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1 Equations for a Generic Point z;

We will compute the de Boor control points of a quintic spline C*-curve so that it passes
through N + 1 prescribed data points zg, ..., xy. We assume that we have N + 1 > 8 data
points, which means that N > 7. Our method is based on the approach in which the de
Boor control points of a B-spline curve are defined in terms of multiaffine maps, a method
also known as “blossoming.” We assume that the reader is familiar with this approach. A
thorough presentation is given in Gallier [1], Part II, especially Chapter 6.

We will compute de Boor control points based on the uniform knot sequence
00000, 00001, 00012, 00123, 01234, , 12345, 23456, - - - ,
N—4N—-3N—-2N—-1N,N-3N—-2N—-1NN,
N—-—2N—-1NNN, N-1NNNN, NNNNN.

We will denote the polar values f(uvwzxy) by d_o = f(00000) = zo, d_1 = f(00001),
do = f(00012), d; = f(00123),ds = f(01234), and more generally

di=f(i—2i—1ii+1i+2), 2<i<N-2
and ending with the polar values
f(N—=4N—-3N—-2N—-1N), f(N-=3N—-2N—-1NN), f(N—2N—-1NNN),
f(N—1NNNN), f(NNNNN),



with dy_y = f(N—=3N —2N —1NN),dy = f(N—2N — 1 NNN),
dys1 = f(N—=1NNNN), and dy» = f(NNNNN) = zy.

Consequently, there are N — 146 = N + 5 de Boor points denoted
ro =d_9,d_1,dy,dy,...,dn-1,dN,dNs1,dN2 = TN.

There are N — 1 equations corresponding to x1,...,xn_1, so the four de Boor points d_, dy,
dy,dyy1 are not prescribed by the equations, and are thus free parameters. With our
conventions, the spline curve consists of N > 7 quintic Bézier segments.

First, we compute the equation for a generic data point z;, with 4 < i < N — 4 (which

implies N > 8. To avoid notational complications with the indices, we show the computation
of f(44444) = x4:

£(01234)
4/5  f(12344)
£(12345) 3/4  f(23444)
3/5 f(23454) 2/3  f(34444)
£(23456) 2/4  f(34544) 1/2  f(44444).
2/5  f(34564) 1/3  f(45444)
£(34567) 1/4  f(45644)
1/5 f(45674)
F(45678)

A graphical illustration of f(44444) is shown in Figure 1.
Note that in addition to

1 2
f(34444) = §f(23444) + §f(34544)
2 1
f(45444) = §f(34544) + gf(45644),
we can also compute
2 1
f(33444) = §f(23444) + gf(34544)
1 2
f(5b444) = §f(34544) + gf(45644).
The polar values

£(33333), £(43333), f(44333), f(44433), f(44443), f(44444),

are the Bézier control points of the curve segment between x3 = f(33333) and x4 = f(44444),
and we see that we can compute the fourth and fifth Bézier control points f(33444), f(34444)



of the curve segment Cj between z3 and x4, as well as the second and third Bézier control
points f(54444), f(55444) of the curve segment C;5 between x4 and 5.

This is a general fact, and we organize the computation as follows. For any ¢ with
4 <1 < N —4 (N > 8), giVGIl di_Q, di—l; dz‘, di—i—l; di+2; we compute
1 g1 g g
dz’,Ov di,l? di,27 di,37
dz?,ou d?,lﬁ dzz,2>
3 33 13 3
dz’,Ov di,l? di,27 di,37
diy,
where d, d} | are the fourth and fifth Bézier control points of C; and d?,, d?, are the second

and third Bézier control points of C;y;. For example, if i = 4, then dio = f(33444),
43| = [(34444), d3, = f(54444), and d3 ; = f(55444).

We have
diy = ;dlgjt;ldl ]
d, = ?d,_l + ;’d
di, = gd +§dl+1
diy = §d1+1+édz+27
i = 4dso jjdsl
diy = 46131 4d32
By = iy + 7y
#y = §d30 3d$1
&, = 3d30 2,
@y = 3dzl i,
By = )+ 2y

and finally,
xi:dio ;d?l 2d?2-

3



Figure 1: Construction of a point on a quintic from five de Boor control points.

