory
solution to the low-rank approximation problem. Still, in many cases, the
data sets are so large that another ingredient is needed: randomization.
However, as a first step, linear algebra often yields a good initial solution.

We will now be more precise as to what kinds of operations are allowed
on vectors. In the early 1900, the notion of a vector space emerged as a
convenient and unifying framework for working with “linear” objects and
we will discuss this notion in the next few sections.

2.2  Vector Spaces

A (real) vector space is a set E together with two operations, +: E x
F — FEand -: R x F — FE, called addition and scalar multiplication, that
satisfy some simple properties. First of all, £ under addition has to be a
commutative (or abelian) group, a notion that we review next.

However, keep in mind that vector spaces
are not just algebraic objects; they are also
geometric objects.

Definition 2.1. A group is a set G equipped with a binary operation -: G x
G — G that associates an element a-b € G to every pair of elements a,b € G,
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and having the following properties: - is associative, has an identity element
e € G, and every element in G is invertible (w.r.t. -). More explicitly, this
means that the following equations hold for all a,b,c € G:

(Gl) a-(b-c)=(a-b)-c (associativity);
(G2) a-e=e-a=a. (identity);
(G3) For every a € G, there is some a~! € G such that

a-al=a1l a=ce (inverse).

A group G is abelian (or commutative) if
a-b=b-a forallabed.

A set M together with an operation -: M x M — M and an element e
satisfying only Conditions (G1) and (G2) is called a monoid. For example,
the set N={0,1,...,n,...} of natural numbers is a (commutative) monoid
under addition with identity element 0. However, it is not a group.

Some examples of groups are given below.

Example 2.1.

(1) Theset Z={...,—n,...,—1,0,1,...,n,...} of integers is an abelian
group under addition, with identity element 0. However, Z* = Z — {0}
is not a group under multiplication; it is a commutative monoid with
identity element 1.

(2) The set Q of rational numbers (fractions p/q with p,q € Z and ¢ # 0)
is an abelian group under addition, with identity element 0. The set
Q* = Q — {0} is also an abelian group under multiplication, with
identity element 1.

(3) Similarly, the sets R of real numbers and C of complex numbers are
abelian groups under addition (with identity element 0), and R* =
R — {0} and C* = C — {0} are abelian groups under multiplication
(with identity element 1).

(4) The sets R™ and C™ of n-tuples of real or complex numbers are abelian
groups under componentwise addition:

(1, xn) + Wiy yn) = (@1 + Y1y, T + Yn)s
with identity element (0,...,0).

(5) Given any nonempty set S, the set of bijections f: .S — 5, also called
permutations of S, is a group under function composition (i.e., the
multiplication of f and g is the composition go f), with identity element
the identity function idg. This group is not abelian as soon as S has
more than two elements.
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(6) The set of nxn matrices with real (or complex) coefficients is an abelian
group under addition of matrices, with identity element the null matrix.
It is denoted by M,,(R) (or M,,(C)).

(7) The set R[X] of all polynomials in one variable X with real coefficients,

P(X)=a, X" +a, 1 X" ' 4+ +a1X +ap,

(with a; € R), is an abelian group under addition of polynomials. The
identity element is the zero polynomial.

(8) The set of nxn invertible matrices with real (or complex) coefficients is
a group under matrix multiplication, with identity element the identity
matrix I,,. This group is called the general linear group and is usually
denoted by GL(n,R) (or GL(n,C)).

(9) The set of n x n invertible matrices with real (or complex) coefficients
and determinant +1 is a group under matrix multiplication, with iden-
tity element the identity matrix I,,. This group is called the special
linear group and is usually denoted by SL(n,R) (or SL(n,C)).

(10) The set of n x n invertible matrices with real coefficients such that
RRT = R"R = I,, and of determinant +1 is a group (under matrix
multiplication) called the special orthogonal group and is usually de-
noted by SO(n) (where R is the transpose of the matrix R, i.e., the
rows of RT are the columns of R). It corresponds to the rotations in
R™.

(11) Given an open interval (a,b), the set C(a,b) of continuous functions
f: (a,b) — R is an abelian group under the operation f + ¢ defined
such that

(f+9)(x) = f(z) +g(x)
for all = € (a,b).
It is customary to denote the operation of an abelian group G by +, in
which case the inverse a~! of an element a € G is denoted by —a.

The identity element of a group is unique. In fact, we can prove a more
general fact:

Proposition 2.1. If a binary operation -: M x M — M is associative and
if € € M is a left identity and €' € M is a right identity, which means that
¢ a=a forall ae M (G2])
and
a-¢"=a forall a€ M, (G2r)

then e’ = €.
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Proof. If we let a = ¢” in equation (G21), we get

and thus

as claimed. O

Proposition 2.1 implies that the identity element of a monoid is unique,
and since every group is a monoid, the identity element of a group is unique.
Furthermore, every element in a group has a wunique inverse. This is a
consequence of a slightly more general fact:

Proposition 2.2. In a monoid M with identity element e, if some element
a € M has some left inverse a’ € M and some right inverse o’ € M, which
means that

ad-a=e (G3))
and

a - a// =e, (G31")
then a' = a".

Proof. Using (G3l) and the fact that e is an identity element, we have

(a'-a)-a”=e~a"=a".

Similarly, Using (G3r) and the fact that e is an identity element, we have

a-(a-ad’)y=d-e=d.

However, since M is monoid, the operation - is associative, so

aI:al'(a'a//):(al'a)'aH:a//,

as claimed. O

Remark: Axioms (G2) and (G3) can be weakened a bit by requiring only
(G2r) (the existence of a right identity) and (G3r) (the existence of a right
inverse for every element) (or (G2l) and (G3l)). It is a good exercise to
prove that the group axioms (G2) and (G3) follow from (G2r) and (G3r).
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A vector space is an abelian group E with an additional operation -: K x
E — FE called scalar multiplication that allows rescaling a vector in E by
an element in K. The set K itself is an algebraic structure called a field.
A field is a special kind of stucture called a ring. These notions are defined
below. We begin with rings.

Definition 2.2. A ring is a set A equipped with two operations +: AxA —
A (called addition) and *: A x A — A (called multiplication) having the
following properties:

(R1) A is an abelian group w.r.t. +;
(R2) = is associative and has an identity element 1 € A;
(R3) = is distributive w.r.t. +.

The identity element for addition is denoted 0, and the additive inverse
of a € A is denoted by —a. More explicitly, the axioms of a ring are the
following equations which hold for all a,b,c € A:

a+(b+c)=(a+b)+c (associativity of +) (2.1)
a+b=b+a (commutativity of +) (2.2)
a+0=0+a=a (zero) (2.3)
a+(—a)=(—a)+a=0 (additive inverse) (2.4)
ax(bxc)=(axb)*c (associativity of *) (2.5)
axl=1xa=a (identity for x) (2.6)
(a+b)xc=(axc)+ (bxc) (distributivity) (2.7)
ax(b+c)=(axb)+ (axc) (distributivity) (2.8)
The ring A is commutative if
axb=>bxa forallabec A
From (2.7) and (2.8), we easily obtain
ax0=0%xa=0 (2.9)
a*(—b) = (—a)*xb=—(axb). (2.10)

Note that (2.9) implies that if 1 = 0, then @ = 0 for all @ € A, and thus,
A = {0}. The ring A = {0} is called the trivial ring. A ring for which
1 # 0 is called nontrivial. The multiplication a * b of two elements a,b € A
is often denoted by ab.
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The abelian group Z is a commutative ring (with unit 1), and for any
commutative ring K, the abelian group K[X] of polynomials is also a com-
mutative ring (also with unit 1). The set Z/mZ of residues modulo m
where m is a positive integer is a commutative ring.

A field is a commutative ring K for which K — {0} is a group under
multiplication.

Definition 2.3. A set K is a field if it is a ring and the following properties
hold:

(F1) 0 # 1;
(F2) For every a € K, if a # 0, then a has an inverse w.r.t. *;
(F3) * is commutative.

Let K* = K — {0}. Observe that (F1) and (F2) are equivalent to
the fact that K* is a group w.r.t. * with identity element 1. If % is not
commutative but (F1) and (F2) hold, we say that we have a skew field (or
noncommutative field).

Note that we are assuming that the operation x of a field is commutative.
This convention is not universally adopted, but since * will be commutative
for most fields we will encounter, we may as well include this condition in
the definition.

Example 2.2.

(1) The rings Q, R, and C are fields.

(2) The set Z/pZ of residues modulo p where p is a prime number is field.

(3) The set of (formal) fractions f(X)/g(X) of polynomials f(X),g(X) €
R[X], where ¢g(X) is not the zero polynomial, is a field.

Vector spaces are defined as follows.

Definition 2.4. A real vector space is a set E (of vectors) together with
two operations +: E x E — E (called vector addition)! and -: R x E —
E (called scalar multiplication) satisfying the following conditions for all
a,f € R and all u,v € F;

(V0) E is an abelian group w.r.t. +, with identity element 0;2

1The symbol + is overloaded, since it denotes both addition in the field R and addition
of vectors in F. It is usually clear from the context which + is intended.

2The symbol 0 is also overloaded, since it represents both the zero in R (a scalar) and
the identity element of E (the zero vector). Confusion rarely arises, but one may prefer
using O for the zero vector.

ws-book-1-9x6



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning  ws-book-1-9x6
page 26

26 Vector Spaces, Bases, Linear Maps
(V1) a- (u+v) = (a-u) + (a-v);

(V2) (a+p) - u=(a-u)+ (B u)

(V3) (a*B) u=a-(B-u);

(V4) 1-u=u.

n (V3), * denotes multiplication in R.

Given a € R and v € F, the element « - v is also denoted by av. The
field R is often called the field of scalars.

In Definition 2.4, the field R may be replaced by the field of complex
numbers C, in which case we have a complex vector space. It is even possible
to replace R by the field of rational numbers Q or by any arbitrary field K
(for example Z/pZ, where p is a prime number), in which case we have a
K -vector space (in (V3), * denotes multiplication in the field K). In most
cases, the field K will be the field R of reals, but all results in this chapter
hold for vector spaces over an arbitrary field.

From (V0), a vector space always contains the null vector 0, and thus
is nonempty. From (V1), we get «-0 =10, and - (—v) = —(a - v). From
(V2), weget 0-v =0, and (—a)-v=—(a-v).

Another important consequence of the axioms is the following fact:

Proposition 2.3. For anyu € E and any A € R, if A\ £ 0 and A -u =0,
then u = 0.

Proof. Indeed, since A # 0, it has a multiplicative inverse A~!, so from
A-u =0, we get
Ao (hw) =270
However, we just observed that A=! -0 = 0, and from (V3) and (V4), we
have
AL Nw)y =AM\ cu=1-u=u,
and we deduce that u = 0. O

Remark: One may wonder whether axiom (V4) is really needed. Could
it be derived from the other axioms? The answer is no. For example, one
can take F = R" and define -: R x R™ — R" by

A (21, ,2,) =(0,...,0)
for all (z1,...,2,) € R" and all A € R. Axioms (V0)—(V3) are all satisfied,
but (V4) fails. Less trivial examples can be given using the notion of a
basis, which has not been defined yet.
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The field R itself can be viewed as a vector space over itself, addition

of vectors being addition in the field, and multiplication by a scalar being
multiplication in the field.

Example 2.3.

(1)
2)

The fields R and C are vector spaces over R.
The groups R™ and C" are vector spaces over R, with scalar multipli-
cation given by

Mz, .oymn) = Az, -0 Azy),

for any A € R and with (z1,...,2,) € R" or (21,...,2,) € C", and C"
is a vector space over C with scalar multiplication as above, but with
AreC.

The ring R[X],, of polynomials of degree at most n with real coefficients
is a vector space over R, and the ring C[X],, of polynomials of degree at
most n with complex coefficients is a vector space over C, with scalar
multiplication A - P(X) of a polynomial

P(X)=amX™ +am 1 X" '+ a1 X +ag

(with a; € R or a; € C) by the scalar A (in R or C), with m < n, given
by

A P(X) =X X™ + X 1 X™ 4+ Ay X + Aao.

The ring R[X] of all polynomials with real coefficients is a vector space
over R, and the ring C[X] of all polynomials with complex coefficients
is a vector space over C, with the same scalar multiplication as above.
The ring of n x n matrices M,,(R) is a vector space over R.

The ring of m x n matrices M,, ,(R) is a vector space over R.

The ring C(a, b) of continuous functions f: (a,b) — R is a vector space
over R, with the scalar multiplication Af of a function f: (a,b) — R
by a scalar A € R given by

Af)(z) = Af(z), for all z € (a,b).

A very important example of vector space is the set of linear maps
between two vector spaces to be defined in Section 2.7. Here is an
example that will prepare us for the vector space of linear maps. Let
X be any nonempty set and let E be a vector space. The set of all
functions f: X — FE can be made into a vector space as follows: Given
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any two functions f: X — F and g: X — E, let (f +¢9): X — E be
defined such that
(f+9)(x) = f(z) +g(x)
for all x € X, and for every A € R, let Af: X — E be defined such that
(Af)(x) = Af(x)

for all x € X. The axioms of a vector space are easily verified.

Let F be a vector space. We would like to define the important notions
of linear combination and linear independence.

Before defining these notions, we need to discuss a strategic choice
which, depending how it is settled, may reduce or increase headaches in
dealing with notions such as linear combinations and linear dependence
(or independence). The issue has to do with using sets of vectors versus
sequences of vectors.

2.3 Indexed Families; the Sum Notation ), ; a;

Our experience tells us that it is preferable to use sequences of vectors;
even better, indexed families of vectors. (We are not alone in having opted
for sequences over sets, and we are in good company; for example, Artin
[Artin (1991)], Axler [Axler (2004)], and Lang [Lang (1993)] use sequences.
Nevertheless, some prominent authors such as Lax [Lax (2007)] use sets.
We leave it to the reader to conduct a survey on this issue.)

Given a set A, recall that a sequence is an ordered n-tuple (aq,...,a,) €
A™ of elements from A, for some natural number n. The elements of a se-
quence need not be distinct and the order is important. For example,
(a1,as,a;) and (az,a1,a;) are two distinct sequences in A3. Their under-
lying set is {a1, az2}.

What we just defined are finite sequences, which can also be viewed as
functions from {1,2,...,n} to the set A; the ith element of the sequence
(a1,...,ay) is the image of ¢ under the function. This viewpoint is fruitful,
because it allows us to define (countably) infinite sequences as functions
s: N — A. But then, why limit ourselves to ordered sets such as {1,...,n}
or N as index sets?

The main role of the index set is to tag each element uniquely, and the
order of the tags is not crucial, although convenient. Thus, it is natural to
define the notion of indexed family.

Definition 2.5. Given a set A, an I-indexed family of elements of A, for
short a family, is a function a: I — A where I is any set viewed as an index
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set. Since the function a is determined by its graph

{(i,ai)) i e I},
the family a can be viewed as the set of pairs a = {(¢,a(4)) | ¢ € I'}. For
notational simplicity, we write a; instead of a(i), and denote the family

a={(i,a(i)) | i € It by (ai)ier-
For example, if I = {r,g,b,y} and A =N, the set of pairs
a={(r,2),(9,3),(b:2), (y,11)}

is an indexed family. The element 2 appears twice in the family with the
two distinct tags r and b.

When the indexed set I is totally ordered, a family (a;);c; is often called
an I-sequence. Interestingly, sets can be viewed as special cases of families.
Indeed, a set A can be viewed as the A-indexed family {(a,a) | a € I}
corresponding to the identity function.

Remark: An indexed family should not be confused with a multiset. Given
any set A, a multiset is a similar to a set, except that elements of A may oc-
cur more than once. For example, if A = {a,b, ¢, d}, then {a, a,a,b, ¢, c,d,d}
is a multiset. Each element appears with a certain multiplicity, but the or-
der of the elements does not matter. For example, a has multiplicity 3.
Formally, a multiset is a function s: A — N, or equivalently a set of pairs
{(a,?) | a € A}. Thus, a multiset is an A-indexed family of elements from
N, but not a N-indexed family, since distinct elements may have the same
multiplicity (such as ¢ an d in the example above). An indexed family is a
generalization of a sequence, but a multiset is a generalization of a set.

We also need to take care of an annoying technicality, which is to define
sums of the form ), ; a;, where I is any finite index set and (a;)ies is a
family of elements in some set A equiped with a binary operation +: A x
A — A which is associative (Axiom (G1)) and commutative. This will
come up when we define linear combinations.

The issue is that the binary operation + only tells us how to compute
a1 + as for two elements of A, but it does not tell us what is the sum of
three of more elements. For example, how should a; 4+ as + az be defined?

What we have to do is to define a; +as + a3 by using a sequence of steps
each involving two elements, and there are two possible ways to do this:
ay + (az +a3) and (a1 +az) +as. If our operation + is not associative, these
are different values. If it associative, then a1 + (a2 + a3) = (a1 + a2) + as,
but then there are still six possible permutations of the indices 1,2, 3, and if
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+ is not commutative, these values are generally different. If our operation
is commutative, then all six permutations have the same value. Thus, if
+ s associative and commutative, it seems intuitively clear that a sum of
the form ), ;a; does not depend on the order of the operations used to
compute it.

This is indeed the case, but a rigorous proof requires induction, and
such a proof is surprisingly involved. Readers may accept without proof
the fact that sums of the form ), ; a; are indeed well defined, and jump
directly to Definition 2.6. For those who want to see the gory details, here
we go.

First, we define sums ), ; a;, where I is a finite sequence of distinct
natural numbers, say I = (i1,...,4y). If I = (i1,...,4y,) with m > 2, we
denote the sequence (is,...,imy,) by I — {i1}. We proceed by induction on
the size m of I. Let

el
Zal—a“—f—( Z az>, if m>1.
iel iel—{i1}

For example, if I = (1,2,3,4), we have
Zai = a1 + (a2 + (a3 + aq)).
il
If the operation + is not associative, the grouping of the terms matters.
For instance, in general

a + (CLQ + (a3 + CL4)) * (a1 + ag) + (a3 + a4).

However, if the operation + is associative, the sum ), ; a; should not
depend on the grouping of the elements in I, as long as their order is
preserved. For example, if I = (1,2,3,4,5), J; = (1,2), and Jy = (3,4,5),
we expect that

Sa=(Tw) (Ta)

il jeJ1 jEJa

This indeed the case, as we have the following proposition.

Proposition 2.4. Given any nonempty set A equipped with an associative

binary operation +: Ax A — A, for any nonempty finite sequence I of dis-
tinct natural numbers and for any partition of I into p nonempty sequences



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning
page 31

2.3. Indexed Families; the Sum Notation Y ;. a; 31

Iy, Iy, for some nonempty sequence K = (ki,...,ky) of distinct nat-
ural numbers such that k; < k; implies that o < 8 for all o € I, and all
B € Iy;, for every sequence (a;)icr of elements in A, we have

Proof. We proceed by induction on the size n of I.
If n = 1, then we must have p = 1 and I, = I, so the proposition holds

trivially.
Next, assume n > 1. If p = 1, then I, = I and the formula is trivial,
so assume that p > 2 and write J = (kz,...,kp). There are two cases.

Case 1. The sequence I}, has a single element, say [, which is the first
element of I. In this case, write C for the sequence obtained from I by
deleting its first element 5. By definition,

Saw=ast (),

acl aceC

and
S (T a)=art (T )
keEK “a€ly j€J Na€l;

Since |C| = n — 1, by the induction hypothesis, we have

(T o) =2(Z w).

acC jeJ Nael;

which yields our identity.

Case 2. The sequence I, has at least two elements. In this case, let 3
be the first element of I (and thus of I, ), let I’ be the sequence obtained
from I by deleting its first element 3, let I ,’“ be the sequence obtained from
Iy, by deleting its first element 3, and let I} = Iy, for i =2,...,p. Recall
that J = (ko,...,kp) and K = (k1,...,kp). The sequence I’ has n — 1
elements, so by the induction hypothesis applied to I’ and the I I/w’ we get

Sem2(Ee)= (% =) (X))

If we add the lefthand side to ag, by definition we get

.

acl
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If we add the righthand side to ag, using associativity and the definition of
an indexed sum, we get

(5 )+ (25 )

(4 (5 )+ (5(5 )
(T o) (Z(Z)-2(5=)
as claimed. O

If I =(1,...,n), we also write .\ | a; instead of Y, ; a;. Since + is
associative, Proposition 2.4 shows that the sum ) ;" a; is independent of
the grouping of its elements, which justifies the use the notation a1+ - -+a,
(without any parentheses).

If we also assume that our associative binary operation on A is com-
mutative, then we can show that the sum ), _; a; does not depend on the
ordering of the index set I.

Proposition 2.5. Given any nonempty set A equipped with an associative
and commutative binary operation +: A x A — A, for any two nonempty
finite sequences I and J of distinct natural numbers such that J is a per-
mutation of I (in other words, the underlying sets of I and J are identical),
for every sequence (a;);cr of elements in A, we have

S 0=t

acl aeJ

Proof. We proceed by induction on the number p of elements in I. If
p =1, we have I = J and the proposition holds trivially.

If p > 1, to simplify notation, assume that I = (1,...,p) and that J is a
permutation (i1, . ..,4,) of I. First, assume that 2 < i; < p—1, let J’ be the
sequence obtained from .J by deleting i1, I’ be the sequence obtained from
I by deleting i1, and let P = (1,2,...,i1—1)and Q@ = (i1 +1,...,p—1,p).
Observe that the sequence I’ is the concatenation of the sequences P and Q.
By the induction hypothesis applied to J’ and I’, and then by Proposition
2.4 applied to I’ and its partition (P, @), we have

S =Yoo= (Ya) (3 w)

acJ’ acl’ =1 1=11+1
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If we add the lefthand side to a;,, by definition we get

S .

acJ

If we add the righthand side to a;,, we get

ot () (£2)

Using associativity, we get

H((E) (£ ) (D (£)

then using associativity and commutativity several times (more rigorously,
using induction on i; — 1), we get

e () (50) = (B o (5

i=1 1=11+1 i=1 1=11+1

Qj,

|

i=1

as claimed.

The cases where i1 = 1 or 47 = p are treated similarly, but in a sim-
pler manner since either P = () or @ = () (where () denotes the empty
sequence). O

Having done all this, we can now make sense of sums of the form ), ; a;,
for any finite indexed set I and any family a = (a;);er of elements in A,
where A is a set equipped with a binary operation + which is associative
and commutative.

Indeed, since [ is finite, it is in bijection with the set {1,...,n} for some
n € N, and any total ordering =< on I corresponds to a permutation /< of
{1,...,n} (where we identify a permutation with its image). For any total

ordering < on I, we define » ,_; _ a; as
S =Y
i€l,= jel

Then for any other total ordering <’ on I, we have

2 a= ) a

iel, = jels
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and since I< and I</ are different permutations of {1,...,n}, by Proposi-

tion 2.5, we have
Z aj = Z aj.

jGIj jGIj/

Therefore, the sum ;. < @i does not depend on the total ordering on I.
We define the sum » ., a; as the common value . 1,< @; for all total
orderings < of I.

Here are some examples with A = R:

(1) If I = {1,2,3}, a = {(1,2),(2,-3),(3,v2)}, then >, ;a; =2 — 3+
V2=-1+V2.

(2) If I = {2,5,7}, a = {(2,2),(5,-3),(7,v2)}, then >, .;a; =2 — 3+
V2=-1+V2.

(3) f I ={r,g,b}, a={(r,2),(g9,-3),(b,1)}, then 3, ;a; =2-3+1=0.

i€l

2.4 Linear Independence, Subspaces

One of the most useful properties of vector spaces is that they possess
bases. What this means is that in every vector space F, there is some set
of vectors, {e1,...,e,}, such that every vector v € E can be written as a
linear combination,

v=Ae+ -+ Apen,

of the e;, for some scalars, Aq,...,A, € R. Furthermore, the n-tuple,
(AM,...,An), as above is unique.

This description is fine when E has a finite basis, {e1,..., e}, but this
is not always the case! For example, the vector space of real polynomials,
R[X], does not have a finite basis but instead it has an infinite basis, namely

1, X, X% ..., X"

y e

Given a set A, recall that an I-indezed family (a;);cr of elements of A
(for short, a family) is a function a: I — A, or equivalently a set of pairs
{(¢,a;) | i € I'}. We agree that when I =0, (a;);e; = 0. A family (a;);es is
finite if 7 is finite.

Remark: When considering a family (a;);c1, there is no reason to assume
that I is ordered. The crucial point is that every element of the family is
uniquely indexed by an element of I. Thus, unless specified otherwise, we
do not assume that the elements of an index set are ordered.

ws-book-1-9x6



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning  ws-book-1-9x6
page 35

2.4. Linear Independence, Subspaces 35

Given two disjoint sets I and J, the union of two families (u;);c; and
(vj)jes, denoted as (u;)icr U(vj) e, is the family (wg)re(rus) defined such
that wy = uy if k € I, and wy = vy if k € J. Given a family (u;);c; and
any element v, we denote by (u;);er Uy (v) the family (w;);cruqry defined
such that, w; = w; if i € I, and wy = v, where k is any index such that
k ¢ I. Given a family (u;)icr, a subfamily of (u;);er is a family (u;);es
where J is any subset of I.

In this chapter, unless specified otherwise, it is assumed that all families
of scalars are finite (i.e., their index set is finite).

Definition 2.6. Let E be a vector space. A vector v € E is a linear
combination of a family (u;);er of elements of E iff there is a family (\;);er
of scalars in R such that

iel
When I = (), we stipulate that v = 0. (By Proposition 2.5, sums of the

form ). ; Aju; are well defined.) We say that a family (u;)icr is linearly
independent iff for every family ()\;);es of scalars in R,

Z Aiu; =0 implies that A; =0 for all ¢ € I.

il
Equivalently, a family (u;);cs is linearly dependent iff there is some family
(Ai)ier of scalars in R such that

D Aiui =0 and X; # 0 for some j € I.
el

We agree that when I = (), the family () is linearly independent.

Observe that defining linear combinations for families of vectors rather
than for sets of vectors has the advantage that the vectors being combined
need not be distinct. For example, for I = {1,2,3} and the families (u, v, u)
and (A1, A2, A1), the linear combination

Z )\ZUZ = )\1’[1, + )\QU + )\1u
i€l
makes sense. Using sets of vectors in the definition of a linear combination
does not allow such linear combinations; this is too restrictive.
Unravelling Definition 2.6, a family (u;);cs is linearly dependent iff ei-
ther I consists of a single element, say ¢, and u; = 0, or |I| > 2 and some u;
in the family can be expressed as a linear combination of the other vectors
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in the family. Indeed, in the second case, there is some family ()\;);es of
scalars in R such that

Z)‘iui =0 and A; #0 for some j € I,
iel

and since |I| > 2, the set I — {j} is nonempty and we get

Uj = Z —/\j_l)\iui.
i€(I-{j})

Observe that one of the reasons for defining linear dependence for fam-
ilies of vectors rather than for sets of vectors is that our definition allows
multiple occurrences of a vector. This is important because a matrix may
contain identical columns, and we would like to say that these columns are
linearly dependent. The definition of linear dependence for sets does not
allow us to do that.

The above also shows that a family (u;);cs is linearly independent iff
either I = ), or I consists of a single element 7 and u; # 0, or |I| > 2 and
no vector u; in the family can be expressed as a linear combination of the
other vectors in the family.

When I is nonempty, if the family (u;);e; is linearly independent, note
that u; # 0 for all i € I. Otherwise, if u; = 0 for some ¢ € I, then we
get a nontrivial linear dependence ) . ; A\ju; = 0 by picking any nonzero
A; and letting A\, = 0 for all k € I with k # i, since \;0 = 0. If |I| > 2,
we must also have u; # u; for all 4,5 € I with i # j, since otherwise we
get a nontrivial linear dependence by picking A; = A and A\; = —A\ for any
nonzero A, and letting A = 0 for all k € I with k # 1, j.

Thus, the definition of linear independence implies that a nontrivial
linearly independent family is actually a set. This explains why certain au-
thors choose to define linear independence for sets of vectors. The problem
with this approach is that linear dependence, which is the logical negation
of linear independence, is then only defined for sets of vectors. However, as
we pointed out earlier, it is really desirable to define linear dependence for
families allowing multiple occurrences of the same vector.

Example 2.4.

(1) Any two distinct scalars A, u # 0 in R are linearly dependent.

(2) In R3, the vectors (1,0,0), (0,1,0), and (0,0, 1) are linearly indepen-
dent. See Figure 2.7.

(3) In R*, the vectors (1,1,1,1), (0,1,1,1), (0,0,1,1), and (0,0,0,1) are
linearly independent.
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Fig. 2.7 A visual (arrow) depiction of the red vector (1,0,0), the green vector (0, 1,0),
and the blue vector (0,0, 1) in R3.

(4) In R?, the vectors u = (1,1), v = (0,1) and w = (2,3) are linearly
dependent, since

w = 2u + v.

See Figure 2.8.

23)

Fig. 2.8 A visual (arrow) depiction of the pink vector u = (1, 1), the dark purple vector
v = (0,1), and the vector sum w = 2u + v.

When T is finite, we often assume that it is the set I ={1,2,...,n}. In
this case, we denote the family (u;)ics as (u1,...,un).
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The notion of a subspace of a vector space is defined as follows.

Definition 2.7. Given a vector space E, a subset F' of E is a linear subspace
(or subspace) of E iff F' is nonempty and Au+ pv € F for all u,v € F, and
all A, u € R.

It is easy to see that a subspace F' of F is indeed a vector space, since
the restriction of +: Ex E — FE to F' x F is indeed a function +: F' x F' —
F, and the restriction of -: R x E — FE to R x F is indeed a function
“RxF—F.

Since a subspace F' is nonempty, if we pick any vector v € F and if we
let A= p =0, then Au + pu = Ou + Ou = 0, so every subspace contains the
vector 0.

The following facts also hold. The proof is left as an exercise.

Proposition 2.6.

(1) The intersection of any family (even infinite) of subspaces of a vector
space E is a subspace.

(2) Let F be any subspace of a vector space E. For any nonempty finite
index set I, if (u;)ier is any family of vectors u; € F and (\;)ier s
any family of scalars, then ), Aju; € F'.

The subspace {0} will be denoted by (0), or even 0 (with a mild abuse
of notation).

Example 2.5.

(1) In R?, the set of vectors u = (z,y) such that
z+y=0
is the subspace illustrated by Figure 2.9.
(2) In R?, the set of vectors u = (z,y, ) such that
r+y+2=0
is the subspace illustrated by Figure 2.10.
(3) For any n > 0, the set of polynomials f(X) € R[X] of degree at most
n is a subspace of R[X].

(4) The set of upper triangular n x n matrices is a subspace of the space
of n X n matrices.

Proposition 2.7. Given any vector space E, if S is any nonempty subset
of E, then the smallest subspace (S) (or Span(S)) of E containing S is the
set of all (finite) linear combinations of elements from S.
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Fig. 2.9 The subspace x+y = 0 is the line through the origin with slope —1. It consists
of all vectors of the form A(—1,1).

Fig. 2.10 The subspace x + y + 2z = 0 is the plane through the origin with normal
(1,1,1).

Proof. We prove that the set Span(S) of all linear combinations of elements
of S is a subspace of E, leaving as an exercise the verification that every
subspace containing S also contains Span(.S).

First, Span(S) is nonempty since it contains S (which is nonempty).
Ifu=73;Au; and v =3, ;p;v; are any two linear combinations in



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning

page 40

40

Vector Spaces, Bases, Linear Maps

Span(S), for any two scalars A\, u € R,

)\U+MU:)\Z)\iUi+MZMjUj

icl jed
= Z A\ u; + Z iU
iel jeJ
= D M+ Y i pmui+ Y vy,
iel—J ielnJg jeI—1

which is a linear combination with index set I U J, and thus Au + pv €
Span(.S), which proves that Span(S) is a subspace. O

One might wonder what happens if we add extra conditions to the

coefficients involved in forming linear combinations. Here are three natural
restrictions which turn out to be important (as usual, we assume that our
index sets are finite):

(1) Consider combinations

A;u; for which

d =1

iel

el

These are called affine combinations. One should realize that every
linear combination Zz‘e 7 Aty can be viewed as an affine combination.
For example, if k is an index not in I, if we let J = I U {k}, up = 0,

and Ay =1—37,c; A, then 37, ; Ajuy is an affine combination and

Z )\iui = Z )\juj.

iel jeJ
However, we get new spaces. For example, in R3, the set of all affine
combinations of the three vectors e; = (1,0,0),e5 = (0,1,0), and es =
(0,0,1), is the plane passing through these three points. Since it does
not contain 0 = (0,0, 0), it is not a linear subspace.
Consider combinations ) ;. ; Aju; for which

A >0, foralliel.

These are called positive (or conic) combinations. It turns out that
positive combinations of families of vectors are cones. They show up
naturally in convex optimization.

Consider combinations ), ; Aju; for which we require (1) and (2), that
is

> Ai=1, and X\ >0 foralliel
el
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These are called conver combinations. Given any finite family of vec-
tors, the set of all convex combinations of these vectors is a convez
polyhedron. Convex polyhedra play a very important role in convex
optimization.

Remark: The notion of linear combination can also be defined for infinite
index sets I. To ensure that a sum Zie ; \iu; makes sense, we restrict our
attention to families of finite support.

Definition 2.8. Given any field K, a family of scalars (\;);cs has finite
support if A; =0 for all i € I — J, for some finite subset J of I.

If (A\;)ier is a family of scalars of finite support, for any vector space
E over K, for any (possibly infinite) family (u;);er of vectors u; € E, we
define the linear combination Zz‘e 1 Aiu; as the finite linear combination
ZjEJ)\juj, where J is any finite subset of I such that \; = 0 for all
i € I — J. In general, results stated for finite families also hold for families

of finite support.

2.5 Bases of a Vector Space

Given a vector space E, given a family (v;);cr, the subset V of E consisting
of the null vector 0 and of all linear combinations of (v;);c is easily seen to
be a subspace of E. The family (v;);cs is an economical way of representing
the entire subspace V', but such a family would be even nicer if it was not
redundant. Subspaces having such an “efficient” generating family (called
a basis) play an important role and motivate the following definition.

Definition 2.9. Given a vector space E and a subspace V of E, a family
(vi)ier of vectors v; € V spans V or generates V iff for every v € V| there
is some family (\;);er of scalars in R such that

v = Z )\ﬂ}z
iel
We also say that the elements of (v;);cr are generators of V and that V
is spanned by (v;)icr, or generated by (v;);cr. If a subspace V of E is
generated by a finite family (v;);cr, we say that V is finitely generated. A

family (u;);er that spans V and is linearly independent is called a basis of
V.

Example 2.6.
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(1) In R3, the vectors (1,0,0), (0,1,0), and (0,0,1), illustrated in Figure
2.9, form a basis.

(2) The vectors (1,1,1,1),(1,1,—1,-1),(1,-1,0,0), (0,0, 1, —1) form a ba-
sis of R* known as the Haar basis. This basis and its generalization to
dimension 2™ are crucial in wavelet theory.

(3) In the subspace of polynomials in R[X] of degree at most n, the poly-
nomials 1, X, X2, ..., X" form a basis.

(4) The Bernstein polynomials (Z) (1 —X)""*X* for k = 0,...,n, also

form a basis of that space. These polynomials play a major role in the
theory of spline curves.

The first key result of linear algebra is that every vector space E has a
basis. We begin with a crucial lemma which formalizes the mechanism for
building a basis incrementally.

Lemma 2.1. Given a linearly independent family (u;)icr of elements of a
vector space E, if v € E is not a linear combination of (u;)icr, then the
family (u;)ier Ug (v) obtained by adding v to the family (u;)ier is linearly
independent (where k ¢ I).

Proof. Assume that pv + >, Au; = 0, for any family (\;)ics of scalars
in R. If p # 0, then p has an inverse (because R is a field), and thus
we have v = — Ziel(u_l)\i)ui, showing that v is a linear combination of
(u;)ier and contradicting the hypothesis. Thus, ;= 0. But then, we have
> icr Aiug = 0, and since the family (u;)scy is linearly independent, we have
N;=0foralliel. O

The next theorem holds in general, but the proof is more sophisticated
for vector spaces that do not have a finite set of generators. Thus, in this
chapter, we only prove the theorem for finitely generated vector spaces.

Theorem 2.1. Given any finite family S = (u;)icr generating a vector
space E and any linearly independent subfamily L = (u;)jes of S (where
J C 1), there is a basis B of E such that L C B C S.

Proof. Consider the set of linearly independent families B such that
L C B C S. Since this set is nonempty and finite, it has some maximal
element (that is, a subfamily B = (un)nem of S with H C I of maximum
cardinality), say B = (up)nen. We claim that B generates E. Indeed,
if B does not generate F, then there is some u, € S that is not a linear
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combination of vectors in B (since S generates F), with p ¢ H. Then by
Lemma 2.1, the family B" = (upn)nemuipy is linearly independent, and since
L C B C B’ C S, this contradicts the maximality of B. Thus, B is a basis
of F such that L C B C S. O

Remark: Theorem 2.1 also holds for vector spaces that are not finitely
generated. In this case, the problem is to guarantee the existence of a max-
imal linearly independent family B such that L. C B C S. The existence of
such a maximal family can be shown using Zorn’s lemma; see Lang [Lang
(1993)] (Theorem 5.1).

A situation where the full generality of Theorem 2.1 is needed is the
case of the vector space R over the field of coefficients Q. The numbers
1 and v/2 are linearly independent over Q, so according to Theorem 2.1,
the linearly independent family L = (1,+/2) can be extended to a basis B
of R. Since R is uncountable and Q is countable, such a basis must be
uncountable!

The notion of a basis can also be defined in terms of the notion of
maximal linearly independent family and minimal generating family.

Definition 2.10. Let (v;);ecs be a family of vectors in a vector space E. We
say that (v;)icr a mazimal linearly independent family of E if it is linearly
independent, and if for any vector w € F, the family (v;);e; Uk {w} obtained
by adding w to the family (v;);c is linearly dependent. We say that (v;);ers
a minimal generating family of E if it spans E, and if for any index p € I,
the family (v;);er—(p) obtained by removing v, from the family (v;);cr does
not span F.

The following proposition giving useful properties characterizing a basis
is an immediate consequence of Lemma 2.1.

Proposition 2.8. Given a vector space E, for any family B = (v;)ier of
vectors of E, the following properties are equivalent:

(1) B is a basis of E.
(2) B is a mazximal linearly independent family of E.
(8) B is a minimal generating family of E.

Proof. We will first prove the equivalence of (1) and (2). Assume (1).
Since B is a basis, it is a linearly independent family. We claim that B
is a maximal linearly independent family. If B is not a maximal linearly



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning  ws-book-1-9x6
page 44

44 Vector Spaces, Bases, Linear Maps

independent family, then there is some vector w € E such that the family
B’ obtained by adding w to B is linearly independent. However, since B
is a basis of F, the vector w can be expressed as a linear combination of
vectors in B, contradicting the fact that B’ is linearly independent.

Conversely, assume (2). We claim that B spans E. If B does not span
FE, then there is some vector w € E which is not a linear combination of
vectors in B. By Lemma 2.1, the family B’ obtained by adding w to B is
linearly independent. Since B is a proper subfamily of B’, this contradicts
the assumption that B is a maximal linearly independent family. Therefore,
B must span E, and since B is also linearly independent, it is a basis of E.

Now we will prove the equivalence of (1) and (3). Again, assume (1).
Since B is a basis, it is a generating family of £. We claim that B is a
minimal generating family. If B is not a minimal generating family, then
there is a proper subfamily B’ of B that spans E. Then, every w € B — B’
can be expressed as a linear combination of vectors from B’, contradicting
the fact that B is linearly independent.

Conversely, assume (3). We claim that B is linearly independent. If B
is not linearly independent, then some vector w € B can be expressed as a
linear combination of vectors in B’ = B — {w}. Since B generates F, the
family B’ also generates E, but B’ is a proper subfamily of B, contradicting
the minimality of B. Since B spans E and is linearly independent, it is a
basis of F. O

The second key result of linear algebra is that for any two bases (u;)icr
and (vj)jes of a vector space E, the index sets I and J have the same
cardinality. In particular, if E has a finite basis of n elements, every basis
of F has n elements, and the integer n is called the dimension of the vector
space F.

To prove the second key result, we can use the following replacement
lemma due to Steinitz. This result shows the relationship between finite
linearly independent families and finite families of generators of a vector
space. We begin with a version of the lemma which is a bit informal, but
easier to understand than the precise and more formal formulation given in
Proposition 2.10. The technical difficulty has to do with the fact that some
of the indices need to be renamed.

Proposition 2.9. (Replacement lemma, version 1) Given a vector space
E, let (uy,...,un) be any finite linearly independent family in E, and let
(v1,...,v,) be any finite family such that every w; is a linear combination
of (v1,...,v,). Then we must have m < n, and there is a replacement of
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m of the vectors vj by (ui,...,up), such that after renaming some of the
indices of the vjs, the families (U1, ..., Unm, Vmt1,---,Upn) and (v1,...,0,)

generate the same subspace of E.

Proof. We proceed by induction on m. When m = 0, the family
(u1,...,un) is empty, and the proposition holds trivially. For the in-
duction step, we have a linearly independent family (ui,..., U, Umt1)-
Consider the linearly independent family (uj,...,u,,). By the induction
hypothesis, m < n, and there is a replacement of m of the vectors v; by
(u1,...,um), such that after renaming some of the indices of the vs, the
families (w1, ..., Um, Um41,---,0,) and (v1,...,v,) generate the same sub-
space of E. The vector u,,+1 can also be expressed as a linear combination
of (v1,...,v,), and since (U, ..., Um, Umt1,--.,0,) and (vi,...,v,) gener-
ate the same subspace, u,,4+1 can be expressed as a linear combination of

(ula'--7umvvm+17"'7 Un>7 say

m n
Um+1 = Z )\zuz + Z )\j’l)j.
i=1 j=m+1
We claim that A; # 0 for some j with m + 1 < j < n, which implies
that m +1 <n.
Otherwise, we would have

m
Umt1 = E it
i=1

a nontrivial linear dependence of the w;, which is impossible since
(u1,...,Um+1) are linearly independent.

Therefore, m + 1 < n, and after renaming indices if necessary, we may
assume that A, 11 # 0, so we get

m n
_ —1 -1 -1
Um+41 = — E ()\m—i-l)‘i)ui — At Um41 — E ()‘m+1)‘j)vj'

i=1 j=m+2
Observe that the families (U1, ey U, U1y - - s Up) and
(U1, .., Umt1, Vmt2,---,Upn) generate the same subspace, since u,;,+1 is a
linear combination of (w1, ..., Um, Vm+1,---,Un) and vy,41 is a linear com-
bination of (U1, ..., Um+t1,Vm+2,---,Upn). Since (U, ..., Um, Vmt1,---,Un)
and (v1,...,v,) generate the same subspace, we conclude that
(U1, Unt1, Vmat2, -+, Upn) and and (v1,...,v,) generate the same sub-

space, which concludes the induction hypothesis. O
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Here is an example illustrating the replacement lemma. Consider se-
quences (ug,ug,us) and (vy,vs,vs,vq,vs), where (ui,us,uz) is a linearly
independent family and with the wu;s expressed in terms of the v;s as fol-
lows:

U] = V4 + Vs
Uy = V3 + Vg4 — U5
Uz = U1 + vg + vs.
From the first equation we get
V4 = U1 — Vs,
and by substituting in the second equation we have
Uy = V3 + Vg — Us = U3 + U — V5 — U5 = U1 + V3 — 205.
From the above equation we get
vz = —uy + ug + 2vs,
and so
uz = U1 +’02+1}3 = V1 +’027U1+U2+2’U5.
Finally, we get
V1 = UL — U + ug — vy — 2v5
Therefore we have
U1 :ul—u2—|—U3—v2—2115
v3 = —u1 + us + 205
V4 = U1 — Us,
which shows that (u1,u2,us,vs,v5) spans the same subspace as
(v1,v2,v3,v4,v5). The vectors (v1, vs, v4) have been replaced by (u1, uz,us),
and the vectors left over are (vs,vs). We can rename them (vg,vs).

For the sake of completeness, here is a more formal statement of the
replacement lemma (and its proof).

Proposition 2.10. (Replacement lemma, version 2) Given a vector space
E, let (u;)ier be any finite linearly independent family in E, where |I| = m,
and let (vj) e be any finite family such that every u; is a linear combination
of (vj)jes, where |J| = n. Then there exists a set L and an injection
p: L — J (a relabeling function) such that LNI =0, |L| = n—m, and the
families (u;)icr U (vo0))icr and (v;)jes generate the same subspace of E.
In particular, m < n.

ws-book-1-9x6
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Proof. We proceed by induction on |I| = m. When m = 0, the family
(ui)ier is empty, and the proposition holds trivially with L = J (p is the
identity). Assume |[I| = m + 1. Counsider the linearly independent family
(ui)ie(1—{p}y), Where p is any member of /. By the induction hypothesis,
there exists a set L and an injection p: L — J such that LN (I — {p}) = 0,
|L| = n—m, and the families (u;);c(r—{p}) U (vp0))icr and (vj) e generate
the same subspace of E. If p € L, we can replace L by (L — {p}) U {p'}
where p’ does not belong to I U L, and replace p by the injection p’ which
agrees with p on L — {p} and such that p'(p’) = p(p). Thus, we can always
assume that L NI = (). Since w,, is a linear combination of (v;);e; and the
families (u;)ie(1—{py) U (vp))ier and (vj)jes generate the same subspace
of B, u, is a linear combination of (u;)ic(r—{p}) U (vp0))ier- Let

Up = Z Aty + Z )\ﬂ)p(l). (1)

ie(I—{p}) leL
If Ay =0 for all [ € L, we have

Z )\iui —Up = O,

i€(I—{p})
contradicting the fact that (u;);cr is linearly independent. Thus, A; # 0 for
some [ € L, say [ = ¢q. Since \; # 0, we have

i = Y (AN AN YT (AT N (2)
ie(I-{p}) le(L—{q})

We claim that the families (ui)ie(j_{p}) U (vp(l))lEL and (ui)iej @]
(Vp(1))ie(L—{q}) generate the same subset of E. Indeed, the second fam-
ily is obtained from the first by replacing v,y by u,, and vice-versa, and
up is a linear combination of (u;)ic(r—{p}) U (vpq))ier, by (1), and v, is
a linear combination of (u;)ier U (vp(1))ie(L—{q})s by (2). Thus, the fam-
ilies (ui)ier U (vp0))ie(—{q)) and (vj)jes generate the same subspace of
E, and the proposition holds for L — {q} and the restriction of the injec-
tion p: L — J to L — {q}, since LNT = § and |L| = n — m imply that
(L—{q})nI=0and |[L—{q}=n—(m+1). O

The idea is that m of the vectors v; can be replaced by the linearly
independent u;s in such a way that the same subspace is still generated.
The purpose of the function p: L — J is to pick n—m elements j1, ..., jn_m
of J and to relabel them [y, ...,l,_,, in such a way that these new indices
do not clash with the indices in I; this way, the vectors v;,,...,v;, _, who
“survive” (i.e. are not replaced) are relabeled vy, ..., and the other

n—m?
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m vectors v; with j € J—{j1,..., jn—m} are replaced by the u;. The index
set, of this new family is 7 U L.

Actually, one can prove that Proposition 2.10 implies Theorem 2.1 when
the vector space is finitely generated. Putting Theorem 2.1 and Proposition
2.10 together, we obtain the following fundamental theorem.

Theorem 2.2. Let E be a finitely generated vector space. Any family
(ui)ier generating E contains a subfamily (uj;)jes which is a basis of E.
Any linearly independent family (u;)icr can be extended to a family (u;);cs
which is a basis of E (with I C J). Furthermore, for every two bases (u;)icr
and (v;)jes of E, we have |I| = |J| = n for some fized integer n > 0.

Proof. The first part follows immediately by applying Theorem 2.1 with
L = 0 and S = (u;)ier- For the second part, consider the family S’ =
(ui)ierU(vn)nen, where (vp)nen is any finitely generated family generating
E, and with TN H = (. Then apply Theorem 2.1 to L = (u;);e; and to
S’. For the last statement, assume that (u;);e; and (v;);ecs are bases of E.
Since (u;)ier is linearly independent and (v;);es spans E, Proposition 2.10
implies that |I| <|J|. A symmetric argument yields |J| < |I]. O

Remark: Theorem 2.2 also holds for vector spaces that are not finitely
generated.

Definition 2.11. When a vector space F is not finitely generated, we say
that F is of infinite dimension. The dimension of a finitely generated vector
space E is the common dimension n of all of its bases and is denoted by
dim(FE).

Clearly, if the field R itself is viewed as a vector space, then every

family (a) where a € R and a # 0 is a basis. Thus dim(R) = 1. Note that
dim({0}) = 0.

Definition 2.12. If E' is a vector space of dimension n > 1, for any sub-
space U of E, if dim(U) = 1, then U is called a line; if dim(U) = 2, then
U is called a plane; if dim(U) = n — 1, then U is called a hyperplane. If
dim(U) = k, then U is sometimes called a k-plane.

Let (u;)ier be a basis of a vector space E. For any vector v € F, since
the family (u;);es generates E, there is a family (A;);er of scalars in R, such

that
v = Z /\/Ul

iel
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A very important fact is that the family (\;);cs is unique.

Proposition 2.11. Given a vector space E, let (u;);cr be a family of vec-
tors in K. Let v € E, and assume that v = ), ; \ju;. Then the family
(Xi)ier of scalars such that v = 3, ; Niu; is unique iff (ui)ier s linearly
independent.

Proof. First, assume that (u;);es is linearly independent. If (p;)icr is
another family of scalars in R such that v = Zie 7 iU, then we have

D (i = pa)u; =0,

el
and since (u;);er is linearly independent, we must have \; — u; = 0 for all
i € I, that is, \; = p; for all ¢ € I. The converse is shown by contradiction.

If (u;)ser was linearly dependent, there would be a family (p;);er of scalars
not all null such that

Z piu; =0
iel
and p; # 0 for some j € I. But then,
v = Z A + 0 = Z Aiug + Zﬂiui = Z(Az + pi) s,
icl icl icl icl
with A\j # X\j + p; since p; # 0, contradicting the assumption that (A;)ier
is the unique family such that v = 5. _; \ju;. O

icl

Definition 2.13. If (u;);ecs is a basis of a vector space E, for any vector
v € B, if (z;)ier is the unique family of scalars in R such that

v = Z TiUq,
i€l
each z; is called the component (or coordinate) of index i of v with respect
to the basis (u;)ier-

2.6 Matrices

In Section 2.1 we introduced informally the notion of a matrix. In this
section we define matrices precisely, and also introduce some operations on
matrices. It turns out that matrices form a vector space equipped with a
multiplication operation which is associative, but noncommutative. We will

ws-book-1-9x6
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explain in Section 3.1 how matrices can be used to represent linear maps,
defined in the next section.

Definition 2.14. If K = R or K = C, an m x n-matriz over K is a family
(@i j)1<i<m, 1<j<n Of scalars in K, represented by an array

a1 a12 ... Ai1n
az21 a22 ... Agn
Am1 Am?2 - Amn

In the special case where m = 1, we have a row vector, represented by

(011 aln)

and in the special case where n = 1, we have a column vector, represented
by

am, 1

In these last two cases, we usually omit the constant index 1 (first index
in case of a row, second index in case of a column). The set of all m x n-
matrices is denoted by M,, ,(K) or M,, . An n x n-matrix is called a
square matrixz of dimension n. The set of all square matrices of dimension
n is denoted by M, (K), or M,,.

Remark: As defined, a matrix A = (a;;)1<i<m, 1<j<n 18 a family, that
is, a function from {1,2,...,m} x {1,2,...,n} to K. As such, there is
no reason to assume an ordering on the indices. Thus, the matrix A can
be represented in many different ways as an array, by adopting different
orders for the rows or the columns. However, it is customary (and usually
convenient) to assume the natural ordering on the sets {1,2,...,m} and
{1,2,...,n}, and to represent A as an array according to this ordering of
the rows and columns.
We define some operations on matrices as follows.

Definition 2.15. Given two m x n matrices A = (a;;) and B = (b; ), we
define their sum A + B as the matrix C' = (¢; ;) such that ¢;; = a;; + b; j;
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that is,
11 a12 ... A1n b11 b12...b1n
a21 a2 ... Agn b21 b22 bgn
+
m1 Gm2 - Qmn b1 bma ... byn
a1 +bi1 ar2+biz ... a1 +bip

az1+ba1 aza+bao ... Az, +bay

am 1 +bml am2+bm2 amn"'bmn

For any matrix A = (a,;), we let —A be the matrix (—a;;). Given a
scalar A € K, we define the matrix AA as the matrix C' = (¢;;) such that
Cij = )\aij; that is

a1 a1z ... A1p /\CL11 )\CL12 )\aln
ag1 a2 ... A2 p /\0,21 )\(122 )\agn
Am1 Am2 -+ - Gmn A1 A0 2« .. Ao p

Given an m x n matrices A = (a;%) and an n x p matrices B = (b ), we
define their product AB as the m x p matrix C' = (¢; ;) such that

n
Cij = g a; by 5,
k=1

for 1 <i<m,and 1 < j < p. In the product AB = C shown below

a11 a12 ... A1p b11 blg...blp €11 €12 ... C1p
a21 a22 ... Agn b21 b22 b2p C21 C22 ... C2p

= b
Am1 Am?2 .. Amn bnl bng...bnp Cm1Cm2---Cmp

note that the entry of index i and j of the matrix AB obtained by mul-
tiplying the matrices A and B can be identified with the product of the
row matrix corresponding to the i-th row of A with the column matrix
corresponding to the j-column of B:

b1 n
(ai1~-~am) :Zaikbkj-
k=1
by
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Definition 2.16. The square matrix I,, of dimension n containing 1 on the
diagonal and 0 everywhere else is called the identity matriz. It is denoted
by

10...0
01...0

I, =
00...1

Definition 2.17. Given an m x n matrix A = (a; ), its transpose AT =
(a;'—i), is the n x m-matrix such that a;.'—i =a,;, for all 4, 1 <i <m, and all
Jj,1<j<n.

The transpose of a matrix A is sometimes denoted by A?, or even by tA.
Note that the transpose AT of a matrix A has the property that the j-th
row of AT is the j-th column of A. In other words, transposition exchanges
the rows and the columns of a matrix. Here is an example. If A is the 5 x 6
matrix

123456
712345
A=|871234],
987123
1098712

then AT is the 6 x 5 matrix

178910
21789
32178
43217
54321
6543 2

The following observation will be useful later on when we discuss the

AT =

SVD. Given any m x n matrix A and any n X p matrix B, if we denote the
columns of A by A',..., A™ and the rows of B by B, ..., By, then we have

AB=A'B;+---+ A"B,,.
For every square matrix A of dimension n, it is immediately verified that

Al, =1,A=A.

Definition 2.18. For any square matrix A of dimension n, if a matrix B
such that AB = BA = I, exists, then it is unique, and it is called the
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inverse of A. The matrix B is also denoted by A~'. An invertible matrix
is also called a monsingular matrix, and a matrix that is not invertible is
called a singular matrix.

Using Proposition 2.16 and the fact that matrices represent linear maps,
it can be shown that if a square matrix A has a left inverse, that is a matrix
B such that BA = I, or aright inverse, that is a matrix C such that AC = I,
then A is actually invertible; so B = A~! and C = A~!. These facts also
follow from Proposition 5.10.

It is immediately verified that the set M, ,(K) of m x n matrices is a
vector space under addition of matrices and multiplication of a matrix by
a scalar.

Definition 2.19. The m x n-matrices E;; = (e 1), are defined such that
eij =1,and epy =0, if h # i or k # j; in other words, the (4, j)-entry is
equal to 1 and all other entries are 0.

Here are the F;; matrices for m = 2 and n = 3:
100 010 001
E”‘(ooo)’ E”_(ooo)’ E13_(000)
000 000 000
E21_<100>’ E22_<010)’ E23_(001)'

It is clear that every matrix A = (a;;) € My, »(K) can be written in a
unique way as

A= Z ZaijEij-
=1 j=1

Thus, the family (E;;)1<i<m,1<j<n is a basis of the vector space M, ,,(K),
which has dimension mn.

Remark: Definition 2.14 and Definition 2.15 also make perfect sense when
K is a (commutative) ring rather than a field. In this more general setting,
the framework of vector spaces is too narrow, but we can consider struc-
tures over a commutative ring A satisfying all the axioms of Definition 2.4.
Such structures are called modules. The theory of modules is (much) more
complicated than that of vector spaces. For example, modules do not al-
ways have a basis, and other properties holding for vector spaces usually
fail for modules. When a module has a basis, it is called a free module. For
example, when A is a commutative ring, the structure A™ is a module such
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that the vectors e;, with (e;); = 1 and (e;); = 0 for j # ¢, form a basis of
A™. Many properties of vector spaces still hold for A™. Thus, A™ is a free
module. As another example, when A is a commutative ring, M,,, ,(4) is a
free module with basis (E; j)i1<i<m,1<j<n. Polynomials over a commutative
ring also form a free module of infinite dimension.

The properties listed in Proposition 2.12 are easily verified, although
some of the computations are a bit tedious. A more conceptual proof is
given in Proposition 3.1.

Proposition 2.12. (1) Given any matrices A € My, (K), B € M, ,(K),
and C € My, 4(K), we have

(AB)C = A(BC);
that is, matriz multiplication is associative.
(2) Given any matrices A, B € M,,, o(K), and C,D € M,, ,(K), for all
A € K, we have
(A+ B)C = AC+ BC
A(C+ D)= AC + AD
(MA)C = \AC)
ANC) = A(AC),
so that matriz multiplication -: My, n (K)xM,, ,(K) — My, ,(K) is bilinear.
The properties of Proposition 2.12 together with the fact that Al, =
I, A = A for all square n x n matrices show that M, (K) is a ring with unit

I,, (in fact, an associative algebra). This is a noncommutative ring with
zero divisors, as shown by the following example.

