
December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 559

Chapter 16

Dual Ascent Methods; ADMM

This chapter is devoted to the presentation of one of the best methods
known at the present for solving optimization problems involving equality
constraints. In fact, this method can also handle more general constraints,
namely, membership in a convex set. It can also be used to solve a range of
problems arising in machine learning including lasso minimization, elastic
net regression, support vector machine (SVM), and ⌫-SV regression. In
order to obtain a good understanding of this method, called the alternating
direction method of multipliers, for short ADMM , we review two precursors
of ADMM, the dual ascent method and the method of multipliers .

ADMM is not a new method. In fact, it was developed in the 1970’s. It
has been revived as a very e↵ective method to solve problems in statistical
and machine learning dealing with very large data because it is well suited
to distributed (convex) optimization. An extensive presentation of ADMM,
its variants, and its applications, is given in the excellent paper by Boyd,
Parikh, Chu, Peleato and Eckstein [Boyd et al. (2010)]. This paper is
essentially a book on the topic of ADMM, and our exposition is deeply
inspired by it.

In this chapter, we consider the problem of minimizing a convex function
J (not necessarily di↵erentiable) under the equality constraints Ax = b. In
Section 16.1 we discuss the dual ascent method. It is essentially gradient
descent applied to the dual function G, but since G is maximized, gradient
descent becomes gradient ascent.

In order to make the minimization step of the dual ascent method more
robust, one can use the trick of adding the penalty term (⇢/2) kAu� bk2

2

to the Lagrangian. We obtain the augmented Lagrangian

L⇢(u,�) = J(u) + �>(Au� b) + (⇢/2) kAu� bk2
2

,

with � 2 Rm, and where ⇢ > 0 is called the penalty parameter . We obtain

559

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 560

560 Dual Ascent Methods; ADMM

the minimization Problem (P⇢),

minimize J(u) + (⇢/2) kAu� bk2
2

subject to Au = b,

which is equivalent to the original problem.
The benefit of adding the penalty term (⇢/2) kAu� bk2

2

is that by Propo-
sition 15.25, Problem (P⇢) has a unique optimal solution under mild con-
ditions on A. Dual ascent applied to the dual of (P⇢) is called the method
of multipliers and is discussed in Section 16.2.

The alternating direction method of multipliers, for short ADMM, com-
bines the decomposability of dual ascent with the superior convergence
properties of the method of multipliers. The idea is to split the function J
into two independent parts, as J(x, z) = f(x) + g(z), and to consider the
Minimization Problem (P

admm

),

minimize f(x) + g(z)

subject to Ax+Bz = c,

for some p⇥ n matrix A, some p⇥m matrix B, and with x 2 Rn, z 2 Rm,
and c 2 Rp. We also assume that f and g are convex. Further conditions
will be added later.

As in the method of multipliers, we form the augmented Lagrangian

L⇢(x, z,�) = f(x) + g(z) + �>(Ax+Bz � c) + (⇢/2) kAx+Bz � ck2
2

,

with � 2 Rp and for some ⇢ > 0. The major di↵erence with the method
of multipliers is that instead of performing a minimization step jointly
over x and z, ADMM first performs an x-minimization step and then a
z-minimization step. Thus x and z are updated in an alternating or sequen-
tial fashion, which accounts for the term alternating direction. Because the
Lagrangian is augmented, some mild conditions on A and B imply that
these minimization steps are guaranteed to terminate. ADMM is presented
in Section 16.3.

In Section 16.4 we prove the convergence of ADMM under the following
assumptions:

(1) The functions f : R ! R[{+1} and g : R ! R[{+1} are proper and
closed convex functions (see Section 15.1) such that relint(dom(f)) \
relint(dom(g)) 6= ;.

(2) The n ⇥ n matrix A>A is invertible and the m ⇥ m matrix B>B is
invertible. Equivalently, the p⇥ n matrix A has rank n and the p⇥m
matrix has rank m.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 561

561

(3) The unaugmented Lagrangian L
0

(x, z,�) = f(x) + g(z) + �>(Ax +
Bz � c) has a saddle point, which means there exists x⇤, z⇤,�⇤ (not
necessarily unique) such that

L
0

(x⇤, z⇤,�) L
0

(x⇤, z⇤,�⇤) L
0

(x, z,�⇤)

for all x, z,�.

By Theorem 15.10, Assumption (3) is equivalent to the fact that the
KKT equations are satisfied by some triple (x⇤, z⇤,�⇤), namely

Ax⇤ +Bz⇤ � c = 0 (⇤)

and

0 2 @f(x⇤) + @g(z⇤) +A>�⇤ +B>�⇤, (†)

Assumption (3) is also equivalent to Conditions (a) and (b) of Theorem
15.10. In particular, our program has an optimal solution (x⇤, z⇤). By The-
orem 15.12, �⇤ is maximizer of the dual function G(�) = infx,z L0

(x, z,�)
and strong duality holds, that is, G(�⇤) = f(x⇤) + g(z⇤) (the duality gap
is zero).

We will show after the proof of Theorem 16.1 that Assumption (2) is
actually implied by Assumption (3). This allows us to prove a convergence
result stronger than the convergence result proven in Boyd et al. [Boyd
et al. (2010)] (under the exact same assumptions (1) and (3)). In partic-
ular, we prove that all of the sequences (xk), (zk), and (�k) converge to
optimal solutions (ex, ez), and e�. The core of our proof is due to Boyd et al.
[Boyd et al. (2010)], but there are new steps because we have the stronger
hypothesis (2).

In Section 16.5, we discuss stopping criteria.
In Section 16.6 we present some applications of ADMM, in particular,

minimization of a proper closed convex function f over a closed convex set
C in Rn and quadratic programming. The second example provides one
of the best methods for solving quadratic problems, including the SVM
problems discussed in Chapter 18, the elastic net method in Section 19.6,
and ⌫-SV regression in Chapter 20.

Section 16.8 gives applications of ADMM to `1-norm problems, in par-
ticular, lasso regularization, which plays an important role in machine learn-
ing.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 562

562 Dual Ascent Methods; ADMM

16.1 Dual Ascent

Our goal is to solve the minimization problem, Problem (P),

minimize J(u)

subject to Au = b,

with a�ne equality constraints (with A an m⇥n matrix and b 2 Rm). The
Lagrangian L(u,�) of Problem (P) is given by

L(u,�) = J(u) + �>(Au� b).

with � 2 Rm. From Proposition 14.13, the dual function G(�) =
infu2Rn L(u,�) is given by

G(�) =

(

�b>�� J⇤(�A>�) if �A>� 2 dom(J⇤),

�1 otherwise,

for all � 2 Rm, where J⇤ is the conjugate of J . Recall that by Definition
14.11, the conjugate f⇤ of a function f : U ! R defined on a subset U of
Rn is the partial function f⇤ : Rn ! R defined by

f⇤(y) = sup
x2U

(y>x� f(x)), y 2 Rn.

If the conditions of Theorem 14.7(1) hold, which in our case means that
for every � 2 Rm, there is a unique u� 2 Rn such that

G(�) = L(u�,�) = inf
u2Rn

L(u,�),

and that the function � 7! u� is continuous, then G is di↵erentiable. Fur-
thermore, we have

rG� = Au� � b,

and for any solution µ = �⇤ of the dual problem

maximize G(�)

subject to � 2 Rm,

the vector u⇤ = uµ is a solution of the primal Problem (P). Furthermore,
J(u⇤) = G(�⇤), that is, the duality gap is zero.

The dual ascent method is essentially gradient descent applied to the
dual function G. But since G is maximized, gradient descent becomes
gradient ascent. Also, we no longer worry that the minimization problem
infu2Rn L(u,�) has a unique solution, so we denote by u+ some minimizer
of the above problem, namely

u+ = argmin
u

L(u,�).

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 563

16.1. Dual Ascent 563

Given some initial dual variable �0, the dual ascent method consists of
the following two steps:

uk+1 = argmin
u

L(u,�k)

�k+1 = �k + ↵k(Auk+1 � b),

where ↵k > 0 is a step size. The first step is used to compute the “new
gradient” (indeed, if the minimizer uk+1 is unique, thenrG�k = Auk+1�b),
and the second step is a dual variable update.

Example 16.1. Let us look at a very simple example of the gradient ascent
method applied to a problem we first encountered in Section 6.1, namely
minimize J(x, y) = (1/2)(x2 + y2) subject to 2x � y = 5. The Lagrangian
is

L(x, y,�) =
1

2
(x2 + y2) + �(2x� y � 5).

See Figure 16.1.

Fig. 16.1 The graph of J(x, y) = (1/2)(x2 + y2) is the parabolic surface while the
graph of 2x� y = 5 is the transparent blue plane. The solution to Example 16.1 is apex
of the intersection curve, namely the point (2,�1, 5

2).

The method of Lagrangian duality says first calculate

G(�) = inf
(x,y)2R2

L(x, y,�).

Since

J(x, y) =
1

2

�

x y
�

✓

1 0
0 1

◆✓

x
y

◆

,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 564

564 Dual Ascent Methods; ADMM

we observe that J(x, y) is a quadratic function determined by the positive

definite matrix

✓

1 0
0 1

◆

, and hence to calculate G(�), we must set rLx,y = 0.

By calculating @J
@x = 0 and @J

@y = 0, we find that x = �2� and y = �. Then
G(�) = �5/2�2 � 5�, and we must calculate the maximum of G(�) with
respect to � 2 R. This means calculating G0(�) = 0 and obtaining � = �1
for the solution of (x, y,�) = (�2�,�,�) = (2,�1,�1).

Instead of solving directly for � in terms of (x, y), the method of dual
assent begins with a numerical estimate for �, namely �0, and forms the
“numerical” Lagrangian

L(x, y,�0) =
1

2
(x2 + y2) + �0(2x� y � 5).

With this numerical value �0, we minimize L(x, y,�0) with respect to (x, y).
This calculation will be identical to that used to form G(�) above, and as
such, we obtain the iterative step (x1, y1) = (�2�0,�0). So if we replace �0

by �k, we have the first step of the dual ascent method, namely

uk+1 =

✓

xk+1

yk+1

◆

=

✓

�2
1

◆

�k.

The second step of the dual ascent method refines the numerical estimate
of � by calculating

�k+1 = �k + ↵k

✓

�

2 �1
�

✓

xk+1

yk+1

◆

� 5

◆

.

(Recall that in our original problem the constraint is 2x � y = 5 or
�

2 �1
�

✓

x
y

◆

� 5, so A =
�

2 �1
�

and b = 5.) By simplifying the above

equation, we find that

�k+1 = (1� �)�k � �, � = 5↵k.

Back substituting for �k in the preceding equation shows that

�k+1 = (1� �)k+1�0 + (1� �)k+1 � 1.

If 0 < � 1, the preceding line implies that �k+1 converges to � = �1,
which coincides with the answer provided by the original Lagrangian du-
ality method. Observe that if � = 1 or ↵k = 1

5

, the dual ascent method
terminates in one step.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 565

16.2. Augmented Lagrangians and the Method of Multipliers 565

With an appropriate choice of ↵k, we have G(�k+1) > G(�k), so the
method makes progress. Under certain assumptions, for example, that J is
strictly convex and some conditions of the ↵k, it can be shown that dual
ascent converges to an optimal solution (both for the primal and the dual).
However, the main flaw of dual ascent is that the minimization step may
diverge. For example, this happens is J is a nonzero a�ne function of one
of its components. The remedy is to add a penalty term to the Lagrangian.

On the positive side, the dual ascent method leads to a decentralized
algorithm if the function J is separable. Suppose that u can be split as
u =

PN
i=1

ui, with ui 2 Rn
i and n =

PN
i=1

ni, that

J(u) =
N
X

i=1

Ji(ui),

and that A is split into N blocks Ai (with Ai a m ⇥ ni matrix) as A =
[A

1

· · · AN], so that Au =
PN

k=1

Aiui. Then the Lagrangian can be written
as

L(u,�) =
N
X

i=1

Li(ui,�),

with

Li(ui,�) = Ji(ui) + �>
✓

Aiui �
1

N
b

◆

.

it follows that the minimization of L(u,�) with respect to the primal vari-
able u can be split into N separate minimization problems that can be
solved in parallel. The algorithm then performs the N updates

uk+1

i = argmin
u
i

Li(ui,�
k)

in parallel, and then the step

�k+1 = �k + ↵k(Auk+1 � b).

16.2 Augmented Lagrangians and the Method of
Multipliers

In order to make the minimization step of the dual ascent method more
robust, one can use the trick of adding the penalty term (⇢/2) kAu� bk2

2

to the Lagrangian.

Definition 16.1. Given the Optimization Problem (P),

minimize J(u)

subject to Au = b,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 566

566 Dual Ascent Methods; ADMM

the augmented Lagrangian is given by

L⇢(u,�) = J(u) + �>(Au� b) + (⇢/2) kAu� bk2
2

,

with � 2 Rm, and where ⇢ > 0 is called the penalty parameter .

The augmented Lagrangian L⇢(u,�) can be viewed as the ordinary La-
grangian of the Minimization Problem (P⇢),

minimize J(u) + (⇢/2) kAu� bk2
2

subject to Au = b.

The above problem is equivalent to Program (P), since for any feasible
solution of (P⇢), we must have Au� b = 0.

The benefit of adding the penalty term (⇢/2) kAu� bk2
2

is that by Propo-
sition 15.25, Problem (P⇢) has a unique optimal solution under mild con-
ditions on A.

Dual ascent applied to the dual of (P⇢) yields the the method of multi-
pliers, which consists of the following steps, given some initial �0:

uk+1 = argmin
u

L⇢(u,�
k)

�k+1 = �k + ⇢(Auk+1 � b).

Observe that the second step uses the parameter ⇢. The reason is that
it can be shown that choosing ↵k = ⇢ guarantees that (uk+1,�k+1) satisfies
the equation

rJuk+1 +A>�k+1 = 0,

which means that (uk+1,�k+1) is dual feasible; see Boyd, Parikh, Chu,
Peleato and Eckstein [Boyd et al. (2010)], Section 2.3.

Example 16.2. Consider the minimization problem

minimize y2 + 2x

subject to 2x� y = 0.

See Figure 16.2.
The quadratic function

J(x, y) = y2 + 2x =
�

x y
�

✓

0 0
0 1

◆✓

x
y

◆

+
�

2 0
�

✓

x
y

◆

is convex but not strictly convex. Since y = 2x, the problem is equivalent
to minimizing y2+2x = 4x2+2x, whose minimum is achieved for x = �1/4
(since setting the derivative of the function x 7! 4x2 +2 yields 8x+2 = 0).

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 567

16.2. Augmented Lagrangians and the Method of Multipliers 567

Fig. 16.2 Two views of the graph of y2+2x intersected with the transparent red plane
2x� y = 0. The solution to Example 16.2 is apex of the intersection curve, namely the
point (� 1

4 ,�
1
2 ,�

15
16).

Thus, the unique minimum of our problem is achieved for (x = �1/4, y =
�1/2). The Largrangian of our problem is

L(x, y,�) = y2 + 2x+ �(2x� y).

If we apply the dual ascent method, minimization of L(x, y,�) with respect
to x and y holding � constant yields the equations

2 + 2� = 0

2y � � = 0,

obtained by setting the gradient of L (with respect to x and y) to zero.
If � 6= �1, the problem has no solution. Indeed, if � 6= �1, minimizing
L(x, y,�) = y2 + 2x+ �(2x� y) with respect to x and y yields �1.

The augmented Lagrangian is

L⇢(x, y,�) = y2 + 2x+ �(2x� y) + (⇢/2)(2x� y)2

= 2⇢x2 � 2⇢xy + 2(1 + �)x� �y +
⇣

1 +
⇢

2

⌘

y2,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 568

568 Dual Ascent Methods; ADMM

which in matrix form is

L⇢(x, y,�) =
�

x y
�

2⇢2 �⇢
�⇢ 1 +

⇢

2

!

✓

x
y

◆

+
�

2(1 + �) ��
�

✓

x
y

◆

.

The trace of the above matrix is 1 + ⇢
2

+ 2⇢2 > 0, and the determinant is

2⇢2
⇣

1 +
⇢

2

⌘

� ⇢2 = ⇢2(1 + ⇢) > 0,

since ⇢ > 0. Therefore, the above matrix is symmetric positive definite.
Minimizing L⇢(x, y,�) with respect to x and y, we set the gradient of
L⇢(x, y,�) (with respect to x and y) to zero, and we obtain the equations:

2⇢x� ⇢y + (1 + �) = 0

�2⇢x+ (2 + ⇢)y � � = 0.

The solution is

x = �1

4
� 1 + �

2⇢
, y = �1

2
.

Thus the steps for the method of multipliers are

xk+1 = �1

4
� 1 + �k

2⇢

yk+1 = �1

2

�k+1 = �k + ⇢
�

2 �1
�

� 1

4

� 1+�k

2⇢

� 1

2

!

,

and the second step simplifies to

�k+1 = �1.

Consequently, we see that the method converges after two steps for any
initial value of �0, and we get

x = �1

4
y = �1

2
, � = �1.

The method of multipliers also converges for functions J that are not
even convex, as illustrated by the next example.

Example 16.3. Consider the minimization problem

minimize 2�xy

subject to 2x� y = 0,

with � > 0. See Figure 16.3.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 569

16.2. Augmented Lagrangians and the Method of Multipliers 569

Fig. 16.3 Two views of the graph of the saddle of 2xy (� = 1) intersected with the
transparent magenta plane 2x � y = 0. The solution to Example 16.3 is apex of the
intersection curve, namely the point (0, 0, 0).

The quadratic function

J(x, y) = 2�xy =
�

x y
�

✓

0 �
� 0

◆✓

x
y

◆

is not convex because the above matrix is not even positive semidefinite (the
eigenvalues of the matrix are �� and +�). The augmented Lagrangian is

L⇢(x, y,�) = 2�xy + �(2x� y) + (⇢/2)(2x� y)2

= 2⇢x2 + 2(� � ⇢)xy + 2�x� �y +
⇢

2
y2,

which in matrix form is

L⇢(x, y,�) =
�

x y
�

2⇢ � � ⇢

� � ⇢
⇢

2

!

✓

x
y

◆

+
�

2� ��
�

✓

x
y

◆

.

The trace of the above matrix is 2⇢+ ⇢
2

= 5

2

⇢ > 0, and the determinant is

⇢2 � (� � ⇢)2 = �(2⇢� �).

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 570

570 Dual Ascent Methods; ADMM

This determinant is positive if ⇢ > �/2, in which case the matrix is sym-
metric positive definite. Minimizing L⇢(x, y,�) with respect to x and y, we
set the gradient of L⇢(x, y,�) (with respect to x and y) to zero, and we
obtain the equations:

2⇢x+ (� � ⇢)y + � = 0

2(� � ⇢)x+ ⇢y � � = 0.

Since we are assuming that ⇢ > �/2, the solutions are

x = � �

2(2⇢� �)
, y =

�

(2⇢� �)
.

Thus the steps for the method of multipliers are

xk+1 = � �k

2(2⇢� �)

yk+1 =
�k

(2⇢� �)

�k+1 = �k +
⇢

2(2⇢� �)

�

2 �1
�

✓

��k
2�k

◆

,

and the second step simplifies to

�k+1 = �k +
⇢

2(2⇢� �)
(�4�k),

that is,

�k+1 = � �

2⇢� �
�k.

If we pick ⇢ > � > 0, which implies that ⇢ > �/2, then
�

2⇢� �
< 1,

and the method converges for any intial value �0 to the solution

x = 0, y = 0, � = 0.

Indeed, since the constraint 2x � y = 0 holds, 2�xy = 4�x2, and the
minimum of the function x 7! 4�x2 is achieved for x = 0 (since � > 0).

As an exercise, the reader should verify that dual ascent (with ↵k = ⇢)
yields the equations

xk+1 =
�k

2�

yk+1 = ��
k

�

�k+1 =

✓

1 +
2⇢

�

◆

�k,

and so the method diverges, except for �0 = 0, which is the optimal solution.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 571

16.3. ADMM: Alternating Direction Method of Multipliers 571

The method of multipliers converges under conditions that are far more
general than the dual ascent. However, the addition of the penalty term
has the negative e↵ect that even if J is separable, then the Lagrangian L⇢

is not separable. Thus the basic method of multipliers cannot be used for
decomposition and is not parallelizable. The next method deals with the
problem of separability.

16.3 ADMM: Alternating Direction Method of Multipliers

The alternating direction method of multipliers, for short ADMM, combines
the decomposability of dual ascent with the superior convergence properties
of the method of multipliers. It can be viewed as an approximation of the
method of multipliers, but it is generally superior.

The idea is to split the function J into two independent parts, as
J(x, z) = f(x) + g(z), and to consider the Minimization Problem (P

admm

),

minimize f(x) + g(z)

subject to Ax+Bz = c,

for some p⇥ n matrix A, some p⇥m matrix B, and with x 2 Rn, z 2 Rm,
and c 2 Rp. We also assume that f and g are convex. Further conditions
will be added later.

As in the method of multipliers, we form the augmented Lagrangian

L⇢(x, z,�) = f(x) + g(z) + �>(Ax+Bz � c) + (⇢/2) kAx+Bz � ck2
2

,

with � 2 Rp and for some ⇢ > 0.
Given some initial values (z0,�0), the ADMM method consists of the

following iterative steps:

xk+1 = argmin
x

L⇢(x, z
k,�k)

zk+1 = argmin
z

L⇢(x
k+1, z,�k)

�k+1 = �k + ⇢(Axk+1 +Bzk+1 � c).

Instead of performing a minimization step jointly over x and z, as the
method of multipliers would in the step

(xk+1, zk+1) = argmin
x,z

L⇢(x, z,�
k),

ADMM first performs an x-minimization step, and then a z-minimization
step. Thus x and z are updated in an alternating or sequential fashion,
which accounts for the term alternating direction.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 572

572 Dual Ascent Methods; ADMM

The algorithm state in ADMM is (zk,�k), in the sense that (zk+1,�k+1)
is a function of (zk,�k). The variable xk+1 is an auxiliary variable which
is used to compute zk+1 from (zk,�k). The roles of x and z are not quite
symmetric, since the update of x is done before the update of �. By switch-
ing x and z, f and g and A and B, we obtain a variant of ADMM in which
the order of the x-update step and the z-update step are reversed.

Example 16.4. Let us reconsider the problem of Example 16.2 to solve it
using ADMM. We formulate the problem as

minimize 2x+ z2

subject to 2x� z = 0,

with f(x) = 2x and g(z) = z2. The augmented Lagrangian is given by

L⇢(x, z,�) = 2x+ z2 + 2�x� �z + 2⇢x2 � 2⇢xz +
⇢

2
z2.

The ADMM steps are as follows. The x-update is

xk+1 = argmin
x

�

2⇢x2 � 2⇢xzk + 2�kx+ 2x
�

,

and since this is a quadratic function in x, its minimum is achieved when
the derivative of the above function (with respect to x) is zero, namely

xk+1 =
1

2
zk � 1

2⇢
�k � 1

2⇢
. (1)

The z-update is

zk+1 = argmin
z

⇣

z2 +
⇢

2
z2 � 2⇢xk+1z � �kz

⌘

,

and as for the x-step, the minimum is achieved when the derivative of the
above function (with respect to z) is zero, namely

zk+1 =
2⇢xk+1

⇢+ 2
+

�k

⇢+ 2
. (2)

The �-update is

�k+1 = �k + ⇢(2xk+1 � zk+1). (3)

Substituting the right hand side of (1) for xk+1 in (2) yields

zk+1 =
⇢zk

⇢+ 2
� 1

⇢+ 2
. (4)

Using (2), we obtain

2xk+1 � zk+1 =
4xk+1

⇢+ 2
� �k

⇢+ 2
, (5)

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 573

16.3. ADMM: Alternating Direction Method of Multipliers 573

and then using (3) we get

�k+1 =
2�k

⇢+ 2
+

4⇢xk+1

⇢+ 2
. (6)

Substituting the right hand side of (1) for xk+1 in (6), we obtain

�k+1 =
2⇢zk

⇢+ 2
� 2

⇢+ 2
. (7)

Equation (7) shows that zk determines �k+1, and Equation (1) for k + 2,
along with Equation (4), shows that zk also determines xk+2. In particular,
we find that

xk+2 =
1

2
zk+1 � 1

2⇢
�k+1 � 1

2⇢

=
(⇢� 2)zk

2(⇢+ 2)
� 1

⇢+ 2
.

Thus is su�ces to find the limit of the sequence (zk). Since we already
know from Example 16.2 that this limit is �1/2, using (4), we write

zk+1 = �1

2
+

⇢zk

⇢+ 2
� 1

⇢+ 2
+

1

2
= �1

2
+

⇢

⇢+ 2

✓

1

2
+ zk

◆

.

By induction, we deduce that

zk+1 = �1

2
+

✓

⇢

⇢+ 2

◆k+1

✓

1

2
+ z0

◆

,

and since ⇢ > 0, we have ⇢/(⇢+ 2) < 1, so the limit of the sequence (zk+1)
is indeed �1/2, and consequently the limit of (�k+1) is �1 and the limit of
xk+2 is �1/4.

For ADMM to be practical, the x-minimization step and the z-
minimization step have to be doable e�ciently.

It is often convenient to write the ADMM updates in terms of the scaled
dual variable µ = (1/⇢)�. If we define the residual as

r = Ax+ bz � c,

then we have

�>r + (⇢/2) krk2
2

= (⇢/2) kr + (1/⇢)�k2
2

� (1/(2⇢)) k�k2
2

= (⇢/2) kr + µk2
2

� (⇢/2) kµk2
2

.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 574

574 Dual Ascent Methods; ADMM

The scaled form of ADMM consists of the following steps:

xk+1 = argmin
x

⇣

f(x) + (⇢/2)
�

�Ax+Bzk � c+ µk
�

�

2

2

⌘

zk+1 = argmin
z

⇣

g(z) + (⇢/2)
�

�Axk+1 +Bz � c+ µk
�

�

2

2

⌘

µk+1 = µk +Axk+1 +Bzk+1 � c.

If we define the residual rk at step k as

rk = Axk +Bzk � c = µk � µk�1 = (1/⇢)(�k � �k�1),

then we see that

r = u0 +
k
X

j=1

rj .

The formulae in the scaled form are often shorter than the formulae in
the unscaled form.

We now discuss the convergence of ADMM.

16.4 Convergence of ADMM ~

Let us repeat the steps of ADMM: Given some initial (z0,�0), do:

xk+1 = argmin
x

L⇢(x, z
k,�k) (x-update)

zk+1 = argmin
z

L⇢(x
k+1, z,�k) (z-update)

�k+1 = �k + ⇢(Axk+1 +Bzk+1 � c). (�-update)

The convergence of ADMM can be proven under the following three
assumptions:

(1) The functions f : R ! R[{+1} and g : R ! R[{+1} are proper and
closed convex functions (see Section 15.1) such that relint(dom(f)) \
relint(dom(g)) 6= ;.

(2) The n ⇥ n matrix A>A is invertible and the m ⇥ m matrix B>B is
invertible. Equivalently, the p⇥ n matrix A has rank n and the p⇥m
matrix has rank m.

(3) The unaugmented Lagrangian L
0

(x, z,�) = f(x) + g(z) + �>(Ax +
Bz � c) has a saddle point, which means there exists x⇤, z⇤,�⇤ (not
necessarily unique) such that

L
0

(x⇤, z⇤,�) L
0

(x⇤, z⇤,�⇤) L
0

(x, z,�⇤)

for all x, z,�.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 575

16.4. Convergence of ADMM ~ 575

Recall that the augmented Lagrangian is given by

L⇢(x, z,�) = f(x) + g(z) + �>(Ax+Bz � c) + (⇢/2) kAx+Bz � ck2
2

.

For z (and �) fixed, we have

L⇢(x, z,�) = f(x) + g(z) + �>(Ax+Bz � c)

+ (⇢/2)(Ax+Bz � c)>(Ax+Bz � c)

= f(x) + (⇢/2)x>A>Ax+ (�> + ⇢(Bz � c)>)Ax

+ g(z) + �>(Bz � c) + (⇢/2)(Bz � c)>(Bz � c).

Assume that (1) and (2) hold. Since A>A is invertible, then it is sym-
metric positive definite, and by Proposition 15.25 the x-minimization step
has a unique solution (the minimization problem succeeds with a unique
minimizer).

Similarly, for x (and �) fixed, we have

L⇢(x, z,�) = f(x) + g(z) + �>(Ax+Bz � c)

+ (⇢/2)(Ax+Bz � c)>(Ax+Bz � c)

= g(z) + (⇢/2)z>B>Bz + (�> + ⇢(Ax� c)>)Bz

+ f(x) + �>(Ax� c) + (⇢/2)(Ax� c)>(Ax� c).

Since B>B is invertible, then it is symmetric positive definite, and by
Proposition 15.25 the z-minimization step has a unique solution (the min-
imization problem succeeds with a unique minimizer).

By Theorem 15.10, Assumption (3) is equivalent to the fact that the
KKT equations are satisfied by some triple (x⇤, z⇤,�⇤), namely

Ax⇤ +Bz⇤ � c = 0 (⇤)

and

0 2 @f(x⇤) + @g(z⇤) +A>�⇤ +B>�⇤, (†)

Assumption (3) is also equivalent to Conditions (a) and (b) of Theorem
15.10. In particular, our program has an optimal solution (x⇤, z⇤). By The-
orem 15.12, �⇤ is maximizer of the dual function G(�) = infx,z L0

(x, z,�)
and strong duality holds, that is, G(�⇤) = f(x⇤) + g(z⇤) (the duality gap
is zero).

We will see after the proof of Theorem 16.1 that Assumption (2) is
actually implied by Assumption (3). This allows us to prove a convergence
result stronger than the convergence result proven in Boyd et al. [Boyd
et al. (2010)] under the exact same assumptions (1) and (3).

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 576

576 Dual Ascent Methods; ADMM

Let p⇤ be the minimum value of f + g over the convex set {(x, z) 2
Rm+p | Ax + Bz � c = 0}, and let (pk) be the sequence given by pk =
f(xk) + g(zk), and recall that rk = Axk +Bzk � c.

Our main goal is to prove the following result.

Theorem 16.1. Suppose the following assumptions hold:

(1) The functions f : R ! R[{+1} and g : R ! R[{+1} are proper and
closed convex functions (see Section 15.1) such that relint(dom(f)) \
relint(dom(g)) 6= ;.

(2) The n ⇥ n matrix A>A is invertible and the m ⇥ m matrix B>B is
invertible. Equivalently, the p⇥ n matrix A has rank n and the p⇥m
matrix has rank m. (This assumption is actually redundant, because it
is implied by Assumption (3)).

(3) The unaugmented Lagrangian L
0

(x, z,�) = f(x) + g(z) + �>(Ax +
Bz � c) has a saddle point, which means there exists x⇤, z⇤,�⇤ (not
necessarily unique) such that

L
0

(x⇤, z⇤,�) L
0

(x⇤, z⇤,�⇤) L
0

(x, z,�⇤)

for all x, z,�.

Then for any initial values (z0,�0), the following properties hold:

(1) The sequence (rk) converges to 0 (residual convergence).
(2) The sequence (pk) converge to p⇤ (objective convergence).
(3) The sequences (xk) and (zk) converge to an optimal solution (ex, ez) of

Problem (P
admm

) and the sequence (�k) converges an optimal solution
e� of the dual problem (primal and dual variable convergence).

Proof. The core of the proof is due to Boyd et al. [Boyd et al. (2010)],
but there are new steps because we have the stronger hypothesis (2), which
yield the stronger result (3).

The proof consists of several steps. It is not possible to prove directly
that the sequences (xk), (zk), and (�k) converge, so first we prove that
the sequence (rk+1) converges to zero, and that the sequences (Axk+1) and
(Bzk+1) also converge.

Step 1 . Prove the inequality (A1) below.
Consider the sequence of reals (V k) given by

V k = (1/⇢)
�

��k � �⇤
�

�

2

2

+ ⇢
�

�B(zk � z⇤)
�

�

2

2

.

It can be shown that the V k satisfy the following inequality:

V k+1 V k � ⇢
�

�rk+1

�

�

2

2

� ⇢
�

�B(zk+1 � zk)
�

�

2

2

. (A1)

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 577

16.4. Convergence of ADMM ~ 577

This is rather arduous. Since a complete proof is given in Boyd et al. [Boyd
et al. (2010)], we will only provide some of the key steps later.

Inequality (A1) shows that the sequence (V k) in nonincreasing. If we
write these inequalities for k, k � 1, . . . , 0, we have

V k+1 V k � ⇢
�

�rk+1

�

�

2

2

� ⇢
�

�B(zk+1 � zk)
�

�

2

2

V k V k�1 � ⇢
�

�rk
�

�

2

2

� ⇢
�

�B(zk � zk�1)
�

�

2

2

...

V 1 V 0 � ⇢
�

�r1
�

�

2

2

� ⇢
�

�B(z1 � z0)
�

�

2

2

,

and by adding up these inequalities, we obtain

V k+1 V 0 � ⇢
k
X

j=0

⇣

�

�rj+1

�

�

2

2

+
�

�B(zj+1 � zj)
�

�

2

2

⌘

,

which implies that

⇢
k
X

j=0

⇣

�

�rj+1

�

�

2

2

+
�

�B(zj+1 � zj)
�

�

2

2

⌘

 V
0

� V k+1 V 0, (B)

since V k+1 V 0.
Step 2 . Prove that the sequence (rk) converges to 0, and that the

sequences (Axk+1) and (Bzk+1) also converge.
Inequality (B) implies that the series

P1
k=1

rk and
P1

k=0

B(zk+1 � zk)
converge absolutely. In particular, the sequence (rk) converges to 0.

The nth partial sum of the series
P1

k=0

B(zk+1 � zk) is

n
X

k=0

B(zk+1 � zk) = B(zn+1 � z0),

and since the series
P1

k=0

B(zk+1 � zk) converges, we deduce that the
sequence (Bzk+1) converges. Since Axk+1 + Bzk+1 � c = rk+1, the con-
vergence of (rk+1) and (Bzk+1) implies that the sequence (Axk+1) also
converges.

Step 3 . Prove that the sequences (xk+1) and (zk+1) converge. By
Assumption (2), the matrices A>A and B>B are invertible, so multiplying
each vector Axk+1 by (A>A)�1A>, if the sequence (Axk+1) converges to
u, then the sequence (xk+1) converges to (A>A)�1A>u. Siimilarly, if the
sequence (Bzk+1) converges to v, then the sequence (zk+1) converges to
(B>B)�1B>v.

Step 4 . Prove that the sequence (�k) converges.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 578

578 Dual Ascent Methods; ADMM

Recall that

�k+1 = �k + ⇢rk+1.

It follows by induction that

�k+p = �k + ⇢(rk+1 + · · ·+ ⇢k+p), p � 2.

As a consequence, we get
�

��k+p � �k
�

� ⇢(
�

�rk+1

�

�+ · · ·+
�

�rk+p
�

�).

Since the series
P1

k=1

�

�rk
�

� converges, the partial sums form a Cauchy
sequence, and this immediately implies that for any ✏ > 0 we can find
N > 0 such that

⇢(
�

�rk+1

�

�+ · · ·+
�

�rk+p
�

�) < ✏, for all k, p+ k � N,

so the sequence (�k) is also a Cauchy sequence, thus it converges.
Step 5 . Prove that the sequence (pk) converges to p⇤.
For this, we need two more inequalities. Following Boyd et al. [Boyd

et al. (2010)], we need to prove that

pk+1�p⇤ �(�k+1)>rk+1�⇢(B(zk+1�zk))>(�rk+1+B(zk+1�z⇤)) (A2)

and

p⇤ � pk+1 (�⇤)>rk+1. (A3)

Since we proved that the sequence (rk) and B(zk+1 � zk) converge to
0, and that the sequence (�k+1) converges, from

(�k+1)>rk+1 + ⇢(B(zk+1 � zk))>(�rk+1 +B(zk+1 � z⇤)) p⇤ � pk+1

 (�⇤)>rk+1,

we deduce that in the limit, pk+1 converges to p⇤.
Step 6 . Prove (A3).
Since (x⇤, y⇤,�⇤) is a saddle point, we have

L
0

(x⇤, z⇤,�⇤) L
0

(xk+1, zk+1,�⇤).

Since Ax⇤ + Bz⇤ = c, we have L
0

(x⇤, z⇤,�⇤) = p⇤, and since pk+1 =
f(xk+1) + g(zk+1), we have

L
0

(xk+1, zk+1,�⇤) = pk+1 + (�⇤)>rk+1,

so we obtain

p⇤ pk+1 + (�⇤)>rk+1,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 579

16.4. Convergence of ADMM ~ 579

which yields (A3).
Step 7 . Prove (A2).
By Proposition 15.24, zk+1 minimizes L⇢(xk+1, z,�k) i↵

0 2 @g(zk+1) +B>�k + ⇢B>(Axk+1 +Bzk+1 � c)

= @g(zk+1) +B>�k + ⇢B>rk+1

= @g(zk+1) +B>�k+1,

since rk+1 = Axk+1 +Bzk+1 � c and �k+1 = �k + ⇢(Axk+1 +Bzk+1 � c).
In summary, we have

0 2 @g(zk+1) +B>�k+1, (†
1

)

which shows that zk+1 minimizes the function

z 7! g(z) + (�k+1)>Bz.

Consequently, we have

g(zk+1) + (�k+1)>Bzk+1 g(z⇤) + (�k+1)>Bz⇤. (B1)

Similarly, xk+1 minimizes L⇢(x, zk,�k) i↵

0 2 @f(xk+1) +A>�k + ⇢A>(Axk+1 +Bzk � c)

= @f(xk+1) +A>(�k + ⇢rk+1 + ⇢B(zk � zk+1))

= @f(xk+1) +A>�k+1 + ⇢A>B(zk � zk+1)

since rk+1 �Bzk+1 = Axk+1 � c and �k+1 = �k + ⇢(Axk+1 +Bzk+1 � c) =
�k + ⇢rk+1.

Equivalently, the above derivation shows that

0 2 @f(xk+1) +A>(�k+1 � ⇢B(zk+1 � zk)), (†
2

)

which shows that xk+1 minimizes the function

x 7! f(x) + (�k+1 � ⇢B(zk+1 � zk))>Ax.

Consequently, we have

f(xk+1) + (�k+1 � ⇢B(zk+1 � zk))>Axk+1

 f(x⇤) + (�k+1 � ⇢B(zk+1 � zk))>Ax⇤. (B2)

Adding up Inequalities (B1) and (B2), using the equation Ax⇤ + Bz⇤ = c,
and rearranging, we obtain inequality (A2).

Step 8 . Prove that (xk), (zk), and (�k) converge to optimal solutions.
Recall that (rk) converges to 0, and that (xk), (zk), and (�k) converge

to limits ex, ez, and e�. Since rk = Axk +Bzk � c, in the limit, we have

Aex+Bez � c = 0. (⇤
1

)

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 580

580 Dual Ascent Methods; ADMM

Using (†
1

), in the limit, we obtain

0 2 @g(ez) +B>
e�. (⇤

2

)

Since (B(zk+1 � zk)) converges to 0, using (†
2

), in the limit, we obtain

0 2 @f(ex) +A>
e�. (⇤

3

)

From (⇤
2

) and (⇤
3

), we obtain

0 2 @f(ex) + @g(ez) +A>
e�+B>

e�. (⇤
4

)

But (⇤
1

) and (⇤
4

) are exactly the KKT equations, and by Theorem 15.10,
we conclude that ex, ez, e� are optimal solutions.

Step 9 . Prove (A1). This is the most tedious step of the proof. We begin
by adding up (A2) and (A3), and then perform quite a bit or rewriting and
manipulation. The complete derivation can be found in Boyd et al. [Boyd
et al. (2010)].

Remarks:

(1) In view of Theorem 15.11, we could replace Assumption (3) by the
slightly stronger assumptions that the optimum value of our pro-
gram is finite and that the constraints are qualified. Since the con-
straints are a�ne, this means that there is some feasible solution in
relint(dom(f))\ relint(dom(g)). These assumptions are more practi-
cal than Assumption (3).

(2) Actually, Assumption (3) implies Assumption (2). Indeed, we know
from Theorem 15.10 that the existence of a saddle point implies that
our program has a finite optimal solution. However, if either A>A or
B>B is not invertible, then Program (P) may not have a finite optimal
solution, as shown by the following counterexample.

Example 16.5. Let

f(x, y) = x, g(z) = 0, y � z = 0.

Then

L⇢(x, y, z,�) = x+ �(y � z) + (⇢/2)(y � z)2,

but minimizing over (x, y) with z held constant yields �1, which im-
plies that the above program has no finite optimal solution. See Figure
16.4.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 581

16.4. Convergence of ADMM ~ 581

f(x,y) = x intersected with y=z,
z fixed.

graph of f(x,y) = x

Fig. 16.4 A graphical representation of the Example 16.5. This is an illustration of
the x minimization step when z is held fixed. Since the intersection of the two planes is
an unbounded line, we “see” that minimizing over x yields �1.

The problem is that

A =
�

0 1
�

, B =
�

�1
�

,

but

A>A =

✓

0 0
0 1

◆

is not invertible.

(3) Proving (A1), (A2), (A3), and the convergence of (rk) to 0 and of (pk)
to p⇤ does not require Assumption (2). The proof, using the ingeneous
Inequality (A1) (and (B)) is the proof given in Boyd et al. [Boyd
et al. (2010)]. We were also able to prove that (�k), (Axk) and (Bzk)
converge without Assumption (2), but to prove that (xk), (yk), and
(�k) converge to optimal solutions, we had to use Assumption (2).

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 582

582 Dual Ascent Methods; ADMM

(4) Bertsekas discusses ADMM in [Bertsekas (2015)], Sections 2.2 and 5.4.
His formulation of ADMM is slightly di↵erent, namely

minimize f(x) + g(z)

subject to Ax = z.

Bertsekas states a convergence result for this version of ADMM under
the hypotheses that either dom(f) is compact or that A>A is invertible,
and that a saddle point exists; see Proposition 5.4.1. The proof is given
in Bertsekas [Bertsekas and Tsitsiklis (1997)], Section 3.4, Proposition
4.2. It appears that the proof makes use of gradients, so it is not
clear that it applies in the more general case where f and g are not
di↵erentiable.

(5) Versions of ADMM are discussed in Gabay [Gabay (1983)] (Sections 4
and 5). They are more general than the version discussed here. Some
convergence proofs are given, but because Gabay’s framework is more
general, it is not clear that they apply to our setting. Also, these proofs
rely on earlier result by Lions and Mercier, which makes the comparison
di�cult.

(5) Assumption (2) does not imply that the system Ax + Bz = c has any
solution. For example, if

A =

✓

1
1

◆

, B =

✓

�1
�1

◆

, c =

✓

1
0

◆

,

the system

x� z = 1

x� z = 0

has no solution. However, since Assumption (3) implies that the pro-
gram has an optimal solution, it implies that c belongs to the column
space of the p⇥ (n+m) matrix

�

A B
�

.

Here is an example where ADMM diverges for a problem whose optimum
value is �1.

Example 16.6. Consider the problem given by

f(x) = x, g(z) = 0, x� z = 0.

Since f(x) + g(z) = x, and x = z, the variable x is unconstrained and the
above function goes to�1 when x goes to�1. The augmented Lagrangian

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 583

16.5. Stopping Criteria 583

is

L⇢(x, z,�) = x+ �(x� z) +
⇢

2
(x� z)2

=
⇢

2
x2 � ⇢xz +

⇢

2
z2 + x+ �x� �z.

The matrix
✓

1

2

� 1

2

� 1

2

1

2

◆

is singular and L⇢(x, z,�) goes to �1 in when (x, z) = t(1, 1) and t goes
to �1. The ADMM steps are:

xk+1 = zk � 1

⇢
�k � 1

⇢

zk+1 = xk+1 +
1

⇢
�k

�k+1 = �k + ⇢(xk+1 � zk+1),

and these equations hold for all k � 0. From the last two equations we
deduce that

�k+1 = �k + ⇢(xk+1 � zk+1) = �k + ⇢(�1

⇢
�k) = 0, for all k � 0,

so

zk+2 = xk+2 +
1

⇢
�k+1 = xk+2, for all k � 0.

Consequently we find that

xk+3 = zk+2 +
1

⇢
�k+2 � 1

⇢
= xk+2 � 1

⇢
.

By induction, we obtain

xk+3 = x2 � k + 1

⇢
, for all k � 0,

which shows that xk+3 goes to �1 when k goes to infinity, and since
xk+2 = zk+2, similarly zk+3 goes to �1 when k goes to infinity.

16.5 Stopping Criteria

Going back to Inequality (A2),

pk+1�p⇤ �(�k+1)>rk+1�⇢(B(zk+1�zk))>(�rk+1+B(zk+1�z⇤)), (A2)

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 584

584 Dual Ascent Methods; ADMM

using the fact that Ax⇤ +Bz⇤ � c = 0 and rk+1 = Axk+1 +Bzk+1 � c, we
have

�rk+1 +B(zk+1 � z⇤) = �Axk+1 �Bzk+1 + c+B(zk+1 � z⇤)

= �Axk+1 + c�Bz⇤

= �Axk+1 +Ax⇤ = �A(xk+1 � x⇤),

so (A2) can be rewritten as

pk+1 � p⇤ �(�k+1)>rk+1 + ⇢(B(zk+1 � zk))>A(xk+1 � x⇤),

or equivalently as

pk+1 � p⇤ �(�k+1)>rk+1 + (xk+1 � x⇤)>⇢A>B(zk+1 � zk). (s
1

)

We define the dual residual as

sk+1 = ⇢A>B(zk+1 � zk),

the quantity rk+1 = Axk+1 + Bzk+1 � c being the primal residual . Then
(s

1

) can be written as

pk+1 � p⇤ �(�k+1)>rk+1 + (xk+1 � x⇤)>sk+1. (s)

Inequality (s) shows that when the residuals rk and sk are small, then pk

is close to p⇤ from below. Since x⇤ is unknown, we can’t use this inequality,
but if we have a guess that

�

�xk � x⇤
�

� d, then using Cauchy–Schwarz we
obtain

pk+1 � p⇤
�

��k+1

�

�

�

�rk+1

�

�+ d
�

�sk+1

�

� .

The above suggests that a reasonable termination criterion is that
�

�rk
�

� and
�

�sk
�

� should be small, namely that
�

�rk
�

� ✏pri and
�

�sk
�

� ✏dual,

for some chosen feasibility tolerances ✏pri and ✏dual. Further discussion for
choosing these parameters can be found in Boyd et al. [Boyd et al. (2010)]
(Section 3.3.1).

Various extensions and variations of ADMM are discussed in Boyd et
al. [Boyd et al. (2010)] (Section 3.4). In order to accelerate convergence of
the method, one may choose a di↵erent ⇢ at each step (say ⇢k), although
proving the convergence of such a method may be di�cult. If we assume
that ⇢k becomes constant after a number of iterations, then the proof that
we gave still applies. A simple scheme is this:

⇢k+1 =

8

>

>

<

>

>

:

⌧ incr⇢k if
�

�rk
�

� > µ
�

�sk
�

�

⇢k/⌧decr if
�

�sk
�

� > µ
�

�rk
�

�

⇢k otherwise,

where ⌧ incr > 1, ⌧decr > 1, and µ > 1 are some chosen parameters. Again,
we refer the interested reader to Boyd et al. [Boyd et al. (2010)] (Section
3.4).

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 585

16.6. Some Applications of ADMM 585

16.6 Some Applications of ADMM

Structure in f, g, A, and B can often be exploited to yield more e�cient
methods for performing the x-update and the z-update. We focus on the
x-update, but the discussion applies just as well to the z-update. Since z
and � are held constant during minimization over x, it is more convenient
to use the scaled form of ADMM. Recall that

xk+1 = argmin
x

⇣

f(x) + (⇢/2)
�

�Ax+Bzk � c+ uk
�

�

2

2

⌘

(here we use u instead of µ), so we can express the x-update step as

x+ = argmin
x

⇣

f(x) + (⇢/2) kAx� vk2
2

⌘

,

with v = �Bzk + c� uk.

Example 16.7. A first simplification arises when A = I, in which case the
x-update is

x+ = argmin
x

⇣

f(x) + (⇢/2) kx� vk2
2

⌘

= proxf,⇢(v).

The map v 7! proxf,⇢(v) is known as the proximity operator of f with
penalty ⇢. The above minimization is generally referred to as proximal
minimization.

Example 16.8. When the function f is simple enough, the proximity op-
erator can be computed analytically. This is the case in particular when
f = IC , the indicator function of a nonempty closed convex set C. In this
case, it is easy to see that

x+ = argmin
x

⇣

IC(x) + (⇢/2) kx� vk2
2

⌘

= ⇧C(v),

the orthogonal projection of v onto C. In the special case where C = Rn
+

(the first orthant), then

x+ = (v)
+

,

the vector obtained by setting the negative components of v to zero.

Example 16.9. A second case where simplifications arise is the case where
f is a convex quadratic functional of the form

f(x) =
1

2
x>Px+ q>x+ r,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 586

586 Dual Ascent Methods; ADMM

where P is an n ⇥ n symmetric positive semidefinite matrix, q 2 Rn and
r 2 R. In this case the gradient of the map

x 7! f(x) + (⇢/2) kAx� vk2
2

=
1

2
x>Px+ q>x+ r +

⇢

2
x>(A>A)x

� ⇢x>A>v +
⇢

2
v>v

is given by

(P + ⇢A>A)x+ q � ⇢A>v,

and since A has rank n, the matrix A>A is symmetric positive definite, so
we get

x+ = (P + ⇢A>A))�1(⇢A>v � q).

Methods from numerical linear algebra can be used so compute x+ fairly
e�ciently; see Boyd et al. [Boyd et al. (2010)] (Section 4).

Example 16.10. A third case where simplifications arise is the variation
of the previous case where f is a convex quadratic functional of the form

f(x) =
1

2
x>Px+ q>x+ r,

except that f is constrained by equality constraints Cx = b, as in Section
14.4, which means that dom(f) = {x 2 Rn | Cx = b}, and A = I. The
x-minimization step consists in minimizing the function

J(x) =
1

2
x>Px+ q>x+ r +

⇢

2
x>x� ⇢x>v +

⇢

2
v>v

subject to the constraint

Cx = b,

so by the results of Section 14.4, x+ is a component of the solution of the
KKT-system

✓

P + ⇢I C>

C 0

◆✓

x+

y

◆

=

✓

�q + ⇢v
b

◆

.

The matrix P + ⇢I is symmetric positive definite, so the KKT-matrix is
invertible.

We can now describe how ADMM is used to solve two common problems
of convex optimization.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 587

16.6. Some Applications of ADMM 587

(1) Minimization of a proper closed convex function f over a closed convex
set C in Rn. This is the following problem

minimize f(x)

subject to x 2 C,

which can be rewritten in AADM form as

minimize f(x) + IC(z)

subject to x� z = 0.

Using the scaled dual variable u = �/⇢, the augmented Lagrangian is

L⇢(x, z, u) = f(x) + IC(z) +
⇢

2
kx� z + uk2

2

� ⇢

2
kuk2 .

In view of Example 16.8, the scaled form of ADMM for this problem is

xk+1 = argmin
x

⇣

f(x) + (⇢/2)
�

�x� zk + uk
�

�

2

2

⌘

zk+1 = ⇧C(x
k+1 + uk)

uk+1 = uk + xk+1 � zk+1.

The x-update involves evaluating a proximal operator. Note that the
function f need not be di↵erentiable. Of course, these minimizations
depend on having e�cient computational procedures for the proximal
operator and the projection operator.

(2) Quadratic Programming . Here the problem is

minimize
1

2
x>Px+ q>x+ r

subject to Ax = b, x � 0,

where P is an n ⇥ n symmetric positive semidefinite matrix, q 2 Rn,
r 2 R, and A is an m⇥ n matrix of rank m.
The above program is converted in ADMM form as follows:

minimize f(x) + g(z)

subject to x� z = 0,

with

f(x) =
1

2
x>Px+ q>x+ r, dom(f) = {x 2 Rn | Ax = b},

and

g = IRn

+
,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 588

588 Dual Ascent Methods; ADMM

the indicator function of the positive orthant Rn
+

. In view of Example
16.8 and Example 16.10, the scaled form of ADMM consists of the
following steps:

xk+1 = argmin
x

⇣

f(x) + (⇢/2)
�

�x� zk + uk
�

�

2

2

⌘

zk+1 = (xk+1 + uk)
+

uk+1 = uk + xk+1 � zk+1.

The x-update involves solving the KKT equations

✓

P + ⇢I A>

A 0

◆✓

xk+1

y

◆

=

✓

�q + ⇢(zk � uk)
b

◆

.

This is an important example because it provides one of the best meth-
ods for solving quadratic problems, in particular, the SVM problems
discussed in Chapter 18.

We programmed the above method in Matlab as the function qsolve1,
see Appendix B, Section B.1. Here are two examples.

Example 16.11. Consider the quadratic program for which

P
1

=

0

@

4 1 0
1 4 1
0 1 4

1

A q
1

= �

0

@

4
4
4

1

A

A
1

=

✓

1 1 �1
1 �1 �1

◆

b
1

=

✓

0
0

◆

.

We see immediately that the constraints

x+ y � z = 0

x� y � z = 0

imply that z = x and y = 0. Then it is easy using calculus to find that
the unique minimum is given by (x, y, z) = (1, 0, 1). Running qsolve1 on
P
1

, q
1

, A
1

, b
1

with ⇢ = 10, tolr = tols = 10�12 and iternum = 10000, we
find that after 83 iterations the primal and the dual residuals are less than
10�12, and we get

(x, y, z) = (1.000000000000149, 0.000000000000000, 1.000000000000148).

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 589

16.7. Solving Hard Margin (SVM
h2) Using ADMM 589

Example 16.12. Consider the quadratic program for which

P
2

=

0

B

B

@

4 1 0 0
1 4 1 0
0 1 4 1
0 0 1 4

1

C

C

A

q
2

= �

0

B

B

@

4
4
4
4

1

C

C

A

A
2

=

✓

1 1 �1 0
1 �1 �1 0

◆

b
2

=

✓

0
0

◆

.

Again, we see immediately that the constraints imply that z = x and y = 0.
Then it is easy using calculus to find that the unique minimum is given by
(x, y, z) = (28/31, 0, 28/31, 24/31). Running qsolve1 on P

2

, q
2

, A
2

, b
2

with
⇢ = 10, tolr = tols = 10�12 and iternum = 10000, we find that after 95
iterations the primal and the dual residuals are less than 10�12, and we get

(x, y, z, t) = (0.903225806451495, 0.000000000000000,

0.903225806451495, 0.774193548387264),

which agrees with the answer found earlier up to 11 decimals.

As an illustration of the wide range of applications of ADMM we show
in the next section how to solve the hard margin SVM (SVMh2) discussed
in Section 14.6.

16.7 Solving Hard Margin (SVMh2) Using ADMM

Recall that we would like to solve the following optimization problem (see
Section 14.6):

Hard margin SVM (SVMh2):

minimize
1

2
kwk2

subject to

w>ui � b � 1 i = 1, . . . , p

� w>vj + b � 1 j = 1, . . . , q.

The margin is � = 1/ kwk. The separating hyperplane Hw,b is the
hyperplane of equation w>x � b = 0, and the margin hyperplanes are the
hyperplanes Hw,b+1

(the blue hyperplane) of equation w>x � b � 1 = 0
and Hw,b�1

(the red hyperplane) of equation w>x � b + 1 = 0. The dual
program derived in Section 14.10 is the following program:

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 590

590 Dual Ascent Methods; ADMM

Dual of the Hard margin SVM (SVMh2):

minimize
1

2

�

�> µ>�X>X

✓

�
µ

◆

�
�

�> µ>�1p+q

subject to
p
X

i=1

�i �
q
X

j=1

µj = 0

� � 0, µ � 0,

where X is the n⇥ (p+ q) matrix given by

X =
�

�u
1

· · · �up v
1

· · · vq
�

.

Then w is determined as follows:

w = �X

✓

�
µ

◆

=
p
X

i=1

�iui �
q
X

j=1

µjvj .

To solve the dual using ADMM we need to determine the matrices P, q
A and c as in Section 16.6(2). We renamed b as c to avoid a clash since b
is already used. We have

P = X>X, q = �1p+q,

and since the only constraint is

p
X

i=1

�i �
q
X

j=1

µj = 0,

the matrix A is the 1⇥ (p+ q) row vector

A =
�

1>
p �1>

q

�

,

and the right-hand side c is the scalar

c = 0.

Obviously the matrix A has rank 1. We obtain b using any i
0

such that
�i0 > 0 and any j

0

such that µj0 > 0. Since the corresponding constraints
are active, we have

w>ui0 � b = 1, �w>vj0 + b = 1,

so we obtain

b = w>(ui0 + vj0)/2.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 591

16.8. Applications of ADMM to `1-Norm Problems 591

For improved numerical stability, we can average over the sets of indices
defined as I�>0

= {i 2 {1, . . . , p} | �i > 0} and Iµ>0

= {j 2 {1, . . . , q} |
µj > 0}. We obtain

b = w>

0

@

✓

X

i2I
�>0

ui

◆

/|I�>0

|+
✓

X

j2I
µ>0

vj

◆

/|Iµ>0

|

1

A /2.

The Matlab programs implementing the above method are given in Ap-
pendix B, Section B.1. This should convince the reader that there is very
little gap between theory and practice, although it is quite consuming to
tune the tolerance parameters needed to deal with floating-point arith-
metric.

Figure 16.5 shows the result of running the Matlab program implement-
ing the above method using ADMM on two sets of points of 50 points each
generated at random using the following Matlab code.

u14 = 10.1*randn(2,50)+18;

v14 = -10.1*randn(2,50)-18;

The function SVMhard2 is called with ⇢ = 10 as follows

[lamb,mu,w] = SVMhard2(10,u14,v14)

and produces the output shown in Figure 16.5. Observe that there is one
blue support vector and two red support vectors.

16.8 Applications of ADMM to `1-Norm Problems

Another important application of ADMM is to `1-norm minimization prob-
lems, especially lasso minimization, discussed below and in Section 19.4.
This involves the special case of ADMM where f(x) = ⌧ kxk

1

and A = I.
In particular, in the one-dimensional case, we need to solve the minimiza-
tion problem: find

x⇤ = argmin
x

�

⌧ |x|+ (⇢/2)(x� v)2
�

,

with x, v 2 R, and ⇢, ⌧ > 0. Let c = ⌧/⇢ and write

f(x) =
⌧

2c

�

2c|x|+ (x� v)2
�

.

Minimizing f over x is equivalent to minimizing

g(x) = 2c|x|+ (x� v)2 = 2c|x|+ x2 � 2xv + v2,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 592

592 Dual Ascent Methods; ADMM

-50 -40 -30 -20 -10 0 10 20 30 40
-50

-40

-30

-20

-10

0

10

20

30

40

50

Fig. 16.5 An example of hard margin SVM.

which is equivalent to minimizing

h(x) = x2 + 2(c|x|� xv)

over x. If x � 0, then

h(x) = x2 + 2(cx� xv) = x2 + 2(c� v)x = (x� (v � c))2 � (v � c)2.

If v � c > 0, that is, v > c, since x � 0, the function x 7! (x � (v � c))2

has a minimum for x = v � c > 0, else if v � c 0, then the function
x 7! (x� (v � c))2 has a minimum for x = 0.

If x 0, then

h(x) = x2 + 2(�cx� xv) = x2 � 2(c+ v)x = (x� (v + c))2 � (v + c)2.

if v+c < 0, that is, v < �c, since x 0, the function x 7! (x�(v+c))2 has a
minimum for x = v+c, else if v+c � 0, then the function x 7! (x�(v+c))2

has a minimum for x = 0.
In summary, infx h(x) is the function of v given by

Sc(v) =

8

>

>

<

>

>

:

v � c if v > c

0 if |v| c

v + c if v < �c.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 593

16.8. Applications of ADMM to `1-Norm Problems 593

Fig. 16.6 The graph of S
c

(when c = 2).

The function Sc is known as a soft thresholding operator . The graph of Sc

shown in Figure 16.6.
One can check that

Sc(v) = (v � c)
+

� (�v � c)
+

,

and also

Sc(v) = (1� c/|v|)
+

v, v 6= 0,

which shows that Sc is a shrinkage operator (it moves a point toward zero).

The operator Sc is extended to vectors in Rn component wise, that is,
if x = (x

1

, . . . , xn), then

Sc(x) = (Sc(x1

), . . . , Sc(xn)).

We now consider several `1-norm problems.

(1) Least absolute deviation.
This is the problem of minimizing kAx� bk

1

, rather than kAx� bk
2

.
Least absolute deviation is more robust than least squares fit because
it deals better with outliers. The problem can be formulated in ADMM
form as follows:

minimize kzk
1

subject to Ax� z = b,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 594

594 Dual Ascent Methods; ADMM

with f = 0 and g = k k
1

. As usual, we assume that A is an m ⇥ n
matrix of rank n, so that A>A is invertible. ADMM (in scaled form)
can be expressed as

xk+1 = (A>A)�1A>(b+ zk � uk)

zk+1 = S
1/⇢(Axk+1 � b+ uk)

uk+1 = uk +Axk+1 � zk+1 � b.

(2) Basis pursuit .
This is the following minimization problem:

minimize kxk
1

subject to Ax = b,

where A is an m ⇥ n matrix of rank m < n, and b 2 Rm, x 2 Rn.
The problem is to find a sparse solution to an underdetermined linear
system, which means a solution x with many zero coordinates. This
problem plays a central role in compressed sensing and statistical signal
processing.
Basis pursuit can be expressed in ADMM form as the problem

minimize IC(x) + kzk
1

subject to x� z = 0,

with C = {x 2 Rn | Ax = b}. It is easy to see that the ADMM
procedure (in scaled form) is

xk+1 = ⇧C(z
k � uk)

zk+1 = S
1/⇢(x

k+1 + uk)

uk+1 = uk + xk+1 � zk+1,

where ⇧C is the orthogonal projection onto the subspace C. In fact, it
is not hard to show that

xk+1 = (I �A>(AA>)�1A)(zk � uk) +A>(AA>)�1b.

In some sense, an `1-minimization problem is reduced to a sequence of
`2-norm problems. There are ways of improving the e�ciency of the
method; see Boyd et al. [Boyd et al. (2010)] (Section 6.2)

(3) General `1-regularized loss minimization.
This is the following minimization problem:

minimize l(x) + ⌧ kxk
1

,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 595

16.8. Applications of ADMM to `1-Norm Problems 595

where l is any proper closed and convex loss function, and ⌧ > 0. We
convert the problem to the ADMM problem:

minimize l(x) + ⌧ kzk
1

subject to x� z = 0.

The ADMM procedure (in scaled form) is

xk+1 = argmin
x

⇣

l(x) + (⇢/2)
�

�x� zk + uk
�

�

2

2

⌘

zk+1 = S⌧/⇢(x
k+1 + uk)

uk+1 = uk + xk+1 � zk+1.

The x-update is a proximal operator evaluation. In general, one needs
to apply a numerical procedure to compute xk+1, for example, a version
of Newton’s method. The special case where l(x) = (1/2) kAx� bk2

2

is
particularly important.

(4) Lasso regularization.
This is the following minimization problem:

minimize (1/2) kAx� bk2
2

+ ⌧ kxk
1

.

This is a linear regression with the regularizing term ⌧ kxk
1

instead of
⌧ kxk

2

, to encourage a sparse solution. This method was first proposed
by Tibshirani around 1996, under the name lasso, which stands for
“least absolute selection and shrinkage operator.” This method is also
known as `1-regularized regression, but this is not as cute as “lasso,”
which is used predominantly. This method is discussed extensively in
Hastie, Tibshirani, and Wainwright [Hastie et al. (2015)].
The lasso minimization is converted to the following problem in ADMM
form:

minimize kAx� bk2
2

+ ⌧ kzk
1

subject to x� z = 0.

Then the ADMM procedure (in scaled form) is

xk+1 = (A>A+ ⇢I)�1(A>b+ ⇢(zk � uk))

zk+1 = S⌧/⇢(x
k+1 + uk)

uk+1 = uk + xk+1 � zk+1.

Since ⇢ > 0, the matrix A>A+ ⇢I is symmetric positive definite. Note
that the x-update looks like a ridge regression step (see Section 19.1).
There are various generalizations of lasso.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 596

596 Dual Ascent Methods; ADMM

(5) Generalized Lasso regularization.
This is the following minimization problem:

minimize (1/2) kAx� bk2
2

+ ⌧ kFxk
1

,

where A is an m⇥n matrix, F is a p⇥n matrix, and either A has rank
n or F has rank n. This problem is converted to the ADMM problem

minimize kAx� bk2
2

+ ⌧ kzk
1

subject to Fx� z = 0,

and the corresponding ADMM procedure (in scaled form) is

xk+1 = (A>A+ ⇢F>F)�1(A>b+ ⇢F>(zk � uk))

zk+1 = S⌧/⇢(Fxk+1 + uk)

uk+1 = uk + Fxk+1 � zk+1.

(6) Group Lasso.
This a generalization of (3). Here we assume that x is split as x =
(x

1

, . . . , xN), with xi 2 Rn
i and n

1

+ · · ·+xN = n, and the regularizing
term kxk

1

is replaced by
PN

i=1

kxik
2

. When ni = 1, this reduces to (3).
The z-update of the ADMM procedure needs to modified. We define
the soft thresholding operator Sc : Rm ! Rm given by

Sc(v) =

✓

1� c

kvk
2

◆

+

v,

with Sc(0) = 0. Then the z-update consists of the N updates

zk+1

i = S⌧/⇢(x
k+1

i + uk), i = 1, . . . , N.

The method can be extended to deal with overlapping groups; see Boyd
et al. [Boyd et al. (2010)] (Section 6.4).

There are many more applications of ADMM discussed in Boyd et al.
[Boyd et al. (2010)], including consensus and sharing. See also Strang
[Strang (2019)] for a brief overview.

16.9 Summary

The main concepts and results of this chapter are listed below:

• Dual ascent.
• Augmented Lagrangian.
• Penalty parameter.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 597

16.10. Problems 597

• Method of multipliers.
• ADMM (alternating direction method of multipliers).
• x-update, z-update, �-update.
• Scaled form of ADMM.
• Residual, dual residual.
• Stopping criteria.
• Proximity operator, proximal minimization.
• Quadratic programming.
• KKT equations.
• Soft thresholding operator.
• Shrinkage operator.
• Least absolute deviation.
• Basis pursuit.
• General `1-regularized loss minimization.
• Lasso regularization.
• Generalized lasso regularization.
• Group lasso.

16.10 Problems

Problem 16.1. In the method of multipliers described in Section 16.2,
prove that choosing ↵k = ⇢ guarantees that (uk+1,�k+1) satisfies the equa-
tion

rJuk+1 +A>�k+1 = 0.

Problem 16.2. Prove that the Inequality (A1) follows from the Inequal-
ities (A2) and (A3) (see the proof of Theorem 16.1). For help consult
Appendix A of Boyd et al. [Boyd et al. (2010)].

Problem 16.3. Consider Example 16.8. Prove that if f = IC , the indicator
function of a nonempty closed convex set C, then

x+ = argmin
x

⇣

IC(x) + (⇢/2) kx� vk2
2

⌘

= ⇧C(v),

the orthogonal projection of v onto C. In the special case where C = Rn
+

(the first orthant), then

x+ = (v)
+

,

the vector obtained by setting the negative components of v to zero.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 598

598 Dual Ascent Methods; ADMM

Problem 16.4. Prove that the soft thresholding operator Sc from Section
16.8 satisfies the equations

Sc(v) = (v � c)
+

� (�v � c)
+

,

and

Sc(v) = (1� c/|v|)
+

v, v 6= 0.

Problem 16.5. Rederive the formula

Sc(v) =

8

>

>

<

>

>

:

v � c if v > c

0 if |v| c

v + c if v < �c

using subgradients.

Problem 16.6. In basis pursuit (see Section 16.8 (2)) prove that

xk+1 = (I �A>(AA>)�1A)(zk � uk) +A>(AA>)�1b.

Problem 16.7. Implement (in Matlab) ADMM applied to lasso regular-
ization as described in Section 16.6 (4). The stopping criterion should be
based on feasibility tolerances ✏pri and ✏dual, say 10�4, and on a maximum
number of iteration steps, say 10000. There is a build in Matlab function
wthresh implementing soft thresholding. You may use the Matlab com-
mand randn to create a random data set X and a random response vector
y (see the help menu in Matlab under lasso). Try various values of ⇢ and ⌧ .
You will observe that the choice of ⇢ greatly a↵ects the rate of convergence
of the procedure.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 599

PART 4

Applications to Machine Learning

599

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 600

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 601

Chapter 17

Positive Definite Kernels

This chapter is an introduction to positive definite kernels and the use of
kernel functions in machine learning.

