Fall, 2014 CIS 515

Fundamentals of Linear Algebra and Optimization Jean Gallier

Project 5

November 28, 2014; Due December 16, 2014

Problem B1(60 pts). (1) Implement the Gram-Schmidt orthonormalization procedure and the modified Gram-Schmidt procedure. You may use the pseudo-code shown in (2).

(2) Implement the method to compute the QR decomposition of an invertible matrix. You may use the following pseudo-code:

function qr(A: matrix): [Q, R] pair of matrices

\mathbf{begin}

```
n = \dim(A);

R = 0; \text{ (the zero matrix)}

Q1(:, 1) = A(:, 1);

R(1, 1) = \operatorname{sqrt}(Q1(:, 1)^{\top} \cdot Q1(:, 1));

Q(:, 1) = Q1(:, 1)/R(1, 1);

for \ k := 1 \ to \ n - 1 \ do

w = A(:, k + 1);

for \ i := 1 \ to \ k \ do

R(i, k + 1) = A(:, k + 1)^{\top} \cdot Q(:, i);

w = w - R(i, k + 1)Q(:, i);

endfor;

Q1(:, k + 1) = w;

R(k + 1, k + 1) = \operatorname{sqrt}(Q1(:, k + 1)^{\top} \cdot Q1(:, k + 1));

Q(:, k + 1) = Q1(:, k + 1)/R(k + 1, k + 1);

endfor;
```

end

Test it on various matrices.

(3) Given any invertible matrix A, define the sequences A_k , Q_k , R_k as follows:

$$A_1 = A$$
$$Q_k R_k = A_k$$
$$A_{k+1} = R_k Q_k$$

for all $k \ge 1$, where in the second equation, $Q_k R_k$ is the QR decomposition of A_k given by part (2).

Run the above procedure for various values of k (50, 100, ...) and various real matrices A, in particular some symmetric matrices; also run the Matlab command eig on A_k , and compare the diagonal entries of A_k with the eigenvalues given by $eig(A_k)$.

What do you observe? How do you explain this behavior?

Problem B2(40 pts). Refer to Problem B4 of HW6. Write a Matlab program to compute a logarithm *B* of a rotation matrix $R \in SO(3)$, namely a skew-symmetric matrix *B* such that $e^B = R$, using the method described in Problem B4. In particular, compute a log *B* of *R* such that the angle θ associated with *B* satisfies the condition $0 \le \theta \le \pi$. If $tr(R) \ne -1$, then $\theta < \pi$ and the matrix *B* associated with θ is uniquely determined. Otherwise $\theta = \pi$ and *B* is determined up to sign.

Problem B3(210 pts). Refer to Problem B5 of HW6. Similitudes can be used to describe certain deformations (or flows) of a deformable body \mathcal{B}_t in 3D. Given some initial shape \mathcal{B} in \mathbb{R}^3 (for example, a sphere, a cube, etc.), a deformation of \mathcal{B} is given by a piecewise differentiable curve

$$\mathcal{D}\colon [0,T] \to \mathbf{SIM}(3),$$

where each $\mathcal{D}(t)$ is a similation (for some T > 0). The deformed body \mathcal{B}_t at time t is given by

$$\mathcal{B}_t = \mathcal{D}(t)(\mathcal{B}),$$

where $\mathcal{D}(t) \in \mathbf{SIM}(3)$ is a similitude.

The surjectivity of the exponential map $\exp: \mathfrak{sim}(3) \to \mathbf{SIM}(3)$ implies that there is a map log: $\mathbf{SIM}(3) \to \mathfrak{sim}(3)$, although it is multivalued. The exponential map and the log "function" allows us to work in the simpler (noncurved) Euclidean space $\mathfrak{sim}(3)$ (which has dimension 7).

For instance, given two similitudes $A_1, A_2 \in \mathbf{SIM}(3)$ specifying the shape of \mathcal{B} at two different times, we can compute $\log(A_1)$ and $\log(A_2)$, which are just elements of the Euclidean space $\mathfrak{sim}(3)$, form the linear interpolant $(1 - t) \log(A_1) + t \log(A_2)$, and then apply the exponential map to get an interpolating deformation

$$t \mapsto e^{(1-t)\log(A_1) + t\log(A_2)}, \quad t \in [0,1].$$

Also, given a sequence of "snapshots" of the deformable body \mathcal{B} , say A_0, A_1, \ldots, A_m , where each is A_i is a similitude, we can try to find an interpolating deformation (a curve in **SIM**(3)) by finding a simpler curve $t \mapsto C(t)$ in $\mathfrak{sim}(3)$ (say, a *B*-spline) interpolating $\log A_1, \log A_1, \ldots, \log A_m$. Then, the curve $t \mapsto e^{C(t)}$ yields a deformation in **SIM**(3) interpolating A_0, A_1, \ldots, A_m .

(1) (60 pts). Write a program interpolating between two deformations, using the formulae found in Problems B4 and B5 of HW6 (not the built-in Matlab functions!).

(2) (150 pts). Write a program using your cubic spline interpolation program from the first project, to interpolate a sequence of deformations given by similitudes A_0, A_1, \ldots, A_m in **SIM**(3). Use the formulae found in Problems B4 and B5 of HW6 (not the built-in Matlab functions!).

TOTAL: 310 points.