Example 2.7. For example, letting A, B be the 2 x 2-matrices
10 00
1= (o0) 2= (o)
10\ /00 00
4= (50) (10) = (00):
00 10 00
BA = (10) (OO) o <10>'

Thus AB # BA, and AB = 0, even though both A, B # 0.

then

and
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2.7 Linear Maps

Now that we understand vector spaces and how to generate them, we would
like to be able to transform one vector space F into another vector space
F. A function between two vector spaces that preserves the vector space
structure is called a homomorphism of vector spaces, or linear map. Linear
maps formalize the concept of linearity of a function.

Keep in mand that linear maps, which are
transformations of space, are usually far
more important than the spaces themselves.

In the rest of this section, we assume that all vector spaces are real
vector spaces, but all results hold for vector spaces over an arbitrary field.

Definition 2.20. Given two vector spaces E and F, a linear map between
FE and F is a function f: EF — F satisfying the following two conditions:

fle+y) = flx)+ f(y) for all z,y € F;
fQx) = Af(x) foral \e R, z € E.

Setting = y = 0 in the first identity, we get f(0) = 0. The basic prop-
erty of linear maps is that they transform linear combinations into linear
combinations. Given any finite family (u;);es of vectors in F, given any
family ()\;);er of scalars in R, we have

f(z Aiui) = Z)\zf(uz)
iel i€l
The above identity is shown by induction on |I| using the properties of
Definition 2.20.

Example 2.8.

(1) The map f: R? — R? defined such that
¥=z—y
Yy =z+y

is a linear map. The reader should check that it is the composition of
a rotation by 7/4 with a magnification of ratio v/2.
(2) For any vector space E, the identity map id: E — E given by
id(u)=u forallue F

is a linear map. When we want to be more precise, we write idg instead
of id.
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(3) The map D: R[X] — R[X] defined such that
D(f(X)) = f'(X),

where f/(X) is the derivative of the polynomial f(X), is a linear map.
(4) The map ®: C([a,b]) — R given by

b
B(f) = / f(t)dt

where C([a, b]) is the set of continuous functions defined on the interval
[a, b], is a linear map.

(5) The function (—, —): C([a,b]) x C(]a,b]) — R given by

/f

is linear in each of the variable f, g. It also satisfies the properties
(fyg) = (g, f) and (f,f) = 0iff f = 0. It is an example of an inner
product.

Definition 2.21. Given a linear map f: E — F, we define its image (or
range) Im f = f(F), as the set

Imf={yeF|@ExekE)y=f(x))
and its Kernel (or nullspace) Ker f = f~1(0), as the set

Ker f={z € E| f(z) =0}.

The derivative map D: R[X] — R[X] from Example 2.8(3) has ker-
nel the constant polynomials, so Ker D = R. If we consider the second
derivative D o D: R[X] — R[X], then the kernel of D o D consists of all
polynomials of degree < 1. The image of D: R[X] — R[X] is actually R[X]
itself, because every polynomial P(X) = ag X"+ -+ a,—1X +a, of degree
n is the derivative of the polynomial Q(X) of degree n + 1 given by

n+1 2

X
Q(X)*aOn_i_l +"'+an717+anX-

On the other hand, if we consider the restriction of D to the vector space
R[X];, of polynomials of degree < n, then the kernel of D is still R, but
the image of D is the R[X],_1, the vector space of polynomials of degree
<n-—1.

Proposition 2.13. Given a linear map f: E — F, the set Im f is a sub-
space of F' and the set Ker f is a subspace of E. The linear map f: E — F
is injective iff Ker f = (0) (where (0) is the trivial subspace {0} ).



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning

page 57

2.7. Linear Maps 57

Proof. Given any x,y € Im f, there are some u,v € E such that x = f(u)
and y = f(v), and for all A\, u € R, we have

fu+ pv) = A (u) + pf(v) = Az + py,

and thus, Az + py € Im f, showing that Im f is a subspace of F'.
Given any z,y € Ker f, we have f(z) =0 and f(y) = 0, and thus,

fOx + py) = Mf(x) + pf(y) =0,

that is, Ax + py € Ker f, showing that Ker f is a subspace of E.

First, assume that Ker f = (0). We need to prove that f(z) = f(y)
implies that = y. However, if f(z) = f(y), then f(z) — f(y) = 0, and
by linearity of f we get f(x —y) = 0. Because Ker f = (0), we must have
x —y = 0, that is x = y, so f is injective. Conversely, assume that f is
injective. If z € Ker f, that is f(z) = 0, since f(0) = 0 we have f(z) = f(0),
and by injectivity, = 0, which proves that Ker f = (0). Therefore, f is
injective iff Ker f = (0). O

Since by Proposition 2.13, the image Im f of a linear map f is a subspace
of F, we can define the rank rk(f) of f as the dimension of Im f.

Definition 2.22. Given a linear map f: E — F, the rank rk(f) of f is the
dimension of the image Im f of f.

A fundamental property of bases in a vector space is that they allow
the definition of linear maps as unique homomorphic extensions, as shown
in the following proposition.

Proposition 2.14. Given any two vector spaces E and F', given any basis
(u;)ier of E, given any other family of vectors (v;);cr in F, there is a unique
linear map f: E — F such that f(u;) = v; for all i € 1. Furthermore, f
is ingective iff (v;)icr s linearly independent, and f is surjective iff (v;)icr
generates F'.

Proof. If such a linear map f: F — F exists, since (u;);cr is a basis of F,
every vector z € E can written uniquely as a linear combination

xr = Z TiUq,
icl
and by linearity, we must have

flx) = inf(ui) = invi-

icl el
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Define the function f: E — F, by letting
f(z) = Z Ti0;
il
for every x = >, ; w;u;. It is easy to verify that f is indeed linear, it is
unique by the previous reasoning, and obviously, f(u;) = v;.

Now assume that f is injective. Let ()\;);e; be any family of scalars,

Z /\ivi =0.

il
Since v; = f(u;) for every i € I, we have

f(z Ai;) = Z Aif(ui) = Z Aiv; = 0.
icl iel el

Since f is injective iff Ker f = (0), we have

Z )\zul = 0,

iel
and since (u;);cr is a basis, we have A\; = 0 for all ¢ € I, which shows that

and assume that

(vi)ier is linearly independent. Conversely, assume that (v;);ecr is linearly
independent. Since (u;);er is a basis of E, every vector € E is a linear
combination z = Y. _; A\ju; of (u;)ier. If

fz) = f(z Aiug) =0,

i€l

Z Aiv; = Z)\if(ui) = f(z Aiug) =0,

il il il
and A; = 0 for all ¢ € I because (v;);ey is linearly independent, which means
that © = 0. Therefore, Ker f = (0), which implies that f is injective. The

part where f is surjective is left as a simple exercise. O

iel

then

Figure 2.11 provides an illustration of Proposition 2.14 when E = R3
and V = R?

By the second part of Proposition 2.14, an injective linear map f: £ —
F sends a basis (u;);er to a linearly independent family (f(u;))i;er of F,
which is also a basis when f is bijective. Also, when FE and F have the
same finite dimension n, (u;);cs is a basis of E, and f: E — F' is injective,
then (f(u;))ier is a basis of F (by Proposition 2.8).

The following simple proposition is also useful.

Proposition 2.15. Given any two vector spaces E and F, with F non-
trivial, given any family (u;)ic; of vectors in E, the following properties
hold:
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defining f

2f(u3)

fis not injective

Fig. 2.11 Given u; = (1,0,0), uz = (0,1,0), ug = (0,0,1) and v1 = (1,1), v2 = (—1,1),
vz = (1,0), define the unique linear map f: R® — R2 by f(u1) = v1, f(u2) = vz, and
f(u3) = v3. This map is surjective but not injective since f(u1 —uz2) = f(u1)

u1) — f(uz) =
(17 1) - (_17 1) = (270) = 2f(u3) = f(2U3)

v
2

(1) The family (u;);cr generates E iff for every family of vectors (v;)icr in
F, there is at most one linear map f: E — F such that f(u;) = v; for
allieI.

(2) The family (u;);er is linearly independent iff for every family of vectors
(vi)ier in F, there is some linear map f: E — F such that f(u;) = v;
foralliel.

Proof. (1) If there is any linear map f: E — F such that f(u;) = v; for
all i € I, since (u;);ecr generates E, every vector x € FE can be written as
some linear combination

xr = Z TiUq,

i€l
and by linearity, we must have
flz) = Zaczf(ul) = mel
icl icl
This shows that f is unique if it exists. Conversely, assume that (u;);es
does not generate F. Since F' is nontrivial, there is some some vector y € F

such that y # 0. Since (u;);er does not generate E, there is some vector
w € E that is not in the subspace generated by (u;);e;. By Theorem
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2.2, there is a linearly independent subfamily (u;)icr, of (u;)icr generating
the same subspace. Since by hypothesis, w € FE is not in the subspace
generated by (u;)ic1,, by Lemma 2.1 and by Theorem 2.2 again, there is a
basis (e;) er,us of E, such that e; = w; for all ¢ € I, and w = e;, for some
Jjo € J. Letting (v;);er be the family in F such that v; = 0 for all ¢ € T,
defining f: E — F to be the constant linear map with value 0, we have a
linear map such that f(u;) = 0 for all ¢ € I. By Proposition 2.14, there
is a unique linear map g: E — F such that g(w) = y, and g(e;) = 0 for
all j € (IpUJ) — {jo}. By definition of the basis (e;);jer,us of E, we have
g(u;) =0 for all ¢ € I, and since f # g, this contradicts the fact that there
is at most one such map. See Figure 2.12.

w=(00,1)A

defining f as the zero

glw)=y

w=(00,1) A

Fig. 2.12 Let E = R3 and F = R2. The vectors u1 = (1,0,0), us =
generate R? since both the zero map and the map g, where g(0,0,1) =
peach xy-plane to the origin.

(0,1,0) do not
(1,0), send the

(2) If the family (u;);er is linearly independent, then by Theorem 2.2,
(ui)ier can be extended to a basis of F, and the conclusion follows by
Proposition 2.14. Conversely, assume that (u;);cs is linearly dependent.
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Then there is some family ()\;);c; of scalars (not all zero) such that

iel
By the assumption, for any nonzero vector y € F, for every ¢ € I, there
is some linear map f;: E — F, such that f;(u;) =y, and f;(u;) = 0, for
j € I —{i}. Then we would get
0=fiQ_ Nw) =D Nifilus) = Ny,
icl iel
and since y # 0, this implies \; = 0 for every ¢ € I. Thus, (u;);es is linearly
independent. O

Given vector spaces F, F, and G, and linear maps f: F — F and
g: F — @G, it is easily verified that the composition go f: F — G of f and
g is a linear map.

Definition 2.23. A linear map f: E — F' is an isomorphism iff there is a
linear map ¢g: F' — F, such that

gof=idg and fog=idp. (%)

The map ¢ in Definition 2.23 is unique. This is because if g and h both
satisfy go f =idg, fog=1idp, ho f =idg, and foh =idp, then

g=goidp=go(foh)=(gof)oh=idgoh=h.

The map g satisfying (x) above is called the inverse of f and it is also
denoted by f~1.

Observe that Proposition 2.14 shows that if ¥ = R”, then we get an
isomorphism between any vector space E of dimension |J| = n and R™.
Proposition 2.14 also implies that if E and F' are two vector spaces, (u;)icr
is a basis of E, and f: F — F is a linear map which is an isomorphism,
then the family (f(u;)):er is a basis of F.

One can verify that if f: £ — F is a bijective linear map, then its
inverse f~!': F — E, as a function, is also a linear map, and thus f is an
isomorphism.

Another useful corollary of Proposition 2.14 is this:

Proposition 2.16. Let E be a vector space of finite dimension n > 1 and
let f: E— E be any linear map. The following properties hold:

(1) If f has a left inverse g, that is, if g is a linear map such that go f = id,
then f is an isomorphism and f~! = g.
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(2) If f has a right inverse h, that is, if h is a linear map such that foh =
id, then f is an isomorphism and f~' = h.

Proof. (1) The equation g o f = id implies that f is injective; this is a
standard result about functions (if f(z) = f(y), then g(f(x)) = g(f(v)),
which implies that @ = y since g o f = id). Let (u1,...,uy,) be any ba-
sis of E. By Proposition 2.14, since f is injective, (f(u1),..., f(u,)) is
linearly independent, and since E has dimension n, it is a basis of E (if
(f(u1),-.., f(uyp)) doesn’t span E, then it can be extended to a basis of
dimension strictly greater than n, contradicting Theorem 2.2). Then f is
bijective, and by a previous observation its inverse is a linear map. We also
have

g=goid=go(fof )= (gof)of  =idoft=f"

(2) The equation f o h = id implies that f is surjective; this is a stan-
dard result about functions (for any y € E, we have f(h(y)) = y). Let
(u1,...,un) be any basis of E. By Proposition 2.14, since f is surjective,
(f(u1),-.., f(uyn)) spans E, and since E has dimension n, it is a basis of
E (Gf (f(u1),..., f(uy,)) is not linearly independent, then because it spans
E, it contains a basis of dimension strictly smaller than n, contradicting
Theorem 2.2). Then f is bijective, and by a previous observation its inverse
is a linear map. We also have

h=idoh=(f""of)oh=f""o(foh)=floid=f"".
This completes the proof. O
Definition 2.24. The set of all linear maps between two vector spaces
E and F' is denoted by Hom(E, F') or by L(E; F') (the notation L(E;F)
is usually reserved to the set of continuous linear maps, where E and F
are normed vector spaces). When we wish to be more precise and specify

the field K over which the vector spaces E and F' are defined we write
Homg (E, F).

The set Hom(FE, F') is a vector space under the operations defined in
Example 2.3, namely

(f +9)(x) = f(z) + g(z)

for all x € F, and

(Af)(x) = Af(x)
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for all x € E. The point worth checking carefully is that Af is indeed a
linear map, which uses the commutativity of % in the field K (typically,
K =R or K = C). Indeed, we have

Af)(ux) = Mf (p) = Auf(z) = pAf(z) = p(Af) ().

When FE and F have finite dimensions, the vector space Hom(E, F') also
has finite dimension, as we shall see shortly.

Definition 2.25. When F = F, a linear map f: E — F is also called an
endomorphism. The space Hom(E, F) is also denoted by End(E).

It is also important to note that composition confers to Hom(E, E)
a ring structure. Indeed, composition is an operation o: Hom(E, E) x
Hom(FE, E) — Hom(FE, E), which is associative and has an identity idg,
and the distributivity properties hold:

(g1 +g2)of=giof+g20f;
go(fi+fa)=gofi+gofa

The ring Hom(E, E) is an example of a noncommutative ring.
It is easily seen that the set of bijective linear maps f: £ — E is a
group under composition.

Definition 2.26. Bijective linear maps f: E — E are also called automor-
phisms. The group of automorphisms of FE is called the general linear group
(of E), and it is denoted by GL(E), or by Aut(E), or when E = R", by
GL(n,R), or even by GL(n).

2.8 Linear Forms and the Dual Space

We already observed that the field K itself (K =R or K = C) is a vector
space (over itself). The vector space Hom(FE, K) of linear maps from E to
the field K, the linear forms, plays a particular role. In this section, we only
define linear forms and show that every finite-dimensional vector space has
a dual basis. A more advanced presentation of dual spaces and duality is
given in Chapter 10.

Definition 2.27. Given a vector space E, the vector space Hom(E, K) of
linear maps from FE to the field K is called the dual space (or dual) of E.
The space Hom(F, K) is also denoted by E*, and the linear maps in E*
are called the linear forms, or covectors. The dual space E** of the space
E* is called the bidual of E.
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As a matter of notation, linear forms f: £ — K will also be denoted
by starred symbol, such as u*, =*, etc.

If F is a vector space of finite dimension n and (u1,...,u,) is a basis
of E, for any linear form f* € E*, for every x = zquy + -+ - + z,u, € E, by
linearity we have

(@) = fru)zr + -+ T (un)zn
- )\lxl + - +)\nxna
with A; = f*(u;) € K for every 4, 1 < ¢ < n. Thus, with respect to the
basis (u1,...,u,), the linear form f* is represented by the row vector

(A1 -0 An),
we have
T
ffa)y=0 )| ],
Ln
a linear combination of the coordinates of z, and we can view the linear form
f* as a linear equation. If we decide to use a column vector of coefficients

instead of a row vector, then the linear form f* is defined by
ff(z)=c"z.

The above notation is often used in machine learning.

Example 2.9. Given any differentiable function f: R™ — R, by definition,

for any x € R™, the total derivative df, of f at x is the linear form df, : R" —
R defined so that for all u = (uq,...,u,) € R™,

= (g L) | ]| =X s

Un

Example 2.10. Let C([0,1]) be the vector space of continuous functions
f:[0,1] = R. The map Z: C([0,1]) — R given by

Z(f) :/0 f(z)dz for any f € C([0,1])

is a linear form (integration).
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Example 2.11. Consider the vector space M,,(R) of real n x n matrices.
Let tr: M,,(R) — R be the function given by

tr(A) = a1 + a2+ - + ann,

called the trace of A. It is a linear form. Let s: M,,(R) — R be the function
given by

n
S(A) = Z Qij,
i,j=1
where A = (a;;). It is immediately verified that s is a linear form.

Given a vector space E and any basis (u;);er for E, we can associate to
each u; a linear form u; € E*, and the u; have some remarkable properties.

Definition 2.28. Given a vector space F and any basis (u;);c; for E, by
Proposition 2.14, for every ¢ € I, there is a unique linear form u; such that

oo 1 =
ui () = {0 if i+,
for every j € I. The linear form u is called the coordinate form of index i
w.r.t. the basis (u;);er.

Remark: Given an index set I, authors often define the so called “Kro-
necker symbol” d; ; such that

1 ifi=j
0 ifi#j,
for all 4,j € I. Then, u}(u;) = ;.
The reason for the terminology coordinate form is as follows: If E has
finite dimension and if (uq,...,u,) is a basis of E, for any vector
v =Atur + -+ Apln,

we have
ui (V) = uj (Mur + -+ Aguy)
=g (un) + - g (ug) + -+ A (un)
= >\ia
since u} (u;) = 0; j. Therefore, u} is the linear function that returns the ith
coordinate of a vector expressed over the basis (u1,...,un).

ws-book-1-9x6
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The following theorem shows that in finite-dimension, every basis
(u1,...,upn) of a vector space E yields a basis (uj,...,u)) of the dual
space E*, called a dual basis.

Theorem 2.3. (Ezistence of dual bases) Let E be a vector space of dimen-

sion n. The following properties hold: For every basis (uy,...,u,) of E,
the family of coordinate forms (uy,...,uk) is a basis of E* (called the dual
basis of (u1,...,un)).

Proof. (a) If v* € E* is any linear form, consider the linear form
ff=v"(u)ul + -+ 0" (up)u,.
Observe that because v} (u;) = d; 4,
fr(wi) = (0" (w)uy + -+ 0" (un)up, ) (ui)
vt (un)ut (i) 4 - 4 v" (wa)ug (W) + - - 4 0" (un)ug, (ui)

= v"(u;),

and so f* and v* agree on the basis (u1,...,uy), which implies that
¥ = =0 (u)ul + -+ v (un)u.

*

Therefore, (uf,...,u}) spans E*. We claim that the covectors uj,...,u}
are linearly independent. If not, we have a nontrivial linear dependence

Aul + -+ A, =0,

and if we apply the above linear form to each u;, using a familar computa-
tion, we get

0= )\zuf(uz) = )\i7

proving that wuj,...,u) are indeed linearly independent. Therefore,

(uf,...,u}) is a basis of E*. O

In particular, Theorem 2.3 shows a finite-dimensional vector space and
its dual E* have the same dimension.

2.9 Summary

The main concepts and results of this chapter are listed below:

e The notion of a vector space.
e Families of vectors.
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e Linear combinations of vectors; linear dependence and linear indepen-
dence of a family of vectors.

e Linear subspaces.

e Spanning (or generating) family; generators, finitely generated sub-
space; basis of a subspace.

e Fwery linearly independent family can be extended to a basis (Theorem
2.1).

e A family B of vectors is a basis iff it is a maximal linearly independent
family iff it is a minimal generating family (Proposition 2.8).

e The replacement lemma (Proposition 2.10).

e Any two bases in a finitely generated vector space E have the same
number of elements; this is the dimension of E' (Theorem 2.2).

e Hyperplanes.

e Every vector has a unique representation over a basis (in terms of its

coordinates).

Matrices

Column vectors, row vectors.

Matriz operations: addition, scalar multiplication, multiplication.

The vector space M,, ,(K) of m x n matrices over the field K; The

ring M,,(K) of n X n matrices over the field K.

The notion of a linear map.

The image Im f (or range) of a linear map f.

The kernel Ker f (or nullspace) of a linear map f.

The rank rk(f) of a linear map f.

The image and the kernel of a linear map are subspaces. A linear map

is injective iff its kernel is the trivial space (0) (Proposition 2.13).
The unique homomorphic extension property of linear maps with re-
spect to bases (Proposition 2.14 ).

The vector space of linear maps Homg (E, F').

Linear forms (covectors) and the dual space E*.

Coordinate forms.

The existence of dual bases (in finite dimension).
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2.10 Problems

Problem 2.1. Let H be the set of 3 x 3 upper triangular matrices given
by

lab

H= 0lc]| |a,bceR
001
(1) Prove that H with the binary operation of matrix multiplication

is a group; find explicitly the inverse of every matrix in H. Is H abelian
(commutative)?

(2) Given two groups G; and Ga, recall that a homomorphism if a
function ¢: G; — G4 such that

p(ab) = p(a)p(b), a,be Gi.
Prove that ¢(e1) = ea (where e; is the identity element of G;) and that

pla™) = (p(a)™", a€Gr
(3) Let St be the unit circle, that is
St = {e" =cosf +isinf |0 <6 < 2},
and let ¢ be the function given by
labd

0|l01c]| =(a,ce®).
001

Prove that ¢ is a surjective function onto G = R x R x S*, and that if
we define multiplication on this set by

1T1Y2

(w1,y1,u1) - (T2, Y2, u2) = (T1 + T2, Y1 + Y2, € UrUg),

then G is a group and ¢ is a group homomorphism from H onto G.
(4) The kernel of a homomorphism ¢: G — G2 is defined as

Ker (¢) = {a € G1 | p(a) = ea}.
Find explicitly the kernel of ¢ and show that it is a subgroup of H.

Problem 2.2. For any m € Z with m > 0, the subset mZ = {mk | k € Z}
is an abelian subgroup of Z. Check this.

(1) Give a group isomorphism (an invertible homomorphism) from mZ
to Z.
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(2) Check that the inclusion map i: mZ — Z given by i(mk) = mk
is a group homomorphism. Prove that if m > 2 then there is no group
homomorphism p: Z — mZ such that p o = id.

Remark: The above shows that abelian groups fail to have some of the
properties of vector spaces. We will show later that a linear map satisfying
the condition p o ¢ = id always exists.

Problem 2.3. Let £ = R x R, and define the addition operation

(x1,y1) + (22,2) = (1 + 22,91 +Y2), 21,%2,Y1,Y2 € R,
and the multiplication operation -: R x £ — E by
A-(z,y) = (Mz,y), AzyeR

Show that F with the above operations + and - is not a vector space.
Which of the axioms is violated?

Problem 2.4. (1) Prove that the axioms of vector spaces imply that

a-0=0
0-v=0
a-(—v) = —(a-v)

(—a)-v=—(a-v),

for all v € F and all @ € K, where FE is a vector space over K.
(2) For every A € R and every z = (21, ...,2,) € R?, define Az by

Ar = ANxy, ..., x0) = (Ax1,. .., Azy).
Recall that every vector z = (z1,...,%,) € R™ can be written uniquely as
T =211 + -+ Tpey,

where e; = (0,...,0,1,0,...,0), with a single 1 in position . For any
operation -: R x R® — R"™, if - satisfies the Axiom (V1) of a vector space,
then prove that for any o € R, we have

a-z=a-(rie;+- -+ ane,) =a-(zre1) + -+ - (Tpen).

Conclude that - is completely determined by its action on the one-
dimensional subspaces of R™ spanned by eq,...,e,.

(3) Use (2) to define operations -: R x R™ — R"™ that satisfy the Axioms
(V1-V3), but for which Axiom V4 fails.
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(4) For any operation -: R x R — R"™, prove that if - satisfies the
Axioms (V2-V3), then for every rational number r € Q and every vector
r € R", we have

r-z=r(l-z).

In the above equation, 1-x is some vector (y1,...,¥yn) € R™ not necessarily
equal to z = (21,...,2,), and

r(l-z) = (ry1,...,7Yn),

as in Part (2).

Use (4) to conclude that any operation -: Q x R™ — R"™ that satisfies
the Axioms (V1-V3) is completely determined by the action of 1 on the
one-dimensional subspaces of R™ spanned by eq,...,e,.

Problem 2.5. Let A; be the following matrix:

2 31
Ar=|(1 2 -1
-3-51

Prove that the columns of Ay are linearly independent. Find the coordinates

of the vector x = (6,2, —7) over the basis consisting of the column vectors
of A1 .

Problem 2.6. Let A be the following matrix:

1 211
2 323
-101-1
—-2-130

Ay =

Express the fourth column of Ay as a linear combination of the first three
columns of Ay. Is the vector x = (7,14, —1,2) a linear combination of the
columns of As?

Problem 2.7. Let A3 be the following matrix:

111
As=|112
123

Prove that the columns of Ay are linearly independent. Find the coordinates

of the vector = = (6,9, 14) over the basis consisting of the column vectors
of A5

ws-book-1-9x6
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Problem 2.8. Let A4 be the following matrix:

1 211
2 323
-101-1
-2-14 0

Prove that the columns of A4 are linearly independent. Find the coordinates

Ay =

of the vector x = (7,14, —1,2) over the basis consisting of the column
vectors of Ay.

Problem 2.9. Consider the following Haar matrix

11 1 0
11 -10
H= 1-10 1
1-10 -1

Prove that the columns of H are linearly independent.
Hint. Compute the product H' H.

Problem 2.10. Consider the following Hadamard matrix

11 1 1
1-11 -1
11 -1-1
1-1-11

Hy =

Prove that the columns of Hy are linearly independent.
Hint. Compute the product H, H,.

Problem 2.11. In solving this problem, do not use determinants.

(1) Let (u1,...,un) and (v1,...,v,) be two families of vectors in some
vector space E. Assume that each v; is a linear combination of the u;s, so
that

v =a;ur + o+ Gplm, 1 <i<m,

and that the matrix A = (a; ;) is an upper-triangular matrix, which means

that if 1 < j < i < m, then a;; = 0. Prove that if (u1,...,u,,) are
linearly independent and if all the diagonal entries of A are nonzero, then
(v1,...,vy) are also linearly independent.

Hint. Use induction on m.

(2) Let A = (a;;) be an upper-triangular matrix. Prove that if all the
diagonal entries of A are nonzero, then A is invertible and the inverse A~!
of A is also upper-triangular.

ws-book-1-9x6
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Hint. Use induction on m.

Prove that if A is invertible, then all the diagonal entries of A are
nonzero.

(3) Prove that if the families (u1,...,un) and (v1,...,v,) are related
as in (1), then (uq,...,u,,) are linearly independent iff (vq,...,v,,) are
linearly independent.

Problem 2.12. In solving this problem, do not use determinants. Con-
sider the n X n matrix

120 0...00

012 0...00

001 2...00

A=

00...0 120

00...0 012

00...0 001

(1) Find the solution x = (21, ..., %,) of the linear system
Ax = b,
for

by
bo
b= .
bn

(2) Prove that the matrix A is invertible and find its inverse A=1. Given
that the number of atoms in the universe is estimated to be < 1032, compare
the size of the coefficients the inverse of A to 1032, if n > 300.

(3) Assume b is perturbed by a small amount Ab (note that Ab is a
vector). Find the new solution of the system

A(x 4+ Az) = b+ Ab,

where Az is also a vector. In the case where b = (0,...,0,1), and Ab =
(0,...,0,€), show that

|(Az)r] =2"""el.

(where (Ax); is the first component of Ax).
(4) Prove that (A—1I)" =0.

ws-book-1-9x6
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Problem 2.13. An n x n matrix N is nilpotent if there is some integer
r > 1 such that N” = 0.

(1) Prove that if N is a nilpotent matrix, then the matrix I — N is
invertible and

(I-N)'=I+N+N*4...+N"L
(2) Compute the inverse of the following matrix A using (1):

12345
01234
A=100123
00012
00001

Problem 2.14. (1) Let A be an n x n matrix. If A is invertible, prove that
for any x € R™, if Ax = 0, then x = 0.

(2) Let A be an m x n matrix and let B be an n x m matrix. Prove
that I,,, — AB is invertible iff I,, — BA is invertible.
Hint. If for all z € R™, Mx = 0 implies that x = 0, then M is invertible.

Problem 2.15. Consider the following n x n matrix, for n > 3:

1-1-1-1----1-1
1-11 1 -1 1
11-11--1 1

=111 -1 11

11 1 1 ..--11

11 1 1 .- 1 —1

(1) If we denote the columns of B by by, ..., b,, prove that
(n—=3)by — (b2 + -+ by) =2(n —2)ex

by — by = 2(e1 + e2)

by — b3 =2(e1 + e3)

by — b, = 2(61 =+ en),

where eq,...,e, are the canonical basis vectors of R™.
(2) Prove that B is invertible and that its inverse A = (a;;) is given by
n—3 1
anzu a;1 = — 2<1<n

2(n —2)’ 2(n — 2)



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning

page 74

74 Vector Spaces, Bases, Linear Maps
and
n—3 .
au‘:*u, 2<i<n
2(n —2)
1

Qj; = QSZSTZ,_]#Z

2(n —2)’

(3) Show that the n diagonal n x n matrices D; defined such that the
diagonal entries of D; are equal the entries (from top down) of the ith
column of B form a basis of the space of n x n diagonal matrices (matrices
with zeros everywhere except possibly on the diagonal). For example, when
n = 4, we have

1000 1000
0100 0 —-100

Di=10010 D2=14 010]"
0001 0 001
1000 ~100 0
0100 0100

Ds=1 40 10| Pa=11901 0
0001 000—1

Problem 2.16. Given any m X n matrix A and any n X p matrix B, if we
denote the columns of A by A!,..., A™ and the rows of B by By, ..., B,,
prove that

AB=A'B; +---+ A™B,,.

Problem 2.17. Let f: E — F be a linear map which is also a bijection (it
is injective and surjective). Prove that the inverse function f~1: FF — E is
linear.

Problem 2.18. Given two vectors spaces FE and F, let (u;);cs be any basis
of E and let (v;);er be any family of vectors in F. Prove that the unique
linear map f: E — F such that f(u;) = v; for all i € I is surjective iff
(vi)ier spans I

Problem 2.19. Let f: E — F be a linear map with dim(E) = n and
dim(F) = m. Prove that f has rank 1 iff f is represented by an m x n
matrix of the form

A=uv’

with v a nonzero column vector of dimension m and v a nonzero column
vector of dimension n.
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Problem 2.20. Find a nontrivial linear dependence among the linear forms

ws-book-1-9x6

o1(z,y,2) = 20—y+3z, pa(r,y,2) = 3x-5y+z, @3(x,y,2) = 4o—Ty+z2.

Problem 2.21. Prove that the linear forms
¥1 (Ia y,Z) = x+2y+z, ‘P2($a Y, Z) = 2z+3y+3z, 903(%% Z) = 3z+Ty+z

are linearly independent. Express the linear form p(z,y,2) =z +y + z as
a linear combination of 1, 2, 3.
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Chapter 3

Matrices and Linear Maps

In this chapter, all vector spaces are defined over an arbitrary field K. For
the sake of concreteness, the reader may safely assume that K = R.

3.1 Representation of Linear Maps by Matrices

Proposition 2.14 shows that given two vector spaces F and F' and a basis
(uj)jes of E, every linear map f: E — F' is uniquely determined by the
family (f(u;));es of the images under f of the vectors in the basis (u;);e..

If we also have a basis (v;)ier of F, then every vector f(u;) can be
written in a unique way as

Flug) =" aijui,
iel

where j € J, for a family of scalars (a;;)ier. Thus, with respect to the
two bases (u;);jes of E and (v;)ier of F, the linear map f is completely
determined by a “I x J-matrix” M (f) = (a;j)ier, jeJ-

Remark: Note that we intentionally assigned the index set J to the basis
(uj)jes of E, and the index set I to the basis (v;)ier of F, so that the
rows of the matrix M(f) associated with f: E — F are indexed by I, and
the columns of the matrix M (f) are indexed by J. Obviously, this causes
a mildly unpleasant reversal. If we had considered the bases (u;);cr of F
and (v;);es of F, we would obtain a J x I-matrix M(f) = (aj:)jes, icI-
No matter what we do, there will be a reversall We decided to stick to the
bases (u;)jes of E and (v;)ier of F', so that we get an I x J-matrix M (f),
knowing that we may occasionally suffer from this decision!

When I and J are finite, and say, when |I| = m and |J| = n, the linear
map [ is determined by the matrix M (f) whose entries in the j-th column

7
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are the components of the vector f(u;) over the basis (v1,...,vn), that is,
the matrix
a1 airz ... A1p
az1 a2 ... A2 p
M(f) =
Am1 Am?2 - .. Amn

whose entry on Row ¢ and Column j is a;; (1 <i<m, 1<j<n).

We will now show that when E and F' have finite dimension, linear maps
can be very conveniently represented by matrices, and that composition of
linear maps corresponds to matriz multiplication. We will follow rather
closely an elegant presentation method due to Emil Artin.

Let E and F' be two vector spaces, and assume that E has a finite basis
(u1,...,uy) and that I has a finite basis (v1,...,vn ). Recall that we have
shown that every vector x € FE can be written in a unique way as

T = T1U1 ++xnuna
and similarly every vector y € F' can be written in a unique way as
Y =1Y1v1 ++ymvm
Let f: E — F be a linear map between E' and F. Then for every x =
r1u1 + -+ + Tpu, in E, by linearity, we have
Let
f(uj) = a1;01 + -+ A, jUm,s

or more concisely,
m
flug) =" aiju,
i=1

for every j, 1 < j < n. This can be expressed by writing the coefficients
aij,as;,...,am; of f(u;) over the basis (vi,...,vm), as the jth column of
a matrix, as shown below:

fur) fuz) - fun)

U1 ailz a2 ... Qin
V2 a1 G22 ... Q2pn

Um Am1l Am2 ... Gmnp
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Then substituting the right-hand side of each f(u;) into the expression
for f(x), we get

m m
flx) = xl(z a;1v;) + -+ xn(z @inV;),
i=1 i=1
which, by regrouping terms to obtain a linear combination of the v;, yields
n n
f@) = arjz)on+ -4 (O amjzs)vm.
j=1 j=1
Thus, letting f(z) =y = y1v1 + - - - + YmVm, we have

vi= Y aix; (1)
j=1

foralli, 1 <i<m.
To make things more concrete, let us treat the case where n = 3 and
m = 2. In this case,

f(ur) = anvr + ag1v2
fu2) = a12v1 + agevs
f(uz) = a13v1 + az3ve,

which in matrix form is expressed by
f(ur) fluz) f(us)
U1 (011 ai2 a13 )
V2 a21 G222 A23 ’
and for any x = z1u1 + Tous + r3usz, we have
f(x) = f(zrur + 22u2 + x3U3)
= 21 f(u1) + o f(uz) + w3 f(us)
= z1(a11v1 + a21v2) + z2(a12v1 + a22v2) + x3(a13v1 + a23v2)
= (a1121 + @122 + a13x3)v1 + (@211 + agers + a2313)vs.
Consequently, since
Y = Y1v1 + Y202,
we have

Y1 = G11T1 + G12T2 + 41373

Y2 = 2171 + A22T2 + A23T3.
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This agrees with the matrix equation
T
<y1> _ (au ai2 a13>
= To
Y2 ag1 Gz2 A23
T3
We now formalize the representation of linear maps by matrices.

Definition 3.1. Let F and F be two vector spaces, and let (uq,...,uy,)
be a basis for E, and (v1,...,v,) be a basis for F. Each vector z € E
expressed in the basis (u1,...,u,) a8 © = x1uj + - - - + T Uy, is represented
by the column matrix

ia1
M(z) =
Ty
and similarly for each vector y € F expressed in the basis (vy,...,vm).

Every linear map f: F — F is represented by the matrix M(f) =
(@i ), where a;; is the i-th component of the vector f(u;) over the basis
(v1,...,0m), i.e., where

m
fluy) = Zaijvi, for every j, 1 < j <n.
i=1
The coefficients aij,asj, ..., am; of f(u;) over the basis (v1,...,vy) form
the jth column of the matrix M (f) shown below:

fur) fluz) - fun)

U1 aj; @12 ... Qin

() a1 Q22 ... Q2n

Um m1l Am2 ... Gmn
The matrix M(f) associated with the linear map f: E — F'is called the
matriz of f with respect to the bases (uy,...,un) and (vi,...,0n). When

E = F and the basis (v1,...,vy,) is identical to the basis (uy,...,u,) of E,
the matrix M(f) associated with f: E — FE (as above) is called the matriz
of f with respect to the basis (uy, ..., uy).

Remark: As in the remark after Definition 2.14, there is no reason to
assume that the vectors in the bases (uq,...,u,) and (v1,...,v,,) are or-
dered in any particular way. However, it is often convenient to assume the
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natural ordering. When this is so, authors sometimes refer to the matrix
M(f) as the matrix of f with respect to the ordered bases (uy,...,u,) and
(V1, -+, Um).

Let us illustrate the representation of a linear map by a matrix in a
concrete situation. Let E be the vector space R[X]4 of polynomials of
degree at most 4, let F' be the vector space R[X]3 of polynomials of degree
at most 3, and let the linear map be the derivative map d: that is,

d(P+Q)=dP+dQ
d(A\P) = \dP,

with A € R. We choose (1, z, 2% 23, 2%) as a basis of E and (1, z, 2%, 23) as
a basis of F. Then the 4 x 5 matrix D associated with d is obtained by

expressing the derivative dz’ of each basis vector z! for i = 0,1,2, 3,4 over
the basis (1, z, 2%, 2%). We find

01000
00200
00030
00004

If P denotes the polynomial

P =3z" — 52° + 2% — Tz + 5,
we have

dP = 122% — 152% + 22 — 7.

The polynomial P is represented by the vector (5,—7,1,—5,3), the poly-
nomial dP is represented by the vector (—7,2,—15,12), and we have

01000 _57 -7
00200 | | _| 2
00030 | " ~15 |
00004/ |, 12

as expected! The kernel (nullspace) of d consists of the polynomials of
degree 0, that is, the constant polynomials. Therefore dim(Kerd) = 1, and
from

dim(F) = dim(Ker d) + dim(Im d)
(see Theorem 5.1), we get dim(Imd) = 4 (since dim(E) = 5).
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For fun, let us figure out the linear map from the vector space R[X]3
to the vector space R[X]4 given by integration (finding the primitive, or
anti-derivative) of ', for i = 0,1,2,3). The 5 X 4 matrix S representing [
with respect to the same bases as before is

00 0 0
10 0 0
S=101/2 0 0
00 1/30
00 0 1/4

We verify that DS = 14,

01000 (1]8 8 8 1000
00200 01/2 0 0 |= 0100
00030 00 1/3 0 (o010
00004 00 0 1/4 0001

This is to be expected by the fundamental theorem of calculus since the
derivative of an integral returns the function. As we will shortly see, the
above matrix product corresponds to this functional composition. The
equation DS = I, shows that S is injective and has D as a left inverse.
However, SD # I5, and instead

00 0 0 00000
10 0 0 83888 01000
01/20 0 || o oa0|=]00100],
00130 |\ 0004 00010
00 0 1/4 00001

because constant polynomials (polynomials of degree 0) belong to the kernel
of D.

3.2 Composition of Linear Maps and Matrix Multiplication

Let us now consider how the composition of linear maps is expressed in
terms of bases.

Let F, F, and G, be three vectors spaces with respective bases
(ui,...,up) for E, (v1,...,v,) for F, and (w1,...,wy) for G. Let g: E —
F and f: F — G be linear maps. As explained earlier, g: F — F is deter-
mined by the images of the basis vectors u;, and f: F' — G is determined
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by the images of the basis vectors viy. We would like to understand how
fog: E— G is determined by the images of the basis vectors u;.

Remark: Note that we are considering linear maps g: £ — F and f: F —
G, instead of f: E — F and ¢g: F — @, which yields the composition
fog: E — G instead of go f: E — G. Our perhaps unusual choice is
motivated by the fact that if f is represented by a matrix M (f) = (a;) and
g is represented by a matrix M (g) = (bg ), then fog: E — G is represented
by the product AB of the matrices A and B. If we had adopted the other
choice where f: E — F and g: FF — G, then go f: F — G would be
represented by the product BA. Personally, we find it easier to remember
the formula for the entry in Row i and Column j of the product of two
matrices when this product is written by AB, rather than BA. Obviously,
this is a matter of taste! We will have to live with our perhaps unorthodox
choice.
Thus, let

flor) = Zaikwia
i=1
for every k, 1 < k < n, and let
g(ug) = > brjor,
k=1

for every j, 1 < j < p; in matrix form, we have

f(o1) f(v2) .. f(vn)

w1 ai1 a2 ... Qin
w2 a21 a2 ... Qa2n
W Um1 Am2 ... Amn

and

(%} b11 b12 N blp
V2 b21 b22 . bgp
Un bnl bng NN bnp

By previous considerations, for every

T=21U1 + 0+ TpUp,

ws-book-1-9x6
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letting g(z) =y = y1v1 + - - - + Ynn, we have

P
Yk = Z b jx; (2)
j=1
for all k, 1 < k < n, and for every

Y =y1v1 + -+ Ynn,

letting f(y) = z = zyw1 + - -+ + 2z Wy, we have

5= ik (3)
h=1

for all 4, 1 < i < m. Then if y = g(x) and z = f(y), we have z = f(g(z)),
and in view of (2) and (3), we have

n p
zZ; = alk(z bijj)
= j=1

=
=

aikbijj

M-

1

3

'Mﬁ EM:

<

I
-
=~

I
i

aikbkjmj

I
[
L

a; kbkj)xj.

<
I
—
bl
Il
-

Thus, defining c; ; such that

n
Cij = g a;kby 5,
k=1

for 1 <i<m,and 1< j <p, we have
P
Zi = Z CijZL'j (4)
j=1
Identity (4) shows that the composition of linear maps corresponds to
the product of matrices.
Then given a linear map f: E — F represented by the matrix M(f) =
(a;j) wrt. the bases (u1,...,u,) and (v1,...,vn), by Equation (1),
namely

n
yi:Zaijij I<i<m,
=1

ws-book-1-9x6
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and the definition of matrix multiplication, the equation y = f(z) corre-
sponds to the matrix equation M (y) = M (f)M (x), that is,

n aii ... Gin T
Ym aAm1 -+ Amn Tn
Recall that
a1 @12 ... Q1n o aii a12 A1n
a21 @22 ... Q2q Z2 az1 a22 a2 n
= .| e . +tTy
Am1 Gm2 - Omn Tn am 1 Am 2 Amn
Sometimes, it is necessary to incorporate the bases (ui,...,u,) and
(v1,...,0m,) in the notation for the matrix M (f) expressing f with respect

to these bases. This turns out to be a messy enterprise!
We propose the following course of action:

Definition 3.2. Write U = (uq,...,up) and ¥V = (v1,...,v,,) for the bases
of E and F, and denote by My v (f) the matriz of f with respect to the bases
U and V. Furthermore, write xy, for the coordinates M (x) = (x1,...,%n)
of x € E w.r.t. the basis U and write yy for the coordinates M(y) =
(Y1,---,Ym) of y € F w.r.t. the basis V . Then

y = f(x)

is expressed in matrix form by

yv = My v(f) zu.
When U =V, we abbreviate My, v (f) as My (f).

The above notation seems reasonable, but it has the slight disadvantage
that in the expression My y(f)zy, the input argument x;; which is fed to
the matrix My v (f) does not appear next to the subscript U in My v (f).
We could have used the notation My (f), and some people do that. But
then, we find a bit confusing that } comes before & when f maps from the
space E with the basis U to the space F' with the basis V. So, we prefer to
use the notation My v (f).

Be aware that other authors such as Meyer [Meyer (2000)] use the no-
tation [f]u,v, and others such as Dummit and Foote [Dummit and Foote
(1999)] use the notation M}/ (f), instead of My v (f). This gets worse! You

ws-book-1-9x6
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may find the notation M¥(f) (as in Lang [Lang (1993)]), or y/[f]y, or other
strange notations.

Definition 3.2 shows that the function which associates to a linear map
f:+ E — F the matrix M(f) w.r.t. the bases (u1,...,u,) and (vi,...,vm)
has the property that matrix multiplication corresponds to composition of
linear maps. This allows us to transfer properties of linear maps to matrices.
Here is an illustration of this technique:

Proposition 3.1. (1) Given any matrices A € My, »(K), B € M, ,(K),
and C € My, 4(K), we have

(AB)C = A(BC);
that is, matriz multiplication is associative.

(2) Given any matrices A, B € M,,, n(K), and C,D € M,, ,(K), for all
A € K, we have

(A+ B)C = AC + BC
A(C+ D) =AC+ AD
(AA)C = X(AC)
ANC) = MAC),
so that matriz multiplication -+ My, n,(K)xM,, ,(K) — My, ,(K) is bilinear.
Proof. (1) Every m x n matrix A = (a;;) defines the function fs: K" —
K™ given by
fa(z) = Az,

for all x € K™. It is immediately verified that f is linear and that the
matrix M (fa) representing f4 over the canonical bases in K™ and K™ is
equal to A. Then Formula (4) proves that

M(fao fp)=M(fa)M(fp) = AB,
SO we get
M((fao fg)o fc)=M(fao fp)M(fc)= (AB)C
and
M(fao(feofc))=M(fa)M(fpo fc)= A(BC),

and since composition of functions is associative, we have (f4 o fg)o fo =
fao(fBo fc), which implies that

(AB)C = A(BC).
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(2) It is immediately verified that if f1,fo € Homg(E,F), A,B €
M, n(K), (u1,...,u,) is any basis of E, and (v1,...,v,,) is any basis of
F, then

M(f1+ f2) = M(f1) + M(f2)
fars = fa+ fB.

Then we have

(A+B)C = M(fars)M(fc)
fatBo fo)

(

(

((fa+ fB)o fo))
((

(

fao fe)+(feofc))

fao fe)+ M(fpo fe)

= M(fa)M(fc)+ M(fs)M(fc)
= AC + BC.

I
S £ K

The equation A(C' + D) = AC + AD is proven in a similar fashion, and the
last two equations are easily verified. We could also have verified all the
identities by making matrix computations. O

Note that Proposition 3.1 implies that the vector space M,, (K) of square
matrices is a (noncommutative) ring with unit I,,. (It even shows that
M,,(K) is an associative algebra.)

The following proposition states the main properties of the mapping
f = M(f) between Hom(E, F') and M,,, ,,. In short, it is an isomorphism
of vector spaces.

Proposition 3.2. Given three wvector spaces E, F, G, with respec-
tive bases (u1,...,up), (V1,...,Un), and (wi,...,wy), the mapping
M: Hom(E,F) — M,,, that associates the matriz M(g) to a linear map
g: E — F satisfies the following properties for all x € E, all g,h: E — F,
and all f: FF — G:

where M (x) is the column vector associated with the vector x and M (g(x))
is the column vector associated with g(x), as explained in Definition 3.1.
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Thus, M : Hom(E, F) — M,, ,, is an isomorphism of vector spaces, and
when p = n and the basis (v1,...,vy) is identical to the basis (u1,...,up),
M: Hom(E, E) — M,, is an isomorphism of rings.

Proof. That M(g(z)) = M(g)M (x) was shown by Definition 3.2 or equiv-
alently by Formula (1). The identities M (g + h) = M(g) + M(h) and
M(A\g) = MM (g) are straightforward, and M(f o g) = M(f)M(g) follows
from Identity (4) and the definition of matrix multiplication. The mapping
M: Hom(E, F) — M,,, is clearly injective, and since every matrix defines
a linear map (see Proposition 3.1), it is also surjective, and thus bijective.
In view of the above identities, it is an isomorphism (and similarly for
M : Hom(E, E) — M,,, where Proposition 3.1 is used to show that M, is a
ring). O

In view of Proposition 3.2, it seems preferable to represent vectors from
a vector space of finite dimension as column vectors rather than row vectors.
Thus, from now on, we will denote vectors of R™ (or more generally, of K™)
as column vectors.

3.3 Change of Basis Matrix

It is important to observe that the isomorphism M : Hom(E, F) — M, ,
given by Proposition 3.2 depends on the choice of the bases (u1,...,up)
and (v1,...,v,), and similarly for the isomorphism M : Hom(E, E) — M,
which depends on the choice of the basis (u1,...,u,). Thus, it would be
useful to know how a change of basis affects the representation of a linear
map f: E — F as a matrix. The following simple proposition is needed.

Proposition 3.3. Let E be a vector space, and let (uy,...,u,) be a basis
of E. For every family (vi,...,vn), let P = (a;;) be the matric defined
such that v; = > | a;ju;. The matriz P is invertible iff (v1,...,v,) is a
basis of E.

Proof. Note that we have P = M(f), the matrix associated with the
unique linear map f: EF — E such that f(u;) = v;. By Proposition 2.14, f
is bijective iff (vi,...,v,) is a basis of E. Furthermore, it is obvious that
the identity matrix I,, is the matrix associated with the identity id: £ — F
w.r.t. any basis. If f is an isomorphism, then fo f~' = f~'o f =1id, and
by Proposition 3.2, we get M(f)M(f~') = M(f~Y)M(f) = I, showing
that P is invertible and that M(f~!) = P~L. O

—
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Proposition 3.3 suggests the following definition.

Definition 3.3. Given a vector space E of dimension n, for any two bases
(u1,...,un) and (v1,...,vy,) of E, let P = (a;;) be the invertible matrix
defined such that

n
Vj = E Qi jUs,
i=1

which is also the matrix of the identity id: E — F with respect to the

bases (v1,...,v,) and (u1,...,uy), in that order. Indeed, we express each
id(v;) = v; over the basis (u1,...,uy). The coefficients a1, agj,. .., an; of
v; over the basis (uq,...,u,) form the jth column of the matrix P shown
below:
V1 V2 ... Up
31 a1l a2 ... Gin
Uz | G21 Q22 ... G2n
Up, an1 Qp ... Qpn

The matrix P is called the change of basis matriz from (uy,...,u,) to
(1, vm).

Clearly, the change of basis matrix from (v1,...,v,) to (u1,...,uy,)
is P~1. Since P = (a;;) is the matrix of the identity id: E — E with
respect to the bases (v1,...,v,) and (ug,...,u,), given any vector x € E,
if v = xyuy +- - -+x,u, over the basis (uy,...,u,) and z = 2jv1+- - 42, v,
over the basis (v1,...,v,), from Proposition 3.2, we have

T a1 ... Q1n .Z’/l

Ty Anp1 - Gpnp xh,
showing that the old coordinates (z;) of = (over (ug,...,u,)) are expressed
in terms of the new coordinates (z}) of = (over (v1,...,vy,)).

Now we face the painful task of assigning a “good” notation incorpo-
rating the bases U = (u1,...,u,) and V = (v1,...,v,) into the notation

for the change of basis matrix from U to V. Because the change of basis
matrix from U to V is the matrix of the identity map idg with respect to
the bases V and U in that order, we could denote it by My 1(id) (Meyer
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[Meyer (2000)] uses the notation [I]y ). We prefer to use an abbreviation
for MV,U (ld)

Definition 3.4. The change of basis matrix from U to V is denoted

Py_’u.
Note that
Puy = Py,
Then, if we write 2y = (1,...,2y,) for the old coordinates of x with
respect to the basis U and zy = (2, ...,},) for the new coordinates of

with respect to the basis V, we have

-1
Ty = Pv,z,[ Ty, Ty = PV,M Ty -

The above may look backward, but remember that the matrix My v (f)
takes input expressed over the basis ¢/ to output expressed over the basis
V. Consequently, Py takes input expressed over the basis V to output
expressed over the basis U, and z;; = Py s £y matches this point of view!

@ Beware that some authors (such as Artin [Artin (1991)]) define the
change of basis matrix from ¢ to V as Py = Pglll Under this point
of view, the old basis U is expressed in terms of the new basis V. We find
this a bit unnatural. Also, in practice, it seems that the new basis is often
expressed in terms of the old basis, rather than the other way around.

Since the matrix P = Py, expresses the new basis (v1,. .., v,) in terms
of the old basis (u1, . . ., u,), we observe that the coordinates (x;) of a vector
x vary in the opposite direction of the change of basis. For this reason,
vectors are sometimes said to be contravariant. However, this expression
does not make sense! Indeed, a vector in an intrinsic quantity that does
not depend on a specific basis. What makes sense is that the coordinates
of a vector vary in a contravariant fashion.

Let us consider some concrete examples of change of bases.

Example 3.1. Let E = F = R?, with u; = (1,0), uz = (0,1), v; = (1,1)
and v = (—1,1). The change of basis matrix P from the basis U = (u1,us2)
to the basis V = (v1,v2) is
1-1
=)

Pl ( 1/2 1/2>.

and its inverse is

~1/21/2
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The old coordinates (1, z2) with respect to (u1,us) are expressed in terms
of the new coordinates (x), %) with respect to (vy,vs) by

()= G) G

and the new coordinates (z},z5) with respect to (v1,vs) are expressed in
terms of the old coordinates (z1, z2) with respect to (u1,usz) by

<33’1> - ( 1/2 1/2) <x1>

zh —-1/21/2) \a) "

Example 3.2. Let F = F = R[X]; be the set of polynomials of de-
gree at most 3, and consider the bases U = (1,7,2% 2%) and V =
(B}(2), B (x), B}(x), Bi(x)), where Bi(z),Bi(x), Bj(x), B}(z) are the
Bernstein polynomials of degree 3, given by

ws-book-1-9x6

Bi(z)=(1—-2)* B}x)=3(1-2)%z Bi(x)=3(1-x)z* Bi(x)=2>

By expanding the Bernstein polynomials, we find that the change of basis
matrix Py is given by

1 0 00
33 00

P:

viu 3 630
~1 3 -31

We also find that the inverse of Py is

10 00
11/3 0 0
12/31/30
11 11

-1
P,u—

Therefore, the coordinates of the polynomial 222 — x + 1 over the basis V
are

1 10 00\ /1

2/3| [11/3 0 0f [-1

13|~ l12/31/30] | 0 |’
2 11 11)\2

and so

2 1
203 —x +1 = Bj(x) + ng(x) + ng(x) +2B3(x).
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3.4 The Effect of a Change of Bases on Matrices

The effect of a change of bases on the representation of a linear map is
described in the following proposition.

Proposition 3.4. Let E and F be vector spaces, let U = (uq, ..., u,) and
U = (uy,...,ul) be two bases of E, and let V = (v1,...,vm) and V' =
(vi,...,u),) be two bases of F. Let P = Py 1y be the change of basis matric
from U to U, and let Q = Py be the change of basis matriz from V to
V'. For any linear map f: E — F, let M(f) = My v(f) be the matriz
associated to f w.r.t. the basesU and V, and let M'(f) = My v/ (f) be the

matriz associated to f w.r.t. the bases U’ and V'. We have
M'(f) =Q 'M(f)P,
or more explicitly

My v () = Pty Muy(f) Puru = Pov My v (f) Pur -

Proof. Since f: E — F can be written as f = idg o f oidg, since P is the

matrix of idg w.r.t. the bases (u},...,u},) and (u1,...,u,), and Q! is the
matrix of idp w.r.t. the bases (vi,...,v,) and (v],...,v),), by Proposition
3.2, we have M'(f) = Q' M(f)P. O

As a corollary, we get the following result.

Corollary 3.1. Let E be a vector space, and let U = (uy,...,u,) and
U = (uy,...,ul) be two bases of E. Let P = Py yy be the change of basis
matriz from U to U'. For any linear map f: E — E, let M(f) = My/(f)
be the matriz associated to f w.r.t. the basis U, and let M'(f) = My (f)
be the matrixz associated to f w.r.t. the basis U'. We have
M'(f) =P M(f)P,
or more explicitly,
My (f) = Py Mu(f) Pur st = Puser My (f) Pur -

Example 3.3. Let E = R% U = (ey,ea) where e; = (1,0) and ex = (0,1)
are the canonical basis vectors, let V = (v1,v2) = (e1,e1 — e2), and let

()

The change of basis matrix P = Py from U to V is

11
P=(o)
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and we check that
P l=P

Therefore, in the basis V, the matrix representing the linear map f defined
by A is

S /TN 21\ /1 1\ _[20\
A =P AP_PAP_(O_1 01) o 1)=1o1)=D

a diagonal matrix. In the basis V), it is clear what the action of f is: it is
a stretch by a factor of 2 in the vy direction and it is the identity in the v
direction. Observe that v; and ve are not orthogonal.

What happened is that we diagonalized the matrix A. The diagonal
entries 2 and 1 are the eigenvalues of A (and f), and v; and v are corre-
sponding eigenvectors. We will come back to eigenvalues and eigenvectors
later on.

The above example showed that the same linear map can be represented
by different matrices. This suggests making the following definition:

Definition 3.5. Two n x n matrices A and B are said to be similar iff
there is some invertible matrix P such that

B=PrP AP

It is easily checked that similarity is an equivalence relation. From our
previous considerations, two n X n matrices A and B are similar iff they
represent the same linear map with respect to two different bases. The
following surprising fact can be shown: Every square matrix A is similar to
its transpose A'. The proof requires advanced concepts (the Jordan form
or similarity invariants).

