
MCIT 515

Fundamentals of Linear Algebra and Optimization
Jean Gallier and Jocelyn Quaintance

Project 1A: Drawing Bézier Curves

The purpose of this project is to implement the subdivision version of the de Casteljau
algorithm for approximating a Bézier curve by a polygonal line.

(1) Given a cubic Bézier curve C specified by its control points (b0, b1, b2, b3), for any t,
the de Casteljau algorithm constructs points

b10, b
1
1, b

1
2

b20, b
2
1

b30,

using the equations

b1i = (1− t)bi + tbi+1 i = 0, 1, 2

b2i = (1− t)b1i + tb1i+1 i = 0, 1

b3i = (1− t)b20 + tb21 i = 0.

This process is conveniently depicted as follows.

0 1 2 3
b0 = b00

b10
b1 = b01 b20,

b11 b30
b2 = b02 b21

b12
b3 = b03

Then the point C(t) is given by
C(t) = b30.

The red cubic curve is tangent to the line segment (b20, b
2
1) at b30; see Figure 1.

It turns out that the two sequences of points

ud = (b0, b
1
0, b

2
0, b

3
0)

and
ld = (b30, b

2
1, b

1
2, b3)

1

b0

b1

b2

b3

b1
0

b1
1

b1
2

b2
0 b 2

1
b3

0

Figure 1: de Casteljau subdivision

are also control points for the curve C; see Figure 1.

Thus we can iterate the above method using the control points in ud and ld, to obtain a
sequence of four control polygons, and if we iterate this process n times, we obtain 2n control
polygons which when linked together yield a polygonal curve that approximates very closely
the segment of Bézier curve C(t) for t ∈ [0, 1]. Usually, we perform subdivision for t = 1/2.
This method is called the subdivision version of the de Casteljau algorithm.

Implement the subdivision version of the de Casteljau algorithm in Matlab, for a cubic
specified by its control points (b0, b1, b2, b3). Your program should take as input the control
polygon (b0, b1, b2, b3) and the number of times M that your program subdivides. The control
polygon (b0, b1, b2, b3) should be represented in Matlab as a 2 × 4 matrix cpoly whose first
row consists of the x-coordinates of b0, b1, b2, b3 and whose second row consists of the y-
coordinates of b0, b1, b2, b3. For example, given

cpoly = [0 1 2 3; 0 4 5 0],

we obtain the line green polygonal curve of Figure 2 which passes through the points b0 =
(0, 0), b1 = (1, 4), b2 = (2, 5), and b3 = (3, 0). The advantage of this representation is that
the polygonal line consisting of the line segments joining the control points b0, b1, b2, b3 is
plotted using the command

plot(cpoly(1, :), cpoly(2, :))

2

b = (0,0)0

b = (1,4)1

b = (2,5)2

b = (3,0)3

Figure 2: Polygonal curve associated with cpoly = [0 1 2 3; 0 4 5 0].

Your goal is to implement the program show decas subdiv2 (in project zip file), which
should take as input a control polygon cpoly and output the x and y coordinates of the cubic
curve. It should also be compatible with the function run decas subdiv g1(cpoly,M,flag)

(also in project zip file).

To run the above function and plot your output, type

[x, y] = run_decas_subdiv_g1(cpoly,M,0)

in the command window. Before this, make sure to initialize cpoly and M. You must output
the final (row) vectors x and y after M iterations.

More specifically, the function show decas subdiv2(bx,by,n) returns two row vectors
x and y of dimension 3× 2n + 1 consisting of the x-coordinates and the y-coordinates of the
sequence of nodes starting with b0 and ending with b3 in the polygonal line produced by the
de Casteljau subdivision algorithm after n rounds of subdivision. This polygonal curve is
the concatenation of the 2n control polygons (each consisting of 4 nodes) produced after n
rounds of subdivision after removing the duplicate first control point of each control polygon
after the first one. For example, for n = 1 and cpoly = [0 1 2 3; 0 4 5 0], we get

x = [0 0.5 1 1.5 2 2.5 3]

y = [0 2 3.25 3.375 3.5 2.5 0];

see Figure 3.