Let X be a nonempty set. If the set X represents a set of highly nonlin-
ear data, it may be advantageous to map X into a space F of much higher
dimension called the feature space, using a function ' : X ! F called a
feature map. This idea is that ' “unwinds” the description of the objects
in F in an attempt to make it linear. The space F is usually a vector space
equipped with an inner product h�,�i. If F is infinite dimensional, then
we assume that it is a Hilbert space.

Many algorithms that analyze or classify data make use of the inner
products h'(x),'(y)i, where x, y 2 X. These algorithms make use of the
function : X ⇥X ! C given by

(x, y) = h'(x),'(y)i, x, y 2 X,

called a kernel function.
The kernel trick is to pretend that we have a feature embedding ' : X !

F (actually unknown), but to only use inner products h'(x),'(y)i that can
be evaluated using the original data through the known kernel function .
It turns out that the functions of the form as above can be defined in
terms of a condition which is reminiscent of positive semidefinite matrices
(see Definition 17.2). Furthermore, every function satisfying Definition 17.2
arises from a suitable feature map into a Hilbert space; see Theorem 17.1.

We illustrate the kernel methods on kernel PCA (see Section 17.4).

17.1 Feature Maps and Kernel Functions

Definition 17.1. Let X be a nonempty set, let H be a (complex) Hilbert
space, and let ' : X ! H be a function called a feature map. The function

601

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 602

602 Positive Definite Kernels

 : X ⇥X ! C given by

(x, y) = h'(x),'(y)i, x, y 2 X,

is called a kernel function.

Remark: A feature map is often called a feature embedding , but this ter-
minology is a bit misleading because it suggests that such a map is injective,
which is not necessarily the case. Unfortunately this terminology is used
by most people.

Example 17.1. Suppose we have two feature maps '
1

: X ! Rn1

and '
2

: X ! Rn2 , and let
1

(x, y) = h'
1

(x),'
1

(y)i and
2

(x, y) =
h'

2

(x),'
2

(y)i be the corresponding kernel functions (where h�,�i is the
standard inner product on Rn). Define the feature map ' : X ! Rn1+n2

by

'(x) = ('
1

(x),'
2

(x)),

an (n
1

+ n
2

)-tuple. We have

h'(x),'(y)i = h('
1

(x),'
2

(x)), ('
1

(y),'
2

(y))i
= h'

1

(x),'
1

(y)i+ h'
2

(x),'
2

(y)i
=

1

(x, y) +
2

(x, y),

which shows that the map given by

(x, y) =
1

(x, y) +
2

(x, y)

is the kernel function corresponding to the feature map ' : X ! Rn1+n2 .

Example 17.2. Let X be a subset of R2, and let '
1

: X ! R3 be the map
given by

'
1

(x
1

, x
2

) = (x2

1

, x2

2

,
p
2x

1

x
2

).

Figure 17.1 illustrates '
1

: X ! R3 when X = {((x
1

, x
2

) | �10 x
1

10,�10 x

2

 10}.
Observe that linear relations in the feature space H = R3 correspond

to quadratic relations in the input space (of data). We have

h'
1

(x),'
1

(y)i = h(x2

1

, x2

2

,
p
2x

1

x
2

), (y2
1

, y2
2

,
p
2y

1

y
2

)i
= x2

1

y2
1

+ x2

2

y2
2

+ 2x
1

x
2

y
1

y
2

= (x
1

y
1

+ x
2

y
2

)2 = hx, yi2,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 603

17.1. Feature Maps and Kernel Functions 603

Fig. 17.1 The parametric surface '1(x1, x2) = (x2
1, x

2
2,
p
2x1x2) where �10 x1 10

and �10 x2 10.

where hx, yi is the usual inner product on R2. Hence the function

(x, y) = hx, yi2

is a kernel function associated with the feature space R3.
If we now consider the map '

2

: X ! R4 given by

'
2

(x
1

, x
2

) = (x2

1

, x2

2

, x
1

x
2

, x
1

x
2

),

we check immediately that

h'
2

(x),'
2

(y)i = (x, y) = hx, yi2,
which shows that the same kernel can arise from di↵erent maps into di↵erent
feature spaces.

Example 17.3. Example 17.2 can be generalized as follows. Suppose we
have a feature map '

1

: X ! Rn and let
1

(x, y) = h'
1

(x),'
1

(y)i be the
corresponding kernel function (where h�,�i is the standard inner product
on Rn). Define the feature map ' : X ! Rn ⇥ Rn by its n2 components

'(x)
(i,j) = ('

1

(x))i('1

(x))j , 1 i, j n,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 604

604 Positive Definite Kernels

with the inner product on Rn ⇥ Rn given by

hu, vi =
n
X

i,j=1

u
(i,j)v(i,j).

Then we have

h'(x),'(y)i =
n
X

i,j=1

'
(i,j)(x)'(i,j)(y)

=
n
X

i,j=1

('
1

(x))i('1

(x))j('1

(y))i('1

(y))j

=
n
X

i=1

('
1

(x))i('1

(y))i

n
X

j=1

('
1

(x))j('1

(y))j

= (
1

(x, y))2.

Thus the map given by (x, y) = (
1

(x, y))2 is a kernel map associated
with the feature map ' : X ! Rn ⇥ Rn. The feature map ' is a direct
generalization of the feature map '

2

of Example 17.2.
The above argument is immediately adapted to show that if '

1

: X !
Rn1 and '

2

: X ! Rn2 are two feature maps and if
1

(x, y) = h'
1

(x),'
1

(y)i
and

2

(x, y) = h'
2

(x),'
2

(y)i are the corresponding kernel functions, then
the map defined by

(x, y) =
1

(x, y)
2

(x, y)

is a kernel function for the feature space Rn1 ⇥ Rn2 and the feature map

'(x)
(i,j) = ('

1

(x))i('2

(x))j , 1 i n
1

, 1 j n
2

.

Example 17.4. Note that the feature map ' : X ! Rn ⇥ Rn is not very
economical because if i 6= j then the components '

(i,j)(x) and '(j,i)(x) are
both equal to ('

1

(x))i('1

(x))j . Therefore we can define the more econom-

ical embedding '0 : X ! R(
n+1
2) given by

'0(x)
(i,j) =

(

('
1

(x))2i i = j,
p
2('

1

(x))i('1

(x))j i < j,

where the pairs (i, j) with 1 i j n are ordered lexicographically. The
feature map ' is a direct generalization of the feature map '

1

of Example
17.2.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 605

17.1. Feature Maps and Kernel Functions 605

Observe that '0 can also be defined in the following way which makes
it easier to come up with the generalization to any power:

'0
(i1,...,in)

(x) =

✓

2

i
1

· · · in

◆

1/2

('
1

(x))i1
1

('
1

(x))i2
1

· · · ('
1

(x))in
1

,

i
1

+ i
2

+ · · ·+ in = 2, ij 2 N,

where the n-tuples (i
1

, . . . , in) are ordered lexicographically. Recall that
for any m � 1 and any (i

1

, . . . , in) 2 Nm such that i
1

+ i
2

+ · · ·+ in = m,
we have

✓

m

i
1

· · · in

◆

=
m!

i
1

! · · · in!
.

More generally, for any m � 2, using the multinomial theorem, we can

define a feature embedding ' : X ! R(
n+m�1

m

) defining the kernel function
 given by (x, y) = (

1

(x, y))m, with ' given by

'
(i1,...,in)(x) =

✓

m

i
1

· · · in

◆

1/2

('
1

(x))i1
1

('
1

(x))i2
1

· · · ('
1

(x))in
1

,

i
1

+ i
2

+ · · ·+ in = m, ij 2 N,

where the n-tuples (i
1

, . . . , in) are ordered lexicographically.

Example 17.5. For any positive real constant R > 0, the constant function
(x, y) = R is a kernel function corresponding to the feature map ' : X ! R
given by '(x, y) =

p
R.

By definition, the function 0
1

: Rn ! R given by 0
1

(x, y) = hx, yi is a
kernel function (the feature map is the identity map from Rn to itself). We
just saw that for any positive real constant R > 0, the constant 0

2

(x, y) = R
is a kernel function. By Example 17.1, the function 0

3

(x, y) = 0
1

(x, y) +
0
2

(x, y) is a kernel function, and for any integer d � 1, by Example 17.4,
the function d given by

d(x, y) = (0
3

(x, y))d = (hx, yi+R)d,

is a kernel function on Rn. By the binomial formula,

d(x, y) =
d
X

m=0

Rd�mhx, yim.

By Example 17.1, the feature map of this kernel function is the concate-
nation of the features of the d+ 1 kernel maps Rd�mhx, yim. By Example

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 606

606 Positive Definite Kernels

17.3, the components of the feature map of the kernel map Rd�mhx, yim
are reweightings of the functions

'
(i1,...,in)(x) = xi1

1

xi2
2

· · ·xi
n

n , i
1

+ i
2

+ · · ·+ in = m,

with (i
1

, . . . , in) 2 Nn. Thus the components of the feature map of the
kernel function d are reweightings of the functions

'
(i1,...,in)(x) = xi1

1

xi2
2

· · ·xi
n

n , i
1

+ i
2

+ · · ·+ in d,

with (i
1

, . . . , in) 2 Nn. It is easy to see that the dimension of this feature
space is

�

m+d
d

�

.
There are a number of variations of the polynomial kernel d; all-subsets

embedding kernels, ANOVA kernels; see Shawe–Taylor and Christianini
[Shawe-Taylor and Cristianini (2004)], Chapter III.

In the next example the set X is not a vector space.

Example 17.6. Let D be a finite set and let X = 2D be its power set. If
|D| = n, let H = RX ⇠= R2

n

. We are assuming that the subsets of D are
enumerated in some fashion so that each coordinate of R2

n

corresponds to
one of these subsets. For example, if D = {1, 2, 3, 4}, let

U
1

= ; U
2

= {1} U
3

= {2} U
4

= {3}
U
5

= {4} U
6

= {1, 2} U
7

= {1, 3} U
8

= {1, 4}
U
9

= {2, 3} U
10

= {2, 4} U
11

= {3, 4} U
12

= {1, 2, 3}
U
13

= {1, 2, 4} U
14

= {1, 3, 4} U
15

= {2, 3, 4} U
16

= {1, 2, 3, 4}.

Let ' : X ! H be the feature map defined as follows: for any subsets
A,U 2 X,

'(A)U =

(

1 if U ✓ A

0 otherwise.

For example, if A
1

= {1, 2, 3}, we obtain the vector

'({1, 2, 3}) = (1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0),

and if A
2

= {2, 3, 4}, we obtain the vector

'({2, 3, 4}) = (1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0).

For any two subsets A
1

and A
2

of D, it is easy to check that

h'(A
1

),'(A
2

)i = 2|A1\A2|,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 607

17.1. Feature Maps and Kernel Functions 607

the number of common subsets of A
1

and A
2

. For example, A
1

\A
2

= {2, 3},
and

h'(A
1

),'(A
2

)i = 4.

Therefore, the function : X ⇥X ! R given by

(A
1

, A
2

) = 2|A1\A2|, A
1

, A
2

✓ D

is a kernel function.

Kernels on collections of sets can be defined in terms of measures.

Example 17.7. Let (D,A) be a measurable space, where D is a nonempty
set and A is a �-algebra on D (the measurable sets). Let X be a subset of
A. If µ is a positive measure on (D,A) and if µ is finite, which means that
µ(D) is finite, then we can define the map

1

: X ⇥X ! R given by

1

(A
1

, A
2

) = µ(A
1

\A
2

), A
1

, A
2

2 X.

We can show that is a kernel function as follows. Let H = L2

µ(D,A,R)
be the Hilbert space of µ-square-integrable functions with the inner product

hf, gi =
Z

D

f(s)g(s) dµ(s),

and let ' : X ! H be the feature embedding given by

'(A) = �A, A 2 X,

the characteristic function of A. Then we have

1

(A
1

, A
2

) = µ(A
1

\A
2

) =

Z

D

�A1\A2(s) dµ(s)

=

Z

D

�A1(s)�A2(s) dµ(s) = h�A1 ,�A2i

= h'(A
1

),'(A
2

)i.
The above kernel is called the intersection kernel . If we assume that µ

is normalized so that µ(D) = 1, then we also have the union complement
kernel :

2

(A
1

, A
2

) = µ(A
1

\A
2

) = 1� µ(A
1

[A
2

).

The sum
3

of the kernels
1

and
2

is the agreement kernel :

s(A1

, A
2

) = 1� µ(A
1

�A
2

)� µ(A
2

�A
1

).

Many other kinds of kernels can be designed, in particular, graph ker-
nels. For comprehensive presentations of kernels, see Schölkopf and Smola
[Schölkopf and Smola (2002)] and Shawe–Taylor and Christianini [Shawe-
Taylor and Cristianini (2004)].

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 608

608 Positive Definite Kernels

Kernel functions have the following important property.

Proposition 17.1. Let X be any nonempty set, let H be any (complex)
Hilbert space, let ' : X ! H be any function, and let : X ⇥X ! C be the
kernel given by

(x, y) = h'(x),'(y)i, x, y 2 X.

For any finite subset S = {x
1

, . . . , xp} of X, if KS is the p⇥ p matrix

KS = ((xj , xi))1i,jp = (h'(xj),'(xi)i)1i,jp,

then we have

u⇤KS u � 0, for all u 2 Cp.

Proof. We have

u⇤KS u = u>K>
S u =

p
X

i,j=1

(xi, xj)uiuj

=
p
X

i,j=1

h'(x),'(y)iuiuj

=

*

p
X

i=1

ui'(xi),
p
X

j=1

uj'(xj)

+

=

�

�

�

�

�

p
X

i=1

ui'(xi)

�

�

�

�

�

2

� 0,

as claimed.

17.2 Basic Properties of Positive Definite Kernels

Proposition 17.1 suggests a second approach to kernel functions which does
not assume that a feature space and a feature map are provided. We will
see in Section 17.3 that the two approaches are equivalent. The second
approach is useful in practice because it is often di�cult to define a feature
space and a feature map in a simple manner.

Definition 17.2. Let X be a nonempty set. A function : X ⇥X ! C is
a positive definite kernel if for every finite subset S = {x

1

, . . . , xp} of X, if
KS is the p⇥ p matrix

KS = ((xj , xi))1i,jp

called a Gram matrix , then we have

u⇤KS u =
p
X

i,j=1

(xi, xj)uiuj � 0, for all u 2 Cp.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 609

17.2. Basic Properties of Positive Definite Kernels 609

Observe that Definition 17.2 does not require that u⇤KS u > 0 if u 6= 0,
so the terminology positive definite is a bit abusive, and it would be more
appropriate to use the terminology positive semidefinite. However, it seems
customary to use the term positive definite kernel , or even positive kernel .

Proposition 17.2. Let : X ⇥X ! C be a positive definite kernel. Then
(x, x) � 0 for all x 2 X, and for any finite subset S = {x

1

, . . . , xp} of X,
the p⇥ p matrix KS given by

KS = ((xj , xi))1i,jp

is Hermitian, that is, K⇤
S = KS.

Proof. The first property is obvious by choosing S = {x}. To prove that
KS is Hermitian, observe that we have

(u+ v)⇤KS(u+ v) = u⇤KSu+ u⇤KSv + v⇤KSu+ v⇤KSv,

and since (u+ v)⇤KS(u+ v), u⇤KSu, v⇤KSv � 0, we deduce that

2A = u⇤KSv + v⇤KSu (1)

must be real. By replacing u by iu, we see that

2B = �iu⇤KSv + iv⇤KSu (2)

must also be real. By multiplying Equation (2) by i and adding it to
Equation (1) we get

u⇤KSv = A+ iB. (3)

By subtracting Equation (3) from Equation (1) we get

v⇤KSu = A� iB.

Then

u⇤K⇤
Sv = v⇤KSu = A� iB = A+ iB = u⇤KSv,

for all u, v 2 C⇤, which implies K⇤
S = KS .

If the map : X ⇥ X ! R is real-valued, then we have the following
criterion for to be a positive definite kernel that only involves real vectors.

Proposition 17.3. If : X ⇥X ! R, then is a positive definite kernel
i↵ for any finite subset S = {x

1

, . . . , xp} of X, the p ⇥ p real matrix KS

given by

KS = ((xk, xj))1j,kp

is symmetric, that is, K>
S = KS, and

u>KS u =
p
X

j,k=1

(xj , xk)ujuk � 0, for all u 2 Rp.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 610

610 Positive Definite Kernels

Proof. If is a real-valued positive definite kernel, then the proposition is
a trivial consequence of Proposition 17.2.

For the converse assume that is symmetric and that it satisfies the
second condition of the proposition. We need to show that is a positive
definite kernel with respect to complex vectors. If we write uk = ak + ibk,
then

u⇤KS u =
p
X

j,k=1

(xj , xk)(aj + ibj)(ak � ibk)

=
p
X

j,k=1

(ajak + bjbk)(xj , xk) + i
p
X

j,k=1

(bjak � ajbk)(xj , xk)

=
p
X

j,k=1

(ajak + bjbk)(xj , xk)

+ i
X

1j<kp

bjak((xj , xk)� (xk, xj)).

Thus u⇤KSu is real i↵ KS is symmetric.

Consequently we make the following definition.

Definition 17.3. Let X be a nonempty set. A function : X ⇥X ! R is
a (real) positive definite kernel if (x, y) = (y, x) for all x, y 2 X, and for
every finite subset S = {x

1

, . . . , xp} of X, if KS is the p⇥ p real symmetric
matrix

KS = ((xi, xj))1i,jp,

then we have

u>KS u =
p
X

i,j=1

(xi, xj)uiuj � 0, for all u 2 Rp.

Among other things, the next proposition shows that a positive definite
kernel satisfies the Cauchy–Schwarz inequality.

Proposition 17.4. A Hermitian 2⇥ 2 matrix

A =

✓

a b
b d

◆

is positive semidefinite if and only if a � 0, d � 0, and ad� |b|2 � 0.
Let : X ⇥ X ! C be a positive definite kernel. For all x, y 2 X, we

have

|(x, y)|2 (x, x)(y, y).

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 611

17.2. Basic Properties of Positive Definite Kernels 611

Proof. For all x, y 2 C, we have

�

x y
�

✓

a b
b d

◆✓

x
y

◆

=
�

x y
�

✓

ax+ by
bx+ dy

◆

= a|x|2 + bxy + bxy + d|y|2.
If A is positive semidefinite, then we already know that a � 0 and d � 0.

If a = 0, then we must have b = 0, since otherwise we can make bxy+ bxy,
which is twice the real part of bxy, as negative as we want. In this case,
ad� |b|2 = 0.

If a > 0, then

a|x|2 + bxy + bxy + d|y|2 = a

�

�

�

�

x+
b

a
y

�

�

�

�

2

+
|y|2
a

(ad� |b|2).

If ad � |b|2 < 0, we can pick y 6= 0 and x = �(by)/a, so that the above
expression is negative. Therefore, ad� |b|2 � 0. The converse is trivial.

If x = y, the inequality |(x, y)|2 (x, x)(y, y) is trivial. If x 6= y, the
inequality follows by applying the criterion for being positive semidefinite
to the matrix

✓

(x, x) (x, y)
(x, y) (y, y)

◆

,

as claimed.

The following property due to I. Schur (1911) shows that the pointwise
product of two positive definite kernels is also a positive definite kernel.

Proposition 17.5. (I. Schur) If
1

: X ⇥ X ! C and
2

: X ⇥ X ! C
are two positive definite kernels, then the function : X ⇥X ! C given by
(x, y) =

1

(x, y)
2

(x, y) for all x, y 2 X is also a positive definite kernel.

Proof. It su�ces to prove that if A = (ajk) and B = (bjk) are two Hermi-
tian positive semidefinite p⇥ p matrices, then so is their pointwise product
C = A � B = (ajkbjk) (also known as Hadamard or Schur product). Re-
call that a Hermitian positive semidefinite matrix A can be diagonalized
as A = U⇤U⇤, where ⇤ is a diagonal matrix with nonnegative entries and
U is a unitary matrix. Let ⇤1/2 be the diagonal matrix consisting of the
positive square roots of the diagonal entries in ⇤. Then we have

A = U⇤U⇤ = U⇤1/2⇤1/2U⇤ = U⇤1/2(U⇤1/2)⇤.

Thus if we set R = U⇤1/2, we have

A = RR⇤,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 612

612 Positive Definite Kernels

which means that

ajk =
p
X

h=1

rjhrkh.

Then for any u 2 Cp, we have

u⇤(A �B)u =
p
X

j,k=1

ajkbjkujuk

=
p
X

j,k=1

p
X

h=1

rjhrkhbjkujuk

=
p
X

h=1

p
X

j,k=1

bjkujrjhukrkh.

Since B is positive semidefinite, for each fixed h, we have

p
X

j,k=1

bjkujrjhukrkh =
p
X

j,k=1

bjkzjzk � 0,

as we see by letting z = (u
1

r
1h, . . . , uprph),

In contrast, the ordinary product AB of two symmetric positive semidef-
inite matrices A and B may not be symmetric positive semidefinite; see
Section 7.9 in Volume I for an example.

Here are other ways of obtaining new positive definite kernels from old
ones.

Proposition 17.6. Let
1

: X⇥X ! C and
2

: X⇥X ! C be two positive
definite kernels, f : X ! C be a function, : X ! RN be a function,

3

: RN ⇥ RN ! C be a positive definite kernel, and a 2 R be any positive
real number. Then the following functions are positive definite kernels:

(1) (x, y) =
1

(x, y) +
2

(x, y).
(2) (x, y) = a

1

(x, y).
(3) (x, y) = f(x)f(y).
(4) (x, y) =

3

((x), (y)).
(5) If B is a symmetric positive semidefinite n⇥ n matrix, then the map

 : Rn ⇥ Rn ! R given by

(x, y) = x>By

is a positive definite kernel.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 613

17.2. Basic Properties of Positive Definite Kernels 613

Proof. (1) For every finite subset S = {x
1

, . . . , xp} of X, if K
1

is the p⇥ p
matrix

K
1

= (
1

(xk, xj))1j,kp

and if if K
2

is the p⇥ p matrix

K
2

= (
2

(xk, xj))1j,kp,

then for any u 2 Cp, we have

u⇤(K
1

+K
2

)u = u⇤K
1

u+ u⇤K
2

u � 0,

since u⇤K
1

u � 0 and u⇤K
2

u � 0 because
2

and
2

are positive definite
kernels, which means that K

1

and K
2

are positive semidefinite.
(2) We have

u⇤(aK
1

)u = au⇤K
1

u � 0,

since a > 0 and u⇤K
1

u � 0.
(3) For every finite subset S = {x

1

, . . . , xp} of X, if K is the p⇥p matrix

K = ((xk, xj))1j,kp = (f(xk)f(xj))1j,kp

then we have

u⇤Ku = u>K>u =
p
X

j,k=1

(xj , xk)ujuk =
p
X

j,k=1

ujf(xj)ukf(xk)

=

�

�

�

�

p
X

j=1

ujf(xj)

�

�

�

�

2

� 0.

(4) For every finite subset S = {x
1

, . . . , xp} of X, the p ⇥ p matrix K
given by

K = ((xk, xj))1j,kp = (
3

((xk), (xj)))1j,kp

is symmetric positive semidefinite since
3

is a positive definite kernel.
(5) As in the proof of Proposition 17.5 (adapted to the real case) there

is a matrix R such that

B = RR>,

so

(x, y) = x>By = x>RR>y = (R>x)>R>y = hR>x,R>yi,
so is the kernel function given by the feature map '(x) = R>x from
Rn to itself, and by Proposition 17.1, it is a symmetric positive definite
kernel.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 614

614 Positive Definite Kernels

Proposition 17.7. Let
1

: X ⇥X ! C be a positive definite kernel, and
let p(z) be a polynomial with nonnegative coe�cients. Then the following
functions defined below are also positive definite kernels.

(1) (x, y) = p(
1

(x, y)).
(2) (x, y) = e1(x,y).
(3) If X is real Hilbert space with inner product h�,�iX and corresponding

norm k kX ,

(x, y) = e�
kx�yk2

X

2�2

for any � > 0.

Proof. (1) If p(z) = amzm + · · ·+ a
1

z + a
0

, then

p(
1

(x, y)) = am1(x, y)
m + · · ·+ a

1

1

(x, y) + a
0

.

Since ak � 0 for k = 0, . . . ,m, by Proposition 17.5 and Proposition 17.6(2),
each function aki(x, y)k with 1 k m is a positive definite kernel, by
Proposition 17.6(3) with f(x) =

p
a
0

, the constant function a
0

is a positive
definite kernel, and by Proposition 17.6(1), p(

1

(x, y)) is a positive definite
kernel.

(2) We have

e1(x,y) =
1
X

k=0

1

(x, y)k

k!
.

By (1), the partial sums

m
X

k=0

1

(x, y)k

k!

are positive definite kernels, and since e1(x,y) is the (uniform) pointwise
limit of positive definite kernels, it is also a positive definite kernel.

(3) By Proposition 17.6(2), since the map (x, y) 7! hx, yiX is obviously
a positive definite kernel (the feature map is the identity) and since � 6= 0,
the function (x, y) 7! hx, yiX/�2 is a positive definite kernel (by Proposition
17.6(2)), so by (2),

1

(x, y) = e
hx,yi

X

�

2

is a positive definite kernel. Let f : X ! R be the function given by

f(x) = e�
kxk2

2�2 .

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 615

17.3. Hilbert Space Representation of a Positive Kernel ~ 615

Then by Proposition 17.6(3),

2

(x, y) = f(x)f(y) = e�
kxk2

2�2 e�
kyk2

2�2 = e�
kxk2

X

+kyk2
X

2�2

is a positive definite kernel. By Proposition 17.5, the function
1

2

is a
positive definite kernel, that is

1

(x, y)
2

(x, y) = e
hx,yi

X

�

2 e�
kxk2

X

+kyk2
X

2�2 = e
hx,yi

X

�

2 � kxk2
X

+kyk2
X

2�2 = e�
kx�yk2

X

2�2

is a positive definite kernel.

Definition 17.4. The positive definite kernel

(x, y) = e�
kx�yk2

X

2�2

is called a Gaussian kernel .

This kernel requires a feature map in an infinite-dimensional space be-
cause it is an infinite sum of distinct kernels.

Remark: If
1

is a positive definite kernel, the proof of Proposition 17.7(3)
is immediately adapted to show that

(x, y) = e�
1(x,x)+1(y,y)�21(x,y)

2�2

is a positive definite kernel.
Next we prove that every positive definite kernel arises from a feature

map in a Hilbert space which is a function space.

17.3 Hilbert Space Representation of a Positive Definite
Kernel ~

The following result shows how to construct a so-called reproducing kernel
Hilbert space, for short RKHS, from a positive definite kernel.

Theorem 17.1. Let : X ⇥ X ! C be a positive definite kernel on a
nonempty set X. For every x 2 X, let x : X ! C be the function given by

x(y) = (x, y), y 2 X.

Let H
0

be the subspace of the vector space CX of functions from X to C
spanned by the family of functions (x)2X , and let ' : X ! H

0

be the map
given by '(x) = x. There is a Hermitian inner product h�,�i on H

0

such
that

(x, y) = h'(x),'(y)i, for all x, y 2 X.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 616

616 Positive Definite Kernels

The completion H of H
0

is a Hilbert space, and the map ⌘ : H ! CX given
by

⌘(f)(x) = hf,xi, x 2 X,

is linear and injective, so H can be identified with a subspace of CX . We
also have

(x, y) = h'(x),'(y)i, for all x, y 2 X.

For all f 2 H
0

and all x 2 X,

hf,xi = f(x), (⇤)

a property known as the reproducing property.

Proof.
Step 1. Define a candidate inner product.
For any two linear combinations f =

Pp
j=1

↵jx
j

and g =
Pq

k=1

�ky
k

in H
0

, with xj , yk 2 X and ↵j ,�k 2 C, define hf, gi by

hf, gi =
p
X

j=1

q
X

k=1

↵j�k(xj , yk). (†)

At first glance, the above expression appears to depend on the expression
of f and g as linear combinations, but since (xj , yk) = (yk, xj), observe
that

q
X

k=1

�kf(yk) =
p
X

j=1

q
X

k=1

↵j�k(xj , yk) =
p
X

j=1

↵jg(xj), (⇤)

and since the first and the third term are equal for all linear combinations
representing f and g, we conclude that (†) depends only on f and g and
not on their representation as a linear combination.

Step 2. Prove that the inner product defined by (†) is Hermitian semidef-
inite.

Obviously (†) defines a Hermitian sequilinear form. For every f 2 H
0

,
we have

hf, fi =
p
X

j,k=1

↵j↵k(xj , xk) � 0,

since is a positive definite kernel.
Step 3. Prove that the inner product defined by (†) is positive definite.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 617

17.3. Hilbert Space Representation of a Positive Kernel ~ 617

For any finite subset {f
1

, . . . , fn} of H
0

and any z 2 Cn, we have
n
X

j,k=1

hfj , fkizjzk =

*

n
X

j=1

zjfj ,
n
X

j=1

zjfj

+

� 0,

which shows that the map (f, g) 7! hf, gi from H
0

⇥H
0

to C is a positive
definite kernel.

Observe that for all f 2 H
0

and all x 2 X, (†) implies that

hf,xi =
k
X

j=1

↵j(xj , x) = f(x),

a property known as the reproducing property . The above implies that

hx,yi = (x, y). (⇤⇤)
By Proposition 17.4 applied to the positive definite kernel (f, g) 7! hf, gi,
we have

|hf,xi|2 hf, fihx,xi,
that is,

|f(x)|2 hf, fi(x, x),
so hf, fi = 0 implies that f(x) = 0 for all x 2 X, which means that h�,�i
as defined by (†) is positive definite. Therefore, h�,�i is a Hermitian inner
product on H

0

, and by (⇤⇤) and since '(x) = x, we have

(x, y) = h'(x),'(y)i, for all x, y 2 X.

Step 4. Define the embedding ⌘.
Let H be the Hilbert space which is the completion of H

0

, so that H
0

is dense in H. The map ⌘ : H ! CX given by

⌘(f)(x) = hf,xi
is obviously linear, and it is injective because the family (x)x2X spans H

0

which is dense in H, thus it is also dense in H, so if hf,xi = 0 for all
x 2 X, then f = 0.

Corollary 17.1. If we identify a function f 2 H with the function ⌘(f),
then we have the reproducing property

hf,xi = f(x), for all f 2 H and all x 2 X.

If X is finite, then CX is finite-dimensional. If X is a separable topological
space and if is continuous, then it can be shown that H is a separable
Hilbert space.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 618

618 Positive Definite Kernels

Also, if : X ⇥X ! R is a real symmetric positive definite kernel, then
we see immediately that Theorem 17.1 holds withH

0

a real Euclidean space
and H a real Hilbert space.

~ Remark: If X = G, where G is a locally compact group, then a
function p : G ! C (not necessarily continuous) is positive semidefinite if
for all s

1

, . . . , sn 2 G and all ⇠
1

, . . . , ⇠n 2 C, we have

n
X

j,k=1

p(s�1

j sk)⇠k⇠j � 0.

So if we define : G⇥G ! C by

(s, t) = p(t�1s),

then is a positive definite kernel on G. If p is continuous, then it is known
that p arises from a unitary representation U : G ! U(H) of the group G
in a Hilbert space H with inner product h�,�i (a homomorphism with a
certain continuity property), in the sense that there is some vector x

0

2 H
such that

p(s) = hU(s)(x
0

), x
0

i, for all s 2 G.

Since the U(s) are unitary operators on H,

p(t�1s) = hU(t�1s)(x
0

), x
0

i = hU(t�1)(U(s)(x
0

)), x
0

i
= hU(t)⇤(U(s)(x

0

)), x
0

i = hU(s)(x
0

), U(t)(x
0

)i,

which shows that

(s, t) = hU(s)(x
0

), U(t)(x
0

)i,

so the map ' : G ! H given by

'(s) = U(s)(x
0

)

is a feature map into the feature space H. This theorem is due to Gelfand
and Raikov (1943).

The proof of Theorem 17.1 is essentially identical to part of Godement’s
proof of the above result about the correspondence between functions of
positive type and unitary representations; see Helgason [Helgason (2000)],
Chapter IV, Theorem 1.5. Theorem 17.1 is a little more general since it
does not assume that X is a group, but when G is a group, the feature map
arises from a unitary representation.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 619

17.4. Kernel PCA 619

17.4 Kernel PCA

As an application of kernel functions, we discuss a generalization of the
method of principal component analysis (PCA). Suppose we have a set of
data S = {x

1

, . . . , xn} in some input space X , and pretend that we have
an embedding ' : X ! F of X in a (real) feature space (F, h�,�i), but
that we only have access to the kernel function (x, y) = h'(x),'(y)i. We
would like to do PCA analysis on the set '(S) = {'(x

1

), . . . ,'(xn)}.
There are two obstacles:

(1) We need to center the data and compute the inner products of pairs of
centered data. More precisely, if the centroid of '(S) is

µ =
1

n
('(x

1

) + · · ·+ '(xn)),

then we need to compute the inner products h'(x)� µ,'(y)� µi.
(2) Let us assume that F = Rd with the standard Euclidean inner product

and that the data points '(xi) are expressed as row vectors Xi of
an n ⇥ d matrix X (as it is customary). Then the inner products
(xi, xj) = h'(xi),'(xj)i are given by the kernel matrix K = XX>.
Be aware that with this representation, in the expression h'(xi),'(xj)i,
'(xi) is a d-dimensional column vector, while '(xi) = X>

i . However,
the jth component (Yk)j of the principal component Yk (viewed as a
n-dimensional column vector) is given by the projection of bXj = Xj�µ
onto the direction uk (viewing µ as a d-dimensional row vector), which
is a unit eigenvector of the matrix (X�µ)>(X�µ) (where bX = X�µ
is the matrix whose jth row is bXj = Xj � µ), is given by the inner
product

hXj � µ, uki = (Yk)j ;

see Definition 21.2 (Vol. I) and Theorem 21.11 (Vol. I). The problem is
that we know what the matrix (X �µ)(X �µ)> is from (1), because it
can be expressed in terms of K, but we don’t know what (X�µ)>(X�
µ) is because we don’t have access to bX = X � µ.

Both di�culties are easily overcome. For (1) we have

h'(x)� µ,'(y)� µi =
*

'(x)� 1

n

n
X

k=1

'(xk),'(y)�
1

n

n
X

k=1

'(xk)

+

= (x, y)� 1

n

n
X

i=1

(x, xi)�
1

n

n
X

j=1

(xj , y) +
1

n2

n
X

i,j=1

(xi, xj).

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 620

620 Positive Definite Kernels

For (2), if K is the kernel matrix K = ((xi, xj)), then the kernel matrix
bK corresponding to the kernel function b given by

b(x, y) = h'(x)� µ,'(y)� µi
can be expressed in terms of K. Let 1 be the column vector (of dimension
n) whose entries are all 1. Then 11> is the n⇥ n matrix whose entries are
all 1. If A is an n⇥ n matrix, then 1>A is the row vector consisting of the
sums of the columns of A, A1 is the column vector consisting of the sums
of the rows of A, and 1>A1 is the sum of all the entries in A. Then it is
easy to see that the kernel matrix corresponding to the kernel function b
is given by

bK = K� 1

n
11>K� 1

n
K11> +

1

n2

(1>K1)11>.

Suppose bX = X �µ has rank r. To overcome the second problem, note
that if

bX = V DU>

is an SVD for bX, then
bX> = UD>V >

is an SVD for bX>, and the r ⇥ r submatrix of D> consisting of the first r
rows and r columns of D> (and D), is the diagonal ⌃r matrix consisting
of the singular values �

1

� · · · � �r of bX, so we can express the matrix Ur

consisting of the first r columns uk of U in terms of the matrix Vr consisting
of the first r columns vk of V (1 k r) as

Ur = bX>Vr⌃
�1

r .

Furthermore, �2

1

� · · · � �2

r are the nonzero eigenvalues of bK = bX bX>, and
the columns of Vr are corresponding unit eigenvectors of bK. From

Ur = bX>Vr⌃
�1

r

the kth column uk of Ur (which is a unit eigenvector of bX>
bX associated

with the eigenvalue �2

k) is given by

uk =
n
X

i=1

��1

k (vk)i bX
>
i =

n
X

i=1

��1

k (vk)i\'(xi), 1 k r,

so the projection of ['(x) onto uk is given by

h['(x), uki =
*

['(x),
n
X

i=1

��1

k (vk)i\'(xi)

+

=
n
X

i=1

��1

k (vk)i
D

['(x),\'(xi)
E

=
n
X

i=1

��1

k (vk)ib(x, xi).

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 621

17.5. Summary 621

Therefore, the jth component of the principal component Yk in the principal
direction uk is given by

(Yk)j = hXj � µ, uki =
n
X

i=1

��1

k (vk)ib(xj , xi) =
n
X

i=1

��1

k (vk)i bKij .

The generalization of kernel PCA to a general embedding ' : X ! F
of X in a (real) feature space (F, h�,�i) (where F is not restricted to be
equal to Rd) with the kernel matrix K given by

Kij = h'(xi),'(xj)i,
goes as follows.

• Let r be the rank of bK, where

bK = K� 1

n
11>K� 1

n
K11> +

1

n2

(1>K1)11>,

let �2

1

� · · · � �2

r be the nonzero eigenvalues of bK, and let v
1

, . . . , vr
be corresponding unit eigenvectors. The notation

↵k = ��1

k vk
is often used, where the ↵k are called the dual variables.

• The column vector Yk (1 k r) defined by

Yk =

n
X

i=1

(↵k)i bKij

!n

j=1

is called the kth kernel principal component (for short kth kernel
PCA) of the data set S = {x

1

, . . . , xn} in the direction uk =
Pn

i=1

��1

k (vk)i bX>
i (even though the matrix bX is not known).

17.5 Summary

The main concepts and results of this chapter are listed below:

• Feature map, feature embedding, feature space.
• Kernel function.
• Positive definite kernel, real positive definite kernel.
• Gram matrix.
• Hadamard product, Schur product.
• Gaussian kernel.
• Reproducing kernel Hilbert space (RKHS).
• Reproducing property.
• Intersection kernel, union complement kernel, agreement kernel.
• Kernel PCA.
• k-th kernel PCA.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 622

622 Positive Definite Kernels

17.6 Problems

Problem 17.1. Referring back to Example 17.3, prove that if '
1

: X !
Rn1 and '

2

: X ! Rn2 are two feature maps and if
1

(x, y) = h'
1

(x),'
1

(y)i
and

2

(x, y) = h'
2

(x),'
2

(y)i are the corresponding kernel functions, then
the map defined by

(x, y) =
1

(x, y)
2

(x, y)

is a kernel function, for the feature space Rn1 ⇥ Rn2 and the feature map

'(x)
(i,j) = ('

1

(x))i('2

(x))j , 1 i n
1

, 1 j n
2

.

Problem 17.2. Referring back to Example 17.3, prove that the feature

embedding ' : X ! R(
n+m�1

m

) given by

'
(i1,...,in)(x) =

✓

m

i
1

· · · in

◆

1/2

('
1

(x))i1
1

('
1

(x))i2
1

· · · ('
1

(x))in
1

,

i
1

+ i
2

+ · · ·+ in = m, ij 2 N,

where the n-tuples (i
1

, . . . , in) are ordered lexicographically, defines the
kernel function given by (x, y) = (

1

(x, y))m.

Problem 17.3. In Example 17.6, prove that for any two subsets A
1

and
A

2

of D,

h'(A
1

),'(A
2

)i = 2|A1\A2|,

the number of common subsets of A
1

and A
2

.

Problem 17.4. Prove that the pointwise limit of positive definite kernels
is also a positive definite kernel.

Problem 17.5. Prove that if
1

is a positive definite kernel, then

(x, y) = e�
1(x,x)+1(y,y)�21(x,y)

2�2

is a positive definite kernel.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 623

Chapter 18

Soft Margin Support Vector Machines

In Sections 14.5 and 14.6 we considered the problem of separating two
nonempty disjoint finite sets of p blue points {ui}pi=1

and q red points
{vj}qj=1

in Rn. The goal is to find a hyperplane H of equation w>x� b = 0
(where w 2 Rn is a nonzero vector and b 2 R), such that all the blue points
ui are in one of the two open half-spaces determined by H, and all the red
points vj are in the other open half-space determined by H. SVM picks
a hyperplane which maximizes the minimum distance from these points to
the hyperplane. See Figure 18.1.

w
 x - b = 0

u

u
u

u

1

2

3

p

v

v

v

v

v1

2

3

4

T

w x - b = 0
T

up
u3

u1

u2

v
1

q

qv

v
2

v3

Fig. 18.1 Two examples of the SVM separation problem. The left figure is SVM in R2,
while the right figure is SVM in R3.

In this chapter we return to the problem of separating two disjoint sets

623

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 624

624 Soft Margin Support Vector Machines

of points, {ui}pi=1

and {vj}qj=1

, but this time we do not assume that these
two sets are separable. To cope with nonseparability, we allow points to
invade the safety zone around the separating hyperplane, and even points
on the wrong side of the hyperplane. Such a method is called soft margin
support vector machine. We discuss variations of this method, including
⌫-SV classification. In each case we present a careful derivation of the dual.

If the sets of points {u
1

, . . . , up} and {v
1

, . . . , vq} are not linearly sepa-
rable (with ui, vj 2 Rn), we can use a trick from linear programming which
is to introduce nonnegative “slack variables” ✏ = (✏

1

, . . . , ✏p) 2 Rp and
⇠ = (⇠

1

, . . . , ⇠q) 2 Rq to relax the “hard” constraints

w>ui � b � � i = 1, . . . , p

�w>vj + b � � j = 1, . . . , q

of Problem (SVMh1) from Section 14.5 to the “soft” constraints

w>ui � b � � � ✏i, ✏i � 0 i = 1, . . . , p

�w>vj + b � � � ⇠j , ⇠j � 0 j = 1, . . . , q.

Recall that w 2 Rn and b, � 2 R.
If ✏i > 0, the point ui may be misclassified, in the sense that it can

belong to the margin (the slab), or even to the wrong half-space classifying
the negative (red) points. See Figures 18.5 (2) and (3). Similarly, if ⇠j > 0,
the point vj may be misclassified, in the sense that it can belong to the
margin (the slab), or even to the wrong half-space classifying the positive
(blue) points. We can think of ✏i as a measure of how much the constraint
w>ui � b � � is violated, and similarly of ⇠j as a measure of how much the
constraint �w>vj + b � � is violated. If ✏ = 0 and ⇠ = 0, then we recover
the original constraints. By making ✏ and ⇠ large enough, these constraints
can always be satisfied. We add the constraint w>w 1 and we minimize
��.

If instead of the constraints of Problem (SVMh1) we use the hard con-
straints

w>ui � b � 1 i = 1, . . . , p

�w>vj + b � 1 j = 1, . . . , q

of Problem (SVMh2) (see Example 14.6), then we relax to the soft con-
straints

w>ui � b � 1� ✏i, ✏i � 0 i = 1, . . . , p

�w>vj + b � 1� ⇠j , ⇠j � 0 j = 1, . . . , q.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 625

625

In this case there is no constraint on w, but we minimize (1/2)w>w.
Ideally we would like to find a separating hyperplane that minimizes

the number of misclassified points, which means that the variables ✏i and
⇠j should be as small as possible, but there is a trade-o↵ in maximizing the
margin (the thickness of the slab), and minimizing the number of misclas-
sified points. This is reflected in the choice of the objective function, and
there are several options, depending on whether we minimize a linear func-
tion of the variables ✏i and ⇠j , or a quadratic functions of these variables,
or whether we include the term (1/2)b2 in the objective function. These
methods are known as support vector classification algorithms (for short
SVC algorithms).

SVC algorithms seek an “optimal” separating hyperplane H of equation
w>x � b = 0. If some new data x 2 Rn comes in, we can classify it by
determining in which of the two half spaces determined by the hyperplane
H they belong by computing the sign of the quantity w>x�b. The function
sgn: R ! {�1, 1} is given by

sgn(x) =

(

+1 if x � 0

�1 if x < 0.

Then we define the (binary) classification function associated with the hy-
perplane H of equation w>x� b = 0 as

f(x) = sgn(w>x� b).

Remarkably, all the known optimization problems for finding this hy-
perplane share the property that the weight vector w and the constant b
are given by expressions that only involves inner products of the input data
points ui and vj , and so does the classification function

f(x) = sgn(w>x� b).

This is a key fact that allows a far reaching generalization of the support
vector machine using the method of kernels.

The method of kernels consists in assuming that the input space Rn

is embedded in a larger (possibly infinite dimensional) Euclidean space
F (with an inner product h�,�i) usually called a feature space, using a
function

' : Rn ! F

called a feature map. The function : Rn ⇥ Rn ! R given by

(x, y) = h'(x),'(y)i

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 626

626 Soft Margin Support Vector Machines

is the kernel function associated with the embedding '; see Chapter 17.
The idea is that the feature map ' “unwinds” the input data, making it
somehow more linear in the higher dimensional space F . Now even if we
don’t know what the feature space F is and what the embedding map '
is, we can pretend to solve our separation problem in F for the embedded
data points '(ui) and '(vj). Thus we seek a hyperplane H of equation

hw, ⇣i � b = 0, ⇣ 2 F,

in the feature space F , to attempt to separate the points '(ui) and the
points '(vj). As we said, it turns out that w and b are given by expression
involving only the inner products (ui, uj) = h'(ui),'(uj)i,(ui, vj) =
h'(ui),'(vj)i, and (vi, vj) = h'(vi),'(vj)i, which form the symmetric
(p+ q)⇥ (p+ q) matrix K (a kernel matrix) given by

Kij =

8

>

>

>

>

<

>

>

>

>

:

(ui, uj) 1 i p, 1 j q

�(ui, vj�p) 1 i p, p+ 1 j p+ q

�(vi�p, uj) p+ 1 i p+ q, 1 j p

(vi�p, vj�q) p+ 1 i p+ q, p+ 1 j p+ q.

For example, if p = 2 and q = 3, we have the matrix

K =

0

B

B

B

B

@

(u
1

, u
1

) (u
1

, u
2

) �(u
1

, v
1

) �(u
1

, v
2

) �(u
1

, v
3

)
(u

2

, u
1

) (u
2

, u
2

) �(u
2

, v
1

) �(u
2

, v
2

) �(u
2

, v
3

)
�(v

1

, u
1

) �(v
1

, u
2

) (v
1

, v
1

) (v
1

, v
2

) (v
1

, v
3

)
�(v

2

, u
1

) �(v
2

, u
2

) (v
2

, v
1

) (v
2

, v
2

) (v
2

, v
3

)
�(v

3

, u
1

) �(v
3

, u
2

) (v
3

, v
1

) (v
3

, v
2

) (v
3

, v
3

)

1

C

C

C

C

A

.

Then the classification function

f(x) = sgn(hw,'(x)i � b)

for points in the original data space Rn is also expressed solely in terms
of the matrix K and the inner products (ui, x) = h'(ui),'(x)i and
(vj , x) = h'(vj),'(x)i. As a consequence, in the original data space Rn,
the hypersurface

S = {x 2 Rn | hw,'(x)i � b = 0}

separates the data points ui and vj , but it is not an a�ne subspace of Rn.
The classification function f tells us on which “side” of S is a new data
point x 2 Rn. Thus, we managed to separate the data points ui and vj
that are not separable by an a�ne hyperplane, by a nona�ne hypersurface
S, by assuming that an embdedding ' : Rn ! F exists, even though we

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 627

18.1. Soft Margin Support Vector Machines; (SVM
s1) 627

don’t know what it is, but having access to F through the kernel function
 : Rn ⇥ Rn ! R given by the inner products (x, y) = h'(x),'(y)i.

In practice the art of using the kernel method is to choose the right
kernel (as the knight says in Indiana Jones, to “choose wisely.”).

The method of kernels is very flexible. It also applies to the soft margin
versions of SVM, but also to regression problems, to principal component
analysis (PCA), and to other problems arising in machine learning.

We discussed the method of kernels in Chapter 17. Other comprehensive
presentations of the method of kernels are found in Schölkopf and Smola
[Schölkopf and Smola (2002)] and Shawe–Taylor and Christianini [Shawe-
Taylor and Cristianini (2004)]. See also Bishop [Bishop (2006)].

We first consider the soft margin SVM arising from Problem (SVMh1).

18.1 Soft Margin Support Vector Machines; (SVMs1)

In this section we derive the dual function G associated with the following
version of the soft margin SVM coming from Problem (SVMh1), where the
maximization of the margin � has been replaced by the minimization of ��,
and where we added a “regularizing term” K

⇣

Pp
i=1

✏i +
Pq

j=1

⇠j
⌘

whose

purpose is to make ✏ 2 Rp and ⇠ 2 Rq sparse (that is, try to make ✏i and ⇠j
have as many zeros as possible), whereK > 0 is a fixed constant that can be
adjusted to determine the influence of this regularizing term. If the primal
problem (SVMs1) has an optimal solution (w, �, b, ✏, ⇠), we attempt to use
the dual function G to obtain it, but we will see that with this particular
formulation of the problem, the constraint w>w 1 causes troubles even
though it is convex.

Soft margin SVM (SVMs1):

minimize � � +K

✓ p
X

i=1

✏i +
q
X

j=1

⇠j

◆

subject to

w>ui � b � � � ✏i, ✏i � 0 i = 1, . . . , p

� w>vj + b � � � ⇠j , ⇠j � 0 j = 1, . . . , q

w>w 1.

It is customary to write ` = p+q. Figure 18.2 illustrates the correct margin
half space associated with w>x� b� � = 0 while Figure 18.3 illustrates the
correct margin half space associated with w>x� b+ � = 0. Ideally, all the

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 628

628 Soft Margin Support Vector Machines

points should be contained in one of the two correct shifted margin regions
described by a�ne constraints w>ui � b � � � ✏i, or �w>vj + b � � � ⇠j .

 w x - b - δ = 0

T

w x - b - δ < 0T

T T

 w x - b + δ = 0

T

Incorrect side of Blue Margin

w x - b - δ > 0

Correct side of Blue Margin

 w x - b - δ = 0

separting hyperplane

 w x - b = 0

T

Fig. 18.2 The blue margin half space associated with w>x� b� � = 0.

For this problem, the primal problem may have an optimal solution
(w, �, b, ✏, ⇠) with kwk = 1 and � > 0, but if the sets of points are not
linearly separable then an optimal solution of the dual may not yield w.

The objective function of our problem is a�ne and the only nona�ne
constraint w>w 1 is convex. This constraint is qualified because for any
w 6= 0 such that w>w < 1 and for any � > 0 and any b we can pick ✏
and ⇠ large enough so that the constraints are satisfied. Consequently, by
Theorem 14.5(2) if the primal problem (SVMs1) has an optimal solution,
then the dual problem has a solution too, and the duality gap is zero.

Unfortunately this does not imply that an optimal solution of the dual
yields an optimal solution of the primal because the hypotheses of The-
orem 14.5(1) fail to hold. In general, there may not be a unique vector
(w, ✏, ⇠, b, �) such that

inf
w,✏,⇠,b,�

L(w, ✏, ⇠, b, �,�, µ,↵,�, �) = G(�, µ,↵,�, �).

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 629

18.1. Soft Margin Support Vector Machines; (SVM
s1) 629

 w x - b - δ = 0

T

T

0 = w x - bT

T
T w x -b + δ = 0

Correct side of Red Margin

w x -b + δ > 0

w x -b + δ < 0

Incorrect side of Red Margin

Fig. 18.3 The red margin half space associated with w>x� b+ � = 0.

If the sets {ui} and {vj} are not linearly separable, then the dual problem
may have a solution for which � = 0,

p
X

i=1

�i =
q
X

j=1

µj =
1

2
,

and
p
X

i=1

�iui =
q
X

j=1

µjvj ,

so that the dual function G(�, µ,↵,�, �), which is a partial function, is
defined and has the valueG(�, µ,↵,�, 0) = 0. Such a pair (�, µ) corresponds
to the coe�cients of two convex combinations

p
X

i=1

2�iui =
q
X

j=1

2µjvj

which correspond to the same point in the (nonempty) intersection of the
convex hulls conv(u

1

, . . . , up) and conv(v
1

, . . . , vq). It turns out that the

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 630

630 Soft Margin Support Vector Machines

only connection between w and the dual function is the equation

2�w =
p
X

i=1

�iui �
q
X

j=1

µjvj ,

and when � = 0 this is equation is 0 = 0, so the dual problem is useless to
determine w. This point seems to have been missed in the literature (for
example, in Shawe–Taylor and Christianini [Shawe-Taylor and Cristianini
(2004)], Section 7.2). What the dual problem does show is that � � 0.
However, if � 6= 0, then w is determined by any solution (�, µ) of the dual.

It still remains to compute � and b, which can be done under a mild
hypothesis that we call the Standard Margin Hypothesis.

Let � 2 Rp
+

be the Lagrange multipliers associated with the inequalities
w>ui � b � � � ✏i, let µ 2 Rq

+

be the Lagrange multipliers are associated
with the inequalities �w>vj + b � � � ⇠j , let ↵ 2 Rp

+

be the Lagrange
multipliers associated with the inequalities ✏i � 0, � 2 Rq

+

be the Lagrange
multipliers associated with the inequalities ⇠j � 0, and let � 2 R+ be the
Lagrange multiplier associated with the inequality w>w 1.

The linear constraints are given by the 2(p+ q)⇥ (n+ p+ q+2) matrix
given in block form by

C =

0

@

X> �Ip+q
1p

�1q
1p+q

0p+q,n �Ip+q 0p+q 0p+q

1

A ,

where X is the n⇥ (p+ q) matrix

X =
�

�u
1

· · · �up v
1

· · · vq
�

,

and the linear constraints are expressed by

0

@

X> �Ip+q
1p

�1q
1p+q

0p+q,n �Ip+q 0p+q 0p+q

1

A

0

B

B

B

B

@

w
✏
⇠
b
�

1

C

C

C

C

A

✓

0p+q

0p+q

◆

.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 631

18.1. Soft Margin Support Vector Machines; (SVM
s1) 631

More explicitly, C is the following matrix:

C =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

�u>
1

�1 · · · 0 0 · · · 0 1 1
...

...
. . .

...
...

. . .
...

...
...

�u>
p 0 · · · �1 0 · · · 0 1 1

v>
1

0 · · · 0 �1 · · · 0 �1 1
...

...
. . .

...
...

. . .
...

...
...

v>q 0 · · · 0 0 · · · �1 �1 1
0 �1 · · · 0 0 · · · 0 0 0
...

...
. . .

...
...

. . .
...

...
...

0 0 · · · �1 0 · · · 0 0 0
0 0 · · · 0 �1 · · · 0 0 0
...

...
. . .

...
...

. . .
...

...
...

0 0 · · · 0 0 · · · �1 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

The objective function is given by

J(w, ✏, ⇠, b, �) = �� +K
�

✏> ⇠>
�

1p+q.

The Lagrangian L(w, ✏, ⇠, b, �,�, µ,↵,�, �) with �,↵ 2 Rp
+

, µ,� 2 Rq
+

, and
� 2 R+ is given by

L(w, ✏, ⇠, b, �,�, µ,↵,�, �) = �� +K
�

✏> ⇠>
�

1p+q

+
�

w> �✏> ⇠>
�

b �
�

C>

0

B

B

@

�
µ
↵
�

1

C

C

A

+ �(w>w � 1).

Since

�

w> �✏> ⇠>
�

b �
�

C>

0

B

B

@

�
µ
↵
�

1

C

C

A

= w>X

✓

�
µ

◆

� ✏>(�+ ↵)� ⇠>(µ+ �)

+ b(1>
p �� 1>

q µ) + �(1>
p �+ 1>

q µ),

the Lagrangian can be written as

L(w, ✏, ⇠, b, �,�, µ,↵,�, �) = �� +K(✏>1p + ⇠>1q) + w>X

✓

�
µ

◆

+ �(w>w � 1)� ✏>(�+ ↵)� ⇠>(µ+ �) + b(1>
p �� 1>

q µ) + �(1>
p �+ 1>

q µ)

= (1>
p �+ 1>

q µ� 1)� + w>X

✓

�
µ

◆

+ �(w>w � 1)

+ ✏>(K1p � (�+ ↵)) + ⇠>(K1q � (µ+ �)) + b(1>
p �� 1>

q µ).

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 632

632 Soft Margin Support Vector Machines

To find the dual function G(�, µ,↵,�, �) we minimize L(w, ✏, ⇠, b, �,�, µ,
↵,�, �) with respect to w, ✏, ⇠, b, and �. Since the Lagrangian is convex and
(w, ✏, ⇠, b, �) 2 Rn ⇥ Rp ⇥ Rq ⇥ R⇥ R, a convex open set, by Theorem 4.5,
the Lagrangian has a minimum in (w, ✏, ⇠, b, �) i↵ rLw,✏,⇠,b,� = 0, so we
compute the gradient with respect to w, ✏, ⇠, b, �, and we get

rLw,✏,⇠,b,� =

0

B

B

B

B

B

B

B

@

X

✓

�
µ

◆

+ 2�w

K1p � (�+ ↵)
K1q � (µ+ �)
1>
p �� 1>

q µ
1>
p �+ 1>

q µ� 1

1

C

C

C

C

C

C

C

A

.

By setting rLw,✏,⇠,b,� = 0 we get the equations

2�w = �X

✓

�
µ

◆

�+ ↵ = K1p (⇤w)
µ+ � = K1q

1>
p � = 1>

q µ

1>
p �+ 1>

q µ = 1.

The second and third equations are equivalent to the inequalities

0 �i, µj K, i = 1, . . . , p, j = 1, . . . , q,

often called box constraints , and the fourth and fifth equations yield

1>
p � = 1>

q µ =
1

2
.

First let us consider the singular case � = 0. In this case, (⇤w) implies
that

X

✓

�
µ

◆

= 0,

and the term �(w>w� 1) is missing from the Lagrangian, which in view of
the other four equations above reduces to

L(w, ✏, ⇠, b, �,�, µ,↵,�, 0) = w>X

✓

�
µ

◆

= 0.

In summary, we proved that if � = 0, then

G(�, µ,↵,�, 0) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

0 if

8

>

>

<

>

>

:

Pp
i=1

�i =
Pq

j=1

µj =
1

2

0 �i K, i = 1, . . . , p

0 µj K, j = 1, . . . , q

�1 otherwise

and
Pp

i=1

�iui �
Pq

j=1

µjvj = 0.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 633

18.1. Soft Margin Support Vector Machines; (SVM
s1) 633

Geometrically, (�, µ) corresponds to the coe�cients of two convex combi-
nations

p
X

i=1

2�iui =
q
X

j=1

2µjvj

which correspond to the same point in the intersection of the convex hulls
conv(u

1

, . . . , up) and conv(v
1

, . . . , vq) i↵ the sets {ui} and {vj} are not
linearly separable. If the sets {ui} and {vj} are linearly separable, then
the convex hulls conv(u

1

, . . . , up) and conv(v
1

, . . . , vq) are disjoint, which
implies that � > 0.

Let us now assume that � > 0. Plugging back w from equation (⇤w)
into the Lagrangian, after simplifications we get

G(�, µ,↵,�, �) = � 1

2�

�

�> µ>�X>X

✓

�
µ

◆

+
�

4�2
�

�> µ>�X>X

✓

�
µ

◆

� �

= � 1

4�

�

�> µ>�X>X

✓

�
µ

◆

� �,

so if � > 0 the dual function is independent of ↵,� and is given by

G(�, µ,↵,�, �)

=

8

>

>

>

>

<

>

>

>

>

:

� 1

4�

⇣

�> µ>
⌘

X>X

�

µ

!

� � if

8

>

>

<

>

>

:

Pp
i=1

�i =
Pq

j=1

µj =
1

2

0 �i K, i = 1, . . . , p

0 µj K, j = 1, . . . , q

�1 otherwise.

Since X>X is symmetric positive semidefinite and � � 0, obviously

G(�, µ,↵,�, �) 0

for all � > 0.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 634

634 Soft Margin Support Vector Machines

The dual program is given by

maximize � 1

4�

�

�> µ>�X>X

✓

�
µ

◆

� � if � > 0

0 if � = 0

subject to
p
X

i=1

�i �
q
X

j=1

µj = 0

p
X

i=1

�i +
q
X

j=1

µj = 1

0 �i K, i = 1, . . . , p

0 µj K, j = 1, . . . , q.

Also, if � = 0, then X

✓

�
µ

◆

= 0.

Maximizing with respect to � > 0 by setting @
@�G(�, µ,↵,�, �) = 0

yields

�2 =
1

4

�

�> µ>�X>X

✓

�
µ

◆

,

so we obtain

G(�, µ) = �
✓

�

�> µ>�X>X

✓

�
µ

◆◆

1/2

.

Finally, since G(�, µ) = 0 and X

✓

�
µ

◆

= 0 if � = 0, the dual program is

equivalent to the following minimization program:

Dual of Soft margin SVM (SVMs1):

minimize
�

�> µ>�X>X

✓

�
µ

◆

subject to
p
X

i=1

�i �
q
X

j=1

µj = 0

p
X

i=1

�i +
q
X

j=1

µj = 1

0 �i K, i = 1, . . . , p

0 µj K, j = 1, . . . , q.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 635

18.1. Soft Margin Support Vector Machines; (SVM
s1) 635

Observe that the constraints imply that K must be chosen so that

K � max

⇢

1

2p
,
1

2q

�

.

If (w, �, b, ✏, ⇠) is an optimal solution of Problem (SVMs1), then the
complementary slackness conditions yield a classification of the points ui

and vj in terms of the values of � and µ. Indeed, we have ✏i↵i = 0 for i =
1, . . . , p and ⇠j�j = 0 for j = 1, . . . , q. Also, if �i > 0, then corresponding
constraint is active, and similarly if µj > 0. Since �i + ↵i = K, it follows
that ✏i↵i = 0 i↵ ✏i(K��i) = 0, and since µj +�j = K, we have ⇠j�j = 0 i↵
⇠j(K � µj) = 0. Thus if ✏i > 0, then �i = K, and if ⇠j > 0, then µj = K.
Consequently, if �i < K, then ✏i = 0 and ui is correctly classified, and
similarly if µj < K, then ⇠j = 0 and vj is correctly classified. We have the
following classification:

(1) If 0 < �i < K, then ✏i = 0 and the i-th inequality is active, so

w>ui � b� � = 0.

This means that ui is on the blue margin (the hyperplane Hw,b+� of
equation w>x = b+ �) and is classified correctly.
Similarly, if 0 < µj < K, then ⇠j = 0 and

w>vj � b+ � = 0,

so vj is on the red margin (the hyperplane Hw,b�� of equation w>x =
b� �) and is classified correctly. See Figure 18.4.

(2) If �i = K, then the i-th inequality is active, so

w>ui � b� � = �✏i.
If ✏i = 0, then the point ui is on the blue margin. If ✏i > 0, then ui

is within the open half space bounded by the blue margin hyperplane
Hw,b+� and containing the separating hyperplane Hw,b; if ✏i �, then
ui is classified correctly, and if ✏i > �, then ui is misclassified (ui lies on
the wrong side of the separating hyperplane, the red side). See Figure
18.5.
Similarly, if µj = K, then

w>vj � b+ � = ⇠j .

If ⇠j = 0, then the point vj is on the red margin. If ⇠j > 0, then vj
is within the open half space bounded by the red margin hyperplane
Hw,b�� and containing the separating hyperplane Hw,b; if ⇠j �, then

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 636

636 Soft Margin Support Vector Machines

 w x b
T

 u
i

0 < < Kλ i

=
 w x b

T
v

0 < < Kμ

Case (1)

w x - b - δ = 0T

w x -b - δ = 0T

w x -b + δ = 0T
w x -b +δ = 0T

=

j

j

Fig. 18.4 When 0 < �
i

< K, u
i

is contained within the blue margin hyperplane. When
0 < µ

j

< K, v
j

is contained within the red margin hyperplane.

vj is classified correctly, and if ⇠j > �, then vj is misclassified (vj lies on
the wrong side of the separating hyperplane, the blue side). See Figure
18.5.

(3) If �i = 0, then ✏i = 0 and the i-th inequality may or may not be active,
so

w>ui � b� � � 0.

Thus ui is in the closed half space on the blue side bounded by the blue
margin hyperplane Hw,b+� (of course, classified correctly).
Similarly, if µj = 0, then

w>vj � b+ � 0

and vj is in the closed half space on the red side bounded by the red
margin hyperplane Hw,b�� (of course, classified correctly). See Figure
18.6.

Definition 18.1. The vectors ui on the blue marginHw,b+� and the vectors
vj on the red margin Hw,b�� are called support vectors. Support vectors
correspond to vectors ui for which w>ui� b� � = 0 (which implies ✏i = 0),
and vectors vj for which w>vj � b+ � = 0 (which implies ⇠j = 0). Support
vectors ui such that 0 < �i < K and support vectors vj such that 0 < µj <
K are support vectors of type 1 . Support vectors of type 1 play a special

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 637

18.1. Soft Margin Support Vector Machines; (SVM
s1) 637

v

w x - b = 0T

Tw x - b + δ = 0

w x - b -δ = 0T

ui

v
w x - b = 0T

Tw x - b + δ = 0

w x - b -δ = 0T

u i v

w x - b = 0T

Tw x - b + δ = 0

w x - b -δ = 0T

u i

v

w x - b = 0T

Tw x - b + δ = 0

w x - b -δ = 0T

ui

(3)

єi = 0
i

λ i = K

j j
ξ = 0j

λ i = K0 < Є < δ

j

μ = K

j

i

j
0 < ξ < δ

0 < λ < K

0 < μ < K

Correctly classified on margin

jv Є = δi

λ i = K

μ = Kj
ξ = δj

Correctly classified in slab

(1)

(2)

Misclassifiedjvξ > δ

Є > δi

j
μ = Kj

Fig. 18.5 Figure (1) illustrates the case of u
i

contained in the margin and occurs when
✏
i

= 0. Figure (1) also illustrates the case of v
j

contained in the margin when ⇠
j

= 0.
The left illustration of Figure (2) is when u

i

is inside the margin yet still on the correct
side of the separating hyperplane w>x� b = 0. Similarly, v

j

is inside the margin on the
correct side of the separating hyperplane. The right illustration depicts u

i

and v
j

on the
separating hyperplane. Figure (3) illustrations a misclassification of u

i

and v
j

.

role so we denote the sets of indices associated with them by

I� = {i 2 {1, . . . , p} | 0 < �i < K}
Iµ = {j 2 {1, . . . , q} | 0 < µj < K}.

We denote their cardinalities by numsvl
1

= |I�| and numsvm
1

= |Iµ|.
Support vectors ui such that �i = K and support vectors vj such that
µj = K are support vectors of type 2 . Those support vectors ui such that
�i = 0 and those support vectors vj such that µj = 0 are called exceptional
support vectors.

The vectors ui for which �i = K and the vectors vj for which µj = K
are said to fail the margin. The sets of indices associated with the vectors

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 638

638 Soft Margin Support Vector Machines

v

w x - b = 0T

Tw x - b + δ = 0

w x - b -δ = 0T

u i
єi = 0

i

j
j

ξ = 0j

 λ = 0

 μ = 0

Correctly classified outside margin

Fig. 18.6 When �
i

= 0, u
i

is correctly classified outside the blue margin. When µ
j

= 0,
v
j

is correctly classified outside the red margin.

failing the margin are denoted by

K� = {i 2 {1, . . . , p} | �i = K}
Kµ = {j 2 {1, . . . , q} | µj = K}.

We denote their cardinalities by pf = |K�| and qf = |Kµ|.
Vectors ui such that �i > 0 and vectors vj such that µj > 0 are said

to have margin at most �. The sets of indices associated with these vectors
are denoted by

I�>0

= {i 2 {1, . . . , p} | �i > 0}
Iµ>0

= {j 2 {1, . . . , q} | µj > 0}.
We denote their cardinalities by pm = |I�>0

| and qm = |Iµ>0

|.

Obviously, I�>0

= I�[K� and Iµ>0

= Iµ[Kµ, so pf pm and qf qm.
Intuitively a blue point that fails the margin is on the wrong side of the blue
margin and a red point that fails the margin is on the wrong side of the
red margin. The points in I�>0

not in K� are on the blue margin and the
points in Iµ>0

not in Kµ are on the red margin. There are p � pm points
ui classified correctly on the blue side and outside the �-slab and there are
q � qm points vj classified correctly on the red side and outside the �-slab.