IfU = (ug,...,u,) and V = (v1,...,v,) are two bases of E, the change
of basis matrix

aii ai2 Q1in
a1 022 Q2n
P=Pyy=
anl Anp2 **° Gnp
from (ug,...,u,) to (v1,...,v,) is the matrix whose jth column consists
of the coordinates of v; over the basis (u1,...,u,), which means that

n
vV = E Q5 Usj-
i=1
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It is natural to extend the matrix notation and to express the vector

Un,
Ui
in E™ as the product of a matrix times the vector | : | in E™, namely as
Un
U1 a1l @21 an1 U
Vg a12 @22 an2 U2
Up, Q1n G2n =+ Gpp Up,
but notice that the matrix involved is not P, but its transpose P .
This observation has the following consequence: if i = (uy,...,u,) and
V = (v1,...,vy) are two bases of E and if
U1 Ui
= A ,
Up, Up,
that is,

n
v = E aijuj,
j=1

for any vector w € E, if

n n
w = E Til; = g YrVk,
i=1 k=1

then
x1 Y1
= AT ;
Ty Yn
and so
Y1 T
=(AT)?
Yn Tn

It is easy to see that (AT)™! = (A™)T. Also, if U = (u1,...,up), V =
(v1,...,0), and W = (wy,...,wy,) are three bases of E, and if the change
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of basis matrix from U to V is P = Py and the change of basis matrix
from V to W is @ = Py, then

U1 Uy w1 U1
=Pl =Rt ]
Un, Uy, Wp, Un,
SO
w1 Uy Uy
=Q' P | =27 ],
Wn, Up, Unp,

which means that the change of basis matrix Py from U to W is PQ.
This proves that

Pyy = PyyPwy.

Even though matrices are indispensable since they are the major tool
in applications of linear algebra, one should not lose track of the fact that

linear maps are more fundamental because
they are intrinsic objects that do not depend
on the choice of bases. Consequently, we
advise the reader to try to think in terms of
linear maps rather than reduce everything
to matrices.

In our experience, this is particularly effective when it comes to proving
results about linear maps and matrices, where proofs involving linear maps
are often more “conceptual.” These proofs are usually more general because
they do not depend on the fact that the dimension is finite. Also, instead
of thinking of a matrix decomposition as a purely algebraic operation, it is
often illuminating to view it as a geometric decomposition. This is the case
of the SVD, which in geometric terms says that every linear map can be
factored as a rotation, followed by a rescaling along orthogonal axes and
then another rotation.

After all,

a matriz is a representation of a linear
map,
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and most decompositions of a matrix reflect the fact that with a suitable
choice of a basis (or bases), the linear map is a represented by a matrix
having a special shape. The problem is then to find such bases.

Still, for the beginner, matrices have a certain irresistible appeal, and we
confess that it takes a certain amount of practice to reach the point where
it becomes more natural to deal with linear maps. We still recommend it!
For example, try to translate a result stated in terms of matrices into a
result stated in terms of linear maps. Whenever we tried this exercise, we
learned something.

Also, always try to keep in mind that

linear maps are geometric in nature; they
act on space.

3.5 Summary

The main concepts and results of this chapter are listed below:

e The representation of linear maps by matrices.

e The matriz representation mapping M : Hom(E,F) — M,, , and the
representation isomorphism (Proposition 3.2).

e Change of basis matriz and Proposition 3.4.

3.6 Problems

Problem 3.1. Prove that the column vectors of the matrix A; given by
123
A =237
131
are linearly independent.
Prove that the coordinates of the column vectors of the matrix By over
the basis consisting of the column vectors of A; given by

35 1
Bi=(121
43 —6
are the columns of the matrix P; given by
—27 —61 —41
P = 9 18 9

4 10 8
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Give a nontrivial linear dependence of the columns of P;. Check that
B; = A P;. Is the matrix B; invertible?

Problem 3.2. Prove that the column vectors of the matrix Ay given by

1111
1213
1122
1113

Ay =

are linearly independent.
Prove that the column vectors of the matrix By given by

1-22-2
0-32-3
Ba=13 55 4
3444

are linearly independent.

Prove that the coordinates of the column vectors of the matrix By over
the basis consisting of the column vectors of As are the columns of the
matrix Py given by

2 0 1 -1
-3 1 =21

PB=y 99
1 -1 1 -1

Check that A3 P, = By. Prove that

-1-1-11
2 1 1 =2

-1 _

R= 2 1 2 -3
-1-10 -1

What are the coordinates over the basis consisting of the column vectors of
By of the vector whose coordinates over the basis consisting of the column
vectors of As are (2,-3,0,0)7?

Problem 3.3. Consider the polynomials

Bit)=(1—t)? Bit)=2(1—-tt Bit)=t*
Bit)=(1 -t B}t)=3(1—-t)* B3t)=301-t)t> B3(t) =13

known as the Bernstein polynomials of degree 2 and 3.
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(1) Show that the Bernstein polynomials B2(t), B3 (t), B3(t) are ex-
pressed as linear combinations of the basis (1,t,t2) of the vector space
of polynomials of degree at most 2 as follows:

B2(t) 1-21 1
Bty =1(02 -2 t
B2(t) 00 1 t2

Prove that
B2(t) 4+ Bi(t) + B3(t) = 1.

(2) Show that the Bernstein polynomials Bj(t), B (t), B3(t), B3(t) are
expressed as linear combinations of the basis (1,t,t2,t3) of the vector space
of polynomials of degree at most 3 as follows:

B3 (t) 1-33 -1\ /1
B¥t)y| |03 —6 3 t
Bit)| (oo 3 =3[]|¢
B3(t) 00 0 1 t3

Prove that
B3(t) + B3(t) + B3(t) + B3(t) = 1.

(3) Prove that the Bernstein polynomials of degree 2 are linearly in-
dependent, and that the Bernstein polynomials of degree 3 are linearly
independent.

Problem 3.4. Recall that the binomial coefficient (7,:‘) is given by

m\ m!
k) kl(m — k)l
with 0 < k <m.

For any m > 1, we have the m 4+ 1 Bernstein polynomials of degree m
given by

B (t) = (’Z) (1—t)y™ktk 0<k<m.

(1) Prove that
B(t) = Ji(_”j_k (7)) ()

Use the above to prove that Bj*(t), ..., BJn(t) are linearly independent.
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(2) Prove that
By'(t)+---+ B (t) =1.

(3) What can you say about the symmetries of the (m + 1) x (m + 1)
matrix expressing By, ..., B)" in terms of the basis 1,¢,...,t"7

Prove your claim (beware that in equation (x) the coefficient of t/ in BJ"
is the entry on the (k4 1)th row of the (j+1)th column, since 0 < k,j < m.
Make appropriate modifications to the indices).

What can you say about the sum of the entries on each row of the above
matrix? What about the sum of the entries on each column?

(4) The purpose of this question is to express the ' in terms of the
Bernstein polynomials Bi*(t), ..., Bi(t), with 0 < i < m.

First, prove that

m—1
th=>"#Brit), 0<i<m.
j=0

()= ()

Use the above facts to prove that

Then prove that

m—i (i+j
o=y Lo
j=0

i

Conclude that the Bernstein polynomials Bf*(t), ..., B (t) form a basis
of the vector space of polynomials of degree < m.

Compute the matrix expressing 1,¢,¢? in terms of B2(t), B¥(t), B3(t),
and the matrix expressing 1,¢,¢%,¢3 in terms of Bj(t), B} (t), B3(t), B3(t).

You should find

and

11 11
01/32/31
00 1/31
00 01
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(5) A polynomial curve C(t) of degree m in the plane is the set of points
ct) = <:y68> given by two polynomials of degree < m,

z(t) = apt™ + art™ "t -,

y(t) = Bot™ + Bt 4 By,

with 1 < mq,my < m and «q, 5y # 0.

Prove that there exist m + 1 points by, ..., b,, € R? so that

t
C)= (500) = BE (O + BY @b+ -+ BLOD

for all ¢ € R, with C'(0) = by and C(1) = b,,. Are the points by, ..., bpm_1
generally on the curve?

We say that the curve C' is a Bézier curve and (bo, ..., by,) is the list of
control points of the curve (control points need not be distinct).

Remark: Because B{*(t) + --- + BI(t) = 1 and B(t) > 0 when ¢ €
[0,1], the curve segment C[0,1] corresponding to ¢ € [0, 1] belongs to the
convex hull of the control points. This is an important property of Bézier
curves which is used in geometric modeling to find the intersection of curve
segments. Bézier curves play an important role in computer graphics and
geometric modeling, but also in robotics because they can be used to model
the trajectories of moving objects.

Problem 3.5. Consider the n x n matrix

00 0 ---0 —ay
10 0 - 0—ap
01 0 --0—ap_2
A= :
00 0 -0 —a
00 0 -1 —ay
with a,, # 0.
(1) Find a matrix P such that
AT =P 'AP.

What happens when a,, = 0?7
Hint. First, try n = 3,4,5. Such a matrix must have zeros above the
“antidiagonal,” and identical entries p;; for all 4, j > 0 such that i+j = n+k,
where Kk =1,...,n.

(2) Prove that if a,, = 1 and if ay, ..., a,—1 are integers, then P can be
chosen so that the entries in P~! are also integers.
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Problem 3.6. For any matrix A € M,,(C), let R4 and L4 be the maps
from M, (C) to itself defined so that

La(B) = AB, Ra(B)=BA, forall B € M,(C).

(1) Check that L4 and R4 are linear, and that L4 and Rp commute
for all A, B.
Let ada : M,,(C) — M,,(C) be the linear map given by

ada(B) = La(B) — Ra(B) = AB— BA=[A,B], forall Be M,(C).
Note that [A, B] is the Lie bracket.
(2) Prove that if A is invertible, then L4 and R4 are invertible; in fact,

(La)™' =Ly and (Ra)™! = Ry-1. Prove that if A= PBP~! for some
invertible matrix P, then

La=LpoLgoLy', Ra=Rp'oRpoRp.

(3) Recall that the n? matrices E;; defined such that all entries in Ej;
are zero except the (i,7)th entry, which is equal to 1, form a basis of the
vector space M,,(C). Consider the partial ordering of the E;; defined such
that for ¢ =1,...,n,ifn > j > k > 1, then then E;; precedes E;, and for
j=1,...,n,if 1 <i < h <n, then E;; precedes Ep;.

Draw the Hasse diagram of the partial order defined above when n = 3.

There are total orderings extending this partial ordering. How would
you find them algorithmically? Check that the following is such a total
order:

(1,3), (1,2), (1,1), (2,3), (2,2), (2,1), (3,3), (3,2), (3,1).
(4) Let the total order of the basis (E;;) extending the partial ordering
defined in (2) be given by

(4) < (hF) iff {

Let R be the n x n permutation matrix given by

t=hand j >k
or i < h.

00...01
00...10
R= 000
01...00
10...00

Observe that R~ = R. Prove that for any n > 1, the matrix of L 4 is given
by A ® I,,, and the matrix of R4 is given by I, ® RAT R (over the basis

ws-book-1-9x6
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(F;;) ordered as specified above), where ® is the Kronecker product (also
called tensor product) of matrices defined in Definition 4.4.
Hint. Figure out what are RB(Ezj) = EZJB and LB(Eij) = BEZ'J'.

(5) Prove that if A is upper triangular, then the matrices representing
L4 and R4 are also upper triangular.

Note that if instead of the ordering

Elna Eln—la s 7E117 EQna R EQla R Enna R Enla
that I proposed you use the standard lexicographic ordering
E117E127"'7E1n7E217"'7E2n7"°7E’n17" '7Enn7

then the matrix representing L 4 is still A® I,,, but the matrix representing
Ry is I, ® AT, In this case, if A is upper-triangular, then the matrix of R4
is lower triangular. This is the motivation for using the first basis (avoid
upper becoming lower).
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Chapter 4

Haar Bases, Haar Wavelets,
Hadamard Matrices

In this chapter, we discuss two types of matrices that have applications in
computer science and engineering:

(1) Haar matrices and the corresponding Haar wavelets, a fundamental tool
in signal processing and computer graphics.

2) Hadamard matrices which have applications in error correcting codes,
signal processing, and low rank approximation.

4.1 Introduction to Signal Compression Using Haar
Wavelets

We begin by considering Haar wavelets in R*. Wavelets play an important
role in audio and video signal processing, especially for compressing long
signals into much smaller ones that still retain enough information so that
when they are played, we can’t see or hear any difference.

Consider the four vectors wy, ws, w3, wy given by

1 1 1 0
1 1 -1 0
w1 = 1 wo = 1 w3 = 0 Wy = 1
1 -1 0 -1

Note that these vectors are pairwise orthogonal, so they are indeed linearly
independent (we will see this in a later chapter). Let W = {w1, wa, w3, w4}
be the Haar basis, and let U = {e1, ez, e3,e4} be the canonical basis of R%.
The change of basis matrix W = Py from U to W is given by

1110
11-10
W=1li110 1|
1-10 -1

103
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and we easily find that the inverse of W is given by

140 0 0\ /11 1 1
01/40 0 |[11-1-1
0 01/20 ||1-10 0
0 0 01/2/ \0o0 1 -1

W=

So the vector v = (6,4,5,1) over the basis U becomes ¢ = (c1,¢2,c3,¢4)
over the Haar basis W, with

¢ 1/40 0 0 11 1 1\ /6 4
| [01/40 0 11 —1-1|[4] |1
es] |0 0 1/20 1-10 0] |5] |1
s 0 0 01/2/\00 1 -1/ \1 2

Given a signal v = (v1, va, v3,v4), we first transform v into its coefficients
¢ = (c1,c2,c3,c4) over the Haar basis by computing ¢ = W~tv. Observe
that
U1 + V2 + U3 + Vg

4

Cc1 =

is the overall average value of the signal v. The coeflicient ¢; corresponds
to the background of the image (or of the sound). Then, ¢s gives the coarse
details of v, whereas, c3 gives the details in the first part of v, and ¢4 gives
the details in the second half of v.

Reconstruction of the signal consists in computing v = We. The trick
for good compression is to throw away some of the coefficients of ¢ (set
them to zero), obtaining a compressed signal ¢, and still retain enough
crucial information so that the reconstructed signal ¥ = W¢ looks almost
as good as the original signal v. Thus, the steps are:

inputv — coefficientsc = W~ 1v — compressedé — compressedt = We.

This kind of compression scheme makes modern video conferencing pos-
sible.

It turns out that there is a faster way to find ¢ = W ~'v, without actually
using W~!. This has to do with the multiscale nature of Haar wavelets.

Given the original signal v = (6,4, 5, 1) shown in Figure 4.1, we compute
averages and half differences obtaining Figure 4.2. We get the coefficients
c3 = 1 and ¢4 = 2. Then again we compute averages and half differences
obtaining Figure 4.3. We get the coefficients ¢; = 4 and ¢y = 1. Note that
the original signal v can be reconstructed from the two signals in Figure

ws-book-1-9x6
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Fig. 4.1 The original signal v.

Fig. 4.2 First averages and first half differences.

4.2, and the signal on the left of Figure 4.2 can be reconstructed from the
two signals in Figure 4.3. In particular, the data from Figure 4.2 gives us

V1 + vy U1 — Vg

5+1= 5 + 5 = U1
5_1:1)1—;—02_1}15112:02
3_’_2:’03;’044_”03;’04:”3
3_2:113—;—04_113;04:1}4.

4.2 Haar Bases and Haar Matrices, Scaling Properties of
Haar Wavelets

The method discussed in Section 4.2 can be generalized to signals of any
length 2". The previous case corresponds to n = 2. Let us consider the
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4 4 4 4
- V+ViAviv,
= — > -
4
_ V-|+ V2— V3— V4
r
T 1

Fig. 4.3 Second averages and second half differences.

case n = 3. The Haar basis (w1, ws, w3, wy, ws, we, w7, ws) is given by the

matrix
11 01 0 0 O
11 1 0-10 0 O
11 -10 0 1 0 O
11 -10 0-10 0
W= 1-10 1 0 0 1 O
1-10 1 0 0 -10
1-10 -10 0 0 1
1-10 -10 0 0 —1

The columns of this matrix are orthogonal, and it is easy to see that
Wt = diag(1/8,1/8,1/4,1/4,1/2,1/2,1/2,1/2)W .

A pattern is beginning to emerge. It looks like the second Haar basis vector
wy is the “mother” of all the other basis vectors, except the first, whose
purpose is to perform averaging. Indeed, in general, given

wy = (1,...,1,—1,...,—1),
271,

the other Haar basis vectors are obtained by a “scaling and shifting pro-
cess.” Starting from ws, the scaling process generates the vectors

W3, W5, Wy, -« ., Wj41,--.,Wan-141,

such that wq;+1,1 is obtained from wy; 1 by forming two consecutive blocks
of 1 and —1 of half the size of the blocks in ws;, 1, and setting all other
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entries to zero. Observe that wys; has 27 blocks of 2"/ elements. The
shifting process consists in shifting the blocks of 1 and —1 in wyi;q to
the right by inserting a block of (k — 1)2"=J zeros from the left, with
0<j<n-1landl < k < 2/. Note that our convention is to use
j as the scaling index and k as the shifting index. Thus, we obtain the
following formula for wq; 4 :

0 1<i<(k—1)2n7J
1 (k—1)2" 7 +1<i<(k—1)2" 7 4 2n7i-1
—1 (k=127 4 2n -t 41 <4< k2
0 k27 4+1<i<2m
with0<j<n—1and1<Ek<2/. Of course
wy =(1,...,1).
NS

27L
The above formulae look a little better if we change our indexing slightly

W2 +k (Z) =

by letting k vary from 0 to 29 — 1, and using the index j instead of 27.

Definition 4.1. The vectors of the Haar basis of dimension 2™ are denoted
by

wi, b, b, b, b3, B3 h3, h3, . k. T
where
0 1<i<k2ny
1 k241 <i<k2nd 4 oni—1L
-1 k2ni 4 2nmitl 41 < < (k4 1)277Y
0 (k+1)2"74+1<i<2m,
with0<j<n—1land 0<k< 27 — 1. The 2" x 2™ matrix whose columns
are the vectors

0 1 1 2 2 2 2 J n—1
wi, hY, by, b B2, b3 h3, k3, . Bl RN

(in that order), is called the Haar matriz of dimension 2", and is denoted
by Wi,.

hi (i) =

It turns out that there is a way to understand these formulae better if
we interpret a vector u = (ug,...,u,) as a piecewise linear function over
the interval [0,1).

Definition 4.2. Given a vector u = (ug, ..., Uy ), the piecewise linear func-
tion plf(u) is defined such that

plf (u)(z) = uy, — §x<i, 1<i<m.
m m

ws-book-1-9x6



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning  ws-book-1-9x6
page 108

108 Haar Bases, Haar Wavelets, Hadamard Matrices

In words, the function plf(u) has the value u; on the interval [0,1/m),
the value uz on [1/m,2/m), etc., and the value u,, on the interval [(m —
1)/m,1).
For example, the piecewise linear function associated with the vector
u=(2.4,2.2,2.15,2.05,6.8,2.8,—1.1, - 1.3)
is shown in Figure 4.4.

Fig. 4.4 The piecewise linear function plf(u).

Then each basis vector hfﬂ corresponds to the function
). = plE(h}).
In particular, for all n, the Haar basis vectors
h =wy = (1,...,1,—1,...,—1)

2’!L
yield the same piecewise linear function v given by

1 if 0<z<1/2
Y(r)=4q-1 if 1/2<z<1

0 otherwise,

whose graph is shown in Figure 4.5. It is easy to see that ’z,/)i is given by
the simple expression

Yl(x) =@z —k), 0<j<n—-1,0<k<2 —1.
The above formula makes it clear that wi is obtained from v by scaling
and shifting.

Definition 4.3. The function ¢§ = plf(w;) is the piecewise linear function
with the constant value 1 on [0, 1), and the functions ¢ = plf(h},) together
with ¢ are known as the Haar wavelets.
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1
0 1
-1

Fig. 4.5 The Haar wavelet 1.

Rather than using W ! to convert a vector u to a vector ¢ of coefficients
over the Haar basis, and the matrix W to reconstruct the vector u from
its Haar coefficients ¢, we can use faster algorithms that use averaging and

differencing.
If ¢ is a vector of Haar coefficients of dimension 2", we compute the
sequence of vectors u®, u!, ..., u™ as follows:
u’ = ¢
Wt = o7

W20 — 1) = I (3) + ! (20 + 1)
uw(26) = (i) — ! (20 +14),
for j=0,...,n—1andi=1,...,2/. The reconstructed vector (signal) is
u=u".
If w is a vector of dimension 2", we compute the sequence of vectors

et 0 as follows:
" =u
o=t
A6) = (20— 1) + JT1(20)) /2
A2 +i) = (T2 — 1) — dT1(20)) /2,
for j =n—1,...,0 and i = 1,...,27. The vector over the Haar basis is
c=d".

We leave it as an exercise to implement the above programs in Matlab
using two variables u and ¢, and by building iteratively 27. Here is an
example of the conversion of a vector to its Haar coefficients for n = 3.
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Given the sequence v = (31,29,23,17,—6, —8,—2, —4), we get the se-
quence
& =(31,29,23,17, -6, -8, —2, —4)
9 <3l+29 234+17 —6—-8 —2—4 31—-29 23—17 —6— (—8)

¢ = 5 T 92 ' 9 T 9 9 T 9 T o
2 (4)
2
= (30,20, -7,-3,1,3,1,1)
- 73 7 (=3)
c_< b 2 b bl 2 7173’1’1

0 5-5 25— (—5)
= 5-2,1,3,1,1
C < 2 9 2 b ) ) ) 9 )

=(10,15,5,-2,1,3,1,1)

so ¢ = (10,15,5,—2,1,3,1,1). Conversely, given ¢ = (10,15,5,—2,
1,3,1,1), we get the sequence

u’ = (10,15,5,-2,1,3,1,1)

u' = (104 15,10 — 15,5, -2,1,3,1,1) = (25, 5,5, -2,1,3,1,1)

u? = (25+5,25 5,5+ (-2), 5 —(-2),1,3,1,1)
= (30,20, -7,-3,1,3,1,1)

ud =304+ 1,30 =1,204+3,20 -3, -7+1,-7—-1,-3+1,-3—1)
= (31,29,23,17, -6, —8, —2, —4),

which gives back u = (31,29,23,17, —6, —8, —2, —4).

4.3 Kronecker Product Construction of Haar Matrices

There is another recursive method for constructing the Haar matrix W,
of dimension 2" that makes it clearer why the columns of W, are pairwise
orthogonal, and why the above algorithms are indeed correct (which nobody
seems to prove!). If we split W, into two 2" x 2"~! matrices, then the second
matrix containing the last 2" ~! columns of W, has a very simple structure:
it comnsists of the vector

(1,-1,0,...,0)
—_——

an
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and 2"~ ! — 1 shifted copies of it, as illustrated below for n = 3:

1 0 0 O
-10 0 0
01 0 0
0-10 0
0 010
0 0-10
0 0 0 1
0 0 0 —1

Observe that this matrix can be obtained from the identity matrix Ipn-1,
in our example

1000

0100
L=1o010|

0001

by forming the 2" x 2" ~! matrix obtained by replacing each 1 by the column

1
-1
and each zero by the column vector
0
NE
Now the first half of W,,, that is the matrix consisting of the first 271

columns of W,,, can be obtained from W, _; by forming the 2" x 2n~1
matrix obtained by replacing each 1 by the column vector

1

1 )

-1

-1/
and each zero by the column vector

(o)

vector

each —1 by the column vector

ws-book-1-9x6
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For n = 3, the first half of W3 is the matrix

11 1 0
11 1 0
11 -10
11 -10
1-10 1
1-10 1
1-10 —
1-10 —
which is indeed obtained from
11 1 0
11 -10
We=1110 1
1-10 -1

using the process that we just described.
These matrix manipulations can be described conveniently using a prod-
uct operation on matrices known as the Kronecker product.

Definition 4.4. Given a m x n matrix A = (a;;) and a p X ¢ matrix
B = (bi;), the Kronecker product (or tensor product) A® B of A and B is
the mp X ng matrix

anB CL12B alnB

a21B aB -+ aB
AR B = ) )

am1B 2B - amn B

It can be shown that ® is associative and that
(A® B)(C® D)= AC ® BD
(AeB)"T=AT@BT,

whenever AC' and BD are well defined. Then it is immediately verified
that W, is given by the following neat recursive equations:

e (e () e (1)

with Wo = (1). If we let

nea(3) )
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and for n > 1,

B, 0
Bpi=2("" :
o+ ( 0 12">

then it is not hard to use the Kronecker product formulation of W,, to
obtain a rigorous proof of the equation

W, W, = B,, foralln>1.

n

The above equation offers a clean justification of the fact that the columns
of W,, are pairwise orthogonal.

Observe that the right block (of size 2" x 2"~!) shows clearly how the
detail coefficients in the second half of the vector ¢ are added and subtracted
to the entries in the first half of the partially reconstructed vector after n—1
steps.

4.4 Multiresolution Signal Analysis with Haar Bases

An important and attractive feature of the Haar basis is that it pro-
vides a multiresolution analysis of a signal. Indeed, given a signal w, if
¢ = (e1,...,con) is the vector of its Haar coefficients, the coefficients with
low index give coarse information about wu, and the coefficients with high
index represent fine information. For example, if v is an audio signal cor-
responding to a Mozart concerto played by an orchestra, ¢; corresponds to
the “background noise,” ¢y to the bass, ¢z to the first cello, ¢4 to the second
cello, c5, cg, 7, c7 to the violas, then the violins, etc. This multiresolution
feature of wavelets can be exploited to compress a signal, that is, to use
fewer coefficients to represent it. Here is an example.
Consider the signal

u=(24,2.2,2.15,2.05,6.8,2.8, —1.1,—1.3),
whose Haar transform is
c¢=(2,0.2,0.1,3,0.1,0.05,2,0.1).

The piecewise-linear curves corresponding to v and ¢ are shown in Figure
4.6. Since some of the coefficients in ¢ are small (smaller than or equal to
0.2) we can compress ¢ by replacing them by 0. We get

c2 =(2,0,0,3,0,0,2,0),
and the reconstructed signal is

up =(2,2,2,2,7,3,-1,-1).
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Fig. 4.6 A signal and its Haar transform.

The piecewise-linear curves corresponding to us and ¢y are shown in Figure
4.7.

An interesting (and amusing) application of the Haar wavelets is to the
compression of audio signals. It turns out that if your type load handel in
Matlab an audio file will be loaded in a vector denoted by y, and if you type
sound (y), the computer will play this piece of music. You can convert y to
its vector of Haar coefficients ¢. The length of y is 73113, so first tuncate
the tail of y to get a vector of length 65536 = 2'6. A plot of the signals
corresponding to y and c is shown in Figure 4.8. Then run a program that
sets all coeflicients of ¢ whose absolute value is less that 0.05 to zero. This
sets 37272 coeflicients to 0. The resulting vector ¢y is converted to a signal
ya. A plot of the signals corresponding to ys and ¢y is shown in Figure 4.9.
When you type sound(y2), you find that the music doesn’t differ much
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Fig. 4.7 A compressed signal and its compressed Haar transform.

from the original, although it sounds less crisp. You should play with other
numbers greater than or less than 0.05. You should hear what happens
when you type sound(c). It plays the music corresponding to the Haar
transform c of y, and it is quite funny.

4.5 Haar Transform for Digital Images

Another neat property of the Haar transform is that it can be instantly
generalized to matrices (even rectangular) without any extra effort! This
allows for the compression of digital images. But first we address the issue
of normalization of the Haar coefficients. As we observed earlier, the 2™ x 2™
matrix W, of Haar basis vectors has orthogonal columns, but its columns
do not have unit length. As a consequence, W, is not the inverse of W,
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Fig. 4.8 The signal “handel” and its Haar transform.

but rather the matrix
w-t=D,W]
with

D :diag<2_" 9—n 9—(n-1) 9—(n=1) 9—(n=2)  o9—(n—=2)
n 7\/’ 5 5 5 s s R

20 21 22

2-1 . 2—1).

N——
on—1

Definition 4.5. The orthogonal matrix

H, = W,D?
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Fig. 4.9 The compressed signal “handel” and its Haar transform.

whose columns are the normalized Haar basis vectors, with

1 n n n—1 n—1 n—2 1 1
- diag(rf,2*5,2*7,2*7,2*7,...,2*7,...,2*5,... 2*5)

20 21 22 on—1

is called the normalized Haar transform matriz. Given a vector (signal) u,
we call ¢ = H,u the normalized Haar coefficients of u.

Because H,, is orthogonal, H; ' = H, .
Then a moment of reflection shows that we have to slightly modify the
algorithms to compute H, u and H,c as follows: When computing the
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sequence of u’s, use
W20 — 1) = (W (i) + 0 (27 +1))/V2
wWt(26) = (u (i) — ! (20 + 1))/ V2,
and when computing the sequence of ¢’s, use

(i) = (20 — 1) + d(20) /V2
(2 +i) = (20 — 1) — IT(20)) V2.

Note that things are now more symmetric, at the expense of a division
by V2. However, for long vectors, it turns out that these algorithms are
numerically more stable.

Remark: Some authors (for example, Stollnitz, Derose and Salesin [Stoll-
nitz et al. (1996)]) rescale ¢ by 1/v/2" and u by v/2". This is because the
norm of the basis functions wi is not equal to 1 (under the inner product
(f,9) = fol f(@)g(t)dt). The normalized basis functions are the functions
V20

Let us now explain the 2D version of the Haar transform. We describe
the version using the matrix W,,, the method using H, being identical
(except that H, ' = H,T, but this does not hold for W, 1). Given a 2™ x 2"
matrix A, we can first convert the rows of A to their Haar coefficients using
the Haar transform W, !, obtaining a matrix B, and then convert the
columns of B to their Haar coefficients, using the matrix W,,1. Because
columns and rows are exchanged in the first step,

B =AW, )",
and in the second step C' = W,,! B, thus, we have
C=W 1AW YT =D, W, AW, D,,.

In the other direction, given a 2™ x 2™ matrix C of Haar coeflicients, we
reconstruct the matrix A (the image) by first applying W, to the columns
of C, obtaining B, and then W,| to the rows of B. Therefore

A=W,,CW,.

Of course, we don’t actually have to invert W,,, and W,, and perform matrix
multiplications. We just have to use our algorithms using averaging and
differencing. Here is an example.
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If the data matrix (the image) is the 8 x 8 matrix

64 2 3 6160 6 7 57
9 555412135150 16
1747 46 20 21 43 42 24
40 26 27 37 36 30 31 33
32 34 35 29 28 38 39 25
41 23 22 44 4519 18 48
49 15 14 52 53 11 10 56
8§ 5859 5 4 6263 1

then applying our algorithms, we find that
3250 0 0O 0 0 0 O

0 0 0 0O o0 0 0 O
0 0 0 0 4 —4 4 —4
= 0 0 0 0 4 —4 4 —4
0 005 05 27 —-2523 -21
0 0-05-05-11 9 -7 5
0 005 05 -5 7 -9 11

0 0-05-0.5 21 —23 25 —27

As we can see, C' has more zero entries than A; it is a compressed version of
A. We can further compress C' by setting to 0 all entries of absolute value
at most 0.5. Then we get
325000 0 0 O O

0 000 0O 0O O O
000 4 -4 4 —4
000 4 -4 4 —4
000 27 —25 23 —21
000-11 9 -7 5
000 -5 7 -9 11

0 000 21 —-23 25 =27

We find that the reconstructed image is
63.5 1.5 3.5 61.559.5 5.5 7.5 57.5
9.5 55.553.5 11.5 13.5 51.5 49.5 15.5
17.547.5 45.5 19.5 21.5 43.5 41.5 23.5
39.5 25.5 27.5 37.5 35.5 29.5 31.5 33.5
31.5 33.5 35.5 29.5 27.5 37.5 39.5 25.5 | ’
41.5 23.5 21.5 43.5 45.5 19.5 17.5 47.5
49.5 15.5 13.5 51.5 53.5 11.5 9.5 55.5
7.5 57.559.5 5.5 3.5 61.563.5 1.5

Cy

S O O O O

Ao
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which is pretty close to the original image matrix A.

It turns out that Matlab has a wonderful command, image(X) (also
imagesc (X), which often does a better job), which displays the matrix X
has an image in which each entry is shown as a little square whose gray
level is proportional to the numerical value of that entry (lighter if the value
is higher, darker if the value is closer to zero; negative values are treated as
zero). The images corresponding to A and C are shown in Figure 4.10. The

Fig. 4.10 An image and its Haar transform.

compressed images corresponding to As and Cy are shown in Figure 4.11.
The compressed versions appear to be indistinguishable from the originals!
If we use the normalized matrices H,, and H,, then the equations re-
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Fig. 4.11 Compressed image and its Haar transform.

lating the image matrix A and its normalized Haar transform C are
C =H!AH,
A=H,CH, .

The Haar transform can also be used to send large images progressively
over the internet. Indeed, we can start sending the Haar coefficients of the
matrix C starting from the coarsest coefficients (the first column from top
down, then the second column, etc.), and at the receiving end we can start
reconstructing the image as soon as we have received enough data.

Observe that instead of performing all rounds of averaging and differ-
encing on each row and each column, we can perform partial encoding (and
decoding). For example, we can perform a single round of averaging and
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differencing for each row and each column. The result is an image consist-
ing of four subimages, where the top left quarter is a coarser version of the
original, and the rest (consisting of three pieces) contain the finest detail
coefficients. We can also perform two rounds of averaging and differencing,
or three rounds, etc. The second round of averaging and differencing is
applied to the top left quarter of the image. Generally, the kth round is
applied to the 2mF1=F x 2n+1=F submatrix consisting of the first 2m+1—*
rows and the first 2"71=% columns (1 < k < n) of the matrix obtained
at the end of the previous round. This process is illustrated on the image
shown in Figure 4.12. The result of performing one round, two rounds,

250

Fig. 4.12 Original drawing by Durer.

three rounds, and nine rounds of averaging is shown in Figure 4.13. Since
our images have size 512 x 512, nine rounds of averaging yields the Haar
transform, displayed as the image on the bottom right. The original im-
age has completely disappeared! We leave it as a fun exercise to modify
the algorithms involving averaging and differencing to perform & rounds of
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averaging/differencing. The reconstruction algorithm is a little tricky.

Fig. 4.13 Haar tranforms after one, two, three, and nine rounds of averaging.

A nice and easily accessible account of wavelets and their uses in image
processing and computer graphics can be found in Stollnitz, Derose and
Salesin [Stollnitz et al. (1996)]. A very detailed account is given in Strang
and and Nguyen [Strang and Truong (1997)], but this book assumes a fair
amount of background in signal processing.

We can find easily a basis of 2" x 2" = 22" vectors w;; (2" x 2" matrices)
for the linear map that reconstructs an image from its Haar coefficients, in
the sense that for any 2" x 2™ matrix C of Haar coefficients, the image
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matrix A is given by

gn  gn

A= Z Zcijwij.

i=1 j=1
Indeed, the matrix w;; is given by the so-called outer product
wij = wi(w;) "

Similarly, there is a basis of 2" x 2" = 22" vectors h;; (2" x 2" matrices)
for the 2D Haar transform, in the sense that for any 2™ x 2™ matrix A, its
matrix C' of Haar coefficients is given by

on on
C = E E aijhij.
i=1 j=1
If the columns of W~ are w}, ..., wh., then
o INT
hij = U)Z(’LUJ) .

We leave it as exercise to compute the bases (w;;) and (h;;) for n = 2, and
to display the corresponding images using the command imagesc.

4.6 Hadamard Matrices

There is another famous family of matrices somewhat similar to Haar ma-
trices, but these matrices have entries +1 and —1 (no zero entries).

Definition 4.6. A real n x n matrix H is a Hadamard matriz if h;; = 1
for all 4, j such that 1 <4,j <n and if

H"H =nlI,.

Thus the columns of a Hadamard matrix are pairwise orthogonal. Be-
cause H is a square matrix, the equation H' H = nlI, shows that H is
invertible, so we also have HH " = nl,,. The following matrices are exam-
ple of Hadamard matrices:

11 1 1
11 1-11 -1
HQ_(1—1)’ Hi=1y 1 4

1-1-11
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11 1 1 1 1 1 1
1-11 -11-11 -1
11 -1-11 1 —-1-1
1-1-11 1 -1-11

H:
8 11 1 1 —1-1-1-1

1-11 -1-11 -11
11 -1-1-1-11 1
1-1-11 -11 1 -1

A natural question is to determine the positive integers n for which a
Hadamard matrix of dimension n exists, but surprisingly this is an open
problem. The Hadamard conjecture is that for every positive integer of the
form n = 4k, there is a Hadamard matrix of dimension n.

What is known is a necessary condition and various sufficient conditions.

Theorem 4.1. If H is an n X n Hadamard matriz, then either n = 1,2,
or n = 4k for some positive integer k.

Sylvester introduced a family of Hadamard matrices and proved that
there are Hadamard matrices of dimension n = 2™ for all m > 1 using the
following construction.

Proposition 4.1. (Sylvester, 1867) If H is a Hadamard matriz of dimen-
sion n, then the block matriz of dimension 2n,

H H
H-H)’
1s a Hadamard matriz.

If we start with

11
H =
2 <1_1>a

we obtain an infinite family of symmetric Hadamard matrices usually
called Sylvester-Hadamard matrices and denoted by Hom. The Sylvester—
Hadamard matrices Ho, Hy and Hg are shown on the previous page.

In 1893, Hadamard gave examples of Hadamard matrices for n = 12
and n = 20. At the present, Hadamard matrices are known for all n =
4k <1000, except for n = 668,716, and 892.

Hadamard matrices have various applications to error correcting codes,
signal processing, and numerical linear algebra; see Seberry, Wysocki and
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Wysocki [Seberry et al. (2005)] and Tropp [Tropp (2011)]. For example,
there is a code based on Hss that can correct 7 errors in any 32-bit encoded
block, and can detect an eighth. This code was used on a Mariner spacecraft
in 1969 to transmit pictures back to the earth.

For every m > 0, the piecewise affine functions plf((Ham);) associated
with the 2 rows of the Sylvester-Hadamard matrix Hem are functions on
[0,1] known as the Walsh functions. It is customary to index these 2™
functions by the integers 0,1,...,2™ — 1 in such a way that the Walsh
function Wal(k, t) is equal to the function plf((Ham),;) associated with the
Row i of Hom that contains k changes of signs between consecutive groups
of +1 and consecutive groups of —1. For example, the fifth row of Hg,
namely

(1-1-111-1-11),

has five consecutive blocks of +1s and —1s, four sign changes between these
blocks, and thus is associated with Wal(4, t). In particular, Walsh functions
corresponding to the rows of Hg (from top down) are:

Wal(0,t), Wal(7,t), Wal(3,t), Wal(4,t),
Wal(1,t), Wal(6,t), Wal(2,t), Wal(5,t).

Because of the connection between Sylvester-Hadamard matrices and
Walsh functions, Sylvester—-Hadamard matrices are called Walsh-Hadamard
matrices by some authors. For every m, the 2™ Walsh functions are pair-
wise orthogonal. The countable set of Walsh functions Wal(k,t) for all
m > 0 and all £ such that 0 < k < 2™ — 1 can be ordered in such a way
that it is an orthogonal Hilbert basis of the Hilbert space L2([0,1)]; see
Seberry, Wysocki and Wysocki [Seberry et al. (2005)].

The Sylvester—Hadamard matrix Ham plays a role in various algorithms
for dimension reduction and low-rank matrix approximation. There is a
type of structured dimension-reduction map known as the subsampled ran-
domized Hadamard transform, for short SRHT; see Tropp [Tropp (2011)]
and Halko, Martinsson and Tropp [Halko et al. (2011)]. For £ < n = 2™,
an SRHT matriz is an £ X n matrix of the form

P = \/gRHD,

(1) D is a random n x n diagonal matrix whose entries are independent
random signs.

where

ws-book-1-9x6
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(2) H =n~'2H,, a normalized Sylvester-Hadamard matrix of dimension
n.

(3) R is arandom ¢ X n matrix that restricts an n-dimensional vector to ¢
coordinates, chosen uniformly at random.

It is explained in Tropp [Tropp (2011)] that for any input x such that
|z]|, = 1, the probability that [(HDx);| > \/n~!log(n) for any i is quite
small. Thus HD has the effect of “flattening” the input . The main result
about the SRHT is that it preserves the geometry of an entire subspace of
vectors; see Tropp [Tropp (2011)] (Theorem 1.3).

4.7 Summary

The main concepts and results of this chapter are listed below:

e Haar basis vectors and a glimpse at Haar wavelets.
e Kronecker product (or tensor product) of matrices.
e Hadamard and Sylvester-Hadamard matrices.

e Walsh functions.

4.8 Problems

Problem 4.1. (Haar extravaganza) Consider the matrix

10001 0 0 O
1000—-1 0 0 O
01000 1 O O
01000 -1 0 O
Ws5= 100100 0 1 0
00100 0 -1 0
0001 0 0 O 1
0001 0 0O 0 -1
(1) Show that given any vector ¢ = (¢y, ¢s, ¢3, ¢4, Cs5, Cg, C7, Cg ), the result

W3 3¢ of applying W3 3 to c is
W3¢ = (c1 4 ¢5,¢1 — ¢5,C2 + C, C2 — C,C3 + €7, 03 — €7, €4 + 3, C4 — C8),

the last step in reconstructing a vector from its Haar coeflicients.
(2) Prove that the inverse of W33 is (1/2)W55. Prove that the columns
and the rows of W3 3 are orthogonal.
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(3) Let Wg,g and W3

10 1
10 -1
010
loto
’ 00 0
00 0
00 0
00 0

Haar Bases, Haar Wavelets, Hadamard Matrices

1 be the following matrices:

00000 11000000
00000 1-1000000
10000 00100000
~10000 W 00010000
01000 "* " looo001000
00100 00000100
00010 00000010
00001 00000001

Show that given any vector ¢ = (c1, ¢z, ¢3, ¢4, ¢5, Cg, €7, Cs), the result W3 oc

of applying W3 5 to c is

W3 9c = (c1 + ¢3,¢1 — ¢3,¢2 + €4, €2 — Ca, C5, Cg, C7, Cg),

the second step in reconstructing a vector from its Haar coefficients, and
the result W3 ;¢ of applying W3 ; to c is

WS,lc = (Cl + co,01 — 02703704705706707708)7

the first step in reconstructing a vector from its Haar coefficients.

Conclude that

the Haar matrix

Wy =

Hint. First check that

where

W3 3W3 W31 = W3,

11 1 0 1 0 0 O
11 1 0-10 0 0
11 -10 0 1 0 O
11 -10 0-10 0
1-10 1 0 0 1 0
1-10 1 0 0 —-10
1-10 -10 0 0 1
1-10 -10 0 0 -1
Wa 044
W3 oWs 1 = ’
3,2W31 <0474 I )7
11 1 0
11 -10
Wa=11_10 1

1-10 -1
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(4) Prove that the columns and the rows of W3 o and W3 1 are orthogo-
nal. Deduce from this that the columns of W35 are orthogonal, and the rows
of W5 ! are orthogonal. Are the rows of W3 orthogonal? Are the columns
of W; ! orthogonal? Find the inverse of W3 » and the inverse of Wi ;.

Problem 4.2. This is a continuation of Problem 4.1.

(1) For any n > 2, the 2™ x 2" matrix W, , is obtained form the two

rows

1,0,...,0,1,0,...,0

—— —

2n—1 gn—1

1,0,...,0,—1,0,...,0

jil_/ T
by shifting them 27! — 1 times over to the right by inserting a zero on the
left each time.

Given any vector ¢ = (c1,¢2,...,con), show that W, ,c is the result
of the last step in the process of reconstructing a vector from its Haar
coefficients ¢. Prove that W, } = (1/2)W,] ., and that the columns and the
rows of W, , are orthogonal.

(2) Given a m x n matrix A = (a;;) and a p X ¢ matrix B = (b;;), the
Kronecker product (or tensor product) A ® B of A and B is the mp x ngq
matrix

a11B ap2B -+ a1, B

ang CLQQB agnB
A®B = . .

am1B 2B - amn B

It can be shown (and you may use these facts without proof) that ® is
associative and that

(A® B)(C® D)= AC ® BD
(AeB)"=AT@BT,
whenever AC and BD are well defined.

Check that
1 1
e (e (e ()
1 1
WTL = (Wnl ® <1> 1271—1 ® (_1>) .

and that

ws-book-1-9x6
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Use the above to reprove that
anWnT,n - 2]2n.

m=2(31)= (%)

B, 0
By =2 :
i (0 12n>

W, W, = B,, foralln>1.
(3) The matrix W, ; is obtained from the matrix W;; (1 <i <n —1)

as follows:
W o Wi,i 02i72n,2i
e Ogn_9i 9i  Ton_oi ’
on_gi i lon_o

Let

and for n > 1,

Prove that

It consists of four blocks, where Og: gn_gi and Ogn_g: i are matrices of zeros
and Iyn_o: is the identity matrix of dimension 2" — 2,

Explain what W,, ; does to ¢ and prove that

Wn,an,n—l t Wn,l = an
where W, is the Haar matrix of dimension 2".
Hint. Use induction on k, with the induction hypothesis
W xWng—1-+- Wy = ( Wi 02k’2n_2k> .
02n_2k72k Ion_ok

Prove that the columns and rows of W, ; are orthogonal, and use this
to prove that the columns of W,, and the rows of W, ! are orthogonal. Are
the rows of W,, orthogonal? Are the columns of W, ! orthogonal? Prove

that
1 T
Wil o §Wk,k, OQk’Qn,Qk
n,k 0 T '
on _ 9ok 72k on_ 9ok

Problem 4.3. Prove that if H is a Hadamard matrix of dimension n, then
the block matrix of dimension 2n,

(i1 ).

Problem 4.4. Plot the graphs of the eight Walsh functions Wal(k,t) for
k=0,1,...,7.

is a Hadamard matrix.

Problem 4.5. Describe a recursive algorithm to compute the product
Hom x of the Sylvester—-Hadamard matrix Hom by a vector x € R2™ that
uses m recursive calls.
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Chapter 5

Direct Sums, Rank-Nullity Theorem,
Affine Maps

In this chapter all vector spaces are defined over an arbitrary field K. For
the sake of concreteness, the reader may safely assume that K = R.

5.1 Direct Products

There are some useful ways of forming new vector spaces from older ones.

Definition 5.1. Given p > 2 vector spaces E, ..., E,, the product F' =
Ei x --- x E, can be made into a vector space by defining addition and
scalar multiplication as follows:

(ut, . up) + (V1,0 ., 0p) = (U1 +v1,. .., up +Up)
Aut, . up) = (Aug, ..., Auy),

for all u;,v; € E; and all A € R. The zero vector of Fy x --- x E), is the
p-tuple

where the ith zero is the zero vector of F;.
With the above addition and multiplication, the vector space F' = F; X

-+ X Ej is called the direct product of the vector spaces Ei, ..., Ep.
As a special case, when E; = --- = E, = R, we find again the vector

space F' = RP. The projection maps pr;: Ey x --- x E, = E; given by
pri(u, ..., up) = Uy
are clearly linear. Similarly, the maps in;: E; — E; X --- X E, given by

1nl(uz) = (O,...70,’LLZ',0,...,0)

131
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are injective and linear. If dim(FE;) = n; and if (e, ..., eﬁli) is a basis of E;

fori=1,...,p, then it is easy to see that the ny + - -- 4+ n, vectors
(e1,0,...,0), (e},,0,...,0),

0,...,0,¢,0,...,0), ..., (0,...,0,¢, ,0,...,0),

(0,...,0,€l), ey (0,...,0,€b )
form a basis of E; x -+ x E,, and so

dim(Ey x -+ x B,) = dim(Ey) + - - + dim(E,).

5.2 Sums and Direct Sums
Let us now consider a vector space £ and p subspaces Uy, ...,U, of E. We
have a map
a:Uy x - xU, = FE
given by
a(ug, ..., up) =us + -+ up,

with u; € U; for i = 1,...,p. It is clear that this map is linear, and so its
image is a subspace of E denoted by

U +---+0,
and called the sum of the subspaces Uy, ..., U,. By definition,
Uy +---+7, :{u1—|—"'—|-up\ui€Ui, 1<i<p},

and it is immediately verified that U; + --- 4+ U, is the smallest subspace
of E containing Uy, ...,U,. This also implies that U; + --- 4+ U, does not
depend on the order of the factors U;; in particular,

Ui+ Uz =U; + Uy
Definition 5.2. For any vector space I and any p > 2 subspaces Uy, ..., U,

of F, if the map a: Uy x --- x U, — E defined above is injective, then the
sum U; + --- + U, is called a direct sum and it is denoted by

U@ U,
The space F is the direct sum of the subspaces U; if
E=U,® - -®U,.
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If the map a is injective, then by Proposition 2.13 we have Kera =
{(0,...,0)} where each 0 is the zero vector of E, which means that if
——
P
u; € U; fori=1,...,pand if
Uy + - +up, =0,
then (u1,...,up) = (0,...,0), that is, u1 = 0,...,u, = 0.

Proposition 5.1. If the map a: Uy x --- x U, — E is injective, then every
u €Uy +---+ U, has a unique expression as a sum

U =ur+ -+ Up,
with u; € Uy, fori=1,...,p.
Proof. If
U=v1+- v, =w + -+ wp,
with v;, w; € U;, for i =1,...,p, then we have
wy — v+ Fw, —vp =0,

and since v;, w; € U; and each U; is a subspace, w; —v; € U;. The injectivity
of a implies that w; — v; = 0, that is, w; = v; for i = 1,...,p, which shows
the uniqueness of the decomposition of . O

Proposition 5.2. If the map a: Uy x --- x U, = E is injective, then any
D nonzero vectors ui, ..., u, with u; € U; are linearly independent.

Proof. To see this, assume that
A1u1—|—~-—|—/\pup:0

for some \; € R. Since u; € U; and U; is a subspace, \ju; € U;, and the
injectivity of a implies that A\;u; = 0, for i« = 1,...,p. Since u; # 0, we
must have \; = 0 for ¢ = 1,...,p; that is, uy,...,u, with u; € U; and
u; # 0 are linearly independent. O

Observe that if a is injective, then we must have U; NU; = (0) whenever
i # j. However, this condition is generally not sufficient if p > 3. For
example, if £ = R? and U the line spanned by e; = (1,0), U, is the
line spanned by d = (1,1), and Us is the line spanned by e = (0, 1), then
UrNUs; =U1NU; =UaNUs = {(0,0)}, but Uy + Uy = Uy 4+ Us = Uy + Uz =

ws-book-1-9x6
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Fig. 5.1 The linear subspaces Uy, Uz, and Us illustrated as lines in R2.

R2, so Uy + U, + Us is not a direct sum. For example, d is expressed in two
different ways as

d=(1,1) = (1,0) + (0,1) = 1 + e».

See Figure 5.1.

As in the case of a sum, Uy @& Uy = Uy @ U;. Observe that when the
map a is injective, then it is a linear isomorphism between Uy x --- x U,
and Uy @ --- @ Up,. The difference is that Uy x --- x U, is defined even if
the spaces U; are not assumed to be subspaces of some common space.

If £ is a direct sum £ = U; @ --- ® Up, since any p nonzero vectors
Uy, ..., up with u; € U; are linearly independent, if we pick a basis (ux)rer;
in Uj for j =1,...,p, then (u;);er with I = I; U---UI, is a basis of E.
Intuitively, E is split into p independent subspaces.

Conversely, given a basis (u;);es of E, if we partition the index set I as
I =1, U---Ulp,, then each subfamily (ux)rer, spans some subspace U; of
E, and it is immediately verified that we have a direct sum

E:Ul@"'@Up-

Definition 5.3. Let f: F — E be a linear map. For any subspace U of E,
if f(U) CU we say that U is invariant under f.
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Assume that E is finite-dimensional, a direct sum £ = U; & --- ® U,
and that each Uj is invariant under f. If we pick a basis (u;);er as above
with [ = I; U---U I, and with each (uy)rer; a basis of Uy, since each Uj
is invariant under f, the image f(uy) of every basis vector uy with k € I;
belongs to Uj, so the matrix A representing f over the basis (u;)icr is a
block diagonal matrix of the form

Ay

Ap
with each block A; a d; x dj-matrix with d; = dim(U;) and all other entries
equal to 0. If d; =1 for j =1,...,p, the matrix A is a diagonal matrix.
There are natural injections from each U; to E denoted by in;: U; — E.

Now, if p = 2, it is easy to determine the kernel of the map a: Uy x Uy —
E. We have

a(u1,u2) =ui+uy=0 iff w; = —ug, w1 € Uy, us € Us,
which implies that
Kera = {(u,—u) | u € Uy NUs}.

Now, U;NUs is a subspace of E and the linear map u — (u, —u) is clearly an
isomorphism between U; N Uy and Ker a, so Ker a is isomorphic to U; NUs.
As a consequence, we get the following result:

Proposition 5.3. Given any vector space E and any two subspaces Uy and
Us, the sum Uy 4+ Uy is a direct sum iff Uy N Uz = (0).

An interesting illustration of the notion of direct sum is the decompo-
sition of a square matrix into its symmetric part and its skew-symmetric
part. Recall that an n x n matrix A € M,, is symmetric if AT = A, skew
-symmetric if AT = —A. Tt is clear that

S(n)={AeM, | AT =A} and Skew(n)={AcM,|AT = A}

are subspaces of M,,, and that S(n) N Skew(n) = (0). Observe that for
any matrix A € M,,, the matrix H(A) = (A + AT)/2 is symmetric and the
matrix S(A) = (A — AT)/2 is skew-symmetric. Since

_A+AT A-AT

A= H(A) + 5(A) = —5— + =——,
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we see that M,, = S(n) + Skew(n), and since S(n) N Skew(n) = (0), we
have the direct sum

M,, = S(n) ® Skew(n).

Remark: The vector space Skew(n) of skew-symmetric matrices is also
denoted by so(n). It is the Lie algebra of the group SO(n).

Proposition 5.3 can be generalized to any p > 2 subspaces at the expense
of notation. The proof of the following proposition is left as an exercise.

Proposition 5.4. Given any vector space E and any p > 2 subspaces
Ui,..., Uy, the following properties are equivalent:

(1) The sum Uy +---+ U, is a direct sum.
(2) We have

Um( ZP: Uj)(()), i=1,...,p.

=155
(8) We have

1—1
U; N (ZUJ) =(0), i=2,...,p.
j=1

Because of the isomorphism
U x---xUy=U® - dU,
we have

Proposition 5.5. If E is any vector space, for any (finite-dimensional)
subspaces Uy, ..., Up of E, we have

dim(U; @ --- ® Up) = dim(Uq) + - - - + dim(Up,).
If £ is a direct sum
E=U,® - -®U,
since every u € E can be written in a unique way as
U=uy+ -+ U

with u; € U; for i = 1...,p, we can define the maps 7;: E — U, called
projections, by

7TZ(U,) = 7Ti('LL1 + -+ Up) = U;.

ws-book-1-9x6
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It is easy to check that these maps are linear and satisfy the following

properties:
{miﬁzj
Tj 0T = o .
0 ifi#j,
T+ -+ =idg.
For example, in the case of the direct sum
M,, = S(n) @ Skew(n),
the projection onto S(n) is given by
A+ AT

m(A4) = H(4) = =55

and the projection onto Skew(n) is given by

_ T
m(d) =54y = A=A

2
Clearly, H(A) + S(A) = A, H(H(A)) = H(A), S(S(A)) = S(A), and
H(S(A)) =S(H(A)) =0.
A function f such that f o f = f is said to be idempotent. Thus, the
projections m; are idempotent. Conversely, the following proposition can
be shown:

Proposition 5.6. Let E be a vector space. For any p > 2 linear maps

fi ifi=]
fiofi= o
0 fi#j,
it + fp=idg,
then if we let U; = f;(F), we have a direct sum
E=U,® - ®U,

We also have the following proposition characterizing idempotent linear
maps whose proof is also left as an exercise.

Proposition 5.7. For every vector space E, if f: E — E is an idempotent
linear map, i.e., fo f = f, then we have a direct sum

E=Ker f®Imf,
so that f is the projection onto its image Im f.

We are now ready to prove a very crucial result relating the rank and
the dimension of the kernel of a linear map.
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5.3 The Rank-Nullity Theorem; Grassmann’s Relation

We begin with the following theorem which shows that given a linear map
f+ E — F, its domain FE is the direct sum of its kernel Ker f with some
isomorphic copy of its image Im f.

Theorem 5.1. (Rank-nullity theorem) Let f: E — F be a linear map with
finite image. For any choice of a basis (f1,..., f) of Im f, let (uy,...,u,)
be any vectors in E such that f; = f(u;), fori=1,....r. If s: Im f - F
is the unique linear map defined by s(f;) = w;, fori =1,...,r, then s is
injective, f o s =1id, and we have a direct sum

E=Kerf®lms

as illustrated by the following diagram.:

!
Kerf —— E=Ker f@Ims Imf CF.

See Figure 5.2. As a consequence, if E is finite-dimensional, then

dim(F) = dim(Ker f) + dim(Im f) = dim(Ker f) 4 rk(f).

s (f(u)) = (1,1,2)

f(x,y,2) = (xy)

f,= f(uy) = (0, 1) £ = (1.1)

N
r
f,="1(uq) = (1,0)

s(x,y) = (X,y,x+y)

Fig. 5.2 Let f: E — F be the linear map from R3 to R? given by f(z,y,2) = (z,9).
Then s: R? — R3 is given by s(z,y) = (x,y, x4+ y) and maps the pink R? isomorphically
onto the slanted pink plane of R3 whose equation is —z —y + z = 0. Theorem 5.1 shows
that R? is the direct sum of the plane —xz — y + z = 0 and the kernel of f which the
orange z-axis.
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Proof. The vectors uq, ..., u, must be linearly independent since otherwise
we would have a nontrivial linear dependence

/\1U1+"'+>\TUTZO,
and by applying f, we would get the nontrivial linear dependence
0= M f(un) + o A () = Mufy 4+ A,

contradicting the fact that (fi,..., fr) is a basis. Therefore, the unique
linear map s given by s(f;) = u;, for i = 1,...,7, is a linear isomorphism
between Im f and its image, the subspace spanned by (u1,...,u,). It is
also clear by definition that f os =1id. For any u € E, let

h=u—(so f)(u).

