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Chapter 1

Introduction to Vectors and Matrices

1.1 Vectors and Matrices; Some Motivations

Linear algebra provides a rich language to express problems expressible in terms of systems
of (linear) equations, and a powerful set of tools to solve them. A valuable feature this
language is that it is very effective at reducing the amount of bookkeeping:

variables and equations are neatly compressed using vectors and matrices.

But it is more than a convenient language. It is a way of thinking. If a problem can be
linearized, or at least approximated by a linear system, then it has a better chance to be
solved!

We begin by motivating the expressive power of the language of linear algebra on “the”
typical linear problem: solving a system of linear equations.

Consider the problem of solving the following system of three linear equations in the
three variables
x1, x2, x3 ∈ R:

x1 + 2x2 − x3 = 1

2x1 + x2 + x3 = 2

x1 − 2x2 − 2x3 = 3.

One way to approach this problem is introduce some “column vectors.” Let u, v, w, and
b, be the vectors given by

u =




1
2
1


 v =




2
1
−2


 w =



−1
1
−2


 b =




1
2
3




7



8 CHAPTER 1. INTRODUCTION TO VECTORS AND MATRICES

and write our linear system

x1 + 2x2 − x3 = 1

2x1 + x2 + x3 = 2

x1 − 2x2 − 2x3 = 3.

as
x1u+ x2v + x3w = b.

In writing the equation
x1u+ x2v + x3w = b

we used implicitly the fact that a vector z can be multiplied by a scalar λ ∈ R, where

λz = λ



z1

z2

z3


 =



λz1

λz2

λz3


 ,

and two vectors y and and z can be added, where

y + z =



y1

y2

y3


+



z1

z2

z3


 =



y1 + z1

y2 + z2

y3 + z3


 .

For example

3u = 3




1
2
1


 =




3
6
3




and

u+ v =




1
2
1


+




2
1
−2


 =




3
3
−1


 .

We define −z by

−z = −



z1

z2

z3


 =



−z1

−z2

−z3


 .

Observe that
(−1)z = −z.

Also, note that

z +−z = −z + z = 0,



1.1. VECTORS AND MATRICES; SOME MOTIVATIONS 9

where 0 denotes the zero vector

0 =




0
0
0


 .

If you don’t like the fact that the symbol 0 is used both to denote the number 0 and the
zero vector, you may denote the zero vector by 0.

More generally, you may feel more comfortable to denote vectors using boldface (z instead

of z), but you will quickly get tired of that. You can also use the “arrow notation” −→z , but
nobody does that anymore!

Also observe that
0z = 0, i .e. 0z = 0.

Then,

x1u+ x2v + x3w = x1




1
2
1


+ x2




2
1
−2


+ x3



−1
1
−2




=



x1

2x1

x1


+




2x2

x2

−2x2


+



−x3

x3

−2x3




=



x1 + 2x2 − x3

2x1 + x2 + x3

x1 − 2x2 − 2x3


 .

The set of all vectors with three components is denoted by M3,1 (some authors use R3×1).
The reason for using the notation M3,1 rather than the more conventional notation R3 is
that the elements of M3,1 are column vectors ; they consist of three rows and a single column,
which explains the subscript 3, 1.

On the other hand, R3 = R × R × R consists of all triples of the form (x1, x2, x3), with
x1, x2, x3 ∈ R, and these are row vectors .

For the sake of clarity, in this introduction, we will denote the set of column vectors with
n components by Mn,1.

An expression such as
x1u+ x2v + x3w

where u, v, w are vectors and the xis are scalars (in R) is called a linear combination. If we
let x1, x2, x3 vary arbitrarily (keeping u, v, w fixed), we get a set of vectors that forms some
kind of subspace of M3,1. Using this notion, the problem of solving our linear system

x1u+ x2v + x3w = b
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is equivalent to

determining whether b can be expressed as a linear combination of u, v, w.

Now, if the vectors u, v, w are linearly independent , which means that there is no triple
(x1, x2, x3) 6= (0, 0, 0) such that

x1u+ x2v + x3w = 0,

it can be shown that every vector in M3,1 can be written as a linear combination of u, v, w. In
fact, in this case every vector z ∈ M3,1 can be written in a unique way as a linear combination

z = x1u+ x2v + x3w.

Then, our equation

x1u+ x2v + x3w = b

has a unique solution, and indeed, we can check that

x1 = 1.4

x2 = −0.4

x3 = −0.4

is the solution.

But then, how do we determine that some vectors are linearly independent?

One answer is to compute the determinant det(u, v, w), and to check that it is nonzero.
In our case,

det(u, v, w) =

∣∣∣∣∣∣

1 2 −1
2 1 1
1 −2 −2

∣∣∣∣∣∣
= 15,

which confirms that u, v, w are linearly independent.

Other methods consist of computing an LU-decomposition or a QR-decomposition, or an
SVD of the matrix consisting of the three columns u, v, w,

A =
[
u v w

]
=




1 2 −1
2 1 1
1 −2 −2


 .

The array

A =




1 2 −1
2 1 1
1 −2 −2



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is a 3 × 3 matrix because it consists of 3 columns u, v, w also denoted by A1, A2, A3, and 3
rows denoted by A1, A2, A3, where

u = A1 =




1
2
1


 v = A2 =




2
1
−2


 w = A3 =



−1
1
−2




and

A1 =
[
1 2 −1

]
A2 =

[
2 1 1

]
A3 =

[
1 −2 −2

]
.

Given a matrix, our notation for the columns (use superscripts), and for the rows (use
subscripts), is not universally used.

In Matlab a matrix is represented as a sequence of rows separated by semicolons, where
the entries in each row are separed by blank spaces. For example, the matrix

A =




1 2 −1
2 1 1
1 −2 −2




is represented by

A = [1 2 − 1; 2 1 1; 1 − 2 − 2].

There is a convenient mechanism to denote the columns and the rows of the matrix A:

The jth column is denoted by A(:, j). For example, the second column is A(:, 2).

The ith row is denoted by A(i, :). For example, the first row is A(1, :).

We use the notation Aj for the jth column and Ai for the ith row.

If we form the vector of unknowns

x =



x1

x2

x3


 ,

and if we define the product Ax of the matrix A by the vector x by




1 2 −1
2 1 1
1 −2 −2





x1

x2

x3


 = x1




1
2
1


+ x2




2
1
−2


+ x3



−1
1
−2


 ;

that is

Ax = x1u+ x2v + x3w,
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Figure 1.1: The power of abstraction

then our linear combination x1u+ x2v + x3w can be written in matrix form as

x1u+ x2v + x3w = Ax =




1 2 −1
2 1 1
1 −2 −2





x1

x2

x3


 .

So, our linear system is expressed by




1 2 −1
2 1 1
1 −2 −2





x1

x2

x3


 =




1
2
3


 ,

or more concisely as

Ax = b.

Now, what if the vectors u, v, w are linearly dependent?
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For example, if we consider the vectors

u =




1
2
1


 v =




2
1
−1


 w =



−1
1
2


 ,

we see that
u− v = w,

a nontrivial linear dependence. It can be verified that u and v are still linearly independent.
Now, for our problem

x1u+ x2v + x3w = b

to have a solution, it must be the case that b can be expressed as linear combination of u and
v. However, it turns out that u, v, b are linearly independent (because det(u, v, b) = −6),
so b cannot be expressed as a linear combination of u and v and thus, our system has no
solution.

If we change the vector b to

b =




3
3
0


 ,

then
b = u+ v,

since

u+ v =




1
2
1


+




2
1
−1


 =




3
3
0


 = b,

and so the system
x1u+ x2v + x3w = b

has the solution
x1 = 1, x2 = 1, x3 = 0.

Actually, since w = u− v, the system

x1u+ x2v + x3w = b

is equivalent to
(x1 + x3)u+ (x2 − x3)v = b,

and because u and v are linearly independent, the unique solution in x1 + x3 and x2 − x3 is

x1 + x3 = 1

x2 − x3 = 1,
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which yields an infinite number of solutions parameterized by x3, namely

x1 = 1− x3

x2 = 1 + x3.

In summary, a 3× 3 linear system may have a unique solution, no solution, or an infinite
number of solutions, depending on the linear independence (and dependence) or the vectors
u, v, w, b.

This situation can be generalized to any n× n system, and even to any n×m system (n
equations in m variables), as we will see later.

The point of view where our linear system is expressed in matrix form as Ax = b stresses
the fact that the map x 7→ Ax is a linear transformation. This means that

A(λx) = λ(Ax)

for all x ∈ M3,1 and all λ ∈ R, and that

A(u+ v) = Au+ Av,

for all u, v ∈ M3,1.

We can view the matrix A as a way of expressing a linear map from M3,1 to M3,1 and
solving the system Ax = b amounts to determining whether b belongs to the image (or
range) of this linear map.

Yet another fruitful way of interpreting the resolution of the system Ax = b is to view
this problem as an intersection problem.

Indeed, each of the equations

x1 + 2x2 − x3 = 1

2x1 + x2 + x3 = 2

x1 − 2x2 − 2x3 = 3

defines a subset of R3 which is actually a plane. The first equation

x1 + 2x2 − x3 = 1

defines the plane H1 passing through the three points (1, 0, 0), (0, 1/2, 0), (0, 0,−1), on the
coordinate axes, the second equation

2x1 + x2 + x3 = 2

defines the plane H2 passing through the three points (1, 0, 0), (0, 2, 0), (0, 0, 2), on the coor-
dinate axes, and the third equation

x1 − 2x2 − 2x3 = 3
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defines the plane H3 passing through the three points (3, 0, 0), (0,−3/2, 0), (0, 0,−3/2), on
the coordinate axes.

The intersection Hi∩Hj of any two distinct planes Hi and Hj is a line, and the intersection
H1 ∩H2 ∩H3 of the three planes consists of the single point (1.4,−0.4,−0.4).

