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The purpose of this project is to solve a curve interpolation problem using cubic splines.
This type of problem arises frequently in computer graphics and in robotics (path planning).

Recall from Project 1 that polynomial curves of degree ≤ m can be defined in terms of
control points and the Bézier polynomials. Cubic Bézier curves are often used because they
are cheap to implement and give more flexibility than quadratic Bézier curves.

A cubic Bézier curve C(t) (in R2 or R3) is specified by a list of four control points
(b0, b2, b2, b3) and is given parametrically by the equation

C(t) = (1− t)3 b0 + 3(1− t)2t b1 + 3(1− t)t2 b2 + t3 b3.

Clearly, C(0) = b0, C(1) = b3, and for t ∈ [0, 1], the point C(t) belongs to the convex
hull of the control points b0, b1, b2, b3.

Interpolation problems require finding curves passing through some given data points and
possibly satisfying some extra constraints.

It is known that Lagrange interpolation is not very satisfactory when N is greater than
5, since Lagrange interpolants tend to oscillate in an undesirable manner. Thus, we turn to
Bézier spline curves.

A Bézier spline curve F is a curve which is made up of curve segments which are Bézier
curves, say C1, . . . , Cm (m ≥ 2). We will assume that F defined on [0,m], so that for
i = 1, . . . ,m,

F (t) = Ci(t− i + 1), i− 1 ≤ t ≤ i.

Typically, some smoothness is required between any two junction points, that is, between
any two points Ci(1) and Ci+1(0), for i = 1, . . . ,m − 1. We require that Ci(1) = Ci+1(0)
(C0-continuity), and typically that the derivatives of Ci at 1 and of Ci+1 at 0 agree up to
second order derivatives. This is called C2-continuity , and it ensures that the tangents agree
as well as the curvatures.

There are a number of interpolation problems, and we consider one of the most common
problems which can be stated as follows:
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Figure 1: A C2 cubic interpolation spline curve passing through the points x0, x1, x2, x3,
x4, x5, x6, x7

Problem: Given N + 1 data points x0, . . . , xN , find a C2 cubic spline curve F , such that
F (i) = xi, for all i, 0 ≤ i ≤ N (N ≥ 2).

A way to solve this problem is to find N +3 auxiliary points d−1, . . . , dN+1 called de Boor
control points from which N Bézier curves can be found. Actually,

d−1 = x0 and dN+1 = xN

so we only need to find N + 1 points d0, . . . , dN .

It turns out that the C2-continuity constraints on the N Bézier curves yield only N − 1
equations, so d0 and dN can be chosen arbitrarily. In practice, d0 and dN are chosen according
to various “end conditions,” such as prescribed velocities at x0 and xN . For the time being,
we will assume that d0 and dN are given.

Figure 1 illustrates an interpolation problem involving N + 1 = 7 + 1 = 8 data points.
The control points d0 and d7 were chosen arbitrarily.

It can be shown that d1, . . . , dN−1 are given by the linear system
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d1
d2
...

dN−2
dN−1

 =


6x1 − 3

2
d0

6x2
...

6xN−2
6xN−1 − 3

2
dN

 .

The derivation of the above system assumes that N ≥ 4. If N = 3, this system reduces
to (

7
2

1

1 7
2

)(
d1

d2

)
=

(
6x1 − 3

2
d0

6x2 − 3
2
d3

)
When N = 2, it can be shown that d1 is given by

d1 = 2x1 −
1

2
d0 −

1

2
d2.

Observe that when N ≥ 3, the above matrix is strictly diagonally dominant, so it is
invertible. Actually, the above system needs to be solved for the x-coordinates and for the
y-coordinates of the dis (and also for the z-coordinates, if the points are in R3). Once the
above system is solved, the Bézier cubics C1, . . . , CN are determined as follows (we assume
N ≥ 2): For 2 ≤ i ≤ N − 1, the control points (bi0, b

i
1, b

i
2, b

i
3) of Ci are given by

bi0 = xi−1

bi1 =
2

3
di−1 +

1

3
di

bi2 =
1

3
di−1 +

2

3
di

bi3 = xi.