The construction of the point on the spline curve, dio, is illustrated in Figure 1.
We get

1 3
d?,o = Zdz{o + Zd},l
1/1 4 3/2 3
=—[ =d,_ —d;_ - =d;— —d;
4<5z2+5 1)+4(5 1+5)
1 1 9
= —di_o+ zd;_1 + —d;
20d 2+ 2d 1+ 20
1 10 9
= —di_o+ —d;i_1 + —d;,
5% T gpdi-tt o

2 2
d?,l - Zdil,l + Zdz{z

2/(2 3 2/(3 2
=2 Zdiy+2ds ) + 2 2di+ Zds
4(5 1+5 )—1-4(5 +5 +1)

1 3 1
= —di_1 + —d; + —di11,
5 i1 + 5 + 5 it



and

3 1
d?z = Zd},Q + Zdil,s

3(3 2 1/4 1
=1 <gdz + Sdi+l) + 1 (gdiﬂ + gdi+2,)

9 1 1
= " d. +=d —d
20 i + 9 i+1 + 20 142

9 10 1
— it —dyq + —diso.
50% T gt T g2

Next, we get

2 1
d?,o = gdio + §d22,1

2(1 1 9 1/1 3 1
= 2 srdia + sdiy + —di ) + 2 ( 2dicy + =i+ 2di,
3(20 2+2 1+20 )—1-3(5 1—|—5 +5 +1)

1 2 1 1
= —di g+ diy + Sdi+ —d;
502 T limt T gt pdin

1 12 15 2
= digt odiy o di+ d,
502 T g%t T 3% T gyt

1 2
d?,l - gd?,o + gdzz,l

171 1 9 2/(1 3 1
— (el =diy 4 i )+ = =diy + 2di + = d;
3(20 2+2 1+20 )+3(5 1+5 +5 +1)

1 3 119
it di s+ —d,
0“2 Tt T gt T gt

1 18 33 8
= @di—2 + @di—l + @di + @diﬂa

2 1
d?,z - gd?J + gd?,Q

2 (1 3.1 19, 1 1
— 2 Zdiy + 2d; + —d; —(=di+ =dips + —d;
3(5 1rEhT g +1)+3(20 %t og +2)

) 11 3 1
— i+ —di+ —di + —d;
1501 T gp%i i T o i

8 33 18 1
= —di1+ di+ —dis + —dipa,
60" T g% T gt T o i



1 2
d?,?, = gdil + gd?,z
1

3
1 1 2 1

= —diy + 5di + Fdigy + ——d;
1501 T g%t gl g dig

) 15 12 1
= Cd 4+ od S+ —diy.
301 T 3% T gt T g e

Finally, we obtain

3 5 5 20 2 20

1 1
d?,o = §d§,1 + §d?,2

2\60 10 20 15

1 13 11 13 1
— —di o+ —di 1+ s+ —diy + —d;
12042 T gt T gp®%i Tt ottt T gp i

1 26 66 26 1
= Ton%i- —rdic1+ —oo-di + —=d; —rdit2,
120d 2+120d 1 190 T g0t T g i

and since x; = dj,, we get the equation

1 26 66 26 1
T = Eodifz + mdifl + 1_20d" + EOdiH + HodFFZ'

2\ 15 20 10

2 Equations for the Second Data Point x;

We now consider the first segment C of the spline curve. We compute f(11111) = zy:

£(00001)
1/2  f(00011)
£(00012) 1/2 f(00111)
1/3  f£(00121) 1/2  f(01111)

£(00123) 1/3 f(01121) 1/2  f(11111).

1/4 f(01231) 1/3  f(11211)
£(01234) 1/4 f(12311)
1/5 f(12341)
£(12345)
Given d_1, dy, dy, dy, d3, we compute
d%,m d%,lv diQ? d%,?ﬂ
d%,w d%,lv di%
d?,o = d?,l? dzl)),Zv di&

4
dl,O

1/1 3 1 2(9 1
=3 (‘dil + -di + —di+1) + 3 (_di + 5dit1 + 5-digo

1/1 3 11 2 1/ 2 11 3 1
=3 <_di—2 +—di-1 + ~di + —dz‘+1) +5 <—d¢—1 + —di + —dip1+ —diy2

60

)



This case is exceptional and the Bézier control points of the first segment are xq,d_q, dio,
3y, d3 o, 21. The points d} ,, d} 5 are the second and third control points of Cj.

We compute

1
2 1
3 1
diy = Zdi + 7ds
4 1
d2 d1 + 1d1
1,0 — 1,0 1,1
di, = 3d%  + 3d

1 1
§ﬁp+§ﬁJ

2 1
d?,z = gd%J + gd%g

3
d1,1 =

1 2
dzl)),:a - gd%,l + gd%,z

and finally,
1 1
§ﬁ4+§£3

1/1 1 1/2 1
2 — —| — — — | — —

1 7
= 7d- 1+Ed0+6d1

2

_—d 1+Ed0+12d

2(2 1 1/3 1
dil =3 (gdo + §d1) + 3 (Zdl + ZdQ)

4
T = d170 —

We have



4\4 4 5 )

9 31 1
= Zd 4+ Zdy+ —d
16 T g™ T 5"