Since f o s = id, we have
f(h) = flu—=(so f)(w) = f(u) = (fesof)(u)
= f(u) = (ido f)(u) = f(u) = f(u) =0,
which shows that h € Ker f. Since h = u — (s o f)(u), it follows that
u=h+s(f(u),

with h € Ker f and s(f(u)) € Im s, which proves that

E =Ker f +Ims.

Now if u € Ker f NIm s, then u = s(v) for some v € F and f(u) = 0 since
u € Ker f. Since u = s(v) and f o s =id, we get

0=f(u)=f(s(v)) = v,

and so u = s(v) = s(0) = 0. Thus, Ker f NIm s = (0), which proves that
we have a direct sum

E =Ker f ®Ims.
The equation
dim(E) = dim(Ker f) + dim(Im f) = dim(Ker f) + rk(f)

is an immediate consequence of the fact that the dimension is an additive
property for direct sums, that by definition the rank of f is the dimen-
sion of the image of f, and that dim(Ims) = dim(Im f), because s is an
isomorphism between Im f and Im s. O

ws-book-1-9x6
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Remark: The statement E = Ker f @& Im s holds if F has infinite dimen-
sion. It still holds if Im (f) also has infinite dimension.

Definition 5.4. The dimension dim(Ker f) of the kernel of a linear map
f is called the nullity of f.

We now derive some important results using Theorem 5.1.

Proposition 5.8. Given a vector space E, if U and V are any two finite-
dimensional subspaces of E, then

dim(U) + dim(V) = dim(U + V) + dim(U N V),

an equation known as Grassmann’s relation.
Proof. Recall that U 4+ V is the image of the linear map

a:UxV = FE
given by

a(u,v) =u+wv,
and that we proved earlier that the kernel Ker a of a is isomorphic to UNV.
By Theorem 5.1,

dim(U x V) = dim(Kera) + dim(Im a),

but dim(U x V) = dim(U) + dim(V), dim(Kera) = dim(U N V), and
Ima = U + V, so the Grassmann relation holds. O

The Grassmann relation can be very useful to figure out whether two
subspace have a nontrivial intersection in spaces of dimension > 3. For
example, it is easy to see that in R®, there are subspaces U and V with
dim(U) = 3 and dim(V) = 2 such that U N'V = (0); for example, let U be
generated by the vectors (1,0,0,0,0),(0,1,0,0,0), (0,0,1,0,0), and V be
generated by the vectors (0,0,0,1,0) and (0,0,0,0,1). However, we claim
that if dim(U) = 3 and dim(V) = 3, then dim(U NV) > 1. Indeed, by the
Grassmann relation, we have

dim(U) + dim(V) = dim(U + V) + dim(U N V),
namely
3+3=6=dim(U+ V) +dim(UNV),
and since U + V is a subspace of R®, dim(U + V') < 5, which implies

6 <5+ dim(U N V),
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that is 1 < dim(U NV).

As another consequence of Proposition 5.8, if U and V are two hy-
perplanes in a vector space of dimension n, so that dim(U) = n — 1 and
dim(V) = n — 1, the reader should show that

dim(UNV)>n-2,
and so, if U # V, then
dim(UNV)=n-2.

Here is a characterization of direct sums that follows directly from The-
orem 5.1.

Proposition 5.9. If Ui,...,U, are any subspaces of a finite dimensional
vector space E, then

dim(Uy + -+ + Up) < dim(U1) + - - - + dim(U,),
and

dim(U; + - - + Up) = dim(Un) + - - - + dim(Up,)
iff the U;s form a direct sum Uy @ - -+ @ Up,.
Proof. If we apply Theorem 5.1 to the linear map

a:Uy x---xU,=U+---+0U,
given by a(ui,...,up) =us +--- + up, we get
dim(Uy + -+ Up) = dim(U; x --- x Up) — dim(Kera)
= dim(U;) + - - - + dim(U,) — dim(Ker a),

so the inequality follows. Since a is injective iff Ker a = (0), the U;s form a
direct sum iff the second equation holds. O

Another important corollary of Theorem 5.1 is the following result:

Proposition 5.10. Let E and F be two vector spaces with the same finite
dimension dim(F) = dim(F) = n. For every linear map f: E — F, the
following properties are equivalent:

(a) f is bijective.

(b) f is surjective.

(c) f is injective.

(d) Ker f = (0).
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Proof. Obviously, (a) implies (b).
If f is surjective, then Im f = F', and so dim(Im f) = n. By Theorem
5.1,

dim(E) = dim(Ker f) + dim(Im f),

and since dim(E) = n and dim(Im f) = n, we get dim(Ker f) = 0, which
means that Ker f = (0), and so f is injective (see Proposition 2.13). This
proves that (b) implies (c).

If f is injective, then by Proposition 2.13, Ker f = (0), so (c) implies
(d).
Finally, assume that Ker f = (0), so that dim(Ker f) = 0 and f is
injective (by Proposition 2.13). By Theorem 5.1,

dim(E) = dim(Ker f) + dim(Im f),
and since dim(Ker f) = 0, we get
dim(Im f) = dim(F) = dim(F),

which proves that f is also surjective, and thus bijective. This proves that
(d) implies (a) and concludes the proof. O

One should be warned that Proposition 5.10 fails in infinite dimension.
A linear map may be injective without being surjective and vice versa.

Here are a few applications of Proposition 5.10. Let A be an n x n
matrix and assume that A some right inverse B, which means that B is an
n X n matrix such that

AB=1.

The linear map associated with A is surjective, since for every u € R™, we
have A(Bu) = u. By Proposition 5.10, this map is bijective so B is actually
the inverse of A; in particular BA = I.

Similarly, assume that A has a left inverse B, so that

BA=1.

This time the linear map associated with A is injective, because if Au =
0, then BAu = B0 = 0, and since BA = [ we get u = 0. Again, by
Proposition 5.10, this map is bijective so B is actually the inverse of A; in
particular AB = I.

Now assume that the linear system Axz = b has some solution for every
b. Then the linear map associated with A is surjective and by Proposition
5.10, A is invertible.
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Finally assume that the linear system Az = b has at most one solution
for every b. Then the linear map associated with A is injective and by
Proposition 5.10, A is invertible.

We also have the following basic proposition about injective or surjective
linear maps.

Proposition 5.11. Let E and F be vector spaces, and let f: E — F be a
linear map. If f: E — F is injective, then there is a surjective linear map
r: ' — FE called a retraction, such that r o f = idg. See Figure 5.3. If
f: E — F is surjective, then there is an injective linear map s: F — E
called a section, such that f o s =idp. See Figure 5.2.

Fig. 5.3 Let f: E — F be the injective linear map from R? to R? given by f(z,y) =
(x,v,0). Then a surjective retraction is given by r: R® — R2? is given by r(z,y,z) =
(z,y). Observe that r(vi1) = u1, r(v2) = uz, and r(vs) =0 .

Proof. Let (u;);er be a basis of E. Since f: E — F is an injective linear
map, by Proposition 2.14, (f(u;))ier is linearly independent in F. By
Theorem 2.1, there is a basis (v;)jes of F, where I C J, and where v; =
f(w;), for all ¢ € I. By Proposition 2.14, a linear map r: F' — E can be
defined such that 7(v;) = u;, for alli € I, and r(v;) = w for all j € (J —1),
where w is any given vector in F, say w = 0. Since r(f(u;)) = u; for all
i € I, by Proposition 2.14, we have r o f = idg.

Now assume that f: E — F is surjective. Let (v;);cs be a basis of
F. Since f: E — F is surjective, for every v; € F, there is some u; € £
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such that f(u;) = v;. Since (vj)jes is a basis of F', by Proposition 2.14,
there is a unique linear map s: F' — FE such that s(v;) = u;. Also since
f(s(vj)) = v;, by Proposition 2.14 (again), we must have fos=idp. O

Remark: Proposition 5.11 also holds if F or F has infinite dimension.
The converse of Proposition 5.11 is obvious.
The notion of rank of a linear map or of a matrix important, both
theoretically and practically, since it is the key to the solvability of linear
equations. We have the following simple proposition.

Proposition 5.12. Given a linear map f: E — F, the following properties
hold:

(i) tk(f) + dim(Ker f) = dim(E).
(i1) rk(f) < min(dim(E), dim(F")).

Proof. Property (i) follows from Proposition 5.1. As for (ii), since Im f is
a subspace of F, we have rk(f) < dim(F), and since rk(f) + dim(Ker f) =
dim(E), we have rk(f) < dim(F). O

The rank of a matrix is defined as follows.

Definition 5.5. Given a m x n-matrix A = (a;;), the rank rk(A) of the
matrix A is the maximum number of linearly independent columns of A
(viewed as vectors in R™).

In view of Proposition 2.8, the rank of a matrix A is the dimension of
the subspace of R™ generated by the columns of A. Let F and F' be two
vector spaces, and let (uq,...,u,) be a basis of E, and (vy,...,v,) a basis
of F. Let f: E — F be a linear map, and let M (f) be its matrix w.r.t.
the bases (uy,...,u,) and (v1,...,vs). Since the rank rk(f) of f is the
dimension of Im f, which is generated by (f(u1),..., f(un)), the rank of f is
the maximum number of linearly independent vectors in (f(u1), ..., f(us)),
which is equal to the number of linearly independent columns of M(f),
since F' and R™ are isomorphic. Thus, we have tk(f) = rk(M(f)), for
every matrix representing f.

We will see later, using duality, that the rank of a matrix A is also equal
to the maximal number of linearly independent rows of A.
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5.4 Affine Maps

We showed in Section 2.7 that every linear map f must send the zero vector
to the zero vector; that is,

£(0) = 0.

Yet for any fixed nonzero vector u € E (where E is any vector space), the
function ¢, given by

ty(x)=x+u, for all z€F

shows up in practice (for example, in robotics). Functions of this type are
called translations. They are not linear for u # 0, since ¢,(0) = 0+ u = u.

More generally, functions combining linear maps and translations occur
naturally in many applications (robotics, computer vision, etc.), so it is
necessary to understand some basic properties of these functions. For this,
the notion of affine combination turns out to play a key role.

Recall from Section 2.7 that for any vector space E, given any family
(ui)ier of vectors u; € E, an affine combination of the family (u;);cs is an

expression of the form
Z)\iui with Z )\z = 1,
icl iel

where (\;)icr is a family of scalars.

A linear combination places no restriction on the scalars involved, but
an affine combination is a linear combination with the restriction that the
scalars A\; must add up to 1. Nevertheless, a linear combination can always
be viewed as an affine combination using the following trick involving 0.
For any family (u;);cr of vectors in F and for any family of scalars (A\;);er,
we can write the linear combination ), _; A\ju; as an affine combination as
follows:

Z)\Zul = Z)\zul + (1 — Z)\Z)O

icl iel icl
Affine combinations are also called barycentric combinations.

Although this is not obvious at first glance, the condition that the scalars

A; add up to 1 ensures that affine combinations are preserved under trans-
lations. To make this precise, consider functions f: E — F, where E and
F are two vector spaces, such that there is some linear map h: E — F and
some fixed vector b € F' (a translation vector), such that

f(z) =h(x)+b, foral zeckE.
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The map f given by

1 8/5 —6/5\ [x1 1
'_>
(1’2) (3/10 2/5 ) + 1
is an example of the composition of a linear map with a translation.
We claim that functions of this type preserve affine combinations.

Proposition 5.13. For any two vector spaces E and F, given any function
f: E — F defined such that

f(x)=h(x)+0b, foral ze€kFE,

where h: E — F is a linear map and b is some fized vector in F', for every
affine combination Y ., Nu; (with Y. X = 1), we have

f ( > /\u> =) Nif(u).

i€l i€l
In other words, f preserves affine combinations.

Proof. By definition of f, using the fact that h is linear and the fact that
Y icr Ai = 1, we have

f(z)\iui) = h(Z)\iul) +b
S icl
= Aih(u;) + 1b
el

= " Nih(u;) + (Z )\i> b

icl el

=D Ailh(ui) +b)
iel
icl
as claimed. O

Observe how the fact that >, ; A\; = 1 was used in a crucial way in
Line 3. Surprisingly, the converse of Proposition 5.13 also holds.

Proposition 5.14. For any two vector spaces E and F, let f: E — F
be any function that preserves affine combinations, i.e., for every affine
combination Y. Nju; (with .. A = 1), we have

i€l icl

f ( > Au) =" Nif(ui).

iel i€l
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Then for any a € E, the function h: E— F given by
hz) = fla+x) = f(a)
18 a linear map independent of a, and
fla+x)=h(z)+ f(a), forall xze€kFE.
In particular, for a =0, if we let ¢ = f(0), then
f(x)=h(x)+e, forall ze€E.
Proof. First, let us check that h is linear. Since f preserves affine combi-

nations and since a +u+v = (a4 u) + (a +v) — a is an affine combination
(I1+1—1=1), we have

h(u+v) = f(a+u+v)— f(a)
= fl(a+u)+(a+v) —a)— f(a)
= fla+u)+ fla+v)— f(a) - f(a)
= flatu) = f(a) + f(a+v) — f(a)
= h(u) + h(v).

This proves that
h(u+wv) = h(u) + h(v), u,v € E.

Observe that a + Au = A(a + u) + (1 — A)a is also an affine combination
(A+1—=X=1), so we have

h(Au) = fla+ M) — f(a)

= f(AMa+u)+ (1= A)a) - f(a)

= AM(a+u)+ (1 =N)f(a) - fa)

= A(f(a+u)— f(a))

= Ah(u).
This proves that

h(Au) = Ah(u), we E, XeR.

Therefore, h is indeed linear.

For any b € FE, since b+ u = (a +u) — a + b is an affine combination
(1-141=1), we have

f(o+u) = f(b)

fla+u) —a+b) - f(b)
fla+u)—f(a)+ f(b) — f(b)
f(a+u)_f(a)7
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which proves that for all a,b € F,

Jo+u) - () = fla+u) - fa), ueE.

Therefore h(x) = f(a + u) — f(a) does not depend on a, and it is obvious
by the definition of i that

fla+2)=h(z)+ f(a), forall ze€kE.

For a = 0, we obtain the last part of our proposition. O

We should think of a as a chosen origin in E. The function f maps
the origin @ in E to the origin f(a) in F. Proposition 5.14 shows that the
definition of i does not depend on the origin chosen in E. Also, since

fx)=h(x)+¢c, forall ze€FE

for some fixed vector ¢ € F, we see that f is the composition of the linear
map h with the translation ¢, (in F).
The unique linear map h as above is called the linear map associated

with f, and it is sometimes denoted by ?
In view of Propositions 5.13 and 5.14, it is natural to make the following
definition.

Definition 5.6. For any two vector spaces E and F, a function f: £ — F
is an affine map if f preserves affine combinations, i.e., for every affine

combination Ai = 1), we have

i€l i€l

f ( > /\u> =3 Nif(u).

i€l il
Equivalently, a function f: E — F is an affine map if there is some linear
map h: E — F (also denoted by ?) and some fixed vector ¢ € F' such that

fx)y="h(z)+ec, forall zekFE.

Note that a linear map always maps the standard origin 0 in F to the
standard origin 0 in . However an affine map usually maps 0 to a nonzero
vector ¢ = f(0). This is the “translation component” of the affine map.

When we deal with affine maps, it is often fruitful to think of the el-
ements of E and F' not only as vectors but also as points. In this point
of view, points can only be combined using affine combinations, but vec-
tors can be combined in an unrestricted fashion using linear combinations.
We can also think of u 4+ v as the result of translating the point u by the
translation t,. These ideas lead to the definition of affine spaces.
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The idea is that instead of a single space F, an affine space consists
of two sets E and ﬁ, where F is just an unstructured set of points, and
E) is a vector space. Furthermore, the vector space ﬁ acts on E. We can
think of ﬁ as a set of translations specified by vectors, and given any point

a € E and any vector (translation) u € ﬁ7 the result of translating a by u
is the point (not vector) a + u. Formally, we have the following definition.

Definition 5.7. An affine space is either the degenerate space reduced to
the empty set, or a triple <E, ﬁ7 +> consisting of a nonempty set E (of
points), a vector space ﬁ (of translations, or free vectors), and an action

+: Ex ﬁ — E, satisfying the following conditions.

(Al) a+0 = aq, for every a € E.
(A2) (a+u)+v=a+(u+wv), for every a € E, and every u,v € E.

(A3) For any two points a,b € E, there is a unique u € ﬁ such that
a+u="o.

The unique vector u € ﬁ such that a+wu = b is denoted by ab, or
sometimes by ab, or even by b — a. Thus, we also write

b:a—f—%
(or b=a-+ab, or even b =a+ (b — a)).

It is important to note that adding or rescaling points does not make

sense!l However, using the fact that ﬁ acts on F is a special way (this action
is transitive and faithful), it is possible to define rigorously the notion of
affine combinations of points and to define affine spaces, affine maps, etc.
However, this would lead us to far afield, and for our purposes it is enough
to stick to vector spaces and we will not distinguish between vector addition
+ and translation of a point by a vector +. Still, one should be aware that
affine combinations really apply to points, and that points are not vectors!

If F and F are finite dimensional vector spaces with dim(E) = n and
dim(F') = m, then it is useful to represent an affine map with respect to
bases in E in F'. However, the translation part ¢ of the affine map must be
somehow incorporated. There is a standard trick to do this which amounts
to viewing an affine map as a linear map between spaces of dimension n+ 1
and m + 1. We also have the extra flexibility of choosing origins a € E and
be L.
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Let (uq,...,u,) be a basis of E, (vy,...,v,) be a basis of F, and let
a € F and b € F be any two fixed vectors viewed as origins. Our affine
map f has the property that if v = f(u), then

v—b=fla+u—a)—b= f(a) — b+ h(u—a),

where the last equality made use of the fact that h(z) = f(a + x) — f(a).
Ifwelet y=v—b, x =u—a,and d = f(a) — b, then

y=h(z)+d, z€E.
Over the basis U = (uq, ..., uy), we write

T =T1Ul + -+ TpUp,
and over the basis V = (v1,...,0y,), we write

Y=Y101+ "+ YmUm,

d=dyvi + -+ dpvp,.
Then since

y = h(z) +d,

if we let A be the m x n matrix representing the linear map h, that is,
the jth column of A consists of the coordinates of h(u;) over the basis
(v1,...,Vm), then we can write

yy = Axy + dy.

where 2y = (z1,...,2,) ", y» = (W1, Ym) ", and dy = (di,...,dm)".
The above is the matrix representation of our affine map f with respect to
(a, (u1,...,uy)) and (b, (v1,...,0m)).
The reason for using the origins a and b is that it gives us more flexibility.
In particular, we can choose b = f(a), and then f behaves like a linear map
with respect to the origins a and b = f(a).
When E = F, if there is some a € E such that f(a) = a (a is a fized
point of f), then we can pick b = a. Then because f(a) = a, we get
v=f(u) = flat+u—a)=f(a)+h(u—a)=a+h(u—a),
that is
v—a=h(u-—a).
With respect to the new origin a, if we define x and y by
r=u—a

Yy=v—a,
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then we get
y = h(x).
Therefore, f really behaves like a linear map, but with respect to the new

origin a (not the standard origin 0). This is the case of a rotation around
an axis that does not pass through the origin.

Remark: A pair (a, (u1,...,u,)) where (u1,...,u,) is a basis of £ and a
is an origin chosen in F is called an affine frame.

We now describe the trick which allows us to incorporate the translation
part d into the matrix A. We define the (m + 1) x (n + 1) matrix A’
obtained by first adding d as the (n + 1)th column and then (0,...,0,1) as

——

(9
B0

y=Ax +d.

n

the (m + 1)th row:

It is clear that

iff

This amounts to considering a point € R™ as a point (z,1) in the (affine)
hyperplane H,1 in R"! of equation x,,1 = 1. Then an affine map is
the restriction to the hyperplane H,.; of the linear map ]? from R™+!
to R™*! corresponding to the matrix A’ which maps H, 1 into H,,41
(f(HnH) C H,u41). Figure 5.4 illustrates this process for n = 2.

For example, the map

()= () () = ()

defines an affine map f which is represented in R? by

@ 113\ /21
zo | = 130 | 22
1 001/ \1

It is easy to check that the point a = (6,—3) is fixed by f, which means
that f(a) = a, so by translating the coordinate frame to the origin a, the
affine map behaves like a linear map.

The idea of considering R™ as an hyperplane in R**! can be used to
define projective maps.
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(xlu'r%l)

H321U3:1

Fig. 5.4 Viewing R™ as a hyperplane in R*t1 (n = 2)

5.5 Summary

The main concepts and results of this chapter are listed below:

e Direct products, sums, direct sums.
e Projections.
e The fundamental equation

dim(F) = dim(Ker f) + dim(Im f) = dim(Ker f) 4 rk(f)

(The rank-nullity theorem; Theorem 5.1).
o Grassmann’s relation

dim(U) + dim(V) = dim(U + V) + dim(U NV).

e Characterizations of a bijective linear map f: F — F.
e Rank of a matrix.
o Affine Maps.

5.6 Problems

Problem 5.1. Let V and W be two subspaces of a vector space F. Prove
that if V.U W is a subspace of F, then either V C W or W C V.



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning  ws-book-1-9x6
page 153

5.6. Problems 153

Problem 5.2. Prove that for every vector space F, if f: E — FE is an
idempotent linear map, i.e., f o f = f, then we have a direct sum

E=Ker f®Imf,
so that f is the projection onto its image Im f.
Problem 5.3. Let Uy, ..., U, be any p > 2 subspaces of some vector space
FE and recall that the linear map
a:Uy x---xU, = FE
is given by
a(u, ..., up) =ur + -+ up,

with u; € U; fori=1,...,p.
(1) If we let Z; C Uy X --- x U, be given by

P
2= (i 3 i)

J=1j#i

P P
3 ujem( ) Uj) ,
Jj=1,j#i J=1,j#i
for i =1,...,p, then prove that
Kera=21=---=Z,.
In general, for any given 4, the condition U; N (Z?_l)#i Uj) = (0) does

not necessarily imply that Z; = (0). Thus, let

7 = {(ul,...,ui_l,ui,ui+1,...,up)
p P
U = — Z Uj,UiGUiﬂ< Z Uj>,1<i<p

Jj=1,5#i j=1,j#i
Since Kera = Z; = --- = Z,,, we have Z = Ker a. Prove that if
P
Um( 3 Uj> —(0) 1<i<p,
Jj=1,j#i

then Z = Kera = (0).
(2) Prove that Uy + - -- + U, is a direct sum iff

Um( i Uj>=(0) 1<i<p.

J=1#i
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Problem 5.4. Assume that F is finite-dimensional, and let f;: E — E be
any p > 2 linear maps such that
i+ + fp=idg.
Prove that the following properties are equivalent:
(2) fyofi =0, foralli#j,1<ij<p.
Hint. Use Problem 5.2.

Let Uy, ...,U, be any p > 2 subspaces of some vector space F. Prove
that Uy + -+ - + U, is a direct sum iff

i—1
Uiﬂ<ZUj>:(O>7 1=2,...,p.
J=1

Problem 5.5. Given any vector space E, a linear map f: £ — FE is an
involution if f o f = id.
(1) Prove that an involution f is invertible. What is its inverse?
(2) Let Ey and E_; be the subspaces of E defined as follows:
By ={u€E| f(u) = u}
E1={ueE]| f(u)=—-u}.
Prove that we have a direct sum
E=FE & F ;.
Hint. For every u € E, write
u+ flu u— flu
wo WSO | )
(3) If E is finite-dimensional and f is an involution, prove that there is

some basis of E with respect to which the matrix of f is of the form

I 0
Ik,n—k = <(;€ _J k;) )

where Iy, is the k x k identity matrix (similarly for I,,_j) and k = dim(E}).
Can you give a geometric interpretation of the action of f (especially when
k=n-1)7

Problem 5.6. An n x n matrix H is upper Hessenberg if hj, = 0 for all
(j, k) such that j — k > 0. An upper Hessenberg matrix is unreduced if
hi+1i #OfOI"L:].,ﬂ’L—].

Prove that if H is a singular unreduced upper Hessenberg matrix, then
dim(Ker (H)) = 1.
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Problem 5.7. Let A be any n x k matrix.

(1) Prove that the k x k matrix AT A and the matrix A have the same
nullspace. Use this to prove that rank(AT A) = rank(A). Similarly, prove
that the n x n matrix AAT and the matrix AT have the same nullspace,
and conclude that rank(AAT) = rank(AT).

We will prove later that rank(A") = rank(A).

(2) Let ay,...,ax be k linearly independent vectors in R™ (1 < k < n),
and let A be the n x k matrix whose ith column is a;. Prove that AT A has
rank k, and that it is invertible. Let P = A(ATA)"'AT (an n x n matrix).
Prove that

p?=p
PT =P
What is the matrix P when k = 17
(3) Prove that the image of P is the subspace V spanned by ay, ..., ax,
or equivalently the set of all vectors in R” of the form Az, with z € RF.
Prove that the nullspace U of P is the set of vectors u € R™ such that
ATy = 0. Can you give a geometric interpretation of U?

Conclude that P is a projection of R™ onto the subspace V' spanned by
ai,...,ar, and that

R"=U&V.

Problem 5.8. A rotation Ry in the plane R? is given by the matrix

R — (cos9 —sm@) ‘

sinf cos6

(1) Use Matlab to show the action of a rotation Ry on a simple figure
such as a triangle or a rectangle, for various values of €, including § =
/6, w/4,7/3, /2.

(2) Prove that Ry is invertible and that its inverse is R_g.

(3) For any two rotations R, and Rg, prove that

RgoRy, =Ry0Rg =Rqip.

Use (2)-(3) to prove that the rotations in the plane form a commutative
group denoted SO(2).

Problem 5.9. Consider the affine map Ry (4, q4,) in R? given by

U1 cosf —sinf T ai
= . + :
Y2 sinf cos0 T2 as

ws-book-1-9x6
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(1) Prove that if 0 # k27, with k € Z, then Ry (4, 4,) has a unique fixed
point (¢1,cq), that is, there is a unique point (¢1, ce) such that

C1 C1
(CQ> — RG,(al,ag) (CQ) bl

and this fixed point is given by
a) 1 cos(m/2 —0/2) —sin(w/2 — 0/2)\ (a1
c2)  2sin(A/2) \sin(r/2 —0/2) cos(m/2 —0/2) as)
(2) In this question we still assume that 6 # k27, with k € Z. By
translating the coordinate system with origin (0,0) to the new coordinate
system with origin (¢1, ¢2), which means that if (x;, z2) are the coordinates

with respect to the standard origin (0,0) and if («}, z}) are the coordinates
with respect to the new origin (¢1,cz), we have

!

T =2+
!

Ty = Xy + Co

and similarly for (y1,y2) and (y7, v5), then show that

Y\ "]
<y2) = M0 .02) (5U2)
/ !
(1) = ():
Yo Lo

Conclude that with respect to the new origin (c1,cs), the affine map
Ry (a,,a,) becomes the rotation Ry. We say that Ry (4,.q,) is a rotation of
center (c1, ca).

(3) Use Matlab to show the action of the affine map Ry (4, 4,) on a
simple figure such as a triangle or a rectangle, for § = 7/3 and various
values of (a1, as). Display the center (c1,ca) of the rotation.

What kind of transformations correspond to 6 = k2n, with k € Z?

(4) Prove that the inverse of Ry (q,.q,) is of the form R_g 3, 1,), and
find (b1, b2) in terms of 6 and (a1, as).

(5) Given two affine maps Ry, (q,,a,) and Rg (s, b,), Prove that

becomes

Rg,(b1,62) © Ra(a1,02) = Rats,(t1,t2)
for some (t1,t2), and find (¢1,t2) in terms of 8, (a1, az) and (b, ba).
Even in the case where (a1, a2) = (0,0), prove that in general

Rg,(b1,b5) © Ra # Ra © Rg (b, ,b5)-
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Use (4)-(5) to show that the affine maps of the plane defined in this
problem form a nonabelian group denoted SE(2).

Prove that Rg (5, 5,) © Ra,(a1,as) 1S DOt a translation (possibly the iden-
tity) iff « + 8 # k2w, for all k € Z. Find its center of rotation when
(a1, ag) = (0, O)

If o+ B = k2m, then Rg (3, 1,) © Ra,(a1,a5) 18 @ pure translation. Find
the translation vector of Rg (4, b,) © Ra,(ay,a0)-

Problem 5.10. (Affine subspaces) A subset A of R™ is called an affine
subspace if either A = (), or there is some vector a € R™ and some subspace
U of R" such that
A=a+U={a+u|ueU}.

We define the dimension dim(A) of A as the dimension dim(U) of U.

(1) If A=a+U, why is a € A?

What are affine subspaces of dimension 07 What are affine subspaces
of dimension 1 (begin with R?)? What are affine subspaces of dimension 2
(begin with R?)?

Prove that any nonempty affine subspace is closed under affine combi-
nations.

(2) Prove that if A = a + U is any nonempty affine subspace, then
A=0+U for any b € A.

(3) Let A be any nonempty subset of R™ closed under affine combina-~
tions. For any a € A, prove that

Us={x—aeR" |z e A}
is a (linear) subspace of R™ such that
A=a+U,.
Prove that U, does not depend on the choice of a € A; that is, U, = U, for
all a,b € A. In fact, prove that
U,=U={y—zeR"|z,yc A}, forallac A,
and so
A=a+U, foranyacA

Remark: The subspace U is called the direction of A.

(4) Two nonempty affine subspaces A and B are said to be parallel iff
they have the same direction. Prove that that if A # B and A and B are
parallel, then AN B = 0.

Remark: The above shows that affine subspaces behave quite differently
from linear subspaces.
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Problem 5.11. (Affine frames and affine maps) For any vector v =

(vi,...,v,) € R let © € R*"™! be the vector v = (vy,...,v,,1). Equiva-
lently, ¥ = (01, ...,0,41) € R?! is the vector defined by

R v; if1<i<n,
v; =
1 ifi=n+1.

(1) For any m + 1 vectors (ug,u1, ..., Uy,) with u; € R™ and m < n,
prove that if the m vectors (u; — ug, . .., Uy — up) are linearly independent,
then the m + 1 vectors (U, . .., Un,) are linearly independent.

(2) Prove that if the m+1 vectors (4o, . . . , U, ) are linearly independent,
then for any choice of i, with 0 < 4 < m, the m vectors u; — u; for j €
{0,...,m} with j — ¢ # 0 are linearly independent.

Any m + 1 vectors (ug,u1,...,un) such that the m + 1 vectors
(up, - .., Up,) are linearly independent are said to be affinely independent.

From (1) and (2), the vector (ug,u1,...,u,) are affinely independent
iff for any any choice of ¢, with 0 < ¢ < m, the m vectors u; — u; for
j €{0,...,m} with j — i # 0 are linearly independent. If m = n, we say

that n+1 affinely independent vectors (ug, u1, ..., u,) form an affine frame
of R™.
(3) if (ug,u1,...,uy) is an affine frame of R™, then prove that for every

vector v € R™, there is a unique (n+ 1)-tuple (Ao, A1, ..., \,) € R"T1 with
Ao+ A+ -4+ A, =1, such that

U:)\0U0+)\1U1+"'+>\nun.

The scalars (Mg, A1, . .., A,) are called the barycentric (or affine) coordinates
of v w.r.t. the affine frame (ug, u1, ..., Uy).
If we write e; = u; — ug, for ¢ = 1,...,n, then prove that we have

v =1+ Are1 + -+ Apep,
and since (eq, ..., ey) is a basis of R” (by (1) & (2)), the n-tuple (A1, ..., An)

consists of the standard coordinates of v — ug over the basis (eq, ..., e,).
Conversely, for any vector ug € R™ and for any basis (eq,...,e,) of R™,
let u; = ug +e; for i = 1,...,n. Prove that (ug,u1,...,uy) is an affine
frame of R™, and for any v € R™, if
UV =1Uy+ T1€1 + -+ Tpen,

with (z1,...,2,) € R™ (unique), then

v=(1—=(z14+ - +2z))up + x1u1 + - -+ + Tpln,
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so that (1 —(x1+---4+x)),21, -+ ,x,), are the barycentric coordinates of
v w.r.t. the affine frame (ug,u1,...,up).

The above shows that there is a one-to-one correspondence between
affine frames (ug, ..., u,) and pairs (ug, (e1,...,€,)), with (e1,...,e,) a
basis. Given an affine frame (uo,...,u,), we obtain the basis (e1,...,ey)
with e; = u; — wg, for ¢ = 1,...,n; given the pair (ug,(e1,..., €))
where (e1,...,e,) is a basis, we obtain the affine frame (uo, ..., u,), with
u; = ug + e, for ¢ = 1,...,n. There is also a one-to-one correspondence
between barycentric coordinates w.r.t. the affine frame (ug,...,u,) and
standard coordinates w.r.t. the basis (eq,...,e,). The barycentric cordi-
nates (Ag, A1,...,Ay) of v (with Ao + A1 + -+ + A, = 1) yield the standard
coordinates (A1, ..., A,) of v —ugp; the standard coordinates (x1,...,x,) of
v — ug yield the barycentric coordinates (1 — (z1 + -+ 4+ xy), 21, ..., 2y,) of
.

(4) Let (ug,...,u,) be any affine frame in R™ and let (vo,...,v,) be
any vectors in R™. Prove that there is a unique affine map f: R™ — R™
such that

flu))=v;, i=0,...,n.

(5) Let (ag, - . .,ay) be any affine frame in R™ and let (by, ..., b,) be any

n + 1 points in R™. Prove that there is a unique (n + 1) x (n + 1) matrix

Bw
=)

corresponding to the unique affine map f such that

fla;))=0b; i=0,...,n,
in the sense that

AG;=b;, i=0,...,n,
and that A is given by

A= (b by ) @ - @)

Make sure to prove that the bottom row of A is (0,...,0,1).

In the special case where (ag, ..., a,) is the canonical affine frame with
a; = e;41 for i = 0,...,n — 1 and a, = (0,...,0) (where ¢; is the ith
canonical basis vector), show that
10---00
01---00
@ a)= | o0
00---10

11.--11

ws-book-1-9x6
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and
1 0 - 00
0o 1. 00
o ~ 1 .
(@ dy -+ dn) = 00
0 0 10
—1-1-—-11

For example, when n = 2, if we write b; = (x;,y;), then we have

1 T T3 1 00 Tr1 — T3 g — T3 T3
A=y y2 93 0 10|={v1—ys y2—y3ys3
111 -1-11 0 0 1

(6) Recall that a nonempty affine subspace A of R" is any nonempty
subset of R™ closed under affine combinations. For any affine map f: R* —
R™ for any affine subspace A of R", and any affine subspace B of R™, prove

that f(A) is an affine subspace of R, and that f~*(B) is an affine subspace
of R™.
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Chapter 6

Determinants

In this chapter all vector spaces are defined over an arbitrary field K. For
the sake of concreteness, the reader may safely assume that K = R.

6.1 Permutations, Signature of a Permutation

This chapter contains a review of determinants and their use in linear alge-
bra. We begin with permutations and the signature of a permutation. Next
we define multilinear maps and alternating multilinear maps. Determinants
are introduced as alternating multilinear maps taking the value 1 on the
unit matrix (following Emil Artin). It is then shown how to compute a
determinant using the Laplace expansion formula, and the connection with
the usual definition is made. It is shown how determinants can be used to
invert matrices and to solve (at least in theory!) systems of linear equa-
tions (the Cramer formulae). The determinant of a linear map is defined.
We conclude by defining the characteristic polynomial of a matrix (and of a
linear map) and by proving the celebrated Cayley—Hamilton theorem which
states that every matrix is a “zero” of its characteristic polynomial (we give
two proofs; one computational, the other one more conceptual).
Determinants can be defined in several ways. For example, determinants
can be defined in a fancy way in terms of the exterior algebra (or alternating
algebra) of a vector space. We will follow a more algorithmic approach
due to Emil Artin. No matter which approach is followed, we need a few
preliminaries about permutations on a finite set. We need to show that
every permutation on n elements is a product of transpositions and that
the parity of the number of transpositions involved is an invariant of the
permutation. Let [n] = {1,2...,n}, where n € N, and n > 0.

Definition 6.1. A permutation on n elements is a bijection 7: [n] — [n].

161
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When n = 1, the only function from [1] to [1] is the constant map: 1+ 1.
Thus, we will assume that n > 2. A transposition is a permutation 7: [n] —
[n] such that, for some 7 < j (with 1 <¢ < j <n), 7(i) = 4, 7(j) =%, and
7(k) =k, for all k € [n] — {i,5}. In other words, a transposition exchanges
two distinct elements 4, j € [n].

If 7 is a transposition, clearly, Tor = id. We will also use the terminology
product of permutations (or transpositions) as a synonym for composition
of permutations.

A permutation ¢ on n elements, say o(i) = k; for i = 1,...,n, can be
represented in functional notation by the 2 x n array

ky - ki kp

known as Cauchy two-line notation. For example, we have the permutation
o denoted by

123456

243651)°

A more concise notation often used in computer science and in combi-
natorics is to represent a permutation by its image, namely by the sequence

o(l) o(2) --- o(n)

written as a row vector without commas separating the entries. The above
is known as the one-line notation. For example, in the one-line notation,
our previous permutation o is represented by

24365 1.

The reason for not enclosing the above sequence within parentheses is avoid
confusion with the notation for cycles, for which is it customary to include
parentheses.

Clearly, the composition of two permutations is a permutation and every
permutation has an inverse which is also a permutation. Therefore, the set
of permutations on [n] is a group often denoted &,, and called the symmetric
group on n elements.

It is easy to show by induction that the group &,, has n! elements. The
following proposition shows the importance of transpositions.

Proposition 6.1. For every n > 2, every permutation 7: [n] — [n] can be
written as a nonempty composition of transpositions.
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Proof. We proceed by induction on n. If n = 2, there are exactly two per-
mutations on [2], the transposition 7 exchanging 1 and 2, and the identity.
However, idy = 72. Now let n > 3. If m(n) = n, since by the induction
hypothesis, the restriction of 7 to [n — 1] can be written as a product of
transpositions, 7 itself can be written as a product of transpositions. If
m(n) = k # n, letting 7 be the transposition such that 7(n) = k and
7(k) = n, it is clear that 7 o 7 leaves n invariant, and by the induction
hypothesis, we have 7 om = 7, o... o 71 for some transpositions, and thus

MT=TO0Ty,O...0Tq,

a product of transpositions (since 7o 7 = id,). O

Remark: When © = id,, is the identity permutation, we can agree that
the composition of 0 transpositions is the identity. Proposition 6.1 shows
that the transpositions generate the group of permutations &,,.

A transposition 7 that exchanges two consecutive elements k and k + 1
of [n] (1 <k < n—1) may be called a basic transposition. We leave it
as a simple exercise to prove that every transposition can be written as a
product of basic transpositions. In fact, the transposition that exchanges k
and k+p (1 < p <n—k) can be realized using 2p — 1 basic transpositions.
Therefore, the group of permutations &,, is also generated by the basic
transpositions.

Given a permutation written as a product of transpositions, we now
show that the parity of the number of transpositions is an invariant. For
this, we introduce the following function.

Definition 6.2. For every n > 2, let A: Z"™ — 7Z be the function given by
A(xl,...,xn) = H (.Z‘i—l‘j).
1<i<j<n
More generally, for any permutation o € &,,, define A(2,(1), ..., Ty(n)) by
A(.’tg(l), R ,:L'a(n)) = H (xa(i) - xa(j))'
1<i<j<n
The expression A(zy,...,z,) is often called the discriminant of

(T1,...,Tn)-

A(z1,...,2,) # 0. The discriminant consists of () factors. When
n =23,

A(IEl,IEQ,(ES) = (.’El — LEQ)(I’l — $3)({E2 — I,Cg).
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123
232)7

A1), To(2); To(3) = (To(1) = To(2)) (Ta(1) = To3)) (To(2) — To(3))

= (1‘2 — IEg)(fEQ — $1)(I3 — 331).

If o is the permutation

then

Observe that
A(Zy(1), To(2) To@) = (—1)*A(21, 22, 73),
since two transpositions applied to the identity permutation 1 2 3 (written

in one-line notation) give rise to 2 3 1. This result regarding the parity of
A(Ty(1), - - To(n)) is generalized by the following proposition.

Proposition 6.2. For every basic transposition T of [n] (n > 2), we have
A(l‘,r(l), ce ,I.,.(n)) = —A(l‘l, ce ,Jjn).

The above also holds for every transposition, and more generally, for every
composition of transpositions o = 7, 0 --- o T, we have

A(‘rrr(l)v cee 7x¢7(n)) = (_1)pA(fE1, cee ,l’n).
Consequently, for every permutation o of [n], the parity of the number p of

transpositions involved in any decomposition of o as 0 = T,0--- 0T is an
invariant (only depends on o).

Proof. Suppose 7 exchanges z and xy41. The terms x; — z; that are
affected correspond toi = k,ori=k+1,0or j =k, or j = k+ 1. The
contribution of these terms in A(x1,...,x,) is

(ke — 2p1)[(Th — Trg2) - (T8 — Zo)][(Tht1 — Tr2) - (Thg1 — )]

[(z1 —@p) - (@p—1 — z)][(21 — Tpqr) -+ (@p—1 — Theg1)]-
When we exchange zj and x4 1, the first factor is multiplied by —1, the sec-
ond and the third factor are exchanged, and the fourth and the fifth factor
are exchanged, so the whole product A(zq,...,x,) is is indeed multiplied
by —1, that is,
A(Tr(ry, e Trn)) = —AZ1, .-, Tn).

For the second statement, first we observe that since every transposition 7

can be written as the composition of an odd number of basic transpositions
(see the the remark following Proposition 6.1), we also have

AZr1)s -y Trmy) = —A(T1, ..., Tp).
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Next we proceed by induction on the number p of transpositions involved
in the decomposition of a permutation o.

The base case p = 1 has just been proven. If p > 2, if we write w =
Tp—10---0Tp, then 0 = 7, ow and

A(xa(l)v ceey xo‘(n)) = A(pr(w(l))v oo 7$Tp(w(n)))
= _A(Iw(l)a s 7'rw(n))
= (=P Az, ..., 2,)
= (=DPA(z1,...,2zn),
where we used the induction hypothesis from the second to the third line,

establishing the induction hypothesis. Since A(x,(1),...,Zy(n)) only de-
pends on o, the equation

AlTo(1)s s To(m) = (F1)PA(@1, - 2n)

shows that the parity (—1)P of the number of transpositions in any decom-
position of ¢ is an invariant. O

In view of Proposition 6.2, the following definition makes sense:

Definition 6.3. For every permutation o of [n], the parity e(o) (or sgn(o))
of the number of transpositions involved in any decomposition of ¢ is called
the signature (or sign) of o.

Obviously €(7) = —1 for every transposition 7 (since (—1)! = —1).
A simple way to compute the signature of a permutation is to count its
number of inversions.

Definition 6.4. Given any permutation ¢ on n elements, we say that a
pair (4, ) of indices i,j € {1,...,n} such that ¢ < j and (i) > o(j) is an
inversion of the permutation o.

For example, the permutation o given by
123456
243651

(1,6), (2,3), (2,6), (3,6), (4,5), (4,6), (5,6).

has seven inversions

Proposition 6.3. The signature €(c) of any permutation o is equal to the
parity (—1)1) of the number I(o) of inversions in .
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Proof. In the product
A(To1), s To(n)) = H (To() = Ta(j)),

1<i<j<n
the terms x5 (;) —2,(;) for which o(i) < o(j) occur in A(zy, ..., x,), whereas
the terms x,(;) — Z4(;) for which o (i) > o(j) occur in A(xy,...,r,) with a
minus sign. Therefore, the number v of terms in A(zg(1), ..., Te(n)) Whose
sign is the opposite of a term in A(x1,...,x,), is equal to the number (o)

of inversions in o, which implies that
A(xa(l)a cee 7330(”)) = (71)I(U)A(xlv s 7xn)'
By Proposition 6.2, the sign of (—1)(?) is equal to the signature of o. [

For example, the permutation
123456
(2 4365 1)
has odd signature since it has seven inversions and (—1)" = —1.

Remark: When 7 = id,, is the identity permutation, since we agreed that
the composition of 0 transpositions is the identity, it it still correct that
(—1)° = €(id) = +1. From Proposition 6.2, it is immediate that (7' o) =
Lor =id,, we get e(m1) = e(n).

We can now proceed with the definition of determinants.

e(m")e(m). In particular, since 7~

6.2 Alternating Multilinear Maps

First we define multilinear maps, symmetric multilinear maps, and alter-
nating multilinear maps.

Remark: Most of the definitions and results presented in this section also
hold when K is a commutative ring and when we consider modules over K
(free modules, when bases are needed).

Let E1,...,E,, and I, be vector spaces over a field K, where n > 1.

Definition 6.5. A function f: Ey X ...x E,, — F' is a multilinear map (or
an n-linear map) if it is linear in each argument, holding the others fixed.

More explicitly, for every i, 1 < i < n, for all 1 € Ey,..., ;-1 € FE;_1,
Tiv1 € Eiy1,..., 2y € E,, for all x,y € E;, for all A € K,
f(mla'~~1$i717x+yaxi+17"'axn) = f(xla"vaiflaxaxﬁkla'“;xn)
+ f(mla"'7xi—1ay7xi+17"'7zn)a

f(xla-'wxifh)‘m?xi#»l?'"amn) = )‘f(mlw"axifla$7xi+17~--7mn)~
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When F = K, we call f an n-linear form (or multilinear form). If n > 2

and £ = Fs = ... = E,, an n-linear map f: E X ... x E — F is called
symmetric, if f(x1,...,2,) = f(Tr1),- -, Ta(n)) for every permutation m
on {1,...,n}. An n-linear map f: E X ... x E — F is called alternating,
if f(z1,...,2,) =0 whenever x; = x;4; for some i, 1 <i <n—1 (in other

words, when two adjacent arguments are equal). It does no harm to agree
that when n = 1, a linear map is considered to be both symmetric and
alternating, and we will do so.

When n = 2, a 2-linear map f: Fy X Es — F is called a bilinear map.
We have already seen several examples of bilinear maps. Multiplication
-+ K x K — K is a bilinear map, treating K as a vector space over itself.

The operation (—,—): E* x E — K applying a linear form to a vector
is a bilinear map.

Symmetric bilinear maps (and multilinear maps) play an important role
in geometry (inner products, quadratic forms) and in differential calculus
(partial derivatives).

A Dbilinear map is symmetric if f(u,v) = f(v,u), for all u,v € E.

Alternating multilinear maps satisfy the following simple but crucial
properties.

Proposition 6.4. Let f: Ex...x E — F be an n-linear alternating map,
with n > 2. The following properties hold:

(1)
f(...,xi,xi+17...) = _f(...,xi+1,xi,...)

(2)

(3)

where 1 <1< j <n.

(4)
f(,xz,):f(,xl—&—)\x],),

for any A € K, and where i # j.

ws-book-1-9x6
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Proof. (1) By multilinearity applied twice, we have

f( sy Ti + Tig1, Ti +xi+17"') = f("'vxivxiy"') +f("'7xi7xi+17"')
+ f( ey L1, Ly e ) + f( ey L1, Tig1y - .),
and since f is alternating, this yields
0= f(...7xi7xi+17...) —&-f(...,xiﬂ,xi,...),
that iS, f( oy Ly Ti41y - - ) = —f( oy L1y Ly - o )

(2) If ; = z; and 7 and j are not adjacent, we can interchange z; and
Z;y1, and then x; and x;49, etc, until z; and z; become adjacent. By (1),
flox. oz, ) =€ef(c x5, ..),
where € = +1 or —1, but f(...,z;,x;,...) =0, since z; = z;, and (2) holds.

(3) follows from (2) asin (1). (4) is an immediate consequence of (2). O

Proposition 6.4 will now be used to show a fundamental property of
alternating multilinear maps. First we need to extend the matrix notation
a little bit. Let E be a vector space over K. Given an n X n matrix
A = (a;;) over K, we can define a map L(A): E™ — E™ as follows:

L(A)1(u) = a11u1 + -+ + a1 Uy,

L(A)n(u) =ap1U1 + -+ Gpply,
for all uy,...,u, € F and with u = (uy,...,u,). It is immediately verified
that L(A) is linear. Then given two nxn matrices A = (a;;) and B = (b, ;),
by repeating the calculations establishing the product of matrices (just
before Definition 2.14), we can show that
L(AB) = L(A) o L(B).

It is then convenient to use the matrix notation to describe the effect of the
linear map L(A), as

L(A)1(u) a1l @12 ... Q1np Uy
L(A)g(u) az21 A22 ... A2 p U2
L(A)n(u) Gp1 Gn2 ... Ann Unp

Lemma 6.1. Let f: E x...x E— F be an n-linear alternating map. Let
(u1,...,up) and (vy,...,v,) be two families of n vectors, such that,

V] = a11U1 + 0+ A 1Uy,

Un = Q1pU1 + -+ - + QpplUn.



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning  ws-book-1-9x6

page 169

6.2. Alternating Multilinear Maps 169

Equivalently, letting

a11 a12 ... A1 n
a21 A22 ... a2n
An1 Ap2 .. Qpp
assume that we have
V1 Ul
U2 4T U2
Up, Up,
Then,
flog, .o v,) = ( Z €(m)aryr - a,r(n)n>f(u1, T
e,
where the sum ranges over all permutations m on {1,...,n}.
Proof. Expanding f(v1,...,v,) by multilinearity, we get a sum of terms
of the form
Ar(1)1 " Or(n)n (Un(1)s -« s Un(n))s
for all possible functions 7: {1,...,n} — {1,...,n}. However, because f

is alternating, only the terms for which 7 is a permutation are nonzero. By
Proposition 6.1, every permutation 7 is a product of transpositions, and
by Proposition 6.2, the parity e(m) of the number of transpositions only
depends on 7. Then applying Proposition 6.4 (3) to each transposition in

™, we get
Ar(1)1 " Or(n)nf (Un(1)s -+ s Un(n)) = €(T)ar1y1 - Ay nf (UL, Un).
Thus, we get the expression of the lemma. O

For the case of n = 2, the proof details of Lemma 6.1 become
f(vi,v2) = flanur + agiug, ar2ur + axuz)

= flanur + aziuz, a12ur) + f(ar1ur + aziuz, azouz)

= flariur, a1pur) + f(az2iuz, ar2us)
+ flanua, azaua) + f(a21ug, asausz)

= a11&12f(u17 u1) + a21a12f(u2, ul) + a11a22f(u1, UQ)
+ agiaza f(ug, uz)

= agia12 f(u2,u1) + ariazs f(u1, u2)

= (auazz - a12a21) f(ulau2)-
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Hopefully the reader will recognize the quantity ai1a00 — ai2a91. It is the
determinant of the 2 x 2 matrix

= <a11 a12) .
a21 G22
This is no accident. The quantity
det(A) = Z 6(7‘(’)(17‘,(1) 17 Qr(n)n
TeS,
is in fact the value of the determinant of A (which, as we shall see shortly,
is also equal to the determinant of AT). However, working directly with

the above definition is quite awkward, and we will proceed via a slightly
indirect route

Remark: The reader might have been puzzled by the fact that it is the
transpose matrix AT rather than A itself that appears in Lemma 6.1. The
reason is that if we want the generic term in the determinant to be

6(7-(-)0’7?(1) 17 Qr(n)ny
where the permutation applies to the first index, then we have to express
the v;s in terms of the u;s in terms of AT as we did. Furthermore, since
Vj = a1Ur + QU+ T Gy U,

we see that v; corresponds to the jth column of the matrix A, and so the
determinant is viewed as a function of the columns of A.

The literature is split on this point. Some authors prefer to define a
determinant as we did. Others use A itself, which amounts to viewing det
as a function of the rows, in which case we get the expression

Z 6(U)CL1U(1) © o pg(n)-

ceS,

Corollary 6.1 show that these two expressions are equal, so it doesn’t matter
which is chosen. This is a matter of taste.

6.3 Definition of a Determinant

Recall that the set of all square n x n-matrices with coefficients in a field
K is denoted by M, (K).

Definition 6.6. A determinant is defined as any map

D: M, (K) — K,
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which, when viewed as a map on (K™)", i.e., a map of the n columns of
a matrix, is n-linear alternating and such that D(I,) = 1 for the identity
matrix I,,. Equivalently, we can consider a vector space E of dimension n,

some fixed basis (eq,...,e,), and define
D:E"— K
as an n-linear alternating map such that D(eq,...,e,) = 1.

First we will show that such maps D exist, using an inductive definition
that also gives a recursive method for computing determinants. Actually,
we will define a family (D, ),>1 of (finite) sets of maps D: M, (K) — K.
Second we will show that determinants are in fact uniquely defined, that
is, we will show that each D, consists of a single map. This will show
the equivalence of the direct definition det(A) of Lemma 6.1 with the in-
ductive definition D(A). Finally, we will prove some basic properties of
determinants, using the uniqueness theorem.

Given a matrix A € M,,(K), we denote its n columns by A*,... A" In
order to describe the recursive process to define a determinant we need the
notion of a minor.

Definition 6.7. Given any n X n matrix with n > 2, for any two indices
i, with 1 <14,5 <n, let A;; be the (n — 1) x (n — 1) matrix obtained by
deleting Row ¢ and Column j from A and called a minor:

X

X
X X X X X X X

Aij = X

X

X

X

For example, if

2-10 0 0
-1 2 -10 0

A=10-12 -10
0 0 -1 2 -1

0O 0 0 -1 2
then
2—-1 0 O
0-1-10
A23=100 2 1

00 —-12

ws-book-1-9x6
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Definition 6.8. For every n > 1, we define a finite set D,, of maps
D: M, (K) — K inductively as follows:

When n = 1, D; consists of the single map D such that, D(A) = a,
where A = (a), with a € K.

Assume that D,,_; has been defined, where n > 2. Then D,, consists of
all the maps D such that, for some i, 1 < i <n,

D(A) = (—1)" a1 D(Air) + -+ + (1) a;n D(A;i ),
where for every j, 1 < j < n, D(A;;) is the result of applying any D in
D,,—1 to the minor A; ;.

g% We confess that the use of the same letter D for the member of D,
being defined, and for members of D,,_;, may be slightly confusing.
We considered using subscripts to distinguish, but this seems to complicate
things unnecessarily. One should not worry too much anyway, since it will
turn out that each D,, contains just one map.

Each (—1)""7D(A;;) is called the cofactor of a;;, and the inductive
expression for D(A) is called a Laplace expansion of D according to the i-th
Row. Given a matrix A € M,,(K), each D(A) is called a determinant of A.

We can think of each member of D,, as an algorithm to evaluate “the”
determinant of A. The main point is that these algorithms, which recur-
sively evaluate a determinant using all possible Laplace row expansions, all
yield the same result, det(A).

We will prove shortly that D(A) is uniquely defined (at the moment, it
is not clear that D,, consists of a single map). Assuming this fact, given a
n x n-matrix A = (a; ),

a1 aA12 ... A1 p
a21 A22 ... A2

= )
ap1 Ap2 ... Apn

its determinant is denoted by D(A) or det(A), or more explicitly by

a1 a412 ... A1 p

a21 A292 ... A2 p
det(A) =

anp1 Ap2 ... Apn

Let us first consider some examples.

Example 6.1.
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ab
A—
(ca)
then by expanding according to any row, we have

D(A) = ad — be.

(1) When n = 2, if

(2) When n = 3, if
aii G12 @13
A=la21 a2 a23 |,
az1 azz ass
then by expanding according to the first row, we have

a21 az22
asi1 as2

a2 23
agz2 as3s

a1 Q23
2

D(A) - azi ass

+a

i

that is,

D(A) =ax 1(a22a33 - CL32(123) - a12(02 133 — a31a23)
+ a13(a21a32 —as 1a22),

which gives the explicit formula

D(A) = a11a22a33 + a21a32a13 + a3101 2023

— a110a32023 — 421012033 — (3102201 3.
We now show that each D € D, is a determinant (map).

Lemma 6.2. For every n > 1, for every D € D,, as defined in Definition
6.8, D is an alternating multilinear map such that D(I,) = 1.

Proof. By induction on n, it is obvious that D(I,) = 1. Let us now prove
that D is multilinear. Let us show that D is linear in each column. Consider
any Column k. Since

D(A) = (=)™ ai1 D(Ai1) + -+ (=1)"a; }D(Aij) + - -

+ (=1 "ain D(Ain),
if j # k, then by induction, D(A; ;) is linear in Column k, and a; ; does not
belong to Column k, so (—1)"™7a; ;D(A;;) is linear in Column k. If j = k,
then D(A;;) does not depend on Column k = j, since A,; is obtained

from A by deleting Row 4 and Column j = k, and a;; belongs to Column
j = k. Thus, (—1)"7a; ;D(A; ;) is linear in Column k. Consequently, in all
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cases, (—1)"Ja; ;D(A; ;) is linear in Column k, and thus, D(A) is linear in
Column k.

Let us now prove that D is alternating. Assume that two adjacent
columns of A are equal, say A¥ = AF+!l. Assume that j # k and j #
k+1. Then the matrix A; ; has two identical adjacent columns, and by the
induction hypothesis, D(A;;) = 0. The remaining terms of D(A) are

(=) *a; . D(Aig) + (=1)" a0 1 D(A; ya).
However, the two matrices A; and A; 1 are equal, since we are assuming
that Columns k and k+ 1 of A are identical and A, is obtained from A by
deleting Row ¢ and Column k while A; 41 is obtained from A by deleting
Row i and Column k + 1. Similarly, a;x = a;k+1, since Columns k and
k+ 1 of A are equal. But then,

(=" *a;k  D(Aik) + (=1)" a1 D(A41)
= (—1)i+kaikD(A7;k) — (—1)i+kaikD(Aik) = 0
This shows that D is alternating and completes the proof. O

Lemma 6.2 shows the existence of determinants. We now prove their
uniqueness.

Theorem 6.1. For every n > 1, for every D € D,, for every matric
A e M, (K), we have

D(A) = > e(m)any1 " Gu(n)n;
T€ES,
where the sum ranges over all permutations m on {1,...,n}. As a conse-
quence, Dy, consists of a single map for every n > 1, and this map is given
by the above explicit formula.