Under this interpretation, observe that we are focusing on the rows of the matrix A,
rather than on its columns , as in the previous interpretations.

There is a geometric interpretation of vectors in terms of coordinate systems. For exam-
ple, a vector u with two components

u =

[
u1

u2

]

is represented by an arrow whose source is the origin and whose tip is the point of coordinates
(u1, u2); see Figure 1.2 for an example.

0
x

y

u =

[
3
2

]

Figure 1.2: Geometric representation of a vector in R2

A vector u with three components

u =



u1

u2

u3




is also represented by an arrow whose source is the origin and whose tip is the point of
coordinates (u1, u2, u3); see Figure 1.3 for an example.

Addition of vectors also has a geometric interpretation. To add two vectors u and v (both
with two components), form the parallelogram having 0, u, v and w = u + v as its corners,
where u+v is tip of the diagonal whose source is at the origin; see Figure 1.4 for an example.
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0

x

z

y

u =




2
2
1




Figure 1.3: Geometric representation of a vector in R3

0
x

y

v =

[
4
2

]
u =

[
−1
2

]

w = u + v =

[
3
4

]

Figure 1.4: Geometric representation of vector addition in R2

A similar construction applies to vectors with three components, by performing this
construction in the plane determined by u and v. (But what happens if u and v belong to
the same line?)

The physical interpretation of the sum of vectors is the resultant of two forces. What
about a geometric interpretation for vectors with four or more components?

It seems that humans have trouble visualizing spaces with more than three dimensions.
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Vectors with four components

u =




u1

u2

u3

u4




can be interpreted as 3D points in a space-time world, where the component u4 corresponds to
time, but this is not entirely satisfactory. What about vectors with five or more components?

Perhaps it is best to give up on a geometric interpretation for vectors with 4 or more
components and take a more algebraic view .

It is still useful to keep as much as a geometric point of view when dealing with vectors
and matrices, but one has to be cautious that our intuition is often wrong in dimension
greater than three!

Still, we should consider seriously the advice given by the famous mathematician John
Tate:

Think geometrically; Prove algebraically.

Before proceeding any further, let us recall that sequences are not sets .

In a set with n elements {u1, . . . , un}, the elements ui are all distinct (ui 6= uj for all
i 6= j), and their order does not matter .

On the other hand, in a sequence with n elements (u1, . . . , un), we may have ui = uj
for i 6= j, and the order is important . For example, the sequences (1, 1, 2) and (2, 1, 1) are
different, and they are not sets. On the other hand, {1, 2} = {2, 1} is a set.

If X is any set, the set of sequences with n-elements (x1, . . . , xn) with xi ∈ X (where
n ≥ 1) is denoted by Xn. Sequences in Xn are also called n-tuples . When n = 1, we identify
the one-element sequence (x) with x, and thus we identify X1 with X.

1.2 Linear Combinations, Linear Independence,

Matrices

The set of n-tuples in Rn is an important example of a fundamental concept of linear algebra,
a vector space.

Definition 1.1. The set Rn with the addition operation + and the scalar multiplication ·
defined below is called a vector space:

(u1, . . . , un) + (v1, . . . , vn) = (u1 + v1, . . . , un + vn)

λ · (u1, . . . , un) = (λu1, . . . , λun),
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for all ui, vi ∈ R and all λ ∈ R.

The zero vector of Rn is the n-tuple (0, . . . , 0), denoted by 0 or even 0.

For any u = (u1, . . . , un) ∈ Rn, we define −u by

−u = −(u1, . . . , un) = (−u1, . . . ,−un).

Remark: We say that Rn has dimension n. It is convenient to let R0 = {0}, the space
consisting of the unique element 0.

For simplicity of notation, we usually drop the symbol for scalar multiplication (the dot)
and write λu instead of λ · u.

Important Notational Convention

Following Strang, we adopt the convention that writing a vector in Rn as a horizontal
n-tuple

u = (u1, . . . , un)

is just a way of saving space, and that the vertical notation for the vector u, as a column
vector , is

u =




u1

u2
...
un


 .

The above is really a special matrix with a single column (an n×1 matrix). In particular,
the n-tuple (u1, . . . , un) should not be confused with the row vector

[u1 u2 . . . un],

which is really a special matrix with a single row (an 1× n matrix).

Remark: Note that in a row matrix the entries are not separated by commas, but in an
n-tuple, they are. Strang’s notational trick is to use the brackets “[”, “]” to denote matrices,
and parentheses “(”, “)” to denote tuples.

Beware that this notation is not universally accepted!

Many books use the parentheses “(”, “)” to denote matrices. In this case, a row vector
is denoted by

(u1 u2 . . . un),
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with no separating commas. Often, these books feel compelled to denote a column vector
by

(u1 u2 . . . un)>,

the transpose of a row vector, but we find this ugly (and unnecessary)!

It seems to us that Strang’s convention is better. In fact, after a while, when we know
what’s going on, we can use parentheses to denote matrices without any risk of confusion.

For the time being, to be absolutely clear, let’s stick to brackets to denote matrices.

Definition 1.2. Given a p-tuple (u1, . . . , up) of vectors ui ∈ Rn, a linear combination of the
ui is a vector (in Rn) of the form

λ1u1 + · · ·+ λpup,

with λ1, . . . , λp some scalars in R (not necessarily distinct).

For example, if

u =

[
1
2

]
v =

[
4
2

]
w =

[
2
4

]
x =

[
−2
−1

]

then
2u+ v − w + 2x

is a linear combination of (u, v, w, x). Actually,

2u+ v − w + 2x = 0.

Observe that if we pick λ1 = · · · = λp = 0, then

0u1 + · · ·+ 0up = 0,

no matter what u1, . . . , up are! We call this the trivial linear combination.

Given a fixed p-tuple (u1, . . . , up) of vectors ui ∈ Rn, it is interesting to understand
geometrically what the set of all linear combinations

λ1u1 + · · ·+ λpup

looks like when the λ1, . . . , λp vary arbitrarily.

When p = 1, this is easy: we are dealing with rescaled versions λu1 of the vector u1.

If u1 = 0, we get the space reduced to 0. Let us now assume that u1 6= 0.

In R2, this gives us a line through the origin. Similarly, in R3, we get a line through the
origin. For n ≥ 4, we still say that we get a line (through the origin).

Let us now consider the case p = 2.



20 CHAPTER 1. INTRODUCTION TO VECTORS AND MATRICES

1. If both u1 = 0 and u2 = 0, we get the space reduced to 0.

2. If u1 = 0 or u2 = 0 but not both, we get a line as in the case p = 1.

3. If u1 6= 0 and u2 6= 0, it is possible that u1 and u2 are not independent, which means
that u2 = λu1 for some λ (actually λ 6= 0). In this case, we get a line, as in the case
p = 1.

4. The last possibility is that u1 and u2 are independent, which means that there is no λ
such that u2 = λu1, and there is no λ such that u1 = λu2. It is easy to see that this
implies that u1 6= 0 and u2 6= 0.

We claim that case (4) is equivalent to the following implication:

If λ1u1 + λ2u2 = 0, then λ1 = λ2 = 0. (∗)

Proof. First, assume that case (4) holds and assume that

λ1u1 + λ2u2 = 0

for some λ1, λ2. We need to prove that λ1 = λ2 = 0. We proceed by contradiction.

First assume that λ1 6= 0. Since λ1u1 = −λ2u2, we get

u1 = (−λ2/λ1)u2,

contradicting the fact that u1 is not a multiple of u2.

Next, if λ2 6= 0, because λ2u2 = −λ1u1, we get

u2 = (−λ1/λ2)u1,

contradicting the fact that u2 is not a multiple of u1.

Let us now prove the converse, namely that condition (∗) implies that u2 is not a multiple
of u1 and u1 is not a multiple of u2.

We proceed by contradiction and there are two cases.

1. If u1 = λu2, then λ1u1 + λ2u2 = 0, with λ1 = 1 and λ2 = −λ, a contradiction.

2. If u2 = λu1, then λ1u1 + λ2u2 = 0, with λ1 = λ and λ2 = −1, a contradiction.
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When u1 and u2 are independent (which implies that they are nonzero), the linear com-
binations λ1u1 +λ2u2 yield distinct vectors for distinct pairs (λ1, λ2), and these vectors form
a plane through the origin.

This is easily confirmed when n = 2, 3, and for n ≥ 4, we still say that we have a plane
(through the origin).

If we now consider the case p = 3, we find that the case analysis is even more complicated
and depends on the dependence or independence of the vectors u1, u2, u3. This suggests
taking a closer look at the notion of linear independence.

The key idea is that p vectors (u1, . . . , up) are linearly independent if none of them can
be expessed as a linear combination of the others.

This implies that ui 6= 0 for all i, because the zero vector is equal to the linear combination
of any sequence of arbitrary vectors if we pick all the scalars to be equal zero.

Equivalently, p vectors are linearly dependent if it is possible to form a nontrivial linear
combination which yields the zero vector; that is, there exists p scalars, λ1, . . . , λp, not all
zero, such that

λ1u1 + · · ·+ λpup = 0.

In this case, one of the ui can be expressed as a linear combination of the others. For
example, when p = 3, if

λ1u1 + λ2u2 + λ3u3 = 0,

and say, λ2 6= 0, we can write

u2 = (−λ1/λ2)u1 + (−λ3/λ2)u3.

Definition 1.3. We say that p ≥ 1 vectors (u1, . . . , up) with ui in Rn are linearly independent
if the equation

λ1u1 + · · ·+ λpup = 0

implies that λ1 = · · · = λp = 0.

We say that p vectors (u1, . . . , up) with ui in Rn are linearly dependent if they are not
linearly independent; this is equivalent to the fact that there exist some scalars λ1, . . . , λp,
with some λi 6= 0, such that

λ1u1 + · · ·+ λpup = 0.