3(3 1 1/4 1
d%g =7 <—d1 + —dz) + 1 (_dQ + —d3)

45 31 4
= 2+ Zdy+ —d
50 T g™ T gt

then

1/ 3 7 2 1/16 17 3
3 3
= = — —_— _ — — —_— —_— — _d
dl,O d171 2(12d 1 "‘ 12d0+ 12d1) + 2(36d0+ 36d1+ 36 2)

1 37 23
= gd—1 + —=do + =

1
o+ 5dh 55

9 37 93 3
A RO A5 AL
Tl o+ pdit o ds,

2/16 , 17 3 1/45, 31 4
3= —dy+ —d + —d | =dy + =dy + —d
e 3(360+36 1™ ) Talge™ TR T ™

8 217 133 1
= g+ tdy + —2dy + —d
570t g3 M T 7™ g™

_ 640 L1085, 399 36
2160 0 " 2160 * T 2160 % " 2160

d37

1/16, 17 3 2/45 31 4
Bo==(=do+ —di+ —dy | + 2 —=dy + Zdo + —d
1.3 3(360+361+36 2)+3<801+802+803)

4 115 . 103 1

= —do+ ——dy + ——dy + —d

27" T 216 T 360™ T 30™

—160d+575d+309d+ 36
~ 1080 Y 1080 T 1080 2 T 1080

Finally,

1/1 37 23 1 1/8 217 133 1
do=ocdo + Sdy+ ody 4 —dy ) + = —=do + ondy 4 —ody + —d
o 2(8d 1 gl phit o 2)+2<27 0T M T g™ T ™

1 175 355 163 1
g+ 2y 4 ——dy 4+ —ds.
16d o 432d0 T 861 T 0™ T 120

Therefore, we have the equation

1 175 . 355 163 1
— —d .+ d d ds.
T1= 160t B T ger T T T 190 ™




3 Equations for the Third Data Point x,

We now consider the second segment Cy of the spline curve. We compute f(22222) = x5:

£(00012)
2/3  f(00122)
£(00123) 2/3  f(01222)
2/4  f(01232) 2/3  f(12222)
£(01234) 2/4 f(12322) 1/2  f(22222).
2/5 f(12342) 1/3  f(23222)
£(12345) 1/4  f(23422)
1/5 f(23452)
£(23456)

Given dy, dq, do, d3, dy, we compute
R R S|
d2,07 d2,17 d2,27 d2,37
2 2 2
d2,0> d2,17 d2,2’
3 3 33 3
d2,07 d2,17 d2,27 d2,37
4
d270.
The points d3 g, d3 , are the fourth and fifth Bézier control points of Cy, and d3 ,, dj 5 are the
second and third Bézier control points of C}.

We compute

1 2

d;O = gdo + gdl
dy, = %dl + %dz
d;Q = gdg + édg
dys = %dg + %d4,
Bo= 3o+ 2,
d%,l - %d%,l + %dég
d%,z = zd%g + id%,gv



and finally,

We get

then

2 1

dg,o = 3d§,0 + Sdg,l
dg,1 = %dg,o + gng
dg,z = ;d;l + %dg,z
Ba= 3y + o,

1 1
To = d;o = édg’l + §dg’2'

1/1 2 2(2 2
i = 3 <§d0 + §d1) + 3 (Zdl + Zld2)
b 1

1
= —dy+ —d; + =d
9 0+9 1+3 2

1 5 3
= —dy+ =d; + =d
9 0+9 1+9 2,

2(2 2 2(3 2
d;l =1 (Zdl + ZdQ) + 1 <5d2 + gdS)

1 11 1
= Zdy + —dy + =d
TSR

5 11 4
= %dl + %0& + 2—0d37

3(3 2 174 1
dg,z =1 (gdz + gd3) + 1 (gd:a + 5d4)

9 1 1
= —d —d —d
20 2+2 3+20 4

9 10 1
= Zdy+ —ds+ —d
502 T 509 T 5%

40 245 219 36
do + =—dy + ——dp + ——ds,

540 0 540 540 540

10



1/1. 5. 1 2/1 . 11, 1
Bo==(Zdo+2dy+=do ) + 2 =dy + —dy + =d
21 3(9°+91+32)+3(41+202+53>

1 19 43 2

= —do+ —dy + —dy + —d

270 T TR T ™

10 95 129 36
= — — —d —d
27Od0 + dy + 2 +

270 " 270 270 °

2/1 11 1 1/9 1 1
Bo=2(=d +—dy + =d “ Zdy+ =ds + —d
2.2 3(41+202+53)+3(202+23+204)