3

b = (0,0)0

b = (1,4)1

b = (2,5)2

b = (3,0)3

b = (0.5, 2)0
1

b = (1, 3.25)
2
0

b = (1.5, 3.375)0
3 b = (2, 3.5)

2
1

b = (2.5, 2.5)1
2

Figure 3: A visualization of the output of show decas subdiv2(bx,by,1) applied to cpoly

= [0 1 2 3; 0 4 5 0]. The output is the concatenation of the two new blue control poly-
gons whose vertices have x and y coordinates given by the lists above.

We suggest that you first write a function subdecas that takes as input a control polygon
cpoly (a 2× 4 matrix) and returns the two control polygons ud and ld produced after one
step of the de Casteljau subdivision algorithm. Then write a function subdivstep that
takes a 2× 4× l array lpoly consisting of l control polygons and produces a 2× 4× 2l array
in which each control polygon lpoly(:,:,i) is subdivided into two control polygons using
subdecas. Here l is some power of 2. Finally iterate subdivstep M times starting with the
input control polygon cpoly to produce a 2× 4× 2M array lpoly consisting of 2M control
polygons, and then write a function makelist that makes the vectors x and y described
earlier from lpoly.

Hint: Note that you will be extending this function in the next part, so ideally it will
be easy to generalize to 2× n input control polygons.

(1)(i) (30 points) In summary, your program must take as input the control polygons
listed below.

cpoly1 = [0 1 2 3; 0 4 5 0]

cpoly2 = [0 1 3 4;−2 2 − 2 0]

cpoly3 = [3 0 4 1; 0 3 3 0]

cpoly4 = [4 0 4 0; 0 1 1 0]

cpoly5 = [4 0 6 2; 0 6 6 0]

4

For each control polygon (cpoly), your program must output the final (row) vectors x
and y after M iterations, for M = 1, 2, . . . , 6. For a test of visual correctness, we will also
plot each curve. This is all done in the output script get output 1.m, so you will not need
to worry about writing the plotting code for this project.

You may test your program on control polygons that you generated yourself.

(1)(ii) (10 points) Use the subdivision method in which you specify the control points
by clicking on the mouse (screen input). The driver function run decas subdiv g2(M,flag)

and function getpoints (both in project zip file) will be used to do this. The output script
get output 1.m will automatically prompt you to do the clicking - just click 4 points for
this part (though you can do more if you wish). For some examples look at Figure 6.

(2) Given a Bézier curve C of degree m specified by its control points (b0, b1, . . . , bm), for
any t, the de Casteljau algorithm constructs points bki in m stages

b10, b
1
1, . . . , b

1
m−2, b

1
m−1

b20, b
2
1, . . . , b

2
m−2

...

bm−1
0 , bm−1

1

bm0 .

If we write b0i = bi for i = 0, . . . ,m, then the bki are given by the following equations

bk+1
i = (1− t)bki + tbki+1 k = 0, . . . ,m− 1, i = 0, . . . ,m− k − 1,

and as in the case m = 3, the point on the curve is

C(t) = bm0 .

As in the case of cubic curves, the two sequences of points

ud = (b0, b
1
0, . . . , b

m−1
0 , bm0)

and
ld = (bm0 , b

m−1
1 , . . . , b1m−1, bm)

are also control points for the curve C, so we can iterate the above method using the control
points in ud and ld, and we obtain a subdivision method that yields a polygonal line that
approximates very closely the segment of Bézier curve for t ∈ [0, 1].