It is easy to show that we have the following bounds on K:

max

⇢

1

2pm
,

1

2qm

�

 K min

⇢

1

2pf
,

1

2qf

�

.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 639

18.1. Soft Margin Support Vector Machines; (SVM
s1) 639

These inequalities restrict the choice of K quite heavily.
It will also be useful to understand how points are classified in terms of

✏i (or ⇠j).

(1) If ✏i > 0, then by complementary slackness �i = K, so the ith equation
is active and by (2) above,

w>ui � b� � = �✏i.

Since ✏i > 0, the point ui is within the open half space bounded by the
blue margin hyperplane Hw,b+� and containing the separating hyper-
plane Hw,b; if ✏i �, then ui is classified correctly, and if ✏i > �, then
ui is misclassified.
Similarly, if ⇠j > 0, then vj is within the open half space bounded
by the red margin hyperplane Hw,b�� and containing the separating
hyperplane Hw,b; if ⇠j �, then vj is classified correctly, and if ⇠j > �,
then vj is misclassified.

(2) If ✏i = 0, then the point ui is correctly classified. If �i = 0, then by (3)
above, ui is in the closed half space on the blue side bounded by the
blue margin hyperplane Hw,b+�. If �i > 0, then by (1) and (2) above,
the point ui is on the blue margin.
Similarly, if ⇠j = 0, then the point vj is correctly classified. If µj = 0,
then vj is in the closed half space on the red side bounded by the red
margin hyperplane Hw,b��, and if µj > 0, then the point vj is on the
red margin.

It shown in Section 18.2 how the dual program is solved using ADMM
from Section 16.6. If the primal problem is solvable, this yields solutions
for � and µ.

If the optimal value is 0, then � = 0 and X

✓

�
µ

◆

= 0, so in this case it

is not possible to determine w. However, if the optimal value is > 0, then
once a solution for � and µ is obtained, by (⇤w), we have

� =
1

2

✓

�

�> µ>�X>X

✓

�
µ

◆◆

1/2

w =
1

2�

✓ p
X

i=1

�iui �
q
X

j=1

µjvj

◆

,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 640

640 Soft Margin Support Vector Machines

so we get

w =

p
X

i=1

�iui �
q
X

j=1

µjvj

✓

�

�> µ>�X>X

✓

�
µ

◆◆

1/2
,

which is the result of making
Pp

i=1

�iui �
Pq

j=1

µjvj a unit vector, since

X =
�

�u
1

· · · �up v
1

· · · vq
�

.

It remains to find b and �, which are not given by the dual program and
for this we use the complementary slackness conditions.

The equations

p
X

i=1

�i =
q
X

j=1

µj =
1

2

imply that there is some i
0

such that �i0 > 0 and some j
0

such that µj0 > 0,
but a priori, nothing prevents the situation where �i = K for all nonzero �i
or µj = K for all nonzero µj . If this happens, we can rerun the optimization
method with a larger value of K. If the following mild hypothesis holds,
then b and � can be found.

Standard Margin Hypothesis for (SVMs1). There is some index i
0

such that 0 < �i0 < K and there is some index j
0

such that 0 < µj0 < K.
This means that some ui0 is a support vector of type 1 on the blue margin,
and some vj0 is a support of type 1 on the red margin.

If the Standard Margin Hypothesis for (SVMs1) holds, then ✏i0 = 0
and µj0 = 0, and then we have the active equations

w>ui0 � b = � and � w>vj0 + b = �,

and we obtain the values of b and � as

b =
1

2
(w>ui0 + w>vj0)

� =
1

2
(w>ui0 � w>vj0).

Due to numerical instability, when writing a computer program it is
preferable to compute the lists of indices I� and Iµ given by

I� = {i 2 {1, . . . , p} | 0 < �i < K}
Iµ = {j 2 {1, . . . , q} | 0 < µj < K}.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 641

18.1. Soft Margin Support Vector Machines; (SVM
s1) 641

Then it is easy to see that we can compute b and � using the following
averaging formulae:

b = w>

0

@

✓

X

i2I
�

ui

◆

/|I�|+
✓

X

j2I
µ

vj

◆

/|Iµ|

1

A /2

� = w>

0

@

✓

X

i2I
�

ui

◆

/|I�|�
✓

X

j2I
µ

vj

◆

/|Iµ|

1

A /2.

As we said earlier, the hypotheses of Theorem 14.5(2) hold, so if the
primal problem (SVMs1) has an optimal solution with w 6= 0, then the
dual problem has a solution too, and the duality gap is zero. Therefore, for
optimal solutions we have

L(w, ✏, ⇠, b, �,�, µ,↵,�, �) = G(�, µ,↵,�, �),

which means that

�� +K

✓ p
X

i=1

✏i +
q
X

j=1

⇠j

◆

= �
✓

�

�> µ>�X>X

✓

�
µ

◆◆

1/2

,

so we get

� = K

✓ p
X

i=1

✏i +
q
X

j=1

⇠j

◆

+

✓

�

�> µ>�X>X

✓

�
µ

◆◆

1/2

.

Therefore, we confirm that � � 0.
It is important to note that the objective function of the dual program

�G(�, µ) =

✓

�

�> µ>�X>X

✓

�
µ

◆◆

1/2

only involves the inner products of the ui and the vj through the matrix
X>X, and similarly, the equation of the optimal hyperplane can be written
as

p
X

i=1

�iu
>
i x�

q
X

j=1

µjv
>
j x�

✓

�

�> µ>�X>X

✓

�
µ

◆◆

1/2

b = 0,

an expression that only involves inner products of x with the ui and the vj
and inner products of the ui and the vj .

As explained at the beginning of this chapter, this is a key fact that
allows a generalization of the support vector machine using the method
of kernels. We can define the following “kernelized” version of Problem
(SVMs1):

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 642

642 Soft Margin Support Vector Machines

Soft margin kernel SVM (SVMs1):

minimize � � +K

✓ p
X

i=1

✏i +
q
X

j=1

⇠j

◆

subject to

hw,'(ui)i � b � � � ✏i, ✏i � 0 i = 1, . . . , p

� hw,'(vj)i+ b � � � ⇠j , ⇠j � 0 j = 1, . . . , q

hw,wi 1.

Tracing through the computation that led us to the dual program with
ui replaced by '(ui) and vj replaced by '(vj), we find the following version
of the dual program:

Dual of Soft margin kernel SVM (SVMs1):

minimize
�

�> µ>�K

✓

�
µ

◆

subject to
p
X

i=1

�i �
q
X

j=1

µj = 0

p
X

i=1

�i +
q
X

j=1

µj = 1

0 �i K, i = 1, . . . , p

0 µj K, j = 1, . . . , q,

where K is the `⇥ ` kernel symmetric matrix (with ` = p+ q) given by

Kij =

8

>

>

>

>

<

>

>

>

>

:

(ui, uj) 1 i p, 1 j q

�(ui, vj�p) 1 i p, p+ 1 j p+ q

�(vi�p, uj) p+ 1 i p+ q, 1 j p

(vi�p, vj�q) p+ 1 i p+ q, p+ 1 j p+ q.

We also find that

w =

p
X

i=1

�i'(ui)�
q
X

j=1

µj'(vj)

✓

�

�> µ>�K

✓

�
µ

◆◆

1/2
.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 643

18.2. Solving SVM (SVM
s1) Using ADMM 643

Under the Standard Margin Hypothesis, there is some index i
0

such
that 0 < �i0 < K and there is some index j

0

such that 0 < µj0 < K, and
we obtain the value of b and � as

b =
1

2
(hw,'(ui0i+ hw,'(vj0)i)

� =
1

2
(hw,'(ui0)i � hw,'(vj0)i).

Using the above value for w, we obtain

b =

Pp
i=1

�i((ui, ui0) + (ui, vj0))�
Pq

j=1

µj((vj , ui0) + (vj , vj0))

2

✓

�

�> µ>�K

✓

�
µ

◆◆

1/2
.

It follows that the classification function

f(x) = sgn(hw,'(x)i � b)

is given by

f(x) = sgn

✓ p
X

i=1

�i(2(ui, x)� (ui, ui0)� (ui, vj0))

�
q
X

j=1

µj(2(vj , x)� (vj , ui0)� (vj , vj0))

◆

,

which is solely expressed in terms of the kernel .
Kernel methods for SVM are discussed in Schölkopf and Smola

[Schölkopf and Smola (2002)] and Shawe–Taylor and Christianini [Shawe-
Taylor and Cristianini (2004)].

18.2 Solving SVM (SVMs1) Using ADMM

In order to solve (SVMs1) using ADMM we need to write the matrix cor-
responding to the constraints in equational form,

p
X

i=1

�i �
q
X

j=1

µj = 0

p
X

i=1

�i +
q
X

j=1

µj = 1

�i + ↵i = K, i = 1, . . . , p

µj + �j = K, j = 1, . . . , q.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 644

644 Soft Margin Support Vector Machines

This is the (p+ q + 2)⇥ 2(p+ q) matrix A given by

A =

0

B

B

B

B

B

@

1>
p �1>

q 0>p 0>q

1>
p 1>

q 0>p 0>q

Ip 0p,q Ip 0p,q

0q,p Iq 0q,p Iq

1

C

C

C

C

C

A

.

We leave it as an exercise to prove that A has rank p+q+2. The right-hand
side is

c =

0

@

0
1

K1p+q

1

A .

The symmetric positive semidefinite (p+ q)⇥ (p+ q) matrix P defining the
quadratic functional is

P = 2X>X, with X =
�

�u
1

· · · �up v
1

· · · vq
�

,

and

q = 0p+q.

Since there are 2(p+q) Lagrange multipliers (�, µ,↵,�), the (p+q)⇥(p+q)
matrix X>X must be augmented with zero’s to make it a 2(p+q)⇥2(p+q)
matrix Pa given by

Pa =

✓

X>X 0p+q,p+q

0p+q,p+q 0p+q,p+q

◆

,

and similarly q is augmented with zeros as the vector qa = 0
2(p+q).

Since the constraint w>w 1 causes troubles, we trade it for a di↵erent
objective function in which �� is replaced by (1/2) kwk2

2

. This way we
are left with purely a�ne constraints. In the next section we discuss a
generalization of Problem (SVMh2) obtained by adding a linear regularizing
term.

18.3 Soft Margin Support Vector Machines; (SVMs2)

In this section we consider the generalization of Problem (SVMh2) where

we minimize (1/2)w>w by adding the “regularizing term” K
⇣

Pp
i=1

✏i +
Pq

j=1

⇠j ,
⌘

for someK > 0. Recall that the margin � is given by � = 1/ kwk.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 645

18.3. Soft Margin Support Vector Machines; (SVM
s2) 645

Soft margin SVM (SVMs2):

minimize
1

2
w>w +K

�

✏> ⇠>
�

1p+q

subject to

w>ui � b � 1� ✏i, ✏i � 0 i = 1, . . . , p

� w>vj + b � 1� ⇠j , ⇠j � 0 j = 1, . . . , q.

This is the classical problem discussed in all books on machine learning
or pattern analysis, for instance Vapnik [Vapnik (1998)], Bishop [Bishop
(2006)], and Shawe–Taylor and Christianini [Shawe-Taylor and Cristianini
(2004)]. The trivial solution where all variables are 0 is ruled out because of
the presence of the 1 in the inequalities, but it is not clear that if (w, b, ✏, ⇠)
is an optimal solution, then w 6= 0.

We prove that if the primal problem has an optimal solution (w, ✏, ⇠, b)
with w 6= 0, then w is determined by any optimal solution (�, µ) of the
dual. We also prove that there is some i for which �i > 0 and some j for
which µj > 0. Under a mild hypothesis that we call the Standard Margin
Hypothesis, b can be found.

Note that this framework is still somewhat sensitive to outliers because
the penalty for misclassification is linear in ✏ and ⇠.

First we write the constraints in matrix form. The 2(p+q)⇥(n+p+q+1)
matrix C is written in block form as

C =

0

@

X> �Ip+q
1p

�1q

0p+q,n �Ip+q 0p+q

1

A ,

where X is the n⇥ (p+ q) matrix

X =
�

�u
1

· · · �up v
1

· · · vq
�

,

and the constraints are expressed by

0

@

X> �Ip+q
1p

�1q

0p+q,n �Ip+q 0p+q

1

A

0

B

B

@

w
✏
⇠
b

1

C

C

A

✓

�1p+q

0p+q

◆

.

The objective function J(w, ✏, ⇠, b) is given by

J(w, ✏, ⇠, b) =
1

2
w>w +K

�

✏> ⇠>
�

1p+q.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 646

646 Soft Margin Support Vector Machines

The Lagrangian L(w, ✏, ⇠, b,�, µ,↵,�) with �,↵ 2 Rp
+

and with µ,� 2 Rq
+

is given by

L(w, ✏, ⇠, b,�, µ,↵,�) =
1

2
w>w +K

�

✏> ⇠>
�

1p+q

+
�

w> �✏> ⇠>
�

b
�

C>

0

B

B

@

�
µ
↵
�

1

C

C

A

+
�

1>
p+q 0>p+q

�

0

B

B

@

�
µ
↵
�

1

C

C

A

.

Since

�

w> �✏> ⇠>
�

b
�

C>

0

B

B

@

�
µ
↵
�

1

C

C

A

=
�

w> �✏> ⇠>
�

b
�

0

@

X 0n,p+q

�Ip+q �Ip+q

1>
p �1>

q 0>p+q

1

A

0

B

B

@

�
µ
↵
�

1

C

C

A

,

we get

�

w> �✏> ⇠>
�

b
�

C>

0

B

B

@

�
µ
↵
�

1

C

C

A

=
�

w> �✏> ⇠>
�

b
�

0

B

B

B

B

B

@

X

✓

�
µ

◆

�
✓

�+ ↵
µ+ �

◆

1>
p �� 1>

q µ

1

C

C

C

C

C

A

= w>X

✓

�
µ

◆

� ✏>(�+ ↵)� ⇠>(µ+ �) + b(1>
p �� 1>

q µ),

and since

�

1>
p+q 0>p+q

�

0

B

B

@

�
µ
↵
�

1

C

C

A

= 1>
p+q

✓

�
µ

◆

=
�

�> µ>�1p+q,

the Lagrangian can be rewritten as

L(w, ✏, ⇠, b,�, µ,↵,�) =
1

2
w>w + w>X

✓

�
µ

◆

+ ✏>(K1p � (�+ ↵))

+ ⇠>(K1q � (µ+ �)) + b(1>
p �� 1>

q µ) +
�

�> µ>�1p+q.

To find the dual function G(�, µ,↵,�) we minimize L(w, ✏, ⇠, b,�, µ,↵,�)
with respect to w, ✏, ⇠ and b. Since the Lagrangian is convex and (w, ✏,
⇠, b) 2 Rn⇥Rp⇥Rq⇥R, a convex open set, by Theorem 4.5, the Lagrangian

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 647

18.3. Soft Margin Support Vector Machines; (SVM
s2) 647

has a minimum in (w, ✏, ⇠, b) i↵ rLw,✏,⇠,b = 0, so we compute its gradient
with respect to w, ✏, ⇠ and b, and we get

rLw,✏,⇠,b =

0

B

B

B

B

@

w +X

✓

�
µ

◆

K1p � (�+ ↵)
K1q � (µ+ �)
1>
p �� 1>

q µ

1

C

C

C

C

A

.

By setting rLw,✏,⇠,b = 0 we get the equations

w = �X

✓

�
µ

◆

(⇤w)

�+ ↵ = K1p

µ+ � = K1q

1>
p � = 1>

q µ.
The first and the fourth equation are identical to the Equations (⇤

1

) and
(⇤

2

) that we obtained in Example 14.10. Since �, µ,↵,� � 0, the second
and the third equation are equivalent to the box constraints

0 �i, µj K, i = 1, . . . , p, j = 1, . . . , q.
Using the equations that we just derived, after simplifications we get

G(�, µ,↵,�) = �1

2

�

�> µ>�X>X

✓

�
µ

◆

+
�

�> µ>�1p+q,

which is independent of ↵ and � and is identical to the dual function ob-
tained in (⇤

4

) of Example 14.10. To be perfectly rigorous,

G(�, µ) = �1

2

�

�> µ>�X>X

✓

�
µ

◆

+
�

�> µ>�1p+q

if

8

<

:

Pp
i=1

�i =
Pq

j=1

µj

0 �i K, i = 1, . . . , p
0 µj K, j = 1, . . . , q

�1 otherwise.
As in Example 14.10, the the dual program can be formulated as

maximize � 1

2

�

�> µ>�X>X

✓

�
µ

◆

+
�

�> µ>�1p+q

subject to
p
X

i=1

�i �
q
X

j=1

µj = 0

0 �i K, i = 1, . . . , p

0 µj K, j = 1, . . . , q,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 648

648 Soft Margin Support Vector Machines

or equivalently

Dual of Soft margin SVM (SVMs2):

minimize
1

2

�

�> µ>�X>X

✓

�
µ

◆

�
�

�> µ>�1p+q

subject to
p
X

i=1

�i �
q
X

j=1

µj = 0

0 �i K, i = 1, . . . , p

0 µj K, j = 1, . . . , q.

If (w, ✏, ⇠, b) is an optimal solution of Problem (SVMs2), then the com-
plementary slackness conditions yield a classification of the points ui and vj
in terms of the values of � and µ. Indeed, we have ✏i↵i = 0 for i = 1, . . . , p
and ⇠j�j = 0 for j = 1, . . . , q. Also, if �i > 0, then corresponding con-
straint is active, and similarly if µj > 0. Since �i + ↵i = K, it follows that
✏i↵i = 0 i↵ ✏i(K � �i) = 0, and since µj + �j = K, we have ⇠j�j = 0 i↵
⇠j(K � µj) = 0. Thus if ✏i > 0, then �i = K, and if ⇠j > 0, then µj = K.
Consequently, if �i < K, then ✏i = 0 and ui is correctly classified, and
similarly if µj < K, then ⇠j = 0 and vj is correctly classified.

We have a classification of the points ui and vj in terms of � and µ
obtained from the classification given in Section 18.1 by replacing � with 1.
Since it is so similar, it is omitted. Let us simply recall that the vectors ui

on the blue margin and the vectors vj on the red margin are called support
vectors; these are the vectors ui for which w>ui � b� 1 = 0 (which implies
✏i = 0), and the vectors vj for which w>vj � b + 1 = 0 (which implies
⇠j = 0). Those support vectors ui such that �i = 0 and those support
vectors such that µj = 0 are called exceptional support vectors .

We also have the following classification of the points ui and vj terms
of ✏i (or ⇠j) obtained by replacing � with 1.

(1) If ✏i > 0, then by complementary slackness �i = K, so the ith equation
is active and by (2) above,

w>ui � b� 1 = �✏i.
Since ✏i > 0, the point ui is within the open half space bounded by the
blue margin hyperplane Hw,b+1

and containing the separating hyper-
plane Hw,b; if ✏i 1, then ui is classified correctly, and if ✏i > 1, then
ui is misclassified.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 649

18.3. Soft Margin Support Vector Machines; (SVM
s2) 649

Similarly, if ⇠j > 0, then vj is within the open half space bounded
by the red margin hyperplane Hw,b�1

and containing the separating
hyperplane Hw,b; if ⇠j 1, then vj is classified correctly, and if ⇠j > 1,
then vj is misclassified.

(2) If ✏i = 0, then the point ui is correctly classified. If �i = 0, then by (3)
above, ui is in the closed half space on the blue side bounded by the
blue margin hyperplane Hw,b+⌘. If �i > 0, then by (1) and (2) above,
the point ui is on the blue margin.
Similarly, if ⇠j = 0, then the point vj is correctly classified. If µj = 0,
then vj is in the closed half space on the red side bounded by the red
margin hyperplane Hw,b�⌘, and if µj > 0, then the point vj is on the
red margin. See Figure 18.5 (3).

Vectors ui for which �i = K and vectors vj such that ⇠j = K are said
to fail the margin.

It is shown in Section 18.4 how the dual program is solved using ADMM
from Section 16.6. If the primal problem is solvable, this yields solutions
for � and µ.

Remark. The hard margin Problem (SVMh2) corresponds to the special
case of Problem (SVMs2) in which ✏ = 0, ⇠ = 0, and K = +1. Indeed,
in Problem (SVMh2) the terms involving ✏ and ⇠ are missing from the
Lagrangian and the e↵ect is that the box constraints are missing; we simply
have �i � 0 and µj � 0.

We can use the dual program to solve the primal. Once � � 0, µ � 0
have been found, w is given by

w = �X

✓

�
µ

◆

=
p
X

i=1

�iui �
q
X

j=1

µjvj .

To find b we use the complementary slackness conditions.
If the primal has a solution w 6= 0, then the equation

w =
p
X

i=1

�iui �
q
X

j=1

µjvj

implies that either there is some index i
0

such that �i0 > 0 or there is some
index j

0

such that µj0 > 0. The constraint

p
X

i=1

�i �
q
X

j=1

µj = 0

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 650

650 Soft Margin Support Vector Machines

implies that there is some index i
0

such that �i0 > 0 and there is some index
j
0

such that µj0 > 0. However, a priori, nothing prevents the situation
where �i = K for all nonzero �i or µj = K for all nonzero µj . If this
happens, we can rerun the optimization method with a larger value of K.
Observe that the equation

p
X

i=1

�i �
q
X

j=1

µj = 0

implies that if there is some index i
0

such that 0 < �i0 < K, then there is
some index j

0

such that 0 < µj0 < K, and vice-versa. If the following mild
hypothesis holds, then b can be found.

Standard Margin Hypothesis for (SVMs2). There is some index i
0

such that 0 < �i0 < K and there is some index j
0

such that 0 < µj0 < K.
This means that some ui0 is a support vector of type 1 on the blue margin,
and some vj0 is a support vector of type 1 on the red margin.

If the Standard Margin Hypothesis for (SVMs2) holds, then ✏i0 = 0
and µj0 = 0, and then we have the active equations

w>ui0 � b = 1 and � w>vj0 + b = 1,

and we obtain

b =
1

2
(w>ui0 + w>vj0).

Due to numerical instability, when writing a computer program it is
preferable to compute the lists of indices I� and Iµ given by

I� = {i 2 {1, . . . , p} | 0 < �i < K}
Iµ = {j 2 {1, . . . , q} | 0 < µj < K}.

Then it is easy to see that we can compute b using the following averaging
formula

b = w>

0

@

✓

X

i2I
�

ui

◆

/|I�|+
✓

X

j2I
µ

vj

◆

/|Iµ|

1

A /2.

Recall that � = 1/ kwk.

Remark: There is a cheap version of Problem (SVMs2) which consists in
dropping the term (1/2)w>w from the objective function:

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 651

18.3. Soft Margin Support Vector Machines; (SVM
s2) 651

Soft margin classifier (SVMs2l):

minimize
p
X

i=1

✏i +
q
X

j=1

⇠j

subject to

w>ui � b � 1� ✏i, ✏i � 0 i = 1, . . . , p

� w>vj + b � 1� ⇠j , ⇠j � 0 j = 1, . . . , q.

The above program is a linear program that minimizes the number of
misclassified points but does not care about enforcing a minimum margin.
An example of its use is given in Boyd and Vandenberghe; see [Boyd and
Vandenberghe (2004)], Section 8.6.1.

The “kernelized” version of Problem (SVMs2) is the following:

Soft margin kernel SVM (SVMs2):

minimize
1

2
hw,wi+K

�

✏> ⇠>
�

1p+q

subject to

hw,'(ui)i � b � 1� ✏i, ✏i � 0 i = 1, . . . , p

� hw,'(vj)i+ b � 1� ⇠j , ⇠j � 0 j = 1, . . . , q.

Redoing the computation of the dual function, we find that the dual
program is given by

Dual of Soft margin kernel SVM (SVMs2):

minimize
1

2

�

�> µ>�K

✓

�
µ

◆

�
�

�> µ>�1p+q

subject to
p
X

i=1

�i �
q
X

j=1

µj = 0

0 �i K, i = 1, . . . , p

0 µj K, j = 1, . . . , q,

where K is the `⇥ ` kernel symmetric matrix (with ` = p+ q) given at the
end of Section 18.1. We also find that

w =
p
X

i=1

�i'(ui)�
q
X

j=1

µj'(vj),

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 652

652 Soft Margin Support Vector Machines

so

b =
1

2

✓ p
X

i=1

�i((ui, ui0) + (ui, vj0))�
q
X

j=1

µj((vj , ui0) + (vj , vj0))

◆

,

and the classification function

f(x) = sgn(hw,'(x)i � b)

is given by

f(x) = sgn

✓ p
X

i=1

�i(2(ui, x)� (ui, ui0)� (ui, vj0))

�
q
X

j=1

µj(2(vj , x)� (vj , ui0)� (vj , vj0))

◆

.

18.4 Solving SVM (SVMs2) Using ADMM

In order to solve (SVMs2) using ADMM we need to write the matrix cor-
responding to the constraints in equational form,

p
X

i=1

�i �
q
X

j=1

µj = 0

�i + ↵i = K, i = 1, . . . , p

µj + �j = K, j = 1, . . . , q.

This is the (p+ q + 1)⇥ 2(p+ q) matrix A given by

A =

0

B

B

@

1>
p �1>

q 0>p 0>q

Ip 0p,q Ip 0p,q

0q,p Iq 0q,p Iq

1

C

C

A

.

We leave it as an exercise to prove that A has rank p+q+1. The right-hand
side is

c =

✓

0
K1p+q

◆

.

The symmetric positive semidefinite (p+ q)⇥ (p+ q) matrix P defining the
quadratic functional is

P = X>X, with X =
�

�u
1

· · · �up v
1

· · · vq
�

,

and

q = �1p+q.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 653

18.5. Soft Margin Support Vector Machines; (SVM
s20) 653

Since there are 2(p+q) Lagrange multipliers (�, µ,↵,�), the (p+q)⇥(p+q)
matrix X>X must be augmented with zero’s to make it a 2(p+q)⇥2(p+q)
matrix Pa given by

Pa =

✓

X>X 0p+q,p+q

0p+q,p+q 0p+q,p+q

◆

,

and similarly q is augmented with zeros as the vector

qa =

✓

�1p+q

0p+q.

◆

18.5 Soft Margin Support Vector Machines; (SVMs20)

In this section we consider a generalization of Problem (SVMs2) for a ver-
sion of the soft margin SVM coming from Problem (SVMh2) by adding
an extra degree of freedom, namely instead of the margin � = 1/ kwk,
we use the margin � = ⌘/ kwk where ⌘ is some positive constant that we
wish to maximize. To do so, we add a term �Km⌘ to the objective func-

tion (1/2)w>w as well as the “regularizing term” Ks

✓

Pp
i=1

✏i +
Pq

j=1

⇠j

◆

whose purpose is to make ✏ and ⇠ sparse, where Km > 0 (m refers to mar-
gin) and Ks > 0 (s refers to sparse) are fixed constants that can be adjusted
to determine the influence of ⌘ and the regularizing term.

Soft margin SVM (SVMs20):

minimize
1

2
w>w �Km⌘ +Ks

�

✏> ⇠>
�

1p+q

subject to

w>ui � b � ⌘ � ✏i, ✏i � 0 i = 1, . . . , p

� w>vj + b � ⌘ � ⇠j , ⇠j � 0 j = 1, . . . , q

⌘ � 0.

This version of the SVM problem was first discussed in Schölkopf, Smola,
Williamson, and Bartlett [Schölkopf et al. (2000)] under the name of ⌫-SVC
(or ⌫-SVM), and also used in Schölkopf, Platt, Shawe–Taylor, and Smola
[Schölkopf et al. (2001)]. The ⌫-SVC method is also presented in Schölkopf
and Smola [Schölkopf and Smola (2002)] (which contains much more). The
di↵erence between the ⌫-SVC method and the method presented in Section
18.3, sometimes called the C-SVM method, was thoroughly investigated by
Chan and Lin [Chang and Chih-Jen (2001)].

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 654

654 Soft Margin Support Vector Machines

For this problem it is no longer clear that if (w, ⌘, b, ✏, ⇠) is an optimal
solution, then w 6= 0 and ⌘ > 0. In fact, if the sets of points are not linearly
separable and if Ks is chosen too big, Problem (SVMs20) may fail to have
an optimal solution.

We show that in order for the problem to have a solution we must pick
Km and Ks so that

Km min{2pKs, 2qKs}.

If we define ⌫ by

⌫ =
Km

(p+ q)Ks
,

then Km min{2pKs, 2qKs} is equivalent to

⌫ min

⇢

2p

p+ q
,

2q

p+ q

�

 1.

The reason for introducing ⌫ is that ⌫(p + q)/2 can be interpreted as the
maximum number of points failing to achieve the margin � = ⌘/ kwk. We
will show later that if the points ui and vj are not separable, then we must
pick ⌫ so that ⌫ � 2/(p + q) for the method to have a solution for which
w 6= 0 and ⌘ > 0.

The objective function of our problem is convex and the constraints are
a�ne. Consequently, by Theorem 14.5(2) if the Primal Problem (SVMs20)
has an optimal solution, then the dual problem has a solution too, and
the duality gap is zero. This does not immediately imply that an optimal
solution of the dual yields an optimal solution of the primal because the
hypotheses of Theorem 14.5(1) fail to hold.

We show that if the primal problem has an optimal solution (w, ⌘, ✏, ⇠, b)
with w 6= 0, then any optimal solution of the dual problem determines �
and µ, which in turn determine w via the equation

w = �X

✓

�
µ

◆

=
p
X

i=1

�iui �
q
X

j=1

µjvj , (⇤w)

and ⌘ � 0.
It remains to determine b, ⌘, ✏ and ⇠. The solution of the dual does not

determine b, ⌘, ✏, ⇠ directly, and we are not aware of necessary and su�cient
conditions that ensure that they can be determined. The best we can do is
to use the KKT conditions.

The simplest su�cient condition is what we call the

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 655

18.5. Soft Margin Support Vector Machines; (SVM
s20) 655

Standard Margin Hypothesis for (SVMs20): There is some i
0

such that
0 < �i0 < Ks, and there is some µj0 such that 0 < µj0 < Ks. This means
that there is some support vector ui0 of type 1 and there is some support
vector vj0 of type 1.

In this case, then by complementary slackness, it can be shown that
✏i0 = 0, ⇠i0 = 0, and the corresponding inequalities are active, that is we
have the equations

w>ui0 � b = ⌘, �w>vj0 + b = ⌘,

so we can solve for b and ⌘. Then since by complementary slackness, if ✏i >
0, then �i = Ks and if ⇠j > 0, then µj = Ks, all inequalities corresponding
to such ✏i > 0 and µj > 0 are active, and we can solve for ✏i and ⇠j .

The linear constraints are given by the (2(p+ q) + 1)⇥ (n+ p+ q + 2)
matrix given in block form by

C =

0

B

B

B

@

X> �Ip+q
1p

�1q
1p+q

0p+q,n �Ip+q 0p+q 0p+q

0>n 0>p+q 0 �1

1

C

C

C

A

,

where X is the n⇥ (p+ q) matrix

X =
�

�u
1

· · · �up v
1

· · · vq
�

,

and the linear constraints are expressed by
0

B

B

B

@

X> �Ip+q
1p

�1q
1p+q

0p+q,n �Ip+q 0p+q 0p+q

0>n 0>p+q 0 �1

1

C

C

C

A

0

B

B

B

B

@

w
✏
⇠
b
⌘

1

C

C

C

C

A

0

@

0p+q

0p+q

0

1

A .

The objective function is given by

J(w, ✏, ⇠, b, ⌘) =
1

2
w>w �Km⌘ +Ks

�

✏> ⇠>
�

1p+q.

The Lagrangian L(w, ✏, ⇠, b, ⌘,�, µ,↵,�, �) with �,↵ 2 Rp
+

, µ,� 2 Rq
+

, and
� 2 R

+

is given by

L(w, ✏, ⇠, b, ⌘,�, µ,↵,�, �) =
1

2
w>w �Km⌘ +Ks

�

✏> ⇠>
�

1p+q

+
�

w> �✏> ⇠>
�

b ⌘
�

C>

0

B

B

B

B

@

�
µ
↵
�
�

1

C

C

C

C

A

.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 656

656 Soft Margin Support Vector Machines

Since

�

w> �✏> ⇠>
�

b ⌘
�

C>

0

B

B

B

B

@

�
µ
↵
�
�

1

C

C

C

C

A

= w>X

✓

�
µ

◆

� ✏>(�+ ↵)� ⇠>(µ+ �)

+ b(1>
p �� 1>

q µ) + ⌘(1>
p �+ 1>

q µ)� �⌘,

the Lagrangian can be written as

L(w, ✏, ⇠, b, ⌘,�, µ,↵,�, �) =
1

2
w>w +Ks(✏

>1p + ⇠>1q) + w>X

✓

�
µ

◆

�Km⌘ � ✏>(�+ ↵)� ⇠>(µ+ �) + b(1>
p �� 1>

q µ) + ⌘(1>
p �+ 1>

q µ)� �⌘

=
1

2
w>w + w>X

✓

�
µ

◆

+ (1>
p �+ 1>

q µ�Km � �)⌘

+ ✏>(Ks1p � (�+ ↵)) + ⇠>(Ks1q � (µ+ �)) + b(1>
p �� 1>

q µ).

To find the dual function G(�, µ,↵,�, �) we minimize L(w, ✏, ⇠, b, ⌘,�, µ,
↵,�, �) with respect to w, ✏, ⇠, b, and ⌘. Since the Lagrangian is convex and
(w, ✏, ⇠, b, ⌘) 2 Rn ⇥ Rp ⇥ Rq ⇥ R⇥ R, a convex open set, by Theorem 4.5,
the Lagrangian has a minimum in (w, ✏, ⇠, b, ⌘) i↵ rLw,✏,⇠,b,⌘ = 0, so we
compute its gradient with respect to w, ✏, ⇠, b, ⌘, and we get

rLw,✏,⇠,b,⌘ =

0

B

B

B

B

B

B

B

@

X

✓

�
µ

◆

+ w

Ks1p � (�+ ↵)
Ks1q � (µ+ �)
1>
p �� 1>

q µ
1>
p �+ 1>

q µ�Km � �

1

C

C

C

C

C

C

C

A

.

By setting rLw,✏,⇠,b,⌘ = 0 we get the equations

w = �X

✓

�
µ

◆

(⇤w)

�+ ↵ = Ks1p

µ+ � = Ks1q

1>
p � = 1>

q µ,

and

1>
p �+ 1>

q µ = Km + �. (⇤�)

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 657

18.5. Soft Margin Support Vector Machines; (SVM
s20) 657

The second and third equations are equivalent to the box constraints

0 �i, µj Ks, i = 1, . . . , p, j = 1, . . . , q,

and since � � 0 equation (⇤�) is equivalent to

1>
p �+ 1>

q µ � Km.

Plugging back w from (⇤w) into the Lagrangian, after simplifications we
get

G(�, µ,↵,�) =
1

2

�

�> µ>�X>X

✓

�
µ

◆

�
�

�> µ>�X>X

✓

�
µ

◆

= �1

2

�

�> µ>�X>X

✓

�
µ

◆

,

so the dual function is independent of ↵,� and is given by

G(�, µ) = �1

2

�

�> µ>�X>X

✓

�
µ

◆

.

The dual program is given by

maximize � 1

2

�

�> µ>�X>X

✓

�
µ

◆

subject to
p
X

i=1

�i �
q
X

j=1

µj = 0

p
X

i=1

�i +
q
X

j=1

µj � Km

0 �i Ks, i = 1, . . . , p

0 µj Ks, j = 1, . . . , q.

Finally, the dual program is equivalent to the following minimization pro-
gram:

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 658

658 Soft Margin Support Vector Machines

Dual of Soft margin SVM (SVMs20):

minimize
1

2

�

�> µ>�X>X

✓

�
µ

◆

subject to
p
X

i=1

�i �
q
X

j=1

µj = 0

p
X

i=1

�i +
q
X

j=1

µj � Km

0 �i Ks, i = 1, . . . , p

0 µj Ks, j = 1, . . . , q.

If (w, ⌘, ✏, ⇠, b) is an optimal solution of Problem (SVMs20) with w 6= 0
and ⌘ 6= 0, then the complementary slackness conditions yield a classifi-
cation of the points ui and vj in terms of the values of � and µ. Indeed,
we have ✏i↵i = 0 for i = 1, . . . , p and ⇠j�j = 0 for j = 1, . . . , q. Also, if
�i > 0, then the corresponding constraint is active, and similarly if µj > 0.
Since �i + ↵i = Ks, it follows that ✏i↵i = 0 i↵ ✏i(Ks � �i) = 0, and since
µj + �j = Ks, we have ⇠j�j = 0 i↵ ⇠j(Ks � µj) = 0. Thus if ✏i > 0, then
�i = Ks, and if ⇠j > 0, then µj = Ks. Consequently, if �i < Ks, then
✏i = 0 and ui is correctly classified, and similarly if µj < Ks, then ⇠j = 0
and vj is correctly classified.

We have the following classification which is basically the classification
given in Section 18.1 obtained by replacing � with ⌘ (recall that ⌘ > 0 and
� = ⌘/ kwk) .

(1) If 0 < �i < Ks, then ✏i = 0 and the i-th inequality is active, so

w>ui � b� ⌘ = 0.

This means that ui is on the blue margin (the hyperplane Hw,b+⌘ of
equation w>x = b+ ⌘) and is classified correctly.
Similarly, if 0 < µj < Ks, then ⇠j = 0 and

w>vj � b+ ⌘ = 0,

so vj is on the red margin (the hyperplane Hw,b�⌘ of equation w>x =
b� ⌘) and is classified correctly.

(2) If �i = Ks, then the i-th inequality is active, so

w>ui � b� ⌘ = �✏i.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 659

18.5. Soft Margin Support Vector Machines; (SVM
s20) 659

If ✏i = 0, then the point ui is on the blue margin. If ✏i > 0, then ui

is within the open half space bounded by the blue margin hyperplane
Hw,b+⌘ and containing the separating hyperplane Hw,b; if ✏i ⌘, then
ui is classified correctly, and if ✏i > ⌘, then ui is misclassified (ui lies
on the wrong side of the separating hyperplane, the red side).
Similarly, if µj = Ks, then

w>vj � b+ ⌘ = ⇠j .

If ⇠j = 0, then the point vj is on the red margin. If ⇠j > 0, then vj
is within the open half space bounded by the red margin hyperplane
Hw,b�⌘ and containing the separating hyperplane Hw,b; if ⇠j ⌘, then
vj is classified correctly, and if ⇠j > ⌘, then vj is misclassified (vj lies
on the wrong side of the separating hyperplane, the blue side).

(3) If �i = 0, then ✏i = 0 and the i-th inequality may or may not be active,
so

w>ui � b� ⌘ � 0.

Thus ui is in the closed half space on the blue side bounded by the blue
margin hyperplane Hw,b+⌘ (of course, classified correctly).
Similarly, if µj = 0, then

w>vj � b+ ⌘ 0

and vj is in the closed half space on the red side bounded by the red
margin hyperplane Hw,b�⌘ (of course, classified correctly).

Definition 18.2. The vectors ui on the blue marginHw,b+⌘ and the vectors
vj on the red margin Hw,b�⌘ are called support vectors . Support vectors
correspond to vectors ui for which w>ui� b� ⌘ = 0 (which implies ✏i = 0),
and vectors vj for which w>vj � b+ ⌘ = 0 (which implies ⇠j = 0). Support
vectors ui such that 0 < �i < Ks and support vectors vj such that 0 <
µj < Ks are support vectors of type 1 . Support vectors of type 1 play a
special role so we denote the sets of indices associated with them by

I� = {i 2 {1, . . . , p} | 0 < �i < Ks}
Iµ = {j 2 {1, . . . , q} | 0 < µj < Ks}.

We denote their cardinalities by numsvl
1

= |I�| and numsvm
1

= |Iµ|.
Support vectors ui such that �i = Ks and support vectors vj such that
µj = Ks are support vectors of type 2 . Those support vectors ui such that
�i = 0 and those support vectors vj such that µj = 0 are called exceptional
support vectors.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 660

660 Soft Margin Support Vector Machines

The vectors ui for which �i = Ks and the vectors vj for which µj = Ks

are said to fail the margin. The sets of indices associated with the vectors
failing the margin are denoted by

K� = {i 2 {1, . . . , p} | �i = Ks}
Kµ = {j 2 {1, . . . , q} | µj = Ks}.

We denote their cardinalities by pf = |K�| and qf = |Kµ|.

It will also be useful to understand how points are classified in terms of
✏i (or ⇠j).

(1) If ✏i > 0, then by complementary slackness �i = Ks, so the ith equation
is active and by (2) above,

w>ui � b� ⌘ = �✏i.
Since ✏i > 0, the point ui is strictly within the open half space bounded
by the blue margin hyperplane Hw,b+⌘ and containing the separating
hyperplane Hw,b (excluding the blue hyperplane Hw,b+⌘); if ✏i ⌘,
then ui is classified correctly, and if ✏i > ⌘, then ui is misclassified.
Similarly, if ⇠j > 0, then vj is strictly within the open half space
bounded by the red margin hyperplane Hw,b�⌘ and containing the
separating hyperplane Hw,b (excluding the red hyperplane Hw,b�⌘);
if ⇠j ⌘, then vj is classified correctly, and if ⇠j > ⌘, then vj is mis-
classified.

(2) If ✏i = 0, then the point ui is correctly classified. If �i = 0, then by (3)
above, ui is in the closed half space on the blue side bounded by the
blue margin hyperplane Hw,b+⌘. If �i > 0, then by (1) and (2) above,
the point ui is on the blue margin.
Similarly, if ⇠j = 0, then the point vj is correctly classified. If µj = 0,
then vj is in the closed half space on the red side bounded by the red
margin hyperplane Hw,b�⌘, and if µj > 0, then the point vj is on the
red margin.

Also observe that if �i > 0, then ui is in the closed half space bounded
by the blue hyperplane Hw,b+⌘ and containing the separating hyperplane
Hw,b (including the blue hyperplane Hw,b+⌘).

Similarly, if µj > 0, then vj is in the closed half space bounded by
the red hyperplane Hw,b+⌘ and containing the separating hyperplane Hw,b

(including the red hyperplane Hw,b+⌘).

Definition 18.3. Vectors ui such that �i > 0 and vectors vj such that
µj > 0 are said to have margin at most �. The sets of indices associated

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 661

18.5. Soft Margin Support Vector Machines; (SVM
s20) 661

with these vectors are denoted by

I�>0

= {i 2 {1, . . . , p} | �i > 0}
Iµ>0

= {j 2 {1, . . . , q} | µj > 0}.
We denote their cardinalities by pm = |I�>0

| and qm = |Iµ>0

|.
Vectors ui such that ✏i > 0 and vectors vj such that ⇠j > 0 are said to

strictly fail the margin. The corresponding sets of indices are denoted by

E� = {i 2 {1, . . . , p} | ✏i > 0}
Eµ = {j 2 {1, . . . , q} | ⇠j > 0}.

We write psf = |E�| and qsf = |Eµ|.

We have the inclusions E� ✓ K� and Eµ ✓ Kµ. The di↵erence between
the first sets and the second sets is that the second sets may contain support
vectors such that �i = Ks and ✏i = 0, or µj = Ks and ⇠j = 0. We also have
the equations I� [K� = I�>0

and Iµ [Kµ = Iµ>0

, and the inequalities
psf pf pm and qsf qf qm.

It is shown in Section 18.8 how the dual program is solved using ADMM
from Section 16.6. If the primal problem is solvable, this yields solutions
for � and µ. Once a solution for � and µ is obtained, we have

w = �X

✓

�
µ

◆

=
p
X

i=1

�iui �
q
X

j=1

µjvj .

As we said earlier, the hypotheses of Theorem 14.5(2) hold, so if the
primal problem (SVMs20) has an optimal solution with w 6= 0, then the
dual problem has a solution too, and the duality gap is zero. Therefore, for
optimal solutions we have

L(w, ✏, ⇠, b, ⌘,�, µ,↵,�, �) = G(�, µ,↵,�, �),

which means that
1

2
w>w �Km⌘ +Ks

✓ p
X

i=1

✏i +
q
X

j=1

⇠j

◆

= �1

2

�

�> µ>�X>X

✓

�
µ

◆

,

and since

w = �X

✓

�
µ

◆

,

we get

1

2

�

�> µ>�X>X

✓

�
µ

◆

�Km⌘ +Ks

✓ p
X

i=1

✏i +
q
X

j=1

⇠j

◆

= �1

2

�

�> µ>�X>X

✓

�
µ

◆

,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 662

662 Soft Margin Support Vector Machines

which yields

⌘ =
Ks

Km

✓ p
X

i=1

✏i +
q
X

j=1

⇠j

◆

+
1

Km

�

�> µ>�X>X

✓

�
µ

◆

. (⇤)

Therefore, we confirm that ⌘ � 0.

Remarks: Since we proved that if the Primal Problem (SVMs20) has an
optimal solution with w 6= 0, then ⌘ � 0, one might wonder why the
constraint ⌘ � 0 was included. If we delete this constraint, it is easy to see
that the only di↵erence is that instead of the equation

1>
p �+ 1>

q µ = Km + � (⇤
1

)

we obtain the equation

1>
p �+ 1>

q µ = Km. (⇤
2

)

If ⌘ > 0, then by complementary slackness � = 0, in which case (⇤
1

) and
(⇤

2

) are equivalent. But if ⌘ = 0, then � could be strictly positive.
The option to omit the constraint ⌘ � 0 in the primal is slightly ad-

vantageous because then the dual involves 2(p+ q) instead of 2(p+ q) + 1
Lagrange multipliers, so the constraint matrix is a (p + q + 2) ⇥ 2(p + q)
matrix instead of a (p + q + 2) ⇥ (2(p + q) + 1) matrix and the matrix
defining the quadratic functional is a 2(p+ q)⇥ 2(p+ q) matrix instead of
a (2(p+ q) + 1)⇥ (2(p+ q) + 1) matrix; see Section 18.8.

Under the Standard Margin Hypothesis for (SVMs20), there is some
i
0

such that 0 < �i0 < Ks and some j
0

such that 0 < µj0 < Ks, and by the
complementary slackness conditions ✏i0 = 0 and ⇠j0 = 0, so we have the
two active constraints

w>ui0 � b = ⌘, �w>vj0 + b = ⌘,

and we can solve for b and ⌘ and we get

b =
w>ui0 + w>vj0

2

⌘ =
w>ui0 � w>vj0

2

� =
⌘

kwk .

Due to numerical instability, when writing a computer program it is
preferable to compute the lists of indices I� and Iµ given by

I� = {i 2 {1, . . . , p} | 0 < �i < Ks}
Iµ = {j 2 {1, . . . , q} | 0 < µj < Ks}.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 663

18.5. Soft Margin Support Vector Machines; (SVM
s20) 663

Then it is easy to see that we can compute b and ⌘ using the following
averaging formulae:

b = w>

0

@

✓

X

i2I
�

ui

◆

/|I�|+
✓

X

j2I
µ

vj

◆

/|Iµ|

1

A /2

⌘ = w>

0

@

✓

X

i2I
�

ui

◆

/|I�|�
✓

X

j2I
µ

vj

◆

/|Iµ|

1

A /2.

The “kernelized” version of Problem (SVMs20) is the following:

Soft margin kernel SVM (SVMs20):

minimize
1

2
hw,wi �Km⌘ +Ks

�

✏> ⇠>
�

1p+q

subject to

hw,'(ui)i � b � ⌘ � ✏i, ✏i � 0 i = 1, . . . , p

� hw,'(vj)i+ b � ⌘ � ⇠j , ⇠j � 0 j = 1, . . . , q

⌘ � 0.

Tracing through the derivation of the dual program we obtain

Dual of the Soft margin kernel SVM (SVMs20):

minimize
1

2

�

�> µ>�K

✓

�
µ

◆

subject to
p
X

i=1

�i �
q
X

j=1

µj = 0

p
X

i=1

�i +
q
X

j=1

µj � Km

0 �i Ks, i = 1, . . . , p

0 µj Ks, j = 1, . . . , q,

where K is the kernel matrix of Section 18.1.
As in Section 18.3, we obtain

w =
p
X

i=1

�i'(ui)�
q
X

j=1

µj'(vj),

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 664

664 Soft Margin Support Vector Machines

so

b =
1

2

✓ p
X

i=1

�i((ui, ui0) + (ui, vj0))�
q
X

j=1

µj((vj , ui0) + (vj , vj0))

◆

,

and the classification function

f(x) = sgn(hw,'(x)i � b)

is given by

f(x) = sgn

✓ p
X

i=1

�i(2(ui, x)� (ui, ui0)� (ui, vj0))

�
q
X

j=1

µj(2(vj , x)� (vj , ui0)� (vj , vj0))

◆

.

18.6 Classification of the Data Points in Terms of ⌫
(SVMs20)

For a finer classification of the points it turns out to be convenient to
consider the ratio

⌫ =
Km

(p+ q)Ks
.

First note that in order for the constraints to be satisfied, some relationship
between Ks and Km must hold. In addition to the constraints

0 �i Ks, 0 µj Ks,

we also have the constraints
p
X

i=1

�i =
q
X

j=1

µj

p
X

i=1

�i +
q
X

j=1

µj � Km

which imply that
p
X

i=1

�i �
Km

2
and

q
X

j=1

µj �
Km

2
. (†)

Since �, µ are all nonnegative, if �i = Ks for all i and if µj = Ks for all j,
then

Km

2

p
X

i=1

�i pKs and
Km

2

q
X

j=1

µj qKs,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 665

18.6. Classification of the Data Points in Terms of ⌫ (SVM
s20) 665

so these constraints are not satisfied unless Km min{2pKs, 2qKs}, so we
assume that Km min{2pKs, 2qKs}. The equations in (†) also imply that
there is some i

0

such that �i0 > 0 and some j
0

such that µj0 > 0, and so
pm � 1 and qm � 1.

For a finer classification of the points we find it convenient to define
⌫ > 0 such that

⌫ =
Km

(p+ q)Ks
,

so that the objective function J(w, ✏, ⇠, b, ⌘) is given by

J(w, ✏, ⇠, b, ⌘) =
1

2
w>w + (p+ q)Ks

✓

�⌫⌘ + 1

p+ q

�

✏> ⇠>
�

1p+q

◆

.

Observe that the condition Km min{2pKs, 2qKs} is equivalent to

⌫ min

⇢

2p

p+ q
,

2q

p+ q

�

 1.

Since we obtain an equivalent problem by rescaling by a common posi-
tive factor, theoretically it is convenient to normalize Ks as

Ks =
1

p+ q
,

in which case Km = ⌫. This method is called the ⌫-support vector machine.
Actually, to program the method, it may be more convenient assume that
Ks is arbitrary. This helps in avoiding �i and µj to become to small when
p+ q is relatively large.

The equations (†) and the box inequalities

0 �i Ks, 0 µj Ks

also imply the following facts:

Proposition 18.1. If Problem (SVMs20) has an optimal solution with w 6=
0 and ⌘ > 0, then the following facts hold:

(1) Let pf be the number of points ui such that �i = Ks, and let qf the
number of points vj such that µj = Ks. Then pf , qf ⌫(p+ q)/2.

(2) Let pm be the number of points ui such that �i > 0, and let qm the
number of points vj such that µj > 0. Then pm, qm � ⌫(p+ q)/2. We
have pm � 1 and qm � 1.

(3) If pf � 1 or qf � 1, then ⌫ � 2/(p+ q).

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 666

666 Soft Margin Support Vector Machines

Proof. (1) Recall that for an optimal solution with w 6= 0 and ⌘ > 0, we
have � = 0, so by (⇤�) we have the equations

p
X

i=1

�i =
Km

2
and

q
X

j=1

µj =
Km

2
.

The point ui fails to achieve the margin i↵ �i = Ks = Km/(⌫(p+ q)), so if
there are pf such points then

Km

2
=

p
X

i=1

�i �
Kmpf
⌫(p+ q)

,

so

pf ⌫(p+ q)

2
.

A similar reasoning applies if vj fails to achieve the margin � with
Pp

i=1

�i
replaced by

Pq
j=1

µj .
(2) A point ui has margin at most � i↵ �i > 0. If

I�>0

= {i 2 {1, . . . , p} | �i > 0} and pm = |I�>0

|,

then

Km

2
=

p
X

i=1

�i =
X

i2I
�>0

�i,

and since �i Ks = Km/(⌫(p+ q)), we have

Km

2
=

X

i2I
�>0

�i
Kmpm
⌫(p+ q)

,

which yields

pm � ⌫(p+ q)

2
.

A similar reasoning applies if a point vj has margin at most �. We already
observed that (†) implies that pm � 1 and qm � 1.

(3) This follows immediately from (1).

Observe that pf = qf = 0 means that there are no points in the open
slab containing the separating hyperplane, namely, the points ui and the
points vj are separable. So if the points ui and the points vj are not
separable, then we must pick ⌫ such that 2/(p + q) ⌫ min{2p/(p +
q), 2q/(p+ q)} for the method to succeed. Otherwise, the method is trying
to produce a solution where w = 0 and ⌘ = 0, and it does not converge (�

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 667

18.7. Existence of Support Vectors for (SVM
s20) 667

is nonzero). Actually, Proposition 18.1 yields more accurate bounds on ⌫
for the method to converge, namely

max

⇢

2pf
p+ q

,
2qf
p+ q

�

 ⌫ min

⇢

2pm
p+ q

,
2qm
p+ q

�

.

By a previous remark, pf pm and qf qm, the first inequality being
strict if there is some i such that 0 < �i < K, and the second inequality
being strict if there is some j such that 0 < µj < K. This will be the case
under the Standard Margin Hypothesis.

Observe that a small value of ⌫ keeps pf and qf small, which is achieved
if the �-slab is narrow (to avoid having points on the wrong sides of the
margin hyperplanes). A large value of ⌫ allows pm and qm to be fairly
large, which is achieved if the �-slab is wide. Thus the smaller ⌫ is, the
narrower the �-slab is, and the larger ⌫ is, the wider the �-slab is. This is
the opposite of the behavior that we witnessed in ⌫-regression (see Section
20.1).

18.7 Existence of Support Vectors for (SVMs20)

We now consider the issue of the existence of support vectors. We will
show that in the “generic case” there is always some blue support vector
and some red support vector. The term generic has to do with the choice
of ⌫ and will be explained below.

Given any real numbers u, v, x, y, if max{u, v} < min{x, y}, then u < x
and v < y. This is because u, v max{u, v} < min{x, y} x, y. Conse-
quently, since by Proposition 18.1, max{2pf/(p + q), 2qf/(p + q)} ⌫, if
⌫ < min{2p/(p+q), 2q/(p+q)}, then pf < p and qf < q, and since psf pf
and qsf qf , we also have psf < p and qsf < q. This implies that there
are constraints corresponding to some i /2 E� (in which case ✏i = 0) and to
some j /2 Eµ (in which case ⇠j = 0), of the form

w>ui � b � ⌘ i /2 E�

�w>vj + b � ⌘ j /2 Eµ.

If w>ui � b = ⌘ for some i /2 E� and �w>vj + b = ⌘ for some j /2 Eµ,
then we have a blue support vector and a red support vector. Otherwise,
we show how to modify b and ⌘ to obtain an optimal solution with a blue
support vector and a red support vector.

Proposition 18.2. For every optimal solution (w, b, ⌘, ✏, ⇠) of Problem
(SVMs20) with w 6= 0 and ⌘ > 0, if

⌫ < min{2p/(p+ q), 2q/(p+ q)}

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 668

668 Soft Margin Support Vector Machines

and if either no ui is a support vector or no vj is a support vector, then
there is another optimal solution (for the same w) with some i

0

such that
✏i0 = 0 and w>ui0 � b = ⌘, and there is some j

0

such that ⇠j0 = 0 and
�w>vj0 +b = ⌘; in other words, some ui0 and some vj0 is a support vector;
in particular, psf < p and qsf < q.

Proof. We just explained that psf < p and qsf < q, so the following
constraints hold:

w>ui � b = ⌘ � ✏i ✏i > 0 i 2 E�

�w>vj + b = ⌘ � ⇠j ⇠j > 0 j 2 Eµ

w>ui � b � ⌘ i /2 E�

�w>vj + b � ⌘ j /2 Eµ,

where there is some i /2 E� and some j /2 Eµ.
If our optimal solution does not have a blue support vector and a red

support vector, then either w>ui � b > ⌘ for all i /2 E� or �w>vj + b > ⌘
for all j /2 Eµ.

Case 1 . We have

w>ui � b > ⌘ i /2 E�

�w>vj + b � ⌘ j /2 Eµ.

There are two subcases.
Case 1a. Assume that there is some j /2 Eµ such that �w>vj + b = ⌘.

Our strategy is to increase ⌘ and b by a small amount ✓ in such a way that
some inequality becomes an equation for some i /2 E�. Geometrically, this
amounts to raising the separating hyperplaneHw,b and increasing the width
of the slab, keeping the red margin hyperplane unchanged. See Figure 18.7.

Let us pick ✓ such that

✓ = (1/2)min{w>ui � b� ⌘ | i /2 E�}.

Our hypotheses imply that ✓ > 0. We can write

w>ui � (b+ ✓) = ⌘ + ✓ � (✏i + 2✓) ✏i > 0 i 2 E�

�w>vj + b+ ✓ = ⌘ + ✓ � ⇠j ⇠j > 0 j 2 Eµ

w>ui � (b+ ✓) � ⌘ + ✓ i /2 E�

�w>vj + b+ ✓ � ⌘ + ✓ j /2 Eµ.

By hypothesis

�w>vj + b+ ✓ = ⌘ + ✓ for some j /2 Eµ,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 669

18.7. Existence of Support Vectors for (SVM
s20) 669

w x - b
 - η

= 0

T

η

η

T

T

w x - b
 + η = 0w x - b

 = 0

red support vector

no blue support vectors

w x - (b
 + θ) - (η

 + θ) = 0

T
η

T

T

red support vector

blue support vector

w x - (b
 + θ) = 0

w x - (b
 + θ) + (η + θ) = 0

θ

η

θ

Fig. 18.7 In this illustration points with errors are denoted by open circles. In the
original, upper left configuration, there is no blue support vector. By raising the pink
separating hyperplane and increasing the margin, we end up with a blue support vector.

and by the choice of ✓,

w>ui � (b+ ✓) = ⌘ + ✓ for some i /2 E�.

The new value of the objective function is

!(✓) =
1

2
w>w � ⌫(⌘ + ✓) +

1

p+ q

✓

X

i2E
�

(✏i + 2✓) +
X

j2E
µ

⇠j

◆

=
1

2
w>w � ⌫⌘ +

1

p+ q

✓

X

i2E
�

✏i +
X

j2E
µ

⇠j

◆

�
✓

⌫ � 2psf
p+ q

◆

✓.

By Proposition 18.1 we have

max

⇢

2pf
p+ q

,
2qf
p+ q

�

 ⌫

and psf pf and qsf qf , which implies that

⌫ � 2psf
p+ q

� 0, (⇤
1

)

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 670

670 Soft Margin Support Vector Machines

and so !(✓) !(0). If inequality (⇤
1

) is strict, then this contradicts the
optimality of the original solution. Therefore, ⌫ = 2psf/(p + q), !(✓) =
!(0), and (w, b+ ✓, ⌘ + ✓, ✏+ 2✓, ⇠) is an optimal solution such that

w>ui � (b+ ✓) = ⌘ + ✓

�w>vj + b+ ✓ = ⌘ + ✓

for some i /2 E� and some j /2 Eµ.
Case 1b. We have �w>vj + b > ⌘ for all j /2 Eµ. Our strategy is to

increase ⌘ and the errors by a small ✓ in such a way that some inequality
becomes an equation for some i /2 E� or for some j /2 Eµ. Geometrically,
this corresponds to increasing the width of the slab, keeping the separating
hyperplane unchanged. See Figures 18.8 and 18.9. Then we are reduced to
Case 1a or Case 2a.

w x - b
 - η

= 0

T

η

η

T

T

w x - b
 + η = 0w x - b

 = 0

no red support vectors

no blue support vectors

T

η

η

T

T

w x - b
 + (η + θ) = 0

w x - b
 = 0

red support vector

θ

w x - b - (η
 + θ) = 0

θ

no blue support vectors

Fig. 18.8 In this illustration points with errors are denoted by open circles. In the
original, upper left configuration, there is no blue support vector and no red support
vector. By increasing the margin, we end up with a red support vector and reduce to
Case 1a.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 671

18.7. Existence of Support Vectors for (SVM
s20) 671

w x - b
 - η

= 0

T

η

η

T

T

w x - b
 + η = 0w x - b

 = 0

no red support vectors

no blue support vectors

T

η

η

T

T

w x - b
 + (η + θ) = 0

w x - b
 = 0

no red support vectors

blue support vectorθ

w x - b - (η
 + θ) = 0

θ

Case 2a

Fig. 18.9 In this illustration points with errors are denoted by open circles. In the
original, upper left configuration, there is no blue support vector and no red support
vector. By increasing the margin, we end up with a blue support vector and reduce to
Case 2a.

We have

w>ui � b = ⌘ � ✏i ✏i > 0 i 2 E�

�w>vj + b = ⌘ � ⇠j ⇠j > 0 j 2 Eµ

w>ui � b > ⌘ i /2 E�

�w>vj + b > ⌘ j /2 Eµ.

Let us pick ✓ such that

✓ = min{w>ui � b� ⌘, �w>vj + b� ⌘ | i /2 E�, j /2 Eµ}.

Our hypotheses imply that ✓ > 0. We can write

w>ui � b = ⌘ + ✓ � (✏i + ✓) ✏i > 0 i 2 E�

�w>vj + b = ⌘ + ✓ � (⇠j + ✓) ⇠j > 0 j 2 Eµ

w>ui � b � ⌘ + ✓ i /2 E�

�w>vj + b � ⌘ + ✓ j /2 Eµ,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 672

672 Soft Margin Support Vector Machines

and by the choice of ✓, either

w>ui � b = ⌘ + ✓ for some i /2 E�

or

�w>vj + b = ⌘ + ✓ for some j /2 Eµ.

The new value of the objective function is

!(✓) =
1

2
w>w � ⌫(⌘ + ✓) +

1

p+ q

✓

X

i2E
�

(✏i + ✓) +
X

j2E
µ

(⇠j + ✓)

◆

=
1

2
w>w � ⌫⌘ +

1

p+ q

✓

X

i2E
�

✏i +
X

j2E
µ

⇠j

◆

�
✓

⌫ � psf + qsf
p+ q

◆

✓.

Since max{2pf/(p+ q), 2qf/(p+ q)} ⌫ implies that (pf + qf)/(p+ q) ⌫
and psf pf , qsf qf , we have

⌫ � psf + qsf
p+ q

� 0, (⇤
2

)

and so !(✓) !(0). If inequality (⇤
2

) is strict, then this contradicts the
optimality of the original solution. Therefore, ⌫ = (psf + qsf)/(p + q),
!(✓) = !(0) and (w, b, ⌘ + ✓, ✏ + ✓, ⇠ + ✓) is an optimal solution such that
either

w>ui � b = ⌘ + ✓ for some i /2 E�

or

�w>vj + b = ⌘ + ✓ for some j /2 Eµ.

We are now reduced to Case 1a or Case 2a.
Case 2 . We have

w>ui � b � ⌘ i /2 E�

�w>vj + b > ⌘ j /2 Eµ.

There are two subcases.
Case 2a. Assume that there is some i /2 E� such that w>ui�b = ⌘. Our

strategy is to increase ⌘ and decrease b by a small amount ✓ in such a way
that some inequality becomes an equation for some j /2 Eµ. Geometrically,
this amounts to lowering the separating hyperplane Hw,b and increasing
the width of the slab, keeping the blue margin hyperplane unchanged. See
Figure 18.10.

Let us pick ✓ such that

✓ = (1/2)min{�w>vj + b� ⌘ | j /2 Eµ}.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 673

18.7. Existence of Support Vectors for (SVM
s20) 673

w x - b
 - η

= 0

T

η

η

T

T

w x - b
 + η = 0w x - b

 = 0

no red support vectors

blue support vector

w x - (b
-θ) - (

η+θ)= 0

T

η

η

T

T

w x - (b
-θ) + (η+θ) = 0

w x - (b
 - θ

) = 0

red support vector

blue support vector

θ
θ

Fig. 18.10 In this illustration points with errors are denoted by open circles. In the
original, upper left configuration, there is no red support vector. By lowering the pink
separating hyperplane and increasing the margin, we end up with a red support vector.

Our hypotheses imply that ✓ > 0. We can write

w>ui � (b� ✓) = ⌘ + ✓ � ✏i ✏i > 0 i 2 E�

�w>vj + b� ✓ = ⌘ + ✓ � (⇠j + 2✓) ⇠j > 0 j 2 Eµ

w>ui � (b� ✓) � ⌘ + ✓ i /2 E�

�w>vj + b� ✓ � ⌘ + ✓ j /2 Eµ.

By hypothesis

w>ui � (b� ✓) = ⌘ + ✓ for some i /2 E�,

and by the choice of ✓,

�w>vj + b� ✓ = ⌘ + ✓ for some j /2 Eµ.

The new value of the objective function is

!(✓) =
1

2
w>w � ⌫(⌘ + ✓) +

1

p+ q

✓

X

i2E
�

✏i +
X

j2E
µ

(⇠j + 2✓)

◆

=
1

2
w>w � ⌫⌘ +

1

p+ q

✓

X

i2E
�

✏i +
X

j2E
µ

⇠j

◆

�
✓

⌫ � 2qsf
p+ q

◆

✓.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 674

674 Soft Margin Support Vector Machines

The rest of the proof is similar to Case 1a with psf replaced by qsf .
Case 2b. We have w>ui � b > ⌘ for all i /2 E�. Since by hypothesis

�w>vj + b > ⌘ for all j /2 Eµ, Case 2b is identical to Case 1b, and we are
done.

A subtle point here is that Proposition 18.2 shows that if there is an
optimal solution, then there is one with a blue and a red support vector,
but it does not guarantee that these are support vectors of type 1. Since
the dual program does not determine b and ⌘ unless these support vectors
are of type 1, from a practical point of view this proposition is not helpful.

The proof of Proposition 18.2 reveals that there are three critical values
for ⌫:

2psf
p+ q

,
2qsf
p+ q

,
psf + qsf
p+ q

.

These values can be avoided by requiring the strict inequality

max

⇢

2psf
p+ q

,
2qsf
p+ q

�

< ⌫.

Then the following corollary holds.

Theorem 18.1. For every optimal solution (w, b, ⌘, ✏, ⇠) of Problem
(SVMs20) with w 6= 0 and ⌘ > 0, if

max{2pf/(p+ q), 2qf/(p+ q)} < ⌫ < min{2p/(p+ q), 2q/(p+ q)},
then some ui0 and some vj0 is a support vector.

Proof. We proceed by contradiction. Suppose that for every optimal so-
lution with w 6= 0 and ⌘ > 0 no ui is a blue support vector or no vj is a
red support vector. Since ⌫ < min{2p/(p+q), 2q/(p+q)}, Proposition 18.2
holds, so there is another optimal solution. But since the critical values
of ⌫ are avoided, the proof of Proposition 18.2 shows that the value of the
objective function for this new optimal solution is strictly smaller than the
original optimal value, a contradiction.

We also have the following proposition that gives a su�cient condition
implying that ⌘ and b can be found in terms of an optimal solution (�, µ)
of the dual.

Proposition 18.3. If (w, b, ⌘, ✏, ⇠) is an optimal solution of Problem
(SVMs20) with w 6= 0 and ⌘ > 0, if

max{2pf/(p+ q), 2qf/(p+ q)} < ⌫ < min{2p/(p+ q), 2q/(p+ q)},
then ⌘ and b can always be determined from an optimal solution (�, µ) of
the dual in terms of a single support vector.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 675

18.7. Existence of Support Vectors for (SVM
s20) 675

Proof. By Theorem 18.1 some ui0 and some vj0 is a support vector. As
we already explained, Problem (SVMs20) satisfies the conditions for having
a zero duality gap. Therefore, for optimal solutions we have

L(w, ✏, ⇠, b, ⌘,�, µ,↵,�) = G(�, µ,↵,�),

which means that

1

2
w>w � ⌫⌘ +

1

p+ q

✓ p
X

i=1

✏i +
q
X

j=1

⇠j

◆

= �1

2

�

�> µ>�X>X

✓

�
µ

◆

,

and since

w = �X

✓

�
µ

◆

,

we get

1

p+ q

✓ p
X

i=1

✏i +
q
X

j=1

⇠j

◆

= ⌫⌘ �
�

�> µ>�X>X

✓

�
µ

◆

. (⇤)

Let K� = {i 2 {1, . . . , p} | �i = Ks} and Kµ = {j 2 {1, . . . , q} | µj = Ks}.
By definition, pf = |K�| and qf = |Kµ| (here we assuming that Ks =
1/(p+ q)). By complementary slackness the following equations are active:

w>ui � b = ⌘ � ✏i i 2 K�

�w>vj + b = ⌘ � ⇠j j 2 Kµ.