1 31 3 1

- 2y 4+ ds+ —d

6h T 0Pt 0%t 5™

10 31 18

— 4+ 22y 4 —

60" T 60" T 60

1/1 11 1 2(9 1 1
d3s == (—dl + —dy + —d3) + = (2—0d2 +5ds+ %d4)

1
ds + @d4

Finally,

1/1 19 43 2 1/1, 31 3 1
do==(==do+ —dy+ —dy + —ds | + = ~dy + =dy + —d3 + —d
2,0 2(27“+541+902+15 3>+2<61+602+103+60 4)
1 7 179 13 1
= —dy+ —di + ——dy + —ds + —d
5ado T o7 ¥ 3gpde g g

20 280 537 9234 9
— d d d d dy.
1080™ * 1080™ T 1080 " 1080™ T 1080™

Therefore, we get the equation

gy T AT, %
T2 = g 0T o T 3 2 T 190 ™ T 190

11



4 Equations for the Fourth Data Point z;

Next we consider the third segment Cj5 of the spline curve. We compute f(33333) = x3:

£(00123)
3/4  f(01233)
£(01234) 3/4  f(12333)
3/5 f(12343) 2/3  £(23333)
£(12345) 2/4  £(23433) 1/2 £(33333).
2/5  f(23453) 1/3  £(34333)
£(23456) 1/4  f(34533)
1/5 f(34563)
£(34567)

Given dy, do, d3, dy4, ds, we compute

dsg,d3;.ds s, ds 5,

3o, d3 1, d3 s,

d30,d3;. d3 5, d5 5,

ds -
The points d3 , d3 , are the fourth and fifth Bézier control points of Cs, and d3 ,, d3 5 are the
second and third Bézier control points of Cy,.

We compute

1 3

dig = i+ o
dy, = %dg + gdg
@2:§@+§@
dy5 = §d4 + %d5,
Bo= o+ 3,
3, = %dé,l + %déa
d?},z = zdég + idé,gv

12



2p 4!
3 3

1 2
dg,l = §d§,0 + §d§,1

2 1
dg,z = §d§,1 + §d§,2
1 2
3 3

3 _ 42 2
d3,0— d3,o+ d3,1

3 _ Lo 2
dyg = 5d3, + 5d3,

and finally,
1
2

1/1 3 3(2 3
d§,0 =1 (Zdl + Zd2> + 1 (5652 + gd:s)
39 9

1
= —di+ Zdy+ —d
16 T g™ T 90"

1

d3
31+ 5

_ g4 3
T3 — d370 = d372.

We get

5 39 36
= %dl + @dz + %d:s;

2(2 3 2(3 2
3, = 1 <gd2 + gd3> +7 <5d3 + 5d4)
3

1 1
= —dy + =ds + =d
5 2+5 3+5 45

3(3 2 174 1
dso = 1 (gds + gd4) +7 (544 + gds)
9 1 1
= gph Tl 5

9 10 1
= Zde+ —dy+ —d
50% T 0% T 0%

then

2( 1 39 9 1/1 3 1
dio == <—d1 + —dy + —dg) + = (—d2 + Zds + —dy

3\ 16 80 20

1 A7 1 1

5 47 60 8
= 0N T 12 T 1Bt 1™

3\ 5 5

13



171 39 9 2/(1 3 1
ds, =~ =di+ —=dy + —d =| =da + =ds + =d
3,1 3(161+802+20 3)+3(52+53+54)
1 71 11 2
5 71 132 32

= a0 T a0% t 250% t o0h

2/(1 3 1 179 1 1
dsy == =dy+ =ds+ —d | ==ds + -ds + —=d
3.2 3(52+53+54)+3(20 3+24+20 5)

2 11 3 1
= S+ —ds+ —dy+ —d
52T 5B T Mt 5%

8 33 18 1
= P+ 2l + —dy + —d
602 60" T eo™ T g™

1/1 3 1 2,9 1 1
dsy =~ =dy+ =ds + =d —| ==ds+ zds + —=d
3.3 3(52+53+54>+3(20 3+24+20 5)

1
15
4 30 24

9
— 4+ Zda 4+ dy + —ds.
602 60" T e0™ T g™

1 2 1
do + =ds + =dy + —d
2+2 3+5 4+30 5

Finally, we get

11 T 1, 2 /2 11 3 1
dig=—|-—=d + —=dy + —ds + —d | =dy+ —=d3z + —dy + —d
30 2(48]‘+24o2'%203'%154)'%2<152'%203'%104'%605>