Proof. Consider the standard basis (ey,...,e,) of K™, where (e;); = 1
and (e;); = 0, for j # i. Then each column A’ of A corresponds to a vector
v; whose coordinates over the basis (e1, ..., ey) are the components of AT,
that is, we can write

V1 =api1€1+ -+ apién,

Up = 0@1p€1 + -+ Annén-
Since by Lemma 6.2, each D is a multilinear alternating map, by applying
Lemma 6.1, we get

D(A) = D(vi, ..., 00) = ( 3 e(manay: - --aﬂ(n)n)D(el, Cen),

TES,
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where the sum ranges over all permutations 7 on {1,...,n}. But
D(ey,...,en) = D(I,), and by Lemma 6.2, we have D(I,,) = 1. Thus,

D(A) = Z 6(7’(’)0,,1.(1) 17 Qr(n)ny
7'('66"

where the sum ranges over all permutations 7 on {1,...,n}. O

From now on we will favor the notation det(A) over D(A) for the de-
terminant of a square matrix.

Remark: There is a geometric interpretation of determinants which we
find quite illuminating. Given n linearly independent vectors (uq, ..., uy)
in R™, the set

Py={Mui 4+ +Mu, |0< X <1, 1<i<n}
is called a parallelotope. If n = 2, then P» is a parallelogram and if n = 3,
then Pj is a parallelepiped, a skew box having uy, us, us as three of its corner
sides. See Figures 6.1 and 6.2.

0.84
0.64
0.4+

0.2

1
u=(1,0)

Fig. 6.1 The parallelogram in R* spanned by the vectors u1 = (1,0) and ug = (1,1).

Then it turns out that det(uy, ..., u,) is the signed volume of the paral-
lelotope P,, (where volume means n-dimensional volume). The sign of this
volume accounts for the orientation of P, in R"™.

We can now prove some properties of determinants.

Corollary 6.1. For every matriz A € M,,(K), we have det(A) = det(AT).
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0.3

g u=011
0.6
0.4+

0.2+

0 T T T >u2:(0,1,0)
0'4};}: >~04 06 08 1

u= (1,1,0)

Fig. 6.2 The parallelepiped in R3 spanned by the vectors u; = (1,1,0), ug = (0,1,0),
and uz = (0,0,1).

Proof. By Theorem 6.1, we have
det(A) = Z 6(7‘(‘)047..(1) 1" Ar(n)ns
eSS,
where the sum ranges over all permutations 7 on {1,...,n}. Since a per-
mutation is invertible, every product
Ar(1)1" " Qr(n)n

can be rewritten as

A1 7=1(1) """ Apg—1(n),

and since e(m7!) = €(r) and the sum is taken over all permutations on
{1,...,n}, we have

Z 6(7’(’)(17..(1) 17 Qr(n)n = Z E(O')CL]_ a(1) """ Gno(n)s

€S, ceS,



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning  ws-book-1-9x6
page 177

6.3. Definition of a Determinant 177

where m and ¢ range over all permutations. But it is immediately verified
that

det(AT) = Z 6(0’)&1 o(1) " " Gno(n)- O

ceS,

A useful consequence of Corollary 6.1 is that the determinant of a ma-
trix is also a multilinear alternating map of its rows. This fact, combined
with the fact that the determinant of a matrix is a multilinear alternating
map of its columns, is often useful for finding short-cuts in computing de-
terminants. We illustrate this point on the following example which shows
up in polynomial interpolation.

Example 6.2. Consider the so-called Vandermonde determinant

1 1 ... 1

X1 T2 ... Ip

2 2 2

V(zy,...,xn) =] *1 T2 -+ Ty
-1 -1 n—1

xy Tyl

We claim that
V(.Tl,...7.%‘n): H (.’L‘j—l‘i),
1<i<j<n
with V(x1,...,2,) = 1, when n = 1. We prove it by induction on n > 1.
The case n = 1 is obvious. Assume n > 2. We proceed as follows: multiply
Row n — 1 by z1 and subtract it from Row n (the last row), then multiply
Row n — 2 by x; and subtract it from Row n — 1, etc, multiply Row 7 — 1
by 1 and subtract it from row ¢, until we reach Row 1. We obtain the
following determinant:

1 1 1

0 T2 — T1 e Tp — T
V(zg,... zn) =0 T2(@2—21) ... on(2n —21)

0y 2(xg —x1) ... 2" 2(x, — 1)

Now expanding this determinant according to the first column and using
multilinearity, we can factor (x; — 1) from the column of index i — 1 of the
matrix obtained by deleting the first row and the first column, and thus

V(e ... xn) = (22 —21)(x3 — 1) -~ (2 — 1)V (22, ..., 20),

which establishes the induction step.
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Remark: Observe that

A1, zn) = Vian,...,21) = (1) EV(zy, ... 20),

where A(x1,...,x,) is the discriminant of (z1,...,%,) introduced in Defi-
nition 6.2.
Lemma 6.1 can be reformulated nicely as follows.

Proposition 6.5. Let f: Ex ... x E — F be an n-linear alternating map.
Let (u1,...,u,) and (vi,...,v,) be two families of n vectors, such that

V] = a11U1 + -+ A1 pUnp,

Up = Ap1U1 + ** + Gppln.

Equivalently, letting

a11 412 ... A1 n
a1 a292 ... Agn
= b
An1 Ap2 .. Qpp
assume that we have
U1 Uy
V2 U2
=A
Un Unp

Then,
flor,.. o v,) =det(A) f(ur, ..., un).

Proof. The only difference with Lemma 6.1 is that here we are using AT
instead of A. Thus, by Lemma 6.1 and Corollary 6.1, we get the desired
result. O

As a consequence, we get the very useful property that the determinant
of a product of matrices is the product of the determinants of these matrices.

Proposition 6.6. For any two nxn-matrices A and B, we have det(AB) =
det(A) det(B).

ws-book-1-9x6
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Proof. We use Proposition 6.5 as follows: let (eq,...,e,) be the standard
basis of K", and let

w1 e1
W2 €2
= AB
W, en
Then we get
det(wy, ..., w,) = det(AB)det(ey,...,e,) = det(AB),

since det(ey,...,e,) = 1. Now letting

U1 €1

(%) €9

=B ,

Up, én

we get
det(vy,...,v,) = det(B),

and since

w1 U1

w2 U2

=A ,

Wn, Un,

we get
det(wy, ..., w,) = det(A) det(vy,...,v,) = det(A) det(B). O

It should be noted that all the results of this section, up to now, also
hold when K is a commutative ring and not necessarily a field. We can now

characterize when an n X n-matrix A is invertible in terms of its determinant
det(A).

6.4 Inverse Matrices and Determinants

In the next two sections, K is a commutative ring and when needed a field.

Definition 6.9. Let K be a commutative ring. Given a matrix A €
M, (K), let A = (b;;) be the matrix defined such that

bij = (71)i+j det(Aji),
the cofactor of a;;. The matrix A is called the adjugate of A, and each
matrix A;; is called a minor of the matrix A.
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For example, if

11 1
A=12-2-2],
3 -3
we have
-2 =2
b1 = det(All) = 3 _3‘ =12 bia = —det(Agl) = —
1 1
bz = det(Agl) = _9 _2‘ =0 ba1 = *det(AlQ) = - ’
11
booy = det(AQQ) = 3_3 =—6 baz = _det(A?)Q) = ’
2 -2
b31 = det(Alg) = 3 3 =12 632 = 7det(A23) - = ‘
11
b33 = det(Agg) = 9 _9 - _47
we find that
N 12 6 0
A=10 -6 4
12 0 —4

@ Note the reversal of the indices in
bij = (~1)7 det(4;.,).
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11
=6
3|
2 =2
=0
3—3‘
11
=4
22‘
11
=0
33‘

Thus, A is the transpose of the matrix of cofactors of elements of A.

We have the following proposition.

Proposition 6.7. Let K be a commutative ring. For every matriz A €

M, (K), we have
AA = AA = det(A)I,.

As a consequence, A is invertible iff det(A) is invertible, an
(det(A))~tA.

d if so, A7l =

Proof. If A = (b; ;) and AA = (¢ij), we know that the entry ¢;; in row ¢

and column j of AA is

Cij =aiibij+ -+ aikbej + -+ ainbny,
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which is equal to
a; 1(—1)j+1 det(Aj 1) + -4+ am(—l)j"’” det(Ajn).
If 7 = 4, then we recognize the expression of the expansion of det(A) ac-
cording to the i-th row:
Cii = det(A) = a“(—l)”l det(A“) + -t a; n(—l)i+n det(Ai n)-
If j # 4, we can form the matrix A’ by replacing the j-th row of A by the
i-th row of A. Now the matrix A; obtained by deleting row j and column

k from A is equal to the matrix A;-  obtained by deleting row j and column
k from A’, since A and A’ only differ by the j-th row. Thus,

det(A; ) = det(A},),
and we have
cij = a1 (=1 T det(A] ) + - + ain(—1)7T" det(A],).
However, this is the expansion of det(A’) according to the j-th row, since
the j-th row of A’ is equal to the i-th row of A. Furthermore, since A’ has
two identical rows i and j, because det is an alternating map of the rows

(see an earlier remark), we have det(A’) = 0. Thus, we have shown that
¢ii = det(A), and ¢;; = 0, when j # ¢, and so

AA = det(A),.
It is also obvious from the definition of g, that
i
Then applying the first part of the argument to AT, we have
ATAT = det(AT)I,,
and since det(AT) = det(A), AT = //ﬁ, and (AA)T = ATAT we get
det(A)L, = ATAT = ATAT = (44)7,
that is,
(AA)T = det(A)I,,
which yields
AA = det(A)I,,
since I,] = I,,. This proves that
AA = AA = det(A)1,.

As a consequence, if det(A) is invertible, we have A~! = (det(A)) " A.
Conversely, if A is invertible, from AA~! = I,,, by Proposition 6.6, we have
det(A) det(A~!) = 1, and det(A) is invertible. O

ws-book-1-9x6
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For example, we saw earlier that

11 1 12 6 0
A=|2-2-2| and A=[|0 -6 4 |,
33 -3 12 0 —4
and we have
11 1 12 6 0 100
2-2-2 0 -6 4 ])]=241010
33 -3 12 0 —4 001

with det(A4) = 24.

When K is a field, an element a € K is invertible iff a # 0. In this
case, the second part of the proposition can be stated as A is invertible iff
det(A) # 0. Note in passing that this method of computing the inverse of
a matrix is usually not practical.

6.5 Systems of Linear Equations and Determinants

We now consider some applications of determinants to linear independence
and to solving systems of linear equations. Although these results hold for
matrices over certain rings, their proofs require more sophisticated methods.
Therefore, we assume again that K is a field (usually, K =R or K = C).

Let A be an n X n-matrix, z a column vectors of variables, and b another
column vector, and let A',..., A" denote the columns of A. Observe that
the system of equations Ax = b,

a1 a12 ... A1p T bl
a21 A292 ... A2 p T9 b2
Gn1 Gn2 ... Apn Ln bn

is equivalent to
oAV AN+, AT =,
since the equation corresponding to the i-th row is in both cases
;171 + 0T+ GinTy = by
First we characterize linear independence of the column vectors of a

matrix A in terms of its determinant.

Proposition 6.8. Given an n X n-matriz A over a field K, the columns
Al .. A" of A are linearly dependent iff det(A) = det(Al,... A") =0
Equivalently, A has rank n iff det(A) # 0.
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Proof. First assume that the columns A', ..., A” of A are linearly depen-
dent. Then there are x1,...,x, € K, such that

oAV AT+ 2, AT =0,
where x; # 0 for some j. If we compute
det(A,..., o A o b AV, AL AT
=det(A',...,0,...,A") =0,

where 0 occurs in the j-th position. By multilinearity, all terms containing
two identical columns A* for k # j vanish, and we get

det(A',... z A - -+ijj—|—- oz, AT AT) = det(A',...,A") = 0.

Since z; # 0 and K is a field, we must have det(A',..., A") =0.
Conversely, we show that if the columns A',... A" of A are linearly

independent, then det(Al, ..., A™) # 0. If the columns A, ..., A" of A are

linearly independent, then they form a basis of K™, and we can express the

standard basis (e, ..., e,) of K™ in terms of A',... , A". Thus, we have
€1 b11 b12...b1n Al
€2 ba1 bag ... bap A?
€n bnl bngbnn A"

for some matrix B = (b; ;), and by Proposition 6.5, we get
det(eq, ..., e,) = det(B)det(Al,..., A™),

and since det(eq,...,e,) = 1, this implies that det(A',..., A") # 0 (and
det(B) # 0). For the second assertion, recall that the rank of a matrix is
equal to the maximum number of linearly independent columns, and the
conclusion is clear. O

We now characterize when a system of linear equations of the form
Az = b has a unique solution.

Proposition 6.9. Given an n X n-matriz A over a field K, the following
properties hold:

(1) For every column vector b, there is a unique column vector x such that
Ax = b iff the only solution to Ax = 0 is the trivial vector x = 0, iff
det(A) # 0.
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(2) If det(A) # 0, the unique solution of Ax = b is given by the expressions
~det(A, .. AT b, AT AT
YT det(AL, .. AL, AT, AFL . An)’
known as Cramer’s rules.
(8) The system of linear equations Az = 0 has a nonzero solution iff
det(A) = 0.

Proof. (1) Assume that Az = b has a single solution x¢, and assume that
Ay = 0 with y # 0. Then,
A(xg +y) = Azg + Ay = Axg + 0 = b,

and xg+y # xg is another solution of Az = b, contradicting the hypothesis
that Ax = b has a single solution xg. Thus, Az = 0 only has the trivial so-
lution. Now assume that Az = 0 only has the trivial solution. This means
that the columns A', ..., A" of A are linearly independent, and by Propo-
sition 6.8, we have det(A) # 0. Finally, if det(A) # 0, by Proposition 6.7,
this means that A is invertible, and then for every b, Ax = b is equivalent
to x = A~1b, which shows that Az = b has a single solution.

(2) Assume that Az = b. If we compute
det(A, ... oy Al AV, A™ L A™) = det(AY, .. b, . AT,
where b occurs in the j-th position, by multilinearity, all terms containing
two identical columns A* for k # j vanish, and we get

zjdet(A, ..., A") = det(AY,..., AT p AT A,

for every j, 1 < j < n. Since we assumed that det(A4) = det(A*,..., A™) #
0, we get the desired expression.

(3) Note that Az = 0 has a nonzero solution iff A ... A" are lin-
early dependent (as observed in the proof of Proposition 6.8), which, by
Proposition 6.8, is equivalent to det(A) = 0. O

As pleasing as Cramer’s rules are, it is usually impractical to solve
systems of linear equations using the above expressions. However, these
formula imply an interesting fact, which is that the solution of the system
Az = b are continuous in A and b. If we assume that the entries in A
are continuous functions a;;(t) and the entries in b are are also continuous
functions b;(t) of a real parameter ¢, since determinants are polynomial
functions of their entries, the expressions

det(Al, ... AT~ b ATHL . A™)
zi(t) = det(AL, ..., Ai—1, Aj, A+, An)
are ratios of polynomials, and thus are also continuous as long as det(A(t))
is nonzero. Similarly, if the functions a;;(t) and b;(t) are differentiable, so
are the x;(t).
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6.6 Determinant of a Linear Map

Given a vector space E of finite dimension n, given a basis (uq, ..., u,) of
E, for every linear map f: F — E, if M(f) is the matrix of f w.r.t. the
basis (u1,...,uy), we can define det(f) = det(M(f)). If (v1,...,vy) is any
other basis of E, and if P is the change of basis matrix, by Corollary 3.1,
the matrix of f with respect to the basis (v1,...,v,) is P"'M(f)P. By
Proposition 6.6, we have

det(P~'M(f)P) = det(P~ ') det(M(f))det(P) =
det(P~1) det(P) det(M(f)) = det(M(f)).
Thus, det(f) is indeed independent of the basis of E.

Definition 6.10. Given a vector space F of finite dimension, for any linear
map f: E — E, we define the determinant det(f) of f as the determinant
det(M(f)) of the matrix of f in any basis (since, from the discussion just
before this definition, this determinant does not depend on the basis).

Then we have the following proposition.

Proposition 6.10. Given any vector space E of finite dimension n, a lin-
ear map f: E — E is invertible iff det(f) # 0.

Proof. The linear map f: E — E is invertible iff its matrix M (f) in any
basis is invertible (by Proposition 3.2), iff det(M(f)) # 0, by Proposition
6.7. O

Given a vector space of finite dimension n, it is easily seen that the set
of bijective linear maps f: F — E such that det(f) = 1 is a group under
composition. This group is a subgroup of the general linear group GL(FE).
It is called the special linear group (of E), and it is denoted by SL(E), or
when E = K™, by SL(n, K), or even by SL(n).

6.7 The Cayley—Hamilton Theorem

We next discuss an interesting and important application of Proposition
6.7, the Cayley—Hamilton theorem. The results of this section apply to
matrices over any commutative ring K. First we need the concept of the
characteristic polynomial of a matrix.

Definition 6.11. If K is any commutative ring, for every n x n matrix
A e M, (K), the characteristic polynomial P4(X) of A is the determinant
Py(X) =det(XI — A).

ws-book-1-9x6
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The characteristic polynomial P4(X) is a polynomial in K[X], the ring
of polynomials in the indeterminate X with coefficients in the ring K. For

example, when n = 2, if
ab
A =
()

X—a -b
PA(X):‘ —c X —d

then

’ =X?—(a+d)X +ad— be.
We can substitute the matrix A for the variable X in the polynomial P4 (X),
obtaining a matriz Ps. If we write
Pa(X)=X"+e X" M+ e,
then
Pa=A"+c A"+l
We have the following remarkable theorem.

Theorem 6.2. (Cayley—Hamilton) If K is any commutative ring, for ev-
ery n X n matriz A € M, (K), if we let

PAX)=X"+c X" 14,
be the characteristic polynomial of A, then
Pi=A"4+c A" '+ 4, I =0.

Proof. We can view the matrix B = XI — A as a matrix with coefficients
in the polynomial ring K[X], and then we can form the matrix B which is
the transpose of the matrix of cofactors of elements of B. Each entry in B
isan (n—1) x (n —1) determinant, and thus a polynomial of degree a most
n — 1, so we can write B as

B=X""'By+ X" 2By +---+ By_1,

for some n x n matrices By, ..., B,_1 with coefficients in K. For example,
when n = 2, we have

X—-a -b ~ X—-d b 10 —d b
B_( —c X—d)’ B_( c X—a)_X<Ol>+<c —a>'
By Proposition 6.7, we have
BB = det(B)I = Pa(X)I.
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On the other hand, we have
BB = (XI—A)(X" 'By+ X" 2By +---+ X" 77'Bj+ -+ B,_1),
and by multiplying out the right-hand side, we get

BB=X"Dy+ X" 'Dy+---+ X" IDj +--- 4 D,,

with
Doy = By
D, =B; — ABy
Dj = Bj — ABj,l
Dy 1=Bn1— ABn—Q
D, =—-AB,_1.
Since

PA(X) = (X" + 1 X" Lo e,
the equality
XnDO+Xn71D1+...+Dn — (Xnﬁ—Canil ++C")I

is an equality between two matrices, so it requires that all corresponding
entries are equal, and since these are polynomials, the coefficients of these
polynomials must be identical, which is equivalent to the set of equations

I=DB,
Cl_[: B1 —ABO

Cj[ = Bj — ABj_l

¢n—1d =Bn,_1 —AB,,_»
CnI = —Aanl,
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for all j, with 1 < j <n —1. If, as in the table below,
A" = A"By
ClAn71 = Anil(Bl — ABo)

CjAnij = Anij(Bj — Aijl)

CnflA = A(anl - Aan2)
CnI = 7ABn_1,

we multiply the first equation by A", the last by I, and generally the
( + 1)th by A"~ when we add up all these new equations, we see that
the right-hand side adds up to 0, and we get our desired equation

A" f A e, 1 =0,

as claimed. O

As a concrete example, when n = 2, the matrix
ab
A =
(¢

A% — (a+d)A + (ad — be)I = 0.

satisfies the equation

Most readers will probably find the proof of Theorem 6.2 rather clever
but very mysterious and unmotivated. The conceptual difficulty is that
we really need to understand how polynomials in one variable “act” on
vectors in terms of the matrix A. This can be done and yields a more
“natural” proof. Actually, the reasoning is simpler and more general if we
free ourselves from matrices and instead consider a finite-dimensional vector
space E and some given linear map f: £ — E. Given any polynomial
p(X) = apX"+a; X"t +---+a, with coefficients in the field K, we define
the linear map p(f): E — E by

p(f) = aof" + a1 f" + -+ + anid,
where f¥ = fo...o f, the k-fold composition of f with itself. Note that

p(f)(w) = aof™(u) + a1 f* " (u) + -+ + anu,

ws-book-1-9x6
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for every vector u € E. Then we define a new kind of scalar multiplication

: K[X] x E — E by polynomials as follows: for every polynomial p(X) €
K[X], for every u € E,

p(X) - u = p(f)(w)
It is easy to verify that this is a “good action,” which means that
p(utv)=p-ut+p-v
(p+q) - u=putq-u
(pg) - u=p-(q-u)
1 -u=u,
for all p,q € K[X] and all u,v € E. With this new scalar multiplication, E
is a K[X]-module.
If p= X is just a scalar in K (a polynomial of degree 0), then
A-u = (Aid)(u) = A,
which means that K acts on E by scalar multiplication as before. If p(X) =
X (the monomial X), then
X -u= f(u).
Now if we pick a basis (eq,...,e,) of E, if a polynomial p(X) € K[X]
has the property that
p(X)-e,=0, i=1,...,n,

then this means that p(f)(e;) = 0 for ¢ = 1,...,n, which means that the
linear map p(f) vanishes on E. We can also check, as we did in Section

6.2, that if A and B are two n X n matrices and if (uy,...,u,) are any n
vectors, then
Uy U1
A-|B-| : = (AB) -
U, U,

This suggests the plan of attack for our second proof of the Cayley—
Hamilton theorem. For simplicity, we prove the theorem for vector spaces
over a field. The proof goes through for a free module over a commutative
ring.

Theorem 6.3. (Cayley—-Hamilton) For every finite-dimensional vector

space over a field K, for every linear map f: E — E, for every basis

(e1,...,en), if A is the matriz over f over the basis (ey,...,e,) and if
PAX)=X"+c X"+ Fe,

1s the characteristic polynomial of A, then

Pa(f)=f"+caf" "+ +caid =0.
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Proof. Since the columns of A consist of the vector f(e;) expressed over
the basis (eq,...,e,), we have

n
f(ej):Zaijei, 1§]§n
i=1
Using our action of K[X] on E, the above equations can be expressed as

n
X-ej=Y aij-e, 1<j<n,
i—1

which yields

j—1 n
Z—aij~ei+(X—ajj)~ej+Z—aij-eizo, 1<5<n.
i=1 i=j+1
Observe that the transpose of the characteristic polynomial shows up, so
the above system can be written as

X—a1 —axr -+ —api el 0
—ai2 X —azz---  —ap2 €2 0
—Q1n —azp - X —apn €n 0

If we let B = XI— AT, then as in the previous proof, if B is the transpose
of the matrix of cofactors of B, we have

BB = det(B)I = det(XI — A")I = det(XI — A)I = P4l.

But since

€1 0

€9 0
B- = 7

en 0

and since B is matrix whose entries are polynomials in K[X], it makes
sense to multiply on the left by B and we get

€1 e1 e1 0 0
~ €9 ~ €9 €9 ~ 0 0
B-B-| " |=BB)-| |=rPa-| |=B-|.|=]|.]:

€n €n (%% 0 0

that is,
Py-e;=0, j=1,...,n,
which proves that P4(f) =0, as claimed. O

ws-book-1-9x6
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If K is a field, then the characteristic polynomial of a linear map f: £ —
E is independent of the basis (ej,...,e,) chosen in E. To prove this,
observe that the matrix of f over another basis will be of the form P~*AP,
for some inverible matrix P, and then

det(XI — P~'AP) = det(XP~'IP — P~'AP)
=det(P~(XI — A)P)
=det(P71) det(XT — A) det(P)
= det(XTI — A).
Therefore, the characteristic polynomial of a linear map is intrinsic to f,
and it is denoted by Ps.
The zeros (roots) of the characteristic polynomial of a linear map f are

called the eigenvalues of f. They play an important role in theory and
applications. We will come back to this topic later on.

6.8 Permanents

Recall that the explicit formula for the determinant of an n x n matrix is
det(A) = Z 6(7T->a/7r(1) 1" Qx(n)n
€S,

If we drop the sign ¢(7) of every permutation from the above formula, we
obtain a quantity known as the permanent:

per(A) = Z Ar(1)1" " Qr(n)n-
€S,
Permanents and determinants were investigated as early as 1812 by Cauchy.
It is clear from the above definition that the permanent is a multilinear
symmetric form. We also have

per(A) = per(AT),
and the following unsigned version of the Laplace expansion formula:
per(A) = a;1per(A;1) + -+ aijper(Aij) + - - + a;nper(4;n),

for ¢ = 1,...,n. However, unlike determinants which have a clear geomet-
ric interpretation as signed volumes, permanents do not have any natural
geometric interpretation. Furthermore, determinants can be evaluated effi-
ciently, for example using the conversion to row reduced echelon form, but
computing the permanent is hard.
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Permanents turn out to have various combinatorial interpretations. One
of these is in terms of perfect matchings of bipartite graphs which we now
discuss.

See Definition 18.5 for the definition of an undirected graph. A bipartite
(undirected) graph G = (V, E) is a graph whose set of nodes V' can be
partitioned into two nonempty disjoint subsets V; and V5, such that every
edge e € F has one endpoint in Vi and one endpoint in V5.

An example of a bipartite graph with 14 nodes is shown in Figure 6.3;
its nodes are partitioned into the two sets {z1, 2,3, x4, 5,6, 27} and

{Y1,Y2, U3, Y4, Y5, Y6, Y7 }-

Yr

X7

Fig. 6.3 A bipartite graph G.

A matching in a graph G = (V, E) (bipartite or not) is a set M of
pairwise non-adjacent edges, which means that no two edges in M share
a common vertex. A perfect matching is a matching such that every node
in V is incident to some edge in the matching M (every node in V is an
endpoint of some edge in M). Figure 6.4 shows a perfect matching (in red)
in the bipartite graph G.

Obviously, a perfect matching in a bipartite graph can exist only if its
set of nodes has a partition in two blocks of equal size, say {z1,...,2m}
and {y1,...,Ym}- Then there is a bijection between perfect matchings and
bijections m: {z1,...,Tm} — {¥1,...,Ym} such that w(x;) = y; iff there is
an edge between z; and y;.

Now every bipartite graph G with a partition of its nodes into two
sets of equal size as above is represented by an m x m matrix A = (a,;)
such that a;; = 1 iff there is an edge between z; and y;, and a;; = 0
otherwise. Using the interpretation of perfect matchings as bijections
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Y7

Fig. 6.4 A perfect matching in the bipartite graph G.

m: {21, .., xm} = {y1,. .., Ym}, we see that the permanent per(A) of the
(0,1)-matriz A representing the bipartite graph G counts the number of
perfect matchings in G.

In a famous paper published in 1979, Leslie Valiant proves that comput-
ing the permanent is a #P-complete problem. Such problems are suspected
to be intractable. It is known that if a polynomial-time algorithm existed
to solve a #P-complete problem, then we would have P = NP, which is
believed to be very unlikely.

Another combinatorial interpretation of the permanent can be given
in terms of systems of distinct representatives. Given a finite set S, let
(A44,...,A,) be any sequence of nonempty subsets of S (not necessarily
distinct). A system of distinct representatives (for short SDR) of the sets
Ay,..., A, is a sequence of n distinct elements (aq,...,a,), with a; €
A; for i = 1,...,n. The number of SDR’s of a sequence of sets plays
an important role in combinatorics. Now, if S = {1,2,...,n} and if we
associate to any sequence (A1, ..., A,) of nonempty subsets of S the matrix
A = (a;;) defined such that a;; = 1if j € A; and a;; = 0 otherwise, then
the permanent per(A) counts the number of SDR’s of the sets Ay, ..., Ap.

This interpretation of permanents in terms of SDR’s can be used to
prove bounds for the permanents of various classes of matrices. Interested
readers are referred to van Lint and Wilson [van Lint and Wilson (2001)]
(Chapters 11 and 12). In particular, a proof of a theorem known as Van
der Waerden conjecture is given in Chapter 12. This theorem states that
for any n x n matrix A with nonnegative entries in which all row-sums and
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column-sums are 1 (doubly stochastic matrices), we have

|
per(4) > n

nn’

with equality for the matrix in which all entries are equal to 1/n.

6.9 Summary

The main concepts and results of this chapter are listed below:

Permutations, transpositions, basics transpositions.

Every permutation can be written as a composition of permutations.
The parity of the number of transpositions involved in any decomposi-
tion of a permutation o is an invariant; it is the signature e(o) of the
permutation o.

Multilinear maps (also called n-linear maps); bilinear maps.
Symmetric and alternating multilinear maps.

A basic property of alternating multilinear maps (Lemma 6.1) and the
introduction of the formula expressing a determinant.

Definition of a determinant as a multlinear alternating map
D: M, (K) — K such that D(I) = 1.

We define the set of algorithms D,,, to compute the determinant of an
n X n matrix.

Laplace expansion according to the ith row; cofactors.

We prove that the algorithms in D,, compute determinants (Lemma
6.2).

We prove that all algorithms in D,, compute the same determinant
(Theorem 6.1).

We give an interpretation of determinants as signed volumes.

We prove that det(A) = det(AT).

We prove that det(AB) = det(A) det(B).

The adjugate A of a matrix A.

Formula for the inverse in terms of the adjugate.

A matrix A is invertible iff det(A) # 0.

Solving linear equations using Cramer’s rules.

Determinant of a linear map.

The characteristic polynomial of a matrix.

The Cayley—Hamilton theorem.

The action of the polynomial ring induced by a linear map on a vector
space.



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning

page 195

6.10. Further Readings 195

o Permanents.

e Permanents count the number of perfect matchings in bipartite graphs.

e Computing the permanent is a #P-perfect problem (L. Valiant).

e Permanents count the number of SDRs of sequences of subsets of a
given set.

6.10 Further Readings

Thorough expositions of the material covered in Chapter 2-5 and 6 can be
found in Strang [Strang (1988, 1986)], Lax [Lax (2007)], Lang [Lang (1993)],
Artin [Artin (1991)], Mac Lane and Birkhoff [Mac Lane and Birkhoff
(1967)], Hoffman and Kunze [Kenneth and Ray (1971)], Dummit and Foote
[Dummit and Foote (1999)], Bourbaki [Bourbaki (1970, 1981a)], Van Der
Waerden [Van Der Waerden (1973)], Serre [Serre (2010)], Horn and Johnson
[Horn and Johnson (1990)], and Bertin [Bertin (1981)]. These notions of
linear algebra are nicely put to use in classical geometry, see Berger [Berger
(1990a,b)], Tisseron [Tisseron (1994)] and Dieudonné [Dieudonné (1965)].

6.11 Problems

Problem 6.1. Prove that every transposition can be written as a product
of basic transpositions.

Problem 6.2. (1) Given two vectors in R? of coordinates (c¢; —ay, co — as)
and (by — a1, by — ag), prove that they are linearly dependent iff
aq b1 C1
an bg Co| = 0.
111
(2) Given three vectors in R? of coordinates (d — ay,ds — az,d3 — a3),
(c1 —a1,co —ag,c3 —asz), and (by —ay,ba — as, bs — asz), prove that they are
linearly dependent iff
ay by c1 dy
ag by ca dy
a3 bz c3 d3
1111

=0.

Problem 6.3. Let A be the (m+mn) x (m+n) block matrix (over any field

K) given by
(AL Ay
4= (0 A4> ’

ws-book-1-9x6
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where A; is an m X m matrix, As is an m X n matrix, and A4 is ann X n
matrix. Prove that det(A) = det(A;) det(Ay).

Use the above result to prove that if A is an upper triangular n x n
matrix, then det(A) = ajjas - - anp-

Problem 6.4. Prove that if n > 3, then

I+ziy 1+ 2192 - 14+ 2190
T+moyr 14+ 22y2 -+ 14+ 22yn

det

1 + TnlY1 1 + TnplY2 * 1 + TnYn

Problem 6.5. Prove that

1 4 916
4 9 1625
9 16 25 36
16 25 36 49

Problem 6.6. Consider the n x n symmetric matrix

120 0...00
252 0...00
025 2...00

00...2 5 20
00...0 252
00...0 0 25

(1) Find an upper-triangular matrix R such that A = RTR.
(2) Prove that det(A) = 1.
(3) Consider the sequence

po(N) =1
p1(>\) =1-A
pe(N) = (5= Npr—1(N) —4pr—2(N) 2<k<n

Prove that
det(A — M) = pp(N).

Remark: It can be shown that p,(\) has n distinct (real) roots and that
the roots of pi(\) separate the roots of pri1(A).
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Problem 6.7. Let B be the n x n matrix (n > 3) given by

1-1-1-1--- -1-1
1-11 1 -1 1
11-11--1 1

p_|11 1 -1 11
11 1.--11
111 1 -1

Prove that
det(B) = (—=1)"(n — 2)2" 1.

Problem 6.8. Given a field K (say K = R or K = C), given any two
polynomials p(X), ¢(X) € K[X], we says that ¢(X) divides p(X) (and that
p(X) is a multiple of q(X)) iff there is some polynomial s(X) € K[X] such
that

p(X) = q(X)s(X).
In this case we say that q(X) is a factor of p(X), and if ¢(X) has degree
at least one, we say that ¢(X) is a nontrivial factor of p(X).
Let f(X) and ¢g(X) be two polynomials in K[X] with
FX) = aoX™ + a1 X" ot a,
of degree m > 1 and
g(X) = boXn + len71 + -

of degree n > 1 (with ag, by # 0).

You will need the following result which you need not prove:

Two polynomials f(X) and g(X) with deg(f) = m > 1 and deg(g) =
n > 1 have some common nontrivial factor iff there exist two nonzero
polynomials p(X) and q(X) such that

+bn

fp=gq,

with deg(p) <n —1 and deg(q) < m — 1.
(1) Let Py, denote the vector space of all polynomials in K[X] of degree
at most m — 1, and let T': P, X Py, = Pintrn be the map given by

T(p,q) = fp+ 99

where f and g are some fixed polynomials of degree m > 1 and n > 1.
Prove that the map T is linear.

P € Pn, q € Pm,

ws-book-1-9x6
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(2) Prove that T is not injective iff f and g have a common nontrivial
factor.

(3) Prove that f and g have a nontrivial common factor iff R(f,g) = 0,
where R(f,g) is the determinant given by

ao al ...... am O D I 0

0 agp ay -+ -~ Ay O wvv oo e 0
R(Frg) = | v cvr vre e e e e e e e

0 .. 0 aO a/l ...... am

T T | R (|

0 by by v con ner e by 0O

O -+ 0 by by ~on cvv oo nee oee by,

The above determinant is called the resultant of f and g.

Note that the matrix of the resultant is an (n + m) x (n + m) matrix,
with the first row (involving the a;s) occurring n times, each time shifted
over to the right by one column, and the (n + 1)th row (involving the b;s)
occurring m times, each time shifted over to the right by one column.
Hint. Express the matrix of T' over some suitable basis.

(4) Compute the resultant in the following three cases:

(a) m=n=1, and write f(X)=aX +band g(X) = cX +d.
(b) m =1 and n > 2 arbitrary.
(c) f(X)=aX?+bX +cand g(X)=2aX +b.

(5) Compute the resultant of f(X) = X3 +pX +qand g(X) = 3X2%+p,
and
f(X)=aoX?+ a1 X +as
g(X) = bo X2 + b1 X + bo.
In the second case, you should get
4R(f,g) = (2a0by — arby + 2a2bg)* — (4agas — a?)(4boby — b?).

Problem 6.9. Let A, B,C, D be n x n real or complex matrices.
(1) Prove that if A is invertible and if AC = CA, then

AB
det (C’ D) =det(AD — CB).
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(2) Prove that if H is an n x n Hadamard matrix (n > 2), then
|det(H)| = n"/2.
(3) Prove that if H is an n x n Hadamard matrix (n > 2), then

o (1)

Problem 6.10. Compute the product of the following determinants
a —b—c—d|z —y—2z -t
b a—-dclly z —t z
cd a =bllz t x —y
d—c b al||lt—2z vy =z
to prove the following identity (due to Euler):
@+ 02+ 2+ d®)(a? + o2+ 22+ 12)
= (az + by + cz + dt)* + (ay — bz + ct — dz)?
+ (az — bt — cx + dy)? + (at + bz — cy + dx)?.

Problem 6.11. Let A be an n X n matrix with integer entries. Prove that
A~! exists and has integer entries if and only if det(A) = £1.

Problem 6.12. Let A be an n X n real or complex matrix.

(1) Prove that if AT = —A (A is skew-symmetric) and if n is odd, then
det(A) = 0.

(2) Prove that

0 a b c
—a 0 d el 9
_b_dof—(af—be—i—dc).
—c—e—f0

Problem 6.13. A Cauchy matriz is a matrix of the form
1 1 1

AM—01 A\1—0O .”/\fan
111112 11

A2 — 01 Ao — 02 A2 — Oy

1 1 1
)\n_al )\n_JZ )\n_on
where \; # oy, for all 4, j, with 1 <14,j < n. Prove that the determinant
C,, of a Cauchy matrix as above is given by

T T2 O = A (o5 — o)
[T I —oy)

Cn =
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Problem 6.14. Let (aq,...,am,+1) be a sequence of pairwise distinct
scalars in R and let (B1,...,0Bm+1) be any sequence of scalars in R, not

necessarily distinct.
(1) Prove that there is a unique polynomial P of degree at most m such
that

Hint. Remember Vandermonde!
(2) Let L;(X) be the polynomial of degree m given by
(X —a1) - (X =) (X —aiq1) - (X — am41)
(i =) (s — 1) (o — ig1) - (@ — Q1)
1<i<m+1.

Li(X) =

The polynomials L;(X) are known as Lagrange polynomial interpolants.
Prove that
Li(aj)=6;; 1<i,j<m+1.
Prove that
P(X) = BiLi(X) + -+ Bg1 Lins1(X)
is the unique polynomial of degree at most m such that
Pla;) =0, 1<i<m+1.

(3) Prove that Li(X),..., Ly4+1(X) are linearly independent, and that
they form a basis of all polynomials of degree at most m.

How is 1 (the constant polynomial 1) expressed over the basis
(L1(X), ..., Ly (X)?

Give the expression of every polynomial P(X) of degree at most m over
the basis (L1(X), ..., Ln+1(X)).

(4) Prove that the dual basis (L,...,L},,;) of the basis
(L1(X), ..., Lim+1(X)) consists of the linear forms L} given by

Li(P) = P(a),

for every polynomial P of degree at most m; this is simply evaluation at
(67

ws-book-1-9x6
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Chapter 7

Gaussian Elimination,
LU-Factorization, Cholesky
Factorization, Reduced Row Echelon
Form

In this chapter we assume that all vector spaces are over the field R. All
results that do not rely on the ordering on R or on taking square roots hold
for arbitrary fields.

7.1 Motivating Example: Curve Interpolation

Curve interpolation is a problem that arises frequently in computer graphics
and in robotics (path planning). There are many ways of tackling this
problem and in this section we will describe a solution using cubic splines.
Such splines consist of cubic Bézier curves. They are often used because
they are cheap to implement and give more flexibility than quadratic Bézier
curves.

A cubic Bézier curve C(t) (in R? or R?) is specified by a list of four
control points (bg, b1, be,b3) and is given parametrically by the equation

Ct)=(1—1)3bo+3(1 — )%t by + 3(1 — t)t* by + 13 bs.
Clearly, C(0) = by, C(1) = b3, and for t € [0, 1], the point C(t) belongs to
the convex hull of the control points by, b1, b2, b3. The polynomials
(1—1)3, 3(1—-1t)3%, 3(1-t)t*, ¢

are the Bernstein polynomials of degree 3.

Typically, we are only interested in the curve segment corresponding to
the values of ¢ in the interval [0, 1]. Still, the placement of the control points
drastically affects the shape of the curve segment, which can even have a
self-intersection; See Figures 7.1, 7.2, 7.3 illustrating various configurations.

201
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by

bo > b3

Fig. 7.1 A “standard” Bézier curve.

bg ¢
© b

Fig. 7.2 A Bézier curve with an inflection point.

bg bl

bg C > bs

Fig. 7.3 A self-intersecting Bézier curve.
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Interpolation problems require finding curves passing through some
given data points and possibly satisfying some extra constraints.

A Bézier spline curve F' is a curve which is made up of curve segments
which are Bézier curves, say C1,...,Cy, (m > 2). We will assume that F
defined on [0,m], so that for i =1,...,m,

Fit)=Cit—i+1), i—1<t<i.

Typically, some smoothness is required between any two junction points,
that is, between any two points C;(1) and C;41(0), for i = 1,...,m — 1.
We require that C;(1) = Cy41(0) (C°-continuity), and typically that the
derivatives of C; at 1 and of C; 1 at 0 agree up to second order derivatives.
This is called C2-continuity, and it ensures that the tangents agree as well
as the curvatures.

There are a number of interpolation problems, and we consider one of
the most common problems which can be stated as follows:

Problem: Given N + 1 data points xo,...,zy, find a C? cubic spline
curve F such that F(i) =x; for all i, 0 <i < N (N > 2).

A way to solve this problem is to find N 4 3 auxiliary points
d_1,...,dNy1, called de Boor control points, from which N Bézier curves
can be found. Actually,

d_lil‘o and dN+1:l’N

so we only need to find N + 1 points dy,...,dy.

It turns out that the C2-continuity constraints on the N Bézier curves
yield only N — 1 equations, so dy and dy can be chosen arbitrarily. In
practice, dg and dy are chosen according to various end conditions, such
as prescribed velocities at zop and z. For the time being, we will assume
that dy and dy are given.

Figure 7.4 illustrates an interpolation problem involving N+1 =741 =
8 data points. The control points dy and d7 were chosen arbitrarily.

It can be shown that dq,...,dy_1 are given by the linear system
% 1 d1 6.%'1 - %do
14 1 0 d2 6.’172
0 1 41 dn_2 6rN_2
12 dn_1 6xy_1 — 2dn

We will show later that the above matrix is invertible because it is
strictly diagonally dominant.

ws-book-1-9x6
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CC7:dg

Fig. 7.4 A C? cubic interpolation spline curve passing through the points g, z1, 2, 3,
T4,T5, T6, L7

Once the above system is solved, the Bézier cubics C1, ..

., Cn are de-

termined as follows (we assume N > 2): For 2 < ¢ < N — 1, the control
i, b5, b%) of C; are given by

points (b,

) 2
= 2d;i1 + 5 d;
3 1+

= Tj—1

1
3
1 2

b= 2dio1 + 2 d;

3 3

= ;.

The control points (b, b1, b3, b3) of C; are given by

b(l):l‘()
by = do

1 1
by = —do + =d
2= 30t 3h

1
3:-7;17
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and the control points (b2, b2, b)Y, bY) of Cy are given by
by =xNn_1
1 1
N = —dy_ 1+ =d
1 g ON-1 + S dN

by =dy

N
b3 = IN-

Figure 7.5 illustrates this process spline interpolation for N = 7.

Fig. 7.5 A C? cubic interpolation of xq, 1, 2,3, T4, x5, Te, Ty with associated color
coded Bézier cubics.

We will now describe various methods for solving linear systems. Since
the matrix of the above system is tridiagonal, there are specialized methods
which are more efficient than the general methods. We will discuss a few
of these methods.

7.2 Gaussian Elimination

Let A be an n xn matrix, let b € R™ be an n-dimensional vector and assume
that A is invertible. Our goal is to solve the system Az = b. Since A is
assumed to be invertible, we know that this system has a unique solution
x = A7'b. Experience shows that two counter-intuitive facts are revealed:



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning  ws-book-1-9x6
page 206

206 Gaussian Elimination, LU, Cholesky, Echelon Form

(1) One should avoid computing the inverse A~! of A explicitly. This
is inefficient since it would amount to solving the m linear systems
Aul) = ej for j = 1,...,n, where e; = (0,...,1,...,0) is the jth
canonical basis vector of R” (with a 1 is the jth slot). By doing so, we
would replace the resolution of a single system by the resolution of n
systems, and we would still have to multiply A~! by b.

(2) One does not solve (large) linear systems by computing determinants
(using Cramer’s formulae) since this method requires a number of ad-
ditions (resp. multiplications) proportional to (n+ 1)! (resp. (n+2)!).

The key idea on which most direct methods (as opposed to iterative
methods, that look for an approximation of the solution) are based is that if
A is an upper-triangular matrix, which means that a;; = 0for1 <j <i<n
(resp. lower-triangular, which means that a;; = 0 for 1 <4 < j < n), then
computing the solution x is trivial. Indeed, say A is an upper-triangular

matrix
11012 *-* Alp—2 Gln—1 Gln
0 agg -+ agp—2 a2n_1 a2q
0 O
A pr—
0 0 0 Up—1n—1 An—1n
0 O 0 0 ann

Then det(A) = ajia22+--ann # 0, which implies that a;; # 0 for ¢ =
1,...,n, and we can solve the system Az = b from bottom-up by back-
substitution. That is, first we compute x, from the last equation, next
plug this value of x, into the next to the last equation and compute x,_1
from it, etc. This yields

~1
Tp = G, 5bn

—1
Tp—1 = Ay 1 nfl(bnfl — Qp—1 nxn)

-1
Tl = all(bl — Q122 — "'—a1n$n)~

Note that the use of determinants can be avoided to prove that if A is
invertible then a;; # 0 for ¢ = 1,...,n. Indeed, it can be shown directly
(by induction) that an upper (or lower) triangular matrix is invertible iff
all its diagonal entries are nonzero.
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If A is lower-triangular, we solve the system from top-down by forward-
substitution.

Thus, what we need is a method for transforming a matrix to an equiv-
alent one in upper-triangular form. This can be done by elimination. Let
us illustrate this method on the following example:

2c +y + z2=25

dxr — 6y =-2

—2x + Ty +2z=09.
We can eliminate the variable x from the second and the third equation as
follows: Subtract twice the first equation from the second and add the first
equation to the third. We get the new system

20+ y + z = 5
— 8y — 2z =-12
8y + 3z = 14.
This time we can eliminate the variable y from the third equation by adding
the second equation to the third:

2r+y +2z= 5
— 8y — 22 =—-12
z = 2.
This last system is upper-triangular. Using back-substitution, we find the
solution: z =2, y=1, z=1.

Observe that we have performed only row operations. The general
method is to iteratively eliminate variables using simple row operations
(namely, adding or subtracting a multiple of a row to another row of the
matrix) while simultaneously applying these operations to the vector b,
to obtain a system, M Ax = Mb, where M A is upper-triangular. Such a
method is called Gaussian elimination. However, one extra twist is needed
for the method to work in all cases: It may be necessary to permute rows,
as illustrated by the following example:

T+ y+z =1
T+ y+3z=1
2z 4+ 5y + 8z = 1.
In order to eliminate z from the second and third row, we subtract the first
row from the second and we subtract twice the first row from the third:
x4+ y + 2z =1
2z =0
3y + 62 = —1.
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Now the trouble is that y does not occur in the second row; so, we can’t
eliminate y from the third row by adding or subtracting a multiple of the
second row to it. The remedy is simple: Permute the second and the third
row! We get the system:

r+y + 2z =1
3y + 6z =-1
2z =0,
which is already in triangular form. Another example where some permu-
tations are needed is:
z =1
—2zx 4+ Ty + 2z =
dr — 6y =—1.
First we permute the first and the second row, obtaining

—2x+Ty+2z2= 1

z =1
4r — 6y =-1,
and then we add twice the first row to the third, obtaining:
—2r4+Ty+2z=1
z =1
8y + 4z = 1.
Again we permute the second and the third row, getting
—2x+Ty+22=1
y+4z=1
z =1,

an upper-triangular system. Of course, in this example, z is already solved
and we could have eliminated it first, but for the general method, we need
to proceed in a systematic fashion.

We now describe the method of Gaussian elimination applied to a linear
system Ax = b, where A is assumed to be invertible. We use the variable
k to keep track of the stages of elimination. Initially, & = 1.

(1) The first step is to pick some nonzero entry a;; in the first column of
A. Such an entry must exist, since A is invertible (otherwise, the first
column of A would be the zero vector, and the columns of A would
not be linearly independent. Equivalently, we would have det(A4) = 0).
The actual choice of such an element has some impact on the numerical
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stability of the method, but this will be examined later. For the time
being, we assume that some arbitrary choice is made. This chosen
element is called the pivot of the elimination step and is denoted m
(so, in this first step, 71 = a;1).

Next we permute the row (i) corresponding to the pivot with the first
row. Such a step is called pivoting. So after this permutation, the first
element of the first row is nonzero.

We now eliminate the variable z; from all rows except the first by
adding suitable multiples of the first row to these rows. More precisely
we add —a;1/m times the first row to the ith row for i = 2,...,n. At
the end of this step, all entries in the first column are zero except the
first.

Increment k by 1. If k = n, stop. Otherwise, k¥ < n, and then iteratively
repeat Steps (1), (2), (3) on the (n —k+ 1) x (n — k + 1) subsystem
obtained by deleting the first £k — 1 rows and k& — 1 columns from the
current system.

If we let Ay = A and Ay = (agl;)) be the matrix obtained after k — 1
elimination steps (2 < k < n), then the kth elimination step is applied to
the matrix A of the form

(k)

(k)
ajg Gi9

......... aln
0 agkz) ......... ag’?b
A — .o :
g 0 0 0al... o®
0 0 0 a .- alf)
Actually, note that
(k) _ ()
a;; =a;;

for all 4,5 with 1 < i <k —2 and ¢ < j < n, since the first £k — 1 rows
remain unchanged after the (k — 1)th step.

We will prove later that det(Ar) = £det(A). Consequently, Ay is
The fact that A, is invertible iff A is invertible can also be
shown without determinants from the fact that there is some invertible
matrix M} such that Ay = M, A, as we will see shortly.

Since Ay is invertible, some entry aglz) with & < ¢ < n is nonzero.
Otherwise, the last n — k + 1 entries in the first & columns of A would be

invertible.

ws-book-1-9x6
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be invertible, a contradiction. This situation is illustrated by the following

matrix for n = 5 and k£ = 3:

0@ o®

0 O

The first three columns of the above matrix are linearly dependent.

So one of the entries a,;
permute the kth row with the ith row, obtaining the matrix o*) = (ag.]?).

The new pivot is m, = oy,

(k)

(k)

with £ <14 < n can be chosen as pivot, and we

and we zero the entries ¢ = k+ 1,...,n in

column k by adding —Otgll?/ﬂ'k times row k to row i. At the end of this
step, we have Agy1. Observe that the first k£ — 1 rows of Ay are identical
to the first £ — 1 rows of Aj41.

The process of Gaussian elimination is illustrated in schematic form

X X X X
X X X X

X X X X
X X X X

X X X X X X X X X X X X
0 X X X 0 X X X 0 X X X
0 X X X 00X X 00 x x
0 X X X 00X X 000 X

7.3 Elementary Matrices and Row Operations

It is easy to figure out what kind of matrices perform the elementary row
operations used during Gaussian elimination. The key point is that if A =
PB, where A, B are mxn matrices and P is a square matrix of dimension m,

if (as usual) we denote the rows of A and B by Ay, ..

then the formula

., Ay, and By, ...

m

aij = Zpikbkj

k=1

7Bm’

giving the (7, j)th entry in A shows that the ith row of A is a linear com-
bination of the rows of B:

Ai =piaBi+ -+ pimBm.
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Therefore, multiplication of a matriz on the left by a square matrix performs
row operations. Similarly, multiplication of a matrix on the right by a
square matrix performs column operations

The permutation of the kth row with the ith row is achieved by multi-
plying A on the left by the transposition matriz P(i, k), which is the matrix
obtained from the identity matrix by permuting rows ¢ and k, i.e.,

1
1
0 1
1
P(ik) = _
1
1 0
1
1
For example, if m = 3,
001
P(1,3)=(010],
100
then
001 b11 b12 --------- bln b31 b32 ......... b3n
P(1,3)B=[010] |boibog o o - bon | = [ Doy bog < ov cee oo b
100/ \bsy bzg -+ -+ - bay, bigbrg ov coe oo bin
Observe that det(P(i,k)) = —1. Furthermore, P(i,k) is symmetric

(P(i, k)T = P(i,k)), and
P(i, k)~ = P(i, k).

During the permutation Step (2), if row k& and row i need to be per-
muted, the matrix A is multiplied on the left by the matrix Py such that
P, = P(i, k), else we set P, = I.

Adding 3 times row j to row i (with i # j) is achieved by multiplying
A on the left by the elementary matriz,

Eijis =1+ Beij,
where

(e ot = 1 ifk=dandl=
IRET 0 ifk#iorl# g,
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i.€.,
1 1
1 1
1 1 3
1 1
Eijp = : or Eijp= : ;
1 1
3 1 1
1 1

1 1

on the left, ¢ > j, and on the right, ¢ < j. The index 7 is the index of the
row that is changed by the multiplication. For example, if m = 3 and we
want to add twice row 1 to row 3, since =2, j =1 and ¢ = 3, we form

100 000 100
E319=1+2e3;=[010]4+1000|=({010],
001 200 201
and calculate
100 byy byg -ov e e b,
Es12B=010] {ba1bag-or -+ -+ ban,
201 by bag <o <e e bs,,
by by e ee- by,
- boy boy e e .
2b11 + b31 2b12 + b3 - oo - 2b1p + ban

Observe that the inverse of E; ;.3 = I + fe;; is E; j._g = I — Be; ; and that
det(E;, j,p) = 1. Therefore, during Step 3 (the elimination step), the matrix
A is multiplied on the left by a product Ej, of matrices of the form E; .5, ,,
with i > k.

Consequently, we see that

A1 = Ep P Ay,
and then
A, =E,_1P._1---E1PA.

This justifies the claim made earlier that Ay = MpA for some invertible
matrix Mj; we can pick

My = Ex_1Pe_1---E P,

ws-book-1-9x6
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a product of invertible matrices.
The fact that det(P(¢,k)) = —1 and that det(E; j,5) = 1 implies imme-
diately the fact claimed above: We always have

det(Ag) = = det(A).
Furthermore, since
Ay =Ep 1Py - E1PLA
and since Gaussian elimination stops for k = n, the matrix
Apn=FEn 1Pp_1---EsPoE1 Pl A

is upper-triangular. Also note that if we let M = E,,_1P,,_1--+- EsPoFE1 Py,
then det(M) = £1, and

det(A) = £ det(A,).

The matrices P(i, k) and E; ;.3 are called elementary matrices. We can
summarize the above discussion in the following theorem:

Theorem 7.1. (Gaussian elimination) Let A be an nxn matric (invertible
or not). Then there is some invertible matriz M so that U = M A is upper-
triangular. The pivots are all nonzero iff A is invertible.

Proof. We already proved the theorem when A is invertible, as well as the
last assertion. Now A is singular iff some pivot is zero, say at Stage k of
the elimination. If so, we must have aEIZ) =0 for i = k,...,n; but in this

case, Aiy1 = A and we may pick P, = Ey, = I. O

Remark: Obviously, the matrix M can be computed as
M=E, 1P, 1 - E2PE Py,

but this expression is of no use. Indeed, what we need is M ~!; when no per-
mutations are needed, it turns out that M ! can be obtained immediately
from the matrices E}’s, in fact, from their inverses, and no multiplications
are necessary.

Remark: Instead of looking for an invertible matrix M so that MA is
upper-triangular, we can look for an invertible matrix M so that M A is a
diagonal matrix. Only a simple change to Gaussian elimination is needed.
At every Stage k, after the pivot has been found and pivoting been per-
formed, if necessary, in addition to adding suitable multiples of the kth

ws-book-1-9x6
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row to the rows below row k in order to zero the entries in column k for
i =k+1,...,n, also add suitable multiples of the kth row to the rows above
row k in order to zero the entries in column k for ¢ = 1,...,k — 1. Such
steps are also achieved by multiplying on the left by elementary matrices
E; kg, ., except that ¢ < k, so that these matrices are not lower-triangular
matrices. Nevertheless, at the end of the process, we find that A, = MA,
is a diagonal matrix.

This method is called the Gauss-Jordan factorization. Because it is
more expensive than Gaussian elimination, this method is not used much
in practice. However, Gauss-Jordan factorization can be used to compute
the inverse of a matrix A. Indeed, we find the jth column of A~! by solving
the system Az = e; (where e; is the jth canonical basis vector of R™). By
applying Gauss-Jordan, we are led to a system of the form Djx(j) = Mje;,
where D; is a diagonal matrix, and we can immediately compute z\),

It remains to discuss the choice of the pivot, and also conditions that
guarantee that no permutations are needed during the Gaussian elimination
process. We begin by stating a necessary and sufficient condition for an
invertible matrix to have an LU-factorization (i.e., Gaussian elimination
does not require pivoting).

7.4 LU-Factorization

Definition 7.1. We say that an invertible matrix A has an LU-
factorization if it can be written as A = LU, where U is upper-triangular
invertible and L is lower-triangular, with L;; =1 fori=1,...,n.

A lower-triangular matrix with diagonal entries equal to 1 is called a
unit lower-triangular matrix. Given an n x n matrix A = (a;;), for any k
with 1 <k <n,let A(1:k,1:k) denote the submatrix of A whose entries
are a; j, where 1 <4,j < k.! For example, if A is the 5 x 5 matrix

a11 @12 A13 A14 A15
21 G22 A23 (24 A25
A= | a3z az asz azs ass |,
41 (42 Q43 (44 Q45
a51 G52 453 A54 A55

1We are using Matlab’s notation.

ws-book-1-9x6
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then
ai1 ai2 413
A(l : 3, 1: 3) = | a21 Ga22 G223
a31 as2 a33

Proposition 7.1. Let A be an invertible n X n-matriz. Then A has an
LU -factorization A = LU iff every matriz A(1 : k,1 : k) is invertible for
k=1,...,n. Furthermore, when A has an LU -factorization, we have

det(A(1: k,1:k))=mmy---m, k=1,...,n,
where T, s the pivot obtained after k — 1 elimination steps. Therefore, the
kth pivot is given by

ayp = det(A(1:1,1:1)) ifk=1
T = det(A(1: k,1:k)) L
det(AU:k—l,l:k'—l)) ifk=2,...,n.