Note that if (u1, . . . , up) are linearly independent, then ui 6= 0 for i = 1, . . . , p, and the ui
are all distinct (ui 6= uj, whenever i 6= j). We must also have n ≥ 1. Every tuple containing
some zero vector is linearly dependent.

Going back to the case of 3 vectors (u1, u2, u3) in R3, if they are linearly independent,
then the set of their linear combinations fills R3.

We say that they form a three-dimensional space, and this is also the case in Rn for n ≥ 4.
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One of the major goals of linear algebra is to
find “good” methods to check that some

vectors are linearly independent.

Observe that p vectors u1, . . . , up, each in Rn, can be arranged as a two-dimensional array
A with n rows and p columns, where the j-th column of A is uj.

A =



u1 u2 · · · up




Recall that that in the above, each ui is viewed as a column vector . The above array is a
n× p matrix . For example, the four vectors

u =

[
1
2

]
v =

[
4
2

]
w =

[
2
4

]
x =

[
−2
−1

]

in R2 can be used to form the 2× 4 matrix

A =

[
1 4 2 −2
2 2 4 −1

]
.

It is important to figure our the maximum number of linearly independent columns, and
the maximum number of linearly independent rows, of a matrix.

We will prove later that this number is the same (a fundamental result of linear algebra)!
It is called the rank of a matrix. We will present several algorithms for finding the rank of
a matrix (Gaussian elimination, LU, QR, SVD).

We’ve talked about matrices without giving a definition. Here it is.

Definition 1.4. An m×n matrix A = (aij) is an array of m×n scalars aij ∈ R, with m ≥ 1
and n ≥ 1, denoted by

A =




a1 1 a1 2 . . . a1n

a2 1 a2 2 . . . a2n
...

...
. . .

...
am 1 am 2 . . . amn


 .

We say that A has m rows and n columns . The index i is the index of the ith row, and
the index j is the index of the jth column.
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In the special case where m = 1, we have a row vector , represented by

[a1 1 · · · a1n].

In the special case where n = 1, we have a column vector , represented by


a1 1

...
am 1




In these last two cases, we usually omit the constant index 1 (first index in case of a row,
second index in case of a column).

The set of all m× n-matrices is denoted by Mm,n. Some authors use the notation Rm×n.
Matrices in Mm,n are also called rectangular matrices .

An n× n-matrix is called a square matrix of dimension n.

The set of all square matrices of dimension n is denoted by Mn.

The square matrix In of dimension n containing 1 on the diagonal and 0 everywhere else
is called the identity matrix . It is denoted by

In =




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1




The square matrix 0n of dimension n containing 0 everywhere is called the zero matrix .
For example, when n = 3,

03 =




0 0 0
0 0 0
0 0 0


 .

Matrices can be added or rescaled (provided that they have the same dimensions m,n).

Definition 1.5. Given two m × n matrices A = (ai j) and B = (bi j), we define their sum
A+B as the matrix C = (ci j) such that ci j = ai j + bi j; that is,



a1 1 a1 2 . . . a1n

a2 1 a2 2 . . . a2n
...

...
. . .

...
am 1 am 2 . . . amn


+




b1 1 b1 2 . . . b1n

b2 1 b2 2 . . . b2n
...

...
. . .

...
bm 1 bm 2 . . . bmn




=




a1 1 + b1 1 a1 2 + b1 2 . . . a1n + b1n

a2 1 + b2 1 a2 2 + b2 2 . . . a2n + b2n
...

...
. . .

...
am 1 + bm 1 am 2 + bm 2 . . . amn + bmn


 .
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We define the matrix −A as the matrix (−ai j).
Given a scalar λ ∈ R, we define the matrix λA as the matrix C = (ci j) such that

ci j = λai j; that is,

λ




a1 1 a1 2 . . . a1n

a2 1 a2 2 . . . a2n
...

...
. . .

...
am 1 am 2 . . . amn


 =




λa1 1 λa1 2 . . . λa1n

λa2 1 λa2 2 . . . λa2n
...

...
. . .

...
λam 1 λam 2 . . . λamn


 .

For example
[
1 2 −1 3
0 −1 4 2

]
+

[
1 −3 1 4
−1 1 −2 1

]
=

[
2 −1 0 7
−1 0 2 3

]

and

3




1 2
2 −1
0 −1
4 2


 =




3 6
6 −3
0 −3
12 6


 .

However,

[
1 2 −1 3
0 −1 4 2

]
+




1 2
2 −1
0 −1
4 2




does not make sense.

The analogy between the operations defined in Definition 1.1 on vectors in Rn and the
operations in Definition 1.5 on matrices should not have escaped the reader. In some sense,
these matrix operations are a two-dimensional generalization of the corresponding vector
operations. In fact, they satisfy the same properties.

Proposition 1.1. Matrices satisfy the following properties:

A+ (B + C) = (A+B) + C

A+ 0 = 0 + A = A

A+−A = −A+ A = 0

A+B = B + A

α(A+B) = αA+ αB

(α + β)A = αA+ βA

(αβ)A = α(βA)

1A = A,

where A,B,C are m× n matrices (members of Mm,n) and α, β ∈ R.
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The first four properties are properties of addition.

1. The first property says that + is associative.

2. The second property says that 0 is an identity element (with respect to +).

3. The third property says that each matrix A has an inverse −A (with respect to +).

4. The fourth property says that + is commutative.

These properties together make Mm,n into a commutative group under addition.

The last four properties are distributivity properties of addition and scalar multiplication;
on the right, and on the left.

One can check that vectors in Rn and matrices in Mm,n satisfy all these properties. These
properties characterize the structure known as vector space, the fundamental structures of
linear algebra!

This suggests that each set of matrices Mm,n is a vector space. We will see later that this
is indeed the case.

But first, we will discuss multiplication of matrices. For this, it is convenient to introduce
the notion of dot product , another fundamental concept of linear algebra.

I~=-I~ 
~ ---­

---I~'---------I-~ 
,­ I 

Figure 1.5: The right Tech
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1.3 The Dot Product (also called Inner Product)

Recall that in Section 1.1 we defined the multiplication of a 3× 3 matrix A by a vector x as
the linear combination of the columns of A using the entries in the vector x as coefficients:

If

x =



x1

x2

x3


 A1 =



a11

a21

a31


 A2 =



a12

a22

a32


 A3 =



a13

a23

a33


 ,

and

A =


A1 A2 A3


 =



a11 a12 a13

a21 a22 a23

a31 a32 a33


 ,

then by definition

Ax =



a11 a12 a13

a21 a22 a23

a31 a32 a33





x1

x2

x3


 = x1A

1 + x2A
2 + x3A

3.

A computation yields

x1A
1 + x2A

2 + x3A
3 = x1



a11

a21

a31


+ x2



a12

a22

a32


+ x3



a13

a23

a33




=



a11x1 + a12x2 + a13x3

a21x1 + a22x2 + a23x3

a31x1 + a32x2 + a33x3


 .

Therefore, we have

Ax =



a11 a12 a13

a21 a22 a23

a31 a32 a33





x1

x2

x3


 =



a11x1 + a12x2 + a13x3

a21x1 + a22x2 + a23x3

a31x1 + a32x2 + a33x3


 .

Each entry in the rightmost matrix has the same structure involving the rows of A (rather
than the columns of A). Indeed, if we let

[
y1 y2 y3

]
=
[
a11 a12 a13

]

denote the first row of A, then we have

a11x1 + a12x2 + a13x3 = y1x1 + y2x2 + y3x3.
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Similarly, if we let [
y1 y2 y3

]
=
[
a21 a22 a23

]

denote the second row of A, then we have

a21x1 + a22x2 + a23x3 = y1x1 + y2x2 + y3x3,

and if we let [
y1 y2 y3

]
=
[
a31 a32 a33

]

denote the third row of A, then we have

a31x1 + a32x2 + a33x3 = y1x1 + y2x2 + y3x3.

In all cases, the same expression

y1x1 + y2x2 + y3x3 = x1y1 + x2y2 + x3y3

shows up.

This expression is what is called the dot product or inner product of the vectors
x = (x1, x2, x3) and y = (y1, y2, y3), viewed as column vectors.

We will denote the dot product of x and y by

x · y, or 〈x, y〉.

The notation 〈x, y〉 is preferable when the dot is already used to denote another operation.
We can also define the inner product of two vectors x = (x1, y1) and y = (y1, y2) in R2 as

x · y = x1y1 + x2y2.

The dot product of two one-dimensional vectors x = (x1) and y = (y1) is defined as

x · y = x1y1.

In this very special case, it is just multiplication in R.

Observe that the inner product of two vectors x and y is always a number , not a vector.
Here is the general definition:

Definition 1.6. Given any two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn, their
dot product or inner product x · y (or 〈x, y〉) is the scalar (in R) given by

x · y = x1y1 + x2y2 + · · ·+ xnyn.

Observe that
x · y = y · x.
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For example, [
4
2

]
·
[
−1
2

]
= 4× (−1) + 2× 2 = −4 + 4 = 0,

and 


3
2
−1


 ·



−1
2
−1


 = 3× (−1) + 2× 2 + (−1)× (−1) = 2.

When the inner product of two vectors is zero, as in our first example, we say that the
vectors are orthogonal (or perpendicular). This has to do with a geometric interpretation of
the inner product in terms of angles that we will explore shortly.

The inner product can be interpreted as a cost function.

Say we have n products, where the price of product i is xi, and say we want to buy (or
sell) yi units of product i. Then the total cost of the transaction is

x1y1 + · · ·+ xnyn.