1 103 11 13 1
— %dl + @dQ —‘l_ 2_0d3 + @dzl —'I_ Eodf),

and so we have the equation

1 103 66 26 1
2 s+ 2, ——ds.
T3 =961 T 150 T 0™ T 120™ T 120

5 Equations for the Data Points zxy_3, zny_2, Tn_1

The first three equations are

355 163 1 1 175
so1 ™t T T 10 = 7= gl T g™
7 179 26 1 1

L 2 —d _ _ 4

57t 360% T 120% T 190 ™ 25

1 103 66 2% 1

4 oy + —dy + dy 4+ ——d - 23,

96 480 120 2 " 120 120 °

14



and the generic equation is

1 26 66 26 1
120%2 T 190 %t T 0% T gp it T gt =

Multiplying by 120, the first three equations are
1775 163 15 875

— = 1202, — —d_| — =2
36 d1+ 12 d2+d3 0%’1 2(1 1 18 d()
280 179 20
—d1 + _d2 + 26d3 + d4 == 1201’2 - —do
9 3 9
) 103
Zdl + sz + 66d3 + 26d4 -+ d5 = 1201’3,

and the generic equation is

d;_o + 26d;_1 + 66d; 4+ 26d;,1 + d;1o = 120x;.

Because the spline curve begins with the polar values
£(00000), f(00001), f(00012), f(00123), f(01234), f(12345)

with d_o = f(00000) = zo, d_; = f(00001), dy = f(00012), d; = f(00123), and more
generally
di=f(i—2i—1ii+1i+2), 2<i<N -2

and ends with the polar values
f(N=3N—-2N—-1NN), f(N—2N—-1NNN),
f(N—1NNNN), f(NNNNN),

withdy_1 = f(N—=3N—-2N —-1NN),dy =f(N—-—2N—-1NNN),

dyy1 = f(N — 1 NNNN), and dyio = f(NNNNN) = zy, the last three equations

for xy_3,xN_2,xy_1 are just the equations for x3, x5, x; written in reverse order (with the
variables substituted in a suitable fashion).

Therefore, the last three equations of the system are

103 d

dN_5 + 26dN_4 + 66dN_3 + TdN_Q + ZldN_l = 12033]\[_3
179 280 20
dn_4 + 26dN_3 + Td]v_z + 7dN_1 =120xn_9 — ng
163 1775 875 15
dn_3 + ﬁdzvﬂ + deq =120xn-1 — 1_8dN — ?dNJrl

The matrix of this linear system is

15



226 1
5P 66 26 1
1 26 66 26 1
1 26 66 26 1

1 26 66 26 1

1 26 66 26 1
1 26 66 19 2
126 2 20

This matrix is pentadiagonal. It is strictly diagonally dominant, and thus invertible (and
Gaussian elimination does not require pivoting).

The right hand side is

1202, — 2d_y — 224,
12025 — 2dy
1203
12024

120z N4
1201’]\[,3
120$N—2 — QSTOCZN

15 875
1201[’]\[_1 - ?dN - KdN-l—l

We have not investigated methods for determining d_;,dy, dyn,dn11 (end conditions),
except for the simple-minded method of setting d_; = dy = 29 = d_5 and dy = dyi1 =
rn = dyy2. We have implemented this crude method, and it appears to give good results,
but further investigation of end conditions remains to be conducted.

Here are three examples using the above crude method. Figure 2 shows an interpolating
curve for 20 data points (so N = 19). The de Boor control points shown in blue are d; and

dn_1.

16



Figure 2: A quintic interpolating B-spline for 20 data points.

Figure 3 shows an interpolating curve for 22 data points (so N = 21). The construction
of the Bézier control points is also shown. The de Boor control points shown in blue are d;
and dy_1.

Figure 4 shows an interpolating curve for 44 data points (so N = 43). The de Boor
control points shown in blue are d; and dy_1.

6 Control Points for the Bézier Curve Segments

Recall that we are assuming that we have N 4+ 1 > 8 data points, which means that N > 7.
There are N + 5 de Boor control points

d—27d—17d07 d17 L 7dN—17dN7 dN+17dN+27

with d_s = xg and dy,o = xy, and there are N quintic Bézier segments. The first three and
the last three are exceptional.

17
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Figure 3: A quintic interpolating B-spline for 22 data points.

We first treat the case where N > 8, and then the special case where N = 7. The Bézier
control points of the generic Bézier curve C;,, between z; and x;,1, with 4 <7 < N —4
(N >8), are

Lis diz’ di37 d?+1,0> d?—i—l,la Lit1,
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Figure 4: A quintic interpolating B-spline for 44 data points.

namely
b?H =Ty
b, = %di—l + ;—édi + %di-i-l + %di—m
by, = 11—5di_1 + %di + gdm + %dm
b?+1 = %@1 + gdi + %di+1 + 1_15di+2
bfil—&-l = %di—l + 1_30di + %diﬂ + Bdi%
b?+1 = Tiq1-

When computing from the de Boor points, we have b}, , = d?,o and b7, = d?JrLO. The
construction of a generic quintic Bézier curve determined by the control points

4 3 33 73 3 4
di,O’ di,27 di,37 di+1,07 di+1,17 di+1,0

19



is illustrated in Figure 5.