But (⇤) can be written as

1

p+ q

✓

X

i2K
�

✏i +
X

j2K
µ

⇠j

◆

= ⌫⌘ �
�

�> µ>�X>X

✓

�
µ

◆

, (⇤⇤)

and since

✏i = ⌘ � w>ui + b i 2 K�

⇠j = ⌘ + w>vj � b j 2 Kµ,

by substituting in the Equation (⇤⇤) we get

✓

⌫ � pf + qf
p+ q

◆

⌘ =
pf � qf
p+ q

b+
1

p+ q
w>
✓

X

i2K
µ

vj �
X

i2K
�

ui

◆

+
�

�> µ>�X>X

✓

�
µ

◆

.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 676

676 Soft Margin Support Vector Machines

We also know that w>ui0 � b = ⌘ and �w>vj0 + b = ⌘ for some i
0

and
some j

0

. In the first case b = �⌘ + w>ui0 , and by substituting b in the
above equation we get the equation
✓

⌫ � pf + qf
p+ q

◆

⌘ = �pf � qf
p+ q

⌘ +
pf � qf
p+ q

w>ui0

+
1

p+ q
w>
✓

X

i2K
µ

vj �
X

i2K
�

ui

◆

+
�

�> µ>�X>X

✓

�
µ

◆

,

that is,
✓

⌫ � 2qf
p+ q

◆

⌘ =
pf � qf
p+ q

w>ui0 +
1

p+ q
w>
✓

X

i2K
µ

vj �
X

i2K
�

ui

◆

+
�

�> µ>�X>X

✓

�
µ

◆

.

In the second case b = ⌘ + w>vj0 , and we get the equation
✓

⌫ � pf + qf
p+ q

◆

⌘ =
pf � qf
p+ q

⌘ +
pf � qf
p+ q

w>vj0

+
1

p+ q
w>
✓

X

i2K
µ

vj �
X

i2K
�

ui

◆

+
�

�> µ>�X>X

✓

�
µ

◆

,

that is,
✓

⌫ � 2pf
p+ q

◆

⌘ =
pf � qf
p+ q

w>vj0 +
1

p+ q
w>
✓

X

i2K
µ

vj �
X

i2K
�

ui

◆

+
�

�> µ>�X>X

✓

�
µ

◆

.

We need to choose ⌫ such that 2pf/(p+ q)�⌫ 6= 0 and 2qf/(p+ q)�⌫ 6= 0.
Since by Proposition 18.1, we have max{2pf/(p + q), 2qf/(p + q)} ⌫, it
su�ces to pick ⌫ such that max{2pf/(p + q), 2qf/(p + q)} < ⌫. If this
condition is satisfied we can solve for ⌘, and then we find b from either
b = �⌘ + w>ui0 or b = ⌘ + w>vj0 .

Remark: Of course the hypotheses of the proposition imply that w>ui0 �
b = ⌘ and �w>vj0 + b = ⌘ for some i

0

and some j
0

. Thus we can also
compute b and ⌘ using the formulae

b =
w>(ui0 + vj0)

2

⌘ =
w>(ui0 � vj0)

2
.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 677

18.7. Existence of Support Vectors for (SVM
s20) 677

The interest of Proposition 18.3 lies in the fact that it allows us to compute
b and ⌘ knowing only a single support vector.

In practice we can only find support vectors of type 1 so Proposition
18.3 is useful if we can only find some blue support vector of type 1 or some
red support vector of type 1.

As earlier, if we define I� and Iµ as

I� = {i 2 {1, . . . , p} | 0 < �i < Ks}
Iµ = {j 2 {1, . . . , q} | 0 < µj < Ks},

then we have the following cases to compute ⌘ and b.

(1) If I� 6= ; and Iµ 6= ;, then

b = w>

0

@

✓

X

i2I
�

ui

◆

/|I�|+
✓

X

j2I
µ

vj

◆

/|Iµ|

1

A /2

⌘ = w>

0

@

✓

X

i2I
�

ui

◆

/|I�|�
✓

X

j2I
µ

vj

◆

/|Iµ|

1

A /2.

(2) If I� 6= ; and Iµ = ;, then

b = �⌘ + w>
✓

X

i2I
�

ui

◆

/|I�|

((p+ q)⌫ � 2qf)⌘ = (pf � qf)w
>
✓

X

i2I
�

ui

◆

/|I�|

+ w>
✓

X

i2K
µ

vj �
X

i2K
�

ui

◆

+ (p+ q)
�

�> µ>�X>X

✓

�
µ

◆

.

(3) If I� = ; and Iµ 6= ;, then

b = ⌘ + w>
✓

X

j2I
µ

vj

◆

/|Iµ|

((p+ q)⌫ � 2pf)⌘ = (pf � qf)w
>
✓

X

j2I
µ

vj

◆

/|Iµ|

+ w>
✓

X

i2K
µ

vj �
X

i2K
�

ui

◆

+ (p+ q)
�

�> µ>�X>X

✓

�
µ

◆

.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 678

678 Soft Margin Support Vector Machines

The above formulae correspond to Ks = 1/(p+ q). In general we have
to replace the rightmost (p+ q) by 1/Ks.

We have examples where there is a single support vector of type 1 and
⌫ = 2qf/(p+q), so the above method fails. Curiously, perturbing ⌫ slightly
yields a solution with some blue support vector of type 1 and some red
support vector of type 1, and so we have not yet found an example where the
above method succeeds with a single support vector of type 1. This suggests
to conduct some perturbation analysis but it appears to be nontrivial.

Among its advantages, the support vector machinery is conducive to
finding interesting statistical bounds in terms of the VC dimension, a notion
invented by Vapnik and Chernovenkis. We will not go into this here and
instead refer the reader to Vapnik [Vapnik (1998)] (especially, Chapter 4
and Chapters 9-13).

18.8 Solving SVM (SVMs20) Using ADMM

In order to solve (SVMs20) using ADMM we need to write the matrix cor-
responding to the constraints in equational form,

p
X

i=1

�i �
q
X

j=1

µj = 0

p
X

i=1

�i +
q
X

j=1

µj � � = Km

�i + ↵i = Ks, i = 1, . . . , p

µj + �j = Ks, j = 1, . . . , q,

with Km = (p + q)Ks⌫. This is the (p + q + 2) ⇥ (2(p + q) + 1) matrix A
given by

A =

0

B

B

B

B

B

@

1>
p �1>

q 0>p 0>q 0

1>
p 1>

q 0>p 0>q �1

Ip 0p,q Ip 0p,q 0p

0q,p Iq 0q,p Iq 0q

1

C

C

C

C

C

A

.

Observe the remarkable analogy with the matrix arising in ⌫-regression in
Section 20.3, except that p = q = m and that �1 is replaced by +1. We
leave it as an exercise to prove that A has rank p+ q + 2. The right-hand

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 679

18.8. Solving SVM (SVM
s20) Using ADMM 679

side is

c =

0

@

0
Km

Ks1p+q

1

A .

The symmetric positive semidefinite (p+ q)⇥ (p+ q) matrix P defining the
quadratic functional is

P = X>X, with X =
�

�u
1

· · · �up v
1

· · · vq
�

,

and

q = 0p+q.

Since there are 2(p + q) + 1 Lagrange multipliers (�, µ,↵,�, �), the (p +
q) ⇥ (p + q) matrix X>X must be augmented with zero’s to make it a
(2(p+ q) + 1)⇥ (2(p+ q) + 1) matrix Pa given by

Pa =

✓

X>X 0p+q,p+q+1

0p+q+1,p+q 0p+q+1,p+q+1

◆

,

and similarly q is augmented with zeros as the vector qa = 0
2(p+q)+1

.
As we mentioned in Section 18.5, since ⌘ � 0 for an optimal solution,

we can drop the constraint ⌘ � 0 from the primal problem. In this case
there are 2(p + q) Lagrange multipliers (�, µ,↵,�). It is easy to see that
the objective function of the dual is unchanged and the set of constraints
is

p
X

i=1

�i �
q
X

j=1

µj = 0

p
X

i=1

�i +
q
X

j=1

µj = Km

�i + ↵i = Ks, i = 1, . . . , p

µj + �j = Ks, j = 1, . . . , q,

with Km = (p+q)Ks⌫. The constraint matrix corresponding to this system
of equations is the (p+ q + 2)⇥ 2(p+ q) matrix A

2

given by

A
2

=

0

B

B

B

B

B

@

1>
p �1>

q 0>p 0>q

1>
p 1>

q 0>p 0>q

Ip 0p,q Ip 0p,q

0q,p Iq 0q,p Iq

1

C

C

C

C

C

A

.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 680

680 Soft Margin Support Vector Machines

We leave it as an exercise to prove that A
2

has rank p+q+2. The right-hand
side is

c
2

=

0

@

0
Km

Ks1p+q

1

A .

The symmetric positive semidefinite (p+ q)⇥ (p+ q) matrix P defining the
quadratic functional is

P = X>X, with X =
�

�u
1

· · · �up v
1

· · · vq
�

,

and

q = 0p+q.

Since there are 2(p + q) Lagrange multipliers the (p + q) ⇥ (p + q) matrix
X>X must be augmented with zero’s to make it a 2(p+q)⇥2(p+q) matrix
P
2a given by

P
2a =

✓

X>X 0p+q,p+q

0p+q,p+q 0p+q,p+q

◆

,

and similarly q is augmented with zeros as the vector q
2a = 0

2(p+q).
The Matlab programs implementing the above method are given in

Appendix B, Section B.2. We ran our program on two sets of 30 points
each generated at random using the following code which calls the function
runSVMs2pbv3:

rho = 10;

u16 = 10.1*randn(2,30)+7 ;

v16 = -10.1*randn(2,30)-7;

[~,~,~,~,~,~,w3] = runSVMs2pbv3(0.37,rho,u16,v16,1/60)

We picked K = 1/60 and various values of ⌫ starting with ⌫ = 0.37,
which appears to be the smallest value for which the method converges; see
Figure 18.11.

In this example, pf = 10, qf = 11, pm = 12, qm = 12. The quadratic
solver converged after 8121 steps to reach primal and dual residuals smaller
than 10�10.

Reducing ⌫ below ⌫ = 0.37 has the e↵ect that pf , qf , pm, qm decrease
but the following situation arises. Shrinking ⌘ a little bit has the e↵ect that
pf = 9, qf = 10, pm = 10, qm = 11. Then max{pf , qf} = min{pm, qm} =
10, so the only possible value for ⌫ is ⌫ = 20/60 = 1/3 = 0.3333333 · · · .
When we run our program with ⌫ = 1/3, it returns a value of ⌘ less than

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 681

18.8. Solving SVM (SVM
s20) Using ADMM 681

10�13 and a value of w whose components are also less than 10�13. This
is probably due to numerical precision. Values of ⌫ less than 1/3 cause the
same problem. It appears that the geometry of the problem constrains the
values of pf , qf , pm, qm in such a way that it has no solution other than
w = 0 and ⌘ = 0.

-30 -20 -10 0 10 20 30 40
-30

-20

-10

0

10

20

30

Fig. 18.11 Running (SVM
s20) on two sets of 30 points; ⌫ = 0.37.

Figure 18.12 shows the result of running the program with ⌫ = 0.51.
We have pf = 15, qf = 16, pm = 16, qm = 16. Interestingly, for ⌫ = 0.5, we
run into the singular situation where there is only one support vector and
⌫ = 2pf/(p+ q).

Next Figure 18.13 shows the result of running the program with ⌫ =
0.71. We have pf = 21, qf = 21, pm = 22, qm = 23. Interestingly, for
⌫ = 0.7, we run into the singular situation where there are no support
vectors.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 682

682 Soft Margin Support Vector Machines

-30 -20 -10 0 10 20 30 40
-30

-20

-10

0

10

20

30

Fig. 18.12 Running (SVM
s20) on two sets of 30 points; ⌫ = 0.51.

-30 -20 -10 0 10 20 30 40
-30

-20

-10

0

10

20

30

Fig. 18.13 Running (SVM
s20) on two sets of 30 points; ⌫ = 0.71.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 683

18.9. Soft Margin Support Vector Machines; (SVM
s3) 683

For our next to the last run, Figure 18.14 shows the result of running
the program with ⌫ = 0.95. We have pf = 28, qf = 28, pm = 29, qm = 29.

-30 -20 -10 0 10 20 30 40
-30

-20

-10

0

10

20

30

Fig. 18.14 Running (SVM
s20) on two sets of 30 points; ⌫ = 0.95.

Figure 18.15 shows the result of running the program with ⌫ = 0.97.
We have pf = 29, qf = 29, pm = 30, qm = 30, which shows that the largest
margin has been achieved. However, after 80000 iterations the dual resid-
ual is less than 10�12 but the primal residual is approximately 10�4 (our
tolerance for convergence is 10�10, which is quite high). Nevertheless the
result is visually very good.

18.9 Soft Margin Support Vector Machines; (SVMs3)

In this section we consider a variation of Problem (SVMs20) by adding the
term (1/2)b2 to the objective function. The result is that in minimizing the
Lagrangian to find the dual function G, not just w but also b is determined
and ⌘ is determined under a mild condition on ⌫. We also suppress the

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 684

684 Soft Margin Support Vector Machines

-30 -20 -10 0 10 20 30 40
-30

-20

-10

0

10

20

30

Fig. 18.15 Running (SVM
s20) on two sets of 30 points; ⌫ = 0.97.

constraint ⌘ � 0 which turns out to be redundant.

Soft margin SVM (SVMs3):

minimize
1

2
w>w +

1

2
b2 + (p+ q)Ks

✓

�⌫⌘ + 1

p+ q

�

✏> ⇠>
�

1p+q

◆

subject to

w>ui � b � ⌘ � ✏i, ✏i � 0 i = 1, . . . , p

� w>vj + b � ⌘ � ⇠j , ⇠j � 0 j = 1, . . . , q.

To simplify the presentation we assume that Ks = 1/(p + q). When
writing a computer program it is more convenient to assume that Ks is
arbitrary. In this case, ⌫ needs to be replaced by (p + q)Ks⌫ in all the
formulae.

The Lagrangian L(w, ✏, ⇠, b, ⌘,�, µ,↵,�) with �,↵ 2 Rp
+

, µ,� 2 Rq
+

is

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 685

18.9. Soft Margin Support Vector Machines; (SVM
s3) 685

given by

L(w, ✏, ⇠, b, ⌘,�, µ,↵,�) =
1

2
w>w + w>X

✓

�
µ

◆

+
b2

2
+Ks(✏

>1p + ⇠>1q)

� ✏>(�+ ↵)� ⌫⌘ � ⇠>(µ+ �) + b(1>
p �� 1>

q µ) + ⌘(1>
p �+ 1>

q µ)

=
1

2
w>w + w>X

✓

�
µ

◆

+
b2

2
+ b(1>

p �� 1>
q µ) + ⌘(1>

p �+ 1>
q µ� ⌫)

+ ✏>(Ks1p � (�+ ↵)) + ⇠>(Ks1q � (µ+ �)).

To find the dual function G(�, µ,↵,�), we minimize L(w, ✏, ⇠, b, ⌘,
�, µ,↵,�) with respect to w, ✏, ⇠, b, and ⌘. Since the Lagrangian is convex
and (w, ✏, ⇠, b, ⌘) 2 Rn ⇥ Rp ⇥ Rq ⇥ R⇥ R, a convex open set, by Theorem
4.5, the Lagrangian has a minimum in (w, ✏, ⇠, b, ⌘) i↵ rLw,✏,⇠,b,⌘ = 0, so
we compute its gradient with respect to w, ✏, ⇠, b, ⌘, and we get

rLw,✏,⇠,b,⌘ =

0

B

B

B

B

B

B

B

@

X

✓

�
µ

◆

+ w

Ks1p � (�+ ↵)
Ks1q � (µ+ �)
b+ 1>

p �� 1>
q µ

1>
p �+ 1>

q µ� ⌫

1

C

C

C

C

C

C

C

A

.

By setting rLw,✏,⇠,b,⌘ = 0 we get the equations

w = �X

✓

�
µ

◆

(⇤w)

�+ ↵ = Ks1p

µ+ � = Ks1q

1>
p �+ 1>

q µ = ⌫,

and

b = �(1>
p �� 1>

q µ). (⇤b)

The second and third equations are equivalent to the box constraints

0 �i, µj Ks, i = 1, . . . , p, j = 1, . . . , q.

Since we assumed that the primal problem has an optimal solution with
w 6= 0, we have

X

✓

�
µ

◆

6= 0.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 686

686 Soft Margin Support Vector Machines

Plugging back w from (⇤w) and b from (⇤b) into the Lagrangian, we get

G(�, µ,↵,�) =
1

2

�

�> µ>�X>X

✓

�
µ

◆

�
�

�> µ>�X>X

✓

�
µ

◆

+
1

2
b2 � b2

= �1

2

�

�> µ>�X>X

✓

�
µ

◆

� 1

2
b2

= �1

2

�

�> µ>�
✓

X>X +

✓

1p1>
p �1p1>

q

�1q1>
p 1q1>

q

◆◆✓

�
µ

◆

,

so the dual function is independent of ↵,� and is given by

G(�, µ) = �1

2

�

�> µ>�
✓

X>X +

✓

1p1>
p �1p1>

q

�1q1>
p 1q1>

q

◆◆✓

�
µ

◆

.

The dual program is given by

maximize � 1

2

�

�> µ>�
✓

X>X +

✓

1p1>
p �1p1>

q

�1q1>
p 1q1>

q

◆◆✓

�
µ

◆

subject to
p
X

i=1

�i +
q
X

j=1

µj = ⌫

0 �i Ks, i = 1, . . . , p

0 µj Ks, j = 1, . . . , q.

Finally, the dual program is equivalent to the following minimization pro-
gram:

Dual of the Soft margin SVM (SVMs3):

minimize
1

2

�

�> µ>�
✓

X>X +

✓

1p1>
p �1p1>

q

�1q1>
p 1q1>

q

◆◆✓

�
µ

◆

subject to
p
X

i=1

�i +
q
X

j=1

µj = ⌫

0 �i Ks, i = 1, . . . , p

0 µj Ks, j = 1, . . . , q.

The classification of the points ui and vj in terms of the values of � and
µ and Definition 18.2 and Definition 18.3 are unchanged.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 687

18.9. Soft Margin Support Vector Machines; (SVM
s3) 687

It is shown in Section 18.12 how the dual program is solved using ADMM
from Section 16.6. If the primal problem is solvable, this yields solutions
for � and µ. Once a solution for � and µ is obtained, we have

w = �X

✓

�
µ

◆

=
p
X

i=1

�iui �
q
X

j=1

µjvj

b = �(1>
p �� 1>

q µ) = �
p
X

i=1

�i +
q
X

j=1

µj .

We can compute ⌘ using duality. As we said earlier, the hypotheses of
Theorem 14.5(2) hold, so if the primal problem (SVMs3) has an optimal
solution with w 6= 0, then the dual problem has a solution too, and the
duality gap is zero. Therefore, for optimal solutions we have

L(w, ✏, ⇠, b, ⌘,�, µ,↵,�) = G(�, µ,↵,�),

which means that

1

2
w>w +

b2

2
� (p+ q)Ks⌫⌘ +Ks

✓ p
X

i=1

✏i +
q
X

j=1

⇠j

◆

= �1

2

�

�> µ>�
✓

X>X +

✓

1p1>
p �1p1>

q

�1q1>
p 1q1>

q

◆◆✓

�
µ

◆

.

We can use the above equation to determine ⌘.
Since

1

2
w>w +

b2

2
=

1

2

�

�> µ>�
✓

X>X +

✓

1p1>
p �1p1>

q

�1q1>
p 1q1>

q

◆◆✓

�
µ

◆

,

we get

(p+ q)Ks⌫⌘ = Ks

✓ p
X

i=1

✏i +
q
X

j=1

⇠j

◆

+
�

�> µ>�
✓

X>X +

✓

1p1>
p �1p1>

q

�1q1>
p 1q1>

q

◆◆✓

�
µ

◆

. (⇤)

Since

X>X +

✓

1p1>
p �1p1>

q

�1q1>
p 1q1>

q

◆

is positive semidefinite, we confirm that ⌘ � 0.
Since nonzero ✏i and ⇠j may only occur for vectors ui and vj that fail

the margin, namely �i = Ks, µj = Ks, the corresponding constraints are

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 688

688 Soft Margin Support Vector Machines

active and we can solve for ✏i and ⇠j in terms of b and ⌘. Let K� and Kµ

be the sets of indices corresponding to points failing the margin,

K� = {i 2 {1, . . . , p} | �i = Ks}
Kµ = {j 2 {1, . . . , q} | µj = Ks}.

By definition pf = |K�|, qf = |Kµ|. Then for every i 2 K� we have

✏i = ⌘ + b� w>ui

and for every j 2 Kµ we have

⇠j = ⌘ � b+ w>vj .

Using the above formulae we obtain

p
X

i=1

✏i +
q
X

j=1

⇠j =
X

i2K
�

✏i +
X

j2K
µ

⇠j

=
X

i2K
�

(⌘ + b� w>ui) +
X

j2K
µ

(⌘ � b+ w>vj)

= (pf + qf)⌘ + (pf � qf)b+ w>
✓

X

j2K
µ

vj �
X

i2K
�

ui

◆

Substituting this expression in (⇤) we obtain

(p+ q)Ks⌫⌘ = Ks

✓ p
X

i=1

✏i +
q
X

j=1

⇠j

◆

+
�

�> µ>�
✓

X>X +

✓

1p1>
p �1p1>

q

�1q1>
p 1q1>

q

◆◆✓

�
µ

◆

= Ks

✓

(pf + qf)⌘ + (pf � qf)b+ w>
✓

X

j2K
µ

vj �
X

i2K
�

ui

◆◆

+
�

�> µ>�
✓

X>X +

✓

1p1>
p �1p1>

q

�1q1>
p 1q1>

q

◆◆✓

�
µ

◆

,

which yields

((p+ q)⌫ � pf � qf)⌘ = (pf � qf)b+ w>
✓

X

j2K
µ

vj �
X

i2K
�

ui

◆

+
1

Ks

�

�> µ>�
✓

X>X +

✓

1p1>
p �1p1>

q

�1q1>
p 1q1>

q

◆◆✓

�
µ

◆

.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 689

18.9. Soft Margin Support Vector Machines; (SVM
s3) 689

We show in Proposition 18.4 that pf + qf (p + q)⌫, so if ⌫ > (pf +
qf)/(p+ q), we can solve for ⌘ in terms of b, w, and �, µ. But b and w are
expressed in terms of �, µ as

w = �X

✓

�
µ

◆

b = �
p
X

i=1

�i +
q
X

j=1

µj = �1>
p �+ 1>

q µ

so ⌘ is also expressed in terms of �, µ.
The condition ⌫ > (pf +qf)/(p+q) cannot be satisfied if pf +qf = p+q,

but in this case all points fail the margin, which indicates that � is too big,
so we reduce ⌫ and try again.

Remark: The equation
p
X

i=1

�i +
q
X

j=1

µj = ⌫

implies that either there is some i
0

such that �i0 > 0 or there is some j
0

such that µj0 > 0, which implies that pm + qm � 1.
Another way to compute ⌘ is to assume the Standard Margin Hypothesis

for (SVMs3). Under the Standard Margin Hypothesis for (SVMs3),
either there is some i

0

such that 0 < �i0 < Ks or there is some j
0

such
that 0 < µj0 < Ks, in other words, there is some support vector of type 1.
By the complementary slackness conditions ✏i0 = 0 or ⇠j0 = 0, so we have

w>ui0 � b = ⌘, or � w>vj0 + b = ⌘,

and we can solve for ⌘.
Due to numerical instability, when writing a computer program it is

preferable to compute the lists of indices I� and Iµ given by

I� = {i 2 {1, . . . , p} | 0 < �i < Ks}
Iµ = {j 2 {1, . . . , q} | 0 < µj < Ks}.

Then it is easy to see that we can compute ⌘ using the following averaging
formulae: If I� 6= ;, then

⌘ = w>
✓

X

i2I
�

ui

◆

/|I�|� b,

and if Iµ 6= ;, then

⌘ = b� w>
✓

X

j2I
µ

vj

◆

/|Iµ|.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 690

690 Soft Margin Support Vector Machines

Theoretically the condition ⌫ > (pf + qf)/(p + q) is less restrictive
that the Standard Margin Hypothesis but in practice we have never
observed an example for which ⌫ > (pf +qf)/(p+q) and yet the Standard
Margin Hypothesis fails.

The “kernelized” version of Problem (SVMs3) is the following:

Soft margin kernel SVM (SVMs3):

minimize
1

2
hw,wi+ 1

2
b2 � ⌫⌘ +Ks

�

✏> ⇠>
�

1p+q

subject to

hw,'(ui)i � b � ⌘ � ✏i, ✏i � 0 i = 1, . . . , p

� hw,'(vj)i+ b � ⌘ � ⇠j , ⇠j � 0 j = 1, . . . , q,

with Ks = 1/(p+ q).
Tracing through the derivation of the dual program, we obtain

Dual of the Soft margin kernel SVM (SVMs3):

minimize
1

2

�

�> µ>�
✓

K+

✓

1p1>
p �1p1>

q

�1q1>
p 1q1>

q

◆◆✓

�
µ

◆

subject to
p
X

i=1

�i +
q
X

j=1

µj = ⌫

0 �i Ks, i = 1, . . . , p

0 µj Ks, j = 1, . . . , q,

where K is the kernel matrix of Section 18.1.
We obtain

w =
p
X

i=1

�i'(ui)�
q
X

j=1

µj'(vj)

b = �
p
X

i=1

�i +
q
X

j=1

µj .

The classification function

f(x) = sgn(hw,'(x)i � b)

is given by

f(x) = sgn

✓ p
X

i=1

�i((ui, x) + 1)�
q
X

j=1

µj((vj , x) + 1)

◆

.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 691

18.10. Classification of the Data Points in Terms of ⌫ (SVM
s3) 691

18.10 Classification of the Data Points in Terms of ⌫
(SVMs3)

The equations (†) and the box inequalities

0 �i Ks, 0 µj Ks

also imply the following facts (recall that � = ⌘/ kwk):

Proposition 18.4. If Problem (SVMs3) has an optimal solution with w 6=
0 and ⌘ > 0 then the following facts hold:

(1) Let pf be the number of points ui such that �i = Ks, and let qf the
number of points vj such that µj = Ks. Then pf + qf (p+ q)⌫.

(2) Let pm be the number of points ui such that �i > 0, and let qm the
number of points vj such that µj > 0. Then pm + qm � (p + q)⌫. We
have pm + qm � 1.

(3) If pf � 1 or qf � 1, then ⌫ � 1/(p+ q).

Proof. (1) Recall that for an optimal solution with w 6= 0 and ⌘ > 0 we
have the equation

p
X

i=1

�i +
q
X

j=1

µj = ⌫.

Since there are pf points ui such that �i = Ks = 1/(p + q) and qf points
vj such that µj = Ks = 1/(p+ q), we have

⌫ =
p
X

i=1

�i +
q
X

j=1

µj �
pf + qf
p+ q

,

so

pf + qf ⌫(p+ q).

(2) If

I�>0

= {i 2 {1, . . . , p} | �i > 0} and pm = |I�>0

|

and

Iµ>0

= {j 2 {1, . . . , q} | µj > 0} and qm = |Iµ>0

|,

then

⌫ =
p
X

i=1

�i +
q
X

j=1

µj =
X

i2I
�>0

�i +
X

j2I
µ>0

µj ,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 692

692 Soft Margin Support Vector Machines

and since �i, µj Ks = 1/(p+ q), we have

⌫ =
X

i2I
�>0

�i +
X

j2I
µ>0

µj
pm + qm
p+ q

,

which yields

pm + qm � ⌫(p+ q).

We already noted earlier that pm + qm � 1.
(3) This follows immediately from (1).

Note that if ⌫ is chosen so that ⌫ < 1/(p+ q), then pf = qf = 0, which
means that none of the data points are misclassified; in other words, the
uis and vjs are linearly separable. Thus we see that if the uis and vjs are
not linearly separable we must pick ⌫ such that 1/(p + q) ⌫ 1 for the
method to succeed. In fact, by Proposition 18.4, we must choose ⌫ so that

pf + qf
p+ q

 ⌫ pm + qm
p+ q

.

Furthermore, in order to be able to determine b, we must have the strict
inequality

pf + qf
p+ q

< ⌫.

18.11 Existence of Support Vectors for (SVMs3)

The following proposition is the version of Proposition 18.2 for Problem
(SVMs3).

Proposition 18.5. For every optimal solution (w, b, ⌘, ✏, ⇠) of Problem
(SVMs3) with w 6= 0 and ⌘ > 0, if ⌫ < 1 and if no ui is a support vector
and no vj is a support vector, then there is another optimal solution such
that some ui0 or some vj0 is a support vector.

Proof. We may assume that Ks = 1/(p + q) and we proceed by contra-
diction. Thus we assume that for all i 2 {1, . . . , p}, if ✏i = 0, then the
constraint w>ui � b � ⌘ is not active, namely w>ui � b > ⌘, and for all
j 2 {1, . . . , q}, if ⇠j = 0, then the constraint �w>vj + b � ⌘ is not active,
namely �w>vj + b > ⌘.

Let E� = {i 2 {1, . . . , p} | ✏i > 0} and let Eµ = {j 2 {1, . . . , q} | ⇠j >
0}. By definition, psf = |E�|, qsf = |Eµ|, psf pf and qsf qf , so by
Proposition 18.1,

psf + qsf
p+ q

 pf + qf
p+ q

 ⌫.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 693

18.11. Existence of Support Vectors for (SVM
s3) 693

Therefore, if ⌫ < 1, then psf + qsf < p+ q, which implies that either there
is some i /2 E� such that ✏i = 0 or there is some j /2 Eµ such that ⇠j = 0.

By complementary slackness all the constraints for which i 2 E� and
j 2 Eµ are active, so our hypotheses are

w>ui � b = ⌘ � ✏i ✏i > 0 i 2 E�

�w>vj + b = ⌘ � ⇠j ⇠j > 0 j 2 Eµ

w>ui � b > ⌘ i /2 E�

�w>vj + b > ⌘ j /2 Eµ,

and either there is some i /2 E� or there is some j /2 Eµ. Our strategy, as
illustrated in Figures 18.8 and 18.9, is to increase the width ⌘ of the slab
keeping the separating hyperplane unchanged. Let us pick ✓ such that

✓ = min{w>ui � b� ⌘, �w>vj + b� ⌘ | i /2 E�, j /2 Eµ}.
Our hypotheses imply that ✓ > 0. We can write

w>ui � b = ⌘ + ✓ � (✏i + ✓) ✏i + ✓ > 0 i 2 E�

�w>vj + b = ⌘ + ✓ � (⇠j + ✓) ⇠j + ✓ > 0 j 2 Eµ

w>ui � b � ⌘ + ✓ i /2 E�

�w>vj + b � ⌘ + ✓ j /2 Eµ,

and by the choice of ✓, either

w>ui � b = ⌘ + ✓ for some i /2 E�

or

�w>vj + b = ⌘ + ✓ for some j /2 Eµ.

The original value of the objective function is

!(0) =
1

2
w>w +

1

2
b2 � ⌫⌘ +

1

p+ q

✓

X

i2E
�

✏i +
X

j2E
µ

⇠j

◆

,

and the new value is

!(✓) =
1

2
w>w +

1

2
b2 � ⌫(⌘ + ✓) +

1

p+ q

✓

X

i2E
�

(✏i + ✓) +
X

j2E
µ

(⇠j + ✓)

◆

=
1

2
w>w +

1

2
b2 � ⌫⌘ +

1

p+ q

✓

X

i2E
�

✏i +
X

j2E
µ

⇠j

◆

�
✓

⌫ � psf + qsf
p+ q

◆

✓.

By Proposition 18.1,

psf + qsf
p+ q

 pf + qf
p+ q

 ⌫,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 694

694 Soft Margin Support Vector Machines

so

⌫ � psf + qsf
p+ q

� 0,

and so !(✓) !(0). If the inequality is strict, then this contradicts the
optimality of the original solution. Therefore, !(✓) = !(0) and (w, b, ⌘ +
✓, ✏+ ✓, ⇠ + ✓) is an optimal solution such that either

w>ui � b = ⌘ + ✓ for some i /2 E�

or

�w>vj + b = ⌘ + ✓ for some j /2 Eµ,

as desired.

Proposition 18.5 cannot be strengthened to claim that there is some
support vector ui0 and some support vector vj0 . We found examples for
which the above condition fails for ⌫ large enough.

The proof of Proposition 18.5 reveals that (psf +qsf)/(p+q) is a critical
value for ⌫. if this value is avoided we have the following corollary.

Theorem 18.2. For every optimal solution (w, b, ⌘, ✏, ⇠) of Problem
(SVMs3) with w 6= 0 and ⌘ > 0, if

(psf + qsf)/(p+ q) < ⌫ < 1,

then some ui0 or some vj0 is a support vector.

The proof proceeds by contradiction using Proposition 18.5 (for a very
similar proof, see the proof of Theorem 18.1).

18.12 Solving SVM (SVMs3) Using ADMM

In order to solve (SVMs3) using ADMM we need to write the matrix cor-
responding to the constraints in equational form,

p
X

i=1

�i +
q
X

j=1

µj = Km

�i + ↵i = Ks, i = 1, . . . , p

µj + �j = Ks, j = 1, . . . , q

with Km = (p+ q)Ks⌫. This is the (p+ q+1)⇥ 2(p+ q) matrix A given by

A =

0

B

B

@

1>
p 1>

q 0>p 0>q

Ip 0p,q Ip 0p,q

0q,p Iq 0q,p Iq

1

C

C

A

.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 695

18.12. Solving SVM (SVM
s3) Using ADMM 695

We leave it as an exercise to prove that A has rank p+q+1. The right-hand
side is

c =

✓

Km

Ks1p+q

◆

.

The symmetric positive semidefinite (p+ q)⇥ (p+ q) matrix P defining the
quadratic functional is

P = X>X +

✓

1p1>
p �1p1>

q

�1q1>
p 1q1>

q

◆

, with X =
�

�u
1

· · · �up v
1

· · · vq
�

,

and

q = 0p+q.

Since there are 2(p+q) Lagrange multipliers (�, µ,↵,�), the (p+q)⇥(p+q)
matrix P must be augmented with zero’s to make it a 2(p + q) ⇥ 2(p + q)
matrix Pa given by

Pa =

✓

P 0p+q,p+q

0p+q,p+q 0p+q,p+q

◆

,

and similarly q is augmented with zeros as the vector

qa = 0
2(p+q).

The Matlab programs implementing the above method are given in Ap-
pendix B, Section B.3. We ran our program on the same input data points
used in Section 18.8, namely

u16 = 10.1*randn(2,30)+7 ;

v16 = -10.1*randn(2,30)-7;

[~,~,~,~,~,~,w3] = runSVMs3b(0.365,rho,u16,v16,1/60)

We picked K = 1/60 and various values of ⌫ starting with ⌫ = 0.365,
which appears to be the smallest value for which the method converges; see
Figure 18.16.

We have pf = 10, qf = 10, pm = 12 and qm = 11, as opposed to pf =
10, qf = 11, pm = 12, qm = 12, which was obtained by running (SVMs20);
see Figure 18.11. A slightly narrower margin is achieved.

Next we ran our program with ⌫ = 0.5, see Figure 18.17. We have
pf = 13, qf = 16, pm = 14 and qm = 17.

We also ran our program with ⌫ = 0.71, see Figure 18.18. We have
pf = 21, qf = 21, pm = 22 and qm = 22. The value ⌫ = 0.7 is a singular
value for which there are no support vectors and ⌫ = (pf + qf)/(p+ q).

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 696

696 Soft Margin Support Vector Machines

-30 -20 -10 0 10 20 30 40
-30

-20

-10

0

10

20

30

Fig. 18.16 Running (SVM
s3) on two sets of 30 points; ⌫ = 0.365.

-30 -20 -10 0 10 20 30 40
-30

-20

-10

0

10

20

30

Fig. 18.17 Running (SVM
s3) on two sets of 30 points; ⌫ = 0.5.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 697

18.13. Soft Margin SVM; (SVM
s4) 697

-30 -20 -10 0 10 20 30 40
-30

-20

-10

0

10

20

30

Fig. 18.18 Running (SVM
s3) on two sets of 30 points; ⌫ = 0.71.

Finally we ran our program with ⌫ = 0.98, see Figure 18.19. We have
pf = 28, qf = 30, pm = 29 and qm = 30.

Because the term (1/2)b2 is added to the objective function to be min-
imized, it turns out that (SVMs3) yields values of b and ⌘ that are smaller
than the values returned by (SVMs20). This is the reason why a smaller
margin width could be obtained for ⌫ = 0.365. On the other hand, (SVMs3)
is unable to achieve as big a margin as (SVMs20) for values of ⌫ � 0.97,
because the separating line produced by (SVMs3) is lower than the the
separating line produced by (SVMs20).

18.13 Soft Margin SVM; (SVMs4)

In this section we consider the version of Problem (SVMs20) in which instead

of using the function K

✓

Pp
i=1

✏i +
Pq

j=1

⇠j

◆

as a regularizing function we

use the quadratic function K(k✏k2
2

+ k⇠k2
2

).

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 698

698 Soft Margin Support Vector Machines

-30 -20 -10 0 10 20 30 40
-30

-20

-10

0

10

20

30

Fig. 18.19 Running (SVM
s3) on two sets of 30 points; ⌫ = 0.98.

Soft margin SVM (SVMs4):

minimize
1

2
w>w + (p+ q)Ks

✓

�⌫⌘ + 1

p+ q
(✏>✏+ ⇠>⇠)

◆

subject to

w>ui � b � ⌘ � ✏i, i = 1, . . . , p

� w>vj + b � ⌘ � ⇠j , j = 1, . . . , q

⌘ � 0,

where ⌫ and Ks are two given positive constants. As we saw earlier, the-
oretically, it is convenient to pick Ks = 1/(p + q). When writing a com-
puter program, it is preferable to assume that Ks is arbitrary. In this case
⌫ needs to be replaced by (p + q)Ks⌫ in all the formulae obtained with
Ks = 1/(p+ q).

The new twist with this formulation of the problem is that if ✏i < 0,
then the corresponding inequality w>ui � b � ⌘ � ✏i implies the inequality
w>ui�b � ⌘ obtained by setting ✏i to zero while reducing the value of k✏k2,
and similarly if ⇠j < 0, then the corresponding inequality �w>vj+b � ⌘�⇠j
implies the inequality �w>vj + b � ⌘ obtained by setting ⇠j to zero while

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 699

18.13. Soft Margin SVM; (SVM
s4) 699

reducing the value of k⇠k2. Therefore, if (w, b, ✏, ⇠) is an optimal solution of
Problem (SVMs4), it is not necessary to restrict the slack variables ✏i and
⇠j to the nonnegative, which simplifies matters a bit. In fact, we will see
that for an optimal solution, ✏ = �/(2Ks) and ⇠ = µ/(2Ks). The variable
⌘ can also be determined by expressing that the duality gap is zero.

One of the advantages of this methods is that ✏ is determined by �, ⇠
is determined by µ, and ⌘ and b are determined by � and µ. This method
does not require support vectors to compute b. We can omit the constraint
⌘ � 0, because for an optimal solution it can be shown using duality that
⌘ � 0; see Section 18.14.

A drawback of Program (SVMs4) is that for fixed Ks, the quantity
� = ⌘/ kwk and the hyperplanes Hw,b, Hw,b+⌘ and Hw,b�⌘ are independent
of ⌫. This will be shown in Theorem 18.3. Thus this method is less flexible
than (SVMs20) and (SVMs3).

The Lagrangian is given by

L(w, ✏, ⇠, b, ⌘,�, µ, �) =
1

2
w>w � ⌫⌘ +Ks(✏

>✏+ ⇠>⇠) + w>X

✓

�
µ

◆

� �⌘

� ✏>�� ⇠>µ+ b(1>
p �� 1>

q µ) + ⌘(1>
p �+ 1>

q µ)

=
1

2
w>w + w>X

✓

�
µ

◆

+ ⌘(1>
p �+ 1>

q µ� ⌫ � �)

+Ks(✏
>✏+ ⇠>⇠)� ✏>�� ⇠>µ+ b(1>

p �� 1>
q µ).

To find the dual function G(�, µ, �) we minimize L(w, ✏, ⇠, b, ⌘,�, µ, �)
with respect to w, ✏, ⇠, b, and ⌘. Since the Lagrangian is convex and
(w, ✏, ⇠, b, ⌘) 2 Rn ⇥ Rp ⇥ Rq ⇥ R ⇥ R, a convex open set, by Theorem
4.5, the Lagrangian has a minimum in (w, ✏, ⇠, b, ⌘) i↵ rLw,✏,⇠,b,⌘ = 0, so
we compute rLw,✏,⇠,b,⌘. The gradient rLw,✏,⇠,b,⌘ is given by

rLw,✏,⇠,b,⌘ =

0

B

B

B

B

B

B

B

@

w +X

✓

�
µ

◆

2Ks✏� �
2Ks⇠ � µ
1>
p �� 1>

q µ
1>
p �+ 1>

q µ� ⌫ � �

1

C

C

C

C

C

C

C

A

.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 700

700 Soft Margin Support Vector Machines

By setting rLw,✏,⇠,b,⌘ = 0 we get the equations

w = �X

✓

�
µ

◆

, (⇤w)

2Ks✏ = �

2Ks⇠ = µ

1>
p � = 1>

q µ

1>
p �+ 1>

q µ = ⌫ + �.

The last two equations are identical to the last two equations obtained in
Problem (SVMs20). We can use the other equations to obtain the following
expression for the dual function G(�, µ, �),

G(�, µ, �) = � 1

4Ks
(�>�+ µ>µ)� 1

2

�

�> µ>�X>X

✓

�
µ

◆

= �1

2

�

�> µ>�
✓

X>X +
1

2Ks
Ip+q

◆✓

�
µ

◆

.

Consequently the dual program is equivalent to the minimization pro-
gram

Dual of the Soft margin SVM (SVMs4):

minimize
1

2

�

�> µ>�
✓

X>X +
1

2Ks
Ip+q

◆✓

�
µ

◆

subject to
p
X

i=1

�i �
q
X

j=1

µj = 0

p
X

i=1

�i +
q
X

j=1

µj � ⌫

�i � 0, i = 1, . . . , p

µj � 0, j = 1, . . . , q.

The above program is similar to the program that was obtained
for Problem (SVMs20) but the matrix X>X is replaced by the matrix
X>X + (1/2Ks)Ip+q, which is positive definite since Ks > 0, and also
the inequalities �i Ks and µj Ks no longer hold.

It is shown in Section 18.14 how the dual program is solved using ADMM
from Section 16.6. If the primal problem is solvable, this yields solutions

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 701

18.13. Soft Margin SVM; (SVM
s4) 701

for � and µ. We obtain w from � and µ, as in Problem (SVMs20); namely,

w = �X

✓

�
µ

◆

=
p
X

i=1

�iui �
q
X

j=1

µjvj .

Since the variables ✏i and ⇠j are not restricted to be nonnegative we
no longer have complementary slackness conditions involving them, but we
know that

✏ =
�

2Ks
, ⇠ =

µ

2Ks
.

Also since the constraints
p
X

i=1

�i �
⌫

2
and

q
X

j=1

µj �
⌫

2

imply that there is some i
0

such that �i0 > 0 and some j
0

such that µj0 > 0,
we have ✏i0 > 0 and ⇠j0 > 0, which means that at least two points are
misclassified, so Problem (SVMs4) should only be used when the sets {ui}
and {vj} are not linearly separable.

Because ✏i = �i/(2Ks), ⇠j = µj/(2Ks), and there is no upper bound Ks

on �i and µj , the classification of the points is simpler than in the previous
cases.

(1) If �i = 0, then ✏i = 0 and the inequality w>ui�b�⌘ � 0 holds. If equal-
ity holds then ui is a support vector on the blue margin (the hyperplane
Hw,b+⌘). Otherwise ui is in the blue open half-space bounded by the
margin hyperplane Hw,b+⌘ (not containing the separating hyperplane
Hw,b). See Figure 18.20.
Similarly, if µj = 0, then ⇠j = 0 and the inequality �w>vj + b �
⌘ � holds. If equality holds then vj is a support vector on the red
margin (the hyperplane Hw,b�⌘). Otherwise vj is in the red open half-
space bounded by the margin hyperplane Hw,b�⌘ (not containing the
separating hyperplane Hw,b). See Figure 18.20.

(2) If �i > 0, then ✏i = �i/(2Ks) > 0. The corresponding constraint is
active, so we have

w>ui � b = ⌘ � ✏i.

If ✏i ⌘, then the points ui is inside the slab bounded by the blue
margin hyperplane Hw,b+⌘ and the separating hyperplane Hw,b. If
✏i > ⌘, then the point ui belongs to the open half-space bounded by
the separating hyperplane and containing the red margin hyperplane
(the red side); it is misclassified. See Figure 18.21.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 702

702 Soft Margin Support Vector Machines

v

w x - b = 0T

Tw x - b + η = 0

w x - b -η = 0T

u i
єi = 0

i

j
j

ξ = 0j

 λ = 0

 μ = 0

Correctly classified on blue margin

1

ui2

1

Correctly classified on red marginvj2

Fig. 18.20 When �
i

= 0, u
i

is correctly classified on or outside the blue margin. When
µ
j

= 0, v
j

is correctly classified on or outside outside the red margin.

Similarly, if µj > 0, then ⇠j = µj/(2Ks) > 0. The corresponding
constraint is active, so we have

�w>vj + b = ⌘ � ⇠j .

If ⇠j ⌘, then the points vj is inside the slab bounded by the red margin
hyperplane Hw,b�⌘ and the separating hyperplane Hw,b. If ⇠j > ⌘, then
the point vj belongs to the open half-space bounded by the separating
hyperplane and containing the blue margin hyperplane (the blue side);
it is misclassified. See Figure 18.21.

We can use the fact that the duality gap is 0 to find ⌘. We have

1

2
w>w � ⌫⌘ +Ks(✏

>✏+ ⇠>⇠) = �1

2

�

�> µ>�
✓

X>X +
1

2Ks
Ip+q

◆✓

�
µ

◆

,

and since

w = �X

✓

�
µ

◆

we get

⌫⌘ = Ks(✏
>✏+ ⇠>⇠) +

�

�> µ>�
✓

X>X +
1

4Ks
Ip+q

◆✓

�
µ

◆

=
�

�> µ>�
✓

X>X +
1

2Ks
Ip+q

◆✓

�
µ

◆

.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 703

18.13. Soft Margin SVM; (SVM
s4) 703

v
w x - b = 0T

Tw x - b + η = 0

w x - b - η = 0T

u i v

w x - b = 0T

Tw x - b + η = 0

w x - b - η = 0T

u i

v

w x - b = 0T

Tw x - b + η = 0

w x - b - η= 0T

ui

(2)

λ i

λ i
 Є < η

j

μ

j

i

j
ξ < η

jv Є = ηi

λ i > 0

μ j
ξ = ηj

Correctly classified in slab(1)

Misclassifiedjvξ > η

Є > ηi

j
μ j

> 0

> 0
> 0

> 0

> 0

Fig. 18.21 The classification of points for SVM
s4 when the Lagrange multipliers are

positive. The left illustration of Figure (1) is when u
i

is inside the margin yet still on
the correct side of the separating hyperplane w>x � b = 0. Similarly, v

j

is inside the
margin on the correct side of the separating hyperplane. The right illustration depicts
u
i

and v
j

on the separating hyperplane. Figure (2) illustrations a misclassification of u
i

and v
j

.

The above confirms that at optimality we have ⌘ � 0.

Remark: If we do not assume that Ks = 1/(p+q), then the above formula
must be replaced by

(p+ q)Ks⌫⌘ =
�

�> µ>�
✓

X>X +
1

2Ks
Ip+q

◆✓

�
µ

◆

.

Since ⌘ is determined independently of the existence of support vectors,
the margin hyperplaneHw,b+⌘ may not contain any point ui and the margin
hyperplane Hw,b�⌘ may not contain any point vj .

We can solve for b using some active constraint corresponding to any i
0

such that �i0 > 0 and any j
0

such that µj0 > 0 (by a previous remark, the
constraints imply that such i

0

and j
0

must exist). To improve numerical
stability we average over the following sets of indices. Let I� and Iµ be the
set of indices given by

I� = {i 2 {1, . . . , p} | �i > 0}
Iµ = {j 2 {1, . . . , q} | µj > 0},

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 704

704 Soft Margin Support Vector Machines

and let pm = |I�| and qm = |Iµ|. We obtain the formula

b = w>
✓✓

X

i2I
�

ui

◆

/pm +

✓

X

j2I
µ

vj

◆

/qm

◆

/2

+

✓✓

X

i2I
�

✏i

◆

/pm �
✓

X

j2I
µ

⇠j

◆

/qm

◆

/2.

We now prove that for a fixed Ks, the solution to Problem (SVMs4) is
unique and independent of the value of ⌫.

Theorem 18.3. For Ks and ⌫ fixed, if Problem (SVMs4) succeeds, then
it has a unique solution. If Problem (SVMs4) succeeds and returns
(�, µ, ⌘, w, b) for the value ⌫ and (�, µ, ⌘, w, b) for the value ⌫ with
 > 0, then

� = �, µ = µ, ⌘ = ⌘, w = w, b = b.

As a consequence, � = ⌘/ kwk = ⌘/ kwk = �, and the hyperplanes
Hw,b, Hw,b+⌘ and Hw,b�⌘ are independent of ⌫.

Proof. We already observed that for an optimal solution with ⌘ > 0, we
have � = 0. This means that (�, µ) is a solution of the problem

minimize
1

2

�

�> µ>�
✓

X>X +
1

2Ks
Ip+q

◆✓

�
µ

◆

subject to
p
X

i=1

�i �
q
X

j=1

µj = 0

p
X

i=1

�i +
q
X

j=1

µj = ⌫

�i � 0, i = 1, . . . , p

µj � 0, j = 1, . . . , q.

Since Ks > 0 and X>X is symmetric positive semidefinite, the matrix
P = X>X + 1

2K
s

Ip+q is symmetric positive definite. Let ⌦ = Rp+q and let
U be the convex set given by

U =

(

✓

�
µ

◆

2 Rp+q
+

�

�

�

�

�

1>
p �1>

q

1>
p 1>

q

!

✓

�
µ

◆

=

✓

0
(p+ q)Ks⌫

◆

)

.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 705

18.13. Soft Margin SVM; (SVM
s4) 705

Since the matrix P is symmetric positive definite, the functional

F (�, µ) = �G(�, µ) =
1

2

�

�> µ>�P

✓

�
µ

◆

is strictly convex and U is convex, so by Theorem 4.5(2,4), if it has a
minimum, then it is unique. Consider the convex set

U =

(

✓

�
µ

◆

2 Rp+q
+

�

�

�

�

�

1>
p �1>

q

1>
p 1>

q

!

✓

�
µ

◆

=

✓

0
(p+ q)Ks⌫

◆

)

.

Observe that

U =

(

✓

�
µ

◆

2 Rp+q
+

�

�

�

�

�

1>
p �1>

q

1>
p 1>

q

!

✓

�
µ

◆

=

✓

0
(p+ q)Ks⌫

◆

)

= U.

By Theorem 4.5(3), (�, µ) 2 U is a minimum of F over U i↵

dF�,µ

✓

�0 � �
µ0 � µ

◆

� 0 for all

✓

�0

µ0

◆

2 U.

Since

dF�,µ

✓

�0 � �
µ0 � µ

◆

=
�

�> µ>�P

✓

�0 � �
µ0 � µ

◆

the above conditions are equivalent to

�

�> µ>�P

✓

�0 � �
µ0 � µ

◆

� 0

1>
p �1>

q

1>
p 1>

q

!

✓

�
µ

◆

=

✓

0
(p+ q)Ks⌫

◆

�,�0 2 Rp
+

, µ, µ0 2 Rq
+

.

Since > 0, by multiplying the above inequality by 2 and the equations
by , the following conditions hold:

�

�> µ>�P

✓

�0 � �
µ0 � µ

◆

� 0

1>
p �1>

q

1>
p 1>

q

!

✓

�
µ

◆

=

✓

0
(p+ q)Ks⌫

◆

�,�0 2 Rp
+

, µ,µ0 2 Rq
+

.

By Theorem 4.5(3), (�,µ) 2 U is a minimum of F over U, and because
F is strictly convex and U is convex, if F has a minimum over U, then
(�,µ) 2 U is the unique minimum. Therefore, � = �, µ = µ.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 706

706 Soft Margin Support Vector Machines

Since w is given by the equation

w = �X

✓

�
µ

◆

and since we just showed that � = �, µ = µ, we deduce that w = w.
We showed earlier that ⌘ is given by the equation

(p+ q)Ks⌫⌘ =
�

�> µ>�
✓

X>X +
1

2Ks
Ip+q

◆✓

�
µ

◆

.

If we replace ⌫ by ⌫, since � is replaced by � and µ by ⌫, we see that
⌘ = ⌘. Finally, b is given by the equation

b =
w>(ui0 + vj0) + ✏i0 � ⇠j0

2

for and i
0

such that �i0 > 0 and any j
0

such that µj0 > 0. If � is replaced
by � and µ by µ, since ✏ = �/(2Ks) and ⇠ = µ/(2Ks), we see that ✏ is
replaced by ✏ and ⇠ by ⇠, so b = b.

Since w = w and ⌘ = ⌘ we obtain � = ⌘/ kwk = ⌘/ kwk = �.
Since w = w, ⌘ = ⌘ and b = b, the normalized equations of the
hyperplanes Hw,b, Hw,b+⌘ and Hw,b�⌘ (obtained by dividing by kwk) are
all identical, so the hyperplanes Hw,b, Hw,b+⌘ and Hw,b�⌘ are independent
of ⌫.

The width of the slab is controlled by K. The larger K is the smaller
is the width of the slab. Theoretically, since this method does not rely
on support vectors to compute b, it cannot fail if a solution exists, but in
practice the quadratic solver does not converge for values of K that are
too large. However, the method handles very small values of K, which can
yield slabs of excessive width.

The “kernelized” version of Problem (SVMs4) is the following:

Soft margin kernel SVM (SVMs4):

minimize
1

2
hw,wi � ⌫⌘ +Ks(✏

>✏+ ⇠>⇠)

subject to

hw,'(ui)i � b � ⌘ � ✏i, i = 1, . . . , p

� hw,'(vj)i+ b � ⌘ � ⇠j , j = 1, . . . , q

⌘ � 0,

with Ks = 1/(p+ q).
By going over the derivation of the dual program, we obtain

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 707

18.14. Solving SVM (SVM
s4) Using ADMM 707

Dual of the Soft margin kernel SVM (SVMs4):

minimize
1

2

�

�> µ>�
✓

K+
1

2Ks
Ip+q

◆✓

�
µ

◆

subject to
p
X

i=1

�i �
q
X

j=1

µj = 0

p
X

i=1

�i +
q
X

j=1

µj � ⌫

�i � 0, i = 1, . . . , p

µj � 0, j = 1, . . . , q,

where K is the kernel matrix of Section 18.1. Then w, b, and f(x) are
obtained exactly as in Section 18.5.

18.14 Solving SVM (SVMs4) Using ADMM

In order to solve (SVMs4) using ADMM we need to write the matrix cor-
responding to the constraints in equational form,

p
X

i=1

�i �
q
X

j=1

µj = 0

p
X

i=1

�i +
q
X

j=1

µj � � = Km,

with Km = (p+ q)Ks⌫. This is the 2⇥ (p+ q + 1) matrix A given by

A =

1>
p �1>

q 0

1>
p 1>

q �1

!

.

We leave it as an exercise to prove that A has rank 2. The right-hand side
is

c =

✓

0
Km

◆

.

The symmetric positive semidefinite (p+ q)⇥ (p+ q) matrix P defining the
quadratic functional is

P = X>X +
1

2Ks
Ip+q, with X =

�

�u
1

· · · �up v
1

· · · vq
�

,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 708

708 Soft Margin Support Vector Machines

and

q = 0p+q.

Since there are p+ q+1 Lagrange multipliers (�, µ, �), the (p+ q)⇥ (p+ q)
matrix P must be augmented with zero’s to make it a (p+q+1)⇥(p+q+1)
matrix Pa given by

Pa =

✓

X>X 0p+q

0>p+q 0

◆

,

and similarly q is augmented with zeros as the vector qa = 0p+q+1

.
As in Section 18.8, since ⌘ � 0 for an optimal solution, we can drop

the constraint ⌘ � 0 from the primal problem. In this case, there are p+ q
Lagrange multipliers (�, µ). It is easy to see that the objective function of
the dual is unchanged and the set of constraints is

p
X

i=1

�i �
q
X

j=1

µj = 0

p
X

i=1

�i +
q
X

j=1

µj = Km,

with Km = (p+ q)Ks⌫. The matrix corresponding to the above equations
is the 2⇥ (p+ q) matrix A

2

given by

A
2

=

1>
p �1>

q

1>
p 1>

q

!

.

We leave it as an exercise to prove that A
2

has rank 2. The right-hand side
is

c
2

=

✓

0
Km

◆

.

The symmetric positive semidefinite (p+ q)⇥ (p+ q) matrix P defining the
quadratic functional is

P = X>X +
1

2Ks
Ip+q, with X =

�

�u
1

· · · �up v
1

· · · vq
�

,

and

q = 0p+q.

Since there are p+q Lagrange multipliers (�, µ), the (p+q)⇥(p+q) matrix
P need not be augmented with zero’s, so P

2a = P and similarly q
2a = 0p+q.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 709

18.15. Soft Margin SVM; (SVM
s5) 709

We ran our Matlab implementation of the above version of (SVMs4) on
the data set of Section 18.12. Since the value of ⌫ is irrelevant, we picked
⌫ = 1. First we ran our program with K = 190; see Figure 18.22. We have
pm = 23 and qm = 18. The program does not converge for K � 200.

-30 -20 -10 0 10 20 30 40
-30

-20

-10

0

10

20

30

Fig. 18.22 Running (SVM
s4) on two sets of 30 points; K = 190.

Our second run was made with K = 1/12000; see Figure 18.23. We
have pm = 30 and qm = 30 and we see that the width of the slab is a
bit excessive. This example demonstrates that the margin lines need not
contain data points.

18.15 Soft Margin SVM; (SVMs5)

In this section we consider the version of Problem (SVMs4) in which we
add the term (1/2)b2 to the objective function. We also drop the constraint
⌘ � 0 which is redundant.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 710

710 Soft Margin Support Vector Machines

-30 -20 -10 0 10 20 30 40
-30

-20

-10

0

10

20

30

Fig. 18.23 Running (SVM
s4) on two sets of 30 points; K = 1/12000.

Soft margin SVM (SVMs5):

minimize
1

2
w>w +

1

2
b2 + (p+ q)Ks

✓

�⌫⌘ + 1

p+ q
(✏>✏+ ⇠>⇠)

◆

subject to

w>ui � b � ⌘ � ✏i, i = 1, . . . , p

� w>vj + b � ⌘ � ⇠j , j = 1, . . . , q,

where ⌫ and Ks are two given positive constants. As we saw earlier, it is
convenient to pick Ks = 1/(p+q). When writing a computer program, it is
preferable to assume that Ks is arbitrary. In this case ⌫ must be replaced
by (p+ q)Ks⌫ in all the formulae.

One of the advantages of this methods is that ✏ is determined by �, ⇠ is
determined by µ (as in (SVMs4)), and both ⌘ and b determined by � and
µ. As the previous method, this method does not require support vectors
to compute b. We can omit the constraint ⌘ � 0, because for an optimal
solution it can be shown using duality that ⌘ � 0.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 711

18.15. Soft Margin SVM; (SVM
s5) 711

A drawback of Program (SVMs5) is that for fixed Ks, the quantity
� = ⌘/ kwk and the hyperplanes Hw,b, Hw,b+⌘ and Hw,b�⌘ are independent
of ⌫. This will be shown in Theorem 18.4. Thus this method is less flexible
than (SVMs20) and (SVMs3).

The Lagrangian is given by

L(w, ✏, ⇠, b, ⌘,�, µ) =
1

2
w>w +

1

2
b2 � ⌫⌘ +Ks(✏

>✏+ ⇠>⇠) + w>X

✓

�
µ

◆

� ✏>�� ⇠>µ+ b(1>
p �� 1>

q µ) + ⌘(1>
p �+ 1>

q µ)

=
1

2
w>w + w>X

✓

�
µ

◆

+ ⌘(1>
p �+ 1>

q µ� ⌫) +
1

2
b2

+Ks(✏
>✏+ ⇠>⇠)� ✏>�� ⇠>µ+ b(1>

p �� 1>
q µ).

To find the dual function G(�, µ) we minimize L(w, ✏, ⇠, b, ⌘,�, µ) with re-
spect to w, ✏, ⇠, b, and ⌘. Since the Lagrangian is convex and (w, ✏, ⇠, b, ⌘) 2
Rn⇥Rp⇥Rq⇥R⇥R, a convex open set, by Theorem 4.5, the Lagrangian has
a minimum in (w, ✏, ⇠, b, ⌘) i↵ rLw,✏,⇠,b,⌘ = 0, so we compute rLw,✏,⇠,b,⌘.
The gradient rLw,✏,⇠,b,⌘ is given by

rLw,✏,⇠,b,⌘ =

0

B

B

B

B

B

B

B

@

w +X

✓

�
µ

◆

2Ks✏� �
2Ks⇠ � µ

b+ 1>
p �� 1>

q µ
1>
p �+ 1>

q µ� ⌫

1

C

C

C

C

C

C

C

A

.

By setting rLw,✏,⇠,b,⌘ = 0 we get the equations

w = �X

✓

�
µ

◆

, (⇤w)

2Ks✏ = �

2Ks⇠ = µ

b = �(1>
p �� 1>

q µ)

1>
p �+ 1>

q µ = ⌫.

As we said earlier, both w an b are determined by � and µ. We can
use the equations to obtain the following expression for the dual function
G(�, µ, �),

G(�, µ, �) = � 1

4Ks
(�>�+ µ>µ)� 1

2

�

�> µ>�X>X

✓

�
µ

◆

� b2

2

= �1

2

�

�> µ>�
✓

X>X +

✓

1p1>
p �1p1>

q

�1q1>
p 1q1>

q

◆

+
1

2Ks
Ip+q

◆✓

�
µ

◆

.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 712

712 Soft Margin Support Vector Machines

Consequently the dual program is equivalent to the minimization pro-
gram

Dual of the Soft margin SVM (SVMs5):

minimize
1

2

�

�> µ>�
✓

X>X +

✓

1p1>
p �1p1>

q

�1q1>
p 1q1>

q

◆

+
1

2Ks
Ip+q

◆✓

�
µ

◆

subject to
p
X

i=1

�i +
q
X

j=1

µj = ⌫

�i � 0, i = 1, . . . , p

µj � 0, j = 1, . . . , q.

It is shown in Section 18.16 how the dual program is solved using ADMM
from Section 16.6. If the primal problem is solvable, this yields solutions
for � and µ.

The constraint
p
X

i=1

�i +
q
X

j=1

µj = ⌫

implies that either there is some i
0

such that �i0 > 0 or there is some
j
0

such that µj0 > 0, so we have ✏i0 > 0 or ⇠j0 > 0, which means that
at least one point is misclassified. Thus Problem (SVMs5) should only be
used when the sets {ui} and {vj} are not linearly separable.

We can use the fact that the duality gap is 0 to find ⌘. We have

1

2
w>w +

b2

2
� ⌫⌘ +Ks(✏

>✏+ ⇠>⇠)

= �1

2

�

�> µ>�
✓

X>X +

✓

1p1>
p �1p1>

q

�1q1>
p 1q1>

q

◆

+
1

2Ks
Ip+q

◆✓

�
µ

◆

,

so we get

⌫⌘ = Ks(✏
>✏+ ⇠>⇠)

+
�

�> µ>�
✓

X>X +

✓

1p1>
p �1p1>

q

�1q1>
p 1q1>

q

◆

+
1

4Ks
Ip+q

◆✓

�
µ

◆

=
�

�> µ>�
✓

X>X +

✓

1p1>
p �1p1>

q

�1q1>
p 1q1>

q

◆

+
1

2Ks
Ip+q

◆✓

�
µ

◆

.

The above confirms that at optimality we have ⌘ � 0.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 713

18.15. Soft Margin SVM; (SVM
s5) 713

Remark: If we do not assume that Ks = 1/(p+q), then the above formula
must be replaced by

(p+ q)Ks⌫⌘ =
�

�> µ>�
✓

X>X +

✓

1p1>
p �1p1>

q

�1q1>
p 1q1>

q

◆

+
1

2Ks
Ip+q

◆✓

�
µ

◆

.

There is a version of Theorem 18.3 stating that for a fixed Ks, the
solution to Problem (SVMs5) is unique and independent of the value of ⌫.

Theorem 18.4. For Ks and ⌫ fixed, if Problem (SVMs5) succeeds then
it has a unique solution. If Problem (SVMs5) succeeds and returns
(�, µ, ⌘, w, b) for the value ⌫ and (�, µ, ⌘, w, b) for the value ⌫ with
 > 0, then

� = �, µ = µ, ⌘ = ⌘, w = w, b = b.

As a consequence, � = ⌘/ kwk = ⌘/ kwk = �, and the hyperplanes
Hw,b, Hw,b+⌘ and Hw,b�⌘ are independent of ⌫.

Proof. The proof is an easy adaptation of the proof of Theorem 18.3 so
we only give a sketch. The two crucial points are that the matrix

P = X>X +

✓

1p1>
p �1p1>

q

�1q1>
p 1q1>

q

◆

+
1

2Ks
Ip+q

is symmetric positive definite and that we have the single equational con-
straint

1>
p �+ 1>

q µ = (p+ q)Ks⌫

defining the convex set

U =

⇢✓

�
µ

◆

2 Rp+q
+

| 1>
p �+ 1>

q µ = (p+ q)Ks⌫

�

.

The proof is essentially the proof of 18.3 using the above SPD matrix and
convex set.

The “kernelized” version of Problem (SVMs5) is the following:

Soft margin kernel SVM (SVMs5):

minimize
1

2
hw,wi+ 1

2
b2 � ⌫⌘ +Ks(✏

>✏+ ⇠>⇠)

subject to

hw,'(ui)i � b � ⌘ � ✏i, i = 1, . . . , p

� hw,'(vj)i+ b � ⌘ � ⇠j , j = 1, . . . , q,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 714

714 Soft Margin Support Vector Machines

with Ks = 1/(p+ q).
Tracing through the derivation of the dual program, we obtain

Dual of the Soft margin kernel SVM (SVMs5):

minimize
1

2

�

�> µ>�
✓

K+

✓

1p1>
p �1p1>

q

�1q1>
p 1q1>

q

◆

+
1

2Ks
Ip+q

◆✓

�
µ

◆

subject to
p
X

i=1

�i +
q
X

j=1

µj = ⌫

�i � 0, i = 1, . . . , p

µj � 0, j = 1, . . . , q,

where K is the kernel matrix of Section 18.1. Then w, b, and f(x) are
obtained exactly as in Section 18.13.

18.16 Solving SVM (SVMs5) Using ADMM

In order to solve (SVM
5

) using ADMM we need to write the matrix corre-
sponding to the constraints in equational form,

p
X

i=1

�i +
q
X

j=1

µj = Km,

with Km = (p+ q)Ks⌫. This is the 1⇥ (p+ q) matrix A given by

A =
�

1>
p 1>

q

�

.

Obviously, A has rank 1. The right-hand side is

c = Km.

The symmetric positive definite (p + q) ⇥ (p + q) matrix P defining the
quadratic functional is

P = X>X +

✓

1p1>
p �1p1>

q

�1q1>
p 1q1>

q

◆

+
1

2Ks
Ip+q,

with

X =
�

�u
1

· · · �up v
1

· · · vq
�

and q = 0p+q.