We have defined the inner product on vectors, but it is the special case of the matrix
multiplication of a row vector (a 1× n matrix) by a column vector (a n× 1 matrix). Recall
that

x · y =



x1
...
xn


 ·



y1
...
yn


 = x1y1 + · · ·+ xnyn,

which suggests defining the product of the 1× n matrix (a row vector)
[
x1 . . . xn

]

by the n× 1 matrix (a column vector) 

y1
...
yn




as

[
x1 . . . xn

]


y1
...
yn


 = x1y1 + · · ·+ xnyn.

This also suggests defining transposition, which converts a column vector to a row vector
(and conversely). Given a column vector

x =



x1
...
xn


 ,



1.3. THE DOT PRODUCT (ALSO CALLED INNER PRODUCT) 29

the transpose x> of x is the row vector

x> =
[
x1 . . . xn

]
,

and given a row vector
y =

[
y1 . . . yn

]
,

the transpose y> of y is the column vector

y> =



y1
...
yn


 .

Then, the inner product of two vectors x, y ∈ Rn is also defined in terms of matrix
multiplication and transposition by

x · y = x>y.

The transposition operation actually applies to arbitrary m× n matrices.

Given an m × n matrix A = (aij), transposition forms a new n × m matrix A> whose
columns are the rows of A (and whose rows are the columns of A). Formally, the n × m
matrix A>, the transpose of A is the matrix (a>ij), with

a>ij = aji,

for i = 1, . . . ,m and j = 1, . . . , n.

Observe that the original matrix A has m row and n columns, but the transpose matrix
A> has n rows and m columns. Also, Matlab uses the prime notation for transposition: A′.

Going back to the multiplication of a matrix A by a vector x, we we now have two ways
of expressing Ax:

1. As a linear combination of the columns of A using the components of x as coefficients.

2. As a vector consisting of the inner products of the rows of A with x.

In the first case

Ax =


A1 · · · An






x1
...
xn


 = x1A

1 + · · ·+ xnA
n,

where A1, . . . , An are the columns of A, and in the second case

Ax =




A1
...
Am






x1
...
xn


 =



A1x

...
Amx


 ,
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where A1, . . . , Am are the rows of A (as row vectors) and where A1x, .., Amx are the inner
products of A1, . . . , Am with x (in matrix form).

The inner product x·x of a vector x with itself has an important geometric interpretation.

For example, if x = (2, 1), we have

x · x = 21 + 12 = 4 + 1 = 5,

and for x = (1, 2, 3), we have

x · x = 12 + 22 + 32 = 14.

It turns out that
√
x · x is the length of the vector x.

In general, if x = (x1, . . . , xn), we have

x · x = x2
1 + x2

2 + · · ·+ x2
n.

The following two properties of the inner product are immediately verified, but they are
crucial:

Proposition 1.2. The inner product on Rn satisfies the following properties:

(a) For all x = (x1, . . . , xn) ∈ Rn, we have

x · x ≥ 0.

We say that the inner product is positive
(semidefinite).

(b) For all x = (x1, . . . , xn) ∈ Rn, we have

x · x = 0 iff x = 0.

We say that the inner product is definite.

Properties (a) and (b) together say that the inner product is positive definite.

Property (a) is clear since if xi ∈ R, then
x2

1 + x2
2 + · · ·+ x2

n ≥ 0.

For property (b), we only need to check that if

x2
1 + x2

2 + · · ·+ x2
n = 0,

then x1 = x2 = · · · = xn = 0. But this follows because all the xi are real numbers, so x2
i ≥ 0,

and if xj 6= 0, then x2
j > 0, and so x2

1 + x2
2 + · · ·+ x2

n > 0.
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Remark: Property (b) fails for complex numbers! For example,

12 + i2 = 0,

yet (1, i) 6= (0, 0). Here, i =
√
−1.

Since x · x ≥ 0 (property (a)), the square root of x · x makes sense, and we define the
(Euclidean) length or (Euclidean) norm of x as

‖x‖ =
√
x · x = (x2

1 + x2
2 + · · ·+ x2

n)1/2.

Remark: The Euclidean norm is also denoted by ‖x‖2, and is sometimes called the 2-norm.

In view of property (b),
‖x‖ = 0 iff x = 0.

Another useful property of the Euclidean norm is this: For every scalar λ ∈ R, for every
vector x ∈ Rn,

‖λx‖ = |λ| ‖x‖ .
The absolute value is needed because λ could be negative, but a norm is always nonnegative.

If a vector x ∈ Rn is nonzero, then we know that ‖x‖ 6= 0, so we can write

x = ‖x‖
(

1

‖x‖ x
)
.

Then, using the property stated above, we see that

‖(1/ ‖x‖)x‖ = 1.

We say that (1/ ‖x‖)x is a unit vector . This vector is sometimes denoted by x̂, and we
can write

x = ‖x‖ x̂.

A unit vector x is any vector such that ‖x‖ = 1 (equivalently, x · x = 1).

We can now give a geometric interpretation of the inner product of two vectors in R2.
First, observe that if x = 0 or y = 0, then x · y = 0, so we may assume that x 6= 0 and y 6= 0.
Also, we can check easily that

(λx) · y = λ(x · y) = x · (λy).

It follows that if x 6= 0 and y 6= 0, then

x · y = ‖x‖ ‖y‖ (x̂ · ŷ).
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0
x

y

cos α

sin α
α

u =

[
cos α
sin α

]

Figure 1.6: A unit vector in R2

Therefore, we just have to figure out what is the inner product of two unit vectors in the
plane. However, a unit vector x̂ in the plane corresponds to a point on the unit circle.

Thus, its coordinates are of the form (cosα, sinα), where α is the angle betwen the x-axis
and the line supported by x̂. Similarly, the coordinates of the unit vector ŷ are of the form
(cos β, sin β); See Figures 1.6 and 1.7.

It follows that

x̂ · ŷ = (cosα, sinα) · (cos β, sin β)

= cosα cos β + sinα sin β

= cos(β − α).

Now, if we let θ = β−α, we see that θ is the angle between x̂ and ŷ (using a counterclockwise
positive orientation).

Therefore, we proved that for two vectors x, y in the plane,

x · y = ‖x‖ ‖y‖ cos θ,

where θ is the angle between x and y (we may assume −π < θ ≤ π).

Note that the formula applies even if x = 0 or y = 0, since in this case ‖x‖ ‖y‖ = 0.

A similar discussion applies to vectors in R3, except that this time, the sign of the angle
θ depends on the orientation of the plane containing x and y.

In R2 or R3, the formula
x · y = ‖x‖ ‖y‖ cos θ,
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0
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y

α
β

θ

θ = β − α

u =

[
cos α
sin α

]

v =

[
cos β
sin β

]

Figure 1.7: The inner product of two unit vectors in R2

explains why we say that x and y are orthogonal when x ·y = 0 (assuming x 6= 0 and y 6= 0).
Indeed, we must have cos θ = 0, which implies that θ = ±π/2.

In the plane, the sign of x · y also tells us something about the magnitude of the angle θ:
if x · y < 0, then |θ| > π/2.

What about vectors in Rn with n ≥ 4?

Since | cos θ| ≤ 1, we need to know that

|x · y| ≤ ‖x‖ ‖y‖

always holds. We will prove this, but first we need to state a few properties of the inner
product.

Proposition 1.3. The inner product on Rn satisfies the following properties:

(x1 + x2) · y = (x1 · y) + (x2 · y)

(λx) · y = λ(x · y)

x · (y1 + y2) = (x · y1) + (x · y2)

x · (µy) = µ(x · y)

x · y = y · x
x · x ≥ 0

if x 6= 0, then x · x > 0,

for all x, x1, x2, y, y1, y2 ∈ Rn and all λ, µ ∈ R.
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The first four properties say that the inner product is linear in each argument; we say
that it is bilinear .

The fifth property says that the inner product is symmetric.

The last two properties say that the inner product is positive definite.

Using the first five properties, we can show the following useful fact:

‖λx+ µy‖2 = (λx+ µy) · (λx+ µy) = λ2 ‖x‖2 + 2λµx · y + µ2 ‖y‖2 .

In particular, for λ = µ = 1 we get

‖x+ y‖2 = ‖x‖2 + 2x · y + ‖y‖2 .

This shows that Pythagoras Law holds, namely

‖x+ y‖2 = ‖x‖2 + ‖y‖2 iff x · y = 0,

that is iff x and y are orthogonal.

We are now ready to prove an important property of inner products, the Cauchy-Schwarz
inequality. This property implies that the Euclidean norm satisfies what is known as the
triangle inequality, another crucial property.

First, recall a property of quadratic equations. Consider the quadratic equation

ax2 + bx+ c = 0

and assume that a > 0. We know that this equation has two distinct real roots iff

b2 − 4ac > 0.

Now, the curve of equation
y = ax2 + bx+ c

is a parabola, and because a > 0, this parabola does not go below the x-axis iff the equation
ax2 + bx+ c = 0 does not have distinct real roots, which happens iff

b2 − 4ac ≤ 0.

Theorem 1.4. For all x, y ∈ Rn, we have the Cauchy-Schwarz inequality:

|x · y| ≤ ‖x‖ ‖y‖ .

Furthermore, we also have the triangle inequality (also known as the Minkowski inequality):

‖x+ y‖ ≤ ‖x‖+ ‖y‖ .
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Proof. Let t ∈ R be any real number and consider the function F given by

F (t) = ‖x+ ty‖2 .

From a previous calculation, we have

F (t) = t2 ‖y‖2 + 2t(x · y) + ‖x‖2 .

We also know that
F (t) = ‖x+ ty‖2 ≥ 0

for all t.

If y = 0, then x · y = 0 and ‖y‖ = 0, in which case the inequality |x · y| ≤ ‖x‖ ‖y‖ is
trivial.

If y 6= 0, then ‖y‖2 > 0, and by our previous discussion, since F (t) is nonnegative, the
equation

t2 ‖y‖2 + 2t(x · y) + ‖x‖2 = 0

does not have distinct real roots, which implies that

4(x · y)2 − 4 ‖x‖2 ‖y‖2 ≤ 0;

that is,
(x · y)2 ≤ ‖x‖2 ‖y‖2 .