Figure 5: Construction of a generic quintic Bézier curve.

The Bézier control points of the first segment are xo, d_y, dj o, d7 o, d} o, 71, namely

b(l):Io
b%zd_l

1 1
b%zﬁd_l—i—ﬁdo

1 7 1
W= —-d_i+ —dy+ -d
1=t gl gh

1 37 23 1
4

=—d_ +— = —d
bi=gdatmdet it opds
bi’:JTl.

When computing from the de Boor points, we have b} = d_,, b} = dj ;.

20



The Bézier control points of the second segment are x1,d3 ,, d3 5, d3 o, d3 |, x2, namely

bgzl'l

= ﬁdo + %;dl + %dQ + %dg
1= edo + 1oy B, 4 L,
5= 237650 + %dl + %dg + %dg
b= o+ s+ Syt

5 __
bQ—xQ.

by

b

When computing from the de Boor points, we have b = di ; and bj = dj,.

The Bézier control points of the third segment are xs, d3,, d3 5, d3 , d3 |, ©3, namely

bg:l'g

1 31 3 1
bt = —d —d —d —d
3 61+602+103+604

1 29 2 1
2
= —dy+ —dy+ Zds + —d
b= g3t + 5yt + 2ds + oods
1 47 1 1
3— E— [ — E—
b5 = it gt t s T 5

1 71 11 9
4 _ - - _
by = g+ o0+ 5pds + 15

5 _
bg—:ljg.

When computing from the de Boor points, we have b§ = d;, and b5 = ds .

When N > 8, the point x4 is a generic point and the Bézier control points of the fourth
segment are x, dj 5, d3 5, d3 o, d3 |, ¥4, namely

62:373
3

9 11 1
Ve 24+ —ds+ —dy+ —d
1= Rt gt T gt T 5%

1 1. 2 1
2
— dyt =ds o+ 2dy+ —d

1 2 1 1
3_ 4 ‘ - Bl
by 30d2+ 5d3+ 2d4+ 15d5

1 3 11 9
br= —dy+ —ds+ —dy + —d
T R AT R T

5 _
b4—SE’4,

b

b
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When computing from the de Boor points, we have b = ds, and b} = dj .

When N = 7, the points x4 is analogous to the point x3, in the sense that it is the fourth
point from the last data point, x7. The Bézier control points of the fourth segment are still
T3, d3 o, d3 5, d3 df’l’l,m, but dj dil need to be computed differently. We use the reversal
method used in Section 5.

Since xy 1k is the kth point from right to left, the equations associated with xy 1 g
are obtained from the equations associated with x by replacing d_o,d_1,do,dy, ..., T4, ... by
dny2,dnsr,dy,dy_1, ..., TNy, ..., and replacing dy ., by d} 5_;, and similarly di .,
by dz,sz d?VJrlfk,i by dz,&ia and dﬁl\/+1fk,0 by di,o-

When N = 7, the equations for the df , are obtained from the equations for the d§ ; and
we get:

1 3

2 3
3 2
4 1
dyo 5d3 + nga
1 3
di,z = Zd}gg + Zd}m
2 2
dil = Zd‘l"Q + Zdi‘ 1
3 1
dio= Zd;1 + Zd}w,
2 1
dis = gdi,z + gdi,l
1 2
diQ = gdig + gdi 1
2 1
d?l,l = gdi,l + gdi,o
1 2
iy = gdig + gdi,m
« _ 1
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These are identical to the equations for djg, dj |,
and so we get

The equations involved in computing d§ , and di ; are

&2

diy = %dz + %d?,
dy, = %ds + §d4
di, = §d4 + §d5
Bo = qdho + oy
By = 2y + 2l
Bo= 2o+ 5,
di,l = édio + ;di,u
o

1 9 1

Bo=—dy+ Zds + —d

10 = g2 Tl
1 3

3 — _

d471_60d2+10d3+20

control points for the fourth curve

which are identical to the equations obtained when N > 8. Therefore, the equations for the
segment 'y are the same in the special case N = 7 as
the equations in the general case N > 8, and they agree with the equations for the generic
curve segment C; for ¢ > 5.

Using the reversal method described above, the Bézier control points of the Nth segment
are Ty-_1, d:]}\,_173, d3_1 95 dllV—l,S’ dn41, N, namely

b(])v = IN-1
1 23 37

by = —dy_o+ —dy_1 + —

N T gt ity
1 7 1

by = édN—l + EdN + ZdN-i—l
1 1

by = EdN + §dN+1

b;lv = dN+1

b?\[ = IN.