The control points (b10, b
1
1, b

1
2, b

1
3) of C1 are given by

b10 = x0

b11 = d0

b12 =
1

2
d0 +

1

2
d1

b13 = x1,

and the control points (bN0 , b
N
1 , b

N
2 , b

N
3 ) of CN are given by

bN0 = xN−1

bN1 =
1

2
dN−1 +

1

2
dN

bN2 = dN

bN3 = xN .
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Prove that the tangent vectors m0 at x0 and mN at xN are given by

m0 = 3(d0 − x0)

mN = 3(xN − dN).

End Conditions.

One method to determine the points d0 and dN is the natural end condition, which
consists in setting the second derivatives at x0 and at xN to be zero, that is,

C ′′1 (0) = 0, C ′′N(1) = 0.

(1) Prove that the second derivative at b0 of a Bézier cubic specified by the control points
(b0, b1, b2, b3) is

6(b0 − 2b1 + b2),

and the second derivative at b3 is

6(b1 − 2b2 + b3).

Prove that our system becomes
4 1
1 4 1 0

. . . . . . . . .

0 1 4 1
1 4




d1
d2
...

dN−2
dN−1

 =


6x1 − x0

6x2
...

6xN−2
6xN−1 − xN

 ,

where d0, dN are given by

d0 =
2

3
x0 +

1

3
d1

dN =
1

3
dN−1 +

2

3
xN .

Note that d0 is on the line segment (x0, d1) (1/3 of the way from x0) and dN is on the line
segment (dN−1, xN) (1/3 of the way from xN).

In the above derivation we assumed that N ≥ 4. If N = 3, show that this system reduces
to (

4 1
1 4

)(
d1
d2

)
=

(
6x1 − x0

6x2 − x3

)
.

Another method to determine the points d0 and dN is the quadratic end condition, which
consists in requiring that the second derivatives at x0 and at x1 agree, and similarly for the
second derivatives at xN−1 and xN ; this means that

C ′′1 (0) = C ′′1 (1) and C ′′N(0) = C ′′N(1).
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(2) Prove that our system becomes
5 1
1 4 1 0

. . . . . . . . .

0 1 4 1
1 5




d1
d2
...

dN−2
dN−1

 =


7x1 − x0

6x2
...

6xN−2
7xN−1 − xN

 ,

where d0, dN are given by

d0 = d1 +
2

3
x0 −

2

3
x1

dN = dN−1 +
2

3
xN −

2

3
xN−1.

Geometrically, the vector d0−d1 is equal to 2
3
(x0−x1) and similarly the vector dN−dN−1

is equal to 2
3
(xN − xN−1); in particular, the line segments (d0, d1) and (x0, x1) are parallel,

and so are (dN , dN−1) and (xN , xN−1).

In the above derivation we assumed that N ≥ 4. If N = 3, show that this system reduces
to (

5 1
1 5

)(
d1
d2

)
=

(
7x1 − x0

7x2 − x3

)
.

Yet another method known as Bessel end condition is to require the first derivative C ′1(0)
at x0 to be equal to the first derivative of the unique parabola passing through x0, x1, x2, for
t = 0, 1, 2, and to require the first derivative C ′N(1) at xN to be equal to the first derivative
of the unique parabola passing through xN−2, xN−1, xN , for t = 0, 1, 2.

A parabola passing through x0 and x2 as above is given by

C(t) =
(2− t)2

4
x0 +

(2− t)t

2
b1 +

t2

4
x2,

so to require that C(1) = x1 means that

x1 =
1

4
x0 +

1

2
b1 +

1

4
x2,

which yields

b1 = −1

2
x0 + 2x1 −

1

2
x2.

(3) Show that

m0 = C ′(0) = b1 − x0 = −3

2
x0 + 2x1 −

1

2
x2,
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and using the fact that d0 = x0 + 1
3
m0, show that

d0 =
1

2
x0 +

1

2

(
x1 +

1

3
(x1 − x2)

)
.