However, the above is equivalent to

|x · y| ≤ ‖x‖ ‖y‖ .

For the second inequality, recall that

‖x+ y‖2 = ‖x‖2 + 2x · y + ‖y‖2 .

Also, since norms are positive, by squaring, we have

‖x+ y‖ ≤ ‖x‖+ ‖y‖
iff

‖x+ y‖2 ≤ ‖x‖2 + ‖y‖2 + 2 ‖x‖ ‖y‖
iff

‖x+ y‖2 − ‖x‖2 − ‖y‖2 ≤ 2 ‖x‖ ‖y‖ . (∗)

Using the fact that
‖x+ y‖2 − ‖x‖2 − ‖y‖2 = 2x · y,

the inequality (∗) is equivalent to

2x · y ≤ 2 ‖x‖ ‖y‖ .
The above is trivial if x·y < 0, and otherwise follows from the Cauchy-Schwarz inequality.
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Figure 1.8: Augustin-Louis Cauchy, 1789–1857
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Figure 1.9: Hermann Schwarz, 1843–1921

Figure 1.10: Hermann Minkowski, 1864–1909
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It worth stating that the Euclidean norm satisfies the following three properties:

(1) ‖x‖ ≥ 0 and ‖x‖ = 0 iff x = 0.

(2) ‖λx‖ = |λ| ‖x‖.

(3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality).

The Cauchy-Schwarz inequality

|x · y| ≤ ‖x‖ ‖y‖

shows that when x and y are nonzero, we have
∣∣∣∣
x · y
‖x‖ ‖y‖

∣∣∣∣ ≤ 1,

and so we can interpret this ratio as the cosine of the angle θ between the vectors x and y:

cos θ =
x · y
‖x‖ ‖y‖ .

Remark: Unless we are in R2, the sign of this angle is not determined.

1.4 Matrix Multiplication

In Section 1.3, we defined the product of an m × n matrix A by a column vector x ∈ Rn.
The result is a vector y ∈ Rm such that

y = Ax.

It follows that the m×n matrix A defines a function from Rn to Rm. On input x ∈ Rn, this
function produces the output y = Ax ∈ Rm.

It turns out that such functions are very special: they are linear , but we will not discuss
this right now.

Suppose now that we have two matrices A and B, where A is a m× n matrix and B is
a n× p matrix. For every x ∈ Rp, we get an output Bx ∈ Rn, and for every y ∈ Rn, we get
an output Ay ∈ Rm.

If we write y = Bx and z = Ay, we should have

z = Ay = A(Bx).

The function that maps x ∈ Rp directly to z ∈ Rm should also be linear, and indeed it is
given by a matrix AB, the product of A and B.
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Figure 1.11: Early Traveling

The matrix AB is the m× p matrix whose jth column is the product ABj of the matrix
A by the jth column Bj of B; that is

AB = A


B1 · · · Bp


 =


AB1 · · · ABp


 .

Observe that each ABj is indeed a column vector in Rm, since A is an m×n matrix and
Bj is a vector in Rn (and B has p such columns, since it is an n× p matrix).

Going back to the definition of the product of a matrix A times a vector x in terms of
the inner product of the rows of A with x, we see that if C = AB and C = (cij), then

cij =
n∑

k=1

aikbkj = (ith row of A) · (jth column of B);
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that is

cij = [ai 1 · · · ai n]



b1 j
...
bn j


 =

n∑

k=1

ai kbk j.

Matrix multiplication has many of the properties similar to the multiplication of real
numbers, but in general

AB 6= BA,

even for square matrices. For example

[
1 −1
1 1

] [
−1 0
0 1

]
=

[
−1 −1
−1 1

]

but [
−1 0
0 1

] [
1 −1
1 1

]
=

[
−1 1
1 1

]
.

Here are some useful properties of matrix multiplication:

Proposition 1.5. (1) Given any matrices
A ∈ Mm,n, B ∈ Mn,p, and C ∈ Mp,q, we have

(AB)C = A(BC)

ImA = A

AIn = A,

that is, matrix multiplication is associative and has left and right identities.

(2) Given any matrices A,B ∈ Mm,n, and
C,D ∈ Mn,p, for all λ ∈ R, we have

(A+B)C = AC +BC

A(C +D) = AC + AD

(λA)C = λ(AC)

A(λC) = λ(AC),

We say that matrix multiplication · : Mm,n ×Mn,p → Mm,p is bilinear.

1.5 Inverse of a Matrix; Solving Linear Systems

Recall that a simple equation of the form

ax = b
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(where a and b are real numbers) has a solution iff a 6= 0, in which case

x =
b

a
= a−1b,

where a−1 = 1/a is the inverse of a.

Since matrices correspond to linear maps, we should expect that only n×n matrices may
have an inverse, since the corresponding functions should be bijective.

Given any n×n matrix A, we say that A is invertible iff there is some n×n matrix A−1

such that
AA−1 = A−1A = I.

A (square) matrix which is not invertible is said to be singular . It is important to observe
that not every matrix has an inverse. For example, the matrix

[
1 2
2 4

]

does not have any inverse. Why?

However, if a matrix A has an inverse, then it is unique. This is because if A has two
inverses A′ and A′′, then

A′A = AA′ = I and A′′A = AA′′ = I,

so we have
A′′ = IA′′ = (A′A)A′′ = A′(AA′′) = A′I = A′.

If a matrix A has an inverse, then the equation

Ax = b

has the unique solution x = A−1b. Simply multiply both sides of Ax = b by A−1 on the left.

A (square) matrix is invertible iff its determinant is nonzero (we will study determinants
later). However, this is rarely a practical criterion.

A lot of efforts has been devoted to finding conditions that guarantee the invertibility of a
matrix, and methods to compute the inverse of a matrix. This is generally a labor intensive
process and it is rarely the best way to solve a linear system. Most methods solve a linear
system without ever computing an inverse matrix.

The crucial point is that for any square matrix A, the system Ax = b has a solution for
every b ∈ Rn iff the columns of A are linearly independent (as vectors in Rn).

There are various ways to prove this. One way to proceed it to first prove the following
proposition which turns out to be a key ingredient in proving several fundamental results of
linear algebra.
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Proposition 1.6. If A is any n × p matrix and if p > n (there are more variables than
equations), then the system Ax = 0 always has a nonzero solution; that is, there is some
x ∈ Rp, with x 6= 0, so that Ax = 0. Equivalently, any p > n vectors in Rn must be linearly
dependent.

Proof. Let u1, . . . , up be p vectors in Rn. By definition, these vectors are linearly dependent
iff there exist some scalars x1, . . . , xp, not all zero, such that

x1u1 + · · ·+ xpup = 0.

If we form the n× p matrix A having u1, . . . , up as its columns, since

Ax = x1u1 + · · ·+ xpup,

the system Ax = 0 has a nontrivial solution x 6= 0 iff u1, . . . , up are linearly dependent.

We now prove by induction on n ≥ 1 that the system Ax = 0 always has a nontrivial
solution (if p > n).

If n = 1, there is a single equation of the form

a1x1 + · · ·+ apxp = 0, (∗)

with p ≥ 2.

If aj = 0 for j = 1, . . . , p, the equation is 0 = 0, which is solved by any x ∈ Rp.

Otherwise, there is some i such that ai 6= 0, and pick the leftmost such i.

If i > 1, then x1 does not appear in equation (∗), we have

aixi + · · ·+ apxp = 0,

and (x1, 0, . . . , 0) is a nontrivial solution for all x1 6= 0.

If i = 1, since p ≥ 2, we can write

x1 = (−a2/a1)x2 + · · ·+ (−ap/a1)xp,

so we can assign arbitrary values to x2, . . . , xp and then solve for x1. Thus, in all cases,
equation (∗) has a nontrivial solution.

Let us now consider the induction step n ≥ 2. The idea is to convert the system Ax = 0
to an equivalent system A2x = 0 with n− 1 equations, by eliminating x1.

If the first column of A is zero, then x = (x1, 0, . . . , 0) is a nontrivial solution of Ax = 0
for all x1 6= 0.

Otherwise, some entry in the first column of A is nonzero, pick the top one, say ai1.

If i 6= 1, then swap the first and the ith row of A. Clearly, this preserves the set of
solutions. Let A1 be this new matrix.
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Now, the coefficient π1 of x1 in the first equation is nonzero. We call π1 a pivot .

Subtract (ak1/π1)× (row 1) from row k, for k = 2, . . . , n.

The result is that x1 does not appear in these n− 1 new equations. Thus, the matrix of
this new system is of the form

A2 =




π1 u2 · · · up
0 ∗ · · · ∗
... ∗ · · · ∗
0 ∗ · · · ∗


 =

(
π1 u
0 B

)

where B is a (n− 1)× (p− 1) matrix.

Observe that we get back to the original matrix A1 by adding (ak1/π1)× (row 1) to row k,
for k = 2, . . . , n.

It follows that the systems A1x = 0 and A2x = 0 have the same set of solutions . Now,
since p > n and n ≥ 2, we have p− 1 > n− 1 ≥ 1. By the induction hypothesis, the system

B



x2
...
xp


 = 0

which has n − 1 equations and p − 1 variables with n − 1 < p − 1 has a nonzero solution.
Then, we can solve for x1 using the first equation

π1x1 + u2x2 + · · ·+ upxp = 0,

and we obtain a nonzero solution x = (x1, x2, . . . , xp) of the system A2x = 0.

Since the systems A1x = 0 and A2x = 0 have the same solutions, x is also a nontrivial
solution of A1x = 0. Since the systems Ax = 0 and A1x = 0 also have the same solutions,
this concludes the induction hypothesis.