Since there are p+q Lagrange multipliers (�, µ), the (p+q)⇥(p+q) matrix
P does not have to be augmented with zero’s.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 715

18.16. Solving SVM (SVM
s5) Using ADMM 715

-30 -20 -10 0 10 20 30 40
-30

-20

-10

0

10

20

30

Fig. 18.24 Running (SVM
s5) on two sets of 30 points; K = 190.

-30 -20 -10 0 10 20 30 40
-30

-20

-10

0

10

20

30

Fig. 18.25 Running (SVM
s5) on two sets of 30 points; K = 1/13000.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 716

716 Soft Margin Support Vector Machines

We ran our Matlab implementation of the above version of (SVMs5) on
the data set of Section 18.14. Since the value of ⌫ is irrelevant, we picked
⌫ = 1. First we ran our program with K = 190; see Figure 18.24. We have
pm = 23 and qm = 18. The program does not converge for K � 200.

Our second run was made with K = 1/13000; see Figure 18.25. We
have pm = 30 and qm = 30 and we see that the width of the slab is a
bit excessive. This example demonstrates that the margin lines need not
contain data points.

Method (SVMs5) always returns a value for b and ⌘ smaller than the
value returned by (SVMs4) (because of the term (1/2)b2 added to the objec-
tive function) but in this example the di↵erence is too small to be noticed.

18.17 Summary and Comparison of the SVM Methods

In this chapter we considered six variants for solving the soft margin bi-
nary classification problem for two sets of points {ui}pi=1

and {vj}qj=1

using
support vector classification methods. The objective is to find a separating
hyperplane Hw,b of equation w>x� b = 0. We also try to find two “margin
hyperplanes” Hw,b+� of equation w>x� b� � = 0 (the blue margin hyper-
plane) and Hw,b�� of equation w>x�b+� = 0 (the red margin hyperplane)
such that � is as big as possible and yet the number of misclassified points
is minimized, which is achieved by allowing an error ✏i � 0 for every point
ui, in the sense that the constraint

w>ui � b � � � ✏i

should hold, and an error ⇠j � 0 for every point vj , in the sense that the
constraint

�w>vj + b � � � ⇠j

should hold.
The goal is to design an objective function that minimizes ✏ and ⇠ and

maximizes �. The optimization problem should also solve for w and b, and
for this some constraint has to be placed on w. Another goal is to try
to use the dual program to solve the optimization problem, because the
solutions involve inner products, and thus the problem is amenable to a
generalization using kernel functions.

The first attempt, which is to use the objective function

J(w, ✏, ⇠, b, �) = �� +K
�

✏> ⇠>
�

1p+q

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 717

18.17. Summary and Comparison of the SVM Methods 717

and the constraint w>w 1, does not work very well because this constraint
needs to be guarded by a Lagrange multiplier � � 0, and as a result,
minimizing the Lagrangian L to find the dual function G gives an equation
for solving w of the form

2�w = �X>
✓

�
µ

◆

,

but if the sets {ui}pi=1

and {vj}qj=1

are not linearly separable, then an
optimal solution may occurs for � = 0, in which case it is impossible to
determine w. This is Problem (SVMs1) considered in Section 18.1.

Soft margin SVM (SVMs1):

minimize � � +K

✓ p
X

i=1

✏i +
q
X

j=1

⇠j

◆

subject to

w>ui � b � � � ✏i, ✏i � 0 i = 1, . . . , p

� w>vj + b � � � ⇠j , ⇠j � 0 j = 1, . . . , q

w>w 1.

It is customary to write ` = p+ q.
It is shown in Section 18.1 that the dual program is equivalent to the

following minimization program:

Dual of the Soft margin SVM (SVMs1):

minimize
�

�> µ>�X>X

✓

�
µ

◆

subject to
p
X

i=1

�i �
q
X

j=1

µj = 0

p
X

i=1

�i +
q
X

j=1

µj = 1

0 �i K, i = 1, . . . , p

0 µj K, j = 1, . . . , q.

The points ui and vj are naturally classified in terms of the values of �i
and µj . The numbers of points in each category have a direct influence on

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 718

718 Soft Margin Support Vector Machines

the choice of the parameter K. Let us summarize some of the keys items
from Definition 18.1.

The vectors ui on the blue margin Hw,b+� and the vectors vj on the red
margin Hw,b�� are called support vectors. Support vectors correspond to
vectors ui for which w>ui � b � � = 0 (which implies ✏i = 0), and vectors
vj for which w>vj � b + � = 0 (which implies ⇠j = 0). Support vectors ui

such that 0 < �i < K and support vectors vj such that 0 < µj < K are
support vectors of type 1 . Support vectors of type 1 play a special role so
we denote the sets of indices associated with them by

I� = {i 2 {1, . . . , p} | 0 < �i < K}
Iµ = {j 2 {1, . . . , q} | 0 < µj < K}.

We denote their cardinalities by numsvl
1

= |I�| and numsvm
1

= |Iµ|.
The vectors ui for which �i = K and the vectors vj for which µj = K

are said to fail the margin. The sets of indices associated with the vectors
failing the margin are denoted by

K� = {i 2 {1, . . . , p} | �i = K}
Kµ = {j 2 {1, . . . , q} | µj = K}.

We denote their cardinalities by pf = |K�| and qf = |Kµ|.
Vectors ui such that �i > 0 and vectors vj such that µj > 0 are said

to have margin at most �. The sets of indices associated with these vectors
are denoted by

I�>0

= {i 2 {1, . . . , p} | �i > 0}
Iµ>0

= {j 2 {1, . . . , q} | µj > 0}.

We denote their cardinalities by pm = |I�>0

| and qm = |Iµ>0

|.
Obviously, pf pm and qf qm. There are p� pm points ui classified

correctly on the blue side and outside the �-slab and there are q�qm points
vj classified correctly on the red side and outside the �-slab. Intuitively a
blue point that fails the margin is on the wrong side of the blue margin and
a red point that fails the margin is on the wrong side of the red margin.

It can be shown that that K must be chosen so that

max

⇢

1

2pm
,

1

2qm

�

 K min

⇢

1

2pf
,

1

2qf

�

.

If the optimal value is 0, then � = 0 and X

✓

�
µ

◆

= 0, so in this case it

is not possible to determine w. However, if the optimal value is > 0, then

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 719

18.17. Summary and Comparison of the SVM Methods 719

once a solution for � and µ is obtained, we have

� =
1

2

✓

�

�> µ>�X>X

✓

�
µ

◆◆

1/2

w =
1

2�

✓ p
X

i=1

�iui �
q
X

j=1

µjvj

◆

,

so we get

w =

p
X

i=1

�iui �
q
X

j=1

µjvj

✓

�

�> µ>�X>X

✓

�
µ

◆◆

1/2
,

If the following mild hypothesis holds, then b and � can be found.
Standard Margin Hypothesis for (SVMs1). There is some index i

0

such that 0 < �i0 < K and there is some index j
0

such that 0 < µj0 < K.
This means that some ui0 is a support vector of type 1 on the blue margin,
and some vj0 is a support vector of type 1 on the red margin.

If the Standard Margin Hypothesis for (SVMs1) holds, then ✏i0 = 0
and µj0 = 0, and we have the active equations

w>ui0 � b = � and � w>vj0 + b = �,

and we obtain the value of b and � as

b =
1

2
w>(ui0 + vj0)

� =
1

2
w>(ui0 � vj0).

The second more successful approach is to add the term (1/2)w>w to
the objective function and to drop the constraint w>w 1. There are
several variants of this method, depending on the choice of the regularizing
term involving ✏ and ⇠ (linear or quadratic), how the margin is dealt with
(implicitly with the term 1 or explicitly with a term ⌘), and whether the
term (1/2)b2 is added to the objective function or not.

These methods all share the property that if the primal problem has an
optimal solution with w 6= 0, then the dual problem always determines w,
and then under mild conditions which we call standard margin hypotheses,
b and ⌘ can be determined. Then ✏ and ⇠ can be determined using the
constraints that are active. When (1/2)b2 is added to the objective function,
b is determined by the equation

b = �(1>
p �� 1>

q µ).

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 720

720 Soft Margin Support Vector Machines

All these problems are convex and the constraints are qualified, so the
duality gap is zero, and if the primal has an optimal solution with w 6= 0,
then it follows that ⌘ � 0.

We now consider five variants in more details.

(1) Basic Soft margin SVM: (SVMs2).
This is the optimization problem in which the regularization term
K
�

✏> ⇠>
�

1p+q is linear and the margin � is given by � = 1/ kwk:

minimize
1

2
w>w +K

�

✏> ⇠>
�

1p+q

subject to

w>ui � b � 1� ✏i, ✏i � 0 i = 1, . . . , p

� w>vj + b � 1� ⇠j , ⇠j � 0 j = 1, . . . , q.

This problem is the classical one discussed in all books on machine
learning or pattern analysis, for instance Vapnik [Vapnik (1998)],
Bishop [Bishop (2006)], and Shawe–Taylor and Christianini [Shawe-
Taylor and Cristianini (2004)]. It is shown in Section 18.3 that the
dual program is

Dual of the Basic Soft margin SVM: (SVMs2):

minimize
1

2

�

�> µ>�X>X

✓

�
µ

◆

�
�

�> µ>�1p+q

subject to
p
X

i=1

�i �
q
X

j=1

µj = 0

0 �i K, i = 1, . . . , p

0 µj K, j = 1, . . . , q.

We can use the dual program to solve the primal. Once � � 0, µ � 0
have been found, w is given by

w = �X

✓

�
µ

◆

=
p
X

i=1

�iui �
q
X

j=1

µjvj ,

but b is not determined by the dual.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 721

18.17. Summary and Comparison of the SVM Methods 721

The complementary slackness conditions imply that if ✏i > 0, then
�i = K, and if ⇠j > 0, then µj = K. Consequently, if �i < K, then
✏i = 0 and ui is correctly classified, and similarly if µj < K, then ⇠j = 0
and vj is correctly classified.
A priori nothing prevents the situation where �i = K for all nonzero
�i or µj = K for all nonzero µj . If this happens, we can rerun the
optimization method with a larger value of K. If the following mild
hypothesis holds then b can be found.
Standard Margin Hypothesis for (SVMs2). There is some support
vector ui0 of type 1 on the blue margin, and some support vector vj0
of type 1 on the red margin.
If the Standard Margin Hypothesis for (SVMs2) holds then ✏i0 = 0
and µj0 = 0, and then we have the active equations

w>ui0 � b = 1 and � w>vj0 + b = 1,

and we obtain

b =
1

2
w>(ui0 + vj0).

(2) Basic Soft margin ⌫-SVM Problem (SVMs20).
This a generalization of Problem (SVMs2) for a version of the soft
margin SVM coming from Problem (SVMh2), obtained by adding an
extra degree of freedom, namely instead of the margin � = 1/ kwk, we
use the margin � = ⌘/ kwk where ⌘ is some positive constant that we
wish to maximize. To do so, we add a term �Km⌘ to the objective
function. We have the following optimization problem:

minimize
1

2
w>w �Km⌘ +Ks

�

✏> ⇠>
�

1p+q

subject to

w>ui � b � ⌘ � ✏i, ✏i � 0 i = 1, . . . , p

� w>vj + b � ⌘ � ⇠j , ⇠j � 0 j = 1, . . . , q

⌘ � 0,

where Km > 0 and Ks > 0 are fixed constants that can be adjusted to
determine the influence of ⌘ and the regularizing term.
This version of the SVM problem was first discussed in Schölkopf,
Smola, Williamson, and Bartlett [Schölkopf et al. (2000)] under the
name of ⌫-SVC , and also used in Schölkopf, Platt, Shawe–Taylor, and
Smola [Schölkopf et al. (2001)].

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 722

722 Soft Margin Support Vector Machines

In order for the problem to have a solution we must pick Km and Ks

so that

Km min{2pKs, 2qKs}.

It is shown in Section 18.5 that the dual program is

Dual of the Basic Soft margin ⌫-SVM Problem (SVMs20):

minimize
1

2

�

�> µ>�X>X

✓

�
µ

◆

subject to
p
X

i=1

�i �
q
X

j=1

µj = 0

p
X

i=1

�i +
q
X

j=1

µj � Km

0 �i Ks, i = 1, . . . , p

0 µj Ks, j = 1, . . . , q.

If the primal problem has an optimal solution with w 6= 0, then using
the fact that the duality gap is zero we can show that ⌘ � 0. Thus
constraint ⌘ � 0 could be omitted. As in the previous case w is given
by

w = �X

✓

�
µ

◆

=
p
X

i=1

�iui �
q
X

j=1

µjvj ,

but b and ⌘ are not determined by the dual.
If we drop the constraint ⌘ � 0, then the inequality

p
X

i=1

�i +
q
X

j=1

µj � Km

is replaced by the equation

p
X

i=1

�i +
q
X

j=1

µj = Km.

It convenient to define ⌫ > 0 such that

⌫ =
Km

(p+ q)Ks
,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 723

18.17. Summary and Comparison of the SVM Methods 723

so that the objective function J(w, ✏, ⇠, b, ⌘) is given by

J(w, ✏, ⇠, b, ⌘) =
1

2
w>w + (p+ q)Ks

✓

�⌫⌘ + 1

p+ q

�

✏> ⇠>
�

1p+q

◆

.

Since we obtain an equivalent problem by rescaling by a common pos-
itive factor, theoretically it is convenient to normalize Ks as

Ks =
1

p+ q
,

in which case Km = ⌫. This method is called the ⌫-support vector
machine.
Under the Standard Margin Hypothesis for (SVMs20), there is some
support vector ui0 of type 1 and some support vector vj0 of type 1, and
by the complementary slackness conditions ✏i0 = 0 and ⇠j0 = 0, so we
have the two active constraints

w>ui0 � b = ⌘, �w>vj0 + b = ⌘,

and we can solve for b and ⌘ and we get

b =
w>(ui0 + vj0)

2

⌘ =
w>(ui0 � vj0)

2
.

Due to numerical instability, when writing a computer program it is
preferable to compute the lists of indices I� and Iµ given by

I� = {i 2 {1, . . . , p} | 0 < �i < Ks}, Iµ = {j 2 {1, . . . , q} | 0 < µj < Ks}.

Then b and ⌘ are given by the following averaging formulae:

b = w>

0

@

✓

X

i2I
�

ui

◆

/|I�|+
✓

X

j2I
µ

vj

◆

/|Iµ|

1

A /2

⌘ = w>

0

@

✓

X

i2I
�

ui

◆

/|I�|�
✓

X

j2I
µ

vj

◆

/|Iµ|

1

A /2.

Proposition 18.1 yields bounds on ⌫ for the method to converge, namely

max

⇢

2pf
p+ q

,
2qf
p+ q

�

 ⌫ min

⇢

2pm
p+ q

,
2qm
p+ q

�

.

In Section 18.7 we investigate conditions on ⌫ that ensure that some
point ui0 and some point vj0 is a support vector. Theorem 18.1 shows

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 724

724 Soft Margin Support Vector Machines

that for every optimal solution (w, b, ⌘, ✏, ⇠) of Problem (SVMs20) with
w 6= 0 and ⌘ > 0, if

max{2pf/(p+ q), 2qf/(p+ q)} < ⌫ < min{2p/(p+ q), 2q/(p+ q)},

then some ui0 and some vj0 is a support vector. Under the same condi-
tions on ⌫ Proposition 18.3 shows that ⌘ and b can always be determined
in terms of (�, µ) using a single support vector.

(3) Soft margin ⌫-SVM Problem (SVMs3). This is the variation of
Problem (SVMs20) obtained by adding the term (1/2)b2 to the objective
function. The result is that in minimizing the Lagrangian to find the
dual function G, not just w but also b is determined. We also suppress
the constraint ⌘ � 0 which turns out to be redundant. If ⌫ > (pf +
qf)/(p + q), then ⌘ is also determined. The fact that b and ⌘ are
determined by the dual seems to be an advantage of Problem (SVMs3).
The optimization problem is

minimize
1

2
w>w +

1

2
b2 + (p+ q)Ks

✓

�⌫⌘ + 1

p+ q

�

✏> ⇠>
�

1p+q

◆

subject to

w>ui � b � ⌘ � ✏i, ✏i � 0 i = 1, . . . , p

� w>vj + b � ⌘ � ⇠j , ⇠j � 0 j = 1, . . . , q.

Theoretically it is convenient to assume thatKs = 1/(p+q). Otherwise,
⌫ needs to be replaced by (p+ q)Ks⌫ in all the formulae below.
It is shown in Section 18.13 that the dual is given by

Dual of the Soft margin ⌫-SVM Problem (SVMs3):

minimize
1

2

�

�> µ>�
✓

X>X +

✓

1p1>
p �1p1>

q

�1q1>
p 1q1>

q

◆◆✓

�
µ

◆

subject to
p
X

i=1

�i +
q
X

j=1

µj = ⌫

0 �i Ks, i = 1, . . . , p

0 µj Ks, j = 1, . . . , q.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 725

18.17. Summary and Comparison of the SVM Methods 725

Once a solution for � and µ is obtained, we have

w = �X

✓

�
µ

◆

=
p
X

i=1

�iui �
q
X

j=1

µjvj

b = �
p
X

i=1

�i +
q
X

j=1

µj .

Note that the constraint
p
X

i=1

�i �
q
X

j=1

µj = 0

occurring in the dual of Program (SVMs20) has been traded for the
equation

b = �
p
X

i=1

�i +
q
X

j=1

µj

determining b.
If ⌫ > (pf + qf)/(p + q), then ⌘ is determined by expressing that the
duality gap is zero. We obtain

((p+ q)⌫ � pf � qf)⌘ = (pf � qf)b+ w>
✓

X

j2K
µ

vj �
X

i2K
�

ui

◆

+
1

Ks

�

�> µ>�
✓

X>X +

✓

1p1>
p �1p1>

q

�1q1>
p 1q1>

q

◆◆✓

�
µ

◆

.

In practice another way to compute ⌘ is to assume the Standard Margin
Hypothesis for (SVMs3). Under the Standard Margin Hypothesis
for (SVMs3), either some ui0 is a support vector of type 1 or some vj0 is
a support vector of type 1. By the complementary slackness conditions
✏i0 = 0 or ⇠j0 = 0, so we have

w>ui0 � b = ⌘, or � w>vj0 + b = ⌘,

and we can solve for ⌘. As in (SVMs20) we get more numerically stable
formulae by averaging over the sets I� and Iµ.
Proposition 18.4 gives bounds ⌫, namely

pf + qf
p+ q

 ⌫ pm + qm
p+ q

.

In Section 18.11 we investigate conditions on ⌫ that ensure that either
there is some blue support vector ui0 or there is some red support vector
vj0 . Theorem 18.2 shows that for every optimal solution (w, b, ⌘, ✏, ⇠)
of Problem (SVMs3) with w 6= 0 and ⌘ > 0, if

(psf + qsf)/(p+ q) < ⌫ < 1,

then some ui0 or some vj0 is a support vector.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 726

726 Soft Margin Support Vector Machines

(4) Basic Quadratic Soft margin ⌫-SVM Problem (SVMs4). This is
the version of Problem (SVMs20) in which instead of using the lin-
ear function Ks

�

✏> ⇠>
�

1p+q as a regularizing function we use the

quadratic function K(k✏k2
2

+ k⇠k2
2

). The optimization problem is

minimize
1

2
w>w + (p+ q)Ks

✓

�⌫⌘ + 1

p+ q
(✏>✏+ ⇠>⇠)

◆

subject to

w>ui � b � ⌘ � ✏i, i = 1, . . . , p

� w>vj + b � ⌘ � ⇠j , j = 1, . . . , q

⌘ � 0,

where ⌫ and Ks are two given positive constants. As we saw earlier,
theoretically, it is convenient to pick Ks = 1/(p + q). When writing
a computer program, it is preferable to assume that Ks is arbitrary.
In this case ⌫ needs to be replaced by (p + q)Ks⌫ in all the formulae
obtained with Ks = 1/(p+ q).
In this method, it is no longer necessary to require ✏ � 0 and ⇠ � 0,
because an optimal solution satisfies these conditions.
One of the advantages of this methods is that ✏ is determined by �,
⇠ is determined by µ, and ⌘ and b are determined by � and µ. We
can omit the constraint ⌘ � 0, because for an optimal solution it can
be shown using duality that ⌘ � 0; see Section 18.14. For Ks and ⌫
fixed, if Program (SVMs4) has an optimal solution, then it is unique;
see Theorem 18.3.
A drawback of Program (SVMs4) is that for fixed Ks, the quantity � =
⌘/ kwk and the hyperplanes Hw,b, Hw,b+⌘ and Hw,b�⌘ are independent
of ⌫. This is shown in Theorem 18.3. Thus this method is less flexible
than (SVMs20) and (SVMs3).
It is shown in Section 18.9 that the dual is given by

Dual of the Basic Quadratic Soft margin ⌫-SVM Problem
(SVMs4):

minimize
1

2

�

�> µ>�
✓

X>X +
1

2K
Ip+q

◆✓

�
µ

◆

subject to

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 727

18.17. Summary and Comparison of the SVM Methods 727

p
X

i=1

�i �
q
X

j=1

µj = 0

p
X

i=1

�i +
q
X

j=1

µj � ⌫

�i � 0, i = 1, . . . , p

µj � 0, j = 1, . . . , q.

The above program is similar to the program that was obtained for
Problem (SVMs20) but the matrix X>X is replaced by the matrix
X>X + (1/2K)Ip+q, which is positive definite since K > 0, and also
the inequalities �i K and µj K no longer hold. If the constraint
⌘ � 0 is dropped, then the inequality

p
X

i=1

�i +
q
X

j=1

µj � ⌫

is replaced by the equation

p
X

i=1

�i +
q
X

j=1

µj = ⌫.

We obtain w from � and µ, and �, as in Problem (SVMs20); namely,

w = �X

✓

�
µ

◆

=
p
X

i=1

�iui �
q
X

j=1

µjvj

and ⌘ is given by

(p+ q)Ks⌫⌘ =
�

�> µ>�
✓

X>X +
1

2Ks
Ip+q

◆✓

�
µ

◆

.

The constraints imply that there is some io such that �i0 > 0 and
some j

0

such that µj0 > 0, which means that at least two points are
misclassified, so Problem (SVMs4) should only be used when the sets
{ui} and {vj} are not linearly separable. We can solve for b using the
active constraints corresponding to any i

0

such that �i0 > 0 and any
j
0

such that µj0 > 0. To improve numerical stability we average over
the sets of indices I� and Iµ.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 728

728 Soft Margin Support Vector Machines

(5) Quadratic Soft margin ⌫-SVM Problem (SVMs5). This is the
variant of Problem (SVMs4) in which we add the term (1/2)b2 to the
objective function. We also drop the constraint ⌘ � 0 which is redun-
dant. We have the following optimization problem:

minimize
1

2
w>w +

1

2
b2 + (p+ q)Ks

✓

�⌫⌘ + 1

p+ q
(✏>✏+ ⇠>⇠)

◆

subject to

w>ui � b � ⌘ � ✏i, i = 1, . . . , p

� w>vj + b � ⌘ � ⇠j , j = 1, . . . , q,

where ⌫ and Ks are two given positive constants. As we saw earlier,
it is convenient to pick Ks = 1/(p + q). When writing a computer
program, it is preferable to assume that Ks is arbitrary. In this case ⌫
must be replaced by (p+ q)Ks⌫ in all the formulae.
One of the advantages of this methods is that ✏ is determined by �, ⇠
is determined by µ (as in (SVMs4)), and both ⌘ and b determined by
� and µ. We can omit the constraint ⌘ � 0, because for an optimal
solution it can be shown using duality that ⌘ � 0. For Ks and ⌫ fixed,
if Program (SVMs5) has an optimal solution, then it is unique; see
Theorem 18.4.
A drawback of Program (SVMs5) is that for fixed Ks, the quantity � =
⌘/ kwk and the hyperplanes Hw,b, Hw,b+⌘ and Hw,b�⌘ are independent
of ⌫. This is shown in Theorem 18.4. Thus this method is less flexible
than (SVMs20) and (SVMs3).
It is shown in Section 18.15 that the dual of Program (SVMs5) is given
by

Dual of the Quadratic Soft margin ⌫-SVM Problem (SVMs5):

minimize
1

2

�

�> µ>�
✓

X>X +

✓

1p1>
p �1p1>

q

�1q1>
p 1q1>

q

◆

+
1

2K
Ip+q

◆✓

�
µ

◆

subject to
p
X

i=1

�i +
q
X

j=1

µj = ⌫

�i � 0, i = 1, . . . , p

µj � 0, j = 1, . . . , q.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 729

18.18. Problems 729

This time we obtain w, b, ⌘, ✏ and ⇠ from � and µ:

w =
p
X

i=1

�iui �
q
X

j=1

µjvj

b = �
p
X

i=1

�i +
q
X

j=1

µj

✏ =
�

2K

⇠ =
µ

2K
,

and

(p+q)Ks⌫⌘ =
�

�> µ>�
✓

X>X+

✓

1p1>
p �1p1>

q

�1q1>
p 1q1>

q

◆

+
1

2Ks
Ip+q

◆✓

�
µ

◆

.

The constraint
p
X

i=1

�i +
q
X

j=1

µj = ⌫

implies that either there is some i
0

such that �i0 > 0 or there is some
j
0

such that µj0 > 0, we have ✏i0 > 0 or ⇠j0 > 0, which means that
at least one point is misclassified, so Problem (SVMs5) should only be
used when the sets {ui} and {vj} are not linearly separable.

These methods all have a kernelized version.
We implemented all these methods in Matlab, solving the dual using

ADMM.
From a theoretical point of view, Problems (SVMs4) and (SVMs5) seem

to have more advantages than the others since they determine w, b, ⌘ and b
without requiring any condition about support vectors of type 1. However,
from a practical point of view, Problems (SVMs4) and (SVMs5) are less
flexible that (SVMs20) and (SVMs3), and we have observed that (SVMs4)
and (SVMs5) are unable to produce as small a margin � as (SVMs20) and
(SVMs3).

18.18 Problems

Problem 18.1. Prove the following inequality

max

⇢

1

2pm
,

1

2qm

�

 K min

⇢

1

2pf
,

1

2qf

�

stated just after Definition 18.1.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 730

730 Soft Margin Support Vector Machines

Problem 18.2. Prove the averaging formulae

b = w>

0

@

✓

X

i2I
�

ui

◆

/|I�|+
✓

X

j2I
µ

vj

◆

/|Iµ|

1

A /2

� = w>

0

@

✓

X

i2I
�

ui

◆

/|I�|�
✓

X

j2I
µ

vj

◆

/|Iµ|

1

A /2

stated at the end of Section 18.1.

Problem 18.3. Prove that the matrix

A =

0

B

B

B

B

B

@

1>
p �1>

q 0>p 0>q

1>
p 1>

q 0>p 0>q

Ip 0p,q Ip 0p,q

0q,p Iq 0q,p Iq

1

C

C

C

C

C

A

has rank p+ q + 2.

Problem 18.4. Prove that the dual program of the kernel version of
(SVMs1) is given by:

Dual of Soft margin kernel SVM (SVMs1):

minimize
�

�> µ>�K

✓

�
µ

◆

subject to
p
X

i=1

�i =
q
X

j=1

µj =
1

2

0 �i K, i = 1, . . . , p

0 µj K, j = 1, . . . , q,

where K is the `⇥ ` kernel symmetric matrix (with ` = p+ q) given by

Kij =

8

>

>

>

>

<

>

>

>

>

:

(ui, uj) 1 i p, 1 j q

�(ui, vj�p) 1 i p, p+ 1 j p+ q

�(vi�p, uj) p+ 1 i p+ q, 1 j p

(vi�p, vj�q) p+ 1 i p+ q, p+ 1 j p+ q.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 731

18.18. Problems 731

Problem 18.5. Prove the averaging formula

b = w>

0

@

✓

X

i2I
�

ui

◆

/|I�|+
✓

X

j2I
µ

vj

◆

/|Iµ|

1

A /2

stated in Section 18.3.

Problem 18.6. Prove that the kernel version of Program (SVMs2) is given
by:

Dual of Soft margin kernel SVM (SVMs2):

minimize
1

2

�

�> µ>�K

✓

�
µ

◆

�
�

�> µ>�1p+q

subject to
p
X

i=1

�i �
q
X

j=1

µj = 0

0 �i K, i = 1, . . . , p

0 µj K, j = 1, . . . , q,

where K is the `⇥ ` kernel symmetric matrix (with ` = p+ q) given at the
end of Section 18.1.

Problem 18.7. Prove that the matrix

A =

0

B

B

@

1>
p �1>

q 0>p 0>q

Ip 0p,q Ip 0p,q

0q,p Iq 0q,p Iq

1

C

C

A

has rank p+ q + 1.

Problem 18.8. Prove that the matrices

A =

0

B

B

B

B

B

@

1>
p �1>

q 0>p 0>q 0

1>
p 1>

q 0>p 0>q �1

Ip 0p,q Ip 0p,q 0p

0q,p Iq 0q,p Iq 0q

1

C

C

C

C

C

A

and A
2

=

0

B

B

B

B

B

@

1>
p �1>

q 0>p 0>q

1>
p 1>

q 0>p 0>q

Ip 0p,q Ip 0p,q

0q,p Iq 0q,p Iq

1

C

C

C

C

C

A

have rank p+ q + 2.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 732

732 Soft Margin Support Vector Machines

Problem 18.9. Prove that the kernel version of Program (SVMs20) is given
by:

Dual of the Soft margin kernel SVM (SVMs20):

minimize
1

2

�

�> µ>�K

✓

�
µ

◆

subject to
p
X

i=1

�i �
q
X

j=1

µj = 0

p
X

i=1

�i +
q
X

j=1

µj � Km

0 �i Ks, i = 1, . . . , p

0 µj Ks, j = 1, . . . , q,

where K is the kernel matrix of Section 18.1.

Problem 18.10. Prove the formulae determining b in terms of ⌘ stated
just before Theorem 18.3.

Problem 18.11. Prove that the matrix

A =

0

B

B

@

1>
p 1>

q 0>p 0>q

Ip 0p,q Ip 0p,q

0q,p Iq 0q,p Iq

1

C

C

A

has rank p+ q + 1.

Problem 18.12. Prove that the kernel version of Program (SVMs3) is
given by:

Dual of the Soft margin kernel SVM (SVMs3):

minimize
1

2

�

�> µ>�
✓

K+

✓

1p1>
p �1p1>

q

�1q1>
p 1q1>

q

◆◆✓

�
µ

◆

subject to
p
X

i=1

�i +
q
X

j=1

µj = ⌫

0 �i Ks, i = 1, . . . , p

0 µj Ks, j = 1, . . . , q,

where K is the kernel matrix of Section 18.1.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 733

18.18. Problems 733

Problem 18.13. Prove that the matrices

A =

1>
p �1>

q 0

1>
p 1>

q �1

!

and A
2

=

1>
p �1>

q

1>
p 1>

q

!

have rank 2.

Problem 18.14. Implement Program (SVMs4) in Matlab. You may adapt
the programs given in Section B.2 and Section B.3.

Problem 18.15. Prove that the kernel version of Program (SVMs4) is
given by:

Dual of the Soft margin kernel SVM (SVMs4):

minimize
1

2

�

�> µ>�
✓

K+
p+ q

2
Ip+q

◆✓

�
µ

◆

subject to
p
X

i=1

�i �
q
X

j=1

µj = 0

p
X

i=1

�i +
q
X

j=1

µj � ⌫

�i � 0, i = 1, . . . , p

µj � 0, j = 1, . . . , q,

where K is the kernel matrix of Section 18.1.

Problem 18.16. Implement Program (SVMs5) in Matlab. You may adapt
the programs given in Section B.2 and Section B.3.

Problem 18.17. Prove that the kernel version of Program (SVMs5) is
given by:

Dual of the Soft margin kernel SVM (SVMs5):

minimize
1

2

�

�> µ>�
✓

K+

✓

1p1>
p �1p1>

q

�1q1>
p 1q1>

q

◆

+
p+ q

2
Ip+q

◆✓

�
µ

◆

subject to
p
X

i=1

�i +
q
X

j=1

µj = ⌫

�i � 0, i = 1, . . . , p

µj � 0, j = 1, . . . , q,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 734

734 Soft Margin Support Vector Machines

where K is the kernel matrix of Section 18.1.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 735

Chapter 19

Ridge Regression, Lasso, Elastic Net

In this chapter we discuss linear regression. This problem can be cast as
a learning problem. We observe a sequence of (distinct) pairs ((x

1

, y
1

),
. . . , (xm, ym)) called a set of training data (or predictors), where xi 2 Rn

and yi 2 R, viewed as input-output pairs of some unknown function f that
we are trying to infer. The simplest kind of function is a linear function
f(x) = x>w, where w 2 Rn is a vector of coe�cients usually called a weight
vector . Since the problem is overdetermined and since our observations
may be subject to errors, we can’t solve for w exactly as the solution of the
system Xw = y, where X is the m⇥ n matrix

X =

0

B

@

x>
1

...
x>
m

1

C

A

,

where the row vectors x>
i are the rows of X, and thus the xi 2 Rn are col-

umn vectors. So instead we solve the least-squares problem of minimizing
kXw � yk2

2

. In general there are still infinitely many solutions so we add
a regularizing term. If we add the term K kwk2

2

to the objective function
J(w) = kXw � yk2

2

, then we have ridge regression. This problem is dis-
cussed in Section 19.1 where we derive the dual program. The dual has a
unique solution which yields a solution of the primal. However, the solution
of the dual is given in terms of the matrix XX> (whereas the solution of
the primal is given in terms of X>X), and since our data points xi are
represented by the rows of the matrix X, we see that this solution only
involves inner products of the xi. This observation is the core of the idea
of kernel functions, which were discussed in Chapter 17. We also explain
how to solve the problem of learning an a�ne function f(x) = x>w + b.

In general the vectors w produced by ridge regression have few zero
entries. In practice it is highly desirable to obtain sparse solutions, that is

735

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 736

736 Ridge Regression, Lasso, Elastic Net

vectors w with many components equal to zero. This can be achieved by re-
placing the regularizing term K kwk2

2

by the regularizing term K kwk
1

; that
is, to use the `1-norm instead of the `2-norm; see Section 19.4. This method
has the exotic name of lasso regression. This time there is no closed-form
solution, but this is a convex optimization problem and there are e�cient
iterative methods to solve it. One of the best methods relies on ADMM
(see Section 16.8) and is discussed in Section 19.4. The lasso method has
some limitations, in particular when the number m of data is smaller than
the dimension n of the data. This happens in some applications in genetics
and medicine. Fortunately there is a way to combine the best features of
ridge regression and lasso, which is to use two regularizing terms:

(1) An `2-term (1/2)K kwk2
2

as in ridge regression (with K > 0).
(2) An `1-term ⌧ kwk

1

as in lasso.

This method is known as elastic net regression and is discussed in Section
19.6. It retains most of the desirable features of ridge regression and lasso,
and eliminates some of their weaknesses. Furthermore, it is e↵ectively
solved by ADMM.

19.1 Ridge Regression

The problem of solving an overdetermined or underdetermined linear sys-
tem Aw = y, where A is an m ⇥ n matrix, arises as a “learning problem”
in which we observe a sequence of data ((a

1

, y
1

), . . . , (am, ym)), viewed as
input-output pairs of some unknown function f that we are trying to infer,
where the ai are the rows of the matrix A and yi 2 R. The values yi are
sometimes called labels or responses. The simplest kind of function is a
linear function f(x) = x>w, where w 2 Rn is a vector of coe�cients usually
called a weight vector , or sometimes an estimator . In the statistical liter-
ature w is often denoted by �. Since the problem is overdetermined and
since our observations may be subject to errors, we can’t solve for w exactly
as the solution of the system Aw = y, so instead we solve the least-square
problem of minimizing kAw � yk2

2

.
In Section 21.1 (Vol. I) we showed that this problem can be solved using

the pseudo-inverse. We know that the minimizers w are solutions of the
normal equations A>Aw = A>y, but when A>A is not invertible, such a
solution is not unique so some criterion has to be used to choose among
these solutions.

One solution is to pick the unique vector w+ of smallest Euclidean norm

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 737

19.1. Ridge Regression 737

kw+k
2

that minimizes kAw � yk2
2

. The solution w+ is given by w+ = A+y,
where A+ is the pseudo-inverse of A. The matrix A+ is obtained from an
SVD of A, say A = V ⌃U>. Namely, A+ = U⌃+V >, where ⌃+ is the
matrix obtained from ⌃ by replacing every nonzero singular value �i in ⌃
by ��1

i , leaving all zeros in place, and then transposing. The di�culty with
this approach is that it requires knowing whether a singular value is zero or
very small but nonzero. A very small nonzero singular value � in ⌃ yields
a very large value ��1 in ⌃+, but � = 0 remains 0 in ⌃+.

This discontinuity phenomenon is not desirable and another way is to
control the size of w by adding a regularization term to kAw � yk2, and a
natural candidate is kwk2.

It is customary to rename each column vector a>i as xi (where xi 2 Rn)
and to rename the input data matrix A as X, so that the row vector x>

i

are the rows of the m⇥ n matrix X

X =

0

B

@

x>
1

...
x>
m

1

C

A

.

Our optimization problem, called ridge regression, is
Program (RR1):

minimize ky �Xwk2 +K kwk2 ,

which by introducing the new variable ⇠ = y �Xw can be rewritten as
Program (RR2):

minimize ⇠>⇠ +Kw>w

subject to

y �Xw = ⇠,

where K > 0 is some constant determining the influence of the regularizing
term w>w, and we minimize over ⇠ and w.

The objective function of the first version of our minimization problem
can be expressed as

J(w) = ky �Xwk2 +K kwk2

= (y �Xw)>(y �Xw) +Kw>w

= y>y � 2w>X>y + w>X>Xw +Kw>w

= w>(X>X +KIn)w � 2w>X>y + y>y.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 738

738 Ridge Regression, Lasso, Elastic Net

The matrix X>X is symmetric positive semidefinite and K > 0, so the
matrix X>X +KIn is positive definite. It follows that

J(w) = w>(X>X +KIn)w � 2w>X>y + y>y

is strictly convex, so by Theorem 4.5(2)-(4), it has a unique minimum i↵
rJw = 0. Since

rJw = 2(X>X +KIn)w � 2X>y,

we deduce that

w = (X>X +KIn)
�1X>y. (⇤wp)

There is an interesting connection between the matrix
(X>X +KIn)�1X> and the pseudo-inverse X+ of X.

Proposition 19.1. The limit of the matrix (X>X+KIn)�1X> when K >
0 goes to zero is the pseudo-inverse X+ of X.

Proof. To show this let X = V ⌃U> be a SVD of X. Then

(X>X +KIn) = U⌃>V >V ⌃U> +KIn = U(⌃>⌃+KIn)U
>,

so

(X>X +KIn)
�1X> = U(⌃>⌃+KIn)

�1U>U⌃>V >

= U(⌃>⌃+KIn)
�1⌃>V >.

The diagonal entries in the matrix (⌃>⌃+KIn)�1⌃> are

�i
�2

i +K
, if �i > 0,

and zero if �i = 0. All nondiagonal entries are zero. When �i > 0 and
K > 0 goes to 0,

lim
K 7!0

�i
�2

i +K
= ��1

i ,

so

lim
K 7!0

(⌃>⌃+KIn)
�1⌃> = ⌃+,

which implies that

lim
K 7!0

(X>X +KIn)
�1X> = X+.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 739

19.1. Ridge Regression 739

The dual function of the first formulation of our problem is a constant
function (with value the minimum of J) so it is not useful, but the sec-
ond formulation of our problem yields an interesting dual problem. The
Lagrangian is

L(⇠, w,�) = ⇠>⇠ +Kw>w + (y �Xw � ⇠)>�

= ⇠>⇠ +Kw>w � w>X>�� ⇠>�+ �>y,

with �, ⇠, y 2 Rm. The Lagrangian L(⇠, w,�), as a function of ⇠ and w with
� held fixed, is obviously convex, in fact strictly convex.

To derive the dual function G(�) we minimize L(⇠, w,�) with respect to
⇠ and w. Since L(⇠, w,�) is (strictly) convex as a function of ⇠ and w, by
Theorem 4.5(4), it has a minimum i↵ its gradient rL⇠,w is zero (in fact, by
Theorem 4.5(2), a unique minimum since the function is strictly convex).
Since

rL⇠,w =

✓

2⇠ � �
2Kw �X>�

◆

,

we get

� = 2⇠

w =
1

2K
X>� = X> ⇠

K
.

The above suggests defining the variable ↵ so that ⇠ = K↵, so we have
� = 2K↵ and w = X>↵. Then we obtain the dual function as a function
of ↵ by substituting the above values of ⇠,� and w back in the Lagrangian
and we get

G(↵) = K2↵>↵+K↵>XX>↵� 2K↵>XX>↵� 2K2↵>↵+ 2K↵>y

= �K↵>(XX> +KIm)↵+ 2K↵>y.

This is a strictly concave function so by Theorem 4.5(4), its maximum is
achieved i↵ rG↵ = 0, that is,

2K(XX> +KIm)↵ = 2Ky,

which yields

↵ = (XX> +KIm)�1y.

Putting everything together we obtain

↵ = (XX> +KIm)�1y

w = X>↵

⇠ = K↵,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 740

740 Ridge Regression, Lasso, Elastic Net

which yields

w = X>(XX> +KIm)�1y. (⇤wd)

Earlier in (⇤wp) we found that

w = (X>X +KIn)
�1X>y,

and it is easy to check that

(X>X +KIn)
�1X> = X>(XX> +KIm)�1.

If n < m it is cheaper to use the formula on the left-hand side, but if m < n
it is cheaper to use the formula on the right-hand side.

19.2 Ridge Regression; Learning an A�ne Function

It is easy to adapt the above method to learn an a�ne function f(x) =
x>w + b instead of a linear function f(x) = x>w, where b 2 R. We have
the following optimization program

Program (RR3):

minimize ⇠>⇠ +Kw>w

subject to

y �Xw � b1 = ⇠,

with y, ⇠,1 2 Rm and w 2 Rn. Note that in Program (RR3) minimization
is performed over ⇠, w and b, but b is not penalized in the objective function.
As in Section 19.1, the objective function is strictly convex.

The Lagrangian associated with this program is

L(⇠, w, b,�) = ⇠>⇠ +Kw>w � w>X>�� ⇠>�� b1>�+ �>y.

Since L is (strictly) convex as a function of ⇠, b, w, by Theorem 4.5(4), it
has a minimum i↵ rL⇠,b,w = 0. We get

� = 2⇠

1>� = 0

w =
1

2K
X>� = X> ⇠

K
.

As before, if we set ⇠ = K↵ we obtain � = 2K↵, w = X>↵, and

G(↵) = �K↵>(XX> +KIm)↵+ 2K↵>y.

Since K > 0 and � = 2K↵, the dual to ridge regression is the following
program

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 741

19.2. Ridge Regression; Learning an A�ne Function 741

Program (DRR3):

minimize ↵>(XX> +KIm)↵� 2↵>y

subject to

1>↵ = 0,

where the minimization is over ↵.
Observe that up to the factor 1/2, this problem satisfies the conditions

of Proposition 6.3 with

A = (XX> +KIm)�1

b = y

B = 1m

f = 0,

and x renamed as ↵. Therefore, it has a unique solution (↵, µ) (beware
that � = 2K↵ is not the � used in Proposition 6.3, which we rename as
µ), which is the unique solution of the KKT-equations

✓

XX> +KIm 1m

1>
m 0

◆✓

↵
µ

◆

=

✓

y
0

◆

.

Since the solution given by Proposition 6.3 is

µ = (B>AB)�1(B>Ab� f), ↵ = A(b�Bµ),

we get

µ = (1>(XX> +KIm)�11)�11>(XX> +KIm)�1y

↵ = (XX> +KIm)�1(y � µ1).

Note that the matrix B>AB is the scalar 1>(XX> +KIm)�11, which is
the negative of the Schur complement of XX> +KIm.

Interestingly b = µ, which is not obvious a priori.

Proposition 19.2. We have b = µ.

Proof. To prove this result we need to express ↵ di↵erently. Since µ is a
scalar, µ1 = 1µ, so

µ1 = 1µ = (1>(XX> +KIm)�11)�111>(XX> +KIm)�1y,

and we obtain

↵ = (XX> +KIm)�1(Im � (1>(XX> +KIm)�11)�111>

(XX> +KIm)�1)y. (⇤↵3)

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 742

742 Ridge Regression, Lasso, Elastic Net

Since w = X>↵, we have

w = X>(XX> +KIm)�1(Im � (1>(XX> +KIm)�11)�111>

(XX> +KIm)�1)y. (⇤w3)

From ⇠ = K↵, we deduce that b is given by the equation

b1 = y �Xw �K↵.

Since w = X>↵, using (⇤↵3) we obtain

b1 = y �Xw �K↵

= y � (XX> +KIm)↵

= y � (Im � (1>(XX> +KIm)�11)�111>(XX> +KIm)�1)y

= (1>(XX> +KIm)�11)�111>(XX> +KIm)�1)y

= µ1,

and thus

b = µ = (1>(XX> +KIm)�11)�11>(XX> +KIm)�1y, (⇤b3)

as claimed.

In summary the KKT-equations determine both ↵ and µ, and so w =
X>↵ and b as well.

There is also a useful expression of b as an average.
Since 1>1 = m and 1>↵ = 0, we get

b =
1

m
1>y � 1

m
1>Xw � 1

m
K1>↵ = y �

n
X

j=1

Xjwj ,

where y is the mean of y and Xj is the mean of the jth column of X.
Therefore,

b = y �
n
X

j=1

Xjwj = y � (X1 · · · Xn)w,

where (X1 · · · Xn) is the 1⇥ n row vector whose jth entry is Xj .
We will now show that solving the dual (DRR3) for ↵ and obtaining

w = X>↵ is equivalent to solving our previous ridge regression Problem
(RR2) applied to the centered data by = y�y1m and bX = X�X, where X
is them⇥nmatrix whose jth column isXj1m, the vector whose coordinates
are all equal to the mean Xj of the jth column Xj of X.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 743

19.2. Ridge Regression; Learning an A�ne Function 743

The expression

b = y � (X1 · · · Xn)w

suggests looking for an intercept term b (also called bias) of the above form,
namely

Program (RR4):

minimize ⇠>⇠ +Kw>w

subject to

y �Xw � b1 = ⇠

b = bb+ y � (X1 · · · Xn)w,

with bb 2 R. Again, in Program (RR4), minimization is performed over ⇠,
w, b and bb, but b and bb are not penalized.

Since

b1 = bb1+ y1� (X11 · · · Xn1)w,

if X = (X11 · · · Xn1) is the m⇥ n matrix whose jth column is the vector
Xj1, then the above program is equivalent to the program

Program (RR5):

minimize ⇠>⇠ +Kw>w

subject to

y �Xw � y1+Xw �bb1 = ⇠,

where minimization is performed over ⇠, w and bb. If we write by = y � y1
and bX = X �X, then the above program becomes

Program (RR6):

minimize ⇠>⇠ +Kw>w

subject to

by � bXw �bb1 = ⇠,

minimizing over ⇠, w and bb. If the solution to this program is bw, then bb is
given by

bb = by � (bX1 · · · bXn) bw = 0,

since the data by and bX are centered. Therefore (RR6) is equivalent to ridge
regression without an intercept term applied to the centered data by = y�y1
and bX = X �X,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 744

744 Ridge Regression, Lasso, Elastic Net

Program (RR60):

minimize ⇠>⇠ +Kw>w

subject to

by � bXw = ⇠,

minimizing over ⇠ and w.
If bw is the optimal solution of this program given by

bw = bX>(bX bX> +KIm)�1

by, (⇤w6)

then b is given by

b = y � (X1 · · · Xn) bw.

Remark: Although this is not obvious a priori, the optimal solution w⇤

of the Program (RR3) given by (⇤w3) is equal to the optimal solution bw
of Program (RR60) given by (⇤w6). We believe that it should be possible
to prove the equivalence of these formulae but a proof eludes us at this
time. We leave this as an open problem. In practice the Program (RR60)
involving the centered data appears to be the preferred one.

Example 19.1. Consider the data set (X, y
1

) with

X =

0

B

B

B

B

B

B

B

B

B

B

B

@

�10 11
�6 5
�2 4
0 0
1 2
2 �5
6 �4
10 �6

1

C

C

C

C

C

C

C

C

C

C

C

A

, y
1

=

0

B

B

B

B

B

B

B

B

B

B

B

@

0
�2.5
0.5
�2
2.5
�4.2
1
4

1

C

C

C

C

C

C

C

C

C

C

C

A

as illustrated in Figure 19.1. We find that y = �0.0875 and (X1, X2) =
(0.125, 0.875). For the value K = 5, we obtain

w =

✓

0.9207
0.8677

◆

, b = �0.9618,

for K = 0.1, we obtain

w =

✓

1.1651
1.1341

◆

, b = �1.2255,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 745

19.2. Ridge Regression; Learning an A�ne Function 745

15-4

-2

15

0

10

Z

2

4

10 5

X

5 0

Y

0 -5

-5 -10

-10 -15

Fig. 19.1 The data set (X, y1) of Example 19.1.

and for K = 0.01,

w =

✓

1.1709
1.1405

◆

, b = �1.2318.

See Figure 19.2.

Fig. 19.2 The graph of the plane f(x, y) = 1.1709x+1.1405y�1.2318 as an approximate
fit to the data (X, y1) of Example 19.1.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 746

746 Ridge Regression, Lasso, Elastic Net

We conclude that the points (Xi, yi) (where Xi is the ith row of X)
almost lie on the plane of equation

x+ y � z � 1 = 0,

and that f is almost the function given by f(x, y) = 1.1x+ 1.1y � 1.2. See
Figures 19.3 and 19.4.

Fig. 19.3 The graph of the plane f(x, y) = 1.1x + 1.1y � 1.2 as an approximate fit to
the data (X, y1) of Example 19.1.

Fig. 19.4 A comparison of how the graphs of the planes corresponding to K =
1, 0.1, 0.01 and the salmon plane of equation f(x, y) = 1.1x+1.1y� 1.2 approximate the
data (X, y1) of Example 19.1.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 747

19.2. Ridge Regression; Learning an A�ne Function 747

If we change y
1

to

y
2

=
�

0 �2 1 �1 2 �4 1 3
�>

,

as evidenced by Figure 19.5, the exact solution is

w =

✓

1
1

◆

, b = �1,

and for K = 0.01, we find that

w =

✓

0.9999
0.9999

◆

, b = �0.9999.

Fig. 19.5 The data (X, y2) of Example 19.1 is contained within the graph of the plane
f(x, y) = x+ y � 1.

We can see how the choice of K a↵ects the quality of the solution (w, b)
by computing the norm k⇠k

2

of the error vector ⇠ = by � bXw. We notice
that the smaller K is, the smaller is this norm.

It is natural to wonder what happens if we also penalize b in program
(RR3). Let us add the term Kb2 to the objective function. Then we obtain
the program

minimize ⇠>⇠ +Kw>w +Kb2

subject to

y �Xw � b1 = ⇠,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 748

748 Ridge Regression, Lasso, Elastic Net

minimizing over ⇠, w and b.
This suggests treating b an an extra component of the weight vector w

and by forming the m⇥ (n+1) matrix [X 1] obtained by adding a column
of 1’s (of dimension m) to the matrix X, we obtain

Program (RR3b):

minimize ⇠>⇠ +Kw>w +Kb2

subject to

y � [X 1]

✓

w
b

◆

= ⇠,

minimizing over ⇠, w and b.
This program is solved just as Program (RR2). In terms of the dual

variable ↵, we get

↵ = ([X 1][X 1]> +KIm)�1y
✓

w
b

◆

= [X 1]>↵

⇠ = K↵.

Thus b = 1>↵. Observe that [X 1][X 1]> = XX> + 11>.
If n < m, it is preferable to use the formula

✓

w
b

◆

= ([X 1]>[X 1] +KIn+1

)�1[X 1]>y.

Since we also have the equation

y �Xw � b1 = ⇠,

we obtain
1

m
1>y � 1

m
1>Xw � 1

m
b1>1 =

1

m
1>K↵,

so

y � (X1 · · · Xn)w � b =
1

m
Kb,

which yields

b =
m

m+K
(y � (X1 · · · Xn)w).

Remark: As a least squares problem, the solution is given in terms of the
pseudo-inverse [X 1]+ of [X 1] by

✓

w
b

◆

= [X 1]+y.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 749

19.3. Kernel Ridge Regression 749

Example 19.2. Applying Program (RR3b) to the data set of Example
19.1 with K = 0.01 yields

w =

✓

1.1706
1.1401

◆

, b = �1.2298.

See Figure 19.6. We can see how the choice of K a↵ects the quality of

Fig. 19.6 The graph of the plane f(x, y) = 1.1706x+1.1401y�1.2298 as an approximate
fit to the data (X, y1) of Example 19.1.

the solution (w, b) by computing the norm k⇠k
2

of the error vector ⇠ =
y � Xw � b1m. As in Example 19.1 we notice that the smaller K is, the
smaller is this norm. We also observe that for a given value of K, Program
(RR60) gives a slightly smaller value of k⇠k

2

than (RR3b) does.

As pointed out by Hastie, Tibshirani, and Friedman [Hastie et al. (2009)]
(Section 3.4), a defect of the approach where b is also penalized is that the
solution for b is not invariant under adding a constant c to each value yi.
This is not the case for the approach using Program (RR60).

19.3 Kernel Ridge Regression

One interesting aspect of the dual (of either (RR2) or (RR3)) is that it
shows that the solution w being of the form X>↵, is a linear combination

w =
m
X

i=1

↵ixi

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 750

750 Ridge Regression, Lasso, Elastic Net

of the data points xi, with the coe�cients ↵i corresponding to the dual
variable � = 2K↵ of the dual function, and with

↵ = (XX> +KIm)�1y.

If m is smaller than n, then it is more advantageous to solve for ↵. But
what really makes the dual interesting is that with our definition of X as

X =

0

B

@

x>
1

...
x>
m

1

C

A

,

the matrix XX> consists of the inner products x>
i xj , and similarly the

function learned f(x) = x>w can be expressed as

f(x) =
m
X

i=1

↵ix
>
i x,

namely that both w and f(x) are given in terms of the inner products x>
i xj

and x>
i x.

This fact is the key to a generalization to ridge regression in which
the input space Rn is embedded in a larger (possibly infinite dimensional)
Euclidean space F (with an inner product h�,�i) usually called a feature
space, using a function

' : Rn ! F.

The problem becomes (kernel ridge regression)
Program (KRR2):

minimize ⇠>⇠ +Khw,wi
subject to

yi � hw,'(xi)i = ⇠i, i = 1, . . . ,m,

minimizing over ⇠ and w. Note that w 2 F . This problem is discussed
in Shawe–Taylor and Christianini [Shawe-Taylor and Cristianini (2004)]
(Section 7.3).

We will show below that the solution is exactly the same:

↵ = (G+KIm)�1y

w =
m
X

i=1

↵i'(xi)

⇠ = K↵,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 751

19.3. Kernel Ridge Regression 751

where G is the Gram matrix given by Gij = h'(xi),'(xj)i. This matrix is
also called the kernel matrix and is often denoted by K instead of G.

In this framework we have to be a little careful in using gradients since
the inner product h�,�i on F is involved and F could be infinite dimen-
sional, but this causes no problem because we can use derivatives, and by
Proposition 3.5 we have

dh�,�i
(u,v)(x, y) = hx, vi+ hu, yi.

This implies that the derivative of the map u 7! hu, ui is
dh�,�iu(x) = 2hx, ui. (d

1

)

Since the map u 7! hu, vi (with v fixed) is linear, its derivative is

dh�, viu(x) = hx, vi. (d
2

)

The derivative of the Lagrangian

L(⇠, w,�) = ⇠>⇠ +Khw,wi �
m
X

i=1

�ih'(xi), wi � ⇠>�+ �>y

with respect to ⇠ and w is

dL⇠,w

�

e⇠, ew
�

= 2(e⇠)>⇠ � (e⇠)>�+

⌧

2Kw �
m
X

i=1

�i'(xi), ew

�

,

where we used (d
1

) to calculate the derivative of ⇠>⇠ + Khw,wi and
(d

2

) to calculate the derivative of �
Pm

i=1

�ih'(xi), wi � ⇠>�. We have
dL⇠,w

�

e⇠, ew
�

= 0 for all e⇠ and ew i↵

2Kw =
m
X

i=1

�i'(xi)

� = 2⇠.

Again we define ⇠ = K↵, so we have � = 2K↵, and

w =
m
X

i=1

↵i'(xi).

Plugging back into the Lagrangian we get

G(↵) = K2↵>↵+K
m
X

i,j=1

↵i↵jh'(xi),'(xj)i � 2K
m
X

i,j=1

↵i↵jh'(xi),'(xj)i

� 2K2↵>↵+ 2K↵>y

= �K2↵>↵�K
m
X

i,j=1

↵i↵jh'(xi),'(xj)i+ 2K↵>y.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 752

752 Ridge Regression, Lasso, Elastic Net

If G is the matrix given by Gij = h'(xi),'(xj)i, then we have

G(↵) = �K↵>(G+KIm)↵+ 2K↵>y.

The function G is strictly concave, so by Theorem 4.5(4) it has a maximum
for

↵ = (G+KIm)�1y,

as claimed earlier.
As in the standard case of ridge regression, if F = Rn (but the inner

product h�,�i is arbitrary), we can adapt the above method to learn an
a�ne function f(w) = x>w + b instead of a linear function f(w) = x>w,
where b 2 R. This time we assume that b is of the form

b = y � hw, (X1 · · · Xn)i,

where Xj is the j column of the m ⇥ n matrix X whose ith row is the
transpose of the column vector '(xi), and where (X1 · · · Xn) is viewed as
a column vector. We have the minimization problem

Program (KRR60):

minimize ⇠>⇠ +Khw,wi
subject to

byi � hw,\'(xi)i = ⇠i, i = 1, . . . ,m,

minimizing over ⇠ and w, where \'(xi) is the n-dimensional vector '(xi)�
(X1 · · · Xn).

The solution is given in terms of the matrix bG defined by

bGij = h\'(xi),\'(xj)i,

as before. We get

↵ = (bG+KIm)�1

by,

and according to a previous computation, b is given by

b = y � 1

m
1 bG↵.

We explained in Section 17.4 how to compute the matrix bG from the
matrix G.

Since the dimension of the feature space F may be very large, one
might worry that computing the inner products h'(xi),'(xj)i might be
very expensive. This is where kernel functions come to the rescue. A

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 753

19.4. Lasso Regression (`1-Regularized Regression) 753

kernel function for an embedding ' : Rn ! F is a map : Rn ⇥Rn ! R
with the property that

(u, v) = h'(u),'(v)i for all u, v 2 Rn.

If (u, v) can be computed in a reasonably cheap way, and if '(u)
can be computed cheaply, then the inner products h'(xi),'(xj)i (and
h'(xi),'(x)i) can be computed cheaply; see Chapter 17. Fortunately there
are good kernel functions. Two very good sources on kernel methods are
Schölkopf and Smola [Schölkopf and Smola (2002)] and Shawe–Taylor and
Christianini [Shawe-Taylor and Cristianini (2004)].

19.4 Lasso Regression (`1-Regularized Regression)

The main weakness of ridge regression is that the estimated weight vector
w usually has many nonzero coe�cients. As a consequence, ridge regression
does not scale up well. In practice we need methods capable of handling
millions of parameters, or more. A way to encourage sparsity of the vector
w, which means that many coordinates of w are zero, is to replace the
quadratic penalty function ⌧w>w = ⌧ kwk2

2

by the penalty function ⌧ kwk
1

,
with the `2-norm replaced by the `1-norm.

This method was first proposed by Tibshirani around 1996, under the
name lasso, which stands for “least absolute selection and shrinkage oper-
ator.” This method is also known as `1-regularized regression, but this is
not as cute as “lasso,” which is used predominantly.

Given a set of training data {(x
1

, y
1

), . . . , (xm, ym)}, with xi 2 Rn and
yi 2 R, if X is the m⇥ n matrix

X =

0

B

@

x>
1

...
x>
m

1

C

A

,

in which the row vectors x>
i are the rows of X, then lasso regression is the

following optimization problem
Program (lasso1):

minimize
1

2
⇠>⇠ + ⌧ kwk

1

subject to

y �Xw = ⇠,

minimizing over ⇠ and w, where ⌧ > 0 is some constant determining the
influence of the regularizing term kwk

1

.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 754

754 Ridge Regression, Lasso, Elastic Net

The di�culty with the regularizing term kwk
1

= |w
1

| + · · · + |wn| is
that the map w 7! kwk

1

is not di↵erentiable for all w. This di�culty can
be overcome by using subgradients, but the dual of the above program can
also be obtained in an elementary fashion by using a trick that we already
used, which is that if x 2 R, then

|x| = max{x,�x}.
Using this trick, by introducing a vector ✏ 2 Rn of nonnegative variables,
we can rewrite lasso minimization as follows:

Program lasso regularization (lasso2):

minimize
1

2
⇠>⇠ + ⌧1>

n ✏

subject to

y �Xw = ⇠

w ✏

� w ✏.

minimizing over ⇠, w and ✏, with y, ⇠ 2 Rm, and w, ✏,1n 2 Rn.
The constraints w ✏ and �w ✏ are equivalent to |wi| ✏i for

i = 1, . . . , n, so for an optimal solution we must have ✏ � 0 and |wi| = ✏i,
that is, kwk

1

= ✏
1

+ · · ·+ ✏n.
The Lagrangian L(⇠, w, ✏,�,↵

+

,↵�) is given by

L(⇠, w, ✏,�,↵
+

,↵�) =
1

2
⇠>⇠ + ⌧1>

n ✏+ �>(y �Xw � ⇠)

+ ↵>
+

(w � ✏) + ↵>
�(�w � ✏)

=
1

2
⇠>⇠ � ⇠>�+ �>y

+ ✏>(⌧1n � ↵
+

� ↵�) + w>(↵
+

� ↵� �X>�),

with � 2 Rm and ↵
+

,↵� 2 Rn
+

. Since the objective function is convex
and the constraints are a�ne (and thus qualified), the Lagrangian L has a
minimum with respect to the primal variables, ⇠, w, ✏ i↵ rL⇠,w,✏ = 0. Since
the gradient rL⇠,w,✏ is given by

rL⇠,w,✏ =

0

@

⇠ � �
↵
+

� ↵� �X>�
⌧1n � ↵

+

� ↵�

1

A ,

we obtain the equations

⇠ = �

↵
+

� ↵� = X>�

↵
+

+ ↵� = ⌧1n.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 755

19.4. Lasso Regression (`1-Regularized Regression) 755

Using these equations, the dual function G(�,↵
+

,↵�) = min⇠,w,✏ L is given
by

G(�,↵
+

,↵�) =
1

2
⇠>⇠ � ⇠>�+ �>y =

1

2
�>�� �>�+ �>y

= �1

2
�>�+ �>y = �1

2

⇣

ky � �k2
2

� kyk2
2

⌘

,

so

G(�,↵
+

,↵�) = �1

2

⇣

ky � �k2
2

� kyk2
2

⌘

.

Since ↵
+

,↵� � 0, for any i 2 {1, . . . , n} the minimum of (↵
+

)i � (↵�)i
is �⌧ , and the maximum is ⌧ . If we recall that for any z 2 Rn,

kzk1 = max
1in

|zi|,

it follows that the constraints

↵
+

+ ↵� = ⌧1n

X>� = ↵
+

� ↵�

are equivalent to
�

�X>�
�

�

1 ⌧.

The above is equivalent to the 2n constraints

�⌧ (X>�)i ⌧, 1 i n.

Therefore, the dual lasso program is given by

maximize � 1

2

⇣

ky � �k2
2

� kyk2
2

⌘

subject to
�

�X>�
�

�

1 ⌧,

which (since kyk2
2

is a constant term) is equivalent to
Program (Dlasso2):

minimize
1

2
ky � �k2

2

subject to
�

�X>�
�

�

1 ⌧,

minimizing over � 2 Rm.
One way to solve lasso regression is to use the dual program to find

� = ⇠, and then to use linear programming to find w by solving the linear

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 756

756 Ridge Regression, Lasso, Elastic Net

program arising from the lasso primal by holding ⇠ constant. The best way
is to use ADMM as explained in Section 16.8(4). There are also a number
of variations of gradient descent; see Hastie, Tibshirani, and Wainwright
[Hastie et al. (2015)].

In theory, if we know the support of w and the signs of its components,
then w is determined as we now explain.

In view of the constraint y �Xw = ⇠ and the fact that for an optimal
solution we must have ⇠ = �, the following condition must hold:

�

�X>(Xw � y)
�

�

1 ⌧. (⇤)

Also observe that for an optimal solution, we have

1

2
ky �Xwk2

2

+ w>X>(y �Xw) =
1

2
kyk2 � w>X>y +

1

2
w>X>Xw

+ w>X>y � w>X>Xw

=
1

2

⇣

kyk2
2

� kXwk2
2

⌘

=
1

2

⇣

kyk2
2

� ky � �k2
2

⌘

= G(�).

Since the objective function is convex and the constaints are qualified,
by Theorem 14.7(2) the duality gap is zero, so for optimal solutions of the
primal and the dual, G(�) = L(⇠, w, ✏), that is

1

2
ky �Xwk2

2

+w>X>(y�Xw) =
1

2
k⇠k2

2

+⌧ kwk
1

=
1

2
ky �Xwk2

2

+⌧ kwk
1

,

which yields the equation

w>X>(y �Xw) = ⌧ kwk
1

. (⇤⇤
1

)

The above is the inner product of w and X>(y � Xw), so whenever
wi 6= 0, since kwk

1

= |w
1

| + · · · + |wn|, in view of (⇤), we must have
(X>(y �Xw))i = ⌧sgn(wi). If

S = {i 2 {1, . . . , n} | wi 6= 0}, (†)

if XS denotes the matrix consisting of the columns of X indexed by S, and
if wS denotes the vector consisting of the nonzero components of w, then
we have

X>
S (y �XSwS) = ⌧sgn(wS). (⇤⇤

2

)

We also have
�

�X>
S
(y �XSwS)

�

�

1 ⌧, (⇤⇤
3

)

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 757

19.5. Lasso Regression; Learning an A�ne Function 757

where S is the complement of S.
Equation (⇤⇤

2

) yields

X>
S XSwS = X>

S y � ⌧sgn(wS),

so if X>
S XS is invertible (which will be the case if the columns of X are

linearly independent), we get

wS = (X>
S XS)

�1(X>
S y � ⌧sgn(wS)). (⇤⇤

4

)

In theory, if we know the support of w and the signs of its components,
then wS is determined, but in practice this is useless since the problem is
to find the support and the sign of the solution.

19.5 Lasso Regression; Learning an A�ne Function

In the preceding section we made the simplifying assumption that we were
trying to learn a linear function f(x) = x>w. To learn an a�ne function
f(x) = x>w + b, we solve the following optimization problem

Program (lasso3):

minimize
1

2
⇠>⇠ + ⌧1>

n ✏

subject to

y �Xw � b1m = ⇠

w ✏

� w ✏.

Observe that as in the case of ridge regression, minimization is performed
over ⇠, w, ✏ and b, but b is not penalized in the objective function.

The Lagrangian associated with this optimization problem is

L(⇠, w, ✏, b,�,↵
+

,↵�) =
1

2
⇠>⇠ � ⇠>�+ �>y � b1>

m�

+ ✏>(⌧1n � ↵
+

� ↵�) + w>(↵
+

� ↵� �X>�),

so by setting the gradient rL⇠,w,✏,b to zero we obtain the equations

⇠ = �

↵
+

� ↵� = X>�

↵
+

+ ↵� = ⌧1n

1>
m� = 0.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 758

758 Ridge Regression, Lasso, Elastic Net

Using these equations, we find that the dual function is also given by

G(�,↵
+

,↵�) = �1

2

⇣

ky � �k2
2

� kyk2
2

⌘

,

and the dual lasso program is given by

maximize � 1

2

⇣

ky � �k2
2

� kyk2
2

⌘

subject to
�

�X>�
�

�

1 ⌧

1>
m� = 0,

which is equivalent to
Program (Dlasso3):

minimize
1

2
ky � �k2

2

subject to
�

�X>�
�

�

1 ⌧

1>
m� = 0,

minimizing over � 2 Rm.
Once � = ⇠ and w are determined, we obtain b using the equation

b1m = y �Xw � ⇠,

and since 1>
m1m = m and 1>

m⇠ = 1>
m� = 0, the above yields

b =
1

m
1>
my � 1

m
1>
mXw � 1

m
1>
m⇠ = y �

n
X

j=1

Xjwj ,

where y is the mean of y and Xj is the mean of the jth column of X.
The equation

b = bb+ y �
n
X

j=1

Xjwj = bb+ y � (X1 · · · Xn)w,

can be used as in ridge regression, (see Section 19.2), to show that the Pro-
gram (lasso3) is equivalent to applying lasso regression (lasso2) without
an intercept term to the centered data, by replacing y by by = y � y1 and
X by bX = X �X. Then b is given by

b = y � (X1 · · · Xn) bw,

where bw is the solution given by (lasso2). This is the method described
by Hastie, Tibshirani, and Wainwright [Hastie et al. (2015)] (Section 2.2).