When computing from the de Boor

points, we have b = dy_; o, by = dnyo.

23
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The Bézier control points of the (N —1)th segment are zy_o, d?V—Q,Q’ d?v—zs? d:])’v_lyo, d§V—1,1v
rn_1, which yields

0
by_1 = TN-2

9 43 19 1

bl = Zdns+ —dng 4+ —dy_ 1 4+ —d

N-1 = g N3t N2t gpin-1 t ondy
1 73 49 9

V2, = —dys+ —dy g+ ——dn_1 + —d

N-1 = p0N-3 F gpdN-2 F g tN-1 Tt ordn

w1 | 103 L5 . [

N-1 7 g ON=8 T 360" N2 T 916 NVt T o7™N
1 133 217 8

Wi = —dy s+ —dn_o+ —dn_1 + —d

N-1 = GN8N T g i1 ooty

When computing from the de Boor points, we have b}y, = dy_, o and by, = dy_ .

The Bézier control points of the (N —2)th segment are zy_s, d3;_55, dx_33, d% 20, A1,
Tn_o, Namely

0
by 2 =Tn-3

— %dN_4 + %dN_g + %dN_Q + %dN_l
o = teda + gdnos + ihdis + oz
by o = %dN4 + %ng + %djvz + %le
bjl\/'_Q = %dN—4 + 1_30dN—3 + %dN—Z + édN—l

b?\/—Q = TN-2.
When computing from the de Boor points, we have b} _, = dy_5, and b3_, = dy_, .

Finally, the Bézier control points of the (N —3)th segment are zy_4, d_ 44, dx_ 43, dX_30,
d?v—:a,p TN_3, namely

0o _
by 3 =TN-4

bjl\[_3 = %dN—S + ;_édN—4 + %dN—3 + %dN—2
by 5 = %ng) + %dN4 + ngg + %dN2
— 3—1OdN_5 + %dN_4 + %d]v_g + %dN_Q
by 5 = %dN_5 + %dN_4 + %d]v_gg + %dN_2

5
by_3 = TN-3,
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When computing from the de Boor points, we have b}_5 = dj_,, and b3_3 = dj_5.

Examples quintic B-splines are shown in Figures 6-8.

Figure 6: A quintic B-spline with 16 de Boor control points.

For an implementation of a program computing the Bézier control points from the de
Boor points, it is also convenient to have the following equations.
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For xpn_s:

Figure 7: A quintic B-spline with 18 de Boor control points.

d]1V73,3 = idN_l + %dN—2
djlv—3,2 = %dN—2 + ng—s
djl\f—3,1 = ng—s + ng—4
djl\[_370 = %dN—AL + %dN—Sa
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Figure 8: A quintic B-spline with 43 de Boor control points.

1 3
d?V—3,2 = Zdle—?,,s + Zdle—?,,z

2 2
d?\/—&l = Zdle—3,2 + Zd]l\f—?),l

3 1
d?v—?,,o = ZdJlV—S,l + ZdJlV—S,Ov
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1 2
d?\f—{% 2 = gd?\f—:a ot gd%V—?, 1
2 1
d?\/fS,l = 3d?\773,1 + Sd?\f—:«;,o
1 2

d?V—S,O = 3d2 31T 3dN 3,05

1 1
d?v-s,o = §d?v—372 + §d§’v—3,1-

Then, the Bézier control points for the segment from zy_4 to xn_3 are dy_,q, dx_4,
3 3 3 4 - -
dy_43 dNZ&O,ng&l,dNE&O, angl the P;emer c;mtrol points for the segment from zy_3 to
generic formula.

For xpn_o:

1 1

dN_Q’,?, - 3dN+ 3dN 1
2

dzlvfzz = 4dN 1+ 4dN 2
3 2

dzlv—2,1 = 5dN 2+ 5dN 3
4 1

d11v72,0 5dN 3+ 5dN 4,

1 2
d?V—Z 2 = gdjl\f—z,s + nglV—Q,Q
d?\/f&l - Zdjlvfz,z + Zdjlvfm

3 1
d?v-z,o = Zd}\f—ll + Zd}v—z,m

2
d}g’vfz,o = §d?v72,1 + §d?\772,07

d?vfzo = §d 2,2 + 2dN 2,1
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with Bézier control points for the segment from zy_s to zy_1 given by di_, o, d¥_55, dX_y 3,

3 3 4
dN—l,Ov dN—l,l? dN—l,O'

For xpn_1:
d}\f—l,?) = %dNJrl + %dN
dJIV—1,2 = ;dN + %dN—1
dzlvfm = szl + idNQ
djlv—l,o = %dN—Q + édN—?n