Proposition 1.6 has several important corollaries. Here is the first one.

Proposition 1.7. If n vectors u1, . . . , un with ui ∈ Rn are linearly independent, then they
span Rn; that is, every vector in Rn is a linear combination of u1, . . . , un.

Proof. We proceed by contradiction. If u1, . . . , un do not span Rn, then there is some nonzero
vector v ∈ Rn which is not a linear combination of u1, . . . , un.

I claim that u1, . . . , un, v are linearly independent. Assume that

λ1u1 + · · ·+ λnun + µv = 0,
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for some scalars λ1, . . . , λn, µ ∈ R. We must have µ = 0, because otherwise

v = (−λ1/µ)u1 + · · ·+ (−λn/µ)un

contradicting the fact that v is not a linear combination of the uis. But then,

λ1u1 + · · ·+ λnun = 0,

and since u1, . . . , un are linearly independent, we must have λ1 = · · · = λn. Therefore
u1, . . . , un, v are linearly independent. Now, u1, . . . , un, v are n + 1 linearly independent
vectors in Rn, contradicting Proposition 1.6. Therefore, u1, . . . , un span Rn.

Here is a second important corollary of Proposition 1.6.

Proposition 1.8. Let u1, . . . , up and v1, . . . , vq be any vectors in Rn. If u1, . . . , up are linearly
independent and if each uj is a linear combination of the vk, then p ≤ q.

Proof. Since each ui is a linear combination of the vj, we can write

uj =
[
v1 · · · vq

]
aj,

for some vector aj ∈ Rq, so if we form the q × p matrix A = [a1 · · · ap], we have
[
u1 · · · up

]
=
[
v1 · · · vq

]
A.

If p > q, then the matrix A has more columns than rows, so Proposition 1.6 implies that
the system Ax = 0 has a nontrival solution x 6= 0. But then,

[
u1 · · · up

]
x =

[
v1 · · · vq

]
Ax = 0,

and since x 6= 0, we get a nontrivial linear dependence among the ui’s, a contradiction.
Therefore, we must have p ≤ q.

Proposition 1.8 implies the following fact:

Proposition 1.9. If w1, . . . , wn span Rn, then they are linearly independent.

Proof. If w1, . . . , wn are not linearly independent, since they span Rn, there is a proper subset
{v1, . . . , vq} of {w1, . . . , wn} that spans Rn. If we pick u1, . . . , un, to be the canonical basis
vectors with ui = (0, . . . , 0, 1, 0, . . . , 0), then u1, . . . , un are linearly independent and they are
linear combinations of v1, . . . , vq with q < n, contradicting Proposition 1.8.

Proposition 1.8 has other important corollaries.

(1) If (u1, . . . , up) and (v1, . . . , vq) are both linearly independent and span the same space,
then p = q. This leads to the notions of basis and dimension, but we will postpone this
topic to a later chapter.

(2) If p vectors in Rn are linearly independent and p < n, then they don’t span Rn.

Finally, we obtain the result we were seeking:
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Theorem 1.10. Let A be any square n × n matrix. The system Ax = b has a solution for
every b ∈ Rn iff the columns of A are linearly independent. In this case, for every b, the
system Ax = b has a unique solution.

Proof. Assume that the n columns A1, . . . , An of A are linearly independent. Then, by
Proposition 1.7, these columns span Rn, and consequently the system Ax = b has a solution
for every b (since Ax is a linear combination of the Ajs).

Conversely, assume that the system Ax = b has a solution for every b ∈ Rn. This implies
that A1, . . . , An span Rn, any by Proposition 1.9, they are linearly independent.

The uniqueness of the solution is a consequence of the linear independence of the columns
of A.

We can also give a criterion to decide when a square matrix A is invertible.

Theorem 1.11. Let A be any square n×n matrix. The matrix A is invertible iff its columns
A1, . . . , An are linearly independent.

Proof. First, assume that A is invertible. If

x1A
1 + · · ·+ xnA

n = 0,

which is equivalent to Ax = 0, applying A−1 to both sides of the equation Ax = 0, we get
A−1Ax = Ix = x = 0, so A1, . . . , An are linearly independent.

Conversely, assume that A1, . . . , An are linearly independent. By Proposition 1.7, A1, . . .,
An span Rn. Thus, for every ei = (0, . . . , 0, 1, 0, . . . , 0), there is some bi ∈ Rn such that

Abi = ei.

If B = [b1 · · · bn] is the matrix whose jth column if bj, then we have

AB = A[b1 · · · bn] = [Ab1 · · · Abn] = [e1 · · · en] = I,

which shows that B is a right inverse of A.

We still have to prove that B is also a left inverse of A. Since AB = I, the columns
B1, . . . , Bn are linearly independent, because if we have a linear dependency Bx = 0, then
ABx = 0, that is, Ix = x = 0.

By applying the same reasoning as above, B1, . . . , Bn span Rn, and thus B has some
right inverse C, so that

BC = I.

However, we have
A = AI = A(BC) = (AB)C = IC = C,

which shows that
BA = I,

and B is a two-sided inverse of A, which proves that A is invertible
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The techniques used in the proof of Proposition 1.11 can be used to prove the following
facts:

(1) If a square matrix A has a left inverse B, that is, a matrix such that BA = I, then A
is invertible and A−1 = B.

(2) If a square matrix A has a right inverse C, that is, a matrix such that AC = I, then
A is invertible and A−1 = C.

Before moving on to methods for solving linear systems, observe that if two n×n matrices
A and B are invertible, then

(AB)−1 = B−1A−1.

Also if A is invertible, then so is its transpose A> and

(A>)−1 = (A−1)>.

To prove the above, you may want to prove first that

(AB)> = B>A>,

even for rectangular matrices.

A 2× 2 matrix

A =

[
a b
c d

]

is invertible iff ad− bc 6= 0, in which case

A−1 =
1

ad− bc

[
d −b
−c a

]
.

An n×n matrix A = (aij) is an upper triangular matrix iff aij = 0 whenever i > j. This
means that all the entries below the diagonal are zero.

Here is an example of a triangular matrix:

A =




1 −3 3 −1
0 3 −6 3
0 0 3 −3
0 0 0 1


 .

The above matrix shows up in dealing with cubic Bézier curves and the Bernstein polyno-
mials .

We will show later that an upper triangular matrix is invertible iff its diagonal entries
are all nonzero.
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Upper triangular matrices are important because linear systems Ux = b can be solved
easily by backward substitution (when U is upper triangular). For example, the inverse of
the matrix A shown above is

A−1 =




1 1 1 1
0 1/3 2/3 1
0 0 1/3 1
0 0 0 1


 .

It can be shown that the inverse of an upper triangular matrix is also upper triangular.
There are useful matrix factorizations methods involving upper triangular matrices: LU,
QR.
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Figure 1.12: Hitting Power
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Chapter 2

Gaussian Elimination,
LU-Factorization, Cholesky
Factorization, Reduced Row Echelon
Form

2.1 Motivating Example: Curve Interpolation

Curve interpolation is a problem that arises frequently in computer graphics and in robotics
(path planning). There are many ways of tackling this problem and in this section we will
describe a solution using cubic splines . Such splines consist of cubic Bézier curves. They
are often used because they are cheap to implement and give more flexibility than quadratic
Bézier curves.

A cubic Bézier curve C(t) (in R2 or R3) is specified by a list of four control points
(b0, b2, b2, b3) and is given parametrically by the equation

C(t) = (1− t)3 b0 + 3(1− t)2t b1 + 3(1− t)t2 b2 + t3 b3.

Clearly, C(0) = b0, C(1) = b3, and for t ∈ [0, 1], the point C(t) belongs to the convex hull of
the control points b0, b1, b2, b3. The polynomials

(1− t)3, 3(1− t)2t, 3(1− t)t2, t3

are the Bernstein polynomials of degree 3.

Typically, we are only interested in the curve segment corresponding to the values of t in
the interval [0, 1]. Still, the placement of the control points drastically affects the shape of the
curve segment, which can even have a self-intersection; See Figures 2.1, 2.2, 2.3 illustrating
various configuations.

49
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b0

b1

b2

b3

Figure 2.1: A “standard” Bézier curve

b0

b1

b2

b3

Figure 2.2: A Bézier curve with an inflexion point
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b0

b1b2

b3

Figure 2.3: A self-intersecting Bézier curve

Interpolation problems require finding curves passing through some given data points and
possibly satisfying some extra constraints.

A Bézier spline curve F is a curve which is made up of curve segments which are Bézier
curves, say C1, . . . , Cm (m ≥ 2). We will assume that F defined on [0,m], so that for
i = 1, . . . ,m,

F (t) = Ci(t− i+ 1), i− 1 ≤ t ≤ i.

Typically, some smoothness is required between any two junction points, that is, between
any two points Ci(1) and Ci+1(0), for i = 1, . . . ,m − 1. We require that Ci(1) = Ci+1(0)
(C0-continuity), and typically that the derivatives of Ci at 1 and of Ci+1 at 0 agree up to
second order derivatives. This is called C2-continuity , and it ensures that the tangents agree
as well as the curvatures.

There are a number of interpolation problems, and we consider one of the most common
problems which can be stated as follows:

Problem: Given N + 1 data points x0, . . . , xN , find a C2 cubic spline curve F , such that
F (i) = xi, for all i, 0 ≤ i ≤ N (N ≥ 2).

A way to solve this problem is to find N+3 auxiliary points d−1, . . . , dN+1 called de Boor
control points from which N Bézier curves can be found. Actually,

d−1 = x0 and dN+1 = xN
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so we only need to find N + 1 points d0, . . . , dN .

It turns out that the C2-continuity constraints on the N Bézier curves yield only N − 1
equations, so d0 and dN can be chosen arbitrarily. In practice, d0 and dN are chosen according
to various end conditions, such as prescribed velocities at x0 and xN . For the time being, we
will assume that d0 and dN are given.