Example 19.3. We can create a data set (X, y) where X a 100⇥ 5 matrix
and y is a 100⇥ 1 vector using the following Matlab program in which the
command randn creates an array of normally distributed numbers.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 759

19.5. Lasso Regression; Learning an A�ne Function 759

X = randn(100,5);

ww = [0; 2; 0; -3; 0];

y = X*ww + randn(100,1)*0.1;

The purpose of the third line is to add some small noise to the “output”
X ⇤ ww. The first five rows of X are

0

B

B

B

B

@

�1.1658 �0.0679 �1.6118 0.3199 0.4400
�1.1480 �0.1952 �0.0245 �0.5583 �0.6169
0.1049 �0.2176 �1.9488 �0.3114 0.2748
0.7223 �0.3031 1.0205 �0.5700 0.6011
2.5855 0.0230 0.8617 �1.0257 0.0923

1

C

C

C

C

A

,

and the first five rows of y are

y =

0

B

B

B

B

@

�1.0965
1.2155
0.4324
1.1902
3.1346

1

C

C

C

C

A

.

We ran the program for lasso using ADMM (see Problem 16.7) with various
values of ⇢ and ⌧ , including ⇢ = 1 and ⇢ = 10. We observed that the
program converges a lot faster for ⇢ = 10 than for ⇢ = 1. We plotted
the values of the five components of w(⌧) for values of ⌧ from ⌧ = 0 to
⌧ = 0.5 by increment of 0.02, and observed that the first, third, and fifth
coordinate drop basically linearly to zero (a value less that 10�4) around
⌧ = 0.2. See Figures 19.7, 19.8, and 19.9. This behavior is also observed in
Hastie, Tibshirani, and Wainwright [Hastie et al. (2015)] (Section 2.2).

For ⌧ = 0.02, we have

w =

0

B

B

B

B

@

0.00003
2.01056
�0.00004
�2.99821
0.00000

1

C

C

C

C

A

, b = 0.00135.

This weight vector w is very close to the original vector ww =
[0; 2; 0;�3; 0] that we used to create y. For large values of ⌧ , the weight
vector is essentially the zero vector. This happens for ⌧ = 235, where every
component of w is less than 10�5.

Another way to find b is to add the term (C/2)b2 to the objective func-
tion, for some positive constant C, obtaining the program

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 760

760 Ridge Regression, Lasso, Elastic Net

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-20

-15

-10

-5

0

5 #10
-3

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1.82

1.84

1.86

1.88

1.9

1.92

1.94

1.96

1.98

2

2.02

Fig. 19.7 First and second component of w.

Program(lasso4):

minimize
1

2
⇠>⇠ + ⌧1>

n ✏+
1

2
Cb2

subject to

y �Xw � b1m = ⇠

w ✏

� w ✏,

minimizing over ⇠, w, ✏ and b.
This time the Lagrangian is

L(⇠, w, ✏, b,�,↵
+

,↵�) =
1

2
⇠>⇠ � ⇠>�+ �>y +

C

2
b2 � b1>

m�

+ ✏>(⌧1n � ↵
+

� ↵�) + w>(↵
+

� ↵� �X>�),

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 761

19.5. Lasso Regression; Learning an A�ne Function 761

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-3

-2.95

-2.9

-2.85

-2.8

-2.75

-2.7

-2.65

-2.6

Fig. 19.8 Third and fourth component of w.

so by setting the gradient rL⇠,w,✏,b to zero we obtain the equations

⇠ = �

↵
+

� ↵� = X>�

↵
+

+ ↵� = ⌧1n

Cb = 1>
m�.

Thus b is also determined, and the dual lasso program is identical to the
first lasso dual (Dlasso2), namely

minimize
1

2
ky � �k2

2

subject to
�

�X>�
�

�

1 ⌧,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 762

762 Ridge Regression, Lasso, Elastic Net

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-10

-8

-6

-4

-2

0

2
#10-3

Fig. 19.9 Fifth component of w.

minimizing over �.
Since the equations ⇠ = � and

y �Xw � b1m = ⇠

hold, from Cb = 1>
m� we get

1

m
1>
my � 1

m
1>
mXw � b

1

m
1>
m1 =

1

m
1>
m�,

that is

y � (X1 · · · Xn)w � b =
C

m
b,

which yields

b =
m

m+ C
(y � (X1 · · · Xn)w).

As in the case of ridge regression, a defect of the approach where b is also
penalized is that the solution for b is not invariant under adding a constant
c to each value yi

It is interesting to compare the behavior of the methods:

(1) Ridge regression (RR60) (which is equivalent to (RR3)).
(2) Ridge regression (RR3b), with b penalized (by adding the term Kb2 to

the objective function).
(3) Least squares applied to [X 1].
(4) (lasso3).

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 763

19.5. Lasso Regression; Learning an A�ne Function 763

When n 2 and K and ⌧ are small and of the same order of magnitude,
say 0.1 or 0.01, there is no noticeable di↵erence. We ran out programs on
the data set of 200 points generated by the following Matlab program:

X14 = 15*randn(200,1);

ww14 = 1;

y14 = X14*ww14 + 10*randn(200,1) + 20;

The result is shown in Figure 19.10, with the following colors: Method (1)
in magenta, Method (2) in red, Method (3) in blue, and Method (4) in
cyan. All four lines are identical.

-60 -40 -20 0 20 40 60
-30

-20

-10

0

10

20

30

40

50

60

70

Fig. 19.10 Comparison of the four methods with K = ⌧ = 0.1.

In order to see a di↵erence we also ran our programs with K = 1000
and ⌧ = 10000; see Figure 19.11.

As expected, due to the penalization of b, Method (3) yields a signifi-
cantly lower line (in red), and due to the large value of ⌧ , the line corre-
sponding to lasso (in cyan) has a smaller slope. Method (1) (in magenta)
also has a smaller slope but still does not deviate that much from least
squares (in blue). It is also interesting to experiment on data sets where n
is larger (say 20, 50).

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 764

764 Ridge Regression, Lasso, Elastic Net

-60 -40 -20 0 20 40 60
-30

-20

-10

0

10

20

30

40

50

60

70

Fig. 19.11 Comparison of the four methods with K = 1000, ⌧ = 10000.

19.6 Elastic Net Regression

The lasso method is unsatisfactory when n (the dimension of the data) is
much larger than the number m of data, because it only selects m coordi-
nates and sets the others to values close to zero. It also has problems with
groups of highly correlated variables. A way to overcome this problem is to
add a “ridge-like” term (1/2)Kw>w to the objective function. This way we
obtain a hybrid of lasso and ridge regression called the elastic net method
and defined as follows:

Program (elastic net):

minimize
1

2
⇠>⇠ +

1

2
Kw>w + ⌧1>

n ✏

subject to

y �Xw � b1m = ⇠

w ✏

� w ✏,

where K > 0 and ⌧ � 0 are two constants controlling the influence of the

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 765

19.6. Elastic Net Regression 765

`2-regularization and the `1-regularization.1 Observe that as in the case
of ridge regression, minimization is performed over ⇠, w, ✏ and b, but b is
not penalized in the objective function. The objective function is strictly
convex so if an optimal solution exists, then it is unique; the proof is left
as an exercise.

The Lagrangian associated with this optimization problem is

L(⇠, w, ✏, b,�,↵
+

,↵�) =
1

2
⇠>⇠ � ⇠>�+ �>y � b1>

m�+
1

2
Kw>w

+ ✏>(⌧1n � ↵
+

� ↵�) + w>(↵
+

� ↵� �X>�),

so by setting the gradient rL⇠,w,✏,b to zero we obtain the equations

⇠ = �

Kw = �(↵
+

� ↵� �X>�) (⇤w)
↵
+

+ ↵� � ⌧1n = 0

1>
m� = 0.

We find that (⇤w) determines w. Using these equations, we can find the
dual function but in order to solve the dual using ADMM, since � 2 Rm,
it is more convenient to write � = �

+

� ��, with �+,�� 2 Rm
+

(recall that
↵
+

,↵� 2 Rn
+

). As in the derivation of the dual of ridge regression, we
rescale our variables by defining �

+

,��, µ+

, µ� such that

↵
+

= K�
+

, ↵� = K��, �+ = Kµ
+

, �� = Kµ�.

We also let µ = µ
+

� µ� so that � = Kµ. Then 1>
m� = 0 is equivalent to

1>
mµ

+

� 1>
mµ� = 0,

and since ⇠ = � = Kµ, we have

⇠ = K(µ
+

� µ�)

�
+

+ �� =
⌧

K
1n.

Using (⇤w) we can write

w = �(�
+

� �� �X>µ) = ��
+

+ �� +X>µ
+

�X>µ�

=
�

�In In X> �X>�

0

B

B

@

�
+

��
µ
+

µ�

1

C

C

A

.

1 Some of the literature denotes K by �2 and ⌧ by �1, but we prefer not to adopt this
notation since we use �, µ etc. to denote Lagrange multipliers.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 766

766 Ridge Regression, Lasso, Elastic Net

Then we have

�

�In In X> �X>�> ��In In X> �X>� =

0

B

B

@

�In
In
X
�X

1

C

C

A

�

�In In X> �X>�

=

0

B

B

@

In �In �X> X>

�In In X> �X>

�X X XX> �XX>

X �X �XX> XX>

1

C

C

A

.

If we define the symmetric positive semidefinite 2(n+m)⇥2(n+m) matrix
Q as

Q =

0

B

B

@

In �In �X> X>

�In In X> �X>

�X X XX> �XX>

X �X �XX> XX>

1

C

C

A

,

then

1

2
w>w =

1

2

�

�>
+

�>
� µ>

+

µ>
�
�

Q

0

B

B

@

�
+

��
µ
+

µ�

1

C

C

A

.

As a consequence, using (⇤w) and the fact that ⇠ = Kµ, we find that the
dual function is given by

G(µ,�
+

,��) =
1

2
⇠>⇠ � ⇠>�+ �>y + w>(↵

+

� ↵� �X>�) +
1

2
Kw>w

=
1

2
⇠>⇠ �K⇠>µ+Kµ>y +Kw>(�

+

� �� �X>µ) +
1

2
Kw>w

=
1

2
K2µ>µ�K2µ>µ+Ky>µ�Kw>w +

1

2
Kw>w

= �1

2
K2µ>µ� 1

2
Kw>w +Ky>µ.

But

µ =
�

Im �Im
�

✓

µ
+

µ�

◆

,

so

1

2
µ>µ =

1

2

�

µ>
+

µ>
�
�

✓

Im �Im
�Im Im

◆✓

µ
+

µ�

◆

,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 767

19.6. Elastic Net Regression 767

so we get

G(�
+

,��, µ+

, µ�) = �1

2
K
�

�>
+

�>
� µ>

+

µ>
�
�

P

0

B

B

@

�
+

��
µ
+

µ�

1

C

C

A

�Kq>

0

B

B

@

�
+

��
µ
+

µ�

1

C

C

A

with

P = Q+K

0

B

B

@

0n,n 0n,n 0n,m 0n,m
0n,n 0n,n 0n,m 0n,m
0m,n 0m,n Im �Im
0m,n 0m,n �Im Im

1

C

C

A

=

0

B

B

@

In �In �X> X>

�In In X> �X>

�X X XX> +KIm �XX> �KIm
X �X �XX> �KIm XX> +KIm

1

C

C

A

,

and

q =

0

B

B

@

0n
0n
�y
y

1

C

C

A

.

The constraints are the equations

�
+

+ �� =
⌧

K
1n

1>
mµ

+

� 1>
mµ� = 0,

which correspond to the (n+ 1)⇥ 2(n+m) matrix

A =

✓

In In 0n,m 0n,m
0>n 0>n 1>

m �1>
m

◆

and the right-hand side

c =

✓

⌧
K1n

0

◆

.

Since K > 0, the dual of elastic net is equivalent to

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 768

768 Ridge Regression, Lasso, Elastic Net

Program (Dual Elastic Net):

minimize
1

2

�

�>
+

�>
� µ>

+

µ>
�
�

P

0

B

B

@

�
+

��
µ
+

µ�

1

C

C

A

+ q>

0

B

B

@

�
+

��
µ
+

µ�

1

C

C

A

subject to

A

0

B

B

@

�
+

��
µ
+

µ�

1

C

C

A

= c,

�
+

,�� 2 Rn
+

, µ
+

, µ� 2 Rm
+

.
Once ⇠ = Kµ = K(µ

+

� µ�) and w are determined by (⇤w), we obtain
b using the equation

b1m = y �Xw � ⇠,

which as in Section 19.5 yields

b = y �
n
X

j=1

Xjwj ,

where y is the mean of y and Xj is the mean of the jth column of X.
We leave it as an easy exercise to show that A has rank n + 1. Then

we can solve the above program using ADMM, and we have done so. This
very similar to what is done in Section 20.3, and hence the details are left
as an exercise.

Observe that when ⌧ = 0, the elastic net method reduces to ridge re-
gression. As K tends to 0 the elastic net method tends to lasso, but K = 0
is not an allowable value since ⌧/0 is undefined. Anyway, if we get rid of
the constraint

�
+

+ �� =
⌧

K
1n

the corresponding optimization program not does determine w. Experi-
menting with our program we found that convergence becomes very slow
for K < 10�3. What we can do if K is small, say K < 10�3, is to run lasso.
A nice way to “blend” ridge regression and lasso is to call the elastic net
method with K = C(1� ✓) and ⌧ = C✓, where 0 ✓ < 1 and C > 0.

Running the elastic net method on the data set (X14, y14) of Section
19.5 withK = ⌧ = 0.5 shows absolutely no di↵erence, but the reader should

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 769

19.6. Elastic Net Regression 769

conduct more experiments to see how elastic net behaves as K and ⌧ are
varied (the best way to do this is to use ✓ as explained above). Here is an
example involving a data set (X20, y20) where X20 is a 200 ⇥ 30 matrix
generated as follows:

X20 = randn(50,30);

ww20 = [0; 2; 0; -3; 0; -4; 1; 0; 2; 0; 2; 3; 0; -5; 6; 0; 1;

2; 0; 10; 0; 0; 3; 4; 5; 0; 0; -6; -8; 0];

y20 = X20*ww20 + randn(50,1)*0.1 + 5;

Running our program with K = 0.01 and K = 0.99, and then with
K = 0.99 and K = 0.01, we get the following weight vectors (in the left
column is the weight vector corresponding to K = 0.01 and K = 0.99):

0.0254 0.2007

1.9193 2.0055

0.0766 0.0262

-3.0014 -2.8008

0.0512 0.0089

-3.8815 -3.7670

0.9591 0.8552

-0.0086 -0.3243

1.9576 1.9080

-0.0077 -0.1041

1.9881 2.0566

2.9223 2.8346

-0.0046 -0.0832

-4.9989 -4.8332

5.8640 5.4598

-0.0207 -0.2141

0.8285 0.8585

1.9310 1.8559

0.0046 0.0413

9.9232 9.4836

-0.0216 0.0303

0.0453 -0.0193

2.9384 3.0004

4.0525 3.9753

4.8723 4.6530

0.0767 0.1192

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 770

770 Ridge Regression, Lasso, Elastic Net

0.0132 -0.0203

-5.9750 -5.7537

-7.9764 -7.7594

-0.0054 0.0528

Generally, the numbers in the left column, which are more “lasso-like,”
have clearer zeros and nonzero values closer to those of the weight vector
ww20 that was used to create the data set. The value of b corresponding to
the first call is b = 5.1372, and the value of b corresponding to the second
call is b = 5.208.

We have observed that lasso seems to converge much faster than elas-
tic net when K < 10�3. For example, running the above data set with
K = 10�3 and ⌧ = 0.999 requires 140520 steps to achieve primal and
dual residuals less than 10�7, but lasso only takes 86 steps to achieve the
same degree of convergence. We observed that the larger K is the faster
is the convergence. This could be attributed to the fact that the matrix
P becomes more “positive definite.” Another factor is that ADMM for
lasso solves an n ⇥ n linear system, but ADMM for elastic net solves a
2(n + m) ⇥ 2(n + m) linear system. So even though elastic net does not
su↵er from some of the undesirable properties of ridge regression and lasso,
it appears to have a slower convergence rate, in fact much slower when K is
small (say K < 10�3). It also appears that elastic net may be too expensive
a choice if m is much larger than n. Further investigations are required to
gain a better understanding of the convergence issue.

19.7 Summary

The main concepts and results of this chapter are listed below:

• Ridge regression.
• Kernel ridge regression.
• Kernel functions.
• Lasso regression.
• Elastic net regression.

19.8 Problems

Problem 19.1. Check the formula

(X>X +KIn)
�1X> = X>(XX> +KIm)�1,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 771

19.8. Problems 771

stated in Section 19.1.

Problem 19.2. Implement the ridge regression method described in Sec-
tion 19.1 in Matlab. Also implement ridge regression with intercept and
compare solving Program (DRR3) and Program (RR60) using centered
data.

Problem 19.3. Implement the ridge regression with intercept method
(RR3b) in Matlab and compare it with solving (RR60) using centered
data.

Problem 19.4. Verify that (lasso3) is equivalent to (lasso2) applied to
the centered data by = y � y1 and bX = X �X.

Problem 19.5. Verify the fomulae obtained for the kernel ridge regression
program (KRR60).

Problem 19.6. Implement in Matlab and test (lasso3) for various values
of ⇢ and ⌧ . Write a program to plot the coordinates of w as a function of
⌧ . Compare the behavior of lasso with ridge regression (RR60), (RR3b) (b
penalized), and with least squares.

Problem 19.7. Check the details of the derivation of the dual of elastic
net.

Problem 19.8. Write a Matlab program, solving the dual of elastic net;
use inspiration from Section 20.3. Run tests to compare the behavior of
ridge regression, lasso, and elastic net.

Problem 19.9. Prove that if an optimal solution exists for the elastic net
method, then it is unique.

Problem 19.10. Prove that the matrix

P =

0

B

B

@

In �In �X> X>

�In In X> �X>

�X X XX> +KIm �XX> �KIm
X �X �XX> �KIm XX> +KIm

1

C

C

A

is almost positive definite, in the sense that

�

�>
+

�>
� µ>

+

µ>
�
�

P

0

B

B

@

�
+

��
µ
+

µ�

1

C

C

A

= 0

if and only if �
+

= �� and µ
+

= µ�, that is, � = 0 and µ = 0.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 772

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 773

Chapter 20

⌫-SV Regression

20.1 ⌫-SV Regression; Derivation of the Dual

Let {(x
1

, y
1

), . . . , (xm, ym)} be a set of observed data usually called a set
of training data, with xi 2 Rn and yi 2 R. As in Chapter 19, we form the
m ⇥ n matrix X where the row vectors x>

i are the rows of X. Our goal
is to learn an a�ne function f of the form f(x) = x>w + b that fits the
set of training data, but does not penalize errors below some given ✏ � 0.
Geometrically, we view the pairs (xi, yi) are points in Rn+1, and we try to
fit a hyperplane Hw,b of equation

(w> � 1)

✓

x
z

◆

+ b = w>x� z + b = 0

that best fits the set of points (xi, yi) (where (x, z) 2 Rn+1). We seek an
✏ > 0 such that most points (xi, yi) are inside the slab (or tube) of width
2✏ bounded by the hyperplane Hw,b�✏ of equation

(w> � 1)

✓

x
z

◆

+ b� ✏ = w>x� z + b� ✏ = 0

and the hyperplane Hw,b+✏ of equation

(w> � 1)

✓

x
z

◆

+ b+ ✏ = w>x� z + b+ ✏ = 0.

Observe that the hyperplanes Hw,b�✏, Hw,b and Hw,b+✏ intersect the z-axis
when x = 0 for the values (b � ✏, b, b + ✏). Since ✏ � 0, the hyperplane
Hw,b�✏ is below the hyperplane Hw,b which is below the hyperplane Hw,b+✏.
We refer to the lower hyperplane Hw,b�✏ as the blue margin, to the upper
hyperplaneHw,b+✏ as the red margin, and to the hyperplaneHw,b as the best
fit hyperplane. Also note that since the term �z appears in the equations

773

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 774

774 ⌫-SV Regression

of these hyperplanes, points for which w>x � z + b 0 are above the
hyperplane Hw,b, and points for which w>x � z + b � 0 are below the
hyperplane Hw,b (and similarly for Hw,b�✏ and Hb+✏). The region bounded
by the hyperplanesHw,b�✏ andHb+✏ (which contains the best fit hyperplane
Hw,b) is called the ✏-slab.

We also allow errors by allowing the point (xi, yi) to be outside of the
✏-slab but in the slab between the hyperplane Hw,b�✏�⇠

i

of equation

(w> � 1)

✓

x
z

◆

+ b� ✏� ⇠i = w>x� z + b� ✏� ⇠i = 0

for some ⇠i > 0 (which is below the blue margin hyperplane Hw,b�✏) and
the hyperplane Hw,b+✏+⇠0

i

of equation

(w> � 1)

✓

x
z

◆

+ b+ ✏+ ⇠0i = w>xi � z + b+ ✏+ ⇠0i = 0

for some ⇠0i > 0 (which is above the red margin hyperplane Hw,b+✏),
so that w>xi � yi + b� ✏� ⇠i 0 and w>xi � yi + b+ ✏+ ⇠0i � 0, that is,

f(x)� yi = w>xi + b� yi ✏+ ⇠i,

�(f(x)� yi) = �w>xi � b+ yi ✏+ ⇠0i.

Our goal is to minimize ✏ and the errors ⇠i and ⇠0i. See Figure 20.1. The
trade o↵ between the size of ✏ and the size of the slack variables ⇠i and
⇠0i is achieved by using two constants ⌫ � 0 and C > 0. The method of
⌫-support vector regression, for short ⌫-SV regression, is specified by the
following minimization problem:

Program ⌫-SV Regression:

minimize
1

2
w>w + C

✓

⌫✏+
1

m

m
X

i=1

(⇠i + ⇠0i)

◆

subject to

w>xi + b� yi ✏+ ⇠i, ⇠i � 0 i = 1, . . . ,m

� w>xi � b+ yi ✏+ ⇠0i, ⇠0i � 0 i = 1, . . . ,m

✏ � 0,

minimizing over the variables w, b, ✏, ⇠, and ⇠0. The constraints are a�ne.
The problem is to minimize ✏ and the errors ⇠i, ⇠0i so that the `1-error is
“squeezed down” to zero as much as possible, in the sense that the right-
hand side of the inequality

m
X

i=1

|yi � x>
i w � b| m✏+

m
X

i=1

⇠i +
m
X

i=1

⇠0i

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 775

20.1. ⌫-SV Regression; Derivation of the Dual 775

w x -z + b + є = 0

T

є

є

ξ

ξ
i

i

T

T

w x -z + b - є
 = 0w x -z + b = 0

‘

Fig. 20.1 The ✏-slab around the graph of the best fit a�ne function f(x) = x>w + b.

is as small as possible. As shown by Figure 20.2, the region associated with
the constraint w>xi � z + b ✏ contains the ✏-slab.

 w x -z + b + є = 0

T

w x -z + b > єT

z =
 w x + b

T

ξ i

T

ξ i

T w x -z + b - є = 0

 w x -z + b - є = 0

w x -z + b < єT

Fig. 20.2 The two blue half spaces associated with the hyperplane w>x
i

� z + b = ✏.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 776

776 ⌫-SV Regression

 w x -z + b + є = 0

T

ξ i

w x - z + b > - єT

T

ξ i

 w x -z + b - є = 0

 w x -z + b + є = 0

T

‘

‘

w x - z + b < - єT

Fig. 20.3 The two red half spaces associated with the hyperplane w>x
i

� z + b = �✏.

Similarly, as illustrated by Figure 20.3, the region associated with the
constraint w>xi�z+b � �✏, equivalently �w>xi+z�b ✏, also contains
the ✏-slab.

Observe that if we require ✏ = 0, then the problem is equivalent to
minimizing

ky �Xw � b1k
1

+
1

2
w>w.

Thus it appears that the above problem is the version of Program (RR3)
(see Section 19.2) in which the `2-norm of y � Xw � b1 is replaced by
its `1-norm. This a sort of “dual” of lasso (see Section 19.5) where
(1/2)w>w = (1/2) kwk2

2

is replaced by ⌧ kwk
1

, and ky �Xw � b1k
1

is re-
placed by ky �Xw � b1k2

2

.

Proposition 20.1. For any optimal solution, the equations

⇠i⇠
0
i = 0, i = 1, . . . ,m (⇠⇠0)

hold. If ✏ > 0, then the equations

w>xi + b� yi = ✏+ ⇠i

�w>xi � b+ yi = ✏+ ⇠0i

cannot hold simultaneously.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 777

20.1. ⌫-SV Regression; Derivation of the Dual 777

Proof. For an optimal solution we have

�✏� ⇠0i w>xi + b� yi ✏+ ⇠i.

If w>xi + b� yi � 0, then ⇠0i = 0 since the inequality

�✏� ⇠0i w>xi + b� yi

is trivially satisfied (because ✏, ⇠0i � 0), and if w>xi + b � yi 0, then
similarly ⇠i = 0. See Figure 20.4.

T

w x -z +b < 0T

z = w x + b
T

ξ i

‘

T

ξ i

T

ξ i

z = w x + b
T

w x -z + b + є = 0

ξ i

w x -z + b > 0T

T
w x -z + b - є = 0

w x -z + b - є = 0

w x -z + b + є = 0

‘

Fig. 20.4 The two pink open half spaces associated with the hyperplane w>x
i

�z+b = 0.
Note, ⇠

i

> 0 is outside of the half space w>x
i

� z + b � ✏ < 0, and ⇠0
i

> 0 is outside of
the half space w>x

i

� z + b+ ✏ > 0.

Observe that the equations

w>xi + b� yi = ✏+ ⇠i

�w>xi � b+ yi = ✏+ ⇠0i

can only hold simultaneously if

✏+ ⇠i = �✏� ⇠0,

that is,

2✏+ ⇠i + ⇠0i = 0,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 778

778 ⌫-SV Regression

and since ✏, ⇠i, ⇠0i � 0, this can happen only if ✏ = ⇠i = ⇠0i = 0, and then

w>xi + b = yi.

In particular, if ✏ > 0, then the equations

w>xi + b� yi = ✏+ ⇠i

�w>xi � b+ yi = ✏+ ⇠0i
cannot hold simultaneously.

Observe that if ⌫ > 1, then an optimal solution of the above program
must yield ✏ = 0. Indeed, if ✏ > 0, we can reduce it by a small amount � > 0
and increase ⇠i + ⇠0i by � to still satisfy the constraints, but the objective
function changes by the amount �⌫� + �, which is negative since ⌫ > 1, so
✏ > 0 is not optimal.

Driving ✏ to zero is not the intended goal, because typically the data is
not noise free so very few pairs (xi, yi) will satisfy the equation w>xi+ b =
yi, and then many pairs (xi, yi) will correspond to an error (⇠i > 0 or
⇠0i > 0). Thus, typically we assume that 0 < ⌫ 1.

To construct the Lagrangian, we assign Lagrange multipliers �i � 0 to
the constraints w>xi + b � yi ✏ + ⇠i, Lagrange multipliers µi � 0 to the
constraints �w>xi � b + yi ✏ + ⇠0i, Lagrange multipliers ↵i � 0 to the
constraints ⇠i � 0, Lagrange multipliers �i � 0 to the constraints ⇠0i � 0,
and the Lagrange multiplier � � 0 to the constraint ✏ � 0. The Lagrangian
is

L(w, b,�, µ, �, ⇠, ⇠0, ✏,↵,�) =
1

2
w>w + C

✓

⌫✏+
1

m

m
X

i=1

(⇠i + ⇠0i)

◆

� �✏

�
m
X

i=1

(↵i⇠i + �i⇠
0
i) +

m
X

i=1

�i(w
>xi + b� yi � ✏� ⇠i)

+
m
X

i=1

µi(�w>xi � b+ yi � ✏� ⇠0i).

The Lagrangian can also be written as

L(w, b,�, µ, �, ⇠, ⇠0, ✏,↵,�) =
1

2
w>w + w>

m
X

i=1

(�i � µi)xi

!

+ ✏

C⌫ � � �
m
X

i=1

(�i + µi)

!

+
m
X

i=1

⇠i

✓

C

m
� �i � ↵i

◆

+
m
X

i=1

⇠0i

✓

C

m
� µi � �i

◆

+ b

m
X

i=1

(�i � µi)

!

�
m
X

i=1

(�i � µi)yi.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 779

20.1. ⌫-SV Regression; Derivation of the Dual 779

To find the dual function G(�, µ, �,↵,�), we minimize L(w, b,�, µ,
�, ⇠, ⇠0, ✏,↵,�) with respect to the primal variables w, ✏, b, ⇠ and ⇠0. Ob-
serve that the Lagrangian is convex, and since (w, ✏, ⇠, ⇠0, b) 2 Rn ⇥ R ⇥
Rm ⇥ Rm ⇥ R, a convex open set, by Theorem 4.5, the Lagrangian has a
minimum i↵ rLw,✏,b,⇠,⇠0 = 0, so we compute the gradient rLw,✏,b,⇠,⇠0 . We
obtain

rLw,✏,b,⇠,⇠0 =

0

B

B

B

B

B

B

B

B

@

w +
Pm

i=1

(�i � µi)xi

C⌫ � � �
Pm

i=1

(�i + µi)
Pm

i=1

(�i � µi)

C
m � �� ↵

C
m � µ� �

1

C

C

C

C

C

C

C

C

A

,

where
✓

C

m
� �� ↵

◆

i

=
C

m
� �i � ↵i, and

✓

C

m
� µ� �

◆

i

=
C

m
� µi � �i.

Consequently, if we set rLw,✏,b,⇠,⇠0 = 0, we obtain the equations

w =
m
X

i=1

(µi � �i)xi = X>(µ� �), (⇤w)

C⌫ � � �
m
X

i=1

(�i + µi) = 0

m
X

i=1

(�i � µi) = 0

C

m
� �� ↵ = 0,

C

m
� µ� � = 0.

Substituting the above equations in the second expression for the La-
grangian, we find that the dual function G is independent of the variables
�,↵,� and is given by

G(�, µ) = �1

2

m
X

i,j=1

(�i � µi)(�j � µj)x
>
i xj �

m
X

i=1

(�i � µi)yi

if
m
X

i=1

�i �
m
X

i=1

µi = 0

m
X

i=1

�i +
m
X

i=1

µi + � = C⌫

�+ ↵ =
C

m
, µ+ � =

C

m
,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 780

780 ⌫-SV Regression

and �1 otherwise.
The dual program is obtained by maximizing G(↵, µ) or equivalently by

minimizing �G(↵, µ), over ↵, µ 2 Rm
+

. Taking into account the fact that
↵,� � 0 and � � 0, we obtain the following dual program:

Dual Program for ⌫-SV Regression:

minimize
1

2

m
X

i,j=1

(�i � µi)(�j � µj)x
>
i xj +

m
X

i=1

(�i � µi)yi

subject to
m
X

i=1

�i �
m
X

i=1

µi = 0

m
X

i=1

�i +
m
X

i=1

µi C⌫

0 �i
C

m
, 0 µi

C

m
, i = 1, . . . ,m,

minimizing over ↵ and µ.
Solving the dual program (for example, using ADMM, see Section 20.3)

does not determine b, and for this we use the KKT conditions. The KKT
conditions (for the primal program) are

�i(w
>xi + b� yi � ✏� ⇠i) = 0, i = 1, . . . ,m

µi(�w>xi � b+ yi � ✏� ⇠0i) = 0, i = 1, . . . ,m

�✏ = 0

↵i⇠i = 0, i = 1, . . . ,m

�i⇠
0
i = 0, i = 1, . . . ,m.

If ✏ > 0, since the equations

w>xi + b� yi = ✏+ ⇠i

�w>xi � b+ yi = ✏+ ⇠0i

cannot hold simultaneously, we must have

�iµi = 0, i = 1, . . . ,m. (�µ)

From the equations

�i + ↵i =
C

m
, µi + �i =

C

m
, ↵i⇠i = 0, �i⇠

0
i = 0,

we get the equations
✓

C

m
� �i

◆

⇠i = 0,

✓

C

m
� µi

◆

⇠0i = 0, i = 1, . . . ,m. (⇤)

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 781

20.1. ⌫-SV Regression; Derivation of the Dual 781

Suppose we have optimal solution with ✏ > 0. Using the above equations
and the fact that �iµi = 0 we obtain the following classification of the points
xi in terms of � and µ.

(1) 0 < �i < C/m. By (⇤), ⇠i = 0, so the equation w>xi + b� yi = ✏ holds
and xi is on the blue margin hyperplane Hw,b�✏. See Figure 20.5.

(2) 0 < µi < C/m. By (⇤), ⇠0i = 0, so the equation �w>xi � b + yi = ✏
holds and xi is on the red margin hyperplane Hw,b+✏. See Figure 20.5.

(3) �i = C/m. By (�µ), µi = 0, and by (⇤), ⇠0i = 0. Thus we have

w>xi + b� yi = ✏+ ⇠i

�w>xi � b+ yi ✏.

The second inequality is equivalent to �✏ w>xi + b � yi, and since
✏ > 0 and ⇠i � 0 it is trivially satisfied. If ⇠i = 0, then xi is on the
blue margin Hw,b�✏, else xi is an error and it lies in the open half-space
bounded by the blue margin Hw,b�✏ and not containing the best fit
hyperplane Hw,b (it is outside of the ✏-slab). See Figure 20.5.

(4) µi = C/m. By (�µ), �i = 0, and by (⇤), ⇠i = 0. Thus we have

w>xi + b� yi ✏

�w>xi � b+ yi = ✏+ ⇠0i.

The second equation is equivalent to w>xi+ b�yi = �✏� ⇠0i, and since
✏ > 0 and ⇠0i � 0, the first inequality it is trivially satisfied. If ⇠0i = 0,
then xi is on the red margin Hw,b+✏, else xi is an error and it lies in the
open half-space bounded by the red margin Hw,b�✏ and not containing
the best fit hyperplane Hw,b (it is outside of the ✏-slab). See Figure
20.5.

(5) �i = 0 and µi = 0. By (⇤), ⇠i = 0 and ⇠0i = 0, so we have

w>xi + b� yi ✏

�w>xi � b+ yi ✏,

that is

�✏ w>xi + b� yi ✏.

If w>xi+b�yi = ✏, then xi is on the blue margin, and if w>xi+b�yi =
�✏, then xi is on the red margin. If �✏ < w>xi + b � yi < ✏, then xi

is strictly inside of the ✏-slab (bounded by the blue margin and the red
margin). See Figure 20.6.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 782

782 ⌫-SV Regression

0 < < C/mλ i z = w x + b
T

(x , y)

i i

Case (1)

λ i = C/m
ξ = 0

i

Case (3)

λ i = C/m
ξ

i
> 0

z = w x + b
T

(x , y)ii

ξ
i

z = w x +
bT

(x , y)i i

w x -z +b - є = 0T

w x -z +b + є = 0T w x -z +b + є = 0T

w x -z + b - є = 0T

w x -z + b - є = 0T

w x -z + b + є = 0T

z = w x + b
T

 (x , y)i i

z = w x + b
T

(x , y)i i

ξ
i

i = C/m
ξ

i

μ
i = C/m

ξ
i

> 0
μ= 0

Case (4)

w x -z + b - є = 0

w x -z +b +є = 0T

w x -z +b + є = 0T

T

w x -z + b - є = 0T

‘
‘

‘

z = w x + b
T

(x , y)
i i

0 < < C/miμ

Case (2)

w x -z +b - є = 0T

w x -z + b + є = 0T

Fig. 20.5 Classifying x
i

in terms of nonzero � and µ.

The above classification shows that the point xi is an error i↵ �i = C/m
and ⇠i > 0 or or µi = C/m and ⇠0i > 0.

As in the case of SVM (see Section 14.6) we define support vectors as
follows.

Definition 20.1. A vector xi such that either w>xi + b � yi = ✏ (which
implies ⇠i = 0) or �w>xi � b + yi = ✏ (which implies ⇠0i = 0) is called a
support vector . Support vectors xi such that 0 < �i < C/m and support
vectors xj such that 0 < µj < C/m are support vectors of type 1 . Sup-
port vectors of type 1 play a special role so we denote the sets of indices
associated with them by

I� = {i 2 {1, . . . ,m} | 0 < �i < C/m}
Iµ = {j 2 {1, . . . ,m} | 0 < µj < C/m}.

We denote their cardinalities by numsvl
1

= |I�| and numsvm
1

= |Iµ|.
Support vectors xi such that �i = C/m and support vectors xj such that

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 783

20.1. ⌫-SV Regression; Derivation of the Dual 783

w x -z + b + є = 0

T

 w x -z + b = 0

T

w x -z + b > -єT

w x -z +b < єT

Tw x -z + b - є = 0

Fig. 20.6 The closed ✏- tube associated with zero multiplier classification, namely �
i

= 0
and µ

i

= 0.

µj = C/m are support vectors of type 2 . Support vectors for which �i =
µi = 0 are called exceptional support vectors.

The following definition also gives a useful classification criterion.

Definition 20.2. A point xi such that either �i = C/m or µi = C/m
is said to fail the margin. The sets of indices associated with the vectors
failing the margin are denoted by

K� = {i 2 {1, . . . ,m} | �i = C/m}
Kµ = {j 2 {1, . . . ,m} | µj = C/m}.

We denote their cardinalities by pf = |K�| and qf = |Kµ|.
Vectors ui such that �i > 0 and vectors vj such that µj > 0 are said to

have margin at most ✏. A point xi such that either �i > 0 or µi > 0 is said
to have margin at most ✏. The sets of indices associated with these vectors
are denoted by

I�>0

= {i 2 {1, . . . ,m} | �i > 0}
Iµ>0

= {j 2 {1, . . . ,m} | µj > 0}.

We denote their cardinalities by pm = |I�>0

| and qm = |Iµ>0

|.

Points that fail the margin and are not on the boundary of the ✏-slab
lie outside the closed ✏-slab, so they are errors, also called outliers; they
correspond to ⇠i > 0 or ⇠0i > 0.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 784

784 ⌫-SV Regression

Observe that we have the equations I�[K� = I�>0

and Iµ[Kµ = Iµ>0

,
and the inequalities pf pm and qf qm.

We also have the following results showing that pf , qf , pm and qm have
a direct influence on the choice of ⌫.

Proposition 20.2.

(1) Let pf be the number of points xi such that �i = C/m, and let qf be the
number of points xi such that µi = C/m. We have pf , qf (m⌫)/2.

(2) Let pm be the number of points xi such that �i > 0, and let qm be the
number of points xi such that µi > 0. We have pm, qm � (m⌫)/2.

(3) If pf � 1 or qf � 1, then ⌫ � 2/m.

Proof. (1) Recall that for an optimal solution with w 6= 0 and ✏ > 0 we
have � = 0, so we have the equations

m
X

i=1

�i =
C⌫

2
and

m
X

j=1

µj =
C⌫

2
.

If there are pf points such that �i = C/m, then

C⌫

2
=

m
X

i=1

�i � pf
C

m
,

so

pf m⌫

2
.

A similar reasoning applies if there are qf points such that µi = C/m, and
we get

qf m⌫

2
.

(2) If I�>0

= {i 2 {1, . . . ,m} | �i > 0} and pm = |I�>0

|, then
C⌫

2
=

m
X

i=1

�i =
X

i2I
�>0

�i,

and since �i C/m, we have

C⌫

2
=

X

i2I
�>0

�i pm
C

m
,

which yields

pm � ⌫m

2
.

A similar reasoning applies if µi > 0.
(3) This follows immediately from (1).

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 785

20.2. Existence of Support Vectors 785

Proposition 20.2 yields bounds on ⌫, namely

max

⇢

2pf
m

,
2qf
m

�

 ⌫ min

⇢

2pm
m

,
2qm
m

�

,

with pf pm, qf qm, pf + qf m and pm + qm m. Also, pf = qf = 0
means that the ✏-slab is wide enough so that there are no errors (no points
strictly outside the slab).

Observe that a small value of ⌫ keeps pf and qf small, which is achieved
if the ✏-slab is wide. A large value of ⌫ allows pm and qm to be fairly large,
which is achieved if the ✏-slab is narrow. Thus the smaller ⌫ is, the wider
the ✏-slab is, and the larger ⌫ is, the narrower the ✏-slab is.

20.2 Existence of Support Vectors

We now consider the issue of the existence of support vectors. We will show
that in the generic case, for any optimal solution for which ✏ > 0, there is
some support vector on the blue margin and some support vector on the
red margin. Here generic means that there is an optimal solution for some
⌫ < (m� 1)/m.

If the data set (X, y) is well fit by some a�ne function f(x) = w>x+ b,
in the sense that for many pairs (xi, yi) we have yi = w>xi + b and the
`1-error

m
X

i=1

|w>xi + b� yi|

is small, then an optimal solution may have ✏ = 0. Geometrically, many
points (xi, yi) belong to the hyperplane Hw,b. The situation in which ✏ = 0
corresponds to minimizing the `1-error with a quadratic penalization of w.
This is a sort of dual of lasso. The fact that the a�ne function f(x) =
w>x + b fits perfectly many points corresponds to the fact that an `1-
minimization tends to encourage sparsity. In this case, if C is chosen too
small, it is possible that all points are errors (although “small”) and there
are no support vectors. But if C is large enough, the solution will be sparse
and there will be many support vectors on the hyperplane Hw,b.

Let E� = {i 2 {1, . . . ,m} | ⇠i > 0}, Eµ = {j 2 {1, . . . ,m} | ⇠0j > 0},
psf = |E�| and qsf = |Eµ|. Obviously, E� and Eµ are disjoint.

Given any real numbers u, v, x, y, if max{u, v} < min{x, y}, then u < x
and v < y. This is because u, v max{u, v} < min{x, y} x, y.

Proposition 20.3. If ⌫ < (m� 1)/m, then pf < bm/2c and qf < bm/2c.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 786

786 ⌫-SV Regression

Proof. By Proposition 20.2, max{2pf/m, 2qf/m} ⌫. If m is even, say
m = 2k, then

2pf/m = 2pf/(2k) ⌫ < (m� 1)/m = (2k � 1)/2k,

so 2pf < 2k� 1, which implies pf < k = bm/2c. A similar argument shows
that qf < k = bm/2c.

If m is odd, say m = 2k + 1, then

2pf/m = 2pf/(2k + 1) ⌫ < (m� 1)/m = 2k/(2k + 1),

so 2pf < 2k, which implies pf < k = bm/2c. A similar argument shows
that qf < k = bm/2c.

Since psf pf and qsf qf , we also have psf < bm/2c and qsf <
bm/2c. This implies that {1, . . . ,m} � (E� [Eµ) contains at least two
elements and there are constraints corresponding to at least two i /2 (E� [
Eµ) (in which case ⇠i = ⇠0i = 0), of the form

w>xi + b� yi ✏ i /2 (E� [Eµ)

�w>xi � b+ yi ✏ i /2 (E� [Eµ).

If w>xi + b � yi = ✏ for some i /2 (E� [Eµ) and �w>xj � b + yj = ✏ for
some j /2 (E� [Eµ) with i 6= j, then we have a blue support vector and a
red support vector. Otherwise, we show how to modify b and ✏ to obtain
an optimal solution with a blue support vector and a red support vector.

Proposition 20.4. For every optimal solution (w, b, ✏, ⇠, ⇠0) with w 6= 0
and ✏ > 0, if

⌫ < (m� 1)/m

and if either no xi is a blue support vector or no xi is a red support vector,
then there is another optimal solution (for the same w) with some i

0

such
that ⇠i0 = 0 and w>xi0 + b� yi0 = ✏, and there is some j

0

such that ⇠0j0 = 0
and �w>xj0 � b+yj0 = ✏; in other words, some xi0 is a blue support vector
and some xj0 is a red support vector (with i

0

6= j
0

). If all points (xi, yi)
that are not errors lie on one of the margin hyperplanes, then there is an
optimal solution for which ✏ = 0.

Proof. By Proposition 20.3 if ⌫ < (m � 1)/m, then pf < bm/2c and
qf < bm/2c, so the following constraints hold:

w>xi + b� yi = ✏+ ⇠i ⇠i > 0 i 2 E�

�w>xj � b+ yj = ✏+ ⇠0j ⇠0j > 0 j 2 Eµ

w>xi + b� yi ✏ i /2 (E� [Eµ)

�w>xi � b+ yi ✏ i /2 (E� [Eµ),

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 787

20.2. Existence of Support Vectors 787

where |{1, . . . ,m}� (E� [Eµ)| � 2.
If our optimal solution does not have a blue support vector and a red

support vector, then either w>xi + b � yi < ✏ for all i /2 (E� [Eµ) or
�w>xi � b+ yi < ✏ for all i /2 (E� [Eµ).

Case 1 . We have

w>xi + b� yi < ✏ i /2 (E� [Eµ)

�w>xi � b+ yi ✏ i /2 (E� [Eµ).

There are two subcases.
Case 1a. Assume that there is some j /2 (E� [Eµ) such that �w>xj �

b+yj = ✏. Our strategy is to decrease ✏ and increase b by a small amount ✓
in such a way that some inequality w>xi+b�yi < ✏ becomes an equation for
some i /2 (E� [Eµ). Geometrically, this amounts to raising the separating
hyperplane Hw,b and decreasing the width of the slab, keeping the red
margin hyperplane unchanged. See Figure 20.7.

w x -z + b + є = 0

T

є

є

ξ

ξ
i

i

T

T

w x -z + b - є
 = 0w x -z + b = 0

‘

red support vector

no blue support vector

w x -z + (b+ θ) + (є-θ) = 0

T

є- θ

ξ
i

T

T

w x -z + (b+θ) - (
є-θ)= 0

w x -z + (b+ θ) = 0

‘

red support vector

 blue support vector

є- θ

T

ξ
i
+2 θ

Fig. 20.7 In this illustration points within the ✏-tube are denoted by open circles. In
the original, upper left configuration, there is no blue support vector. By raising the
pink separating hyperplane and decreasing the width of the slab, we end up with a blue
support vector.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 788

788 ⌫-SV Regression

The inequalities imply that

�✏ w>xi + b� yi < ✏.

Let us pick ✓ such that

✓ = (1/2)min{✏� w>xi � b+ yi | i /2 (E� [Eµ)}.
Our hypotheses imply that ✓ > 0, and we have ✓ ✏, because (1/2)(✏ �
w>xi�b+yi) ✏ is equivalent to ✏�w>xi�b+yi 2✏ which is equivalent
to �w>xi � b+ yi ✏, which holds for all i /2 (E� [Eµ) by hypothesis.

We can write

w>xi + b+ ✓ � yi = ✏� ✓ + ⇠i + 2✓ ⇠i > 0 i 2 E�

�w>xj � (b+ ✓) + yj = ✏� ✓ + ⇠0j ⇠0j > 0 j 2 Eµ

w>xi + b+ ✓ � yi ✏� ✓ i /2 (E� [Eµ)

�w>xi � (b+ ✓) + yi ✏� ✓ i /2 (E� [Eµ).

By hypothesis

�w>xj � (b+ ✓) + yj = ✏� ✓ for some j /2 (E� [Eµ)

and by the choice of ✓,

w>xi + b+ ✓ � yi = ✏� ✓ for some i /2 (E� [Eµ).

The value of C > 0 is irrelevant in the following argument so we may
assume that C = 1. The new value of the objective function is

!(✓) =
1

2
w>w + ⌫(✏� ✓) +

1

m

✓

X

i2E
�

(⇠i + 2✓) +
X

j2E
µ

⇠0j

◆

=
1

2
w>w + ⌫✏+

1

m

✓

X

i2E
�

⇠i +
X

j2E
µ

⇠0j

◆

�
✓

⌫ � 2psf
m

◆

✓.

By Proposition 20.2 we have

max

⇢

2pf
m

,
2qf
m

�

 ⌫

and psf pf and qsf qf , which implies that

⌫ � 2psf
m

� 0, (⇤
1

)

and so !(✓) !(0). If inequality (⇤
1

) is strict, then this contradicts the
optimality of the original solution. Therefore, ⌫ = 2psf/m, !(✓) = !(0)
and (w, b+ ✓, ✏� ✓, ⇠ + 2✓, ⇠0) is an optimal solution such that

w>xi + b+ ✓ � yi = ✏� ✓

�w>xj � (b+ ✓) + yj = ✏� ✓

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 789

20.2. Existence of Support Vectors 789

for some i, j /2 (E� [Eµ) with i 6= j.
Observe that the exceptional case in which ✓ = ✏ may arise. In this case

all points (xi, yi) that are not errors (strictly outside the ✏-slab) are on the
red margin hyperplane. This case can only arise if ⌫ = 2psf/m.

Case 1b. We have �w>xi�b+yi < ✏ for all i /2 (E�[Eµ). Our strategy
is to decrease ✏ and increase the errors by a small ✓ in such a way that some
inequality becomes an equation for some i /2 (E�[Eµ). Geometrically, this
corresponds to decreasing the width of the slab, keeping the separating
hyperplane unchanged. See Figures 20.8 and 20.9. Then we are reduced to
Case 1a or Case 2a.

w x -z + b + є = 0

T

є

є

ξ

ξ
i

i

T

T

w x -z + b - є
 = 0w x -z + b = 0

‘
no red support vector

no blue support vector

w x -z + b + (є-θ) = 0

T

є- θ

ξ
i

T

T

w x -z + b - (є
-θ)= 0

w x -z + b = 0

‘

red support vector

є- θ

T

ξi+ θ

+ θ

Case 1a

no blue support vector

Fig. 20.8 In this illustration points within the ✏-tube are denoted by open circles. In
the original, upper left configuration, there is no blue support vector and no red support
vector. By decreasing the width of the slab, we end up with a red support vector and
reduce to Case 1a.

We have

w>xi + b� yi = ✏+ ⇠i ⇠i > 0 i 2 E�

�w>xj � b+ yj = ✏+ ⇠0j ⇠0j > 0 j 2 Eµ

w>xi + b� yi < ✏ i /2 (E� [Eµ)

�w>xi � b+ yi < ✏ i /2 (E� [Eµ).

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 790

790 ⌫-SV Regression

w x -z + b + є = 0

T

є

є

ξ

ξ
i

i

T

T

w x -z + b - є
 = 0w x -z + b = 0

‘
no red support vector

blue support vector

w x -z + b + (є-θ) = 0

є- θ

ξ
i

T

T

w x -z + b - (є
-θ)= 0

w x -z + b = 0

‘

є- θ

T

ξi+ θ

+ θ

Case 2a

no blue support vector

no red support vector

Fig. 20.9 In this illustration points within ✏-tube are denoted by open circles. In the
original, upper left configuration, there is no blue support vector and no red support
vector. By decreasing the width of the slab, we end up with a blue support vector and
reduce to Case 2a.

Let us pick ✓ such that

✓ = min{✏� (w>xi + b� yi), ✏+ w>xi + b� yi | i /2 (E� [Eµ)},

Our hypotheses imply that 0 < ✓ < ✏. We can write

w>xi + b� yi = ✏� ✓ + ⇠i + ✓ ⇠i > 0 i 2 E�

�w>xj � b+ yj = ✏� ✓ + ⇠0j + ✓ ⇠0j > 0 j 2 Eµ

w>xi + b� yi ✏� ✓ i /2 (E� [Eµ)

�w>xi � b+ yi ✏� ✓ i /2 (E� [Eµ),

and by the choice of ✓, either

w>xi + b� yi = ✏� ✓ for some i /2 (E� [Eµ)

or

�w>xi � b+ yi = ✏� ✓ for some i /2 (E� [Eµ).

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 791

20.2. Existence of Support Vectors 791

The new value of the objective function is

!(✓) =
1

2
w>w + ⌫(✏� ✓) +

1

m

✓

X

i2E
�

(⇠i + ✓) +
X

j2E
µ

(⇠0j + ✓)

◆

=
1

2
w>w + ⌫✏+

1

m

✓

X

i2E
�

⇠i +
X

j2E
µ

⇠0j

◆

�
✓

⌫ � psf + qsf
m

◆

✓.

Since max{2pf/m, 2qf/m} ⌫ implies that (pf +qf)/m ⌫ and psf pf ,
qsf qf , we have

⌫ � psf + qsf
m

� 0, (⇤
2

)

and so !(✓) !(0). If inequality (⇤
2

) is strict, then this contradicts the
optimality of the original solution. Therefore, ⌫ = (psf + qsf)/m, !(✓) =
!(0) and (w, b, ✏� ✓, ⇠ + ✓, ⇠0 + ✓) is an optimal solution such that either

w>xi + b� yi = ✏� ✓ for some i /2 (E� [Eµ)

or

�w>xi � b+ yi = ✏� ✓ for some i /2 (E� [Eµ).

We are now reduced to Case 1a or or Case 2a.
Case 2 . We have

w>xi + b� yi ✏ i /2 (E� [Eµ)

�w>xi � b+ yi < ✏ i /2 (E� [Eµ).

Again there are two subcases.
Case 2a. Assume that there is some i /2 (E�[Eµ) such that w>xi+b�

yi = ✏. Our strategy is to decrease ✏ and decrease b by a small amount ✓ in
such a way that some inequality �w>xj � b+ yj < ✏ becomes an equation
for some j /2 (E� [Eµ). Geometrically, this amounts to lowering the
separating hyperplane Hw,b and decreasing the width of the slab, keeping
the blue margin hyperplane unchanged. See Figure 20.10.

The inequalities imply that

�✏ < w>xi + b� yi ✏.

Let us pick ✓ such that

✓ = (1/2)min{✏� (�w>xi � b+ yi) | i /2 (E� [Eµ)}.

Our hypotheses imply that ✓ > 0, and we have ✓ ✏, because (1/2)(✏ �
(�w>xi � b + yi)) ✏ is equivalent to ✏ � (�w>xi � b + yi) 2✏ which

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 792

792 ⌫-SV Regression

w x -z + b + є = 0

T

є

є

ξ

ξ
i

i

T

T

w x -z + b - є
 = 0w x -z + b = 0

‘
no red support vector

blue support vector

w x -z + (b- θ) + (є-θ) = 0

є- θ

ξ
i

T

T

w x -z + (b- θ) - (
є-θ)= 0w x -z + (b- θ)= 0

‘

є- θ

T

ξi

+2 θ

blue support vector

red support vector

Fig. 20.10 In this illustration points within the ✏-tube are denoted by open circles. In
the original, upper left configuration, there is no red support vector. By lowering the
pink separating hyperplane and decreasing the width of the slab, we end up with a red
support vector.

is equivalent to w>xi + b � yi ✏ which holds for all i /2 (E� [Eµ) by
hypothesis.

We can write

w>xi + b� ✓ � yi = ✏� ✓ + ⇠i ⇠i > 0 i 2 E�

�w>xj � (b� ✓) + yj = ✏� ✓ + ⇠0j + 2✓ ⇠0j > 0 j 2 Eµ

w>xi + b� ✓ � yi ✏� ✓ i /2 (E� [Eµ)

�w>xi � (b� ✓) + yi ✏� ✓ i /2 (E� [Eµ).

By hypothesis

w>xi + (b� ✓)� yi = ✏� ✓ for some i /2 (E� [Eµ),

and by the choice of ✓,

�w>xj � (b� ✓) + yj = ✏� ✓ for some j /2 (E� [Eµ).

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 793

20.2. Existence of Support Vectors 793

The new value of the objective function is

!(✓) =
1

2
w>w + ⌫(✏� ✓) +

1

m

✓

X

i2E
�

⇠i +
X

j2E
µ

(⇠0j + 2✓)

◆

=
1

2
w>w + ⌫✏+

1

m

✓

X

i2E
�

⇠i +
X

j2E
µ

⇠0j

◆

�
✓

⌫ � 2qsf
m

◆

✓.

The rest of the proof is similar except that 2psf/m is replaced by 2qsf/m.
Observe that the exceptional case in which ✓ = ✏ may arise. In this case
all points (xi, yi) that are not errors (strictly outside the ✏-slab) are on the
blue margin hyperplane. This case can only arise if ⌫ = 2qsf/m.

Case 2b. We have w>xi+ b� yi < ✏ for all i /2 (E� [Eµ). Since we also
assumed that �w>xi � b+ yi < ✏ for all i /2 (E� [Eµ), Case 2b is identical
to Case 1b and we are done.

The proof of Proposition 20.4 reveals that there are three critical values
for ⌫:

2psf
m

,
2qsf
m

,
psf + qsf

m
.

These values can be avoided by requiring the strict inequality

max

⇢

2psf
m

,
2qsf
m

�

< ⌫.

Then the following corollary holds.

Theorem 20.1. For every optimal solution (w, b, ✏, ⇠, ⇠0) with w 6= 0 and
✏ > 0, if

max

⇢

2psf
m

,
2qsf
m

�

< ⌫ < (m� 1)/m,

then some xi0 is a blue support vector and some xj0 is a red support vector
(with i

0

6= j
0

).

Proof. We proceed by contradiction. Suppose that for every optimal so-
lution with w 6= 0 and ✏ > 0 no xi is a blue support vector or no xi is a
red support vector. Since ⌫ < (m� 1)/m, Proposition 20.4 holds, so there
is another optimal solution. But since the critical values of ⌫ are avoided,
the proof of Proposition 20.4 shows that the value of the objective function
for this new optimal solution is strictly smaller than the original optimal
value, a contradiction.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 794

794 ⌫-SV Regression

Remark: If an optimal solution has ✏ = 0, then depending on the value of
C there may not be any support vectors, or many.

If the primal has an optimal solution with w 6= 0 and ✏ > 0, then by
(⇤w) and since

m
X

i=1

�i �
m
X

i=1

µi = 0 and �iµi = 0,

there is i
0

such that �i0 > 0 and some j
0

6= i
0

such that µj0 > 0.
Under the mild hypothesis called the Standard Margin Hypothesis

that there is some i
0

such that 0 < ↵i0 < C
m and there is some j

0

6= i
0

such that 0 < µj0 < C
m , in other words there is a blue support vector of

type 1 and there is a red support vector of type 1, then by (⇤) we have
⇠i0 = 0, ⇠0j0 = 0, and we have the two equations

w>xi0 + b� yi0 = ✏

�w>xj0 � b+ yj0 = ✏,

so b and ✏ can be computed. In particular,

b =
1

2

�

yi0 + yj0 � w>(xi0 + xj0)
�

✏ =
1

2

�

yj0 � yi0 + w>(xi0 � xj0)
�

.

The function f(x) = w>x+ b (often called regression estimate) is given
by

f(x) =
m
X

i=1

(µi � �i)x
>
i x+ b.

In practice, due to numerical inaccurracy, it is complicated to write
a computer program that will select two distinct indices as above. It is
preferable to compute the list I� of indices i such that 0 < �i < C/m and
the list Iµ of indices j such that 0 < µj < C/m. Then it is easy to see that

b =

✓✓

X

i02I
�

yi0

◆

/|I�|+
✓

X

j02I
µ

yj0

◆

/|Iµ|
◆

/2

� w>
✓✓

X

i02I
�

xi0

◆

/|I�|+
✓

X

j02I
µ

xj0

◆

/|Iµ|
◆

/2

✏ =

✓✓

X

j02I
µ

yj0

◆

/|Iµ|
◆

�
✓

X

i02I
�

yi0

◆

/|I�
◆

/2

+ w>
✓✓

X

i02I
�

xi0

◆

/|I�|�
✓

X

j02I
µ

xj0

◆

/|Iµ|
◆

/2.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 795

20.3. Solving ⌫-Regression Using ADMM 795

These formulae are numerically a lot more stable, but we still have to
be cautious to set suitable tolerance factors to decide whether �i > 0 and
�i < C/m (and similarly for µi).

The following result gives su�cient conditions for expressing ✏ in terms
of a single support vector.

Proposition 20.5. For every optimal solution (w, b, ✏, ⇠, ⇠0) with w 6= 0
and ✏ > 0, if

max

⇢

2psf
m

,
2qsf
m

�

< ⌫ < (m� 1)/m,

then ✏ and b are determined from a solution (�, µ) of the dual in terms of
a single support vector.

Proof sketch. If we express that the duality gap is zero we obtain the
following equation expressing ✏ in terms of b:

C

✓

⌫ � pf + qf
m

◆

✏ = �
�

�> µ>�P

✓

�
µ

◆

�
�

y> �y>
�

✓

�
µ

◆

� C

m

✓

w>
✓

X

i2K
�

xi �
X

j2K
µ

xj

◆

�
X

i2K
�

yi +
X

j2K
µ

yj + (pf � qf)b

◆

.

The proof is very similar to the proof of the corresponding formula in Sec-
tion 20.5. By Theorem 20.1, there is some suppor vector xi, say

w>xi0 + b� yi0 = ✏ or � w>xj0 � b+ yj0 = ✏.

Then we find an equation expressing ✏ in terms of �, µ and w, provided
that ⌫ 6= 2pf/m and ⌫ 6= 2qf/m. The proof is analogous to the proof of
Proposition 18.3 and is left as an exercise.

20.3 Solving ⌫-Regression Using ADMM

The quadratic functional F (�, µ) occurring in the dual program given by

F (�, µ) =
1

2

m
X

i,j=1

(�i � µi)(�j � µj)x
>
i xj +

m
X

i=1

(�i � µi)yi

is not of the form 1

2

�

�> µ>�P

✓

�
µ

◆

+ q>
✓

�
µ

◆

, but it can be converted in

such a form using a trick. First, if we let K be the m⇥m symmetric matrix
K = XX> = (x>

i xj), then we have

F (�, µ) =
1

2
(�> � µ>)K(�� µ) + y>�� y>µ.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 796

796 ⌫-SV Regression

Consequently, if we define the 2m⇥ 2m symmetric matrix P by

P =

✓

XX> �XX>

�XX> XX>

◆

=

✓

K �K
�K K

◆

and the 2m⇥ 1 matrix q by

q =

✓

y
�y

◆

,

it is easy to check that

F (�, µ) =
1

2

�

�> µ>�P

✓

�
µ

◆

+ q>
✓

�
µ

◆

=
1

2
�>K�+

1

2
µ>Kµ� �>Kµ+ y>�� y>µ. (⇤q)

Since

1

2

�

�> µ>�P

✓

�
µ

◆

=
1

2
(�> � µ>)K(�� µ)

and the matrix K = XX> is symmetric positive semidefinite, the matrix P
is also symmetric positive semidefinite. Thus we are in a position to apply
ADMM since the constraints are

m
X

i=1

�i �
m
X

i=1

µi = 0

m
X

i=1

�i +
m
X

i=1

µi + � = C⌫

�+ ↵ =
C

m
, µ+ � =

C

m
,

namely a�ne. We need to check that the (2m + 2) ⇥ (4m + 1) matrix A
corresponding to this system has rank 2m + 2. Let us clarify this point.
The matrix A corresponding to the above equations is

A =

0

B

B

B

B

B

@

1>
m �1>

m 0>m 0>m 0

1>
m 1>

m 0>m 0>m 1

Im 0m,m Im 0m,m 0m

0m,m Im 0m,m Im 0m

1

C

C

C

C

C

A

.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 797

20.3. Solving ⌫-Regression Using ADMM 797

For example, for m = 3 we have the 8⇥ 13 matrix
0

B

B

B

B

B

B

B

B

B

B

B

@

1 1 1 �1 �1 �1 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 1
1 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0

1

C

C

C

C

C

C

C

C

C

C

C

A

.

We leave it as an exercise to show that A has rank 2m+ 2. Recall that

q =

✓

y
�y

◆

and we also define the vector c (of dimension 2m+ 2) as

c =

0

@

0
C⌫

C
m1

2m

1

A .

The constraints are given by the system of a�ne equations Ax = c, where

x =
�

�> µ> ↵> �> �
�>

.

Since there are 4m + 1 Lagrange multipliers (�, µ,↵,�, �), we need to
pad the 2m⇥2m matrix P with zeros to make it into a (4m+1)⇥ (4m+1)
matrix

Pa =

✓

P 0
2m,2m+1

0
2m+1,2m 0

2m+1,2m+1

◆

.

Similarly, we pad q with zeros to make it a vector qa of dimension 4m+ 1,

qa =

✓

q
0
2m+1

◆

.

In order to solve our dual program, we apply ADMM to the quadractic
functional

1

2
x>Pax+ q>a x,

subject to the constraints

Ax = c, x � 0,

with Pa, qa, A, b and x, as above.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 798

798 ⌫-SV Regression

Since for an optimal solution with ✏ > 0 we must have � = 0 (from the
KKT conditions), we can solve the dual problem with the following set of
constraints only involving the Lagrange multipliers (�, µ,↵,�),

m
X

i=1

�i �
m
X

i=1

µi = 0

m
X

i=1

�i +
m
X

i=1

µi = C⌫

�+ ↵ =
C

m
, µ+ � =

C

m
,

which corresponds to the (2m+ 2)⇥ 4m A
2

given by

A
2

=

0

B

B

B

B

B

@

1>
m �1>

m 0>m 0>m

1>
m 1>

m 0>m 0>m

Im 0m,m Im 0m,m

0m,m Im 0m,m Im

1

C

C

C

C

C

A

.

We leave it as an exercise to show that A
2

has rank 2m+ 2. We define
the vector c

2

(of dimension 2m+ 2) as

c
2

= c =

0

@

0
C⌫

C
m1

2m

1

A .

Since there are 4m Lagrange multipliers (�, µ,↵,�), we need to pad the
2m⇥ 2m matrix P with zeros to make it into a 4m⇥ 4m matrix

P
2a =

✓

P 0
2m,2m

0
2m,2m 0

2m,2m

◆

.

Similarly, we pad q with zeros to make it a vector q
2a of dimension 4m,

q
2a =

✓

q
0
2m

◆

.

We implemented the above methods in Matlab; see Appendix B, Section
B.4. Choosing C = m is typically a good choice because then the values
of �i and µj are not too small (C/m = 1). If C is chosen too small, we
found that numerical instability increases drastically and very poor results
are obtained. Increasing C tends to encourage sparsity.

We ran our Matlab implementation of the above method on the set of
50 points generated at random by the program shown below with C = 50
and various values of ⌫ starting with ⌫ = 0.03:

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 799

20.3. Solving ⌫-Regression Using ADMM 799

X13 = 15*randn(50,1);

ww13 = 1;

y13 = X13*ww13 + 10*randn(50,1) + 20;

[~,~,~,~,~,~,~,~,w1] = runuregb(rho,0.03,X13,y13,50)

Figure 20.11 shows the result of running the program with ⌫ = 0.03.
We have pf = 0, qf = 0, pm = 2 and qm = 1. There are 47 points strictly
inside the slab. The slab is large enough to contain all the data points, so
none of them is considered an error.

-40 -30 -20 -10 0 10 20 30 40 50 60
-40

-20

0

20

40

60

80

Fig. 20.11 Running ⌫-SV regression on a set of 50 points; ⌫ = 0.03.

The next value of ⌫ is ⌫ = 0.21, see Figure 20.12. We have pf = 4, qf =
5, pm = 6 and qm = 6. There are 38 points strictly inside the slab.

The next value of ⌫ is ⌫ = 0.5, see Figure 20.13. We have pf = 12, qf =
12, pm = 13 and qm = 14. There are 23 points strictly inside the slab.

The next value of ⌫ is ⌫ = 0.7, see Figure 20.14. We have pf = 17, qf =
17, pm = 18 and qm = 19. There are 13 points strictly inside the slab.

The last value of ⌫ is ⌫ = 0.97, see Figure 20.15. We have pf = 23, qf =
24, pm = 25 and qm = 25. There are 0 points strictly inside the slab. The
slab is so narrow that it does not contain any of the points xi in it.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 800

800 ⌫-SV Regression

-40 -30 -20 -10 0 10 20 30 40 50 60
-40

-20

0

20

40

60

80

Fig. 20.12 Running ⌫-SV regression on a set of 50 points; ⌫ = 0.21.