Proof. First assume that A = LU is an LU-factorization of A. We can
write

A . A(l . k,l . k‘) A2 . L1 O U1 UQ . L1U1 L1U2

B As Ay)  \Ls Ly 0 Us) \L3Up LUz + LyU, )"’
where L, L4 are unit lower-triangular and U;,U, are upper-triangular.
(Note, A(1 : k,1 : k), L1, and Uy are k x k matrices; Ay and Uy are

k x (n — k) matrices; As and L3 are (n — k) x k matrices; Ay, L4, and Uy
are (n — k) x (n — k) matrices.) Thus,

A(l . ]{1,1 : k‘) = L1U1,

and since U is invertible, U; is also invertible (the determinant of U is the
product of the diagonal entries in U, which is the product of the diagonal
entries in U; and Uy). As L, is invertible (since its diagonal entries are
equal to 1), we see that A(1: k,1: k) is invertible for k = 1,...,n.

Conversely, assume that A(1: k,1: k) is invertible for k = 1,...,n. We
just need to show that Gaussian elimination does not need pivoting. We
prove by induction on k that the kth step does not need pivoting.

This holds for k = 1, since A(1:1,1:1) = (a11), so a;1 # 0. Assume
that no pivoting was necessary for the first k — 1 steps (2 <k <n—1). In
this case, we have

Ep1-- EsEn A= Ay,
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where L = Ey_1 - - - E5E is a unit lower-triangular matrix and Ag(1: k,1:
k) is upper-triangular, so that LA = Ay can be written as

L1 0 A(l]ﬁlkj) A2 . U1 BQ

Lg L4 A3 A4 B 0 B4 ’
where L; is unit lower-triangular and U is upper-triangular. (Once again
A(l: k,1:k), L1, and Uy are k x k matrices; As and By are k X (n — k)

matrices; As and Ls are (n — k) x k matrices; A4, L4, and By are (n — k) x
(n — k) matrices.) But then,

LiA(1: k,1: k) =1Un,
where L is invertible (in fact, det(L1) = 1), and since by hypothesis A(1 :
k,1 : k) is invertible, U; is also invertible, which implies that (Uy)gr # 0,

since U; is upper-triangular. Therefore, no pivoting is needed in Step k,
establishing the induction step. Since det(L;) = 1, we also have

det(Uy) =det(L1A(1: k,1:k)) =det(Ly)det(A(1: k,1:k))
=det(A(1: k,1:k)),

and since U; is upper-triangular and has the pivots 7y, ..., 7, on its diag-
onal, we get

det(A(1: k,1:k))=mmg---m, k=1,...,n,

as claimed. O

Remark: The use of determinants in the first part of the proof of Propo-
sition 7.1 can be avoided if we use the fact that a triangular matrix is
invertible iff all its diagonal entries are nonzero.

Corollary 7.1. (LU-Factorization) Let A be an invertible n X n-matriz.
If every matriz A(1 : k,1: k) is invertible for k = 1,...,n, then Gaussian
elimination requires mo pivoting and yields an LU -factorization A = LU.

Proof. We proved in Proposition 7.1 that in this case Gaussian elimination
requires no pivoting. Then since every elementary matrix F; .z is lower-
triangular (since we always arrange that the pivot 7 occurs above the
rows that it operates on), since E;Icl;ﬁ = F; ,—p and the Eys are products
of E; k., ,, s, from

En_1- FoaFy A=,
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where U is an upper-triangular matrix, we get
A=LU,

where L = E;'Ey Y-  E1) is a lower-triangular matrix. Furthermore, as
the diagonal entries of each E; ;.3 are 1, the diagonal entries of each Ej, are
also 1. 0

Example 7.1. The reader should verify that

2110 1000\ /2110
4331 [2100] (0111
8795 143100022
6798 3411/ \0002

is an LU-factorization.

One of the main reasons why the existence of an LU-factorization for
a matrix A is interesting is that if we need to solve several linear systems
Ax = b corresponding to the same matrix A, we can do this cheaply by
solving the two triangular systems

Lw=»5b and Uz =w.

There is a certain asymmetry in the LU-decomposition A = LU of an
invertible matrix A. Indeed, the diagonal entries of L are all 1, but this is
generally false for U. This asymmetry can be eliminated as follows: if

D = diag(uu, U22, . - - 7u,m)

is the diagonal matrix consisting of the diagonal entries in U (the pivots),
then if we let U’ = DU, we can write

A=LDU,

where L is lower- triangular, U’ is upper-triangular, all diagonal entries
of both L and U’ are 1, and D is a diagonal matrix of pivots. Such a
decomposition leads to the following definition.

Definition 7.2. We say that an invertible n x n matrix A has an LDU-
factorization if it can be written as A = LDU’, where L is lower- triangular,
U’ is upper-triangular, all diagonal entries of both L and U’ are 1, and D
is a diagonal matrix.

ws-book-1-9x6
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We will see shortly than if A is real symmetric, then U’ = LT.

As we will see a bit later, real symmetric positive definite matrices satisfy
the condition of Proposition 7.1. Therefore, linear systems involving real
symmetric positive definite matrices can be solved by Gaussian elimination
without pivoting. Actually, it is possible to do better: this is the Cholesky
factorization.

If a square invertible matrix A has an LU-factorization, then it is pos-
sible to find L and U while performing Gaussian elimination. Recall that
at Step k, we pick a pivot m = az(.llz) # 0 in the portion consisting of the
entries of index j > k of the k-th column of the matrix A, obtained so far,
we swap rows 4 and k if necessary (the pivoting step), and then we zero the
entries of index 7 = k+ 1,...,n in column k. Schematically, we have the
following steps:

X X X X X X X X X X X X X X X
0 x xxx| ., 0 ™ x x x . 0 X X X %
pivot ik eli
0 X XXX|]'= [0 x xxx|=]100X X X
O(zgz)xxx 0 X X X X 00 x Xx X
0 X X x X 0 X X X X 00 X Xx X
More precisely, after permuting row k and row i (the pivoting step), if the
entries in column k below row k are a1k, ..., nk, then we add —ajp /7y
times row k to row j; this process is illustrated below:
(k) (k)
o W " o
Optik Apy1k Ok+1k 0
: pgt : _ : el%n
ajy ajy! Qi 0
(k) (k)
Ap i Ank Cink 0

Then if we write £;;, = o/ for j =k +1,...,n, the kth column of L is
0
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Observe that the signs of the multipliers —ai /7 have been flipped. Thus,
we obtain the unit lower triangular matrix
1 0 0---0
by 1 0 --- 0
L — 631 632 1 .- 0
SRR
1

an €n2 EnS o

It is easy to see (and this is proven in Theorem 7.2) that the inverse of L
is obtained from L by flipping the signs of the ¢;;:

1 0 0 0

by 10 -0

L= | —fa1 =32 1 -0
) ) ) .

_‘enl _€n2 _£n3 |
Furthermore, if the result of Gaussian elimination (without pivoting) is
U= En—l ce ElA, then

1... 0 0---0 1--- 0 0---0
0--- 1 0---0 . 0 1 0---0
E, = d FE =
k 0+ =l -0 an k 0 loprple-- 0]
0--- —l 0---1 0-- lyp 0---1

so the kth column of Ej, is the kth column of L~1.
Here is an example illustrating the method.

Example 7.2. Given

11 1 0
1-10 1
A:A:
! 11 10|’
1-10 —1

we have the following sequence of steps: The first pivot is 71 = 1 in row 1,
and we substract row 1 from rows 2, 3, and 4. We get

111 0 1000
0-2-11 1100
=150 20 Li=11010

0-2-1-1 1001
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The next pivot is mo = —2 in row 2, and we subtract row 2 from row 4 (and
add 0 times row 2 to row 3). We get

11 1 0 1000
0-2-11 1100
Az = Lo =
T loo 20 >~ lio10
00 0 =2 1101
The next pivot is m3 = —2 in row 3, and since the fourth entry in column
3 is already a zero, we add 0 times row 3 to row 4. We get
11 1 0 1000
0-2-11 1100
Ay = Ly =
T loo 20 >~ lio10
00 0 =2 1101

The procedure is finished, and we have

1000 11 1 0
1100 0-2-11

>~ l1010 U=4=1009 20
1101 00 0 -2

It is easy to check that indeed
1000 11 1 0 11 1 0
1100 0-2-11 1-10 1
LU= 1010 00 -201)] [11-10 = A
1101 00 0 =2 1-10 -1

We now show how to extend the above method to deal with pivoting
efficiently. This is the PA = LU factorization.

7.5 PA = LU Factorization

The following easy proposition shows that, in principle, A can be premul-
tiplied by some permutation matrix P, so that PA can be converted to
upper-triangular form without using any pivoting. Permutations are dis-
cussed in some detail in Section 6.1, but for now we just need this definition.
For the precise connection between the notion of permutation (as discussed
in Section 6.1) and permutation matrices, see Problem 7.16.

Definition 7.3. A permutation matriz is a square matrix that has a single
1 in every row and every column and zeros everywhere else.
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It is shown in Section 6.1 that every permutation matrix is a product of
transposition matrices (the P(i,k)s), and that P is invertible with inverse
pT.

Proposition 7.2. Let A be an invertible n X n-matriz. There is some per-
mutation matriz P so that (PA)(1: k,1: k) is invertible for k=1,...,n.

Proof. The case n = 1 is trivial, and so is the case n = 2 (we swap
the rows if necessary). If n > 3, we proceed by induction. Since A is
invertible, its columns are linearly independent; in particular, its first n —
1 columns are also linearly independent. Delete the last column of A.
Since the remaining n — 1 columns are linearly independent, there are also
n — 1 linearly independent rows in the corresponding n x (n — 1) matrix.
Thus, there is a permutation of these n rows so that the (n — 1) x (n — 1)
matrix consisting of the first n — 1 rows is invertible. But then there is
a corresponding permutation matrix P, so that the first n — 1 rows and
columns of PiA form an invertible matrix A’. Applying the induction
hypothesis to the (n — 1) X (n — 1) matrix A’, we see that there some
permutation matrix Ps (leaving the nth row fixed), so that (PP A)(1 :
k,1: k) is invertible, for k = 1,...,n — 1. Since A is invertible in the first
place and P; and P, are invertible, P; P, A is also invertible, and we are
done. O

Remark: One can also prove Proposition 7.2 using a clever reordering of
the Gaussian elimination steps suggested by Trefethen and Bau [Trefethen
and Bau IIT (1997)] (Lecture 21). Indeed, we know that if A is invertible,
then there are permutation matrices P; and products of elementary matrices
FE;, so that

Ap=FEn 1Py 1 B2 P A,
where U = A,, is upper-triangular. For example, when n = 4, we have
EsPsEsPoE1 P A = U. We can define new matrices Ff, ES, B which are
still products of elementary matrices so that we have

ELE\E|P3P,PiA =U.
Indeed, if we let E} = E3, Ey = PsFyP; ', and E} = PysPoE Py ' Pyt we
easily verify that each Ej, is a product of elementary matrices and that
ELESE\PsPyPy = E3(PsEyPy ') (PsPyEy Py ' Py Py Py Py
= E3P3Ey P B P

ws-book-1-9x6
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It can also be proven that E}, Ej, E% are lower triangular (see Theorem
7.2).
In general, we let

Ej, =P, 1 P Ex P - P,

and we have
/ - ElPy_y---PLA=T,

n—1"
where each E is a lower triangular matrix (see Theorem 7.2).

It is remarkable that if pivoting steps are necessary during Gaussian
elimination, a very simple modification of the algorithm for finding an LU-
factorization yields the matrices L,U, and P, such that PA = LU. To
describe this new method, since the diagonal entries of L are 1s, it is con-

venient to write
L=1+A.

Then in assembling the matrix A while performing Gaussian elimination
with pivoting, we make the same transposition on the rows of A (really
Ak—1) that we make on the rows of A (really Ay) during a pivoting step
involving row k and row i. We also assemble P by starting with the identity
matrix and applying to P the same row transpositions that we apply to A
and A. Here is an example illustrating this method.

Example 7.3. Given

11 10
11 -10
A=41= 1-10 1|’
1-10 —1

we have the following sequence of steps: We initialize Ag = 0 and Py = I,.

The first pivot is 7 = 1 in row 1, and we subtract row 1 from rows 2, 3,
and 4. We get

11 1 0 0000 1000
00 —-20 1000 0100
A=l 501 M= {1000] 27 |oo10
0-2-1-1 1000 0001
The next pivot is mo = —2 in row 3, so we permute row 2 and 3; we also
apply this permutation to A and P:
11 1 0 0000 1000
; |0-2-11 , 11000 {0010
L=1o020] ™ {1000] P |o100

0-2-1-1 1000 0001
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Next we subtract row 2 from row 4 (and add 0 times row 2 to row 3). We

get
11 1 0 0000 1000
0-2-11 1000 0010
A=10020] % {1000] P |o100
00 0 —2 1100 0001
The next pivot is m3 = —2 in row 3, and since the fourth entry in column
3 is already a zero, we add 0 times row 3 to row 4. We get
11 1 0 0000 1000
0-2-11 1000 0010
A=1o020] ® {1000] P~ |o100
00 0 —2 1100 0001

The procedure is finished, and we have

1000 11 1 0
1100 0-2-11
L=fs+I=11070] V=4=(00 20
1101 00 0 —2
1000
0010
P=P=10100
0001
It is easy to check that indeed
1000\ /11 1 0 11 1 0
1100 [0-2-11 1-10 1
LU = 1010[100 —20 | {11 -10
1101/ \o 0 0 =2 1-10 -1
and
1000\ /11 1 0 11 1 0
0010| 11 -10 1-10 1
PA= 0100 1-10 1] [11=10
0001/ \1-10 -1 1-10 —1

Using the idea in the remark before the above example, we can prove the
theorem below which shows the correctness of the algorithm for computing
P, L and U using a simple adaptation of Gaussian elimination.
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We are not aware of a detailed proof of Theorem 7.2 in the standard
texts. Although Golub and Van Loan [Golub and Van Loan (1996)] state
a version of this theorem as their Theorem 3.1.4, they say that “The proof
is a messy subscripting argument.” Meyer [Meyer (2000)] also provides a
sketch of proof (see the end of Section 3.10). In view of this situation, we
offer a complete proof. It does involve a lot of subscripts and superscripts,
but in our opinion, it contains some techniques that go far beyond symbol
manipulation.

Theorem 7.2. For every invertible n X n-matriz A, the following hold:

(1) There is some permutation matriz P, some upper-triangular matriz U,
and some unit lower-triangular matriz L, so that PA = LU (recall,
Li; =1 fori =1,...,n). Furthermore, if P = I, then L and U
are unique and they are produced as a result of Gaussian elimination
without pivoting.

(2) If Eny_y ... E1A =U is the result of Gaussian elimination without piv-
oting, write as usual Ay, = Er_1... E1A (with Ay = (al(-;-c))), and let
Lir, = aglg)/a,(:z), withl <k<n-—1andk+1<i<n. Then

1 0 0 ---0
by 1 0 ---0
L=|fl1tls2 1 ---0f
R |
lpy g lp3 -+ 1

where the kth column of L is the kth column ofEk_l, fork=1,...,n—1.
(8) If Ey_1Pp—1 -+ E1PLA = U s the result of Gaussian elimination with

some pwoting, write Ay = Ex_1Pr_1---E1PiA, and define E]’?, with

1<j<n—-1andj<k<n-—1, such that, for j=1,...,n—2,

E] = Ej
EJ’?:PkE;.“lP,€7 fork=j3+1,...,n—1,

and

Then,

E]k =PyP,_1-- P EjPj1 - P11 Py
U=E"{---E''P,_,---PA,
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and if we set
P=P, P
L= (B ) (BT
then
PA=LU. (1)
Furthermore,
(BN '=I1+€&F, 1<j<n-1,j<k<n-—1,
where 5;“ s a lower triangular matriz of the form
0--- 0 0---0
. 0--- 0 0---0
& = 0--. gg_’i)lj()... ol

we have
k _ k

Ej=1-¢&7,

and
EF=PRE™, 1<j<n-2j+1<k<n-1,

where P, = I or else P, = P(k,i) for some i such that k +1 <
i < n; if Py # I, this means that (E]’?)_1 is obtained from (EJ]?_I)_1
by permuting the entries on rows i and k in column j. Because the
matrices (Ej’-“)_1 are all lower triangular, the matriz L is also lower
triangular.

In order to find L, define lower triangular n X n matrices Ay of the
form

0 0 0 0O 0------ 0
A0 0 0 0 o
A Ay 0 0: :0
P
Ay =
k k (k
/\l(ngll )‘I(c+)12 s /\szlk 0--v - 0
k k k .
)‘2-321 )‘1&_5.22"' )\2_2%0 |

AB\B B g 0

n

ws-book-1-9x6
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to assemble the columns of L iteratively as follows: let
k k
(e =)

be the last n — k elements of the kth column of Ey, and define Ay
inductively by setting

00---0
600
L R
(o0
then for k=2,...,n—1, define
A = PrAg_1, (T2)
and Ay, = (I + N)E Y — I, with
0 0 0 0 0 -ee - 0
AED g 0 0 : 0
R
Ay = '(1;—1) e /(ko—l) oo ’
M P T A 0 0
)‘;c(-lil_ll) )‘;e(-tl_;) A;c(fl_(llz—l) é’(ﬁglk e 0
)\;l(f—l) )\;1(;:—1) )\;l(lzj) gSL’Z) ()

with P, = I or P, = P(k,i) for some i > k. This means that in
assembling L, row k and row i of Ap_1 need to be permuted when a
pivoting step permuting row k and row i of Ay is required. Then

I+ A= (BY) (B
A=+ -+ &F,
fork=1,....,n—1, and therefore
L=1+A,1.
The proof of Theorem 7.2, which is very technical, is given in Section
7.6.

We emphasize again that Part (3) of Theorem 7.2 shows the remarkable
fact that in assembling the matrix L while performing Gaussian elimination
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with pivoting, the only change to the algorithm is to make the same trans-
position on the rows of Ay_; that we make on the rows of A (really Ay)
during a pivoting step involving row k£ and row 7. We can also assemble
P by starting with the identity matrix and applying to P the same row
transpositions that we apply to A and A. Here is an example illustrating
this method.

Example 7.4. Consider the matrix

1 2 -3 14
4 8 12 -8
A= 2 3 2 1
-3-11 -4

We set Py = I, and we can also set Ag = 0. The first step is to permute
row 1 and row 2, using the pivot 4. We also apply this permutation to Py:

4 8 12 -8 0100
, 1 2 34 {1000
A=1y 3 91 Pr=10010
311 -4 0001

Next we subtract 1/4 times row 1 from row 2, 1/2 times row 1 from row 3,
and add 3/4 times row 1 to row 4, and start assembling A:

48 12 -8 0 000 0100
00 —6 6 1/4 000 1000
*“lo-1-4 5 ! 1/2 000 "“looz1o
05 10 —10 ~3/4000 0001

Next we permute row 2 and row 4, using the pivot 5. We also apply this
permutation to A and P:

48 12 -8 0 000 0100
05 10 —10 ~3/4000 0001
Al = Ay = Py =
37 lo-1-4 5 2 1/2 000 >~ loo1o0
00 —6 6 1/4 000 1000

Next we add 1/5 times row 2 to row 3, and update Aj:

4812 -8 0 0 00 0100
0510 =10 | -3/4 0 00 o001
A=100-2 3 Az = 1/2 —1/500 P=10010

00—-6 6 1/4 0 00 1000
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Next we permute row 3 and row 4, using the pivot —6. We also apply this
permutation to A and P:

4812 -8 0 0 00 0100
05 10 —10 -3/4 0 00 0001
A, = AL = P =
4 00-6 6 3 1/4 0 00 s 1000
00-2 3 1/2 -1/500 0010
Finally we subtract 1/3 times row 3 from row 4, and update A%:
48 12 -8 0 0 00 0100
10510 —10 _|-3/4 0 00 10001
A=100_6 ¢ As = 1/4 0 00 B=11000
000 1 1/2 -1/51/30 0010
Consequently, adding the identity to A3, we obtain
1 0 0 0 4812 -8 0100
-3/4 1 0 0 05 10 —10 0001
L: = P:
1/4 0 1 0]’ v 00—-6 6 ’ 1000
1/2 —1/51/31 000 1 0010
We check that
0100\ /1 2 -3 4 4 8 12 -8
0001|[ 4 8 12 -8 —3-11 —4
PA= 1000 2 3 2 1| |1 2 -34}/|
0010/ \-3-1 1 —4 2 3 2 1
and that
1 0 0 0\ /4812 -8 4 8 12 -8
[-3/4 1 ool||os10-10] [-3-11 -4
LU=114 o 10|loo=e 6 |71 234]|"4
1/2 -1/51/31) \00 0 1 2 3 2 1

Note that if one willing to overwrite the lower triangular part of the
evolving matrix A, one can store the evolving A there, since these entries
will eventually be zero anyway! There is also no need to save explicitly the
permutation matrix P. One could instead record the permutation steps in
an extra column (record the vector (w(1),...,m(n)) corresponding to the
permutation 7 applied to the rows). We let the reader write such a bold
and space-efficient version of LU-decomposition!

Remark: In Matlab the function lu returns the matrices P, L, U involved
in the PA = LU factorization using the call [L, U, P] = lu(A).
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As a corollary of Theorem 7.2(1), we can show the following result.

Proposition 7.3. If an invertible real symmetric matrix A has an LU-
decomposition, then A has a factorization of the form

A=LDLT,

where L is a lower-triangular matriz whose diagonal entries are equal to 1,
and where D consists of the pivots. Furthermore, such a decomposition is
unique.

Proof. If A has an LU-factorization, then it has an LDU factorization
A=LDU,

where L is lower-triangular, U is upper-triangular, and the diagonal entries
of both L and U are equal to 1. Since A is symmetric, we have

LDU=A=A"=U"DL",

with UT lower-triangular and DL upper-triangular. By the uniqueness
of LU-factorization (Part (1) of Theorem 7.2), we must have L = U " (and
DU =DLT"), thus U = LT, as claimed. O

Remark: It can be shown that Gaussian elimination plus back-
substitution requires n3/3 + O(n?) additions, n®/3 + O(n?) multiplications
and n?/2 + O(n) divisions.

7.6 Proof of Theorem 7.2 ®

Proof. (1) The only part that has not been proven is the uniqueness part
(when P = I). Assume that A is invertible and that A = L1U; = LyUs,
with Lq, Lo unit lower-triangular and Uy, Us; upper-triangular. Then we
have

Ly Ly = UsUT .

However, it is obvious that L; !is lower-triangular and that U, !is upper-
triangular, and so Ly 'L, is lower-triangular and Us U !is upper-triangular.
Since the diagonal entries of L; and Ls are 1, the above equality is only
possible if UgUfl = I, that is, U; = Us, and so Ly = Ls.

(2) When P = I, we have L = E;'E;'---E; ', where Ej is the
product of n — k elementary matrices of the form E; ;,_y,, where E; ;._,

ws-book-1-9x6
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subtracts ¢; times row k from row i, with £;; = agz)/afﬁg, 1<k<n-—1,
and k+ 1 < i < n. Then it is immediately verified that

1... 0 0---0
0--- 1 0---0
E. =
k 0 —lpixl--0|’
0--- —lp 0---1
and that
1 0 0---0
0--- 1 0---0
Et =
K 0 lpy1p1---0
- Ly 0---1
If we define Ly by
1 0 0 0 0 0
loq 1 0 0 0 0
l31 U3 0 0 : 0
Ly = )
: : 1 0 0
liy11 lega2 - Ly 1--- 0
: : .00
Enl enQ M enk 0"' 1

for k=1,...,n— 1, we easily check that L, = Efl, and that
Lp=Ly1E', 2<k<n-—1,

because multiplication on the right by E, ! adds ¢; times column i to column
k (of the matrix Ly_q) with ¢ > k, and column ¢ of Li_; has only the
nonzero entry 1 as its ¢th element. Since

Lpy=E' - E', 1<k<n-1,

we conclude that L = L,,_1, proving our claim about the shape of L.

3)
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Step 1. Prove (f1).
First we prove by induction on k that

Apy1=EF EFP.-- PIA, k=1,...,n—2.

For k = 1, we have Ay = EyPlA = E{P A, since Bl = FEy, so our
assertion holds trivially.
Now if k > 2,

A1 = Eyp Py Ay,
and by the induction hypothesis,
Ay =Ef=1---EN'ENIP_ ... PA

Because Py is either the identity or a transposition, P,f = I, so by inserting
occurrences of P, P, as indicated below we can write

A1 = Ep Py Ay
=EyPEf - BBy Py - P A
= EyPLE; " (PyPy) - (PyPy)ES H(PLPy)EY (P Py)Py—1 - PLA
= Ex(PyEf 1 Py) - (PyES ' P)(PyEY ' Py) Py Py -~ PLA.

Observe that Py has been “moved” to the right of the elimination steps.
However, by definition,

Ef =PEFT'P, j=1,... k-1
E} = Ey,
so we get
Apy1=FEFEF |- ESEYP,--- P A,
establishing the induction hypothesis. For k = n — 2, we get
U=A,1=E'"}-- E}'P,_,---PA,
as claimed, and the factorization PA = LU with
pP=pP,, --P
L=(E ) (B!

is clear.

Step 2. Prove that the matrices (E]’?)*1 are lower-triangular. To achieve
this, we prove that the matrices 5]’? are strictly lower triangular matrices of
a very special form.
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Since for j =1,...,n — 2, we have Eg = Ej,
Ef =PEI "D, k=j+1,...,n—1,
since E:f:ll = F,_1 and P,;l = P, we get (Ej)_1 = E;l for j =1,...,
n—1,and for j =1,...,n — 2, we have
(EN) ' =P(Ef ™) 'Pe, k=j+1,...,n—L
Since
(B =148
and Py, = P(k,i) is a transposition or P, = I, so PZ = I, and we get
(Ef) ' = P(EY ) ' P =P(I+ &P =P + P ET' Py
=1+ P E7" P
Therefore, we have
(E)) ' =I+P& ' P, 1<j<n-2j+1<k<n-L
We prove for j =1,...,n—1, that for k= j,...,n — 1, each 5]’? is a lower
triangular matrix of the form

0--- 0 0---0

ok 0--- 0 0---0

Y = (k) s

J 0--- 671,040
0.+ £,7 0---0

and that
E=P&", 1<j<n-2j+1<k<n-1,
with P, = I or P, = P(k,i) for some i such that k+1 <4 <n.

For each j (1 < j <n—1) we proceed by inductionon k = j,...,n—1.
Since (EJJ-‘)_1 = E{l and since E{l is of the above form, the base case
holds.

For the induction step, we only need to consider the case where P, =
P(k,i) is a transposition, since the case where P, = I is trivial. We have
to figure out what Py Ef_l P, = P(k,1) 5]’-“_1 P(k, i) is. However, since

0--- 0 0---0

ko 0--- 0 0---0

A — (k—l) s

j 0 000
0-.- 5 Vog...0

nj
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and because k+1 <17 <n and j < k— 1, multiplying 57’-“_1 on the right by
P(k,i) will permute columns i and k, which are columns of zeros, so

P(k,i) €' P(k,i) = P(k,i) EF 7",
and thus,
ky—1 _ N ok—1
(BF) " =1+ P(k,i) &
But since
ky—1 _ k
(Ej) " =1+¢&],
we deduce that
k N\ k-1
& = P(k,1i) &
We also know that multiplying Ef_l on the left by P(k,) will permute
rows ¢ and k, which shows that EJ’.“ has the desired form, as claimed. Since

all EJ’? are strictly lower triangular, all (EJ’“ yl=1 +€J’? are lower triangular,
so the product

L= (B ()
is also lower triangular.
Step 3. Express L as L =1+ A,_q, with A,,_y = & +--- + &1
From Step 1 of Part (3), we know that

L=(Ey~H)™ (B2~
We prove by induction on k that
I+ Mg = (B) (B
Ap=EF+---+ &,

fork=1,...,n—1.
If k=1, we have Ef = E; and

1 0---0
Ao
1= e
—Mo... 1
We also get
10---0
V1.0
(BrY™ =] T . =T+

S
a0 1
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Since (E;Y)~! = I + &}, we find that we get A; = &£, and the base step
holds.
Since (EF)™! =1+ &} with
0--- 0 0---0

k_
& = 0.-.-¢% o...0

J+1j

0-.- gg;) 0---0
and 5{“5}“ = 0if i < j, as in part (2) for the computation involving the
products of Lg’s, we get
(BFYO= b (B = r ek g o<k <n. (%)
Similarly, from the fact that £~ P(k,i) = £ ifi > k+1Land j < k-1
and since
(BN =T+PE 1<j<n—2j+1<k<n-1,
we get
(Bf) ™t (Bf_) P =T+ P o+ 6T, 2<k<n—10 (#)
By the induction hypothesis,
T+ Ay = (B (B )
and from (x), we get
Aoy =EF 4 gL
Using (xx), we deduce that
(BY) ™ (Br_y) ™ =T+ Pebgr
Since Ef = Ej, we obtain
(BY) ™ (Biy) " HB) ™ = (L + Pl B
However, by definition
I+ Ay =+ PA—1)E ",
which proves that
I+ A= (EY)™ - (Be_y) H(ED) ™, (1)
and finishes the induction step for the proof of this formula.
If we apply Equation (%) again with k + 1 in place of k, we have
(B~ (BR) T =T+ & 4+ &
and together with (}), we obtain,
A =&+ + &,
also finishing the induction step for the proof of this formula. For k = n—1
in (1), we obtain the desired equation: L =1+ A,,_1. O
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7.7 Dealing with Roundoff Errors; Pivoting Strategies

Let us now briefly comment on the choice of a pivot. Although theoretically,
any pivot can be chosen, the possibility of roundoff errors implies that it is
not a good idea to pick very small pivots. The following example illustrates
this point. Consider the linear system

0% +y=1
r +y=2.

Since 1074 is nonzero, it can be taken as pivot, and we get

10742 + y = 1
(1—10%y =2 —10%.

Thus, the exact solution is

10* 10 —2

YT YT

However, if roundoff takes place on the fourth digit, then 10* — 1 = 9999
and 10% — 2 = 9998 will be rounded off both to 9990, and then the solution
isx =0 and y = 1, very far from the exact solution where z =~ 1 and y ~ 1.
The problem is that we picked a very small pivot. If instead we permute
the equations, the pivot is 1, and after elimination we get the system

T+ Y = 2
1-107Yy=1-2x10""

This time, 1 —107% = 0.9999 and 1 — 2 x 10~* = 0.9998 are rounded off to
0.999 and the solution is x = 1,y = 1, much closer to the exact solution.

To remedy this problem, one may use the strategy of partial pivoting.
This consists of choosing during Step k& (1 < k < n — 1) one of the entries
ag/;) such that

(k)| _ (k)
la;y | = kg?gnmpkL

By maximizing the value of the pivot, we avoid dividing by undesirably
small pivots.

Remark: A matrix, A, is called strictly column diagonally dominant iff

n

laj ;| > Z la;j|, forj=1,...,n
i=1, i



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning  ws-book-1-9x6
page 236

236 Gaussian Elimination, LU, Cholesky, Echelon Form

(resp. strictly row diagonally dominant iff

n
laii| > Z la;;|, fori=1,...,n.)
=1, j#i
For example, the matrix

0 1 4

1

of the curve interpolation problem discussed in Section 7.1 is strictly column
(and row) diagonally dominant.

It has been known for a long time (before 1900, say by Hadamard) that
if a matrix A is strictly column diagonally dominant (resp. strictly row
diagonally dominant), then it is invertible. It can also be shown that if
A is strictly column diagonally dominant, then Gaussian elimination with
partial pivoting does not actually require pivoting (see Problem 7.12).

Another strategy, called complete pivoting, consists in choosing some

(NIRRT

entry aglj), where k < 4,7 < n, such that
(k) _ (k)
a;’|= max |ay|
oz kgp,q@' pa

However, in this method, if the chosen pivot is not in column k, it is also
necessary to permute columns. This is achieved by multiplying on the
right by a permutation matrix. However, complete pivoting tends to be
too expensive in practice, and partial pivoting is the method of choice.

A special case where the LU-factorization is particularly efficient is the
case of tridiagonal matrices, which we now consider.

7.8 Gaussian Elimination of Tridiagonal Matrices

Consider the tridiagonal matrix
b a1
az by c2
a3 by c3

Un—2 bn—2 Cn—2
(p—1 bn_1 cn1
an, by
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Define the sequence
do=1, 61 =0b1, O =0bplp_1—arcr_16p—2, 2<k<n.

Proposition 7.4. If A is the tridiagonal matriz above, then §, = det(A(1 :
k,1:k)) fork=1,...,n.

Proof. By expanding det(A(1 : k,1 : k)) with respect to its last row, the
proposition follows by induction on k. O

Theorem 7.3. If A is the tridiagonal matriz above and 6 # 0 for k =
1,...,n, then A has the following LU -factorization:

1 % C1
0
a25£ 1 672
01 5 C2
01 1 5
0,35* 1 U3 es
A= 2 02
6n73 )
_ n—1
Qg 15n_2 6,"’_2 Cp—1
an n—2 1 6n
5n—1 5n—1

Proof. Since ¢, = det(A(1 : k,1: k)) # 0 for k = 1,...,n, by Theorem
7.2 (and Proposition 7.1), we know that A has a unique LU-factorization.
Therefore, it suffices to check that the proposed factorization works. We
easily check that

(LU)kry1 =cx, 1<k<n—1
(LU)kg-1=ar, 2<k<n
(LU)k1 =0, [k—1>2

0
(LU)11 = 5= =br
0
—10k—2+ 9
(LU)kk:akckl—m:bk, 2<k<n,
Ok—1
since 61@ = bkék—l - a}gckflék,g. O

It follows that there is a simple method to solve a linear system Ax =
d where A is tridiagonal (and 0 # 0 for kK = 1,...,n). For this, it is
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convenient to “squeeze” the diagonal matrix A defined such that Ay =
0k /0k_1 into the factorization so that A = (LA)(A™1U), and if we let

c Op— )
=2 =t 2<k<n—1, zy=—" =by—anzn_1,
b1 5k 5n—1
A= (LA)(A™1U) is written as
1 21
C1 1 Z9
21
c
ag 2 1 z3
2z
2 (g
az —
A= z3
Cn—
ap—1 nol 1 Zn—2
Zn—1
An  Zn 1 2y
—

1

As a consequence, the system Ax = d can be solved by constructing three
sequences: First, the sequence

C1 Ck

zlzb—, 2k k=2,....n—1, z,=0b, — anzn_1,
1

- b
by — arzr—1

corresponding to the recurrence 6 = bipdp_1 — arcr—10;_2 and obtained by
dividing both sides of this equation by Jx_1, next

dy w dy, — apwp—1
a1 = kT AkWk-1
by’

corresponding to solving the system LAw = d, and finally

w1 = k::2,...,n,

- b
br — arzr—1

Ty = Wy, Tk =Wk — 2xTk4+1, k=n—1,n—2,...,1,

corresponding to solving the system AUz = w.

Remark: It can be verified that this requires 3(n — 1) additions, 3(n — 1)
multiplications, and 2n divisions, a total of 8n—6 operations, which is much
less that the O(2n?/3) required by Gaussian elimination in general.

We now consider the special case of symmetric positive definite matrices
(SPD matrices).

ws-book-1-9x6
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7.9 SPD Matrices and the Cholesky Decomposition

Recall that an n x n real symmetric matrix A is positive definite iff
z' Az >0 for all z € R” with = # 0.

Equivalently, A is symmetric positive definite iff all its eigenvalues are
strictly positive. The following facts about a symmetric positive definite
matrix A are easily established (some left as an exercise):

(1) The matrix A is invertible. (Indeed, if Az = 0, then 2" Az = 0, which
implies z = 0.)

(2) We have a;; >0 for i =1,...,n. (Just observe that for z = e;, the ith
canonical basis vector of R™, we have e;'—AeZ- =a;; >0.)

(3) For every n x n real invertible matrix Z, the matrix ZTAZ is real
symmetric positive definite iff A is real symmetric positive definite.

(4) The set of n x n real symmetric positive definite matrices is convex.
This means that if A and B are two n X n symmetric positive definite
matrices, then for any A € R such that 0 < A < 1, the matrix (1 —
A)A+ B is also symmetric positive definite. Clearly since A and B are
symmetric, (1 — A)A + AB is also symmetric. For any nonzero « € R,
we have 2" Az > 0 and 2" Bz > 0, so

2T (1=NA+AB)z = (1 - N2 Az + \z" Bz > 0,

because 0 < A< 1,s01—A>0and A >0, and 1 — A and A can’t be
zero simultaneously.

(5) The set of n x n real symmetric positive definite matrices is a cone.
This means that if A is symmetric positive definite and if A > 0 is any
real, then A\A is symmetric positive definite. Clearly AA is symmetric,

and for nonzero z € R™, we have z' Az > 0, and since A > 0, we have
2T Az = x T Az > 0.

Remark: Given a complex m x n matrix A, we define the matrix A as
the m x n matrix A = (@;). Then we define A* as the n x m matrix
A* = (A)T = (AT). The n x n complex matrix A is Hermitian if A* = A.
This is the complex analog of the notion of a real symmetric matrix. A
Hermitian matrix A is positive definite if

2*Az >0 for all z € C™ with z #£ 0.

It is easily verified that Properties (1)-(5) hold for Hermitian positive defi-
nite matrices; replace T by x.

ws-book-1-9x6
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It is instructive to characterize when a 2 x 2 real symmetric matrix A
is positive definite. Write

Then we have

(m y) (Z Z) (Zj) = ax® + 2cay + by?.

If the above expression is strictly positive for all nonzero vectors (}), then
forx =1,y =0 we get a > 0 and for = 0,y = 1 we get b > 0. Then we
can write
2 2
az? 4 2cxy + by? = (\/596 + cy) +by? — c—y2
Vva a
c 21 N 2
(ﬁer\/&y) +a(ab76)y. )
Since a > 0, if ab — ¢ < 0, then we can choose y > 0 so that the second
term is negative or zero, and we can set x = —(¢/a)y to make the first term
zero, in which case ax? + 2cxy + by? < 0, so we must have ab — c? > 0.
Conversely, if a > 0,b > 0 and ab > ¢?, then for any (z,y) # (0,0), if
y = 0, then = # 0 and the first term of (f) is positive, and if y # 0, then
the second term of (f) is positive. Therefore, the symmetric matrix A is
positive definite iff

a>0,b>0,ab>c (%)

Note that ab — ¢ = det(A), so the third condition says that det(A) > 0.

Observe that the condition b > 0 is redundant, since if ¢ > 0 and
ab > 2, then we must have b > 0 (and similarly b > 0 and ab > ¢? implies
that a > 0).

We can try to visualize the space of 2 x 2 real symmetric positive definite
matrices in R?, by viewing (a, b, ¢) as the coordinates along the z,y, 2 axes.
Then the locus determined by the strict inequalities in (%) corresponds to
the region on the side of the cone of equation zy = 22 that does not contain
the origin and for which z > 0 and y > 0. For z = ¢ fixed, the equation
zy = 62 define a hyperbola in the plane z = §. The cone of equation
2y = %2 consists of the lines through the origin that touch the hyperbola
zy = 1 in the plane z = 1. We only consider the branch of this hyperbola
for which = > 0 and y > 0. See Figure 7.6.
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Fig. 7.6 Two views of the surface zy = 22 in R3. The intersection of the surface with a
constant z plane results in a hyperbola. The region associated with the 2 X 2 symmetric
positive definite matrices lies in ”front” of the green side.

It is not hard to show that the inverse of a real symmetric positive
definite matrix is also real symmetric positive definite, but the product of
two real symmetric positive definite matrices may not be symmetric positive
definite, as the following example shows:

11\ [ 1/vV2 —1v2\ 0 2/V2
(12) iz ve) = Cajvasiva)
According to the above criterion, the two matrices on the left-hand side are

real symmetric positive definite, but the matrix on the right-hand side is
not even symmetric, and

o0 () (1) = o0 (0) s
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even though its eigenvalues are both real and positive.

Next we show that a real symmetric positive definite matrix has a special
LU-factorization of the form A = BBT, where B is a lower-triangular
matrix whose diagonal elements are strictly positive. This is the Cholesky
factorization.

First we note that a symmetric positive definite matrix satisfies the
condition of Proposition 7.1.

Proposition 7.5. If A is a real symmetric positive definite matrixz, then
A1 : k1 : k) is symmetric positive definite and thus invertible for k =
1,...,n.

Proof. Since A is symmetric, each A(1 : k,1 : k) is also symmetric. If
w € RF, with 1 < k < n, we let € R" be the vector with z; = w; for
i=1,....,kand z; = 0 for i = k+1,...,n. Now since A is symmetric
positive definite, we have T Az > 0 for all z € R” with 2 # 0. This holds
in particular for all vectors x obtained from nonzero vectors w € RF as
defined earlier, and clearly

Az =w A(L: k,1:k)w,
which implies that A(1 : k, 1 : k) is positive definite. Thus, by Fact 1 above,
A(1:k,1:E) is also invertible. O

Proposition 7.5 also holds for a complex Hermitian positive definite
matrix. Proposition 7.5 can be strengthened as follows: A real symmetric
(or complex Hermitian) matriz A is positive definite iff det(A(1 : k,1 :
k) >0 fork=1,...,n.

The above fact is known as Sylvester’s criterion. We will prove it after
establishing the Cholesky factorization.

Let A be an n x n real symmetric positive definite matrix and write

aii WT
A=
(W' )
where C' is an (n — 1) x (n — 1) symmetric matrix and W is an (n — 1) x

1 matrix. Since A is symmetric positive definite, a;; > 0, and we can
compute o = /a7 1. The trick is that we can factor A uniquely as

1= (56 ) = (W) (e wwrsm) (67 1):

i.e., as A = BjA1B], where B is lower-triangular with positive diagonal
entries. Thus, Bj is invertible, and by Fact (3) above, A; is also symmetric
positive definite.

ws-book-1-9x6
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Remark: The matrix C — WW T /a;, is known as the Schur complement
of the matrix (aq1).

Theorem 7.4. (Cholesky factorization) Let A be a real symmetric positive
definite matriz. Then there is some real lower-triangular matriz B so that
A = BB . Furthermore, B can be chosen so that its diagonal elements are
strictly positive, in which case B is unique.

Proof. We proceed by induction on the dimension n of A. For n = 1, we
must have a;1 > 0, and if we let o = y/a;1 and B = (), the theorem holds
trivially. If n > 2, as we explained above, again we must have a;; > 0, and
we can write

B a1 WT B a 0) /1 0 aW'/a B T
A_(W C>_<W/al)<OC—WWT/a11)<O [ )= BB

where a = /a1 1, the matrix B; is invertible and

e o)
0C — WWT/CLl 1

is symmetric positive definite. However, this implies that C — WW T /a;

is also symmetric positive definite (consider z " Az for every # € R™ with

x # 0 and z; = 0). Thus, we can apply the induction hypothesis to

C—WWT /ay, (which is an (n —1) x (n — 1) matrix), and we find a unique

lower-triangular matrix L with positive diagonal entries so that

C - WWT/all = LL—r
But then we get
@ WT/a)

((1)0 WWT/aU) (o I
0227) )

(62) ) )
(

« WT/a> |

Q
o

4= ()
(wia 1)
(a7
(/o)

3
Q
~ o

Therefore, if we let

b= (Wc;a 2)

we have a unique lower-triangular matrix with positive diagonal entries and
A=BBT. O
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Remark: The uniqueness of the Cholesky decomposition can also be es-
tablished using the uniqueness of an LU-decomposition. Indeed, if A =
B, BlT = BszT where By and Bs are lower triangular with positive diago-
nal entries, if we let Ay (resp. As) be the diagonal matrix consisting of the
diagonal entries of By (resp. Ba) so that (Ag)i;; = (Bg)« for k = 1,2, then
we have two LU-decompositions

A= (BIATY)(ALB)) = (BoaA; ) (AB])

with BlAl_l, B2A2_1 unit lower triangular, and A, B], Ay B, upper trian-
gular. By uniquenes of LU-factorization (Theorem 7.2(1)), we have

BiATY = BoAyY,  AB) = ABj,
and the second equation yields
Bi1A1 = ByAs. (%)

The diagonal entries of B;A; are (B;)% and similarly the diagonal entries
of ByAs are (Bs)%, so the above equation implies that

379

(B1)} = (B2)%, i=1,...,n.

(22l
Since the diagonal entries of both B; and Bs are assumed to be positive,
we must have

(B1)ii = (B2)ii, i=1,...,m;

that is, A; = Ao, and since both are invertible, we conclude from (x) that
Bl = BQ.

Theorem 7.4 also holds for complex Hermitian positive definite matrices.
In this case, we have A = BB* for some unique lower triangular matrix B
with positive diagonal entries.

The proof of Theorem 7.4 immediately yields an algorithm to compute
B from A by solving for a lower triangular matrix B such that A = BBT
(where both A and B are real matrices). For j =1,...,n,

i1 1/2
bjj = (%‘jZ%«) :
k=1

and fori=j4+1,...,n(and j=1,...,n—1)

j—1
bij = (aij — Zbikbjk> /bjj.

k=1

ws-book-1-9x6
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The above formulae are used to compute the jth column of B from top-
down, using the first j — 1 columns of B previously computed, and the
matrix A. In the case of n =3, A= BB yields

a1 a12 asy bip 0 0O b11 ba1 b3y
a1 G2 a3z | = | ba1 bz O 0 bag bso
a31 asz ass b31 b3 b33 0 0 b33
b} b11b21 b11b31

= | buibar b3, + b3y barbay + baobso
b11b31 ba1bs1 + baobsa b3y + b3y + b3g
We work down the first column of A, compare entries, and discover that

2 _
ail = 511 b1 = Vaii

a21

a1 = b11b2y bay = o
11

asi
az1 = bi1bz1 b3 = 7b .
11

Next we work down the second column of A using previously calculated
expressions for by; and b3y to find that

1
ag9 = b%l + b%2 b22 = (agg — b%l) 2

— ba1b
azz = ba1b31 + baobso b3o = %-

Finally, we use the third column of A and the previously calculated
expressions for b3y and bzs to determine b33z as

Nl

agg = b3, + b3y + b3 bsz = (ass — b3y — b3,)
For another example, if

111111
122222
123333
123444\’
123455
123456
we find that
100000
110000
111000
111100
111110
111111
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We leave it as an exercise to find similar formulae (involving conjuga-
tion) to factor a complex Hermitian positive definite matrix A as A = BB*.
The following Matlab program implements the Cholesky factorization.

function B = Cholesky(A)
n = size(A,1);
B = zeros(n,n);
for j = 1:n-1;
if j ==
B(1,1) = sqrt(A(1,1));
for i = 2:n
B(i,1) = A(i,1)/B(1,1);
end
else
B(j,j) = sqrt(A(j,j) - B(j,1:j-1)*B(j,1:j-1));
for i = j+l:n
B(i,j) = (A(i,j) - B(i,1:j-1)*B(j,1:j-1)°)/B(§,]);

end
end
end
B(n,n) = sqrt(A(n,n) - B(n,1:n-1)*B(n,1:n-1)’);
end

If we run the above algorithm on the following matrix

41000
14100

A=|o1410],
00141
00014

we obtain

2.0000 O 0 0 0
0.5000 1.9365 0 0 0
B = 0 0516419322 0 0
0 0 0517519319 O

0 0 0 0.5176 1.9319

The Cholesky factorization can be used to solve linear systems Az = b
where A is symmetric positive definite: Solve the two systems Bw = b and
BTz =w.
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Remark: It can be shown that this methods requires n/6 + O(n?) ad-
ditions, n3/6 + O(n?) multiplications, n?/2 + O(n) divisions, and O(n)
square root extractions. Thus, the Cholesky method requires half of the
number of operations required by Gaussian elimination (since Gaussian
elimination requires n3/3 + O(n?) additions, n3/3 + O(n?) multiplications,
and n?/2 + O(n) divisions). It also requires half of the space (only B is
needed, as opposed to both L and U). Furthermore, it can be shown that
Cholesky’s method is numerically stable (see Trefethen and Bau [Trefethen
and Bau IIT (1997)], Lecture 23). In Matlab the function chol returns the
lower-triangular matrix B such that A = BB using the call B = chol(A,
‘lower’).

Remark: If A = BB, where B is any invertible matrix, then A is sym-
metric positive definite.

Proof. Obviously, BB is symmetric, and since B is invertible, BT is
invertible, and from

' Ar=2"BB"2=(B"z)" Bz,

it is clear that T Az > 0 if = # 0. O

We now give three more criteria for a symmetric matrix to be positive
definite.

Proposition 7.6. Let A be any n xn real symmetric matriz. The following
conditions are equivalent:

(a) A is positive definite.

(b) All principal minors of A are positive; that is: det(A(1:k,1:k)) >0
fork=1,...,n (Sylvester’s criterion).

(¢) A has an LU-factorization and all pivots are positive.

(d) A has an LDLT -factorization and all pivots in D are positive.

Proof. By Proposition 7.5, if A is symmetric positive definite, then each
matrix A(1: k,1: k) is symmetric positive definite for k = 1,...,n. By the
Cholsesky decomposition, A(1:k,1: k) = QTQ for some invertible matrix
Q, so det(A(1: k,1:k)) = det(Q)? > 0. This shows that (a) implies (b).
If det(A(1: k,1:k)) >0 for k=1,...,n, then each A(1: k,1:k)is
invertible. By Proposition 7.1, the matrix A has an LU-factorization, and

ws-book-1-9x6
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since the pivots 7y are given by

an =det(A(1:1,1:1))  ifk=1
Tk = det(A(1:k,1:k)) .
fh=2,...
det(A(L:k—1,1:k—1)) et

we see that mp > 0 for k =1,...,n. Thus (b) implies (c).
Assume A has an LU-factorization and that the pivots are all positive.
Since A is symmetric, this implies that A has a factorization of the form

A=LDLT,

with L lower-triangular with 1s on its diagonal, and where D is a diagonal
matrix with positive entries on the diagonal (the pivots). This shows that
(c) implies (d).

Given a factorization A = LDLT with all pivots in D positive, if we
form the diagonal matrix

VD = diag(\/71, . .. ,\/Tn)
and if we let B = Lv/D, then we have
A= BB,

with B lower-triangular and invertible. By the remark before Proposition
7.6, A is positive definite. Hence, (d) implies (a). O

Criterion (c) yields a simple computational test to check whether a
symmetric matrix is positive definite. There is one more criterion for a
symmetric matrix to be positive definite: its eigenvalues must be positive.
We will have to learn about the spectral theorem for symmetric matrices
to establish this criterion.

Proposition 7.6 also holds for complex Hermitian positive definite ma-
trices, where in (d), the factorization LDL" is replaced by LDL*.

For more on the stability analysis and efficient implementation methods
of Gaussian elimination, LU-factoring and Cholesky factoring, see Demmel
[Demmel (1997)], Trefethen and Bau [Trefethen and Bau III (1997)], Cia-
rlet [Ciarlet (1989)], Golub and Van Loan [Golub and Van Loan (1996)],
Meyer [Meyer (2000)], Strang [Strang (1986, 1988)], and Kincaid and Ch-
eney [Kincaid and Cheney (1996)].
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7.10 Reduced Row Echelon Form (RREF)

Gaussian elimination described in Section 7.2 can also be applied to rect-
angular matrices. This yields a method for determining whether a system
Az = b is solvable and a description of all the solutions when the system is
solvable, for any rectangular m x n matrix A.

It turns out that the discussion is simpler if we rescale all pivots to be
1, and for this we need a third kind of elementary matrix. For any A # 0,
let F; » be the n x n diagonal matrix

1

| 1
with (E; )i = A (1 <i<n). Note that E; » is also given by
Eix=1+(X—1)es,
and that E; ) is invertible with
E; 3 =E;\1.

Now after k£ — 1 elimination steps, if the bottom portion

(aj a1 - i)
of the kth column of the current matrix A, is nonzero so that a pivot
7 can be chosen, after a permutation of rows if necessary, we also divide
row k by 7 to obtain the pivot 1, and not only do we zero all the entries
i =k+1,...,min column k, but also all the entries7 =1,...,k—1, so that
the only nonzero entry in column k is a 1 in row k. These row operations
are achieved by multiplication on the left by elementary matrices.

If ag;’ﬁ) = a,(iglk == agf,)c = 0, we move on to column k + 1.

When the kth column contains a pivot, the kth stage of the procedure for
converting a matrix to rref consists of the following three steps illustrated
below:

ws-book-1-9x6
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1 x0 X X X X 1 x0 X X x X
001 x x x X 001 x x x X
000 x x x x| pivot OOOaE,];f)xxx rescale
000 x x x X = 000 X X X X -
OOOaZ(.,i‘f)xxx 000 x x x X
000 x X x X 000 x x x X
1x0x x x X 1x00 x x x
001xx x X 0010 x x x
0001><><><61g>ﬂ0001><><><
000x x x X 0000 x x X
000 x x x X 0000 x x X
000 x x x X 0000 x x X

If the kth column does not contain a pivot, we simply move on to the next
column.

The result is that after performing such elimination steps, we obtain a
matrix that has a special shape known as a reduced row echelon matriz, for

short rref.
Here is an example illustrating this process: Starting from the matrix
10215
Aj=1[11527 ],
128412
we perform the following steps
10215
A — A=101312},
02637
by subtracting row 1 from row 2 and row 3;
10215 102 1 5 102 1 5
Ay — 02637 — (0133/27/2| — A3=(013 3/2 7/2 |,
01312 013 1 2 000-1/2-3/2

after choosing the pivot 2 and permuting row 2 and row 3, dividing row 2
by 2, and subtracting row 2 from row 3;

102 1 5 1020 2
As — |o133/27/2| — A, =(0130-1],
000 1 3 0001 3
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after dividing row 3 by —1/2, subtracting row 3 from row 1, and subtracting
(3/2) x row 3 from row 2.

It is clear that columns 1,2 and 4 are linearly independent, that column
3 is a linear combination of columns 1 and 2, and that column 5 is a linear
combination of columns 1,2, 4.

In general, the sequence of steps leading to a reduced echelon matrix is
not unique. For example, we could have chosen 1 instead of 2 as the second
pivot in matrix As. Nevertheless, the reduced row echelon matriz obtained
from any given matriz is unique; that is, it does not depend on the the
sequence of steps that are followed during the reduction process. This fact
is not so easy to prove rigorously, but we will do it later.

If we want to solve a linear system of equations of the form Ax = b, we
apply elementary row operations to both the matrix A and the right-hand
side b. To do this conveniently, we form the augmented matriz (A,b), which
is the m x (n + 1) matrix obtained by adding b as an extra column to the
matrix A. For example if

1021 5
A=11152 and b= 7],
1284 12

then the augmented matrix is

1021 5
(Ab)=|11527
128412

Now for any matrix M, since
M(A,b) = (MA, Mb),

performing elementary row operations on (A, b) is equivalent to simultane-
ously performing operations on both A and b. For example, consider the
system

T +2x3+ x4 = 5
T1+ o +0x3+204= 7
Ty + 229 + 83 + 4y = 12.

Its augmented matrix is the matrix

10215
Ab)= (11527
128412
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considered above, so the reduction steps applied to this matrix yield the
system

X —|— 2{E3 = 2
T + 3:63 =-1
Ty = 3.

This reduced system has the same set of solutions as the original, and
obviously x3 can be chosen arbitrarily. Therefore, our system has infinitely
many solutions given by

1’1:2721’3, 332:7173‘%3, 1174:3,

where x3 is arbitrary.
The following proposition shows that the set of solutions of a system
Ax = b is preserved by any sequence of row operations.

Proposition 7.7. Given any m x n matrix A and any vector b € R™, for
any sequence of elementary row operations FEi,...,Ey, if P = Ey--- Eq
and (A’,b') = P(A,b), then the solutions of Ax = b are the same as the
solutions of A'lz = b'.

Proof. Since each elementary row operation F; is invertible, so is P, and
since (A’,b') = P(A,b), then A’ = PA and b’ = Pb. If x is a solution of the
original system Az = b, then multiplying both sides by P we get PAx = Pb;
that is, A’z = V', so x is a solution of the new system. Conversely, assume
that z is a solution of the new system, that is A’z = b’. Then because
A’ = PA, b = Pb, and P is invertible, we get

Az =P 1Az =P 10 =0,
so x is a solution of the original system Ax = b. O
Another important fact is this:

Proposition 7.8. Given an m X n matrix A, for any sequence of row
operations Fy,...,Ey, if P = Ey---E; and B = PA, then the subspaces
spanned by the rows of A and the rows of B are identical. Therefore, A and
B have the same row rank. Furthermore, the matrices A and B also have
the same (column) rank.

Proof. Since B = PA, from a previous observation, the rows of B are
linear combinations of the rows of A, so the span of the rows of B is a
subspace of the span of the rows of A. Since P is invertible, A = P~!B, so
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by the same reasoning the span of the rows of A is a subspace of the span
of the rows of B. Therefore, the subspaces spanned by the rows of A and
the rows of B are identical, which implies that A and B have the same row
rank.

Proposition 7.7 implies that the systems Ax = 0 and Bz = 0 have the
same solutions. Since Az is a linear combinations of the columns of A and
Bz is a linear combinations of the columns of B, the maximum number
of linearly independent columns in A is equal to the maximum number
of linearly independent columns in B; that is, A and B have the same
rank. O

Remark: The subspaces spanned by the columns of A and B can be dif-
ferent! However, their dimension must be the same.