Figure 2.4 illustrates an interpolation problem involving N + 1 = 7 + 1 = 8 data points.
The control points d0 and d7 were chosen arbitrarily.

x0 = d−1

x1

x2

x3

x4

x5

x6

x7 = d8

d0

d1

d2

d3

d4

d5

d6

d7

Figure 2.4: A C2 cubic interpolation spline curve passing through the points x0, x1, x2, x3,
x4, x5, x6, x7

It can be shown that d1, . . . , dN−1 are given by the linear system




7
2

1
1 4 1 0

. . . . . . . . .

0 1 4 1
1 7

2







d1

d2
...

dN−2

dN−1




=




6x1 − 3
2
d0

6x2
...

6xN−2

6xN−1 − 3
2
dN



.

It can be shown that the above matrix is invertible because it is strictly diagonally
dominant.
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Once the above system is solved, the Bézier cubics C1, . . ., CN are determined as follows
(we assume N ≥ 2): For 2 ≤ i ≤ N − 1, the control points (bi0, b

i
1, b

i
2, b

i
3) of Ci are given by

bi0 = xi−1

bi1 =
2

3
di−1 +

1

3
di

bi2 =
1

3
di−1 +

2

3
di

bi3 = xi.

The control points (b1
0, b

1
1, b

1
2, b

1
3) of C1 are given by

b1
0 = x0

b1
1 = d0

b1
2 =

1

2
d0 +

1

2
d1

b1
3 = x1,

and the control points (bN0 , b
N
1 , b

N
2 , b

N
3 ) of CN are given by

bN0 = xN−1

bN1 =
1

2
dN−1 +

1

2
dN

bN2 = dN

bN3 = xN .

We will now describe various methods for solving linear systems. Since the matrix of the
above system is tridiagonal, there are specialized methods which are more efficient than the
general methods. We will discuss a few of these methods.

2.2 Gaussian Elimination and LU-Factorization

Let A be an n × n matrix, let b ∈ Rn be an n-dimensional vector and assume that A is
invertible. Our goal is to solve the system Ax = b. Since A is assumed to be invertible,
we know that this system has a unique solution, x = A−1b. Experience shows that two
counter-intuitive facts are revealed:

(1) One should avoid computing the inverse, A−1, of A explicitly. This is because this
would amount to solving the n linear systems, Au(j) = ej, for j = 1, . . . , n, where
ej = (0, . . . , 1, . . . , 0) is the jth canonical basis vector of Rn (with a 1 is the jth slot).
By doing so, we would replace the resolution of a single system by the resolution of n
systems, and we would still have to multiply A−1 by b.
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(2) One does not solve (large) linear systems by computing determinants (using Cramer’s
formulae). This is because this method requires a number of additions (resp. multipli-
cations) proportional to (n+ 1)! (resp. (n+ 2)!).

The key idea on which most direct methods (as opposed to iterative methods, that look
for an approximation of the solution) are based is that if A is an upper-triangular matrix,
which means that aij = 0 for 1 ≤ j < i ≤ n (resp. lower-triangular, which means that
aij = 0 for 1 ≤ i < j ≤ n), then computing the solution, x, is trivial. Indeed, say A is an
upper-triangular matrix

A =




a1 1 a1 2 · · · a1n−2 a1n−1 a1n

0 a2 2 · · · a2n−2 a2n−1 a2n

0 0
. . .

...
...

...
. . .

...
...

0 0 · · · 0 an−1n−1 an−1n

0 0 · · · 0 0 ann



.

Then, det(A) = a1 1a2 2 · · · ann 6= 0, which implies that ai i 6= 0 for i = 1, . . . , n, and we can
solve the system Ax = b from bottom-up by back-substitution. That is, first we compute
xn from the last equation, next plug this value of xn into the next to the last equation and
compute xn−1 from it, etc. This yields

xn = a−1
nnbn

xn−1 = a−1
n−1n−1(bn−1 − an−1nxn)

...

x1 = a−1
1 1 (b1 − a1 2x2 − · · · − a1nxn).

Note that the use of determinants can be avoided to prove that if A is invertible then
ai i 6= 0 for i = 1, . . . , n. Indeed, it can be shown directly (by induction) that an upper (or
lower) triangular matrix is invertible iff all its diagonal entries are nonzero.

If A is lower-triangular, we solve the system from top-down by forward-substitution.

Thus, what we need is a method for transforming a matrix to an equivalent one in upper-
triangular form. This can be done by elimination. Let us illustrate this method on the
following example:

2x + y + z = 5
4x − 6y = −2
−2x + 7y + 2z = 9.

We can eliminate the variable x from the second and the third equation as follows: Subtract
twice the first equation from the second and add the first equation to the third. We get the
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new system

2x + y + z = 5
− 8y − 2z = −12

8y + 3z = 14.

This time, we can eliminate the variable y from the third equation by adding the second
equation to the third:

2x + y + z = 5
− 8y − 2z = −12

z = 2.

This last system is upper-triangular. Using back-substitution, we find the solution: z = 2,
y = 1, x = 1.

Observe that we have performed only row operations. The general method is to iteratively
eliminate variables using simple row operations (namely, adding or subtracting a multiple of
a row to another row of the matrix) while simultaneously applying these operations to the
vector b, to obtain a system, MAx = Mb, where MA is upper-triangular. Such a method is
called Gaussian elimination. However, one extra twist is needed for the method to work in
all cases: It may be necessary to permute rows, as illustrated by the following example:

x + y + z = 1
x + y + 3z = 1
2x + 5y + 8z = 1.

In order to eliminate x from the second and third row, we subtract the first row from the
second and we subtract twice the first row from the third:

x + y + z = 1
2z = 0

3y + 6z = −1.

Now, the trouble is that y does not occur in the second row; so, we can’t eliminate y from
the third row by adding or subtracting a multiple of the second row to it. The remedy is
simple: Permute the second and the third row! We get the system:

x + y + z = 1
3y + 6z = −1

2z = 0,

which is already in triangular form. Another example where some permutations are needed
is:

z = 1
−2x + 7y + 2z = 1
4x − 6y = −1.
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First, we permute the first and the second row, obtaining

−2x + 7y + 2z = 1
z = 1

4x − 6y = −1,

and then, we add twice the first row to the third, obtaining:

−2x + 7y + 2z = 1
z = 1

8y + 4z = 1.

Again, we permute the second and the third row, getting

−2x + 7y + 2z = 1
8y + 4z = 1

z = 1,

an upper-triangular system. Of course, in this example, z is already solved and we could
have eliminated it first, but for the general method, we need to proceed in a systematic
fashion.

We now describe the method of Gaussian Elimination applied to a linear system, Ax = b,
where A is assumed to be invertible. We use the variable k to keep track of the stages of
elimination. Initially, k = 1.

(1) The first step is to pick some nonzero entry, ai 1, in the first column of A. Such an
entry must exist, since A is invertible (otherwise, the first column of A would be the
zero vector, and the columns of A would not be linearly independent. Equivalently, we
would have det(A) = 0). The actual choice of such an element has some impact on the
numerical stability of the method, but this will be examined later. For the time being,
we assume that some arbitrary choice is made. This chosen element is called the pivot
of the elimination step and is denoted π1 (so, in this first step, π1 = ai 1).

(2) Next, we permute the row (i) corresponding to the pivot with the first row. Such a
step is called pivoting . So, after this permutation, the first element of the first row is
nonzero.

(3) We now eliminate the variable x1 from all rows except the first by adding suitable
multiples of the first row to these rows. More precisely we add −ai 1/π1 times the first
row to the ith row, for i = 2, . . . , n. At the end of this step, all entries in the first
column are zero except the first.

(4) Increment k by 1. If k = n, stop. Otherwise, k < n, and then iteratively repeat steps
(1), (2), (3) on the (n− k + 1)× (n− k + 1) subsystem obtained by deleting the first
k − 1 rows and k − 1 columns from the current system.
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If we let A1 = A and Ak = (aki j) be the matrix obtained after k − 1 elimination steps
(2 ≤ k ≤ n), then the kth elimination step is applied to the matrix Ak of the form

Ak =




ak1 1 ak1 2 · · · · · · · · · ak1n
ak2 2 · · · · · · · · · ak2n

. . .
...

...
akk k · · · akk n

...
...

akn k · · · aknn



.

Actually, note
aki j = aii j

for all i, j with 1 ≤ i ≤ k − 2 and i ≤ j ≤ n, since the first k − 1 rows remain unchanged
after the (k − 1)th step.

We will prove later that det(Ak) = ± det(A). Consequently, Ak is invertible. The fact
that Ak is invertible iff A is invertible can also be shown without determinants from the fact
that there is some invertible matrix Mk such that Ak = MkA, as we will see shortly.

Since Ak is invertible, some entry aki k with k ≤ i ≤ n is nonzero. Otherwise, the last
n − k + 1 entries in the first k columns of Ak would be zero, and the first k columns of
Ak would yield k vectors in Rk−1. But then, the first k columns of Ak would be linearly
dependent and Ak would not be invertible, a contradiction.

So, one the entries aki k with k ≤ i ≤ n can be chosen as pivot, and we permute the kth
row with the ith row, obtaining the matrix αk = (αkj l). The new pivot is πk = αkk k, and we

zero the entries i = k + 1, . . . , n in column k by adding −αki k/πk times row k to row i. At
the end of this step, we have Ak+1. Observe that the first k − 1 rows of Ak are identical to
the first k − 1 rows of Ak+1.

It is easy to figure out what kind of matrices perform the elementary row operations
used during Gaussian elimination. The key point is that if A = PB, where A,B are m× n
matrices and P is a square matrix of dimension m, if (as usual) we denote the rows of A and
B by A1, . . . , Am and B1, . . . , Bm, then the formula

aij =
m∑

k=1

pikbkj

giving the (i, j)th entry in A shows that the ith row of A is a linear combination of the rows
of B:

Ai = pi1B1 + · · ·+ pimBm.