-40 -30 -20 -10 0 10 20 30 40 50 60
-40

-20

0

20

40

60

80

Fig. 20.13 Running ⌫-SV regression on a set of 50 points; ⌫ = 0.5.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 801

20.3. Solving ⌫-Regression Using ADMM 801

-40 -30 -20 -10 0 10 20 30 40 50 60
-40

-20

0

20

40

60

80

Fig. 20.14 Running ⌫-SV regression on a set of 50 points; ⌫ = 0.7.

-40 -30 -20 -10 0 10 20 30 40 50 60
-40

-20

0

20

40

60

80

Fig. 20.15 Running ⌫-SV regression on a set of 50 points; ⌫ = 0.97.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 802

802 ⌫-SV Regression

Running the program with any value ⌫ > 0.97 yields ✏ = 0.

20.4 Kernel ⌫-SV Regression

Since the formulae for w, b, and f(x),

w =
m
X

i=1

(µi � �i)xi

b =
1

2

�

yi0 + yj0 � w>(xi0 + xj0)
�

f(x) =
m
X

i=1

(µi � �i)x
>
i x+ b,

only involve inner products among the data points xi and x, and since the
objective function �G(↵, µ) of the dual program also only involves inner
products among the data points xi, we can kernelize the ⌫-SV regression
method.

As in the previous section, we assume that our data points {x
1

, . . . , xm}
belong to a set X and we pretend that we have feature space (F, h�,�i) and
a feature embedding map ' : X ! F , but we only have access to the kernel
function (xi, xj) = h'(xi),'(xj)i. We wish to perform ⌫-SV regression in
the feature space F on the data set {('(x

1

), y
1

), . . . , ('(xm), ym)}. Going
over the previous computation, we see that the primal program is given by

Program kernel ⌫-SV Regression:

minimize
1

2
hw,wi+ C

✓

⌫✏+
1

m

m
X

i=1

(⇠i + ⇠0i)

◆

subject to

hw,'(xi)i+ b� yi ✏+ ⇠i, ⇠i � 0 i = 1, . . . ,m

� hw,'(xi)i � b+ yi ✏+ ⇠0i, ⇠0i � 0 i = 1, . . . ,m

✏ � 0,

minimizing over the variables w, ✏, b, ⇠, and ⇠0.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 803

20.4. Kernel ⌫-SV Regression 803

The Lagrangian is given by

L(w, b,�, µ, �, ⇠, ⇠0, ✏,↵,�) =
1

2
hw,wi+

*

w,
m
X

i=1

(�i � µi)'(xi)

+

+ ✏

C⌫ � � �
m
X

i=1

(�i + µi)

!

+
m
X

i=1

⇠i

✓

C

m
� �i � ↵i

◆

+
m
X

i=1

⇠0i

✓

C

m
� µi � �i

◆

+ b

m
X

i=1

(�i � µi)

!

�
m
X

i=1

(�i � µi)yi.

Setting the gradient rLw,✏,b,⇠,⇠0 of the Lagrangian to zero, we also ob-
tain the equations

w =
m
X

i=1

(µi � �i)'(xi), (⇤w)

m
X

i=1

�i �
m
X

i=1

µi = 0

m
X

i=1

�i +
m
X

i=1

µi + � = C⌫

�+ ↵ =
C

m
, µ+ � =

C

m
.

Using the above equations, we find that the dual function G is indepen-
dent of the variables �,↵,�, and we obtain the following dual program:

Dual Program kernel ⌫-SV Regression:

minimize
1

2

m
X

i,j=1

(�i � µi)(�j � µj)(xi, xj) +
m
X

i=1

(�i � µi)yi

subject to
m
X

i=1

�i �
m
X

i=1

µi = 0

m
X

i=1

�i +
m
X

i=1

µi C⌫

0 �i
C

m
, 0 µi

C

m
, i = 1, . . . ,m,

minimizing over ↵ and µ.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 804

804 ⌫-SV Regression

Everything we said before also applies to the kernel ⌫-SV regression
method, except that xi is replaced by '(xi) and that the inner product
h�,�i must be used, and we have the formulae

w =
m
X

i=1

(µi � �i)'(xi)

b =
1

2

yi0 + yj0 �
m
X

i=1

(µi � �i)((xi, xi0) + (xi, xj0))

!

f(x) =
m
X

i=1

(µi � �i)(xi, x) + b,

expressions that only involve .

Remark: There is a variant of ⌫-SV regression obtained by setting ⌫ = 0
and holding ✏ > 0 fixed. This method is called ✏-SV regression or (linear)
✏-insensitive SV regression. The corresponding optimization program is

Program ✏-SV Regression:

minimize
1

2
w>w +

C

m

m
X

i=1

(⇠i + ⇠0i)

subject to

w>xi + b� yi ✏+ ⇠i, ⇠i � 0 i = 1, . . . ,m

� w>xi � b+ yi ✏+ ⇠0i, ⇠0i � 0 i = 1, . . . ,m,

minimizing over the variables w, b, ⇠, and ⇠0, holding ✏ fixed.
It is easy to see that the dual program is

Dual Program ✏-SV Regression:

minimize
1

2

m
X

i,j=1

(�i � µi)(�j � µj)x
>
i xj +

m
X

i=1

(�i � µi)yi + ✏
m
X

i=1

(�i + µi)

subject to
m
X

i=1

�i �
m
X

i=1

µi = 0

0 �i
C

m
, 0 µi

C

m
, i = 1, . . . ,m,

minimizing over ↵ and µ.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 805

20.5. ⌫-Regression Version 2; Penalizing b 805

The constraint
m
X

i=1

�i +
m
X

i=1

µi C⌫

is gone but the extra term ✏
Pm

i=1

(�i + µi) has been added to the dual
function, to prevent �i and µi from blowing up.

There is an obvious kernelized version of ✏-SV regression. It is easy
to show that ⌫-SV regression subsumes ✏-SV regression, in the sense that
if ⌫-SV regression succeeds and yields w, b, ✏ > 0, then ✏-SV regression
with the same C and the same value of ✏ also succeeds and returns the
same pair (w, b). For more details on these methods, see Schölkopf, Smola,
Williamson, and Bartlett [Schölkopf et al. (2000)].

Remark: The linear penalty function
Pm

i=1

(⇠i+⇠0i) can be replaced by the
quadratic penalty function

Pm
i=1

(⇠2i +⇠
02
i); see Shawe–Taylor and Christian-

ini [Shawe-Taylor and Cristianini (2004)] (Chapter 7). In this case, it is easy
to see that for an optimal solution we must have ⇠i � 0 and ⇠0i � 0, so we
may omit the constraints ⇠i � 0 and ⇠0i � 0. We must also have � = 0
so we omit the variable � as well. It can be shown that ⇠ = (m/2C)�
and ⇠0 = (m/2C)µ. This problem is very similar to the Soft Margin SVM
(SVMs4) discussed in Section 18.13.

20.5 ⌫-Regression Version 2; Penalizing b

Yet another variant of ⌫-SV regression is to add the term 1

2

b2 to the ob-
jective function. We will see that solving the dual not only determines w
but also b and ✏ (provided a mild condition on ⌫). We wish to solve the
following program:

Program ⌫-SV Regression Version 2

minimize
1

2
w>w +

1

2
b2 + C

✓

⌫✏+
1

m

m
X

i=1

(⇠i + ⇠0i)

◆

subject to

w>xi + b� yi ✏+ ⇠i, ⇠i � 0 i = 1, . . . ,m

� w>xi � b+ yi ✏+ ⇠0i, ⇠0i � 0 i = 1, . . . ,m,

minimizing over the variables w, b, ✏, ⇠, and ⇠0. The constraint ✏ � 0 is
omitted since the problem has no solution if ✏ < 0.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 806

806 ⌫-SV Regression

We leave it as an exercise to show that the new Lagrangian is

L(w, b,�, µ, ⇠, ⇠0, ✏,↵,�) =
1

2
w>w + w>

m
X

i=1

(�i � µi)xi

!

+ ✏

C⌫ �
m
X

i=1

(�i + µi)

!

+
m
X

i=1

⇠i

✓

C

m
� �i � ↵i

◆

+
m
X

i=1

⇠0i

✓

C

m
� µi � �i

◆

+
1

2
b2 + b

m
X

i=1

(�i � µi)

!

�
m
X

i=1

(�i � µi)yi.

If we set the Laplacian rLw,✏,b,⇠,⇠0 to zero we obtain the equations

w =
m
X

i=1

(µi � �i)xi = X>(µ� �) (⇤w)

C⌫ �
m
X

i=1

(�i + µi) = 0

b+
m
X

i=1

(�i � µi) = 0

C

m
� �� ↵ = 0,

C

m
� µ� � = 0.

We obtain the new equation

b = �
m
X

i=1

(�i � µi) = �(1>
m�� 1>

mµ) (⇤b)

determining b, which replaces the equation
m
X

i=1

�i �
m
X

i=1

µi = 0.

Plugging back w from (⇤w) and b from (⇤b) into the Lagrangian we get

G(�, µ,↵,�) = �1

2

�

�> µ>�P

✓

�
µ

◆

� q>
✓

�
µ

◆

+
1

2
b2 � b2

= �1

2

�

�> µ>�P

✓

�
µ

◆

� q>
✓

�
µ

◆

� 1

2
b2

= �1

2

�

�> µ>�
✓

P +

✓

1m1>
m �1m1>

m

�1m1>
m 1m1>

m

◆◆✓

�
µ

◆

� q>
✓

�
µ

◆

,

with

P =

✓

XX> �XX>

�XX> XX>

◆

=

✓

K �K
�K K

◆

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 807

20.5. ⌫-Regression Version 2; Penalizing b 807

and

q =

✓

y
�y

◆

.

The new dual program is

Dual Program ⌫-SV Regression Version 2

minimize
1

2

�

�> µ>�
✓

P +

✓

1m1>
m �1m1>

m

�1m1>
m 1m1>

m

◆◆✓

�
µ

◆

+ q>
✓

�
µ

◆

subject to
m
X

i=1

�i +
m
X

i=1

µi = C⌫

0 �i
C

m
, 0 µi

C

m
, i = 1, . . . ,m.

Definition 20.1 and Definition 20.2 are unchanged. We have the follow-
ing version of Proposition 20.2 showing that pf , qf , pm an qm have direct
influence on the choice of ⌫.

Proposition 20.6.

(1) Let pf be the number of points xi such that �i = C/m, and let qf be
the number of points xi such that µi = C/m. We have pf + qf m⌫.

(2) Let pm be the number of points xi such that �i > 0, and let qm be the
number of points xi such that µi > 0. We have pm + qm � m⌫.

(3) If pf � 1 or qf � 1, then ⌫ � 1/m.

Proof. (1) Let K� and Kµ be the sets of indices corresponding to points
failing the margin,

K� = {i 2 {1, . . . ,m} | �i = C/m}
Kµ = {i 2 {1, . . . ,m} | µi = C/m}.

By definition pf = |K�|, qf = |Kµ|. Since the equation

m
X

i=1

�i +
m
X

j=1

µj = C⌫

holds, by definition of K� and Kµ we have

(pf + qf)
C

m
=
X

i2K
�

�i +
X

j2K
µ

µj
m
X

i=1

�i +
m
X

j=1

µj = C⌫,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 808

808 ⌫-SV Regression

which implies that

pf + qf m⌫.

(2) Let I�>0

and Iµ>0

be the sets of indices

I�>0

= {i 2 {1, . . . ,m} | �i > 0}
Iµ>0

= {i 2 {1, . . . ,m} | µi > 0}.

By definition pm = |I�>0

|, qm = |Iµ>0

|. We have
m
X

i=1

�i +
m
X

j=1

µj =
X

i2I
�>0

�i +
X

j2I
µ>0

µj = C⌫.

Since �i C/m and µj C/m, we obtain

C⌫ (pm + qm)
C

m
,

that is, pm + qm � m⌫.
(3) follows immediately from (1).

Proposition 20.6 yields the following bounds on ⌫:

pf + qf
m

 ⌫ pm + qm
m

.

Again, the smaller ⌫ is, the wider the ✏-slab is, and the larger ⌫ is, the
narrower the ✏-slab is.

Remark: It can be shown that for any optimal solution with w 6= 0 and
✏ > 0, if the inequalities (pf + qf)/m < ⌫ < 1 hold, then some point xi is a
support vector. The proof is essentially Case 1b in the proof of Proposition
20.4. We leave the details as an exercise.

The new dual program is solved using ADMM. The (2m + 1) ⇥ 4m
matrix A

3

corresponding to the equational constraints
m
X

i=1

�i +
m
X

i=1

µi = C⌫

�+ ↵ =
C

m
, µ+ � =

C

m
,

is given by

A
3

=

0

B

B

@

1>
m 1>

m 0>m 0>m

Im 0m,m Im 0m,m

0m,m Im 0m,m Im

1

C

C

A

.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 809

20.5. ⌫-Regression Version 2; Penalizing b 809

We leave it as an exercise to show that A
3

has rank 2m+ 1. We define
the vector c

3

(of dimension 2m+ 1) as

c
3

=

✓

C⌫
C
m1

2m

◆

.

Since there are 4m Lagrange multipliers (�, µ,↵,�), we need to pad the

2m⇥ 2m matrix P
3

= P +

✓

1m1>
m �1m1>

m

�1m1>
m 1m1>

m

◆

with zeros to make it into

a 4m⇥ 4m matrix

P
3a =

✓

P
3

0
2m,2m

0
2m,2m 0

2m,2m

◆

.

Similarly, we pad q with zeros to make it a vector q
3a of dimension 4m,

q
3a =

✓

q
0
2m

◆

.

It remains to compute ✏. Ther are two methods to do this.
The first method assumes the Standard Margin Hypothesis, which

is that there is some i
0

such that 0 < �i0 < C/m or there is some j
0

such
that 0 < µj0 < C/m; in other words, there is some support vector of type
1. By the complementary slackness conditions, ⇠i0 = 0 or ⇠0j0 = 0, so we
have either w>xi0 + b� yi0 = ✏ or �w>xj0 � b+ yj0 = ✏, which determines
✏.

Due to numerical instability, when writing a computer program it is
preferable to compute the lists of indices I� and Iµ given by

I� = {i 2 {1, . . . ,m} | 0 < �i < C/m}
Iµ = {j 2 {1, . . . ,m} | 0 < µj < C/m}.

Then it is easy to see that we can compute ✏ using the following averaging
formulae: if I� 6= ;, then

✏ = w>
✓

X

i2I
�

xi

◆

/|I�|+ b�
✓

X

i2I
�

yi

◆

/|I�|,

and if Iµ 6= ;, then

✏ = �w>
✓

X

j2I
µ

xj

◆

/|Iµ|� b+

✓

X

i2I
µ

yi

◆

/|Iµ|.

The second method uses duality. Under a mild condition, expressing
that the duality gap is zero, we can determine ✏ in terms of �, µ and b.
This is because points xi that fail the margin, which means that �i = C/m

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 810

810 ⌫-SV Regression

or µi = C/m, are the only points for which ⇠i > 0 or ⇠0i > 0. But in this
case we have an active constraint

w>xi + b� yi = ✏+ ⇠i (⇤⇠)
or

� w>xi � b+ yi = ✏+ ⇠0i, (⇤⇠0)
so ⇠i and ⇠0i can be expressed in terms of w and b. Since the duality gap is
zero for an optimal solution, the optimal value of the primal is equal to the
optimal value of the dual. Using the fact that

w = X>(µ� �)

b = �(1>
m�� 1>

mµ) =
�

�> µ>�
✓

�1m

1m

◆

we obtain an expression for the optimal value of the primal. First we have
1

2
w>w +

1

2
b2 =

1

2
(�> � µ>)XX>(�� µ)

+
1

2

�

�> µ>�
✓

1m1>
m �1m1>

m

�1m1>
m 1m1>

m

◆✓

�
µ

◆

=
1

2

�

�> µ>�
✓

P +

✓

1m1>
m �1m1>

m

�1m1>
m 1m1>

m

◆◆✓

�
µ

◆

,

with

P =

✓

XX> �XX>

�XX> XX>

◆

.

Let K� and Kµ be the sets of indices corresponding to points failing the
margin,

K� = {i 2 {1, . . . ,m} | �i = C/m}
Kµ = {i 2 {1, . . . ,m} | µi = C/m}.

Because �iµi = 0, the sets K� and Kµ are disjoint. Observe that from
Definition 20.2 we have pf = |K�| and qf = |Kµ|. Then by (⇤⇠) and (⇤⇠0),
we have

m
X

i=1

(⇠i + ⇠0i) =
X

i2K
�

⇠i +
X

j2K
µ

⇠0j

=
X

i2K
�

(w>xi + b� yi � ✏) +
X

j2K
µ

(�w>xj � b+ yj � ✏)

= w>
✓

X

i2K
�

xi �
X

j2K
µ

xj

◆

�
X

i2K
�

yi +
X

j2K
µ

yj

+ (pf � qf)b� (pf + qf)✏.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 811

20.5. ⌫-Regression Version 2; Penalizing b 811

The optimal value of the dual is given by

�1

2

�

�> µ>�
✓

P +

✓

1m1>
m �1m1>

m

�1m1>
m 1m1>

m

◆◆✓

�
µ

◆

� q>
✓

�
µ

◆

,

with

q =

✓

y
�y

◆

.

Expressing that the duality gap is zero we have

1

2
w>w +

1

2
b2 + C⌫✏+

C

m

m
X

i=1

(⇠i + ⇠0i)

= �1

2

�

�> µ>�
✓

P +

✓

1m1>
m �1m1>

m

�1m1>
m 1m1>

m

◆◆✓

�
µ

◆

� q>
✓

�
µ

◆

,

that is,

1

2

�

�> µ>�
✓

P +

✓

1m1>
m �1m1>

m

�1m1>
m 1m1>

m

◆◆✓

�
µ

◆

+ C⌫✏

+
C

m

✓

w>
✓

X

i2K
�

xi �
X

j2K
µ

xj

◆

�
X

i2K
�

yi +
X

j2K
µ

yj

+ (pf � qf)b� (pf + qf)✏

◆

= �1

2

�

�> µ>�
✓

P +

✓

1m1>
m �1m1>

m

�1m1>
m 1m1>

m

◆◆✓

�
µ

◆

� q>
✓

�
µ

◆

.

Solving for ✏ we get

C

✓

⌫ � pf + qf
m

◆

✏ = �
�

�> µ>�
✓

P +

✓

1m1>
m �1m1>

m

�1m1>
m 1m1>

m

◆◆✓

�
µ

◆

�
�

y> �y>
�

✓

�
µ

◆

� C

m

✓

w>
✓

X

i2K
�

xi �
X

j2K
µ

xj

◆

�
X

i2K
�

yi +
X

j2K
µ

yj + (pf � qf)b

◆

,

so we get

(m⌫ � pf � qf)✏ =

�

m

C

✓

�

�> µ>�
✓

P +

✓

1m1>
m �1m1>

m

�1m1>
m 1m1>

m

◆◆✓

�
µ

◆

+
�

y> �y>
�

✓

�
µ

◆◆

+ w>
✓

X

i2K
�

xi �
X

j2K
µ

xj

◆

�
X

i2K
�

yi +
X

j2K
µ

yj + (pf � qf)b

!

.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 812

812 ⌫-SV Regression

Using the equations

w = X>(µ� �)

b = �(1>
m�� 1>

mµ) =
�

�> µ>�
✓

�1m

1m

◆

,

we see that ✏ is determined by � and µ provided that (pf + qf)/m < ⌫.
By Proposition 20.6(1),

pf + qf
m

 ⌫,

therefore the condition (pf + qf)/m < ⌫ is very natural.
We have implemented this method in Matlab, and we have observed

that for some examples the choice of ⌫ caused the equation ⌫(pf + qf) = m
to hold. In such cases, running the program again with a slightly perturbed
value of ⌫ always succeeded.

The other observation we made is that b tends to be smaller and ✏ tends
to be bigger in ⌫-SV Regression Version 2, so the fit is actually not as good
as in ⌫-SV Regression without penalizing b. Figure 20.16 shows the result
of running our program on the data set of Section 20.3. Compare with
Figure 20.13.

-40 -30 -20 -10 0 10 20 30 40 50 60
-40

-20

0

20

40

60

80

Fig. 20.16 Running ⌫-SV regression version 2 on a set of 50 points; ⌫ = 0.5.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 813

20.6. Summary 813

20.6 Summary

The main concepts and results of this chapter are listed below:

• ⌫-support vector regression (⌫-SV regression).
• Regression estimate.
• Kernel ⌫-SV regression.
• ✏-SV regression, ✏-insensitive SV regression,
• ⌫-SV regression Version 2; penalizing b.

20.7 Problems

Problem 20.1. Prove that if ⌫-SV regression succeeds and yields w, b, ✏ >
0, then ✏-SV regression with the same C and the same value of ✏ also
succeeds and returns the same pair (w, b).

Problem 20.2. Prove the formulae

b =

✓✓

X

i02I
�

yi0

◆

/|I�|+
✓

X

j02I
µ

yj0

◆

/|Iµ|
◆

/2

� w>
✓✓

X

i02I
�

xi0

◆

/|I�|+
✓

X

j02I
µ

xj0

◆

/|Iµ|
◆

/2

✏ =

✓✓

X

j02I
µ

yj0

◆

/|Iµ|
◆

�
✓

X

i02I
�

yi0

◆

/|I�
◆

/2

+ w>
✓✓

X

i02I
�

xi0

◆

/|I�|�
✓

X

j02I
µ

xj0

◆

/|Iµ|
◆

/2

stated just before Proposition 20.5.

Problem 20.3. Give the details of the proof of Proposition 20.5. In par-
ticular, prove that

C

✓

⌫ � pf + qf
m

◆

✏ = �
�

�> µ>�P

✓

�
µ

◆

�
�

y> �y>
�

✓

�
µ

◆

� C

m

✓

w>
✓

X

i2K
�

xi �
X

j2K
µ

xj

◆

�
X

i2K
�

yi +
X

j2K
µ

yj + (pf � qf)b

◆

.

Problem 20.4. Prove that the matrices

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 814

814 ⌫-SV Regression

A =

0

B

B

B

B

B

@

1>
m �1>

m 0>m 0>m 0

1>
m 1>

m 0>m 0>m 1

Im 0m,m Im 0m,m 0m

0m,m Im 0m,m Im 0m

1

C

C

C

C

C

A

, A
2

=

0

B

B

B

B

B

@

1>
m �1>

m 0>m 0>m

1>
m 1>

m 0>m 0>m

Im 0m,m Im 0m,m

0m,m Im 0m,m Im

1

C

C

C

C

C

A

have rank 2m+ 2.

Problem 20.5. Derive the version of ⌫-SV regression in which the linear
penalty function

Pm
i=1

(⇠i+⇠0i) is replaced by the quadratic penalty function
Pm

i=1

(⇠2i + ⇠02i). Derive the dual program.

Problem 20.6. The linear penalty function
Pm

i=1

(⇠i + ⇠0i) can be replaced
by the quadratic penalty function

Pm
i=1

(⇠2i +⇠
02
i). Prove that for an optimal

solution we must have ⇠i � 0 and ⇠0i � 0, so we may omit the constraints
⇠i � 0 and ⇠0i � 0. We must also have � = 0 so we may omit the variable �
as well. Prove that ⇠ = (m/2C)� and ⇠0 = (m/2C)µ. This problem is very
similar to the Soft Margin SVM (SVMs4) discussed in Section 18.13.

Problem 20.7. Consider the version of ⌫-SV regression in Section 20.5.
Prove that for any optimal solution with w 6= 0 and ✏ > 0, if the inequalities
(pf + qf)/m < ⌫ < 1 hold, then some point xi is a support vector.

Problem 20.8. Prove that the matrix

A
3

=

0

B

B

@

1>
m 1>

m 0>m 0>m

Im 0m,m Im 0m,m

0m,m Im 0m,m Im

1

C

C

A

has rank 2m+ 1.

Problem 20.9. Consider the version of ⌫-SV regression in Section 20.5.
Prove the following formulae: If I� 6= ;, then

✏ = w>
✓

X

i2I
�

xi

◆

/|I�|+ b�
✓

X

i2I
�

yi

◆

/|I�|,

and if Iµ 6= ;, then

✏ = �w>
✓

X

j2I
µ

xj

◆

/|Iµ|� b+

✓

X

i2I
µ

yi

◆

/|Iµ|.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 815

20.7. Problems 815

Problem 20.10. Implement ⌫-Regression Version 2 described in Section
20.5. Run examples using both the original version and version 2 and
compare the results.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 816

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 817

Appendix A

Total Orthogonal Families in Hilbert
Spaces

A.1 Total Orthogonal Families (Hilbert Bases), Fourier
Coe�cients

We conclude our quick tour of Hilbert spaces by showing that the notion
of orthogonal basis can be generalized to Hilbert spaces. However, the
useful notion is not the usual notion of a basis, but a notion which is an
abstraction of the concept of Fourier series. Every element of a Hilbert
space is the “sum” of its Fourier series.

Definition A.1. Given a Hilbert space E, a family (uk)k2K of nonnull
vectors is an orthogonal family i↵ the uk are pairwise orthogonal, i.e.,
hui, uji = 0 for all i 6= j (i, j 2 K), and an orthonormal family i↵
hui, uji = �i, j , for all i, j 2 K. A total orthogonal family (or system)
or Hilbert basis is an orthogonal family that is dense in E. This means that
for every v 2 E, for every ✏ > 0, there is some finite subset I ✓ K and
some family (�i)i2I of complex numbers, such that

�

�

�

v �
X

i2I

�iui

�

�

�

< ✏.

Given an orthogonal family (uk)k2K , for every v 2 E, for every k 2 K,
the scalar ck = hv, uki /kukk2 is called the k-th Fourier coe�cient of v over
(uk)k2K .

Remark. The terminology Hilbert basis is misleading because a Hilbert
basis (uk)k2K is not necessarily a basis in the algebraic sense. Indeed, in
general, (uk)k2K does not span E. Intuitively, it takes linear combinations
of the uk’s with infinitely many nonnull coe�cients to span E. Technically,
this is achieved in terms of limits. In order to avoid the confusion between

817

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 818

818 Total Orthogonal Families in Hilbert Spaces

bases in the algebraic sense and Hilbert bases, some authors refer to al-
gebraic bases as Hamel bases and to total orthogonal families (or Hilbert
bases) as Schauder bases.

Given an orthogonal family (uk)k2K , for any finite subset I of K, we
often call sums of the form

P

i2I �iui partial sums of Fourier series , and
if these partial sums converge to a limit denoted as

P

k2K ckuk, we call
P

k2K ckuk a Fourier series.
However, we have to make sense of such sums! Indeed, when K is

unordered or uncountable, the notion of limit or sum has not been defined.
This can be done as follows (for more details, see Dixmier [Dixmier (1984)]):

Definition A.2. Given a normed vector space E (say, a Hilbert space), for
any nonempty index set K, we say that a family (uk)k2K of vectors in E
is summable with sum v 2 E i↵ for every ✏ > 0, there is some finite subset
I of K, such that,

�

�

�

v �
X

j2J

uj

�

�

�

< ✏

for every finite subset J with I ✓ J ✓ K. We say that the family (uk)k2K

is summable i↵ there is some v 2 E such that (uk)k2K is summable with
sum v. A family (uk)k2K is a Cauchy family i↵ for every ✏ > 0, there is a
finite subset I of K, such that,

�

�

�

X

j2J

uj

�

�

�

< ✏

for every finite subset J of K with I \ J = ;,

If (uk)k2K is summable with sum v, we usually denote v as
P

k2K uk.
The following technical proposition will be needed:

Proposition A.1. Let E be a complete normed vector space (say, a Hilbert
space).

(1) For any nonempty index set K, a family (uk)k2K is summable i↵ it is
a Cauchy family.

(2) Given a family (rk)k2K of nonnegative reals rk � 0, if there is some
real number B > 0 such that

P

i2I ri < B for every finite subset I of
K, then (rk)k2K is summable and

P

k2K rk = r, where r is least upper
bound of the set of finite sums

P

i2I ri (I ✓ K).

Proof. (1) If (uk)k2K is summable, for every finite subset I of K, let

uI =
X

i2I

ui and u =
X

k2K

uk

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 819

A.1. Total Orthogonal Families, Fourier Coe�cients 819

For every ✏ > 0, there is some finite subset I of K such that

ku� uLk < ✏/2

for all finite subsets L such that I ✓ L ✓ K. For every finite subset J of
K such that I \ J = ;, since I ✓ I [J ✓ K and I [J is finite, we have

ku� uI[Jk < ✏/2 and ku� uIk < ✏/2,

and since

kuI[J � uIk kuI[J � uk+ ku� uIk

and uI[J � uI = uJ since I \ J = ;, we get

kuJk = kuI[J � uIk < ✏,

which is the condition for (uk)k2K to be a Cauchy family.
Conversely, assume that (uk)k2K is a Cauchy family. We define induc-

tively a decreasing sequence (Xn) of subsets of E, each of diameter at most
1/n, as follows: For n = 1, since (uk)k2K is a Cauchy family, there is some
finite subset J

1

of K such that

kuJk < 1/2

for every finite subset J of K with J
1

\ J = ;. We pick some finite subset
J
1

with the above property, and we let I
1

= J
1

and

X
1

= {uI | I
1

✓ I ✓ K, I finite}.

For n � 1, there is some finite subset Jn+1

of K such that

kuJk < 1/(2n+ 2)

for every finite subset J of K with Jn+1

\J = ;. We pick some finite subset
Jn+1

with the above property, and we let In+1

= In [Jn+1

and

Xn+1

= {uI | In+1

✓ I ✓ K, I finite}.

Since In ✓ In+1

, it is obvious that Xn+1

✓ Xn for all n � 1. We need to
prove that each Xn has diameter at most 1/n. Since Jn was chosen such
that

kuJk < 1/(2n)

for every finite subset J of K with Jn \ J = ;, and since Jn ✓ In, it is also
true that

kuJk < 1/(2n)

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 820

820 Total Orthogonal Families in Hilbert Spaces

for every finite subset J of K with In\J = ; (since In\J = ; and Jn ✓ In
implies that Jn \ J = ;). Then for every two finite subsets J, L such that
In ✓ J, L ✓ K, we have

kuJ�I
n

k < 1/(2n) and kuL�I
n

k < 1/(2n),

and since

kuJ � uLk kuJ � uI
n

k+ kuI
n

� uLk = kuJ�I
n

k+ kuL�I
n

k,

we get

kuJ � uLk < 1/n,

which proves that �(Xn) 1/n. Now if we consider the sequence of closed
sets (Xn), we still have Xn+1

✓ Xn, and by Proposition 12.3, �(Xn) =
�(Xn) 1/n, which means that limn!1 �(Xn) = 0, and by Proposition
12.3,

T1
n=1

Xn consists of a single element u. We claim that u is the sum
of the family (uk)k2K .

For every ✏ > 0, there is some n � 1 such that n > 2/✏, and since
u 2 Xm for all m � 1, there is some finite subset J

0

of K such that In ✓ J
0

and

ku� uJ0k < ✏/2,

where In is the finite subset of K involved in the definition of Xn. However,
since �(Xn) 1/n, for every finite subset J of K such that In ✓ J , we have

kuJ � uJ0k 1/n < ✏/2,

and since

ku� uJk ku� uJ0k+ kuJ0 � uJk,

we get

ku� uJk < ✏

for every finite subset J of K with In ✓ J , which proves that u is the sum
of the family (uk)k2K .

(2) Since every finite sum
P

i2I ri is bounded by the uniform bound B,
the set of these finite sums has a least upper bound r B. For every ✏ > 0,
since r is the least upper bound of the finite sums

P

i2I ri (where I finite,
I ✓ K), there is some finite I ✓ K such that

�

�

�

�

�

r �
X

i2I

ri

�

�

�

�

�

< ✏,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 821

A.1. Total Orthogonal Families, Fourier Coe�cients 821

and since rk � 0 for all k 2 K, we have
X

i2I

ri
X

j2J

rj

whenever I ✓ J , which shows that
�

�

�

�

�

�

r �
X

j2J

rj

�

�

�

�

�

�

�

�

�

�

�

r �
X

i2I

ri

�

�

�

�

�

< ✏

for every finite subset J such that I ✓ J ✓ K, proving that (rk)k2K is
summable with sum

P

k2K rk = r.

Remark. The notion of summability implies that the sum of a family
(uk)k2K is independent of any order on K. In this sense it is a kind of
“commutative summability.” More precisely, it is easy to show that for ev-
ery bijection ' : K ! K (intuitively, a reordering of K), the family (uk)k2K

is summable i↵ the family (ul)l2'(K)

is summable, and if so, they have the
same sum.

The following proposition gives some of the main properties of Fourier
coe�cients. Among other things, at most countably many of the Fourier
coe�cient may be nonnull, and the partial sums of a Fourier series converge.
Given an orthogonal family (uk)k2K , we let Uk = Cuk, and pU

k

: E ! Uk

is the projection of E onto Uk.

Proposition A.2. Let E be a Hilbert space, (uk)k2K an orthogonal family
in E, and V the closure of the subspace generated by (uk)k2K . The following
properties hold:

(1) For every v 2 E, for every finite subset I ✓ K, we have
X

i2I

|ci|2 kvk2,

where the ck are the Fourier coe�cients of v.
(2) For every vector v 2 E, if (ck)k2K are the Fourier coe�cients of v, the

following conditions are equivalent:

(2a) v 2 V
(2b) The family (ckuk)k2K is summable and v =

P

k2K ckuk.
(2c) The family (|ck|2)k2K is summable and kvk2 =

P

k2K |ck|2;
(3) The family (|ck|2)k2K is summable, and we have the Bessel inequality:

X

k2K

|ck|2 kvk2.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 822

822 Total Orthogonal Families in Hilbert Spaces

As a consequence, at most countably many of the ck may be nonzero.
The family (ckuk)k2K forms a Cauchy family, and thus, the Fourier
series

P

k2K ckuk converges in E to some vector u =
P

k2K ckuk. Fur-
thermore, u = pV (v).

See Figure A.1.

E

V = span(u)k

v

 form c = k

v, uk

uk
2u = c k uk

k K
Σ
e

E

V = span(u)k

v
 form c = k

v, uk

uk
2 c k uk

k K
Σ
e

=

(i.)

(ii.)

Fig. A.1 A schematic illustration of Proposition A.2. Figure (i.) illustrates Condition
(2b), while Figure (ii.) illustrates Condition (3). Note E is the purple oval and V is the
magenta oval. In both cases, take a vector of E, form the Fourier coe�cients c

k

, then
form the Fourier series

P
k2K

c
k

u
k

. Condition (2b) ensures v equals its Fourier series
since v 2 V . However, if v /2 V , the Fourier series does not equal v. Eventually, we will
discover that V = E, which implies that that Fourier series converges to its vector v.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 823

A.1. Total Orthogonal Families, Fourier Coe�cients 823

Proof. (1) Let

uI =
X

i2I

ciui

for any finite subset I of K. We claim that v � uI is orthogonal to ui for
every i 2 I. Indeed,

hv � uI , uii =
*

v �
X

j2I

cjuj , ui

+

= hv, uii �
X

j2I

cj huj , uii

= hv, uii � cikuik2

= hv, uii � hv, uii = 0,

since huj , uii = 0 for all i 6= j and ci = hv, uii /kuik2. As a consequence,
we have

kvk2 =
�

�

�

v �
X

i2I

ciui +
X

i2I

ciui

�

�

�

2

=
�

�

�

v �
X

i2I

ciui

�

�

�

2

+
�

�

�

X

i2I

ciui

�

�

�

2

=
�

�

�

v �
X

i2I

ciui

�

�

�

2

+
X

i2I

|ci|2,

since the ui are pairwise orthogonal, that is,

kvk2 =
�

�

�

v �
X

i2I

ciui

�

�

�

2

+
X

i2I

|ci|2.

Thus,
X

i2I

|ci|2 kvk2,

as claimed.
(2) We prove the chain of implications (a)) (b)) (c)) (a).
(a)) (b): If v 2 V , since V is the closure of the subspace spanned by

(uk)k2K , for every ✏ > 0, there is some finite subset I of K and some family
(�i)i2I of complex numbers, such that

�

�

�

v �
X

i2I

�iui

�

�

�

< ✏.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 824

824 Total Orthogonal Families in Hilbert Spaces

Now for every finite subset J of K such that I ✓ J , we have
�

�

�

v �
X

i2I

�iui

�

�

�

2

=
�

�

�

v �
X

j2J

cjuj +
X

j2J

cjuj �
X

i2I

�iui

�

�

�

2

=
�

�

�

v �
X

j2J

cjuj

�

�

�

2

+
�

�

�

X

j2J

cjuj �
X

i2I

�iui

�

�

�

2

,

since I ✓ J and the uj (with j 2 J) are orthogonal to v �
P

j2J cjuj by
the argument in (1), which shows that

�

�

�

v �
X

j2J

cjuj

�

�

�

�

�

�

v �
X

i2I

�iui

�

�

�

< ✏,

and thus, that the family (ckuk)k2K is summable with sum v, so that

v =
X

k2K

ckuk.

(b)) (c): If v =
P

k2K ckuk, then for every ✏ > 0, there some finite
subset I of K, such that

�

�

�

v �
X

j2J

cjuj

�

�

�

<
p
✏,

for every finite subset J of K such that I ✓ J , and since we proved in (1)
that

kvk2 =
�

�

�

v �
X

j2J

cjuj

�

�

�

2

+
X

j2J

|cj |2,

we get

kvk2 �
X

j2J

|cj |2 < ✏,

which proves that (|ck|2)k2K is summable with sum kvk2.
(c)) (a): Finally, if (|ck|2)k2K is summable with sum kvk2, for every

✏ > 0, there is some finite subset I of K such that

kvk2 �
X

j2J

|cj |2 < ✏2

for every finite subset J of K such that I ✓ J , and again, using the fact
that

kvk2 =
�

�

�

v �
X

j2J

cjuj

�

�

�

2

+
X

j2J

|cj |2,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 825

A.1. Total Orthogonal Families, Fourier Coe�cients 825

we get
�

�

�

v �
X

j2J

cjuj

�

�

�

< ✏,

which proves that (ckuk)k2K is summable with sum
P

k2K ckuk = v, and
v 2 V .

(3) Since
P

i2I |ci|2 kvk2 for every finite subset I of K, by Proposition
A.1(2), the family (|ck|2)k2K is summable. The Bessel inequality

X

k2K

|ck|2 kvk2

is an obvious consequence of the inequality
P

i2I |ci|2 kvk2 (for every
finite I ✓ K). Now for every natural number n � 1, if Kn is the subset of
K consisting of all ck such that |ck| � 1/n, the number of elements in Kn

is at most
X

k2K
n

|nck|2 n2

X

k2K

|ck|2 n2kvk2,

which is finite, and thus, at most a countable number of the ck may be
nonzero.

Since (|ck|2)k2K is summable with sum c, by Proposition A.1(1) we
know that for every ✏ > 0, there is some finite subset I of K such that

X

j2J

|cj |2 < ✏2

for every finite subset J of K such that I \ J = ;. Since
�

�

�

X

j2J

cjuj

�

�

�

2

=
X

j2J

|cj |2,

we get
�

�

�

X

j2J

cjuj

�

�

�

< ✏.

This proves that (ckuk)k2K is a Cauchy family, which, by Proposition
A.1(1), implies that (ckuk)k2K is summable since E is complete. Thus,
the Fourier series

P

k2K ckuk is summable, with its sum denoted u 2 V .
Since

P

k2K ckuk is summable with sum u, for every ✏ > 0, there is
some finite subset I

1

of K such that
�

�

�

u�
X

j2J

cjuj

�

�

�

< ✏

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 826

826 Total Orthogonal Families in Hilbert Spaces

for every finite subset J of K such that I
1

✓ J . By the triangle inequality,
for every finite subset I of K,

�

�

�

u� v
�

�

�

�

�

�

u�
X

i2I

ciui

�

�

�

+
�

�

�

X

i2I

ciui � v
�

�

�

.

By (2), every w 2 V is the sum of its Fourier series
P

k2K �kuk, and for
every ✏ > 0, there is some finite subset I

2

of K such that

�

�

�

w �
X

j2J

�juj

�

�

�

< ✏

for every finite subset J of K such that I
2

✓ J . By the triangle inequality,
for every finite subset I of K,

�

�

�

v �
X

i2I

�iui

�

�

�

 kv � wk+
�

�

�

w �
X

i2I

�iui

�

�

�

.

Letting I = I
1

[I
2

, since we showed in (2) that

�

�

�

v �
X

i2I

ciui

�

�

�

�

�

�

v �
X

i2I

�iui

�

�

�

for every finite subset I of K, we get

ku� vk
�

�

�

u�
X

i2I

ciui

�

�

�

+
�

�

�

X

i2I

ciui � v
�

�

�

�

�

�

u�
X

i2I

ciui

�

�

�

+
�

�

�

X

i2I

�iui � v
�

�

�

�

�

�

u�
X

i2I

ciui

�

�

�

+ kv � wk+
�

�

�

w �
X

i2I

�iui

�

�

�

,

and thus

ku� vk kv � wk+ 2✏.

Since this holds for every ✏ > 0, we have

ku� vk kv � wk

for all w 2 V , i.e. kv � uk = d(v, V), with u 2 V , which proves that
u = pV (v).

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 827

A.2. The Hilbert Space `2(K) and the Riesz–Fischer Theorem 827

A.2 The Hilbert Space `2(K) and the Riesz–Fischer
Theorem

Proposition A.2 suggests looking at the space of sequences (zk)k2K (where
zk 2 C) such that (|zk|2)k2K is summable. Indeed, such spaces are Hilbert
spaces, and it turns out that every Hilbert space is isomorphic to one of
those. Such spaces are the infinite-dimensional version of the spaces Cn

under the usual Euclidean norm.

Definition A.3. Given any nonempty index set K, the space `2(K) is
the set of all sequences (zk)k2K , where zk 2 C, such that (|zk|2)k2K is
summable, i.e.,

P

k2K |zk|2 < 1.

Remarks.

(1) When K is a finite set of cardinality n, `2(K) is isomorphic to Cn.
(2) When K = N, the space `2(N) corresponds to the space `2 of Example

2 in Section 13.1 (Vol. I). In that example, we claimed that `2 was a
Hermitian space, and in fact, a Hilbert space. We now prove this fact
for any index set K.

Proposition A.3. Given any nonempty index set K, the space `2(K) is a
Hilbert space under the Hermitian product

h(xk)k2K , (yk)k2Ki =
X

k2K

xkyk.

The subspace consisting of sequences (zk)k2K such that zk = 0, except
perhaps for finitely many k, is a dense subspace of `2(K).

Proof. First we need to prove that `2(K) is a vector space. Assume
that (xk)k2K and (yk)k2K are in `2(K). This means that (|xk|2)k2K

and (|yk|2)k2K are summable, which, in view of Proposition A.1(2), is
equivalent to the existence of some positive bounds A and B such that
P

i2I |xi|2 < A and
P

i2I |yi|2 < B, for every finite subset I of K. To
prove that (|xk + yk|2)k2K is summable, it is su�cient to prove that there
is some C > 0 such that

P

i2I |xi + yi|2 < C for every finite subset I of K.
However, the parallelogram inequality implies that

X

i2I

|xi + yi|2
X

i2I

2(|xi|2 + |yi|2) 2(A+B),

for every finite subset I of K, and we conclude by Proposition A.1(2).
Similarly, for every � 2 C,

X

i2I

|�xi|2
X

i2I

|�|2|xi|2 |�|2A,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 828

828 Total Orthogonal Families in Hilbert Spaces

and (�kxk)k2K is summable. Therefore, `2(K) is a vector space.
By the Cauchy-Schwarz inequality,

X

i2I

|xiyi|
X

i2I

|xi||yi|
�

X

i2I

|xi|2
�

1/2�X

i2I

|xyi|2
�

1/2

X

i2I

(|xi|2 + |yi|2)/2 (A+B)/2,

for every finite subset I of K. For the third inequality we used the fact
that

4CD (C +D)2,

(with C =
P

i2I |xi|2 and D =
P

i2I |yi|2) which is equivalent to

(C �D)2 � 0.

By Proposition A.1(2), (|xkyk|)k2K is summable. The customary language
is that (xkyk)k2K is absolutely summable. However, it is a standard fact
that this implies that (xkyk)k2K is summable (For every ✏ > 0, there is
some finite subset I of K such that

X

j2J

|xjyj | < ✏

for every finite subset J of K such that I \ J = ;, and thus

|
X

j2J

xjyj |
X

i2J

|xjyj | < ✏,

proving that (xkyk)k2K is a Cauchy family, and thus summable). We still
have to prove that `2(K) is complete.

Consider a sequence ((�nk)k2K)n�1

of sequences (�nk)k2K 2 `2(K), and
assume that it is a Cauchy sequence. This means that for every ✏ > 0, there
is some N � 1 such that

X

k2K

|�mk � �nk |2 < ✏2

for all m,n � N . For every fixed k 2 K, this implies that

|�mk � �nk | < ✏

for all m,n � N , which shows that (�nk)n�1

is a Cauchy sequence in C.
Since C is complete, the sequence (�nk)n�1

has a limit �k 2 C. We claim
that (�k)k2K 2 `2(K) and that this is the limit of ((�nk)k2K)n�1

.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 829

A.2. The Hilbert Space `2(K) and the Riesz–Fischer Theorem 829

Given any ✏ > 0, the fact that ((�nk)k2K)n�1

is a Cauchy sequence
implies that there is some N � 1 such that for every finite subset I of K,
we have

X

i2I

|�mi � �ni |2 < ✏/4

for all m,n � N . Let p = |I|. Then

|�mi � �ni | <
p
✏

2
p
p

for every i 2 I. Since �i is the limit of (�ni)n�1

, we can find some n large
enough so that

|�ni � �i| <
p
✏

2
p
p

for every i 2 I. Since

|�mi � �i| |�mi � �ni |+ |�ni � �i|,

we get

|�mi � �i| <
p
✏

p
p
,

and thus,
X

i2I

|�mi � �i|2 < ✏,

for all m � N . Since the above holds for every finite subset I of K, by
Proposition A.1(2), we get

X

k2K

|�mk � �k|2 < ✏,

for all m � N . This proves that (�mk ��k)k2K 2 `2(K) for all m � N , and
since `2(K) is a vector space and (�mk)k2K 2 `2(K) for all m � 1, we get
(�k)k2K 2 `2(K). However,

X

k2K

|�mk � �k|2 < ✏

for all m � N , means that the sequence (�mk)k2K converges to (�k)k2K 2
`2(K). The fact that the subspace consisting of sequences (zk)k2K such
that zk = 0 except perhaps for finitely many k is a dense subspace of `2(K)
is left as an easy exercise.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 830

830 Total Orthogonal Families in Hilbert Spaces

Remark: The subspace consisting of all sequences (zk)k2K such that zk =
0, except perhaps for finitely many k, provides an example of a subspace
which is not closed in `2(K). Indeed, this space is strictly contained in
`2(K), since there are countable sequences of nonnull elements in `2(K)
(why?).

We just need two more propositions before being able to prove that
every Hilbert space is isomorphic to some `2(K).

Proposition A.4. Let E be a Hilbert space, and (uk)k2K an orthogonal
family in E. The following properties hold:

(1) For every family (�k)k2K 2 `2(K), the family (�kuk)k2K is summable.
Furthermore, v =

P

k2K �kuk is the only vector such that ck = �k for
all k 2 K, where the ck are the Fourier coe�cients of v.

(2) For any two families (�k)k2K 2 `2(K) and (µk)k2K 2 `2(K), if v =
P

k2K �kuk and w =
P

k2K µkuk, we have the following equation, also
called Parseval identity:

hv, wi =
X

k2K

�kµk.

Proof. (1) The fact that (�k)k2K 2 `2(K) means that (|�k|2)k2K is
summable. The proof given in Proposition A.2 (3) applies to the family
(|�k|2)k2K (instead of (|ck|2)k2K), and yields the fact that (�kuk)k2K is
summable. Letting v =

P

k2K �kuk, recall that ck = hv, uki /kukk2. Pick
some k 2 K. Since h�,�i is continuous, for every ✏ > 0, there is some
⌘ > 0 such that

| hv, uki � hw, uki | < ✏kukk2

whenever

kv � wk < ⌘.

However, since for every ⌘ > 0, there is some finite subset I of K such that
�

�

�

v �
X

j2J

�juj

�

�

�

< ⌘

for every finite subset J of K such that I ✓ J , we can pick J = I [{k}
and letting w =

P

j2J �juj we get
�

�

�

�

�

�

hv, uki �
*

X

j2J

�juj , uk

+

�

�

�

�

�

�

< ✏kukk2.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 831

A.2. The Hilbert Space `2(K) and the Riesz–Fischer Theorem 831

However,

hv, uki = ckkukk2 and

*

X

j2J

�juj , uk

+

= �kkukk2,

and thus, the above proves that |ck � �k| < ✏ for every ✏ > 0, and thus,
that ck = �k.

(2) Since h�,�i is continuous, for every ✏ > 0, there are some ⌘
1

> 0
and ⌘

2

> 0, such that

| hx, yi | < ✏

whenever kxk < ⌘
1

and kyk < ⌘
2

. Since v =
P

k2K �kuk and w =
P

k2K µkuk, there is some finite subset I
1

of K such that
�

�

�

v �
X

j2J

�juj

�

�

�

< ⌘
1

for every finite subset J of K such that I
1

✓ J , and there is some finite
subset I

2

of K such that
�

�

�

w �
X

j2J

µjuj

�

�

�

< ⌘
2

for every finite subset J of K such that I
2

✓ J . Letting I = I
1

[I
2

, we get
�

�

�

�

�

*

v �
X

i2I

�iui, w �
X

i2I

µiui

+

�

�

�

�

�

< ✏.

Furthermore,

hv, wi =
*

v �
X

i2I

�iui +
X

i2I

�iui, w �
X

i2I

µiui +
X

i2I

µiui

+

=

*

v �
X

i2I

�iui, w �
X

i2I

µiui

+

+
X

i2I

�iµi,

since the ui are orthogonal to v�
P

i2I �iui and w�
P

i2I µiui for all i 2 I.
This proves that for every ✏ > 0, there is some finite subset I of K such
that

�

�

�

�

�

hv, wi �
X

i2I

�iµi

�

�

�

�

�

< ✏.

We already know from Proposition A.3 that (�kµk)k2K is summable, and
since ✏ > 0 is arbitrary we get

hv, wi =
X

k2K

�kµk.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 832

832 Total Orthogonal Families in Hilbert Spaces

The next proposition states properties characterizing Hilbert bases (to-
tal orthogonal families).

Proposition A.5. Let E be a Hilbert space, and let (uk)k2K be an orthog-
onal family in E. The following properties are equivalent:

(1) The family (uk)k2K is a total orthogonal family.
(2) For every vector v 2 E, if (ck)k2K are the Fourier coe�cients of v,

then the family (ckuk)k2K is summable and v =
P

k2K ckuk.
(3) For every vector v 2 E, we have the Parseval identity:

kvk2 =
X

k2K

|ck|2.

(4) For every vector u 2 E, if hu, uki = 0 for all k 2 K, then u = 0.

See Figure A.2.

E V = span(u)k

v
 form c = k

v, uk

uk
2 c k uk

k K
Σ
e

=

=

Fig. A.2 A schematic illustration of Proposition A.5. Since (u
k

)
k2K

is a Hilbert basis,
V = E. Then given a vector of E, if we form the Fourier coe�cients c

k

, then form the
Fourier series

P
k2K

c
k

u
k

, we are ensured that v is equal to its Fourier series.

Proof. The equivalence of (1), (2), and (3) is an immediate consequence
of Proposition A.2 and Proposition A.4.

(4) If (uk)k2K is a total orthogonal family and hu, uki = 0 for all k 2 K,
since u =

P

k2K ckuk where ck = hu, uki/kukk2, we have ck = 0 for all
k 2 K, and u = 0.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 833

A.2. The Hilbert Space `2(K) and the Riesz–Fischer Theorem 833

Conversely, assume that the closure V of (uk)k2K is di↵erent from E.
Then by Proposition 12.6, we have E = V �V ?, where V ? is the orthogonal
complement of V , and V ? is nontrivial since V 6= E. As a consequence,
there is some nonnull vector u 2 V ?. But then u is orthogonal to every
vector in V , and in particular,

hu, uki = 0

for all k 2 K, which, by assumption, implies that u = 0, contradicting the
fact that u 6= 0.

Remarks:

(1) If E is a Hilbert space and (uk)k2K is a total orthogonal family in E,
there is a simpler argument to prove that u = 0 if hu, uki = 0 for all
k 2 K based on the continuity of h�,�i. The argument is to prove
that the assumption implies that hv, ui = 0 for all v 2 E. Since h�,�i
is positive definite, this implies that u = 0. By continuity of h�,�i,
for every ✏ > 0, there is some ⌘ > 0 such that for every finite subset I
of K, for every family (�i)i2I , for every v 2 E,

�

�

�

�

�

hv, ui �
*

X

i2I

�iui, u

+

�

�

�

�

�

< ✏

whenever
�

�

�

v �
X

i2I

�iui

�

�

�

< ⌘.

Since (uk)k2K is dense in E, for every v 2 E, there is some finite subset
I of K and some family (�i)i2I such that

�

�

�

v �
X

i2I

�iui

�

�

�

< ⌘,

and since by assumption,
⌦

P

i2I �iui, u
↵

= 0, we get

|hv, ui| < ✏.

Since this holds for every ✏ > 0, we must have hv, ui = 0
(2) If V is any nonempty subset of E, the kind of argument used in the

previous remark can be used to prove that V ? is closed (even if V is
not), and that V ?? is the closure of V .

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 834

834 Total Orthogonal Families in Hilbert Spaces

We will now prove that every Hilbert space has some Hilbert basis.
This requires using a fundamental theorem from set theory known as Zorn’s
lemma, which we quickly review.

Given any set X with a partial ordering , recall that a nonempty
subset C of X is a chain if it is totally ordered (i.e., for all x, y 2 C, either
x y or y x). A nonempty subset Y of X is bounded i↵ there is some
b 2 X such that y b for all y 2 Y . Some m 2 X is maximal i↵ for every
x 2 X, m x implies that x = m. We can now state Zorn’s lemma. For
more details, see Rudin [Rudin (1987)], Lang [Lang (1993)], or Artin [Artin
(1991)].

Proposition A.6. (Zorn’s lemma) Given any nonempty partially ordered
set X, if every (nonempty) chain in X is bounded, then X has some max-
imal element.

We can now prove the existence of Hilbert bases. We define a partial
order on families (uk)k2K as follows: for any two families (uk)k2K1 and
(vk)k2K2 , we say that

(uk)k2K1 (vk)k2K2

i↵ K
1

✓ K
2

and uk = vk for all k 2 K
1

. This is clearly a partial order.

Proposition A.7. Let E be a Hilbert space. Given any orthogonal family
(uk)k2K in E, there is a total orthogonal family (ul)l2L containing (uk)k2K .

Proof. Consider the set S of all orthogonal families greater than or equal
to the family B = (uk)k2K . We claim that every chain in S is bounded.
Indeed, if C = (Cl)l2L is a chain in S, where Cl = (uk,l)k2K

l

, the union
family

(uk)k2S
l2L

K
l

, where uk = uk,l whenever k 2 Kl,

is clearly an upper bound for C, and it is immediately verified that it is an
orthogonal family. By Zorn’s Lemma A.6, there is a maximal family (ul)l2L

containing (uk)k2K . If (ul)l2L is not dense in E, then its closure V is strictly
contained in E, and by Proposition 12.6, the orthogonal complement V ?

of V is nontrivial since V 6= E. As a consequence, there is some nonnull
vector u 2 V ?. But then u is orthogonal to every vector in (ul)l2L, and we
can form an orthogonal family strictly greater than (ul)l2L by adding u to
this family, contradicting the maximality of (ul)l2L. Therefore, (ul)l2L is
dense in E, and thus it is a Hilbert basis.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 835

A.2. The Hilbert Space `2(K) and the Riesz–Fischer Theorem 835

Remark: It is possible to prove that all Hilbert bases for a Hilbert space
E have index sets K of the same cardinality. For a proof, see Bourbaki
[Bourbaki (1981)].

Definition A.4. A Hilbert space E is separable if its Hilbert bases are
countable.

At last, we can prove that every Hilbert space is isomorphic to some
Hilbert space `2(K) for some suitable K.

Theorem A.1. (Riesz–Fischer) For every Hilbert space E, there is some
nonempty set K such that E is isomorphic to the Hilbert space `2(K). More
specifically, for any Hilbert basis (uk)k2K of E, the maps f : `2(K) ! E
and g : E ! `2(K) defined such that

f ((�k)k2K) =
X

k2K

�kuk and g(u) =
�

hu, uki/kukk2
�

k2K
= (ck)k2K ,

are bijective linear isometries such that g � f = id and f � g = id.

Proof. By Proposition A.4 (1), the map f is well defined, and it is clearly
linear. By Proposition A.2 (3), the map g is well defined, and it is also
clearly linear. By Proposition A.2 (2b), we have

f(g(u)) = u =
X

k2K

ckuk,

and by Proposition A.4 (1), we have

g(f ((�k)k2K)) = (�k)k2K ,

and thus g � f = id and f � g = id. By Proposition A.4 (2), the linear map
g is an isometry. Therefore, f is a linear bijection and an isometry between
`2(K) and E, with inverse g.

Remark: The surjectivity of the map g : E ! `2(K) is known as the
Riesz–Fischer theorem.

Having done all this hard work, we sketch how these results apply to
Fourier series. Again we refer the readers to Rudin [Rudin (1987)] or Lang
[Lang (1996, 1997)] for a comprehensive exposition.

Let C(T) denote the set of all periodic continuous functions f : [�⇡,⇡] !
C with period 2⇡. There is a Hilbert space L2(T) containing C(T) and such
that C(T) is dense in L2(T), whose inner product is given by

hf, gi =
Z ⇡

�⇡

f(x)g(x)dx.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 836

836 Total Orthogonal Families in Hilbert Spaces

The Hilbert space L2(T) is the space of Lebesgue square-integrable periodic
functions (of period 2⇡).

It turns out that the family (eikx)k2Z is a total orthogonal family in
L2(T), because it is already dense in C(T) (for instance, see Rudin [Rudin
(1987)]). Then the Riesz–Fischer theorem says that for every family (ck)k2Z
of complex numbers such that

X

k2Z
|ck|2 < 1,

there is a unique function f 2 L2(T) such that f is equal to its Fourier
series

f(x) =
X

k2Z
cke

ikx,

where the Fourier coe�cients ck of f are given by the formula

ck =
1

2⇡

Z ⇡

�⇡

f(t)e�iktdt.

The Parseval theorem says that

+1
X

k=�1
ckdk =

1

2⇡

Z ⇡

�⇡

f(t)g(t)dt

for all f, g 2 L2(T), where ck and dk are the Fourier coe�cients of f and g.
Thus, there is an isomorphism between the two Hilbert spaces L2(T)

and `2(Z), which is the deep reason why the Fourier coe�cients “work.”
Theorem A.1 implies that the Fourier series

P

k2Z cke
ikx of a function f 2

L2(T) converges to f in the L2-sense, i.e., in the mean-square sense. This
does not necessarily imply that the Fourier series converges to f pointwise!
This is a subtle issue, and for more on this subject, the reader is referred
to Lang [Lang (1996, 1997)] or Schwartz [Schwartz (1993a,b)].

We can also consider the set C([�1, 1]) of continuous functions
f : [�1, 1] ! C. There is a Hilbert space L2([�1, 1]) containing C([�1, 1])
and such that C([�1, 1]) is dense in L2([�1, 1]), whose inner product is given
by

hf, gi =
Z

1

�1

f(x)g(x)dx.

The Hilbert space L2([�1, 1]) is the space of Lebesgue square-integrable
functions over [�1, 1]. The Legendre polynomials Pn(x) defined in Example

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 837

A.3. Summary 837

5 of Section 11.2 (Chapter 11, Vol. I) form a Hilbert basis of L2([�1, 1]).
Recall that if we let fn be the function

fn(x) = (x2 � 1)n,

Pn(x) is defined as follows:

P
0

(x) = 1, and Pn(x) =
1

2nn!
f (n)
n (x),

where f (n)
n is the nth derivative of fn. The reason for the leading coe�cient

is to get Pn(1) = 1. It can be shown with much e↵orts that

Pn(x) =
X

0kn/2

(�1)k
(2(n� k))!

2n(n� k)!k!(n� 2k)!
xn�2k.

A.3 Summary

The main concepts and results of this chapter are listed below:

• Hilbert space
• Orthogonal family, total orthogonal family.
• Hilbert basis.
• Fourier coe�cients.
• Hamel bases, Schauder bases.
• Fourier series.
• Cauchy family, summable family.
• Bessel inequality.
• The Hilbert space `2(K).
• Parseval identity.
• Zorn’s lemma.
• Riesz–Fischer theorem.
• Legendre polynomials.

A.4 Problems

Problem A.1. Prove that the subspace consisting of sequences (zk)k2K

such that zk = 0 except perhaps for finitely many k is a dense suspace of
`2(K).

Problem A.2. If V is any nonempty subset of E, prove that V ? is closed
(even if V is not) and that V ?? is the closure of V (see the remarks following
Proposition A.5).

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 838

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 839

Appendix B

Matlab Programs

B.1 Hard Margin (SVMh2)

The following Matlab programs implement the method described in Section
16.7.

The first program is the heart of the method; it implements ADMM for
quadratic programming.

function [x,u,nr,ns,k] = qsolve1(P, q, A, b, rho, tolr, tols,

iternum)

% Solve a quadratic programming problem

% min (1/2) x^T P x + x^T q + r

% subject to Ax = b, x >= 0 using ADMM

% P n x n, q, r, in R^n, A m x n, b in R^m

% A of rank m

m = size(A,1); fprintf(’m = %d ’,m)

n = size(P,1); fprintf(’ n = %d \n’,n)

u = ones(n,1); u(1,1) = 0; % to initialize u

z = ones(n,1); % to initialize z

% iternum = maximum number of iterations;

% iternum = 80000 works well

k = 0; nr= 1; ns = 1;

% typically tolr = 10^(-10); tols = 10^(-10);

% Convergence is controlled by the norm nr of the primal

% residual r

% and the norm ns of the dual residual s

while (k <= iternum) && (ns > tols || nr > tolr)

839

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 840

840 Matlab Programs

z0 = z;

k = k+1;

% Makes KKT matrix

KK = [P + rho* eye(n) A’; A zeros(m,m)];

% Makes right hand side of KKT equation

bb = [-q + rho*(z - u); b];

% Solves KKT equation

xx = KK\bb;

% update x, z, u (ADMM update steps)

x = xx(1:n);

z = poslin(x + u);

u = u + x - z;

% to test stopping criterion

r = x - z; % primal residual

nr = sqrt(r’*r); % norm of primal residual

s = rho*(z - z0); % dual residual

ns = sqrt(s’*s); % norm of dual residual

end

end

The second program SBVMhard2 implements hard margin SVM (v2).

function [lamb,mu,w] = SVMhard2(rho,u,v)

%

% Runs hard margin SVM version 2

%

% p green vectors u_1, ..., u_p in n x p array u

% q red vectors v_1, ..., v_q in n x q array v

%

% First builds the matrices for the dual program

%

p = size(u,2); q = size(v,2); n = size(u,1);

[A,c,X,Pa,qa] = buildhardSVM2(u,v);

%

% Runs quadratic solver

%

tolr = 10^(-10); tols = 10^(-10); iternum = 80000;

[lam,U,nr,ns,kk] = qsolve1(Pa, qa, A, c, rho, tolr, tols,

iternum);

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 841

B.1. Hard Margin (SVM
h2) 841

fprintf(’nr = %d ’,nr)

fprintf(’ ns = %d \n’,ns)

fprintf(’kk = %d \n’,kk)

if kk > iternum

fprintf(’** qsolve did not converge. Problem

not solvable ** \n’)

end

w = -X*lam;

nw = sqrt(w’*w); % norm of w

fprintf(’nw = %.15f \n’,nw)

delta = 1/nw;

fprintf(’delta = %.15f \n’,delta)

if delta < 10^(-9)

fprintf(’** Warning, delta too small, program

does not converge ** \n’)

end

%

lamb = lam(1:p,1);

mu = lam(p+1:p+q,1);

b = 0;

tols = 10^(-10);

% tols < lambda_i; finds the nonzero lambda_i

[lambnz,numsvl1] = countmlu2(lamb,tols);

% tols < mu_i; finds the nonzero mu_j

[munz,numsvm1] = countmlv2(mu,tols);

fprintf(’numsvl1 = %d ’,numsvl1)

fprintf(’ numsvm1 = %d \n’,numsvm1)

if numsvl1 > 0 && numsvm1 > 0

sx1 = zeros(n,1); num1 = 0;

sx2 = zeros(n,1); num2 = 0;

for i = 1:p

if lambnz(i) > 0

sx1 = sx1 + u(:,i);

num1 = num1 + 1;

end

end

for j = 1:q

if munz(j) > 0

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 842

842 Matlab Programs

sx2 = sx2 + v(:,j);

num2 = num2 + 1;

end

end

b = (w’*(sx1/num1 + sx2/num2))/2;

fprintf(’b = %.15f \n’,b)

else

fprintf(’** Not enough support vectors ** \n’)

end

if n == 2

[ll,mm] = showdata(u,v);

if numsvl1 > 0 && numsvm1 > 0

showSVMs2(w,b,1,ll,mm,nw)

end

end

end

The function buildhardSVM2 builds the constraint matrix and the ma-
trices defining the quadratic functional.

function [A,c,X,Xa,q] = buildhardSVM2(u,v)

% builds the matrix of constraints A for

% hard SVM h2, and the right hand side c

% Aso builds X and Xa = X’*X, and the vector q = -1_{p+q}

% for the linear part of the quadratic function

% The right-hand side is c = 0 (Ax = 0).

p = size(u,2); q = size(v,2);

A = [ones(1,p) -ones(1,q)];

c = 0;

X = [-u v];

Xa = X’*X;

q = -ones(p+q,1);

end

The function countmlu2 returns a vector consisting of those �i such
that �i > 0, and the number of such �i.

function [lambnz, mlu] = countmlu2(lambda,tols)

% Counts the number of points u_i (in u)

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 843

B.1. Hard Margin (SVM
h2) 843

% such that lambda_i > 0 and returns a vector

% of these lambda_i

% tols = 10^(-11);

p = size(lambda,1); lambnz = zeros(p,1);

mlu = 0;

for i = 1:p

if lambda(i) > tols

mlu = mlu + 1;

lambnz(i) = lambda(i);

end

end

end

The function countmlv2 returns a vector consisting of those µj such
that µj > 0, and the number of such µj . It is similar to countmlu2. Here a
judicious choice of tols is crucial and one has to experiment with various
values.

The function showdata displays the data points (the ui and the vj) and
the function showSVMs2 displays the separating line and the two margin
lines.

function showSVMs2(w,b,eta,ll,mm,nw)

%

% Function to display the result of running SVM

% on p blue points u_1, ..., u_p in u

% and q red points v_1, ..., v_q in v

l = makeline(w,b,ll,mm,nw); % makes separating line

lm1 = makeline(w,b+eta,ll,mm,nw); % makes blue margin line

lm2 = makeline(w,b-eta,ll,mm,nw); % makes red margin line

% plots separating line

plot(l(1,:),l(2,:),’-m’,’LineWidth’,1.2)

% plots blue margin line

plot(lm1(1,:),lm1(2,:),’-b’,’LineWidth’,1.2)

% plots red margin line

plot(lm2(1,:),lm2(2,:),’-r’,’LineWidth’,1.2)

hold off

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 844

844 Matlab Programs

end

Actually, implementing the above function is not entirely trivial. It is
necessary to write a function makeline to plot the line segment which is
part of the line of equation w

1

x+w
2

y = b inside a box containing the data
points. We leave the details an exercises.

B.2 Soft Margin SVM (SVMs20)

The following Matlab programs implement the method described in Section
18.8.

