Fall, 2014 CIS 515

Fundamentals of Linear Algebra and Optimization Jean Gallier
 Project 5

November 28, 2014; Due December 16, 2014

Problem B1(60 pts). (1) Implement the Gram-Schmidt orthonormalization procedure and the modified Gram-Schmidt procedure. You may use the pseudo-code shown in (2).
(2) Implement the method to compute the QR decomposition of an invertible matrix. You may use the following pseudo-code:
function $\operatorname{qr}(A$: matrix $):[Q, R]$ pair of matrices
begin
$n=\operatorname{dim}(A)$;
$R=0$; (the zero matrix)
$Q 1(:, 1)=A(:, 1)$;
$R(1,1)=\operatorname{sqrt}\left(Q 1(:, 1)^{\top} \cdot Q 1(:, 1)\right) ;$
$Q(:, 1)=Q 1(:, 1) / R(1,1)$;
for $k:=1$ to $n-1$ do $w=A(:, k+1) ;$ for $i:=1$ to k do
$R(i, k+1)=A(:, k+1)^{\top} \cdot Q(:, i) ;$
$w=w-R(i, k+1) Q(:, i) ;$
endfor;
$Q 1(:, k+1)=w$;
$R(k+1, k+1)=\operatorname{sqrt}\left(Q 1(:, k+1)^{\top} \cdot Q 1(:, k+1)\right) ;$
$Q(:, k+1)=Q 1(:, k+1) / R(k+1, k+1) ;$
endfor;
end
Test it on various matrices.
(3) Given any invertible matrix A, define the sequences A_{k}, Q_{k}, R_{k} as follows:

$$
\begin{aligned}
A_{1} & =A \\
Q_{k} R_{k} & =A_{k} \\
A_{k+1} & =R_{k} Q_{k}
\end{aligned}
$$

for all $k \geq 1$, where in the second equation, $Q_{k} R_{k}$ is the QR decomposition of A_{k} given by part (2).

Run the above procedure for various values of $k(50,100, \ldots)$ and various real matrices A, in particular some symmetric matrices; also run the Matlab command eig on A_{k}, and compare the diagonal entries of A_{k} with the eigenvalues given by eig $\left(A_{k}\right)$.

What do you observe? How do you explain this behavior?
Problem B2(40 pts). Refer to Problem B4 of HW6. Write a Matlab program to compute a logarithm B of a rotation matrix $R \in \mathbf{S O}(3)$, namely a skew-symmetric matrix B such that $e^{B}=R$, using the method described in Problem B4. In particular, compute a $\log B$ of R such that the angle θ associated with B satisfies the condition $0 \leq \theta \leq \pi$. If $\operatorname{tr}(R) \neq-1$, then $\theta<\pi$ and the matrix B associated with θ is uniquely determined. Otherwise $\theta=\pi$ and B is determined up to sign.

Problem B3(210 pts). Refer to Problem B5 of HW6. Similitudes can be used to describe certain deformations (or flows) of a deformable body \mathcal{B}_{t} in 3D. Given some initial shape \mathcal{B} in \mathbb{R}^{3} (for example, a sphere, a cube, etc.), a deformation of \mathcal{B} is given by a piecewise differentiable curve

$$
\mathcal{D}:[0, T] \rightarrow \mathbf{S I M}(3)
$$

where each $\mathcal{D}(t)$ is a similitude (for some $T>0$). The deformed body \mathcal{B}_{t} at time t is given by

$$
\mathcal{B}_{t}=\mathcal{D}(t)(\mathcal{B})
$$

where $\mathcal{D}(t) \in \operatorname{SIM}(3)$ is a similitude.
The surjectivity of the exponential map exp: $\mathfrak{s i m}(3) \rightarrow \mathbf{S I M}(3)$ implies that there is a map $\log : \operatorname{SIM}(3) \rightarrow \mathfrak{s i m}(3)$, although it is multivalued. The exponential map and the log "function" allows us to work in the simpler (noncurved) Euclidean space $\mathfrak{s i m}(3)$ (which has dimension 7).

For instance, given two similitudes $A_{1}, A_{2} \in \mathbf{S I M}(3)$ specifying the shape of \mathcal{B} at two different times, we can compute $\log \left(A_{1}\right)$ and $\log \left(A_{2}\right)$, which are just elements of the Euclidean space $\mathfrak{s i m}(3)$, form the linear interpolant $(1-t) \log \left(A_{1}\right)+t \log \left(A_{2}\right)$, and then apply the exponential map to get an interpolating deformation

$$
t \mapsto e^{(1-t) \log \left(A_{1}\right)+t \log \left(A_{2}\right)}, \quad t \in[0,1] .
$$

Also, given a sequence of "snapshots" of the deformable body \mathcal{B}, say $A_{0}, A_{1}, \ldots, A_{m}$, where each is A_{i} is a similitude, we can try to find an interpolating deformation (a curve in $\mathbf{S I M}(3))$ by finding a simpler curve $t \mapsto C(t)$ in $\mathfrak{s i m}(3)$ (say, a B-spline) interpolating $\log A_{1}, \log A_{1}, \ldots, \log A_{m}$. Then, the curve $t \mapsto e^{C(t)}$ yields a deformation in $\operatorname{SIM}(3)$ interpolating $A_{0}, A_{1}, \ldots, A_{m}$.
(1) (60 pts). Write a program interpolating between two deformations, using the formulae found in Problems B4 and B5 of HW6 (not the built-in Matlab functions!).
(2) (150 pts). Write a program using your cubic spline interpolation program from the first project, to interpolate a sequence of deformations given by similitudes $A_{0}, A_{1}, \ldots, A_{m}$ in $\mathbf{S I M}(3)$. Use the formulae found in Problems B4 and B5 of HW6 (not the built-in Matlab functions!).

TOTAL: 310 points.