We will show in Section 7.14 that the row rank is equal to the column
rank. This will also be proven in Proposition 10.11 Let us now define
precisely what is a reduced row echelon matrix.

Definition 7.4. An m xn matrix A is a reduced row echelon matrixz iff the
following conditions hold:

(a) The first nonzero entry in every row is 1. This entry is called a pivot.

(b) The first nonzero entry of row i + 1 is to the right of the first nonzero
entry of row i.

(¢) The entries above a pivot are zero.

If a matrix satisfies the above conditions, we also say that it is in reduced
row echelon form, for short rref.

Note that Condition (b) implies that the entries below a pivot are also
zero. For example, the matrix

1601
A=1|0012
0000

is a reduced row echelon matrix. In general, a matrix in rref has the fol-
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lowing shape:
100x x00 x
010x x00 x
001 xx00 x
0000 010x
0000001 x
00000000
00000000
if the last row consists of zeros, or
100x x00 x
010x x00 x
001 x x00x
0000 010x
0000001 x
00000000

if the last row contains a pivot.

_= X O o o O
X © X X X X

The following proposition shows that every matrix can be converted to
a reduced row echelon form using row operations.

Proposition 7.9. Given any m X n matriz A, there is a sequence of row
operations F1, ..., Ey such that if P = Fy - -- F1, then U = PA is a reduced
row echelon matriz.

Proof. We proceed by induction on m. If m = 1, then either all entries
on this row are zero, so A = 0, or if a; is the first nonzero entry in A, let
P = (a;l) (a 1 x 1 matrix); clearly, PA is a reduced row echelon matrix.

Let us now assume that m > 2. If A = 0, we are done, so let us assume
that A # 0. Since A # 0, there is a leftmost column j which is nonzero,
so pick any pivot m = a;; in the jth column, permute row i and row 1 if
necessary, multiply the new first row by 7—!, and clear out the other entries
in column j by subtracting suitable multiples of row 1. At the end of this
process, we have a matrix A; that has the following shape:

0---01%--- %

A1: . . )

0--00%--- %
where * stands for an arbitrary scalar, or more concisely

01B
A1_<00D)’
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where D is a (m—1) X (n—j) matrix (and B is a 1 x n—j matrix). If j = n,
we are done. Otherwise, by the induction hypothesis applied to D, there
is a sequence of row operations that converts D to a reduced row echelon
matrix R, and these row operations do not affect the first row of Ay, which
means that A; is reduced to a matrix of the form

01 B
R= .
(00 #)
Because R’ is a reduced row echelon matrix, the matrix R satisfies Con-
ditions (a) and (b) of the reduced row echelon form. Finally, the entries
above all pivots in R’ can be cleared out by subtracting suitable multiples

of the rows of R’ containing a pivot. The resulting matrix also satisfies
Condition (c), and the induction step is complete. O

Remark: There is a Matlab function named rref that converts any matrix
to its reduced row echelon form.

If A is any matrix and if R is a reduced row echelon form of A, the
second part of Proposition 7.8 can be sharpened a little, since the structure
of a reduced row echelon matrix makes it clear that its rank is equal to the
number of pivots.

Proposition 7.10. The rank of a matriz A is equal to the number of pivots
in its rref R.

7.11 RREF, Free Variables, and Homogenous Linear Sys-
tems

Given a system of the form Ax = b, we can apply the reduction procedure
to the augmented matrix (A4,b) to obtain a reduced row echelon matrix
(A’,b") such that the system A’z = b’ has the same solutions as the original
system Az = b. The advantage of the reduced system A’z = b’ is that
there is a simple test to check whether this system is solvable, and to find
its solutions if it is solvable.

Indeed, if any row of the matrix A’ is zero and if the corresponding
entry in b’ is nonzero, then it is a pivot and we have the “equation”

0=1,

which means that the system A’z = b’ has no solution. On the other hand,
if there is no pivot in ', then for every row ¢ in which b} # 0, there is some
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column j in A" where the entry on row 4 is 1 (a pivot). Consequently, we
can assign arbitrary values to the variable xj if column & does not contain
a pivot, and then solve for the pivot variables.

For example, if we consider the reduced row echelon matrix

16010
A b)=100120],
00001

there is no solution to A’z = b’ because the third equation is 0 = 1. On
the other hand, the reduced system

16011
(A0)y=1(00123
00000
has solutions. We can pick the variables x5, x4 corresponding to nonpivot
columuns arbitrarily, and then solve for 3 (using the second equation) and
21 (using the first equation).
The above reasoning proves the following theorem:

Theorem 7.5. Given any system Ax = b where A is a m X n matriz, if the
augmented matriz (A,b) is a reduced row echelon matriz, then the system
Az = b has a solution iff there is no pivot in b. In that case, an arbitrary
value can be assigned to the variable x; if column j does not contain a pivot.

Definition 7.5. Nonpivot variables are often called free variables.

Putting Proposition 7.9 and Theorem 7.5 together we obtain a criterion
to decide whether a system Ax = b has a solution: Convert the augmented
system (A,b) to a row reduced echelon matrix (A’,b") and check whether
b’ has no pivot.

Remark: When writing a program implementing row reduction, we may
stop when the last column of the matrix A is reached. In this case, the test
whether the system Az = b is solvable is that the row-reduced matrix A’
has no zero row of index ¢ > r such that b} # 0 (where r is the number of
pivots, and b’ is the row-reduced right-hand side).

If we have a homogeneous system Az = 0, which means that b = 0,
of course x = 0 is always a solution, but Theorem 7.5 implies that if the
system Az = 0 has more variables than equations, then it has some nonzero
solution (we call it a nontrivial solution).

Proposition 7.11. Given any homogeneous system Ax = 0 of m equations
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in n variables, if m < n, then there is a nonzero vector x € R™ such that
Az =0.

Proof. Convert the matrix A to a reduced row echelon matrix A’. We
know that Az = 0 iff A’z = 0. If r is the number of pivots of A’, we must
have r < m, so by Theorem 7.5 we may assign arbitrary values ton—7r >0
nonpivot variables and we get nontrivial solutions. O

Theorem 7.5 can also be used to characterize when a square matrix is
invertible. First, note the following simple but important fact:

If a square n x n matriz A is a row reduced echelon matriz, then either
A is the identity or the bottom row of A is zero.

Proposition 7.12. Let A be a square matriz of dimension n. The following
conditions are equivalent:

(a) The matriz A can be reduced to the identity by a sequence of elementary
row operations.

(b) The matriz A is a product of elementary matrices.

(¢) The matriz A is invertible.

(d) The system of homogeneous equations Az = 0 has only the trivial so-
lution © = 0.

Proof. First we prove that (a) implies (b). If (a) can be reduced to
the identity by a sequence of row operations Ei, ..., E,, this means that
E,---E A= 1. Since each E; is invertible, we get

A:Efl...E;17

where each E; ! is also an elementary row operation, so (b) holds. Now
if (b) holds, since elementary row operations are invertible, A is invertible
and (c) holds. If A is invertible, we already observed that the homogeneous
system Az = 0 has only the trivial solution z = 0, because from Ax = 0,
we get A Az = A710; that is, z = 0. It remains to prove that (d) implies
(a) and for this we prove the contrapositive: if (a) does not hold, then (d)
does not hold.

Using our basic observation about reducing square matrices, if A does
not reduce to the identity, then A reduces to a row echelon matrix A’ whose
bottom row is zero. Say A’ = PA, where P is a product of elementary row
operations. Because the bottom row of A’ is zero, the system A’z = 0 has
at most n — 1 nontrivial equations, and by Proposition 7.11, this system
has a nontrivial solution z. But then, Az = P~'A’z = 0 with = # 0,
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contradicting the fact that the system Az = 0 is assumed to have only the
trivial solution. Therefore, (d) implies (a) and the proof is complete. [

Proposition 7.12 yields a method for computing the inverse of an invert-
ible matrix A: reduce A to the identity using elementary row operations,
obtaining

E, --E1A=1.
Multiplying both sides by A~! we get
A '=E,---FE.

From a practical point of view, we can build up the product E, --- E; by
reducing to row echelon form the augmented n x 2n matrix (A4, I,,) obtained
by adding the n columns of the identity matrix to A. This is just another
way of performing the Gauss—Jordan procedure.

Here is an example: let us find the inverse of the matrix

- (3)

We form the 2 x 4 block matrix

wn=(§301)

and apply elementary row operations to reduce A to the identity. For

5410 5410
(A’I)_(6501>—><11—11)

by subtracting row 1 from row 2,

5410 (105 —4
11-11 11-11

by subtracting 4 x row 2 from row 1,

10 5 —4 10 5 -4\ . .,
(11—1 1>—><01—6 5>_(I’A )

by subtracting row 1 from row 2. Thus

4 (5 —4
A (_65 |

Proposition 7.12 can also be used to give an elementary proof of the
fact that if a square matrix A has a left inverse B (resp. a right inverse B),

so that BA = I (resp. AB = I), then A is invertible and A=! = B. This
is an interesting exercise, try it!

example:

ws-book-1-9x6
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7.12 Uniqueness of RREF Form

For the sake of completeness, we prove that the reduced row echelon form
of a matrix is unique. The neat proof given below is borrowed and adapted
from W. Kahan.

Proposition 7.13. Let A be any m x n matriz. If U and V are two
reduced row echelon matrices obtained from A by applying two sequences of
elementary row operations E1,...,E, and F,..., Fy, so that

U=E, - --E1A and V =F, ---F1A,

then U =V and E,---Fy = F,---Fy. In other words, the reduced row
echelon form of any matrix is unique.

Proof. Let
C:Ep---ElFf1~--Fq_1
so that
U=CV and V=C"'U

We prove by induction on n that U =V (and C = I).

Let ¢; denote the jth column of the identity matrix I,,, and let u; = U¥;,
v; = V¥{;, ¢; = Cl;, and a; = Al;, be the jth column of U, V, C, and A
respectively.

First I claim that u; =0 iff v; =0 iff a; = 0.

Indeed, if v; = 0, then (because U = C'V) u; = Cv; =0, and if u; = 0,
then v; = C~u; = 0. Since U = E,, - - - E1 A, we also get a; = 0 iff u; = 0.

Therefore, we may simplify our task by striking out columns of zeros
from U,V , and A, since they will have corresponding indices. We still use
n to denote the number of columns of A. Observe that because U and
V' are reduced row echelon matrices with no zero columns, we must have
uy = vy = 61-

Claim. If U and V are reduced row echelon matrices without zero
columns such that U = CV, for all k£ > 1, if £ < n, then ¢ occurs in U iff
ly, occurs in V', and if £} does occur in U, then

(1) £k occurs for the same column index jj in both U and V;

(2) the first ji columns of U and V' match;

(3) the subsequent columns in U and V' (of column index > ji) whose
coordinates of index k+ 1 through m are all equal to 0 also match. Let
ng be the rightmost index of such a column, with n; = j, if there is
none.
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(4) the first ng columns of C' match the first nj columns of I,,.

We prove this claim by induction on k.
For the base case k = 1, we already know that u; = v; = ¢;. We also
have

Cc1 = 051 = C’Ul = U1 261.
If v; = Ay for some A € R, then
Uj; = Ufj == CVEJ = Cvj = )\Cgl = )\Cl = )\51 = vj.

A similar argument using C~! shows that if u; = A, then v; = uj;.
Therefore, all the columns of U and V proportional to ¢; match, which
establishes the base case. Observe that if ¢ appears in U, then it must
appear in both U and V for the same index, and if not then n; = n and
Uu=V.

Next us now prove the induction step. If ny = n, then U = V and we
are done. Otherwise, ¢); appears in both U and V, in which case, by (2)
and (3) of the induction hypothesis, it appears in both U and V for the
same index, say jgi1. Thus, uj,_, = vj,., = €xq1. It follows that

Ck+1 = Cék+1 = C’Ujk+1 = ’U,ijr1 = £k+1>

so the first ji1 columns of C' match the first jx41 columns of I,.

Consider any subsequent column v; (with j > jr41) whose elements
beyond the (k+1)th all vanish. Then v; is a linear combination of columns
of V' to the left of vj, so

Uj = C’Uj = ’Uj.

because the first k+1 columns of C match the first column of I,,. Similarly,
any subsequent column wu; (with j > jiy1) whose elements beyond the
(k+1)th all vanish is equal to v;. Therefore, all the subsequent columns in
U and V (of index > jj41) whose elements beyond the (k + 1)th all vanish
also match, so the first ng; columns of C' match the first ngy; columns of
C, which completes the induction hypothesis.

We can now prove that U = V (recall that we may assume that U and
V have no zero columns). We noted earlier that vy = v; = £;, so there is
a largest k < n such that £; occurs in U. Then the previous claim implies
that all the columns of U and V' match, which means that U = V. O

The reduction to row echelon form also provides a method to describe
the set of solutions of a linear system of the form Az = b.
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7.13 Solving Linear Systems Using RREF

First we have the following simple result.

Proposition 7.14. Let A be any m x n matriz and let b € R™ be any
vector. If the system Ax = b has a solution, then the set Z of all solutions
of this system is the set

Z =z + Ker (A) = {xo+ 2 | Az =0},

where xo € R™ is any solution of the system Ax = b, which means that
Axg = b (zg is called a special solution), and where Ker (A) = {z € R" |
Az = 0}, the set of solutions of the homogeneous system associated with
Ax =b.

Proof. Assume that the system Ax = b is solvable and let xg and x; be
any two solutions so that Azg = b and Az; = b. Subtracting the first
equation from the second, we get

A(.’El — .’Eo) = 0,

which means that z1 — z¢ € Ker (A). Therefore, Z C x¢ + Ker (A4), where
o is a special solution of Az = b. Conversely, if Axg = b, then for any
z € Ker (A), we have Az =0, and so

A(xg+2) = Axg+Az=b+0=1b,
which shows that zg 4+ Ker (A) C Z. Therefore, Z = xy + Ker (A). O

Given a linear system Ax = b, reduce the augmented matrix (A,b) to
its row echelon form (A’,0’). As we showed before, the system Az = b has
a solution iff b’ contains no pivot. Assume that this is the case. Then, if
(A’,b") has r pivots, which means that A’ has r pivots since b’ has no pivot,
we know that the first r columns of I,,, appear in A’.

We can permute the columns of A’ and renumber the variables in x
correspondingly so that the first » columns of I,,, match the first » columns
of A’, and then our reduced echelon matrix is of the form (R,b’) with

T F
R= "
(Om—r,r Om—r,n—r>

. d
/<o)

and
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where F is a 7 X (n — r) matrix and d € R". Note that R has m — r zero
TOWS.
Then because

I, F d\_(d\_y
Omfr,r Omfr,nfr Onfr Omfr ’
=)
7 \0n_r

is a special solution of Rz = ¥, and thus to Az = b. In other words, we
get a special solution by assigning the first 7 components of ¥’ to the pivot
variables and setting the nonpivot variables (the free variables) to zero.

Here is an example of the preceding construction taken from Kumpel
and Thorpe [Kumpel and Thorpe (1983)]. The linear system

we see that

xr1 — To+x3+ T4 — 205 = —1
—2x1 4+ 229 — 3+ 25 =2
T1 — T + 2x3 + 3x4 — S5 = —1,
is represented by the augmented matrix
1 -111-2-1

An=(-22 -101 2 |,
1 -1 2 3-5-1
where A is a 3 x 5 matrix. The reader should find that the row echelon
form of this system is

1-10-1 1 —1
(A Y)=[{0012 =30
0000 0 0

The 3 x 5 matrix A’ has rank 2. We permute the second and third columns
(which is equivalent to interchanging variables xo and z3) to form

I, F 111
R= F= .
(01,2 01,3>’ (0 2 —3)

Then a special solution to this linear system is given by

1

d —
o = (03> = OO
3

ws-book-1-9x6
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We can also find a basis of the kernel (nullspace) of A using F. If
2z = (u,v) is in the kernel of A, with u € R" and v € R*™", then z is also
in the kernel of R, which means that Rx = 0; that is,

I, F u\  (u+Fv\ 0,
Omfr,r Omfr,nfr v B Omfr B Omfr '

Therefore, u = —Fv, and Ker (A4) consists of all vectors of the form

(?):(hi>“

for any arbitrary v € R™™". It follows that the n —r columns of the matrix

N:(ii>

form a basis of the kernel of A. This is because N contains the identity ma-
trix I,,_, as a submatrix, so the columns of NV are linearly independent. In
summary, if N',..., N®~" are the columns of N, then the general solution
of the equation Az = b is given by

“o (()d )*mle oz, NV,

where x,41,...,%, are the free variables; that is, the nonpivot variables.
Going back to our example from Kumpel and Thorpe [Kumpel and
Thorpe (1983)], we see that

11 -1
0-2-3
N = (‘IF ) =110 0|,
’ 01 0
00 1
and that the general solution is given by

-1 1 1 -1
0 0 -2 -3
=10 | +x3 |1 +x4] O | +25]| O
0 0 1 0
0 0 0 1

In the general case where the columns corresponding to pivots are mixed
with the columns corresponding to free variables, we find the special solu-
tion as follows. Let i1 < --- < i, be the indices of the columns correspond-
ing to pivots. Assign b), to the pivot variable z;, for k =1,...,r, and set all

ws-book-1-9x6
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other variables to 0. To find a basis of the kernel, we form the n —r vectors
N* obtained as follows. Let j; < --+ < jn_, be the indices of the columns
corresponding to free variables. For every column j; corresponding to a
free variable (1 < k < n—r), form the vector N* defined so that the entries
Nik1 e ,Ni’j are equal to the negatives of the first r entries in column jj
(flip the sign of these entries); let N, jkk =1, and set all other entries to zero.
Schematically, if the column of index ji (corresponding to the free variable

xjk) is
aq
Oy
O )
0
then the vector N* is given by
1 0
11 — 1 0
11 —Q7
11 +1 0
i — 1 0
i —ay
i+ 1 0
Jk—1
Jk 1
Jr+1
n 0
The presence of the 1 in position j; guarantees that N1,... N"77 are

linearly independent.

As an illustration of the above method, consider the problem of finding
a basis of the subspace V of n x n matrices A € M, (R) satisfying the
following properties:
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(1) The sum of the entries in every row has the same value (say ¢1);
(2) The sum of the entries in every column has the same value (say cs).

It turns out that ¢; = co and that the 2n — 2 equations corresponding to
the above conditions are linearly independent. We leave the proof of these
facts as an interesting exercise. It can be shown using the duality theorem
(Theorem 10.1) that the dimension of the space V' of matrices satisying the
above equations is n? — (2n —2). Let us consider the case n = 4. There are
6 equations, and the space V has dimension 10. The equations are

a11 + a2 + a3 + a1q — a1 — ag2 —azz —agy =0
a1 + az2 + a3 + az4 —az; —azz —azz —azs =0
a3y + as2 +asz + asq — aq1 — ag2 — ag3 —agq =0
a11 +az1 +asy + a1 — a12 — as2 —azz —age =0
a12 + azz +aszz + aq2 — a13 —asz —azz —asz =0

a13 + a23 + a33 + 43 — A14 — A24 — A34 — ag4 = 0,

and the corresponding matrix is

1111-1-1-1-10 0 0 0 O O 0 O
ooo0oo01111-1-1-1-10 0 0 0
A oo o0oo0O00O0OOGBI1111-1-1-1-1
1-10 01 -1001-10201-1020
01-10 0 1-1001-1001-10
00 1-1001-1001-1001-1

The result of performing the reduction to row echelon form yields the
following matrix in rref:

10000-1-1-10-1-1-12 1 1 1

010001 0 001 0 0 —-10 —-1-1
U— 001000 1 000 1 0 —-1-10 -1
000100 0 100 0 1 -1-1-120
0ooo01r1 1 100 0 0 —-1-1-1-1
0ooo0oo0o o o111 1 -1-1-1-1

The list pivlist of indices of the pivot variables and the list freelist of
indices of the free variables is given by

pivlist = (1,2,3,4,5,9),
freelist = (6,7,8,10,11,12,13,14,15,16).
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After applying the algorithm to find a basis of the kernel of U, we find the
following 16 x 10 matrix

11111 1-2-1-1-1

-10 0-10 01 0 1 1
0-10 0-101 1 0 1
0 0-100-1111 0
-1-1-10 0 0 1 1 1 1
10 00 0 O0O0UO0UO0O
0100 00O0UO0UO0O0
001 0 0O0O0UO0TUO0O0
BE = 000 -1-1-111 11
0001 0O0O0UO0TUO0DO0
00001 0O0OUO0UO0O0
0000 01O0UO0UO0O0
00000 O01UO0TUO0O0
00 00 O0O0O0OT1TUO0O0
00 000 O0O0OUO0OT1F0
0000 0O0UO0OUO0TUO0 1

The reader should check that that in each column j of BK, the lowest
bold 1 belongs to the row whose index is the jth element in freelist, and that
in each column j of BK, the signs of the entries whose indices belong to
pivlist are the flipped signs of the 6 entries in the column U corresponding
to the jth index in freelist. We can now read off from BK the 4 x 4 matrices
that form a basis of V: every column of BK corresponds to a matrix whose
rows have been concatenated. We get the following 10 matrices:

1 -100 10-10 100-1
~1100 ~10 10 ~100 1

Mi=149 000" ™™={ooo00|l" ™ |0o000]
0 000 0000 0000
1 -100 10-10 100-1
0 000 0000 0000

M 1100] M= 9010 M= 1001 |
0 000 0000 0000
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2111 ~1011 ~1101
1000 1000 1000
M, = My = Mo —

7 1000]’ 8 1000]’ 9 1000

1000 0100 0010

-1110
1000
1000
0001

Recall that a magic square is a square matrix that satisfies the two

Myo =

conditions about the sum of the entries in each row and in each column
to be the same number, and also the additional two constraints that the
main descending and the main ascending diagonals add up to this common
number. Furthermore, the entries are also required to be positive integers.
For n = 4, the additional two equations are

a2 + azz + agq — a12 —a13 — a4 =0
a41 + agzz + as3 —ayr — ajz — a3z =0,

and the 8 equations stating that a matrix is a magic square are linearly
independent. Again, by running row elimination, we get a basis of the
“generalized magic squares” whose entries are not restricted to be positive
integers. We find a basis of 8 matrices. For n = 3, we find a basis of 3

matrices.
A magic square is said to be mormal if its entries are precisely the
integers 1,2...,n2. Then since the sum of these entries is
n%(n?+1)

L2434 g0’ = ————,
and since each row (and column) sums to the same number, this common
value (the magic sum) is
n(n?+1)
5 .
It is easy to see that there are no normal magic squares for n = 2. For
n = 3, the magic sum is 15, for n = 4, it is 34, and for n = 5, it is 65.

In the case n = 3, we have the additional condition that the rows and
columns add up to 15, so we end up with a solution parametrized by two
numbers x1, x2; namely,

Z‘1+Z‘2—5 10—$2 10—$1
20 — 2x1 — o 5 2x1 + x9 — 10
Tq €T 15— 1 — T2
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Thus, in order to find a normal magic square, we have the additional
inequality constraints

1 +x2 > 5
z1 < 10
To < 10

2x1 4+ x9 < 20

2z + x5 > 10
1 >0
To >0

T+ T2 < 15,

and all 9 entries in the matrix must be distinct. After a tedious case
analysis, we discover the remarkable fact that there is a unique normal
magic square (up to rotations and reflections):

276
951
438

It turns out that there are 880 different normal magic squares for n = 4,
and 275,305,224 normal magic squares for n = 5 (up to rotations and
reflections). Even for n = 4, it takes a fair amount of work to enumerate
them alll Finding the number of magic squares for n > 5 is an open
problem!

7.14 Elementary Matrices and Columns Operations

Instead of performing elementary row operations on a matrix A, we can
perform elementary columns operations, which means that we multiply
A by elementary matrices on the right. As elementary row and column
operations, P(i, k), E; .3, E; » perform the following actions:

(1) As a row operation, P(i,k) permutes row i and row k.

(2) As a column operation, P(i, k) permutes column ¢ and column k.

(3) The inverse of P(i, k) is P(i, k) itself.

(4) As a row operation, E; ;.3 adds § times row j to row 1.

(5) As a column operation, E; ;.3 adds 8 times column ¢ to column j (note
the switch in the indices).

(6) The inverse of E; ;.3 is E; j,—g.
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(7) As a row operation, E; y multiplies row i by A.
(8) As a column operation, E; » multiplies column i by A.
(9) The inverse of Fj y is E; \-1.

We can define the notion of a reduced column echelon matrix and show
that every matrix can be reduced to a unique reduced column echelon form.
Now given any m X n matrix A, if we first convert A to its reduced row
echelon form R, it is easy to see that we can apply elementary column
operations that will reduce R to a matrix of the form

( Ir Or,n—r >
Om—r,r Om—r,n—r ’

where r is the number of pivots (obtained during the row reduction). There-
fore, for every m x n matrix A, there exist two sequences of elementary
matrices Eq,...,E, and F,..., Fy, such that

IT Or,n—r
Ep - F1AFy - Fq = <Om—7',r Om—r,n—r) .
The matrix on the right-hand side is called the rank normal form of A.
Clearly, r is the rank of A. As a corollary we obtain the following important
result whose proof is immediate.

Proposition 7.15. A matriz A and its transpose AT have the same rank.

7.15 Transvections and Dilatations ®

In this section we characterize the linear isomorphisms of a vector space
E that leave every vector in some hyperplane fixed. These maps turn out
to be the linear maps that are represented in some suitable basis by ele-
mentary matrices of the form E; ;.3 (transvections) or E; ) (dilatations).
Furthermore, the transvections generate the group SL(E), and the dilata-
tions generate the group GL(FE).

Let H be any hyperplane in E, and pick some (nonzero) vector v € E
such that v ¢ H, so that

E=H® Kv.

Assume that f: E — FE is a linear isomorphism such that f(u) = u for all
u € H, and that f is not the identity. We have

f(v) =h+av, forsome h € H and some a € K,
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with « # 0, because otherwise we would have f(v) = h = f(h) since h € H,
contradicting the injectivity of f (v # h since v ¢ H). For any x € E, if
we write

x=y+tv, forsomey € H and somet € K,
then
f(@) = f(y) + f(tv) =y +tf(v) = y + th + taw,
and since ax = ay + taw, we get
fl@)—arx=(1—-a)y+th
flz) —z=t(h+ (a—1)v).

Observe that if F is finite-dimensional, by picking a basis of E consisting of
v and basis vectors of H, then the matrix of f is a lower triangular matrix
whose diagonal entries are all 1 except the first entry which is equal to a.
Therefore, det(f) = a.

Case 1. a # 1.
We have f(z) = az iff (1 —a)y+th =20 iff
t
YT
Then if we let w =h + (a — 1)v, for y = (¢/(a — 1))h, we have
t t t
z:y+tv:ﬁh+tv:ﬁ(h+(a—l)v): o

which shows that f(z) = az iff © € Kw. Note that w ¢ H, since a # 1
and v ¢ H. Therefore,

E=H®& Kuw,
and f is the identity on H and a magnification by « on the line D = Kw.

Definition 7.6. Given a vector space E, for any hyperplane H in E, any
nonzero vector u € F such that u ¢ H, and any scalar a # 0, 1, a linear map
f such that f(z) =z for all x € H and f(x) = ax for every x € D = Ku
is called a dilatation of hyperplane H, direction D, and scale factor a.

If 7y and 7wp are the projections of E onto H and D, then we have
f(z) =7mp(z) + arp(z).
The inverse of f is given by

fH (@) = mp(2) + o™ mp(a).
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When o = —1, we have f2 = id, and f is a symmetry about the hyperplane
H in the direction D. This situation includes orthogonal reflections about
H.

Case 2. a = 1.

In this case,

f(z) —x =th,
that is, f(z) —x € Kh for all z € E. Assume that the hyperplane H is
given as the kernel of some linear form ¢, and let a = p(v). We have a # 0,
since v ¢ H. For any x € E, we have
p(z —a" p(a)v) = p(a) — a p(2)p(v) = () — (z) =0,

which shows that z —a ™!
is fixed by f, we get

p(x)v € H for all x € E. Since every vector in H
z—a"tp(z)v = flz —a  p(z)v)
= f(z) —a (@) f(v),
SO
F() = 2+ p(@)(fa1v) — a~ ).
Since f(z) —z € Kh for all z € E, we conclude that u = f(a=!v) —a~lv =
Bh for some 8 € K, so p(u) = 0, and we have
f(@) =z + o), o(u)=0. (%)

A linear map defined as above is denoted by 7, 4.

Conversely for any linear map f = 7, given by Equation (x), where ¢
is a nonzero linear form and w is some vector v € E such that ¢(u) = 0,
if w = 0, then f is the identity, so assume that u # 0. If so, we have
f(z) =z iff p(x) =0, that is, iff x € H. We also claim that the inverse of
f is obtained by changing u to —u. Actually, we check the slightly more
general fact that

T¢7u O Typw = Tp,utw-
Indeed, using the fact that ¢(w) = 0, we have
Tou(Tio,w(2)) = T (@) + ¢ (Tp,u(@))Ju

= T () + (p(2) + p(x)p(w))u
= Tow () + p(z)u
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For v = —u, we have 7y, 444 = @0 = id, s0 T;lu = Ty, —u, as claimed.

Therefore, we proved that every linear isomorphism of E that leaves
every vector in some hyperplane H fixed and has the property that f(z) —
x € H for all x € E is given by a map 7, , as defined by Equation (x),
where ¢ is some nonzero linear form defining H and w is some vector in H.
We have 7, ,, = id iff u = 0.

Definition 7.7. Given any hyperplane H in F, for any nonzero nonlinear
form ¢ € E* defining H (which means that H = Ker (¢)) and any nonzero
vector v € H, the linear map f = 7, , given by

Tou(®) =2+ @(x)u, ¢(u) =0,

for all z € E is called a transvection of hyperplane H and direction u. The
map f = 7, leaves every vector in H fixed, and f(z) — 2z € Ku for all
zekE.

The above arguments show the following result.

Proposition 7.16. Let f: E — E be a bijective linear map and assume
that f # id and that f(x) = x for allz € H, where H is some hyperplane in
E. If there is some nonzero vector u € E such thatu ¢ H and f(u)—u € H,
then f is a transvection of hyperplane H; otherwise, f is a dilatation of
hyperplane H.

Proof. Using the notation as above, for some v ¢ H, we have f(v) = h4+av
with « # 0, and write u = y + tv with y € H and ¢t # 0 since u ¢ H. If
f(u) —u € H, from

flw)—u=th+ (a—1)v),

we get (o« — 1)v € H, and since v ¢ H, we must have « = 1, and we proved
that f is a transvection. Otherwise, a # 0,1, and we proved that f is a
dilatation. O

If E is finite-dimensional, then a = det(f), so we also have the following
result.

Proposition 7.17. Let f: E — E be a bijective linear map of a finite-
dimensional vector space E and assume that f # id and that f(x) = x for
all x € H, where H is some hyperplane in E. If det(f) = 1, then f is a
transvection of hyperplane H ; otherwise, f is a dilatation of hyperplane H.
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Suppose that f is a dilatation of hyperplane H and direction u, and say
det(f) = a # 0,1. Pick a basis (u,e2,...,e,) of E where (es,...,e,) is a
basis of H. Then the matrix of f is of the form

01 0
001

which is an elementary matrix of the form E, ,. Conversely, it is clear that

every elementary matrix of the form E; , with o # 0,1 is a dilatation.
Now, assume that f is a transvection of hyperplane H and direction

u € H. Pick some v ¢ H, and pick some basis (u,es,...,e,) of H, so that

(v,u,e3,...,e,) is a basis of E. Since f(v) — v € Ku, the matrix of f is of
the form

10---0

al 0

00---1

which is an elementary matrix of the form Fs ;... Conversely, it is clear
that every elementary matrix of the form F; ;.o (a # 0) is a transvection.

The following proposition is an interesting exercise that requires good
mastery of the elementary row operations Ej; ;.3; see Problems 7.10 and
7.11.

Proposition 7.18. Given any invertible n X n matriz A, there is a matriz

S such that
SA = (I“ 0) —E,..
0 «o ’

with a = det(A), and where S is a product of elementary matrices of the
form E; j.g; that is, S is a composition of transvections.

Surprisingly, every transvection is the composition of two dilatations!

Proposition 7.19. If the field K is not of characteristic 2, then every
transvection f of hyperplane H can be written as f = ds o dy, where dy, ds
are dilatations of hyperplane H, where the direction of dy can be chosen
arbitrarily.
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Proof. Pick some dilatation d; of hyperplane H and scale factor a # 0, 1.
Then, dy = f od; " leaves every vector in H fixed, and det(dy) = a~' # 1.
By Proposition 7.17, the linear map d5 is a dilatation of hyperplane H, and
we have f = ds o dy, as claimed. O

Observe that in Proposition 7.19, we can pick a = —1; that is, every
transvection of hyperplane H is the compositions of two symmetries about
the hyperplane H, one of which can be picked arbitrarily.

Remark: Proposition 7.19 holds as long as K # {0,1}.
The following important result is now obtained.

Theorem 7.6. Let E be any finite-dimensional vector space over a field K
of characteristic not equal to 2. Then the group SL(E) is generated by the
transvections, and the group GL(FE) is generated by the dilatations.

Proof. Consider any f € SL(E), and let A be its matrix in any basis. By
Proposition 7.18, there is a matrix S such that

SA = (I“ 0) _B,..
0 « ’

with o = det(A), and where S is a product of elementary matrices of the
form E; j.3. Since det(A) = 1, we have @ = 1, and the result is proven.
Otherwise, if f is invertible but f ¢ SL(E), the above equation shows E,, o
is a dilatation, S is a product of transvections, and by Proposition 7.19,
every transvection is the composition of two dilatations. Thus, the second
result is also proven. O

We conclude this section by proving that any two transvections are
conjugate in GL(E). Let 7, (u # 0) be a transvection and let g € GL(FE)
be any invertible linear map. We have

(goTpuog " )(z)=glg~ () + g (x))u)
=z + (g ' (z))g(w).

Let us find the hyperplane determined by the linear form z +— (g~ (z)).
This is the set of vectors x € E such that ¢(g~!(z)) = 0, which holds iff
g Y(x) € H iff z € g(H). Therefore, Ker (pog~1) = g(H) = H’, and we
have g(u) € g(H) = H', 80 go T, 0 g " is the transvection of hyperplane
H' = g(H) and direction v’ = g(u) (with v’ € H').
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Conversely, let 7, be some transvection (v’ # 0). Pick some vectors
v,v" such that p(v) =¥ (v') = 1, so that

E=HoKv=H & Kv'.

There is a linear map g € GL(E) such that g(u) = v/, g(v) = o/,
and g(H) = H'. To define g, pick a basis (v,u,es,...,e,—1) where
(u,ea,...,en—_1) is a basis of H and pick a basis (v',u/, €5, ..., e, _;) where
(u,€eh,...,el,_1) is a basis of H'; then g is defined so that g(v) = o/,
g(u) =, and g(e;) = g(e}), for i = 2,...,n — 1. If n = 2, then e; and €]
are missing. Then, we have

(goTpuog (@) =+ p(g " (x)u'.

Now pog~! also determines the hyperplane H' = g(H), so we have gog~! =

A for some nonzero A in K. Since v/ = g(v), we get
p(v) = pog (V) = M(v'),
and since p(v) = 1(v') = 1, we must have A = 1. It follows that

(g O Tpu © gil)(x) =T+ dj(x)u/ = Ty’ (1')
In summary, we proved almost all parts the following result.

Proposition 7.20. Let E be any finite-dimensional vector space. For every
transvection Ty, (u # 0) and every linear map g € GL(E), the map g o
Tou © g1 is the transvection of hyperplane g(H) and direction g(u) (that
08, §OTpu©g ' = Tpog—1 g(u))- For every other transvection Ty (W' #0),
there is some g € GL(E) such Ty = g0 Ty © g1, in other words any
two transvections (# id) are congugate in GL(E). Moreover, if n > 3, then
the linear isomorphism g as above can be chosen so that g € SL(E).

Proof. We just need to prove that if n > 3, then for any two transvections
Tp,u a0d Ty o (u, v’ # 0), there is some g € SL(E) such that 7y = go7, 4,0
g~ '. As before, we pick a basis (v, u, e, ..., e, 1) where (u,e,...,e, 1) is
a basis of H, we pick a basis (v, u/,€h,... e/, _;) where (v, €}, ... e/, _)is
a basis of H', and we define g as the unique linear map such that g(v) = v/,
g(u) =/, and g(e;) = €}, for i = 1,...,n — 1. But in this case, both H
and H' = g(H) have dimension at least 2, so in any basis of H’' including
u’, there is some basis vector e independent of v, and we can rescale €, in
such a way that the matrix of g over the two bases has determinant +1. [
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7.16 Summary

The main concepts and results of this chapter are listed below:

One does not solve (large) linear systems by computing determinants.
Upper-triangular (lower-triangular) matrices.

Solving by back-substitution (forward-substitution).

Gaussian elimination.

Permuting rows.

The pivot of an elimination step; pivoting.

Transposition matriz; elementary matriz.

The Gaussian elimination theorem (Theorem 7.1).

Gauss-Jordan factorization.

LU -factorization; Necessary and sufficient condition for the existence
of an

LU-factorization (Proposition 7.1).

LDU -factorization.

“PA = LU theorem” (Theorem 7.2).

LDLT -factorization of a symmetric matrix.

Avoiding small pivots: partial pivoting; complete pivoting.

Gaussian elimination of tridiagonal matrices.

LU-factorization of tridiagonal matrices.

Symmetric positive definite matrices (SPD matrices).

Cholesky factorization (Theorem 7.4).

Criteria for a symmetric matrix to be positive definite; Sylvester’s cri-
terion.

Reduced row echelon form.

Reduction of a rectangular matrix to its row echelon form.

Using the reduction to row echelon form to decide whether a system
Az = b is solvable, and to find its solutions, using a special solution
and a basis of the homogeneous system Ax = 0.

Magic squares.

Transvections and dilatations.
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7.17 Problems

Problem 7.1. Solve the following linear systems by Gaussian elimination:

2 3 1\ [z 6 111\ [z 6
1 2 -1)lyl=121], [112]]y]=109
—3-51) \z —7 123) \z 14

Problem 7.2. Solve the following linear system by Gaussian elimination:

1 211 1 7
2 323 z2 | | 14
-1 01-1 zs | | -1
—-2-14 0 Ty 2
Problem 7.3. Consider the matrix
1c¢0
A=1241
351

When applying Gaussian elimination, which value of ¢ yields zero in the
second pivot position? Which value of ¢ yields zero in the third pivot
position? In this case, what can you say about the matrix A?

Problem 7.4. Solve the system

2110\ [ 1
4331 (x| |1
8795 las| | -1
6798/ \z4 1

using the LU-factorization of Example 7.1.

Problem 7.5. Apply rref to the matrix

1 211
2 323
-1 01-1
-2-130

Ay =

Problem 7.6. Apply rref to the matrix

1 4 916
4 9 16 25
9 16 25 36
16 25 36 49
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Problem 7.7. (1) Prove that the dimension of the subspace of 2 x 2 ma-
trices A, such that the sum of the entries of every row is the same (say ¢)
and the sum of entries of every column is the same (say cz) is 2.

(2) Prove that the dimension of the subspace of 2 x 2 matrices A, such
that the sum of the entries of every row is the same (say c;), the sum of
entries of every column is the same (say c¢2), and ¢; = ¢y is also 2. Prove
that every such matrix is of the form

ab
(b0)
and give a basis for this subspace.
(3) Prove that the dimension of the subspace of 3 x 3 matrices A, such
that the sum of the entries of every row is the same (say c¢1), the sum of

entries of every column is the same (say cz), and ¢; = ¢2 is 5. Begin by
showing that the above constraints are given by the set of equations

aii
a12
11 1 -1-1-10 0 0 a3
00 0 1 1 1 -1-1-1 as1
1-10 1 =10 1 -10 ag | =
0 -10 1 -10 1 -1 a93
0 1 -10 0-10 0 asy
as2
ass
Prove that every matrix satisfying the above constraints is of the form

|
coco oo o

at+b—c —a+c+e—-b+c+d
—a—b+c+d+e a b ,
c d

with a,b,¢,d,e € R. Find a basis for this subspace. (Use the method to
find a basis for the kernel of a matrix).

Problem 7.8. If A is an n X n symmetric matrix and B is any n X n
invertible matrix, prove that A is positive definite iff BT AB is positive
definite.

Problem 7.9. (1) Consider the matrix

2 -10 0
-12 -10
0 -12 -1
0 0 —-12

Ay =
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Find three matrices of the form E5 1.5, , E32.8,, £4,3,8,, such that
E13.5,F32.,E2 1,8 A1 = U,
where Uy is an upper triangular matrix. Compute
M = Ey 3.8, E3,2.8, F2,1:,
and check that

2-1 0 0
03/2 -1 0
MAs=Us= | (/) 4/3 —1
00 0 5/4
(2) Now consider the matrix
2 -10 0 0
-12 -10 0

As=10 -1 2 -1 0
0 0 -1 2 -1
0 0 0 —-12
Find four matrices of the form Fs 1.5, , F32.8,, F4,3:85, £5,4:8,, such that
Es 4.5, F4,3,8, E3,2:0, B2.1.6, As = Us
where Us is an upper triangular matrix. Compute
M = Es 4,5, F4,3,5,£3,2,6, F2,1:,
and check that
2-1 0 0 0
03/2-1 0 0
MA;=Us=10 0 4/3 -1 0
00 0 5/4-1
00 0 0 6/5
(3) Write a Matlab program defining the function Ematrix(n,1,],b)
which is the n X n matrix that adds b times row j to row 7. Also write
some Matlab code that produces an n x n matrix A,, generalizing the ma-
trices A4 and As.
Use your program to figure out which five matrices E; ;.3 reduce Ag to
the upper triangular matrix
2-1 0 0 0 O
03/2—-1 0 0 O
0043-10 0
00 05/4-10
00 0 0 6/5-1
00 O O 0 7/6

Us
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Also use your program to figure out which six matrices F; j.g reduce Az to
the upper triangular matrix

2-10 0 0 0 0
03/2-1 0 0 0 0
004/3-10 0 0

Ur = 0 5/4-1 0 0

0 0 6/5-1 0

0 0 0 7/6—1
0 0 0 0 87

o O O O

0
0
0
0

(4) Find the lower triangular matrices Lg and L7 such that
LeUs = Ag
and
L:U; = A;.

(5) It is natural to conjecture that there are n — 1 matrices of the form
E; ;.5 that reduce A,, to the upper triangular matrix

2-10 0 0 0 0
03/2-1 0 0 0 0
004/3-10 0 0

go— |00 05/4-10 0 |
00 0 0 6/5
S ST PR |
00 0 0 - 0 (n+1)/n

namely,

Es 1,172, E3.2:2/3, B433/4, s Enn—1;(n—1)/n-

It is also natural to conjecture that the lower triangular matrix L,, such
that

is given by

L, = E2,1;—1/2E3,2;—2/3E4,3;—3/4 T En,n—l;—(n—l)/nv
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that is,
1 0 0 0 0 0 0
~1/2 1 0 0 0 0 0
0 -2/3 1 0 0 0 0
L, — 0 0 -3/4 1 0 0 0
0 0 0 —4/51
: : : R . 0
0 0 0 0 - —(n—-1)/n1

Prove the above conjectures.
(6) Prove that the last column of A1 is

1/(n+1)
2/(n+1)

n/(n+1)

Problem 7.10. (1) Let A be any invertible 2 x 2 matrix

=)

Prove that there is an invertible matrix S such that

1 0
54 = (Oad—bc)7

where S is the product of at most four elementary matrices of the form
Eijp-

Conclude that every matrix A in SL(2) (the group of invertible 2 x 2
matrices A with det(A) = +1) is the product of at most four elementary
matrices of the form E; ;..

For any a # 0, 1, give an explicit factorization as above for

a 0
A_<Oa1)'

What is this decomposition for a = —17
(2) Recall that a rotation matrix R (a member of the group SO(2)) is

a matrix of the form
cosf) —sinf
h= (sin@ cos > '
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Prove that if 6 # kn (with k € Z), any rotation matrix can be written as a
product

R=ULU,

where U is upper triangular and L is lower triangular of the form

7= 1)+ ()

Therefore, every plane rotation (except a flip about the origin when
6 = 7) can be written as the composition of three shear transformations!

Problem 7.11. (1) Recall that F; 4 is the diagonal matrix
E; 4 =diag(1,...,1,d,1,...,1),

whose diagonal entries are all +1, except the (i,7)th entry which is equal
to d.

Given any n x n matrix A, for any pair (¢,7) of distinct row indices
(1 <1i,j <n), prove that there exist two elementary matrices F1 (i, j) and
Es (i, j) of the form E}, ¢.5, such that

Ej 1B (i,§)Ea (i, j)En (i, ) A = P(i, j) A,

the matrix obtained from the matrix A by permuting row i and row j.
Equivalently, we have

By (i, ) Ea(i, j)E1(i,j)A = E; 1 P(i,j) A,

the matrix obtained from A by permuting row ¢ and row j and multiplying
row j by —1.
Prove that for every i = 2,...,n, there exist four elementary matrices
Es(i,d), E4(i,d), E5(i,d), Eg(i,d) of the form Ej .5, such that
Es(i,d)E5(i,d)E4(i,d)E3(i,d)En g = E; 4.
What happens when d = —1, that is, what kind of simplifications occur?
Prove that all permutation matrices can be written as products of ele-

mentary operations of the form Ej, ;.3 and the operation E,, _;.
(2) Prove that for every invertible n x n matrix A, there is a matrix S

such that
1,10
A= =F
S ( 0 d) n,d>

with d = det(A), and where S is a product of elementary matrices of the
form Ej, ¢,.
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In particular, every matrix in SL(n) (the group of invertible n x n matri-
ces A with det(A) = +1) can be written as a product of elementary matrices
of the form Ej, p,3. Prove that at most n(n + 1) — 2 such transformations
are needed.

(3) Prove that every matrix in SL(n) can be written as a product of at
most (n — 1)(max{n, 3} + 1) elementary matrices of the form Ej ¢.5.

Problem 7.12. A matrix A is called strictly column diagonally dominant
iff
n
|ajj|> Z |aij|, forj=1,....,n
=1, %]

Prove that if A is strictly column diagonally dominant, then Gaussian
elimination with partial pivoting does not require pivoting, and A is invert-
ible.

Problem 7.13. (1) Find a lower triangular matrix E such that

1000 1000
B 1100 _ 0100
1210 0110
1331 0121

(2) What is the effect of the product (on the left) with
Eys. 1E30. 1E43,_1F21,_1F392,_1F43,_1

on the matrix

1000
1100
1210
1331

PCL3 =

(3) Find the inverse of the matrix Pas.
(4) Consider the (n + 1) x (n + 1) Pascal matrix Pa,, whose ith row is
given by the binomial coefficients

()

with 1 <i7<n+1,1<j<n+1, and with the usual convention that

(g>1, (;)0 it j>i.
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The matrix Pag is shown in Question (c¢) and Pay is shown below:

10000
11000
Pas=112100
13310
14641

Find n elementary matrices Ej, j, .3, such that

10
Eivjnipn B i Pan = <O<Pan—1).

Use the above to prove that the inverse of Pa,, is the lower triangular
matrix whose ith row is given by the signed binomial coefficients

<—1>f+“(j. B 11)

with 1 <i:<n+1,1<j<n+ 1. For example,

1 00 00
-11 0 00
Payj'=11-21 00
-13 -310
1 46 —41

Hint. Given any n X n matrix A, multiplying A by the elementary matrix
E; j.g on the right yields the matrix AFE; ;. in which 5 times the ith column
is added to the jth column.

Problem 7.14. (1) Implement the method for converting a rectangular
matrix to reduced row echelon form in Matlab.

(2) Use the above method to find the inverse of an invertible n x n
matrix A by applying it to the the n x 2n matrix [A I] obtained by adding
the n columns of the identity matrix to A.

(3) Consider the matrix

1 2 3 4 - n
2 3 4 5 - n+l
A—|3 4 5 6 - n+2

nn+ln+2n+3--- 2n—1

Using your program, find the row reduced echelon form of A for n =
4,...,20.
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Also run the Matlab rref function and compare results.

Your program probably disagrees with rref even for small values of n.
The problem is that some pivots are very small and the normalization step
(to make the pivot 1) causes roundoff errors. Use a tolerance parameter to
fix this problem.

What can you conjecture about the rank of A?

(4) Prove that the matrix A has the following row reduced form:

10-1-2-+ —(n—2)

012 3 -+ n-1
R=]000 0 -~ 0

000 0 - 0

Deduce from the above that A has rank 2.

Hint. Some well chosen sequence of row operations.

(5) Use your program to show that if you add any number greater than
or equal to (2/25)n? to every diagonal entry of A you get an invertible
matrix! In fact, running the Matlab fuction chol should tell you that these
matrices are SPD (symmetric, positive definite).

Problem 7.15. Let A be an n X n complex Hermitian positive definite
matrix. Prove that the lower-triangular matrix B with positive diagonal
entries such that A = BB* is given by the following formulae: For j =
1,...,n,

-1 1/2
bjj = (ajj - Z|bjk|2> ,
k=1
and fori=j+1,...,n(and j=1,...,n—1)
j—1
bij = <aij - Zbikbjk> /bj ;.
k=1

Problem 7.16. (Permutations and permutation matrices) A permutation
can be viewed as an operation permuting the rows of a matrix. For example,

1234
3421

the permutation
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corresponds to the matrix

0001
0010
1000
0100

P, =

Observe that the matrix P, has a single 1 on every row and every
column, all other entries being zero, and that if we multiply any 4 x 4
matrix A by P, on the left, then the rows of A are permuted according to
the permutation ; that is, the 7(¢)th row of P, A is the ith row of A. For

example,
0001 a1l a2 a13 14 (41 Q42 (43 Q44
PA_ 0010 as1 g2 G23 G24 | | as1 as2 ass asq
A = =
1000 a31 azz a3z 34 ai1 a2 13 ai4
0100 (41 Q42 (43 Q44 a1 22 (23 24

Equivalently, the ith row of P, A is the 7~1(i)th row of A. In order for the
matrix P, to move the ith row of A to the m(i)th row, the m«(i)th row of
P, must have a 1 in column ¢ and zeros everywhere else; this means that
the ith column of P contains the basis vector e, (;), the vector that has a
1 in position 7 (i) and zeros everywhere else.

This is the general situation and it leads to the following definition.

Definition 7.8. Given any permutation 7: [n] — [n], the permutation
matriz Pr = (p;;) representing m is the matrix given by

”:{1 if i = 7(j)
P00 i £ ();

equivalently, the jth column of Py is the basis vector er(;). A permutation
matriz P is any matrix of the form P, (where P is an n X n matrix, and
m: [n] = [n] is a permutation, for some n > 1).

Remark: There is a confusing point about the notation for permutation
matrices. A permutation matrix P acts on a matrix A by multiplication
on the left by permuting the rows of A. As we said before, this means that
the 7(i)th row of P;A is the ith row of A, or equivalently that the ith row
of P, A is the 7~1(i)th row of A. But then observe that the row index of
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the entries of the ith row of PA is 7—1(i), and not 7(i)! See the following

example:
0001 a1l a1z @13 a14 (41 Q42 Q43 Q44
0010 a1 G22 G23 G24 | | a31 a32 a3z az4
- )
1000 a31 azz a33 34 a1l a1z a13 14
0100 (41 Q42 (43 Q44 (21 A2 A23 G24
where
7 1(1) =4
71(2) =3
7 1(3) =1
7l (4) = 2.

(1)

Prove the following results

Given any two permutations 71, mo: [n] — [n], the permutation matrix
Pr,or, representing the composition of 1 and s is equal to the product
Py, Py, of the permutation matrices P, and Py, representing m; and
my; that is,

P7r207r1 = P71'2P7T1'

The matrix Pﬂ_l—l representing the inverse of the permutation 7 is the
inverse P 1 of the matrix P,, representing the permutation mq; that
is,
-1
Pﬂ_l—l =P .
Furthermore,
-1 T
P7T1 = (Pﬂ'l) .
Prove that if P is the matrix associated with a transposition, then
det(P) = —1.
Prove that if P is a permutation matrix, then det(P) = +1.
Use permutation matrices to give another proof of the fact that the

parity of the number of transpositions used to express a permutation
7 depends only on 7.
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Chapter 8

Vector Norms and Matrix Norms

8.1 Normed Vector Spaces

In order to define how close two vectors or two matrices are, and in order
to define the convergence of sequences of vectors or matrices, we can use
the notion of a norm. Recall that Ry = {x € R | > 0}. Also recall that
if z=a+1ib € C is a complex number, with a,b € R, then z = a — ib and

|z| = V2Z = Va2 + b2 (|| is the modulus of z).

Definition 8.1. Let E be a vector space over a field K, where K is either
the field R of reals, or the field C of complex numbers. A norm on FE is
a function || ||: E — R4, assigning a nonnegative real number ||u|| to any
vector u € E, and satisfying the following conditions for all z,y,z € F and
re K:

(N1) flz[| >0, and [|z]| = 0 iff 2 = 0. (positivity)
(N2) [[Az| = [Al[[=]. (homogeneity (or scaling))
(N3) = +yll < [zl + llyl- (triangle inequality)

A vector space E together with a norm | || is called a normed vector
space.

By (N2), setting A = —1, we obtain
==l = (=)=l = [ = L[ |l=]| = ll=];
that is, ||—z| = ||z]. From (N3), we have
2]l = llz =y +yll < [z =yl + [yl
which implies that

Izl =Nyl < llz = yll.-

289
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By exchanging = and y and using the fact that by (N2),
ly =zl = - =yl = llz —yl,
we also have
lyll = llzll < ll= =yl
Therefore,
Nzl =yl < |z —yll, forallz,ye€ E. (%)

Observe that setting A = 0 in (N2), we deduce that ||0]] = 0 without
assuming (N1). Then by setting y = 0 in (x), we obtain

llzll| < llzll, for all z € E.

Therefore, the condition ||z|] > 0 in (N1) follows from (N2) and (N3), and
(N1) can be replaced by the weaker condition

(N1’) For all x € E, if ||z|| =0, then z =0,

A function || || : E — R satisfying Axioms (N2) and (N3) is called a semi-
norm. From the above discussion, a seminorm also has the properties

lz|| > 0 for all x € E, and ||0|| = 0.

However, there may be nonzero vectors x € E such that |z|| = 0.

Let us give some examples of normed vector spaces.

Example 8.1.

(1) Let E =R, and ||z|| = |z|, the absolute value of z.

(2) Let E =C, and ||z|| = |z|, the modulus of z.

(3) Let E =R™ (or E = C™). There are three standard norms. For every
(x1,...,2y) € E, we have the norm ||z||1, defined such that,

el = lzaf + -+ [2al,

we have the Euclidean norm ||z||2, defined such that,

lzllz = (jz1* + -+ lanf?)?,
and the sup-norm ||z| s, defined such that,

|z|loo = max{|z;| | 1 < i< n}.
More generally, we define the ¢P-norm (for p > 1) by

Izl = (21 [? + -+ [ ?) /7.

See Figures 8.1 through 8.4.



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning  ws-book-1-9x6
page 291

8.1. Normed Vector Spaces 291

Fig. 8.1 The top figure is {z € R? | ||z||y < 1}, while the bottom figure is {z € R? |
]l <1}

There are other norms besides the ¢P-norms. Here are some examples.
(1) For E = R?,
([ (w1, u2)[| = fua| + 2Jus].
See Figure 8.5.
(2) For E =R?,
1/2
Izl = ((u +u2)? +uf) 2.
See Figure 8.6.
(3) For E = C?,

(ur, u2)|| = |ur + dus| + |up — dusl.
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Fig. 8.2 The top figure is {z € R? | ||z||2 < 1}, while the bottom figure is {z € R? |
l[zfl2 < 1}

The reader should check that they satisfy all the axioms of a norm.
Some work is required to show the triangle inequality for the ¢P-norm.

Proposition 8.1. If E =C" or E =R", for every real number p > 1, the
LP-norm is indeed a norm.

Proof. The cases p = 1 and p = oo are easy and left to the reader. If
p > 1, then let ¢ > 1 such that
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Fig. 8.3 The top figure is {x € R? | ||z]|lcc < 1}, while the bottom figure is {z € R? |
[#]loo < 1}.

We will make use of the following fact: for all a, 5 € R, if a, 8 > 0, then
aff < — 4 —. (%)
To prove the above inequality, we use the fact that the exponential function
t — et satisfies the following convexity inequality:
710y < e 4 (1 — 0)e?,

for all x,y € R and all § with 0 <6 < 1.

Since the case a8 = 0 is trivial, let us assume that o > 0 and 8 > 0. If
we replace 6 by 1/p, by ploga and y by glog 3, then we get

1 1 1 1
evPlogatgqlogf < Eeploga + Eeqlozg;ﬁ’

ws-book-1-9x6
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Fig. 8.4 The relationships between the closed unit balls from the £!-norm, the Euclidean
norm, and the sup-norm.

which simplifies to
aP q
Oéﬁ S —+ U]
p q
as claimed.
We will now prove that for any two vectors u,v € E, (where E is of
dimension n), we have
n
> luail < Jall, [0l - (%)
i=1

Since the above is trivial if u = 0 or v = 0, let us assume that u # 0 and

ws-book-1-9x6
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Fig. 8.5 The unit closed unit ball {(u1,u2) € R? | ||(u1,uz2)|| < 1}, where ||(u1,uz2)|| =
[ut| + 2|uz|.

v # 0. Then Inequality () with o = [u;|/ [[ull,, and 8 = [v;|/ ||v], yields

|uivi ug?  Jvil
lull, 0l ~ pllully — allulg’
for i =1,...,n, and by summing up these inequalities, we get

n
S fusi] < [ull, [lo]l,.
=1

as claimed. To finish the proof, we simply have to prove that property (N3)
holds, since (N1) and (N2) are clear. For i = 1,...,n, we can write

(sl + 0i))P = Jual (il + i )P~ + Jog(Jua| + o )P~

so that by summing up these equations we get

n

> (il + loil)? = fwal(usl + [wi)P™ + > fvil (Jual + [vi)P~,

i=1 i=1 i=1
and using Inequality (+x), with V' € E where V; = (Ju;| + |v;|)P~1, we get

n

D (ual + o) < Jull, IV, + ol 1V,
i=1

1/q
(i + 1ot 30l + o)

i=1
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Fig. 8.6 The unit closed unit ball {(u1,u2) € R? | ||(u1,uz2)|| < 1}, where ||(u1,uz2)|| =
((ur +u2)? + u%)lm.