The function doSVMs2pbv3 calls the function solve1 given in Section
16.7.

function [lamb,mu,alpha,beta,lambnz,munz,numsvl1,numsvm1,badnu,

w,nw,b,eta] = doSVMs2pbv3(nu,rho,u,v,K)

%

% Best version

% Uses the duality gap to compute eta

% In principle, needs a single support vector of type 1

%

% Soft margin nu-SVM version s2’

% with the constraint

% \sum_{i = 1}^p + \sum_{j = 1}^q mu_j = K_m

% (without the variable gamma)

%

% p green vectors u_1, ..., u_p in n x p array u

% q red vectors v_1, ..., v_q in n x q array v

%

% First builds the matrices for the dual program

% K is a scale factor

%

p = size(u,2); q = size(v,2); n = size(u,1);

[A,c,X,Pa,qa] = buildSVMs2pb(nu,u,v,K);

%

% Runs quadratic solver

%

tolr = 10^(-10); tols = 10^(-10); iternum = 80000;

[x,U,nr,ns,kk] = qsolve1(Pa, qa, A, c, rho, tolr, tols, iternum);

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 845

B.2. Soft Margin SVM (SVM
s20) 845

fprintf(’nr = %d ’,nr)

fprintf(’ ns = %d \n’,ns)

fprintf(’kk = %d \n’,kk)

noconv = 0;

if kk > iternum

noconv = 1;

fprintf(’** qsolve did not converge. Problem

not solvable ** \n’)

end

lam = x(1:(p+q),1);

alpha = x((p+q+1):2*p+q,1);

beta = x(2*p+q+1:2*(p+q),1);

w = -X*lam;

nw = sqrt(w’*w); % norm of w

fprintf(’nw = %d \n’,nw)

%

lamb = x(1:p,1);

mu = x(p+1:p+q,1);

tols = 10^(-10); tolh = 10^(-9);

% tols < lambda_i < K - tolh

[lambnz,numsvl1] = findpsv2(lamb,K,tols,tolh);

% tols < mu_i < K - tolh

[munz,numsvm1] = findpsv2(mu,K,tols,tolh);

fprintf(’numsvl1 = %d ’,numsvl1)

fprintf(’ numsvm1 = %d \n’,numsvm1)

% lambda_i >= K - tolh

% number of blue margin failures

[lamK,pf] = countumf2(lamb,K,tolh);

% mu_j >= K - tolh

% number of red margin failures

[muK,qf] = countvmf2(mu,K,tolh);

fprintf(’pf = %d ’,pf)

fprintf(’ qf = %d \n’,qf)

% number of points such that lambda_i > tols

[~,pm] = countmlu2(lamb,tols);

% number of points such that mu_i > tols

[~,qm] = countmlv2(mu,tols);

fprintf(’pm = %d ’,pm)

fprintf(’ qm = %d \n’,qm)

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 846

846 Matlab Programs

fprintf(’p - pm = %d ’,p - pm)

fprintf(’ q - qm = %d \n’,q - qm)

lnu = max(2*pf/(p+q),2*qf/(p+q));

unu = min(2*pm/(p+q),2*qm/(p+q));

fprintf(’lnu = %d ’,lnu)

fprintf(’ unu = %d \n’,unu)

if nu < lnu

fprintf(’** Warning; nu is too small ** \n’)

else

if nu > unu

fprintf(’** Warning; nu is too big ** \n’)

end

end

sx1 = zeros(n,1); num1 = 0;

sKu = zeros(n,1); Knum1 = 0;

for i = 1:p

if lambnz(i) > 0

sx1 = sx1 + u(:,i);

num1 = num1 + 1;

end

if lamK(i) > 0

sKu = sKu + u(:,i);

Knum1 = Knum1 + 1;

end

end

% Knum1

sx2 = zeros(n,1); num2 = 0;

sKv = zeros(n,1); Knum2 = 0;

for j = 1:q

if munz(j) > 0

sx2 = sx2 + v(:,j);

num2 = num2 + 1;

end

if muK(j) > 0

sKv = sKv + v(:,j);

Knum2 = Knum2 + 1;

end

end

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 847

B.2. Soft Margin SVM (SVM
s20) 847

% Knum2

b = 0; eta = 0;

epsilon = 0; xi = 0;

P2 = X’*X;

badnu = 0;

if numsvl1 > 0

if numsvm1 > 0

b = (w’*(sx1/num1 + sx2/num2))/2;

fprintf(’b = %.15f \n’,b)

eta = (w’*(sx1/num1 - sx2/num2))/2;

fprintf(’eta = %.15f \n’,eta)

else

errterm = w’*(sKv - sKu) + (pf - qf)*w’*(sx1/num1);

Pterm = (1/K)*(lam’*P2*lam);

denomqf = (p+q)*nu -2*qf;

fprintf(’denomqf = %.15f \n’,denomqf)

if denomqf > 0

eta = (errterm + Pterm)/denomqf;

fprintf(’eta = %.15f \n’,eta)

b = -eta + w’*sx1/num1;

else

badnu = 1;

fprintf(’** Warning: numsvl1 > 0,

numsvm1 = 0 and nu = 2*qf/(p+q) ** \n’)

end

end

else

if numsvm1 > 0

errterm = w’*(sKv - sKu) + (pf - qf)*w’*(sx2/num2);

Pterm = (1/K)*(lam’*P2*lam);

denompf = (p+q)*nu -2*pf;

fprintf(’denompf = %.15f \n’,denompf)

if denompf > 0

eta = (errterm + Pterm)/denompf;

fprintf(’eta = %.15f \n’,eta)

b = eta + w’*sx2/num2;

else

badnu = 1;

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 848

848 Matlab Programs

fprintf(’** Warning: numsvm1 > 0,

numsvl1 = 0 and nu = 2*pf/(p+q) ** \n’)

end

else

fprintf(’** Not enough support vectors ** \n’)

end

end

Km = (p+q)*nu*K;

fprintf(’K = %.15f ’,K)

fprintf(’ (p+q)*nu*Ks/2 = %.15f \n’,Km/2)

fprintf(’sum(lambda) = %.15f ’,sum(lamb))

fprintf(’ sum(mu) = %.15f \n’,sum(mu))

if (numsvl1 > 0 || numsvm1 > 0) && badnu == 0

if eta < 10^(-9)

fprintf(’** Warning, eta too small or negative ** \n’)

eta = 0;

end

delta = eta/nw;

fprintf(’delta = %.15f \n’,delta)

tolxi = 10^(-10);

% tols < lambda_i < K - tolh or K - tolh <= lambda_i

% and epsilon_i < tolxi

[lamsv,psf,epsilon] = findsvl2(lamb,w,b,u,eta,K,tols,

tolh,tolxi);

% tols < mu_i < K - tolh or K - tolh <= mu_i

% and xi_i < tolxi

[musv,qsf,xi] = findsvm2(mu,w,b,v,eta,K,tols,tolh,tolxi);

fprintf(’psf = %d ’,psf)

fprintf(’ qsf = %d \n’,qsf)

fprintf(’pf - psf = %d ’,pf - psf)

fprintf(’ qf - qsf = %d \n’,qf - qsf)

% computes eta from the duality gap

errterm = w’*(sKv - sKu) + (pf - qf)*b;

Pterm = (1/K)*(lam’*P2*lam);

denom = (p+q)*nu - pf -qf;

fprintf(’denom = %.15f \n’,denom)

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 849

B.2. Soft Margin SVM (SVM
s20) 849

if denom > 0

eta1 = (errterm + Pterm)/denom;

fprintf(’eta1 = %.15f \n’,eta1)

end

end

end

The constraint matrix and the matrices defining the quadratic program
are constructed by the function buildSVMs2pb.

function [A,c,X,Pa,q] = buildSVMs2pb(nu,u,v,K)

% builds the matrix of constraints A for

% soft margin nu-SVM s2’

% with the constraint

% \sum_{i = 1}^p + \sum_{j = 1}^q mu_j = K_m

% (without the variable gamma) and the right-hand side c

% u: vector of p blue points (each an n-dim vector)

% v: vector of q red points (each an n-dim vector)

% builds the matrix X = [-u_1 ... -u_p v1 v_q]

% and the matrix Pa as 2(p+q) matrix obtained

% by augmenting X’*X with zeros

% K is a scale factor (K = Ks)

p = size(u,2); q = size(v,2);

% Ks = 1/(p+q);

Ks = K; Km = (p+q)*K*nu;

A = [ones(1,p) -ones(1,q) zeros(1,p+q);

ones(1,p) ones(1,q) zeros(1,p+q) ;

eye(p) zeros(p,q) eye(p) zeros(p,q);

zeros(q,p) eye(q) zeros(q,p) eye(q)];

c = [0; Km; Ks*ones(p+q,1)];

X = [-u v];

XX = X’*X;

Pa = [XX zeros(p+q,p+q); zeros(p+q, 2*(p+q))];

q = zeros(2*(p+q),1);

end

The function findpsv2 makes a vector of �i (and µj) corresponding to
support vectors of type 1.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 850

850 Matlab Programs

function [lampsv,num] = findpsv2(lambda,K,tols,tolh)

%

% This function find the vector of

% lambda_i’s such that 0 < lambda_i < K

% and the number of such lambda_i.

%

% tols = 10^(-11); % the smaller this is, the larger

% the number of points on the margin

% tolh = 10^(-9); %

m = size(lambda,1); lampsv = zeros(m,1);

num = 0;

for i = 1:m

if lambda(i) > tols && lambda(i) < K - tolh

lampsv(i) = lambda(i);

num = num + 1;

end

end

end

The function countumf2 finds those �i such that �i = K.

function [lamK,mf] = countumf2(lambda,K,tolh)

% Counts the number of margin failures, that is,

% points u_i (in u) such that lambda_i = K

p = size(lambda,1);

mf = 0; lamK = zeros(p,1);

for i = 1:p

if lambda(i) >= K - tolh

mf = mf + 1;

lamK(i) = lambda(i);

end

end

end

Similarly, the function countvmf2 finds those µj such that µj = K.
The function countmlu2 finds those �i such that �i > 0.

function [lambnz, mlu] = countmlu2(lambda,tols)

% Counts the number of points u_i (in u)

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 851

B.2. Soft Margin SVM (SVM
s20) 851

% such that lambda_i > 0 and returns a vector

% of these lambda_i

% tols = 10^(-11);

p = size(lambda,1); lambnz = zeros(p,1);

mlu = 0;

for i = 1:p

if lambda(i) > tols

mlu = mlu + 1;

lambnz(i) = lambda(i);

end

end

end

Similarly, the function countmlv2 finds those µj such that µj > 0. The
function findsvl2 finds the �i corresponding to blue support vectors of
type 1 and 2 and the error vector ✏. The number of blue errors is psf
(the ui for which ✏i > 0). Similarly the function findsvm2 finds the µj

corresponding to red support vectors of type 1 and 2 and the error vector
⇠. The number of red errors is qsf (the vj for which ⇠j > 0).

The main function runSVMs2pbv3 calls doSVMs2pbv3 and displays the
separating line (or plane) and the two margin lines (or planes).

function [lamb,mu,alpha,beta,lambnz,munz,w]

= runSVMs2pbv3(nu,rho,u,v,K)

%

% Best version

% Uses the duality gap to compute eta

% In principle, needs a single support vector of type 1

%

% Runs soft margin nu-SVM version s2’

% with the constraint

% \sum_{i = 1}^p + \sum_{j = 1}^q mu_j = K_m

% (without the variable gamma)

%

% p green vectors u_1, ..., u_p in n x p array u

% q red vectors v_1, ..., v_q in n x q array v

%

% First builds the matrices for the dual program

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 852

852 Matlab Programs

% K is a scale factor

%

p = size(u,2); q = size(v,2); n = size(u,1);

[lamb,mu,alpha,beta,lambnz,munz,numsvl1,numsvm1,badnu,w,

nw,b,eta] = doSVMs2pbv3(nu,rho,u,v,K);

if n == 2

[ll,mm] = showdata(u,v);

if (numsvl1 > 0 || numsvm1 > 0) && badnu == 0

showSVMs2(w,b,eta,ll,mm,nw)

end

else

if n == 3

showpointsSVM(u,v)

if (numsvl1 > 0 || numsvm1 > 0) && badnu == 0

offset = 10;

C1 = [1 0 1]; % magenta

plotplaneSVM(u,v,w,b,offset,C1)

C2 = [0 0 1]; % blue

plotplaneSVM(u,v,w,b+eta,offset,C2)

C3 = [1,0,0]; % red

plotplaneSVM(u,v,w,b-eta,offset,C3)

end

axis equal

view([-1 -1 1]);

xlabel(’X’,’fontsize’,14);ylabel(’Y’,’fontsize’,14);

zlabel(’Z’,’fontsize’,14);

hold off

end

end

end

B.3 Soft Margin SVM (SVMs3)

The following Matlab programs implement the method described in Section
18.12. The main function doSVMs3b is given below.

function [lamb,mu,alpha,beta,lambnz,munz,lamK,muK,w,b,eta,

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 853

B.3. Soft Margin SVM (SVM
s3) 853

nw,fail] = doSVMs3b (nu,rho,u,v,K)

%

% Soft margin nu-SVM version s3

%

% Computes eta using the duality gap

% Needs a single support vector of type 1

%

% p green vectors u_1, ..., u_p in n x p array u

% q red vectors v_1, ..., v_q in n x q array v

%

% First builds the matrices for the dual program

% K is a scale factor

%

p = size(u,2); q = size(v,2); n = size(u,1);

[A,c,X,P2,Pa,qa] = buildSVMs3b (nu,u,v,K);

%

% Runs quadratic solver

%

tolr = 10^(-10); tols = 10^(-10); iternum = 80000;

[x,U,nr,ns,kk] = qsolve1(Pa, qa, A, c, rho, tolr, tols,

iternum);

fprintf(’nr = %d ’,nr)

fprintf(’ ns = %d ’,ns)

fprintf(’ kk = %d \n’,kk)

noconv = 0;

if kk > iternum

noconv = 1;

fprintf(’** qsolve did not converge. Problem

not solvable ** \n’)

end

lam = x(1:(p+q),1);

alpha = x((p+q+1):2*p+q,1);

beta = x(2*p+q+1:2*(p+q),1);

w = -X*lam;

nw = sqrt(w’*w); % norm of w

fprintf(’nw = %d \n’,nw)

lamb = x(1:p,1);

mu = x(p+1:p+q,1);

b = -(sum(lamb) - sum(mu));

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 854

854 Matlab Programs

fprintf(’b = %.15f \n’,b)

%

tols = 10^(-10); tolh = 10^(-9);

% tols < lambda_i < K - tolh

[lambnz,numsvl1] = findpsv2(lamb,K,tols,tolh);

% tols < mu_i < K - tolh

[munz,numsvm1] = findpsv2(mu,K,tols,tolh);

fprintf(’numsvl1 = %d ’,numsvl1)

fprintf(’ numsvm1 = %d \n’,numsvm1)

% lambda_i >= K - tolh

% number of blue margin failures

[lamK,pf] = countumf2(lamb,K,tolh);

% mu_j >= K - tolh

% number of red margin failures

[muK,qf] = countvmf2(mu,K,tolh);

fprintf(’pf = %d ’,pf)

fprintf(’ qf = %d \n’,qf)

% number of points such that lambda_i > tols

[~,pm] = countmlu2(lamb,tols);

% number of points such that mu_i > tols

[~,qm] = countmlv2(mu,tols);

fprintf(’pm = %d ’,pm)

fprintf(’ qm = %d \n’,qm)

fprintf(’p - pm = %d ’,p - pm)

fprintf(’ q - qm = %d \n’,q - qm)

lnu = (pf + qf)/(p+q); unu = (pm + qm)/(p+q);

fprintf(’lnu = %d ’,lnu)

fprintf(’ unu = %d \n’,unu)

if nu < lnu

fprintf(’** Warning; nu is too small ** \n’)

else

if nu > unu

fprintf(’** Warning; nu is too big ** \n’)

end

end

sx1 = zeros(n,1); num1 = 0;

sKu = zeros(n,1); Knum1 = 0;

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 855

B.3. Soft Margin SVM (SVM
s3) 855

for i = 1:p

if lambnz(i) > 0

sx1 = sx1 + u(:,i);

num1 = num1 + 1;

end

if lamK(i) > 0

sKu = sKu + u(:,i);

Knum1 = Knum1 + 1;

end

end

% Knum1

sx2 = zeros(n,1); num2 = 0;

sKv = zeros(n,1); Knum2 = 0;

for j = 1:q

if munz(j) > 0

sx2 = sx2 + v(:,j);

num2 = num2 + 1;

end

if muK(j) > 0

sKv = sKv + v(:,j);

Knum2 = Knum2 + 1;

end

end

% Knum2

% computes eta from the duality gap

errterm = w’*(sKv - sKu) + (pf - qf)*b;

Pterm = (1/K)*(lam’*P2*lam);

denom = (p+q)*nu - pf -qf;

fprintf(’denom = %.15f \n’,denom)

epsilon = 0; xi = 0;

if denom > 0

eta = (errterm + Pterm)/denom;

fprintf(’eta = %.15f \n’,eta)

if eta < 10^(-10)

fprintf(’** Warning; eta is too small

or negative ** \n’)

end

tolxi = 10^(-10);

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 856

856 Matlab Programs

% tols < lambda_i < K - tolh or K - tolh <= lambda_i

% and epsilon_i < tolxi

[lamsv,psf,epsilon] = findsvl2(lamb,w,b,u,eta,K,tols,

tolh,tolxi);

% tols < mu_i < K - tolh or K - tolh <= mu_i

% and xi_i < tolxi

[musv,qsf,xi] = findsvm2(mu,w,b,v,eta,K,tols,tolh,tolxi);

fprintf(’psf = %d ’,psf)

fprintf(’ qsf = %d \n’,qsf)

fprintf(’pf - psf = %d ’,pf - psf)

fprintf(’ qf - qsf = %d \n’,qf - qsf)

else

eta = 0;

denom = 0;

fprintf(’** Warning, nu = (pf + qf)/(p+q) ** \n’)

end

Km = (p+q)*nu*K;

fprintf(’K = %.15f ’,K)

fprintf(’ (p+q)*nu*Ks = %.15f \n’,Km)

fprintf(’sum(lambda) + sum(mu)= %.15f \n’,sum(lamb) + sum(mu))

eta1 = 0;

if numsvl1 > 0 || numsvm1 > 0

if numsvl1 > numsvm1

eta1 = w’*sx1/num1 - b;

else

eta1 = b - w’*sx2/num2;

end

fprintf(’eta1 = %.15f \n’,eta1)

else

fprintf(’** Warning: not enough support vectors ** \n’)

end

if denom == 0

if numsvl1 > 0 || numsvm1 > 0

eta = eta1;

fail = 0;

else

fail = 1;

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 857

B.3. Soft Margin SVM (SVM
s3) 857

fprintf(’** Warning, denom = 0 and

not enough support vectors ** \n’)

end

else

fail = 0;

end

end

The main function doSVMs3b is executed by the following function:

function [lamb,mu,alpha,beta,lambnz,munz,w]

= runSVMs3b(nu,rho,u,v,K)

%

% Runs soft margin nu-SVM version s3

%

% Computes eta using the duality gap

% Needs a single support vector of type 1

%

% p green vectors u_1, ..., u_p in n x p array u

% q red vectors v_1, ..., v_q in n x q array v

%

% First builds the matrices for the dual program

% K is a scale factor

%

p = size(u,2); q = size(v,2); n = size(u,1);

[lamb,mu,alpha,beta,lambnz,munz,lamK,muK,w,b,eta,nw,fail]

= doSVMs3b(nu,rho,u,v,K);

if n == 2

[ll,mm] = showdata(u,v);

if fail == 0

showSVMs2(w,b,eta,ll,mm,nw)

end

else

if n == 3

showpointsSVM(u,v)

if fail == 0

offset = 10;

C1 = [1 0 1]; % magenta

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 858

858 Matlab Programs

plotplaneSVM(u,v,w,b,offset,C1)

C2 = [0 0 1]; % blue

plotplaneSVM(u,v,w,b+eta,offset,C2)

C3 = [1,0,0]; % red

plotplaneSVM(u,v,w,b-eta,offset,C3)

end

axis equal

% axis([ll(1) mm(1) ll(2) mm(2)]);

view([-1 -1 1]);

xlabel(’X’,’fontsize’,14);ylabel(’Y’,’fontsize’,14);

zlabel(’Z’,’fontsize’,14);

hold off

end

end

end

The function buildSVMs3b builds the constraint matrix and the matri-
ces defining the quadratic program.

function [A,c,X,P2,Pa,q] = buildSVMs3b(nu,u,v,K)

% builds the matrix of constraints A for

% soft margin nu-SVM s3 and the right-hand side c

% u: vector of p blue points (each an n-dim vector)

% v: vector of q red points (each an n-dim vector)

% builds the matrix X = [-u_1 ... -u_p v1 v_q]

% and the matrix Xa as 2(p+q) matrix obtained

% by augmenting X’*X with zeros

% K is a scale factor (K = Ks)

p = size(u,2); q = size(v,2);

% Ks = 1/(p+q);

Ks = K; Km = (p+q)*K*nu;

A = [ones(1,p) ones(1,q) zeros(1,p+q) ;

eye(p) zeros(p,q) eye(p) zeros(p,q);

zeros(q,p) eye(q) zeros(q,p) eye(q)];

c = [Km; Ks*ones(p+q,1)];

X = [-u v];

XX1 = X’*X;

XX2 = [ones(p,1)*ones(p,1)’ -ones(p,1)*ones(q,1)’;

-ones(q,1)*ones(p,1)’ ones(q,1)*ones(q,1)’];

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 859

B.4. ⌫-SV Regression 859

P2 = XX1 + XX2;

Pa = [P2 zeros(p+q,p+q); zeros(p+q, 2*(p+q))];

q = zeros(2*(p+q),1);

end

B.4 ⌫-SV Regression

g The main function donuregb is given below.

function

[lamb,mu,alpha,beta,lambnz,munz,lamK,muK,numsvl1,numsvm1,w,

epsilon,b] = donuregb (rho,nu,X,y,C)

%

% Soft margin nu-regression

% with the constraint

% \sum_{i = 1}^m + \sum_{j = 1}^m mu_j = C nu

% (Without the variable gamma)

%

% Input: an m x n matrix of data points represented as

% as the rows of X, and y a vector in R^n

%

% First builds the matrices for the dual program

% C is a scale factor

%

m = size(X,1); n = size(X,2);

[A,c,P,Pa,qa] = buildnuregb(nu,X,y,C);

%

% Runs quadratic solver

%

tolr = 10^(-10); tols = 10^(-10); iternum = 80000;

[x,U,nr,ns,kk] = qsolve1(Pa, qa, A, c, rho, tolr, tols,

iternum);

% fprintf(’nr = %d ’,nr)

% fprintf(’ ns = %d \n’,ns)

fprintf(’nr = %d’,nr)

fprintf(’ ns = %d’,ns)

fprintf(’ kk = %d \n’,kk)

noconv = 0;

if kk > iternum

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 860

860 Matlab Programs

noconv = 1;

fprintf(’** qsolve did not converge. Problem

not solvable ** \n’)

end

lamb = x(1:m,1);

mu = x(m+1:2*m,1);

alpha = x((2*m+1):3*m,1);

beta = x(3*m+1:4*m,1);

w = X’*(mu - lamb);

%

b = 0; epsilon = 0;

tols = 10^(-10); tolh = 10^(-9);

% tols < lambda_i < C/m - tolh

[lambnz,numsvl1] = findpsv2(lamb,C/m,tols,tolh);

% tols < mu_i < C/m - tolh

[munz,numsvm1] = findpsv2(mu,C/m,tols,tolh);

fprintf(’numsvl1 = %d’,numsvl1)

fprintf(’ numsvm1 = %d \n’,numsvm1)

% lambda_i >= C/m - tolh

% number of blue margin failures

[lamK,pf] = countumf2(lamb,C/m,tolh);

% mu_j >= C/m - tolh

% number of red margin failures

[muK,qf] = countvmf2(mu,C/m,tolh);

fprintf(’pf = %d’,pf)

fprintf(’ qf = %d \n’,qf)

% number of points such that lambda_i > tols

[~,pm] = countmlu2(lamb,tols);

% number of points such that mu_i > tols

[~,qm] = countmlv2(mu,tols);

fprintf(’pm = %d’,pm)

fprintf(’ qm = %d \n’,qm)

% lambda_i <= tols

[lmz,nz] = countLzero(lamb,mu,tols);

pm2 = numsvl1 + pf; qm2 = numsvm1 + qf;

fprintf(’pm2 = %d’,pm2)

fprintf(’ qm2 = %d \n’,qm2)

lnu = max(2*pf/m,2*qf/m); unu = min(2*pm/m,2*qm/m);

fprintf(’lnu = %d’,lnu)

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 861

B.4. ⌫-SV Regression 861

fprintf(’ unu = %d \n’,unu)

fprintf(’nz = %d \n’,nz)

if nu < lnu

fprintf(’** Warning; nu is too small ** \n’)

else

if nu > unu

fprintf(’** Warning; nu is too big ** \n’)

end

end

fprintf(’C/m = %.15f ’,C/m)

fprintf(’ (C nu)/2 = %.15f \n’,(C*nu)/2)

fprintf(’sum(lambda) = %.15f ’,sum(lamb))

fprintf(’ sum(mu) = %.15f \n’,sum(mu))

lamsv = 0; musv = 0; xi = 0; xip = 0;

if numsvl1 > 0 && numsvm1 > 0

sx1 = zeros(n,1); sy1 = 0; num1 = 0;

sx2 = zeros(n,1); sy2 = 0; num2 = 0;

for i = 1:m

if lambnz(i) > 0

sx1 = sx1 + X(i,:)’; sy1 = sy1 + y(i);

num1 = num1 + 1;

end

if munz(i) > 0

sx2 = sx2 + X(i,:)’; sy2 = sy2 + y(i);

num2 = num2 + 1;

end

end

% num1

% num2

b = (sy1/num1 + sy2/num2 - w’*(sx1/num1 + sx2/num2))/2;

fprintf(’b = %.15f \n’,b)

epsilon = (w’*(sx1/num1 - sx2/num2)

+ sy2/num2 - sy1/num1)/2;

fprintf(’epsilon = %.15f \n’,epsilon)

if epsilon < 10^(-10)

fprintf(’** Warning; epsilon is too small

or negative ** \n’)

end

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 862

862 Matlab Programs

nw = sqrt(w’*w); % norm of w

fprintf(’nw = %.15f \n’,nw)

%

tolxi = 10^(-10);

% tols < lambda_i < C/m - tolh or C/m - tolh <= lambda_i

% and xi_i < tolxi

[lamsv,psf,xi] = findnuregsvl2(lamb,w,b,X,y,epsilon,C/m,

tols,tolh,tolxi);

% tols < mu_i < C/m - tolh or C/m - tolh <= mu_i

% and xi_i’ < tolxi

[musv,qsf,xip] = findnuregsvm2(mu,w,b,X,y,epsilon,C/m,tols,

tolh,tolxi);

fprintf(’psf = %d ’,psf)

fprintf(’ qsf = %d \n’,qsf)

else

fprintf(’** Not enough support vectors ** \n’)

end

end

To run donuregb use the function runuregb listed below.

function [lamb,mu,alpha,beta,lambnz,munz,lamK,muK,w]

= runuregb (rho,nu,X,y,C)

%

% Runs soft margin nu-regression

% with the constraint

% \sum_{i = 1}^m + \sum_{j = 1}^m mu_j = C nu

% (Without the variable gamma)

%

% Input: an m x n matrix of data points represented as

% as the rows of X, and y a vector in R^n

%

% First builds the matrices for the dual program

% C is a scale factor

%

m = size(X,1); n = size(X,2);

[lamb,mu,alpha,beta,lambnz,munz,lamK,muK,numsvl1,numsvm1,w,

epsilon,b] = donuregb(rho,nu,X,y,C);

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 863

B.4. ⌫-SV Regression 863

if n == 1

[ll,mm] = showgraph(X,y);

ww = [w;-1]; n1 = sqrt(ww’*ww);

if numsvl1 > 0 && numsvm1 > 0

showSVMs2(ww,-b,epsilon,ll,mm,n1)

end

else

if n == 2

offset = 10;

[ll,mm] = showpoints(X,y,offset);

if numsvl1 > 0 && numsvm1 > 0

showplanes(w,b,ll,mm,epsilon)

end

axis equal

axis([ll(1) mm(1) ll(2) mm(2)]);

view([-1 -1 1]);

xlabel(’X’,’fontsize’,14);ylabel(’Y’,’fontsize’,14);

zlabel(’Z’,’fontsize’,14);

end

end

end

The function buildnuregb creates the constraint matrix and the ma-
trices defining the quadratic functional.

function [A,c,P,Pa,qa] = buildnuregb (nu,X,y,C)

% builds the matrix of constraints A for

% soft margin nu-regression

% with the constraint

% \sum_{i = 1}^m + \sum_{j = 1}^m mu_j = C nu

% (without the variable gamma)

% and the right-hand side c.

% Input: an m x n matrix X of data points represented as

% as the rows of X, and y a vector in R^n.

% builds the m x m matrix X*X^T, the 2m x 2m matrix

% P = [X*X^T -X*X^T; -X*X^T X*X^T],

% and the matrix Pa as the 4m x 4m matrix obtained

% by augmenting with zeros.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 864

864 Matlab Programs

% Also builds the vector q_a (q augmented with zeros).

% C is a scale factor.

m = size(X,1); n = size(X,2);

% Ks = 1/(p+q);

Ks = C; Km = C*nu;

A = [ones(1,m) -ones(1,m) zeros(1,2*m);

ones(1,m) ones(1,m) zeros(1,2*m) ;

eye(m) zeros(m,m) eye(m) zeros(m,m);

zeros(m,m) eye(m) zeros(m,m) eye(m)];

c = [0; Km; (Ks/m)*ones(2*m,1)];

XX1 = X*X’;

P = [XX1 -XX1; -XX1 XX1];

Pa = [P zeros(2*m,2*m); zeros(2*m, 4*m)];

qa = [y; -y; zeros(2*m,1)];

end

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 865

Bibliography

Abraham, R. and Marsden, J. E. (1978). Foundations of Mechanics, 2nd edn.
(Addison Wesley).

Apostol, T. (1974). Analysis, 2nd edn. (Addison Wesley).
Arnold, V. (1989). Mathematical Methods of Classical Mechanics, 2nd edn., GTM

No. 102 (Springer Verlag).
Artin, M. (1991). Algebra, 1st edn. (Prentice Hall).
Avez, A. (1991). Calcul Di↵érentiel, 1st edn. (Masson).
Berger, M. (1990a). Géométrie 1 (Nathan), english edition: Geometry 1, Univer-

sitext, Springer Verlag.
Berger, M. (1990b). Géométrie 2 (Nathan), english edition: Geometry 2, Univer-

sitext, Springer Verlag.
Berger, M. and Gostiaux, B. (1992). Géométrie di↵érentielle: variétés, courbes et

surfaces, 2nd edn., Collection Mathématiques (Puf), english edition: Dif-
ferential geometry, manifolds, curves, and surfaces, GTM No. 115, Springer
Verlag.

Bertsekas, D. P. (2009). Convex Optimization Theory, 1st edn. (Athena Scientific).
Bertsekas, D. P. (2015). Convex Optimization Algorithms, 1st edn. (Athena Sci-

entific).
Bertsekas, D. P. (2016). Nonlinear Programming, 3rd edn. (Athena Scientific).
Bertsekas, D. P., Nedić, A., and Ozdaglar, A. E. (2003). Convex Analysis and

Optimization, 1st edn. (Athena Scientific).
Bertsekas, D. P. and Tsitsiklis, J. N. (1997). Parallel and Distributed Computa-

tion: Numerical Methods, 1st edn. (Athena Scientific).
Bertsimas, D. and Tsitsiklis, J. N. (1997). Introduction to Linear Optimization,

3rd edn. (Athena Scientific).
Bishop, C. M. (2006). Pattern Recognition and Machine Learning, 1st edn., In-

formation Science and Statistics (Springer).
Bourbaki,

N. (1981). Espaces Vectoriels Topologiques, Eléments de Mathématiques
(Masson).

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2010). Distributed
optimization and statistical learning via the alternating direction method of

865

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 866

866 Bibliography

multiplier, Foundations and Trends in Machine Learning 3(1), pp. 1–122.
Boyd, S. and Vandenberghe, L. (2004). Convex Optimization, 1st edn. (Cambridge

University Press).
Bredon, G. E. (1993). Topology and Geometry, 1st edn., GTM No. 139 (Springer

Verlag).
Brezis, H. (2011). Functional Analysis, Sobolev Spaces and Partial Di↵erential

Equations, 1st edn., Universitext (Springer-Verlag).
Cartan, H. (1990). Cours de Calcul Di↵érentiel, Collection Méthodes (Hermann).
Chang, C.-C. and Chih-Jen, L. (2001). Training ⌫-support vector classifiers: The-

ory and algorithms, Neural Computation 13, pp. 2119–2147.
Choquet-Bruhat, Y., DeWitt-Morette, C., and Dillard-Bleick, M. (1982). Analy-

sis, Manifolds, and Physics, Part I: Basics, 1st edn. (North-Holland).
Chvatal, V. (1983). Linear Programming, 1st edn. (W.H. Freeman).
Ciarlet, P. (1989). Introduction to Numerical Matrix Analysis and Optimization,

1st edn. (Cambridge University Press), french edition: Masson, 1994.
Cour, T. and Shi, J. (2007). Solving markov random fields with spectral relax-

ation, in M. Meila and X. Shen (eds.), Artifical Intelligence and Statistics
(Society for Artificial Intelligence and Statistics).

Demmel, J. W. (1997). Applied Numerical Linear Algebra, 1st edn. (SIAM Pub-
lications).

Dixmier, J. (1984). General Topology, 1st edn., UTM (Springer Verlag).
do Carmo, M. P. (1976). Di↵erential Geometry of Curves and Surfaces (Prentice

Hall).
do Carmo, M. P. (1992). Riemannian Geometry, 2nd edn. (Birkhäuser).
Faugeras, O. (1996). Three-Dimensional Computer Vision, A geometric View-

point, 1st edn. (the MIT Press).
Foley, J., van Dam, A., Feiner, S., and Hughes, J. (1993). Computer Graphics.

Principles and Practice, 2nd edn. (Addison-Wesley).
Gabay, D. (1983). Applications of the method of multipliers to variational in-

equalities, Studies in Mathematics and Applications 15(C), pp. 299–331.
Gallier, J. H. (2011). Geometric Methods and Applications, For Computer Science

and Engineering, 2nd edn., TAM, Vol. 38 (Springer).
Gallier, J. H. (2016). Notes on Convex Sets, Polytopes, Polyhedra, Combinato-

rial Topology, Voronoi Diagrams, and Delaunay Triangulations, Tech. rep.,
University of Pennsylvania, CIS Department, Philadelphia, PA 19104, book
in Preparation.

Gander, W., Golub, G. H., and von Matt, U. (1989). A constrained eigenvalue
problem, Linear Algebra and its Applications 114/115, pp. 815–839.

Golub, G. H. (1973). Some modified eigenvalue problems, SIAM Review 15(2),
pp. 318–334.

Gray, A. (1997). Modern Di↵erential Geometry of Curves and Surfaces, 2nd edn.
(CRC Press).

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 2nd edn. (Springer).

Hastie, T., Tibshirani, R., and Wainwright, M. (2015). Statistical Learning with
Sparsity. The Lasso and Generalizations, 1st edn. (CRC Press).

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 867

Bibliography 867

Helgason, S. (2000). Groups and Geometric Analysis. Integral Geometry, Invari-
ant Di↵erential Operators and Spherical Functions, 1st edn., MSM, Vol. 83
(AMS).

Higham, N. J. (2008). Functions of Matrices. Theory and Computation, 1st edn.
(SIAM).

Horn, R. A. and Johnson, C. R. (1990). Matrix Analysis, 1st edn. (Cambridge
University Press).

Jain, R., Katsuri, R., and Schunck, B. G. (1995). Machine Vision, 1st edn.
(McGraw-Hill).

Kolmogorov, A. and Fomin, S. (1975). Introductory Real Analysis, 1st edn.
(Dover).

Kreyszig, E. (1991). Di↵erential Geometry, 1st edn. (Dover).
Lang, S. (1993). Algebra, 3rd edn. (Addison Wesley).
Lang, S. (1995). Di↵erential and Riemannian Manifolds, 3rd edn., GTM No. 160

(Springer Verlag).
Lang, S. (1996). Real and Functional Analysis, 3rd edn., GTM 142 (Springer

Verlag).
Lang, S. (1997). Undergraduate Analysis, 2nd edn., UTM (Springer Verlag).
Lax, P. (2007). Linear Algebra and Its Applications, 2nd edn. (Wiley).
Luenberger, D. G. (1997). Optimization by Vector Space Methods, 1st edn. (Wi-

ley).
Luenberger, D. G. and Ye, Y. (2016). Linear and Nonlinear Programming, 4th

edn. (Verlag).
Matousek, J. and Gartner, B. (2007). Understanding and Using Linear Program-

ming, 1st edn., Universitext (Springer Verlag).
Metaxas, D. N. (1997). Physics-Based Deformable Models, 1st edn. (Kluwer Aca-

demic Publishers).
Milnor, J. W. (1969). Topology from the Di↵erentiable Viewpoint, 2nd edn. (The

University Press of Virginia).
Molla, T. (2015). Class notes, math 588 example 5, Tech. rep.,

http://myweb.usf.edu/molla/2015 spring math588/example5.pdf.
Munkres, J. R. (1991). Analysis on Manifolds (Addison Wesley).
Munkres, J. R. (2000). Topology, 2nd edn. (Prentice Hall).
Papadimitriou, C. H. and Steiglitz, K. (1998). Combinatorial Optimization. Al-

gorithms and Complexity, 1st edn. (Dover).
Rockafellar, R. T. (1970). Convex Analysis, Princeton Landmarks in Mathematics

(Princeton University Press).
Rudin, W. (1987). Real and Complex Analysis, 3rd edn. (McGraw Hill).
Rudin, W. (1991). Functional Analysis, 2nd edn. (McGraw Hill).
Schölkopf, B., Platt, J. C., Shawe-Taylor, J., and Smola, A. J. (2001). Estimating

the support of a high-dimensional distribution, Neural Computation 13,
pp. 1443–1471.

Schölkopf, B. and Smola, A. J. (2002). Learning with Kernels, 1st edn. (MIT
Press).

Schölkopf, B., Smola, A. J., Williamson, R. C., and Bartlett, P. L. (2000). New
support vector algorithms, Neural Computation 12, pp. 1207–1245.

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 868

868 Bibliography

Schrijver, A. (1999). Theory of Linear and Integer Programming, 1st edn. (Wiley).
Schwartz, L. (1980). Topologie Générale et Analyse Fonctionnelle, Collection En-

seignement des Sciences (Hermann).
Schwartz, L. (1991). Analyse I. Théorie des Ensembles et Topologie, Collection

Enseignement des Sciences (Hermann).
Schwartz, L. (1992). Analyse II. Calcul Di↵érentiel et Equations Di↵érentielles,

Collection Enseignement des Sciences (Hermann).
Schwartz, L. (1993a). Analyse III. Calcul Intégral, Collection Enseignement des

Sciences (Hermann).
Schwartz, L. (1993b). Analyse IV. Applications à la Théorie de la Mesure, Col-

lection Enseignement des Sciences (Hermann).
Seifert, H. and Threlfall, W. (1980). A Textbook of Topology, 1st edn. (Academic

Press).
Shawe-Taylor, J. and Cristianini, N. (2004). Kernel methods for Pattern Analysis,

1st edn. (Cambridge University Press).
Stoker, J. (1989). Di↵erential Geometry, 1st edn., Wiley Classics (Wiley-

Interscience).
Strang, G. (1986). Introduction to Applied Mathematics, 1st edn. (Wellesley-

Cambridge Press).
Strang, G. (2019). Linear Algebra and Learning from Data, 1st edn. (Wellesley-

Cambridge Press).
Trefethen, L. and Bau III, D. (1997). Numerical Linear Algebra, 1st edn. (SIAM

Publications).
Trucco, E. and Verri, A. (1998). Introductory Techniques for 3D Computer Vision,

1st edn. (Prentice-Hall).
Vanderbei, R. J. (2014). Linear Programming: Foundations and Extensions, 4th

edn. (Springer).
Vapnik, V. N. (1998). Statistical Learning Theory, 1st edn. (Wiley).
Warner, F. (1983). Foundations of Di↵erentiable Manifolds and Lie Groups, 1st

edn., GTM No. 94 (Springer Verlag).
Yu, S. X. and Shi, J. (2001). Grouping with bias, in T. G. Dietterich, S. Becker,

and Z. Ghahramani (eds.), Neural Information Processing Systems, Van-
couver, Canada, 3-8 Dec. 2001 (MIT Press).

Ziegler, G. (1997). Lectures on Polytopes, 1st edn., GTM No. 152 (Springer Ver-
lag).

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 869

Index

A-conjugate, see conjugate vectors,
see conjugate vectors

C

0-function, 90
C

1-function, 90
C

1-function, 104
C

m-di↵eomorphism, 104
C

m-function, 104
T2-separation axiom, see Hausdor↵
argmax

v2U

J(v), see maximizer
argmin

v2U

J(v), see minimizer
`

1-regularized regression, see lasso
✏-SV regression

dual program, 804
✏-SV regression, 804
✏-insensitive SV regression, 804
✏-subdi↵erential, 541
✏-subgradient, 541
ReLU, 534
a↵(S), see a�ne hull
conv(S), see convex hull
span(S), see linear span
⌫-SV regression

dual program, 780
kernel version

dual program, 803
⌫-SV regression version 2

dual program, 807
⌫-SV regression, 774

✏-slab, 774
best fit hyperplane, 773
blue margin, 773

error, 773
errors, 774
exceptional support vector, 783
fail the margin, 783
kernel version, 802
margin at most ✏, 783
outliers, 783
point classification, 781
red margin, 773
regression estimate, 794
standard margin hypothesis, 794
support vectors of type 1, 782

numsvl1, 782
numsvm1, 782

support vectors of type 2, 783
training data, 773
variant, 805

⌫-SV regression version
standard margin hypothesis, 809

⌫-SV regression version 2, 805
⌫-SVC, see SVM

s20653
⌫-SVM, see SVM

s20653
⌫-support vector regression, see ⌫-SV

regression
⌫-support vector machine, 665
H-cones, 415
H-polyhedron, 210

k-dimensional face, 228
edge, 228
facet, 228
vertex, 228

869

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 870

870 Index

H-polytope, 210
V-cone, 415
V-polyhedron, 212
k-dimensional face, 228
m-multilinear map

symmetric, 104
mth-order vector derivative, 105
(real) positive definite kernel, 610
‘Faà di Bruno’s formula, 111
“Little Riesz Theorem”, see Riesz

representation theorem

absolute value, 18
adjoint map, 335, 336
ADMM, see alternating direction

method of multipliers
a�ne combination, 206
a�ne constraints C>

x = t, 185, 189
a�ne extended real-valued function,

508
a�ne form, 208, 519

a�ne hyperplane, 208
a�ne hull, 206
a�ne hyperplane, 208, 519

half spaces, 208, 519
a�ne map, 76

associated linear map, 76
a�ne subspace, 134, 206

dimension, 206
direction, 206

agreement kernel, 607
alternating direction method of

multipliers, 571
convergence, 576
dual residual, 584
primal residual, 584
proximity operator, 585
residual, 573

alternating method of multipliers
scaled form, 574

analytic centering problem, 503
augmented Lagrangian, 566

penalty parameter, 566

Banach fixed point theorem, 64, 354
Banach space, 52

basis
topology, 32

basis pursuit, 594
ADMM form, 594

Bessel inequality, 821
bilinear map

continuous, 49
symmetric, 100

Boolean linear program, 504
bounded linear functional, 332
bounded linear operator, 332
Boyd and Vandenberghe, 171, 193,

196

Cauchy sequence, 52, 63, 318
chain rule, 78
characteristic function, 506
closed ball

metric space, 18
closed half–space, 134
closure of a set, 321
coercive, 345

bilinear form, 354
complementary slackness conditions,

426, 528
complete metric space, 52
computer graphics, 180
computer vision, 180
concave

extended real-valued function, 508
concave function, 134

strictly concave, 134
cone, 209, see cone with apex 0

polyhedral cone, 209, 337
primitive cone, 213
ray, 210

cone of feasible directions, 409
cone with apex 0, 408
cone with apex u, 408
conjugate function, 481, 562

convex quadratic, 482
exponential, 482
Fenchel’s inequality, 481
log-determinant, 483
log-sum-exp function, 484
negative entropy, 482

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 871

Index 871

negative logarithm, 481
norm function, 483
norm squared, 483
Young’s inequality, 481

conjugate gradient method, 381
error, 391
Fletcher–Reeves, 393
Polak–Ribière, 393
residual, 390

conjugate vectors, 383, 385
constrained local extremum

real-valued function, 120
constrained minimization problems,

173
constrained quadratic optimization

general case, 183
on the sphere, 187

constraint, 173
active, 415
inactive, 415
qualified, 417

convex function, 427
constraints, 218
continuous bilinear map, 49, 77
continuous function, 35

continuous at a, 34
metric space version, 36
normed vector space version, 36

continuous linear map, 45, 72
continuous on a subset, 35
continuous on the left, 43
continuous on the right, 43
contraction map, 62

Lipschitz constant, 62
contraction mapping, 63, 354
contraction mapping theorem, 63
converges weakly, 346
convex

extended real-valued function, 508
convex combination, 207
convex function, 133

strictly convex, 133
convex hull, 207

definition, 207
convex set, 133, 207

dimension, 207

extremal point, 208
normal cone, 522
normal vector, 522
support function, 533
supporting hyperplane, 521

critical point
nondegenerate, 132, 133
real-valued function, 117

dense set, 321
derivative

real-valued function, 68
derivative of linear map, 72, 76

derivative of inversion, 80
derivative on left

real-valued function, 69
derivative on right

real-valued function, 69
descent direction, 360
di↵eomorphism

global, 94
local, 94

di↵erentiable
at point, 72
real-valued function, 68

di↵erential, see derivative of linear
map

Dirac notation, 333
directional derivative, 70
disconnected, 24
distance, see metric

point and set, 276
dual ascent method, 562

method of multipliers, 566
parallel version, 565

dual feasibility equations, 435
dual norm, 375, 483
dual problem, 178, 455
dual space

Hilbert space, 332
duality gap, 464

edge, 228
e↵ective domain

extended real-valued function, 509
elastic net regression, 764

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 872

872 Index

dual program, 768
elliptic, 357
energy function, 169
entropy minimization, 487
epigraph, 134

extended real-valued function, 507
equilibrium equations, 175, 176
equilibrium theorem, see linear

programming, see linear
programming

equivalent metrics, 32
equivalent norm, 32
Euclidean metric, 18
Euclidean norm, 20
extended real-valued function, 344,

507
✏-subdi↵erential, 541
✏-subgradient, 541
inf f , 544
a�ne, 508
closed, 513
closure, 513
concave, 508
convex, 508

di↵erentiable, 537
proper, 511

e↵ective domain, 509
epigraph, 507
finite, 507
improper, 511
lower semi-continuous, 512
lower semi-continuous hull, 513
minimum set, 544
one-sided directional derivative,

532
polyhedral, 550
positively homogeneous, 533
proper, 511

continuous, 515
subdi↵erential, 523
subgradient, 523
sublevel sets, 512

facet, 228
Farkas lemma, 275, 423
Farkas–Minkowski, 274

Farkas–Minkowski lemma, 274, 337,
423

feasible start Newton method, 439
equality constraints, 439

feature embedding, see feature map
feature map, 601
feature space, 601, 750
Fenchel conjugate, see conjugate

function
Fourier coe�cient, 817
Fourier coe�cients, 320
Fourier series, 320, 818

Bessel inequality, 821
partial sum, 818

Fréchet derivative, see total
derivative, derivative of linear map

Frobenius norm, 75
frontier, see boundary

Gâteaux derivative, see directional
derivative

Gauss–Seidel method, 363
general `1-regularized loss

minimization, 595
ADMM form, 595

generalized Lagrange multipliers, 426,
458

generalized Lasso regularization, 596
ADMM form, 596

generalized mean value theorem, 106
generalized Newton method, 150
Golub, 187
gradient, 87, 110
gradient rf

u

, 346
gradient descent method, 364

backtracking lines search, 364
conjugate gradient method, 381
extrapolation, 374
fixed stepsize parameter, 364
momentum term, 376
Nesterov acceleration, 376
Newton descent, 377

feasible start, 439
infeasible start, 439
Newton decrement, 377
Newton step, 377

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 873

Index 873

Newton’s method, 378
damped Newton phase, 379
pure Newton phase, 379
quadratically convergent

phase, 379
normed steepest descent, 374, 375

`

1-norm, 376
`

2-norm, 375
Newton descent, 377
symmetric positive definite

matrix, 375
optimal stepsize parameter, 364
scaling, 374
variable stepsize parameter, 364

greatest lower bound, 342
group lasso, 596

Hadamard product, 611
Hamel bases, 818
Hard Margin Support Vector

Machine, 441
(SVM

h1), 443
solution, 443

(SVM
h1), 488

(SVM
h2), 445, 476
slab, 452

margin, 442
Hausdor↵ separation axiom, 24
Hausdor↵ space, 25
Hessian, 101, 110
Hessian r2

f

u

, 347
higher-order derivative, 103
Hilbert bases

separable, 835
Hilbert basis, 320, 817
Hilbert space, 318

`

2, 318
`

2(K), 827
L2(T), 836
L2([�1, 1]), 836
L2([a, b]), 319
adjoint map, 335, 336
dual space, 332
Hilbert basis, 320
orthogonal family, 817
orthonormal family, 817

Fourier coe�cient, 817, 818
parallelogram law, 321
Projection lemma, 322
projection lemma, 277
projection map p

X

: E ! X, 326
projection vector p

X

(u), 326
real, 318
Riesz representation theorem, 332
separable, 835
total orthogonal family, 817

properties, 832
homeomorphism, 39

global, 94
local, 94

Horn and Johnson, 195

immersion, 95
implicit function theorem, 92
indicator function, 506

subdi↵erential, 526
infeasible start Newton method, 439
intersection kernel, 607
inverse function theorem, 95
isolated point, 37
isometry, 55
isomorphism

linear map, 150

Jacobian, 83
Jacobian matrix, 83

Karush–Kuhn–Tucker conditions, 424
kernel function, 601, 602, 753

polynomial kernel, 606
kernel matrix, 619, 751
KKT conditions, see

Karush–Kuhn–Tucker conditions
KKT-matrix, 435
Krein and Milman’s theorem, 208
Kronecker product, 160
Krylov subspace, 391

Lagrange dual function, 461
Lagrange dual problem, 462
Lagrange multipliers, 121, 169

definition, 175

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 874

874 Index

Lagrangian, 121, 175, 430, 458
dual function, 176

Lagrangian dual, 455
Langrangian, 455
lasso regression, 753

lasso1, 753
lasso2, 754
lasso3, 757
lasso4, 760
dual Dlasso2, 755
dual Dlasso3, 758

lasso regularization, 595
ADMM form, 595

Lax–Milgram’s theorem, 356
learning problem, 735, 736

elastic net, 736
estimator, 736
labels, 736
lasso regression, 736
linear regression, 735
predictors, 735
responses, 736
ridge regression, 735
training data, 735
weight vector, 735, 736

least absolute deviation, 593
ADMM form, 594

least squares problem, 330
normal equations, 331

least upper bound, 343
Lebesgue square-integrable periodic

functions, see L2(T)
Legendre polynomial, 837
Legendre transform, see conjugate

function
lemniscate of Bernoulli, 39
limit for function

metric space, 42
normed vector space, 42

limit for functions, 41
line minimization, see line search
line search, 360

backtracking, 361
exact, 360
stepsize parameter, 360

linear combination, 206

linear constraints C>
x = 0, 184, 187

linear form, 206
linear hyperplane, 208
linear map

continuous, 45
linear program

restricted primal, 301
linear programming, 204, 431

basic column, 225
basic feasible solution, 224
basic index, 225
basic variables, 225
basis, 225, 238
complementary slackness

conditions, 290
cost function, 204
degenerate solution, 238
dual problem, 281

bounded below, 283
dual variables, 281
maximization form, 283

dual program
standard form, 291

dual simplex algorithm, 293
feasible solutions, 204, 219
full tableaux, 296
interior point method, 433
linear program, 217, 218

standard form, 222
unbounded, 220

objective function, 218
optimal solution, 205, 221, 249
primal problem, 281

primal variables, 281
primal-dual algorithm, 302
primal-dual method, 290
standard form, 431
strong duality, 283

equilibrium theorem, 289, 293
unbounded above, 249
weak duality, 283

linear regression, 735
linear separable, 440
linear span, 206
linear subspace, 206

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 875

Index 875

Lions–Stampacchia, 354
Lipschitz condition, 517
Lipschitz constant, 62, 354
Lipschitzian, see Lipschitz condition
little o notation, 74
local extremum

real-valued function, 116
local extremum with respect to U

real-valued function, 119
local homeomorphism, 94
local maximum

real-valued function, 116
local maximum with respect to U

real-valued function, 119
local minimum

real-valued function, 116
local minimum with respect to U

real-valued function, 119
log-determinant function, 135
lower bounds, 342

unbounded below, 342
lower semi-continuous, 512
lower semi-continuous hull, 513

matrix
positive definite, 131

matrix inversion lemma, 196
max function, 135
maximization problem, 455
maximizer, 344
maximum

real-valued function, 141
mean value theorem, 89

vector-valued function, 89
measurable space, 607
method of kernels, 625

feature map, 625
feature space, 625
kernel function, 625

method of multipliers, 566
method of relaxation, 362
metric, 17

discrete, 18
equivalent, 32
Euclidean, 18
subspace, 29

metric space, 17
bounded subset, 19
Cauchy sequence, 52, 318
closed ball, 18
closed set, 20, 321
complete, 52, 318
completion, 55
diameter of a set, 322
distance from a set, 322
isometry, 55
metric, 17
open ball, 18
open set, 20
sphere, 19
triangle inequality, 17

minimization of a quadratic function,
169

minimization problem, 454
dual problem, 455, 462, 474

dual feasible, 462
duality gap, 464
strong duality, 464
weak duality, 464

primal problem, 454, 462
minimizer, 343
minimum

real-valued function, 141
minimum set

extended real-valued function, 544

neighborhood, 35
Newton’s method, 147
Newton–Kantorovich theorem, 152,

155
nondegenerate, 132
norm, 19

`

p-norm, 20
bilinear map, 50
equivalent, 32
Euclidean, 20
linear map, 47
one-norm, 20
sup-norm, 20

normal cone, 522
normed vector space, 19

absolutely summable, 828

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 876

876 Index

Cauchy family, 818
completion, 61
summable family, 818

one-sided directional derivative, 532
connection to subgradient, 535

open ball
metric space, 18

optimization
constraints, 344
functional, 344
linear, see linear programming
nonlinear, 345

optimization problem
equality constraints, 120
feasible solution, 119
inequality constraints, 120

ordinary convex program, 551
dual function, 554
feasible solutions, 551
qualified constraint, 553
zero duality gap, 554

ordinary convex programs, 551

parametric curve, 84
parametric surface, 86
Parseval identity, 830
partial derivative, see directional

derivative
jth argument, 81

partial ordered set
maximal element, 834

partially ordered set
bounded, 834
chain, 834

penalized objective function, 396
penalty function, 396
polyhedral cone, 209, 337
polyhedral function, 550
polyhedron, see H-polyhedron
positive definite

symmetric matrix, 169, 170, 196
positive definite kernel, 608

Cauchy–Schwarz inequality, 610
Gaussian kernel, 615
Gram matrix, 608

pointwise product, 611
positive kernel, see positive definite

kernel
positive semidefinite

locally compact group, 618
symmetric matrix, 170, 198

positive semidefinite cone ordering,
171

potential energy, 179
preconditioning, 393
primal feasibility equations, 435
primal problem, 178, 454
principal component analysis

kernel version, 619, 621
kth kernel, 621
dual variable, 621

product rule, 80
product space

projection function, 37
product topology, 31
projected-gradient method with

variable stepsize parameter, 394
Projection lemma, 322
projection lemma

Hilbert space, 277
proper

extended real-valued function, 511
proximal minimization, 585
proximity operator, 585
pseudo-inverse, 181

quadratic constrained minimization
problem, 174

quadratic functional, 350
quadratic optimization

on the ellipsoid, 186
on the unit sphere, 185
the general case, 180
the positive definite case, 169

quadratic programming, see
quadratic optimization
ADMM form, 587

ramp function, see ReLU

real-valued function
constrained local extremum, 120

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 877

Index 877

critical point, 117
local extremum, 116
local extremum with respect to U ,

119
local maximum, 116
local maximum with respect to U ,

119
local minimum, 116
local minimum with respect to U ,

119
maximum in u, 141
maximum respect to U , 141
minimum in u, 141
minimum respect to U , 141
strict local maximum, 116
strict local minimum, 116
strict maximum in u, 141
strict maximum respect to U , 141
strict minimum in u, 141
strict minimum respect to U , 141

regular value, 126
relative boundary, 514
relative extremum, see local

maximum
relative interior, 513
relative maximum, see local

maximum
relative minimum, see local minimum
reproducing kernel Hilbert space, 615

reproducing property, 616
ridge regression

RR1, 737
RR3, 740
RR3b, 748
RR4, 743
RR5, 743
RR6, 743
RR6

0, 744
dual of RR3, 741
kernel, 750
kernel KRR6

0, 752
Riesz–Fischer theorem, 835
rigde regression

bias, 743
RKHS, see reproducing kernel

Hilbert space

Rolle’s theorem, 89

saddle point, 179, 456
Schauder bases, see total orthogonal

family
Schur, 193

complement, 193, 194
Schur product, 611
Schur’s trick, 196
Schwarz’s lemma, 100

generalization, 104
second-order derivative, 98
self-concordant

(partial) convex function, 380
self-concordant function

on R, 380
sequence, 40

convergence in metric space, 40
convergence normed vector space,

40
convergent, 40
limit, 40

sesquilinear map
continuous, 334

shrinkage operator, 593
simplex algorithm, 237, 247

computational e�ciency, 269
Hirsch conjecture, 269

cycling, 237, 252
eta factorization, 258
eta matrix, 258
full tableaux, 258

pivot element, 259
iteration step, 256
Phase I, 254
Phase II, 254
pivot rules, 251

Bland’s rule, 252
lexicographic rule, 252
random edge, 253
steepest edge, 253

pivot step, 250
pivoting step, 240, 247
reduced cost, 259
strong duality, 285

skew-Hermitian

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 878

878 Index

matrix, 187
skew-symmetric matrix, 187
slack variables, 223
Slater’s conditions, 428
smooth function, see C

1-function
smooth submanifold, 126

tangent space, 126
soft margin support vector machine,

see Soft Margin SVM
Soft Margin SVM, 624

SVM
s1

dual, 634
kernel dual, 642

SVM
s20

dual program, 658
kernel dual, 663

SVM
s2

dual program, 648
kernel dual, 651

SVM
s3

dual program, 686
kernel dual, 690

SVM
s4

dual program, 700
kernel dual, 707

SVM
s5, 710, 728
dual, 712
kernel dual, 714

SVM
s1, 627
kernel, 642
Standard Margin Hypothesis,

640
SVM

s20 , 653
box constraints, 657
exceptional support vectors,

659
fail the margin, 660
kernel, 663
margin at most �, 660
point classification, 658
Standard Margin Hypothesis,

655
strictly fail the margin, 661
support vectors, 659
support vectors type 1, 659
support vectors type 2, 659

SVM
s2l, 651

SVM
s2, 645
box constraints, 647
exceptional support vectors,

648
fail the margin, 649
kernel, 651
Standard Margin Hypothesis,

650
support vectors, 648

SVM
s3, 684
box constraints, 685
kernel, 690
standard margin hypothesis,

689
SVM

s4, 698
kernel, 706

SVM
s5

kernel, 713
(binary) classification function, 625
fail the margin, 637, 718
margin at most �, 718
misclassified point, 625
point classification, 635
Standard Margin Hypothesis, 630
support vectors, 636, 637, 718

type 1, 636, 718
type 2, 637

SVC algorithm, 625
Soft margin SVM

SVM
s1

box constraints, 632
soft thresholding operator, 593
sphere

metric space, 19
steepest descent direction

normalized, 375
unnormalize, 375

steepest descent method, 364
sti↵ness matrix, 176
strict local maximum

real-valued function, 116
strict local minimum

real-valued function, 116
strict maximum

real-valued function, 141

December 11, 2020 17:56 ws-book9x6 Fundamentals of Optimization Theory
With Applications to Machine Learning ws-book-II-9x6 page 879

Index 879

strict minimum
real-valued function, 141

strictly separating hyperplane, 274
subbasis, 33
subdi↵erential, 523
subgradient, 523

connection to one-sided directional
derivative, 535

subgradient inequality, 523
submersion, 95
subspace topology, 29
support function, 533
Support Vector Machine, 440, 623

class labels, 440
classification(separation) problem,

440
linear separable, 440
margin, 442
maximal margin hyperplane, 441
support vectors, 450
training data, 441

support vectors, 636, 659, 718
supporting hyperplane, 521
SVD, 181
SVM, see Support Vector Machine
Sylvester equation, 161
symmetric bilinear map, 100

Taylor’s formula
integral remainder, 108
Lagrange remainder, 106

Taylor–Maclaurin formula, 107
Taylor–Young formula, 106
tensor product, see Kronecker

product
topological space, 24

isolated point, 37
topology

basis, 32
boundary of a set, 26

closed set, 24
closure of a set, 25
definition, 23
discrete, 25
interior of a set, 26
open sets, 24
product, 31
subbasis, 33
subspace, 29

total derivative, see derivative of
linear map

total di↵erential, see total derivative,
derivative of linear map

triangle inequality, 17, 19
trust region, 402

unbounded below, see lower bounds
uniformly continuous, 45

extension, 52
union complement kernel, 607
unique global minimum, 170
unitary representation, 618
upper bounds, 342
Uzawa’s method, 496

variational inequalities, 354, 356
variational problem, 173
vector

sparsity, 753
vector derivative, 84
vector space

closed segment, 90
open segment, 90

velocity vector, 84
vertex, 228

weak duality, 283, 464
weakly compact, see converges weakly

Zorn’s lemma, 834

	Preface
	Introduction
	Preliminaries for Optimization Theory
	Topology
	Metric Spaces and Normed Vector Spaces
	Topological Spaces
	Subspace and Product Topologies
	Continuous Functions
	Limits and Continuity; Uniform Continuity
	Continuous Linear and Multilinear Maps
	Complete Metric Spaces and Banach Spaces
	Completion of a Metric Space
	Completion of a Normed Vector Space
	The Contraction Mapping Theorem
	Further Readings
	Summary
	Problems

	Differential Calculus
	Directional Derivatives, Total Derivatives
	Properties of Derivatives
	Jacobian Matrices
	The Implicit and The Inverse Function Theorems
	Second-Order and Higher-Order Derivatives
	Taylor's Formula, Faà di Bruno's Formula
	Further Readings
	Summary
	Problems

	Extrema of Real-Valued Functions
	Local Extrema and Lagrange Multipliers
	Using Second Derivatives to Find Extrema
	Using Convexity to Find Extrema
	Summary
	Problems

	Newton's Method and Its Generalizations
	Newton's Method for Real Functions of a Real Argument
	Generalizations of Newton's Method
	Summary
	Problems

	Quadratic Optimization Problems
	Quadratic Optimization: The Positive Definite Case
	Quadratic Optimization: The General Case
	Maximizing a Quadratic Function on the Unit Sphere
	Summary
	Problems

	Schur Complements and Applications
	Schur Complements
	SPD Matrices and Schur Complements
	SP Semidefinite Matrices and Schur Complements
	Summary
	Problems

	Linear Optimization
	Convex Sets, Cones, H-Polyhedra
	What is Linear Programming?
	Affine Subsets, Convex Sets, Hyperplanes, Half-Spaces
	Cones, Polyhedral Cones, and H-Polyhedra
	Summary
	Problems

	Linear Programs
	Linear Programs, Feasible Solutions, Optimal Solutions
	Basic Feasible Solutions and Vertices
	Summary
	Problems

	The Simplex Algorithm
	The Idea Behind the Simplex Algorithm
	The Simplex Algorithm in General
	How to Perform a Pivoting Step Efficiently
	The Simplex Algorithm Using Tableaux
	Computational Efficiency of the Simplex Method
	Summary
	Problems

	Linear Programming and Duality
	Variants of the Farkas Lemma
	The Duality Theorem in Linear Programming
	Complementary Slackness Conditions
	Duality for Linear Programs in Standard Form
	The Dual Simplex Algorithm
	The Primal-Dual Algorithm
	Summary
	Problems

	NonLinear Optimization
	Basics of Hilbert Spaces
	The Projection Lemma
	Duality and the Riesz Representation Theorem
	Farkas–Minkowski Lemma in Hilbert Spaces
	Summary
	Problems

	General Results of Optimization Theory
	Optimization Problems; Basic Terminology
	Existence of Solutions of an Optimization Problem
	Minima of Quadratic Functionals
	Elliptic Functionals
	Iterative Methods for Unconstrained Problems
	Gradient Descent Methods for Unconstrained Problems
	Convergence of Gradient Descent with Variable Stepsize
	Steepest Descent for an Arbitrary Norm
	Newton's Method For Finding a Minimum
	Conjugate Gradient Methods; Unconstrained Problems
	Gradient Projection for Constrained Optimization
	Penalty Methods for Constrained Optimization
	Summary
	Problems

	Introduction to Nonlinear Optimization
	The Cone of Feasible Directions
	Active Constraints and Qualified Constraints
	The Karush–Kuhn–Tucker Conditions
	Equality Constrained Minimization
	Hard Margin Support Vector Machine; Version I
	Hard Margin Support Vector Machine; Version II
	Lagrangian Duality and Saddle Points
	Weak and Strong Duality
	Handling Equality Constraints Explicitly
	Dual of the Hard Margin Support Vector Machine
	Conjugate Function and Legendre Dual Function
	Some Techniques to Obtain a More Useful Dual Program
	Uzawa's Method
	Summary
	Problems

	Subgradients and Subdifferentials
	Extended Real-Valued Convex Functions
	Subgradients and Subdifferentials
	Basic Properties of Subgradients and Subdifferentials
	Additional Properties of Subdifferentials
	The Minimum of a Proper Convex Function
	Generalization of the Lagrangian Framework
	Summary
	Problems

	Dual Ascent Methods; ADMM
	Dual Ascent
	Augmented Lagrangians and the Method of Multipliers
	ADMM: Alternating Direction Method of Multipliers
	Convergence of ADMM
	Stopping Criteria
	Some Applications of ADMM
	Solving Hard Margin (SVMh2) Using ADMM
	Applications of ADMM to 1-Norm Problems
	Summary
	Problems

	Applications to Machine Learning
	Positive Definite Kernels
	Feature Maps and Kernel Functions
	Basic Properties of Positive Definite Kernels
	Hilbert Space Representation of a Positive Kernel
	Kernel PCA
	Summary
	Problems

	Soft Margin Support Vector Machines
	Soft Margin Support Vector Machines; (SVMs1)
	Solving SVM (SVMs1) Using ADMM
	Soft Margin Support Vector Machines; (SVMs2)
	Solving SVM (SVMs2) Using ADMM
	Soft Margin Support Vector Machines; (SVMs2')
	Classification of the Data Points in Terms of (SVMs2')
	Existence of Support Vectors for (SVMs2')
	Solving SVM (SVMs2') Using ADMM
	Soft Margin Support Vector Machines; (SVMs3)
	Classification of the Data Points in Terms of (SVMs3)
	Existence of Support Vectors for (SVMs3)
	Solving SVM (SVMs3) Using ADMM
	Soft Margin SVM; (SVMs4)
	Solving SVM (SVMs4) Using ADMM
	Soft Margin SVM; (SVMs5)
	Solving SVM (SVMs5) Using ADMM
	Summary and Comparison of the SVM Methods
	Problems

	Ridge Regression, Lasso, Elastic Net
	Ridge Regression
	Ridge Regression; Learning an Affine Function
	Kernel Ridge Regression
	Lasso Regression (1-Regularized Regression)
	Lasso Regression; Learning an Affine Function
	Elastic Net Regression
	Summary
	Problems

	-SV Regression
	-SV Regression; Derivation of the Dual
	Existence of Support Vectors
	Solving -Regression Using ADMM
	Kernel -SV Regression
	-Regression Version 2; Penalizing b
	Summary
	Problems

	Appendix A Total Orthogonal Families in Hilbert Spaces
	Total Orthogonal Families, Fourier Coefficients
	The Hilbert Space 2(K) and the Riesz–Fischer Theorem
	Summary
	Problems

	Appendix B Matlab Programs
	Hard Margin (SVMh2)
	Soft Margin SVM (SVMs2')
	Soft Margin SVM (SVMs3)
	-SV Regression

	Bibliography
	Index