1 1
d?V—1,2 = §d}\7—1,3 + §d}\7—1,2

2 1
d?\f—l,l = gdjl\f—l,z + gdzl\/—m
3 1

d?Vfl,O = 4d]1\771,1 + 4d}v71,07

1 1
d?\/—l,i& = éd?\f—lﬂ + §d?\/—1,1

1 1
d?V—1,2 = §d?\7—1,2 + §d?\7—1,1

2 1

d?V—l,l = gd?\f—l,l + gd?\/—l,o
1 2

d?Vfl,O = §d?\771,l + §d?\771,07

1 1
d?\f—l,o = 5(1?\,_172 + §d§’\f—1,1a

with Bézier control points for the segment from zy_y to zx given by di_, o, d3_; 5, dx_; 5,
1
dy_13,dN11, N2

7 A Simple Variation of the Interpolation Problem

A simple way to deal with the the beginning and the end of the interpolating spline is to use
the uniform knot sequence

01234 , 12345, 23456, 34567, 45678,--- N +3N+4N+5N+6N +7,
with NV 4+ 3 > 5, that is N > 2. In this case, the polar values

f(44444), ..., f(N+3N+3N+3N +3 N +3)
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correspond to N > 2 data points that we denote z1,...,zxy. We denote the de Boor points
by
d_l, d07 dl, ey dN, dNJ'_l, dN+2.

Then, we simply have N generic equations,
di_g + 26di_1 + 66(1Z + 26di+1 + di_;,_g = 120&7“ 1= 1, ce ,N,

one for each x;, with d_q,dy,dn,1,dNi2 as free parameters, and we don’t have to deal with
the first three and the last three curve segments in a special way, as in the previous solution.

We can use the following system to solve for dy,...,dy in terms of d_1, dy, dyi1, dnio:
1 d_y d_y
, do do
1 26 66 26 1 d 120z,
1 26 66 26 1 d 120z,

1 26 66 26 1

dn_1 1202y

126 66 26 1| 4 1902y
1 dn i1 dns

1 dn2 dn+t2

We actually have a better behaved matrix if we move the terms involving d_1, do, dn1,
dn o on the right hand side of the system. We obtain the system

66 26 1 dy 120z, — 26dy — d_
26 66 26 1 dy 120z — dy
1 26 66 26 1 ds 12025

1 26 66 26 1

dN72 1201’]\[72
1 26 66 26 dN—l 120 -1 — dN+1
1 26 66 dN 120.17]\7 - 26dN+1 - dN+2

The above hods for N > 4. For N = 3, we get the system
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66 26 1 dl 1205(]1 - 26d0 - d_l
26 66 26 dg = 1201’2 - do - d4 y
1 26 66 dg 1201’3 — 26d4 — d5

and for N = 2, we get the system

66 26 d1 . 120%1 - 26d0 - d,1d4
26 66 d2 N 1201’2 — do — 26d3 - d4 '
In all cases, the matrix is symmetric, and in fact, positive definite.

Because our numbering is designed such that x; is computed from d; o, d;_1,d;, d; 1, d;yo,
as in the previous sections, the control points of the Bézier curve C; between x; and x;, | are
given by

b =

bil = 1_25di1 + %di + %diﬂ + 6_10di+2
b; = 1—15611‘—1 + %di + %di-&-l + %dwz
b} = 3_10di1 + %di + %di+1 + %diw
b} = 6—10651‘—1 + %di + %diﬂ + %di-‘r?
b = Tiy1.

fori=1,...,N —1.

A simple-minded way to pick d_1,dy, dny1,dnyo is to set
d_y=dy=z1, dyy1 =dny2 =N,

An implementation in Matlab shows that this works well! Here are three examples using
the above crude method. Figure 9 shows an interpolating curve for 18 data points (so
N = 18). The de Boor control points shown in blue are d; and dy.

Figure 10 shows an interpolating curve for 10 data points (so N = 10). The construction
of the Bézier control points is also shown. The de Boor control points shown in blue are d;
and d N-

Figure 11 shows an interpolating curve for 43 data points (so N = 43). The de Boor
control points shown in blue are d; and dy.

Observe that in all cases the de Boor control points d; and dy are “outside” of the
interpolating spline curve, which is not suprising since 1 = d_; and xy = dy2 are generic de
Boor control points. This could cause some unexpected behavior of the interpolating curve.
We have not witnessed such a behavior but this issue, and more generally the determination
of “good” end conditions, should be explored further.
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Figure 9: A quintic interpolating B-spline for 18 data points.
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Figure 10: A quintic interpolating B-spline for 10 data points.
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Figure 11

: A quintic interpolating B-spline for 43 data points.
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