However, 1/p+1/q = 1 implies pg = p+g¢, that is, (p — 1)q = p, so we have

n n 1/q
S (sl + Jsl)? < (ul, + ||v||p>(2<|ui n |vi|>p) ,

i=1 i=1

which yields

(i(luil + |vz-|>p)1_1/q - (iuw ¥ |vi|>")1/p < flull, + ol

=1 i=1

Since |u; + v;| < |ui| + |v;|, the above implies the triangle inequality
[u+ol, < lull, +[[v]l,, as claimed. O

For p > 1 and 1/p + 1/q = 1, the inequality

n n 1/p n 1/q
S Juswi] < (Dum) (ZW)
=1 =1 =1

is known as Hélder’s inequality. For p = 2, it is the Cauchy—Schwarz
inequality.
Actually, if we define the Hermitian inner product (—,—) on C™ by

n
(u,v) = Z Uy,
i=1
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where v = (uy,...,u,) and v = (v1,...,v,), then
n n
o) <3 Juswi] = 3w,
=1 =1

so Hélder’s inequality implies the following inequalities.

Corollary 8.1. (Holder’s inequalities) For any real numbers p,q, such
that p,q > 1 and

p g
(with ¢ = +o00 if p=1 and p = +o0 if ¢ = 1), we have the inequalities

n n 1/p n 1/q
>l < (Shap) (D te)
i=1 i=1 i=1

and
[{w, )| < lull, ol w0 €C™

For p = 2, this is the standard Cauchy—Schwarz inequality. The triangle
inequality for the fP-norm,

n 1/p n 1/p n 1/q
(Z(|ui+vi|)p) < (Zmivﬂ) . (Zw) ,
i=1 i=1 i=1
is known as Minkowski’s inequality.

When we restrict the Hermitian inner product to real vectors, u,v € R”,
we get the Fuclidean inner product

n
(u,v) = Z U0;.
i=1

It is very useful to observe that if we represent (as usual) u = (ug,...,uy,)
and v = (v1,...,v,) (in R™) by column vectors, then their Euclidean inner
product is given by

(u,v) =u'v=20"u,
and when u,v € C", their Hermitian inner product is given by

(u,v) = v*u = u*v.
In particular, when u = v, in the complex case we get

2
[ully = u™u,
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and in the real case this becomes

2 T
[ully = v u.

As convenient as these notations are, we still recommend that you do not
abuse them; the notation (u,v) is more intrinsic and still “works” when our
vector space is infinite dimensional.

Remark: If 0 <p <1, then z  [|z||, is not a norm because the triangle
inequality fails. For example, consider z = (2,0) and y = (0,2). Then
2y = (2,2), and we have 2], = (27-+07)1/7 = 2, [y, = (0P+27)1/7 — 2,
and ||z +yl|, = (2P 4 2¢)/P = 2TD/P Thus

lz + yll, = 2®+V7P, 2], + llyll, = 4 = 2*.

Since 0 < p < 1, we have 2p < p+ 1, that is, (p +1)/p > 2, so 2(P+1/P >
2% =4, and the triangle inequality ||z + yl|,, < [lz]|,, + [ly], fails.
Observe that
1(1/2)a]l, = (1/2) =], = [[(1/2)yll, = (1/2) [ly]l, = 1,
11/2)( + ), = 27,

and since p < 1, we have 21/ > 2, so
I1(1/2)( + ), = 2"7 > 2= (1/2) |||, + (1/2) |y,

and the map x — |[|z[|, is not convex.
For p =0, for any z € R", we have

lellg = {é € {1,....n} [z # O},

the number of nonzero components of . The map x — ||z|, is not a norm
this time because Axiom (N2) fails. For example,

(1, 0)llp = [1(10,0)[[y = 1 # 10 = 10 [(1, 0){|, -
The map = — ||z[|, is also not convex. For example,
11/2)(2,2)lp = [I(L, Dlo = 2,
and
12,0)llp = 11(0,2)[l¢ = 1,
but

11/2)(2,2)[lp = 2 > 1 = (1/2) [|(2,0)[[o + (1/2) [1(0,2) ], -
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Nevertheless, the “zero-norm” x — ||z, is used in machine learning as
a regularizing term which encourages sparsity, namely increases the number
of zero components of the vector x.

The following proposition is easy to show.

Proposition 8.2. The following inequalities hold for all x € R™ (or x €

[2lloo < [lzll1 < nll]lo,

[2lloe < llzll2 < Vrllz]oo,
2 < flzlls < Vol

Proposition 8.2 is actually a special case of a very important result: in
a finite-dimensional vector space, any two norms are equivalent.

Definition 8.2. Given any (real or complex) vector space F, two norms
| |, and || ||, are equivalent iff there exists some positive reals C,Csy > 0,
such that

lull, < Cylull, and |ull, < Cqlul,, for all u € E.

Given any norm || || on a vector space of dimension n, for any basis
(e1,...,en) of E, observe that for any vector x = z1e1 + -+ + zpe,, we
have

2]l = llzrer + - - + znenl < laalller] +-- -+ [zn] flenl
<Ozl + -+ fzn]) = Ozl

with C = maxi<;<y |l€;]| and with the norm ||z||; defined as
[#]l; = [lz1e1 + - + znenl| = |1 + - + [2al.
The above implies that
Hull = ol | < flu = vll < Cllu = ol
and this implies the following corollary.

Corollary 8.2. For any norm u +— ||u|| on a finite-dimensional (complex
or real) vector space E, the map u — ||u|| is continuous with respect to the
norm | [

Let S7'~' be the unit sphere with respect to the norm || ||,, namely

St ={zeB]||al, =1}
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Now S} ! is a closed and bounded subset of a finite-dimensional vector
space, so by Heine-Borel (or equivalently, by Bolzano—Weiertrass), Sffl is
compact. On the other hand, it is a well known result of analysis that any
continuous real-valued function on a nonempty compact set has a minimum
and a maximum, and that they are achieved. Using these facts, we can
prove the following important theorem:

Theorem 8.1. If E is any real or complex vector space of finite dimension,
then any two norms on E are equivalent.

Proof. It is enough to prove that any norm || || is equivalent to the 1-norm.
We already proved that the function = — ||z|| is continuous with respect
to the norm || ||;, and we observed that the unit sphere S;'! is compact.
Now we just recalled that because the function f: x — ||z| is continuous
and because S{L_l is compact, the function f has a minimum m and a
maximum M, and because ||z|| is never zero on ST, we must have m > 0.
Consequently, we just proved that if ||z||, =1, then

0<m<|z|| < M,
so for any = € E with x # 0, we get
m < [lz/ [lz]l, || < M,
which implies
m |zl < lof} < Mz, .

Since the above inequality holds trivially if = 0, we just proved that || ||
and || ||; are equivalent, as claimed. O

Remark: Let P be a n X n symmetric positive definite matrix. It is im-
mediately verified that the map x — [|z||, given by

Izl p = (27 Pa)'/2

is a norm on R™ called a quadratic norm. Using some convex analysis (the
Lowner—John ellipsoid), it can be shown that any norm || || on R™ can be
approximated by a quadratic norm in the sense that there is a quadratic
norm || || p such that

lzllp < llzll < Vnllzllp  forall z € R™;

see Boyd and Vandenberghe [Boyd and Vandenberghe (2004)], Section 8.4.1.
Next we will consider norms on matrices.
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8.2 Matrix Norms

For simplicity of exposition, we will consider the vector spaces M, (R) and
M,,(C) of square n x n matrices. Most results also hold for the spaces
M,,, n(R) and M,,, ,,(C) of rectangular m x n matrices. Since n x n matrices
can be multiplied, the idea behind matrix norms is that they should behave
“well” with respect to matrix multiplication.

Definition 8.3. A matriz norm || || on the space of square n x n matrices
in M,,(K), with K =R or K = C, is a norm on the vector space M, (K),
with the additional property called submultiplicativity that

[AB]| < Al IB]

for all A, B € M,,(K). A norm on matrices satisfying the above property
is often called a submultiplicative matrix norm.

Since 1% = I, from ||I]| = ||I%|| < |I]|*, we get ||I]| > 1, for every matrix
norm.

Before giving examples of matrix norms, we need to review some basic
definitions about matrices. Given any matrix A = (a;;) € M, »(C), the
conjugate A of A is the matrix such that

Ajj=a;, 1<i<m,1<j<n.
The transpose of A is the n x m matrix AT such that
Al=aj;, 1<i<m,1<j<n.
The adjoint of A is the n X m matrix A* such that
A =(AT) = (AT,
When A is a real matrix, A* = AT. A matrix A € M,,(C) is Hermitian if
A" = A
If A is a real matrix (A € M, (R)), we say that A is symmetric if
AT = A.
A matrix A € M,,(C) is normal if
AA* = A A,
and if A is a real matrix, it is normal if

AAT = AT A.
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A matrix U € M,,(C) is unitary if
vu*=UU=1.
A real matrix @ € M, (R) is orthogonal if
QQT=Q'Q=1
Given any matrix A = (a;;) € M, (C), the trace tr(A) of A is the sum
of its diagonal elements
tr(A) = a1+ + ann.
It is easy to show that the trace is a linear map, so that
tr(AA) = Atr(A)
and
tr(A+ B) = tr(A) + tr(B).

Moreover, if A is an m X n matrix and B is an n X m matrix, it is not hard
to show that

tr(AB) = tr(BA).

We also review eigenvalues and eigenvectors. We content ourselves with
definition involving matrices. A more general treatment will be given later
on (see Chapter 14).

Definition 8.4. Given any square matrix A € M,,(C), a complex number
A € C is an eigenvalue of A if there is some nonzero vector u € C", such
that

Au = \u.

If X\ is an eigenvalue of A, then the nonzero vectors u € C" such that
Au = lu are called eigenvectors of A associated with \; together with the
zero vector, these eigenvectors form a subspace of C™ denoted by FEx(A),
and called the eigenspace associated with M.

Remark: Note that Definition 8.4 requires an eigenvector to be nonzero.
A somewhat unfortunate consequence of this requirement is that the set
of eigenvectors is not a subspace, since the zero vector is missing! On the
positive side, whenever eigenvectors are involved, there is no need to say
that they are nonzero. The fact that eigenvectors are nonzero is implicitly
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used in all the arguments involving them, so it seems safer (but perhaps
not as elegant) to stipulate that eigenvectors should be nonzero.

If A is a square real matrix A € M, (R), then we restrict Definition
8.4 to real eigenvalues A € R and real eigenvectors. However, it should be
noted that although every complex matrix always has at least some complex
eigenvalue, a real matrix may not have any real eigenvalues. For example,

=%

has the complex eigenvalues ¢ and —i, but no real eigenvalues. Thus, typi-

the matrix

cally even for real matrices, we consider complex eigenvalues.
Observe that A € C is an eigenvalue of A

e iff Au = A\u for some nonzero vector u € C"

o iff ( A\ —A)u=0

e iff the matrix AI — A defines a linear map which has a nonzero kernel,
that is,

e iff \I — A not invertible.

However, from Proposition 6.7, AI — A is not invertible iff
det(A\] — A) =0.

Now det(AM — A) is a polynomial of degree n in the indeterminate A, in
fact, of the form

N —tr(A)A" T 4 (1) det(A).

Thus we see that the eigenvalues of A are the zeros (also called roots) of the
above polynomial. Since every complex polynomial of degree n has exactly
n roots, counted with their multiplicity, we have the following definition:

Definition 8.5. Given any square nxn matrix A € M,,(C), the polynomial
det( A — A) = A" —tr(A)N""F - 4 (—1)" det(A)

is called the characteristic polynomial of A. The n (not necessarily distinct)

roots Aq,..., A, of the characteristic polynomial are all the eigenvalues of
A and constitute the spectrum of A. We let
A) = Ai
p(A) = max |

be the largest modulus of the eigenvalues of A, called the spectral radius of

A.
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Since the eigenvalue Aq, ..., A, of A are the zeros of the polynomial
det(A\ — A) = A" — tr(A)A"H 4 - 4 (—=1)" det(A),
we deduce (see Section 14.1 for details) that
tr(A) =X +---+ X\,
det(A) = Ay Ay

Proposition 8.3. For any matriz norm || || on M, (C) and for any square
n x n matriz A € M, (C), we have

p(A) < |IA]l.

Proof. Let A be some eigenvalue of A for which |A| is maximum, that is,
such that |A| = p(A). If u (3 0) is any eigenvector associated with A and if
U is the n x n matrix whose columns are all u, then Au = Au implies

AU = MU,
and since
AU =AU = AU < [|A][ 1T
and U # 0, we have ||U|| # 0, and get
p(A) = [Al < [IA]],

as claimed. O

Proposition 8.3 also holds for any real matrix norm || || on M, (R) but
the proof is more subtle and requires the notion of induced norm. We prove
it after giving Definition 8.7.

It turns out that if A is a real n x n symmetric matrix, then the eigen-
values of A are all real and there is some orthogonal matrix @ such that

A = Qdiag(\i,...,\)QT,

where diag(Aq,...,\,) denotes the matrix whose only nonzero entries (if
any) are its diagonal entries, which are the (real) eigenvalues of A. Similarly,
if A is a complex n x n Hermitian matrix, then the eigenvalues of A are all
real and there is some unitary matrix U such that

A =Udiag(A1, ..., \)U",

where diag(Aq1,...,A,) denotes the matrix whose only nonzero entries (if
any) are its diagonal entries, which are the (real) eigenvalues of A. See
Chapter 16 for the proof of these results.
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We now return to matrix norms. We begin with the so-called Frobenius
norm, which is just the norm || [|, on C"°, where the n x n matrix A4 is
viewed as the vector obtained by concatenating together the rows (or the
columns) of A. The reader should check that for any n x n complex matrix

A = (aij),

n 1/2
(X lal) = VA = arax),

ij=1

Definition 8.6. The Frobenius norm || || is defined so that for every
square n X n matrix A € M, (C),

n 1/2
1Al = ( 3 |aij|2) = V(AR = /(A A).

ij=1

The following proposition show that the Frobenius norm is a matrix
norm satisfying other nice properties.

Proposition 8.4. The Frobenius norm || || on M, (C) satisfies the follow-
ing properties:

(1) It is a matriz norm; that is, ||[AB||p < ||A|lg Bl g, for all A,B €
M, (C).

(2) It is unitarily invariant, which means that for all unitary matrices U,V
we have

[Allp = UA|p = [[AV][p = [[UAV || .
(3) /oA A) < |Allp < Vi/p(A*A), for all A € M,(C).

Proof. (1) The only property that requires a proof is the fact |[AB|, <
|A|| || B|| z- This follows from the Cauchy-Schwarz inequality:

n
E ai1br;

k=1

n 2

IAB|7 = >

i,j=1

n

< (; oo ?) (k}:wkﬂ)

7,j=1
(Xt ) (X b ) = 141 1515
i,h=1 k,j=1
(2) We have
JA|% = tr(A*A) = tr(VV*A*A) = tr(V*A*AV) = | AV %,
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and
IAl% = tr(A*A) = tr(A*U U A) = |[UA| % .
The identity
1Al = [UAV |5

follows from the previous two.

(3) It is well known that the trace of a matrix is equal to the sum
of its eigenvalues. Furthermore, A*A is symmetric positive semidefinite
(which means that its eigenvalues are nonnegative), so p(A*A) is the largest
eigenvalue of A*A and

p(A*A) < tr(A*A) < np(A*A),
which yields (3) by taking square roots. O

Remark: The Frobenius norm is also known as the Hilbert-Schmidt norm
or the Schur norm. So many famous names associated with such a simple
thing!

8.3 Subordinate Norms

We now give another method for obtaining matrix norms using subordinate
norms. First we need a proposition that shows that in a finite-dimensional
space, the linear map induced by a matrix is bounded, and thus continuous.

Proposition 8.5. For every norm ||| on C* (or R™), for every matric
A eM,(C) (or A e M,(R)), there is a real constant C4 > 0, such that
[Aul] < Ca lull,

for every vector w € C"™ (oru € R™ if A is real).
Proof. For every basis (eq,...,e,) of C™ (or R™), for every vector u =
uiey + - -+ + upey, we have
[Au]l = [lur A(er) + - - + unA(en) ||
< fur| [[A(en)[| + -+ - + fun| [|A(en) |
< Cr(fua] + -+ 4 [unl) = Cyflully
where C1 = maxi<;<n ||A(e;)||. By Theorem 8.1, the norms | || and || ||;

are equivalent, so there is some constant Cy > 0 so that ||u|; < Cs |lul| for
all u, which implies that

[Aull < Ca [|ulf,
where C'y = C1C5. O]
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Proposition 8.5 says that every linear map on a finite-dimensional space
is bounded. This implies that every linear map on a finite-dimensional
space is continuous. Actually, it is not hard to show that a linear map on
a normed vector space E is bounded iff it is continuous, regardless of the
dimension of E.

Proposition 8.5 implies that for every matrix A € M,(C) (or A €

M, (R)),
A
sup || Az|] <
zecr ||
z#0
Since ||Aul| = |A| ||u||, for every nonzero vector x, we have
[Az]| _ [zl A/ (=[]
= = [[AG/ [[=[DII,
] [[]]
which implies that
Ax
270 sup jaa
secn |1zl z€C
x#0 [|z||=1
Similarly
Ax
p 1A gup aa
e o z€R
270 lzll=1

The above considerations justify the following definition.

Definition 8.7. If || || is any norm on C", we define the function || [|,, on

M,,(C) by
| Az]]
Al = sup ——— = sup |Az].
| HOP zec 2|l a:E(C"| |
T£0 Izl =1

The function A — ||A|[,, is called the subordinate matriz norm or op-
erator norm induced by the norm || ||.

Another notation for the operator norm of a matrix A (in particular,
used by Horn and Johnson [Horn and Johnson (1990))), is || 4]|.

It is easy to check that the function A — [|A4],, is indeed a norm, and
by definition, it satisfies the property

[Az|| < [|Allp llz[l,  for all z € C.



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning  ws-book-1-9x6
page 308

308 Vector Norms and Matriz Norms

A norm || ||,, on M,(C) satisfying the above property is said to be sub-
ordinate to the vector norm || || on C™. As a consequence of the above
inequality, we have

[ABz|| < [|Allg, 1 Bz|| < [[Allop I Bllop 11
for all x € C™, which implies that

||ABH < HAHop ||BHop fOI' all A"B € M’n((c)7

op —
showing that A — ||A]|, is a matrix norm (it is submultiplicative).
Observe that the operator norm is also defined by

[All,p, = inf{A € R | [[Az[| < Af[z], for allz € C"}.

Since the function = — ||Az| is continuous (because ||[|Ay| — ||Az||| <
|Ay — Azx|| < Cy4 ||z — y||) and the unit sphere S*~! = {x € C" | ||z|| = 1}
is compact, there is some € C™ such that ||z = 1 and

[Az]| = (Al -
Equivalently, there is some x € C™ such that z # 0 and
[Az]| = [[Allp 1]l -
The definition of an operator norm also implies that
”I“op = ]‘

The above shows that the Frobenius norm is not a subordinate matrix norm
(why?).

If [[ || is a vector norm on C", the operator norm || |, that it induces
applies to matrices in M, (C). If we are careful to denote vectors and
matrices so that no confusion arises, for example, by using lower case letters
for vectors and upper case letters for matrices, it should be clear that [ A[[,,
is the operator norm of the matrix A and that ||z|| is the vector norm of
z. Consequently, following common practice to alleviate notation, we will
drop the subscript “op” and simply write ||A| instead of [ A,

The notion of subordinate norm can be slightly generalized.

Definition 8.8. If K =R or K = C, for any norm || || on M,, ,(K), and
for any two norms || ||, on K™ and || ||, on K™, we say that the norm || ||
is subordinate to the norms || ||, and | ||, if

|Az|l, < 11A|l |||, for all A€ M,,,(K) and all z € K™.
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Remark: For any norm || || on C", we can define the function | ||z on
M,,(R) by

|| Az]]
[Allg = sup ——= = sup [|Az|.
ccrr |||l TER™
z#0 ||lz||=1
The function A — ||A||g is a matrix norm on M, (R), and
Al < 1Al
for all real matrices A € M,,(R). However, it is possible to construct vector
norms || || on C™ and real matrices A such that
Allg < I All-

In order to avoid this kind of difficulties, we define subordinate matrix
norms over M, (C). Luckily, it turns out that ||A||z = || Al for the vector
norms, | [, and || |-

We now prove Proposition 8.3 for real matrix norms.

Proposition 8.6. For any matriz norm || || on M,,(R) and for any square
n x n matriz A € M, (R), we have

p(A) < [|A]l.

Proof. We follow the proof in Denis Serre’s book [Serre (2010)]. If A is
a real matrix, the problem is that the eigenvectors associated with the
eigenvalue of maximum modulus may be complex. We use a trick based on
the fact that for every matrix A (real or complex),

p(A") = (p(A))F,
which is left as an exercise (use Proposition 14.4 which shows that
if (A,...,\,) are the (not necessarily distinct) eigenvalues of A, then
(AF, ..., AF) are the eigenvalues of A*, for k > 1).

Pick any complex matrix norm || ||, on C” (for example, the Frobenius
norm, or any subordinate matrix norm induced by a norm on C™). The
restriction of || ||, to real matrices is a real norm that we also denote by
| ||.- Now by Theorem 8.1, since M, (R) has finite dimension n?, there is
some constant C' > 0 so that

|Bl|. < C|BJ|, forall BeM,(R).
Furthermore, for every k& > 1 and for every real n x n matrix A, by Proposi-

tion 8.3, p(A*) < ||Ak||c, and because | || is a matrix norm, ||A*|| < A",
so we have

(p(A)F = p(4¥) < [|4F], < C || 4] < Cll4]",
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for all £ > 1. It follows that
p(A) < CY*|A|l, forall k>1.

However because C' > 0, we have limp,_, oYk = 1 (we have
limyy oo %log(C) = 0). Therefore, we conclude that

p(A) <Al
as desired. O]

We now determine explicitly what are the subordinate matrix norms
associated with the vector norms || ||, , || ||, and || || -

Proposition 8.7. For every square matriz A = (a;;) € M,,(C), we have

n

JAll, = sup [ Ael, = max > fag
weC” A

ll]l, =1

n

I4lloc = sup, 14z, = max Y las]

Il =1 i=1
Il All, = Seuél | Az, = v/p(A*A) = /p(AA*).
o Ty=1

Note that ||Al|, is the mazimum of the £'-norms of the columns of A and
| Al is the mazimum of the £'-norms of the rows of A. Furthermore,
|A* ||y = |Ally, the norm || ||, is unitarily invariant, which means that

[A[ly = [UAV

for all unitary matrices U,V , and if A is a normal matriz, then ||Al, =
p(A).

Proof. For every vector u, we have
Jul, = 3| e < sl el < ((max S el ) Bl
J J ( (

i
which implies that

n
[All; < m]c?\xz |aij]-

i=1
It remains to show that equality can be achieved. For this let jo be some

index such that
max Y lai| =Y lai,l,
J [ 1
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and let u; = 0 for all ¢ # jo and u;, = 1.
In a similar way, we have

E Qi Uj
J

[Au]|,, = max
K]

< (mox S el ) bl
J

which implies that
n
Al < mfxz |ag;].
j=1

To achieve equality, let 79 be some index such that
miaXZ lai;| = Z | @i
J J

The reader should check that the vector given by
{ et i #0
U; =

|ai().7‘

1 if Qo5 = 0
works.
We have
HA||§ = sup ||Aa:\|§ = sup x*A"Azx.

zeC™ zeC™

=1 =1
Since the matrix A*A is symmetric, it has real eigenvalues and it can be
diagonalized with respect to a unitary matrix. These facts can be used to
prove that the function & — z* A* Ax has a maximum on the sphere z*z = 1
equal to the largest eigenvalue of A* A, namely, p(A*A). We postpone the
proof until we discuss optimizing quadratic functions. Therefore,

[Ally = v p(A* A).
Let use now prove that p(A*A) = p(AA*). First assume that p(4*A) > 0.
In this case, there is some eigenvector u (# 0) such that

A*Au = p(A*A)u,
and since p(A*A) > 0, we must have Au # 0. Since Au # 0,
AA*(Au) = A(A*Au) = p(A"A)Au
which means that p(A*A) is an eigenvalue of AA*, and thus
p(A*A) < p(AAY).
Because (A*)* = A, by replacing A by A*, we get
p(AA") < p(A” A),
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and so p(A*A) = p(AA*).

If p(A*A) = 0, then we must have p(AA*) = 0, since otherwise by the
previous reasoning we would have p(A*A) = p(AA*) > 0. Hence, in all
case

2 * * * (12
[Ally = p(A*A) = p(AA”) = [|A"]]; .
For any unitary matrices U and V, it is an easy exercise to prove that
V*A* AV and A* A have the same eigenvalues, so
* * pAx 2
4]l = p(A™A) = p(V7A"AV) = || AV 3,
and also
* KT TR 2
4]l = p(A"A) = p(A"UUA) = |[UA];.
Finally, if A is a normal matrix (AA* = A*A), it can be shown that there
is some unitary matrix U so that
A=UDU",

where D = diag(A1, ..., A\,) is a diagonal matrix consisting of the eigenval-
ues of A, and thus

A*A = (UDU*)*UDU* =UD*U*UDU* =UD*DU*.

However, D*D = diag(|\1]?, ..., |\a|?), which proves that
p(A*A) = p(D*D) = max |\i]* = (p(4))?,
so that ||All, = p(4). O

Definition 8.9. For A = (a;;) € M,,(C), the norm ||A||, is often called the
spectral norm.

Observe that Property (3) of Proposition 8.4 says that
Al < [[Allp < VrllAlly,

which shows that the Frobenius norm is an upper bound on the spectral
norm. The Frobenius norm is much easier to compute than the spectral
norm.

The reader will check that the above proof still holds if the matrix A is
real (change unitary to orthogonal), confirming the fact that || Al = || 4]|
for the vector norms || ||, , | [l5, and || || . It is also easy to verify that the
proof goes through for rectangular m x n matrices, with the same formulae.
Similarly, the Frobenius norm given by

m n 1/2
Al = (ZZ |aij|2) = (A A) = /(A

i=1 j=1
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is also a norm on rectangular matrices. For these norms, whenever AB
makes sense, we have

IAB| < [|A[[|B] -

Remark: It can be shown that for any two real numbers p, g > 1 such that

1 1
— 4+ — =1, we have
p q

1A%, = [[All, = sup{R(y"Az) | [|z[l, = 1, [lyll, = 1}
= sup{[{(Az, y)| | [[z]l, = L, llyll, = 1},

where [|A*||, and ||A[, are the operator norms.

Remark: Let (E,| ||) and (F, | ||) be two normed vector spaces (for sim-
plicity of notation, we use the same symbol || || for the norms on E and F;
this should not cause any confusion). Recall that a function f: F — F'is
continuous if for every a € E, for every € > 0, there is some 1 > 0 such
that for all z € F,

it [lz—all <n then |[f(z)—fla)] <e

It is not hard to show that a linear map f: F — F' is continuous iff there
is some constant C' > 0 such that

If(z)]] < C|z| for all z € E.

If so, we say that f is bounded (or a linear bounded operator). We let
L(E; F) denote the set of all continuous (equivalently, bounded) linear maps
from E to F. Then we can define the operator norm (or subordinate norm)
| | on L(E; F) as follows: for every f € L(E; F),

I[f ()|l
If]l = sup = sup [|f(2)],
rel ||£U|| rell
270 lz]=1

or equivalently by
1]l = inf{A € R || £(2)]| < Alle], for all z € E}.

Tt is not hard to show that the map f — || f|| is a norm on L(F; F') satisfying
the property

1@< £
for all z € E, and that if f € L(E; F) and g € L(F;G), then
llgo £l < llgll I £1l-

Operator norms play an important role in functional analysis, especially
when the spaces E and F' are complete.
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8.4 Inequalities Involving Subordinate Norms

In this section we discuss two technical inequalities which will be needed
for certain proofs in the last three sections of this chapter. First we prove a
proposition which will be needed when we deal with the condition number
of a matrix.

Proposition 8.8. Let || | be any matriz norm, and let B € M,,(C) such
that | B|| < 1.

(1) If || || is a subordinate matriz norm, then the matriz I + B is invertible

and
1

1—|B|I
(2) If a matriz of the form I+ B is singular, then ||B|| > 1 for every matrix
norm (not necessarily subordinate).

It +B)7 | <

Proof. (1) Observe that (I + B)u = 0 implies Bu = —u, so

[ull = [| Bull -
Recall that

[Bull < [|BI[ [[ull

for every subordinate norm. Since ||B]| < 1, if u # 0, then

[ Bull < [ull,
which contradicts ||u|| = ||Bul||. Therefore, we must have v = 0, which
proves that I + B is injective, and thus bijective, i.e., invertible. Then we
have

(I+B)'+B(I+B)'=(I+B)(I+B)'=1,
so we get
(I+B)'=I1-B(I+B)™",
which yields
[T+ B)7H <1+ B {|(T+B)7],

and finally,

1

I+B)7Y < —.
H( ) H = 1-|B]|

(2) If I + B is singular, then —1 is an eigenvalue of B, and by Proposition
8.3, we get p(B) < ||B||, which implies 1 < p(B) < || B]]. O
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The second inequality is a result is that is needed to deal with the
convergence of sequences of powers of matrices.

Proposition 8.9. For every matriz A € M,,(C) and for every e > 0, there
is some subordinate matriz norm || || such that

[A]l < p(A) + e

Proof. By Theorem 14.1, there exists some invertible matrix U and some
upper triangular matrix T such that

A=UTU !,
and say that
Artiz tiz o0 tin

0 A2 tag -+ la2g
T=|: |
00 - /\n—l th—1n
00-- 0 An
where A1,..., A, are the eigenvalues of A. For every 6 # 0, define the
diagonal matrix

Ds = diag(1,0,6%,...,6" 1),

and consider the matrix

A1 Ot12 (Sztlg v 6n71t1n

0 X 5t23 s 6”72t2n
(UDs) 'A(UDs) = Dy 'TDs = o :

0 0 e )\nfl 6tn71 n

o o0 - 0 An

Now define the function || ||: M,,(C) = R by
IB]| = |[(UDs)~*B(UDs)||
for every B € M,,(C). Then it is easy to verify that the above function is
the matrix norm subordinate to the vector norm
v H(UD(S)_H)HOO .

Furthermore, for every e > 0, we can pick § so that
n

D eyl <6, 1<i<n—1,
j=it1
and by definition of the norm || ||, we get
IA]l < p(A) + ¢,
which shows that the norm that we have constructed satisfies the required
properties. O

oo’
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Note that equality is generally not possible; consider the matrix
01
A =
(00)
for which p(4) =0 < ||4]|, since A # 0.

8.5 Condition Numbers of Matrices

Unfortunately, there exist linear systems Ax = b whose solutions are not
stable under small perturbations of either b or A. For example, consider
the system

1078 7\ [z 32
756 5 | x| |23
86109 [ |zs| |33
759 10) \z4 31

The reader should check that it has the solution z = (1,1,1,1). If we
perturb slightly the right-hand side as b + Ab, where

0.1
—0.1
Ab =
0.1 |’
—0.1
we obtain the new system

1078 7 r1 + Axy 32.1
756 5 To+Axs | 229
8 610 9 z3+Azz | |33.1
75910 T4+ Axy 30.9

The new solution turns out to be x + Az = (9.2,—-12.6,4.5,—1.1), where
Az = (9.2,-12.6,4.5,—1.1) — (1,1,1,1) = (8.2, —13.6,3.5, —2.1).

Then a relative error of the data in terms of the one-norm,

|Abf, 04 4 1
o], — 119 1190 ~ 300’

produces a relative error in the input

|Az|, 274

=, 4
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So a relative error of the order 1/300 in the data produces a relative error
of the order 7/1 in the solution, which represents an amplification of the
relative error of the order 2100.

Now let us perturb the matrix slightly, obtaining the new system

10 7 81 7.2 1 + Axy 32
7.085.04 6 5 To+ Az | |23
8 598998 9 r3+Axs | |33
6.994.99 9 9.98 x4+ Axy 31

This time the solution is x+Axz = (—81,137, —34, 22). Again a small change
in the data alters the result rather drastically. Yet the original system is
symmetric, has determinant 1, and has integer entries. The problem is that
the matrix of the system is badly conditioned, a concept that we will now
explain.

Given an invertible matrix A, first assume that we perturb b to b+ Ab,
and let us analyze the change between the two exact solutions x and z+ Ax
of the two systems

Ax =b
A(x + Az) = b+ Ab.
We also assume that we have some norm || || and we use the subordinate
matrix norm on matrices. From
Ax=b

Az + AAx = b+ Ab,
we get
Az = A1AD,
and we conclude that
1Az]] < [|ATH] Ab]
ol < [IA[ ]l -
Consequently, the relative error in the result ||Az|| / ||z|| is bounded in terms
of the relative error ||Abl| /||b]] in the data as follows:

[Az| _1py 1A
< (Jaf a2

] (i) [[oll

Now let us assume that A is perturbed to A + AA, and let us analyze

the change between the exact solutions of the two systems
Az =b
(A+ AA)(z+ Az) =b.
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The second equation yields Az+AAx+AA(x+Ax) = b, and by subtracting
the first equation we get
Az = —AT'AA(x + Ax).
It follows that
[Az] < AT 1AA] [l + Azl

which can be rewritten as
[Az| 1y 1A

Observe that the above reasoning is valid even if the matrix A + AA is
singular, as long as x + Ax is a solution of the second system. Furthermore,
if ||AA] is small enough, it is not unreasonable to expect that the ratio
|Az|| / ||« + Az is close to ||Az|| /||z||. This will be made more precise
later.

In summary, for each of the two perturbations, we see that the relative
error in the result is bounded by the relative error in the data, multiplied
the number || Al HA_1||. In fact, this factor turns out to be optimal and
this suggests the following definition:

Definition 8.10. For any subordinate matrix norm || ||, for any invertible
matrix A, the number
cond(A) = [|A| [[A71|

is called the condition number of A relative to || ||.

The condition number cond(A) measures the sensitivity of the linear
system Ax = b to variations in the data b and A; a feature referred to as
the condition of the system. Thus, when we says that a linear system is
ill-conditioned, we mean that the condition number of its matrix is large.
We can sharpen the preceding analysis as follows:

Proposition 8.10. Let A be an invertible matriz and let x and x + Ax be
the solutions of the linear systems
Az =b
A(x + Az) = b+ Ab.
If b #£ 0, then the inequality
[Az|
]

[1Ab]|

o]
holds and is the best possible. This means that for a given matriz A, there
exist some vectors b # 0 and Ab # 0 for which equality holds.

ond(A)
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Proof. We already proved the inequality. Now, because || || is a subordi-
nate matrix norm, there exist some vectors z # 0 and Ab # 0 for which
|A=1A8]| = A=Y Ab] and [l Az = ]| |2].
O

Proposition 8.11. Let A be an invertible matriz and let x and x + Ax be
the solutions of the two systems
Ax =10
(A+ AA)(z+ Az) =b.
If b # 0, then the inequality
[Az] [AA]
|+ Azl Al
holds and is the best possible. This means that given a matrix A, there exist

a vector b # 0 and a matriz AA # 0 for which equality holds. Furthermore,
if |AA| is small enough (for instance, if |AA| < 1/||A7|), we have

ond(A)

[|A]] [AA]
—— < cond(A)———(1+ O(||AA]));
B (4) A ( (1AA[))
in fact, we have
[Az]| [AA] ( 1 )
—— < cond(4 .
[l ) [Al N1 = [[A=H[|AA]

Proof. The first inequality has already been proven. To show that equality
can be achieved, let w be any vector such that w # 0 and

A wlf = [[A7H |l

and let 8 # 0 be any real number. Now the vectors

Az = —BA w
z+Axr=w
b=(A+BHw
and the matrix
AA =31

sastisfy the equations
Ax =10
(A+AA)(z+ Az)=b
1Az]| = |B] A~ w|| = IAA] A7} |z + Azl
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Finally we can pick § so that —f is not equal to any of the eigenvalues of
A, so that A+ AA = A+ BI is invertible and b is is nonzero.
If |AAl < 1/ ||A*1||, then

|ATTAAl < ||[A7Y 1AaA] < 1,

so by Proposition 8.8, the matrix I + A~'AA is invertible and

1

1
I+ ATAA) Y < < '
I( = oAy S T A

Recall that we proved earlier that
Az = —A'AA(x + Ax),

and by adding x to both sides and moving the right-hand side to the left-
hand side yields

I+ A7'AA)(z + Az) =z,
and thus
r4+ Az =1+ ATAA) !,
which yields
Ar=(I+ATTAA) - Da =T+ AAA) I - (I + A7 AA)z
= —(I+A AL A (AA)z.

From this and
1

T+ A AN < ,
I "= T

we get

A 1AA]
— A=t AA]

e < - Il

which can be written as

[[Az]] [AA] ( 1 >
T—— < cond(A) ,
] [AI 1= [[A=H[AA]

which is the kind of inequality that we were seeking. O

Remark: If A and b are perturbed simultaneously, so that we get the
“perturbed” system

(A+ AA)(z+ Az) = b+ Ab,
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it can be shown that if |AA[| < 1/|[A7|| (and b # 0), then
[Azf| _  cond(A) (||AA|| ||Ab||>
[l = t=[[AZHAAL XAl (ol

see Demmel [Demmel (1997)], Section 2.2 and Horn and Johnson [Horn and

Johnson (1990)], Section 5.8.
We now list some properties of condition numbers and figure out what

i

cond(A) is in the case of the spectral norm (the matrix norm induced by
| |l5)- First, we need to introduce a very important factorization of matrices,
the singular value decomposition, for short, SVD.

It can be shown (see Section 20.2) that given any n X n matrix A €
M,,(C), there exist two unitary matrices U and V', and a real diagonal
matrix X = diag(oy,...,0,), with 01 > 09 > -+ > 0, > 0, such that

A=VEU".

Definition 8.11. Given a complex n X n matrix A, a triple (U, V, X) such
that A = VXU, where U and V are n x n unitary matrices and ¥ =
diag(o1,...,0,) is a diagonal matrix of real numbers o1 > 09 > -+ > 0, >
0, is called a singular decomposition (for short SVD) of A. If A is a real
matrix, then U and V are orthogonal matrices The nonnegative numbers
o1,...,0, are called the singular values of A.

The factorization A = VU™ implies that
A*A=UX?U* and AA* =VY?V*,

which shows that 0%, ..., 02 are the eigenvalues of both A*A and AA*, that
the columns of U are corresponding eivenvectors for A*A, and that the
columns of V' are corresponding eivenvectors for AA*.

Since 0? is the largest eigenvalue of A*A (and AA*), note that

Vo(A*A) = \/p(AA*) = 01.

Corollary 8.3. The spectral norm ||A||, of a matriz A is equal to the largest

singular value of A. Equivalently, the spectral norm ||All, of a matriz A is
equal to the £°°-norm of its vector of singular values,

Al = max i = |01, 00

Since the Frobenius norm of a matrix A is defined by || Al , = /tr(A*A)
and since

tr(A*A) =02 4+ - + 02

ws-book-1-9x6
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where 07,...,02 are the eigenvalues of A* A, we see that

1Al = (0F +- -+ )2 = l[(o1,..,0u)ll,.

Corollary 8.4. The Frobenius norm of a matriz is given by the £2-norm

of its vector of singular values; || Al p = [[(01,...,00)],-
In the case of a normal matrix if Aq,..., A, are the (complex) eigenvalues
of A, then

O'izl)\i|, 1§Z§n

Proposition 8.12. For every invertible matriz A € M,,(C), the following
properties hold:

(1)
cond(4) > 1,
cond(A) = cond(A™)
cond(awA) = cond(A) for all « € C — {0}.

(2) If conds(A) denotes the condition number of A with respect to the spec-
tral norm, then

condy(A4) = 2,
on
where o1 > -+ > o0, are the singular values of A.
(8) If the matriz A is normal, then

A1l
condy(A4) = —,
| Anl
where A1,..., A\, are the eigenvalues of A sorted so that |\| > -+ >

[An].

(4) If A is a unitary or an orthogonal matriz, then
condy(A4) = 1.

(5) The condition number conda(A) is invariant under unitary transfor-
mations, which means that

conds(A) = condy(UA) = condy(AV),

for all unitary matrices U and V.

ws-book-1-9x6
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Proof. The properties in (1) are immediate consequences of the properties
of subordinate matrix norms. In particular, AA~! = I implies

1= |17 < /4] |4 = cond(A).

(2) We showed earlier that HA||§ = p(A*A), which is the square of the
modulus of the largest eigenvalue of A*A. Since we just saw that the
eigenvalues of A*A are 07 > --- > o2, where 0y,...,0, are the singular
values of A, we have

[A]ly = o1

Now if A is invertible, then o1 > --- > o, > 0, and it is easy to show that
the eigenvalues of (A*A)~! are 0,2 > --- > oy 2, which shows that

A7, = oa’

n

and thus
o1

conda(4) = —.

n
(3) This follows from the fact that ||A||, = p(A) for a normal matrix.

(4) If A is a unitary matrix, then A*A = AA* =1, s0 p(A*A) = 1, and
|All, = /p(A*A) = 1. We also have A_1H2 = [|A*|, = Vp(AA*) =1,
and thus cond(A) = 1.

(5) This follows immediately from the unitary invariance of the spectral

nori. O

Proposition 8.12 (4) shows that unitary and orthogonal transformations
are very well-conditioned, and Part (5) shows that unitary transformations
preserve the condition number.

In order to compute conds(A), we need to compute the top and bottom
singular values of A, which may be hard. The inequality

[All; < Al p < VrllAll

may be useful in getting an approximation of conds(A) = || 4], HA_ll

o if
A~1 can be determined.

Remark: There is an interesting geometric characterization of conds(A).
If (A) denotes the least angle between the vectors Au and Av as u and v
range over all pairs of orthonormal vectors, then it can be shown that

conda(A) = cot(6(A)/2)).

Thus if A is nearly singular, then there will be some orthonormal pair u, v
such that Au and Av are nearly parallel; the angle (A) will the be small
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and cot(A(A)/2)) will be large. For more details, see Horn and Johnson
[Horn and Johnson (1990)] (Section 5.8 and Section 7.4).

It should be noted that in general (if A is not a normal matrix) a
matrix could have a very large condition number even if all its eigenvalues
are identical! For example, if we consider the n x n matrix

120 0...00
012 0...00
001 2 ...00

A= ],
00...0 120
00...0 012
00...0 001

it turns out that condy(A) > 27~ 1.
A classical example of matrix with a very large condition number is the
Hilbert matriz H™ | the n x n matrix with

gm (L )
i i+j—1

For example, when n =5,

— —_
=N
= W
=
= O

ot
[}
K}
o)

It can be shown that
condy (H®) ~ 4.77 x 10°.

Hilbert introduced these matrices in 1894 while studying a problem
in approximation theory. The Hilbert matrix H(™ is symmetric positive
definite. A closed-form formula can be given for its determinant (it is a
special form of the so-called Cauchy determinant); see Problem 8.15. The
inverse of H(™) can also be computed explicitly; see Problem 8.15. It can
be shown that

condy (H™) = O((1 + v2)*"/\/n).



November 9, 2020 11:14 ws-book9x6 Linear Algebra for Computer Vision, Robotics, and Machine Learning  ws-book-1-9x6
page 325

8.6. An Application of Norms: Inconsistent Linear Systems 325

Going back to our matrix

107 8 7
756 5
A= 8610 9 |’

75910

which is a symmetric positive definite matrix, it can be shown that its
eigenvalues, which in this case are also its singular values because A is
SPD, are

A1 =~ 30.2887 > Ag & 3.858 > A3 =~ 0.8431 > A4 ~ 0.01015,

so that

condy(A) = % ~ 2984.
4

The reader should check that for the perturbation of the right-hand side
b used earlier, the relative errors ||Az|/|z| and ||Az| /|x| satisfy the
inequality

|Az]] |Ad]]
< cond(A)—
] 2]

and comes close to equality.

8.6 An Application of Norms: Solving Inconsistent
Linear Systems

The problem of solving an inconsistent linear system Ax = b often arises
in practice. This is a system where b does not belong to the column space
of A, usually with more equations than variables. Thus, such a system
has no solution. Yet we would still like to “solve” such a system, at least
approximately.

Such systems often arise when trying to fit some data. For example, we
may have a set of 3D data points

{p17 e 7pn}a

and we have reason to believe that these points are nearly coplanar. We
would like to find a plane that best fits our data points. Recall that the
equation of a plane is

ax + By +vz+ 6 =0,
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with (o, 8,7) # (0,0,0). Thus, every plane is either not parallel to the
z-axis («a # 0) or not parallel to the y-axis (8 # 0) or not parallel to the
z-axis (v # 0).

Say we have reasons to believe that the plane we are looking for is not
parallel to the z-axis. If we are wrong, in the least squares solution, one of
the coefficients, «, 8, will be very large. If v #£ 0, then we may assume that
our plane is given by an equation of the form

z=ax+by+d,

and we would like this equation to be satisfied for all the p;’s, which leads
to a system of n equations in 3 unknowns a,b, d, with p; = (4, y:, 2);

ar1+byy +d=12z

axy + by, +d = z,.
However, if n is larger than 3, such a system generally has no solution.

Since the above system can’t be solved exactly, we can try to find a solution
(a,b,d) that minimizes the least-squares error

Z(a:ri +by; +d— zi)Q.
i=1
This is what Legendre and Gauss figured out in the early 1800’s!
In general, given a linear system

Ax =b,

we solve the least squares problem: minimize ||Az — ng
Fortunately, every n x m-matrix A can be written as

A=VDUT

where U and V' are orthogonal and D is a rectangular diagonal matrix with
non-negative entries (singular value decomposition, or SVD); see Chapter
20.

The SVD can be used to solve an inconsistent system. It is shown in
Chapter 21 that there is a vector « of smallest norm minimizing || Az — b||,.
It is given by the (Penrose) pseudo-inverse of A (itself given by the SVD).

It has been observed that solving in the least-squares sense may give
too much weight to “outliers,” that is, points clearly outside the best-fit
plane. In this case, it is preferable to minimize (the ¢!-norm)

n
Z|aa:i +by; +d— 2.

i=1

ws-book-1-9x6
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This does not appear to be a linear problem, but we can use a trick to
convert this minimization problem into a linear program (which means a
problem involving linear constraints).

Note that || = max{xz, —z}. So by introducing new variables eq, ..., ey,
our minimization problem is equivalent to the linear program (LP):

minimize e1+---+ey,

subject to  ax; +by; +d—2z; < ¢
—(az; + by, +d—z;) < e;
1< <n.

Observe that the constraints are equivalent to
e; > |lax; +by; +d — z], 1<i<n.

For an optimal solution, we must have equality, since otherwise we could
decrease some e; and get an even better solution. Of course, we are no longer
dealing with “pure” linear algebra, since our constraints are inequalities.
We prefer not getting into linear programming right now, but the above
example provides a good reason to learn more about linear programming!

8.7 Limits of Sequences and Series

If z € Ror z € C and if |z| < 1, it is well known that the sums Y ,_, 2% =
1+ax+a2%+---+ 2" converge to the limit 1/(1 — ) when n goes to infinity,
and we write

> 1
> =1

k=0
For example,
= 1
> or =2
k=0
Similarly, the sums

no_k

x
Sn - 7'

k=0

converge to e when n goes to infinity, for every = (in R or C). What if we
replace x by a real of complex n X n matrix A?
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The partial sums > ,_, A¥ and >°}'_, Ak—f still make sense, but we have
to define what is the limit of a sequence of matrices. This can be done in
any normed vector space.

Definition 8.12. Let (E,||||) be a normed vector space. A sequence
(un)nen in E is any function u: N — E. For any v € E, the sequence
(un) converges to v (and v is the limit of the sequence (uy)) if for every
€ > 0, there is some integer N > 0 such that

lun, —v| <€ foralln> N.

Often we assume that a sequence is indexed by N — {0}, that is, its first
term is uq rather than wug.
If the sequence (u,) converges to v, then since by the triangle inequality

[t = | < Jlum = vll + [lv = unl],

we see that for every € > 0, we can find N > 0 such that ||u,, —v| < €/2
and |u, —v|| < €/2, and so

|t — unl| < e for all m,n > N.

The above property is necessary for a convergent sequence, but not
necessarily sufficient. For example, if E = Q, there are sequences of ra-
tionals satisfying the above condition, but whose limit is not a rational
number. For example, the sequence Y ;_, % converges to e, and the se-
quence ZZZO(—l)kT{H converges to 7/4, but e and 7/4 are not rational
(in fact, they are transcendental). However, R is constructed from Q to
guarantee that sequences with the above property converge, and so is C.

Definition 8.13. Given a normed vector space (E, || ||), a sequence (u,) is
a Cauchy sequence if for every € > 0, there is some N > 0 such that

|um — un|| < e forall m,n>N.

If every Cauchy sequence converges, then we say that F is complete. A
complete normed vector spaces is also called a Banach space.

A fundamental property of R is that it is complete. It follows immedi-
ately that C is also complete. If F is a finite-dimensional real or complex
vector space, since any two norms are equivalent, we can pick the £°° norm,
and then by picking a basis in F, a sequence (u,) of vectors in E con-
verges iff the n sequences of coordinates (uf) (1 < i < n) converge, so any
finite-dimensional real or complex vector space is a Banach space.
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Let us now consider the convergence of series.

Definition 8.14. Given a normed vector space (E, || ||), a series is an in-
finite sum ZZOZO uy of elements up € E. We denote by S,, the partial sum
of the first n + 1 elements,

n
Sn = Z Uk .
k=0

Definition 8.15. We say that the series Z;O:O uy, converges to the limit
v € E if the sequence (.S,,) converges to v, i.e., given any € > 0, there exists
a positive integer N such that for all n > N,

IS — v|| < e.

In this case, we say that the series is convergent. We say that the series
> e uk converges absolutely if the series of norms >y ||uk| is conver-
gent.

If the series Z?;O uy converges to v, since for all m,n with m > n we
have

m m n m
E uk_Snzg Uk_g up = E ug,
k=0 k=0 k=0 k=n+1

if we let m go to infinity (with n fixed), we see that the series Y ;7 .| ug
converges and that

o0
v—5S, = g Uk
k=n-+1

There are series that are convergent but not absolutely convergent; for
example, the series

oo -1 k—1
P
k=1

converges to In2, but 77 | + does not converge (this sum is infinite).
If E is complete, the converse is an enormously useful result.

Proposition 8.13. Assume (E, || ||) is a complete normed vector space. If
a series Y, u is absolutely convergent, then it is convergent.
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Proof. If ZZO:O uy, is absolutely convergent, then we prove that the se-
quence (Sp,) is a Cauchy sequence; that is, for every e > 0, there is some
p > 0 such that for all n > m > p,

[Sn — Sl < e
Observe that
HSn - Sm” = ||um+1 + Un” < Hum+1H +o ||UnH >
and since the sequence Y - |luk|| converges, it satisfies Cauchy’s criterion.

Thus, the sequence (S,,) also satisfies Cauchy’s criterion, and since F is a
complete vector space, the sequence (S,,) converges. O

Remark: It can be shown that if (E, || ||) is a normed vector space such
that every absolutely convergent series is also convergent, then £ must be
complete (see Schwartz [Schwartz (1991)]).

An important corollary of absolute convergence is that if the terms in
series Z;O:O uy, are rearranged, then the resulting series is still absolutely
convergent and has the same sum. More precisely, let ¢ be any permuta-
tion (bijection) of the natural numbers. The series Y7~ uq (k) is called a
rearrangement of the original series. The following result can be shown (see
Schwartz [Schwartz (1991)]).

Proposition 8.14. Assume (E,|||) is a normed vector space. If a se-
. [o'e) .

ries Y ._o Uk is convergent as well as absolutely convergent, then for every

permutation o of N, the series Z;O:O Ugk) 5 convergent and absolutely

convergent, and its sum is equal to the sum of the original series:

Z u,,(k) = Z Ug -
k=0 k=0

In particular, if (E, || ||) is a complete normed vector space, then Propo-
sition 8.14 holds.
We now apply Proposition 8.13 to the matrix exponential.

8.8 The Matrix Exponential

Proposition 8.15. For any n X n real or complex matrix A, the series
o0
Ak

k!
k=0

converges absolutely for any operator norm on M, (C) (or M, (R)).

ws-book-1-9x6
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Proof. Pick any norm on C" (or R™) and let ||| be the corresponding
operator norm on M, (C). Since M,,(C) has dimension n?, it is complete.
By Proposition 8.13, it suffices to show that the series of nonnegative reals

k . . . .
Soro H% ’ converges. Since || || is an operator norm, this a matrix norm,
so we have
n k n k

A Al 1A|

— < — <

K|~ 1.

k=0 k=0

is

Thus, the nondecreasing sequence of positive real numbers Y, _, H ‘2—,

bounded by ellAl and by a fundamental property of R, it has a least upper
bound which is its limit. O

Definition 8.16. Let E be a finite-dimensional real of complex normed
vector space. For any n x n matrix A, the limit of the series
o0 gk
K
k=0

is the exponential of A and is denoted e?.

A basic property of the exponential z +— e* with x € C is

"tV =¢e%e¥,  for all 2,y € C.

1 T

As a consequence, e” is always invertible and (e”)~! = e~*. For matrices,
because matrix multiplication is not commutative, in general,

oA+B _ ,AB

fails! This result is salvaged as follows.

Proposition 8.16. For any two n x n complex matrices A and B, if A
and B commute, that is, AB = BA, then

€A+B = 6A€B.

A proof of Proposition 8.16 can be found in Gallier [Gallier (2011b)].
Since A and —A commute, as a corollary of Proposition 8.16, we see
that e4 is always invertible and that

(eA)fl _ eiA.

It is also easy to see that
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In general, there is no closed-form formula for the exponential e of a
matrix A, but for skew symmetric matrices of dimension 2 and 3, there
are explicit formulae. Everyone should enjoy computing the exponential

e where
0 -6
A= .
()
If we write
0-1
=(10)
then
A=6J
The key property is that
J? =1

Proposition 8.17. If A =0J, then

e = cosOI + sin6.J = C959_81n9 .
sinf cos6

Proof. We have

A4n —_ 947LI27
A4n+1 _ 94n+1J’
A4n+2 _ _94n+212
A4n+3 _ —94n+3J
and so
0 62 63 o4 6° # 07
A —_— [ — [ — JE— — —_—— —_—— PR
e T R e T TR TR T

Rearranging the order of the terms, we have
02 o+ " 0 6 6 0
A P —_—— —_— e — ... —_—— — —_— e — DR
¢ (1 ST T >I2+<1! TR T )J'
We recognize the power series for cos and sin 6, and thus

e = cos 0I5 + sinf.J,

oA _ cosf) —sinf
~ \sinf cos@ )’

as claimed. O

that is
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Thus, we see that the exponential of a 2 x 2 skew-symmetric matrix is
a rotation matrix. This property generalizes to any dimension. An explicit
formula when n = 3 (the Rodrigues’ formula) is given in Section 11.7.

Proposition 8.18. If B is an n x n (real) skew symmetric matriz, that

is, BT = —B, then Q = B is an orthogonal matriz, that is
QTQ=0Q" =1
Proof. Since BT = —B, we have
QT = (eB)T —_ BT — B

Since B and —B commute, we have
QTQ — e—BeB _ €_B+B _ e0 - I

Similarly,

which concludes the proof. O

It can also be shown that det(Q) = det(e®) = 1, but this requires a
better understanding of the eigenvalues of ef (see Section 14.5). Further-
more, for every n X n rotation matrix @ (an orthogonal matrix @ such that
det(Q) = 1), there is a skew symmetric matrix B such that @Q = e”. This
is a fundamental property which has applications in robotics for n = 3.

All familiar series have matrix analogs. For example, if ||A|| < 1 (where
| || is an operator norm), then the series Y-, A* converges absolutely, and
it can be shown that its limit is (I — A)~L.

Another interesting series is the logarithm. For any n x n complex

matrix A, if ||A]| < 1 (where || || is an operator norm), then the series
oo - Ak
log(I + A) = -1 —
oBlI 4 )= 31

converges absolutely.

8.9 Summary

The main concepts and results of this chapter are listed below:

e Norms and normed vector spaces.
e The triangle inequality.
e The Euclidean norm; the ¢P-norms.
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Hoélder’s inequality; the Cauchy-Schwarz inequality; Minkowski’s in-
equality.
Hermitian inner product and Fuclidean inner product.

e Fquivalent norms.

All norms on a finite-dimensional vector space are equivalent (Theorem

8.1).

o Matriz norms.

Hermitian, symmetric and normal matrices. Orthogonal and unitary
matrices.

The trace of a matrix.

Eigenvalues and eigenvectors of a matrix.

The characteristic polynomial of a matrix.

The spectral radius p(A) of a matrix A.

The Frobenius norm.

The Frobenius norm is a unitarily invariant matrix norm.

Bounded linear maps.

Subordinate matriz norms.

Characterization of the subordinate matrix norms for the vector norms
I s and ).

The spectral norm.

For every matrix A € M,,(C) and for every € > 0, there is some subor-
dinate matrix norm || || such that || 4] < p(4) +e.

Condition numbers of matrices.

Perturbation analysis of linear systems.

The singular value decomposition (SVD).

Properties of conditions numbers. Characterization of conds(A) in
terms of the largest and smallest singular values of A.

The Hilbert matriz: a very badly conditioned matrix.

Solving inconsistent linear systems by the method of least-squares; lin-
ear programming.

Convergence of sequences of vectors in a normed vector space