Implement the subdivision version of the de Casteljau algorithm in Matlab, for a Bézier
curve of degree m specified by its control points (b0, b1, . . . , bm). Your program should take
as input the control polygon (b0, b1, . . . , bm), and the number of times M that your program

5

subdivides. The control polygon (b0, b1, . . . , bm) should be represented in Matlab as a 2 ×
(m+1) matrix cpoly whose first row consists of the x-coordinates of b0, b1, . . . , bm and whose
second row consists of the y-coordinates of b0, b1, . . . , bm. For example,

cpoly = [0 1 2 3 4 5; 0 4 5 3 2 0].

Use the same driver function as in (1) but modify show decas subdiv2(bx,by,n) so that it
returns two row vectors x and y of dimension m×2n+1 consisting of the x-coordinates and the
y-coordinates of the sequence of nodes starting with b0 and ending with bm in the polygonal
line produced by the de Casteljau subdivision algorithm after n rounds of subdivision. This
polygonal line is the concatenation of the 2n control polygons (each consisting of m+1 nodes)
produced after n rounds of subdivision, and removing the duplicate first control point of each
control polygon after the first one. For example, with

cpoly = [1 2 3 4 5 6; 0 4 3 6 4 0]

and n = 1, we get

x = [1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6]

y = [0 2 2.75 3.375 3.875 4.0625 4.25 4.125 3.5 2 0].

See Figure 4.
If you used the recommended solution, first adapt the function subdecas to take as input

a 2 × (m + 1) control polygon cpoly to return the two control polygons ud and ld. Also
adapt the function subdivstep so that it takes a 2 × (m + 1) × l array lpoly consisting
of l control polygons and produces a 2 × (m + 1) × 2l array in which each control polygon
lpoly(:,:,i) is subdivided into two control polygons using subdecas.

(2)(i) (50 points) In summary, your program must take as input the control polygons
listed below.

cpoly1 = [1 2 3 4 5 6; 0 4 3 6 4 0]

cpoly2 = [2.9255 0.9333 2.6161 6.6779 9.0571 7.1809;

1.7041 3.9307 7.2510 7.7979 4.4385 2.0361]

cpoly3 = [1.3832 9.7044 4.9161 1.6460 7.2664 8.9307 7.2372 3.8650;

0.9768 8.9458 9.8064 8.7565 0.6325 1.3554 5.4174 3.9716]

cpoly4 = [7.6168 5.7044 1.6606 1.6168 4.2445 5.8212 8.7847 9.4124 8.0693;

1.8029 1.3726 2.6807 6.0542 9.0835 6.4673 4.6773 7.2418 9.3417]

cpoly5 = [7.1058 9.7190 7.3540 4.2591 8.6825 4.7263 0.8577 3.9964 2.9599 1.5438 5.2664;

8.1196 5.4002 2.3881 5.1936 7.2590 0.4088 9.4621 9.7031 7.1386 3.7478 7.7926]

For each control polygon (cpoly), your program must output the final (row) vectors x
and y after M iterations, for M = 1, 2, . . . , 6. For a test of visual correctness, we also plot
each curve. Once again this is all done in the output script get output 1.m.

6

Figure 4: A visualization of the output of show decas subdiv2(bx,by,1) applied to cpoly

= [1 2 3 4 5 6; 0 4 3 6 4 0]. The output is the concatenation of the pink and blue
control polygons whose vertices have x and y coordinates given by the lists above.

The result of applying the subdivision method for M = 6 to the control polygon cpoly5

is shown in Figure 5.

(2)(ii) (10 points) This is the same as (1)(ii). Use the subdivision method in which
you specify the control points by clicking on the mouse (screen input). The driver function
run decas subdiv g2(M,flag) and function getpoints (both in project zip file) will be
used to do this. The output script get output 1.m will automatically prompt you to do the
clicking as before - this time please click 5 or more points for the curves. For some examples
of curves look at figure 6.

7

Figure 5: de Casteljau subdivision applied to the control polygon cpoly5.

8

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Figure 6: Three Bézier curves (the first two are cubic, the third has degre 7).

9