Geometrically, d0 is the midpoint of the line segment from x0 to a point obtained by extrap-
olation from x1 and x2 (x1 + 1

3
(x1 − x2)).

Similarly, for the parabola interpolating xN−2, xN−1 and xN , we get

bN = −1

2
xN−2 + 2xN−1 −

1

2
xN ,

and show that

mN = C ′(2) = xN − bN =
1

2
xN−2 − 2xN−1 +

3

2
xN ,

and using the fact that dN = xN − 1
3
mN , show that

dN =
1

2

(
xN−1 +

1

3
(xN−1 − xN−2)

)
+

1

2
xN .

Geometrically, dN is the midpoint of the line segment from xN to a point obtained by
extrapolation from xN−1 and xN−2 (xN−1 + 1

3
(xN−1−xN−2)). Note that the above derivation

is correct for N ≥ 2.

Finally, there is the not a knot end condition, which consists in forcing the first two
Bézier segments C1 and C2 to belong to the same cubic curve, and similarly for the last
two Bézier segments CN−1 and CN . This amounts to require that C ′′′1 (1) = C ′′′2 (0) and
C ′′′N−1(1) = C ′′′N (0).

(4) Prove that the third derivative at b0 and at b3 of a Bézier cubic specified by the
control points (b0, b1, b2, b3) is

6(−b0 + 3b1 − 3b2 + b3).

Prove that if N = 3, then

d0 =
7

18
x0 +

8

9
x1 +

7

18
x2 −

2

3
d2

d1 = −1

6
x0 +

4

3
x1 −

1

6
x2

d2 = −1

6
x1 +

4

3
x2 −

1

6
x3

d3 =
7

18
x1 +

8

9
x2 +

7

18
x3 −

2

3
d1

are already computed in terms of x0, . . . , x3, and there is no need to solve any linear system.
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Prove that if N = 4, then

d1 = −1

6
x0 +

4

3
x1 −

1

6
x2

d3 = −1

6
x2 +

4

3
x3 −

1

6
x4

d2 =
3

2
x2 −

1

4
d1 −

1

4
d3

d0 =
7

18
x0 +

8

9
x1 +

7

18
x2 −

2

3
d2

d4 =
7

18
x2 +

8

9
x3 +

7

18
x4 −

2

3
d2.

Prove that if N ≥ 5, our linear system becomes the (N − 3)× (N − 3) system
4 1 0 0
1 4 1 0

. . . . . . . . .

0 1 4 1
0 0 1 4




d2
d3
...

dN−3
dN−2

 =


6x2 + 1

6
x0 − 4

3
x1 + 1

6
x2

6x3
...

6xN−3
6xN−2 + 1

6
xN−2 − 4

3
xN−1 + 1

6
xN

 ,

and d0, d1, dN−1, dN are given by

d0 =
7

18
x0 +

8

9
x1 +

7

18
x2 −

2

3
d2

d1 = −1

6
x0 +

4

3
x1 −

1

6
x2

dN−1 = −1

6
xN−2 +

4

3
xN−1 −

1

6
xN

dN =
7

18
xN−2 +

8

9
xN−1 +

7

18
xN −

2

3
dN−2.

If N = 5, this system reduces to(
4 1

1 4

)(
d2

d3

)
=

(
6x2 + 1

6
x0 − 4

3
x1 + 1

6
x2

6x3 + 1
6
x3 − 4

3
x4 + 1

6
x5

)
.

(5) Implement the Gaussian elimination method with partial pivoting as well as the
method for solving a triangular system by back-substitution.

Use your program to solve several instances of the interpolation problem. Verify that no
pivoting is needed.

(6) Implement the LU -factorization method for tridiagonal matrices and test it on the
same interpolation problems as in (5).
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Do you notice any improvement over Gaussian elimination (running time, numerical
precision)?

(7) After computing d1, . . . , dN−1, use your program from Project 1 to compute the control
points for the Bézier curves C1, . . . CN and to plot these Bézier segments (for t ∈ [0, 1]) to
visualize the interpolating spline. Experiment with the choice of end conditions.

TOTAL: 300 points.
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