Therefore, multiplication of a matrix on the left by a square matrix performs row opera-
tions . Similarly, multiplication of a matrix on the right by a square matrix performs column
operations
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The permutation of the kth row with the ith row is achieved by multiplying A on the left
by the transposition matrix P (i, k), which is the matrix obtained from the identity matrix
by permuting rows i and k, i.e.,

P (i, k) =




1
1

0 1
1

. . .

1
1 0

1
1




.

Observe that det(P (i, k)) = −1. Furthermore, P (i, k) is symmetric (P (i, k)> = P (i, k)), and

P (i, k)−1 = P (i, k).

During the permutation step (2), if row k and row i need to be permuted, the matrix A
is multiplied on the left by the matrix Pk such that Pk = P (i, k), else we set Pk = I.

Adding β times row j to row i is achieved by multiplying A on the left by the elementary
matrix ,

Ei,j;β = I + βei j,

where

(ei j)k l =

{
1 if k = i and l = j
0 if k 6= i or l 6= j,

i.e.,

Ei,j;β =




1
1

1
1

. . .

1
β 1

1
1




or Ei,j;β =




1
1

1 β
1

. . .

1
1

1
1




.

On the left, i > j, and on the right, i < j. Observe that the inverse of Ei,j;β = I + βei j is
Ei,j;−β = I − βei j and that det(Ei,j;β) = 1. Therefore, during step 3 (the elimination step),
the matrix A is multiplied on the left by a product, Ek, of matrices of the form Ei,k;βi,k , with
i > k.
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Consequently, we see that
Ak+1 = EkPkAk,

and then
Ak = Ek−1Pk−1 · · ·E1P1A.

This justifies the claim made earlier, that Ak = MkA for some invertible matrix Mk; we can
pick

Mk = Ek−1Pk−1 · · ·E1P1,

a product of invertible matrices.

The fact that det(P (i, k)) = −1 and that det(Ei,j;β) = 1 implies immediately the fact
claimed above: We always have

det(Ak) = ± det(A).

Furthermore, since
Ak = Ek−1Pk−1 · · ·E1P1A

and since Gaussian elimination stops for k = n, the matrix

An = En−1Pn−1 · · ·E2P2E1P1A

is upper-triangular. Also note that if we letM = En−1Pn−1 · · ·E2P2E1P1, then det(M) = ±1,
and

det(A) = ± det(An).

The matrices P (i, k) and Ei,j;β are called elementary matrices . We can summarize the
above discussion in the following theorem:

Theorem 2.1. (Gaussian Elimination) Let A be an n× n matrix (invertible or not). Then
there is some invertible matrix, M , so that U = MA is upper-triangular. The pivots are all
nonzero iff A is invertible.

Proof. We already proved the theorem when A is invertible, as well as the last assertion.
Now, A is singular iff some pivot is zero, say at stage k of the elimination. If so, we must
have aki k = 0, for i = k, . . . , n; but in this case, Ak+1 = Ak and we may pick Pk = Ek = I.

Remark: Obviously, the matrix M can be computed as

M = En−1Pn−1 · · ·E2P2E1P1,

but this expression is of no use. Indeed, what we need is M−1; when no permutations are
needed, it turns out that M−1 can be obtained immediately from the matrices Ek’s, in fact,
from their inverses, and no multiplications are necessary.
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Remark: Instead of looking for an invertible matrix, M , so that MA is upper-triangular,
we can look for an invertible matrix, M , so that MA is a diagonal matrix. Only a simple
change to Gaussian elimination is needed. At every stage, k, after the pivot has been found
and pivoting been performed, if necessary, in addition to adding suitable multiples of the
kth row to the rows below row k in order to zero the entries in column k for i = k+ 1, . . . , n,
also add suitable multiples of the kth row to the rows above row k in order to zero the
entries in column k for i = 1, . . . , k − 1. Such steps are also achieved by multiplying on
the left by elementary matrices Ei,k;βi,k , except that i < k, so that these matrices are not
lower-triangular matrices. Nevertheless, at the end of the process, we find that An = MA,
is a diagonal matrix. This method is called the Gauss-Jordan factorization. Because it
is more expansive than Gaussian elimination, this method is not used much in practice.
However, Gauss-Jordan factorization can be used to compute the inverse of a matrix, A.
Indeed, we find the jth column of A−1 by solving the system Ax(j) = ej (where ej is the jth
canonical basis vector of Rn). By applying Gauss-Jordan, we are led to a system of the form
Djx

(j) = Mjej, where Dj is a diagonal matrix, and we can immediately compute x(j).

It remains to discuss the choice of the pivot, and also conditions that guarantee that no
permutations are needed during the Gaussian elimination process. We begin by stating a
necessary and sufficient condition for an invertible matrix to have an LU -factorization (i.e.,
Gaussian elimination does not require pivoting).

We say that an invertible matrix, A, has an LU-factorization if it can be written as
A = LU , where U is upper-triangular invertible and L is lower-triangular, with Li i = 1 for
i = 1, . . . , n.

A lower-triangular matrix with diagonal entries equal to 1 is called a unit lower-triangular
matrix. Given an n×n matrix, A = (ai j), for any k, with 1 ≤ k ≤ n, let A[1..k, 1..k] denote
the submatrix of A whose entries are ai j, where 1 ≤ i, j ≤ k.

Proposition 2.2. Let A be an invertible n× n-matrix. Then, A, has an LU-factorization,
A = LU , iff every matrix A[1..k, 1..k] is invertible for k = 1, . . . , n. Furthermore, when A
has an LU-factorization, we have

det(A[1..k, 1..k]) = π1π2 · · · πk, k = 1, . . . , n,

where πk is the pivot obtained after k− 1 elimination steps. Therefore, the kth pivot is given
by

πk =




a11 = det(A[1..1, 1..1]) if k = 1

det(A[1..k, 1..k])

det(A[1..k − 1, 1..k − 1])
if k = 2, . . . , n.

Proof. First, assume that A = LU is an LU -factorization of A. We can write

A =

(
A[1..k, 1..k] A2

A3 A4

)
=

(
L1 0
P L4

)(
U1 Q
0 U4

)
=

(
L1U1 L1Q
PU1 PQ+ L4U4

)
,
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where L1, L4 are unit lower-triangular and U1, U4 are upper-triangular. Thus,

A[1..k, 1..k] = L1U1,

and since U is invertible, U1 is also invertible (the determinant of U is the product of the
diagonal entries in U , which is the product of the diagonal entries in U1 and U4). As L1 is
invertible (since its diagonal entries are equal to 1), we see that A[1..k, 1..k] is invertible for
k = 1, . . . , n.

Conversely, assume that A[1..k, 1..k] is invertible, for k = 1, . . . , n. We just need to show
that Gaussian elimination does not need pivoting. We prove by induction on k that the kth
step does not need pivoting. This holds for k = 1, since A[1..1, 1..1] = (a1 1), so, a1 1 6= 0.
Assume that no pivoting was necessary for the first k−1 steps (2 ≤ k ≤ n−1). In this case,
we have

Ek−1 · · ·E2E1A = Ak,

where L = Ek−1 · · ·E2E1 is a unit lower-triangular matrix and Ak[1..k, 1..k] is upper-
triangular, so that LA = Ak can be written as

(
L1 0
P L4

)(
A[1..k, 1..k] A2

A3 A4

)
=

(
U1 B2

0 B4

)
,

where L1 is unit lower-triangular and U1 is upper-triangular. But then,

L1A[1..k, 1..k]) = U1,

where L1 is invertible (in fact, det(L1) = 1), and since by hypothesis A[1..k, 1..k] is invertible,
U1 is also invertible, which implies that (U1)kk 6= 0, since U1 is upper-triangular. Therefore,
no pivoting is needed in step k, establishing the induction step. Since det(L1) = 1, we also
have

det(U1) = det(L1A[1..k, 1..k]) = det(L1) det(A[1..k, 1..k]) = det(A[1..k, 1..k]),

and since U1 is upper-triangular and has the pivots π1, . . . , πk on its diagonal, we get

det(A[1..k, 1..k]) = π1π2 · · · πk, k = 1, . . . , n,

as claimed.

Remark: The use of determinants in the first part of the proof of Proposition 2.2 can be
avoided if we use the fact that a triangular matrix is invertible iff all its diagonal entries are
nonzero.

Corollary 2.3. (LU-Factorization) Let A be an invertible n × n-matrix. If every matrix
A[1..k, 1..k] is invertible for k = 1, . . . , n, then Gaussian elimination requires no pivoting
and yields an LU-factorization, A = LU .
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Proof. We proved in Proposition 2.2 that in this case Gaussian elimination requires no
pivoting. Then, since every elementary matrix Ei,k;β is lower-triangular (since we always
arrange that the pivot, πk, occurs above the rows that it operates on), since E−1

i,k;β = Ei,k;−β
and the E ′ks are products of Ei,k;βi,k ’s, from

En−1 · · ·E2E1A = U,

where U is an upper-triangular matrix, we get

A = LU,

where L = E−1
1 E−1

2 · · ·E−1
n−1 is a lower-triangular matrix. Furthermore, as the diagonal

entries of each Ei,k;β are 1, the diagonal entries of each Ek are also 1.

The reader should verify that the example below is indeed an LU -factorization.




2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8


 =




1 0 0 0
2 1 0 0
4 3 1 0
3 4 1 1







2 1 1 0
0 1 1 1
0 0 2 2
0 0 0 2


 .

One of the main reasons why the existence of an LU -factorization for a matrix, A, is
interesting is that if we need to solve several linear systems, Ax = b, corresponding to the
same matrix, A, we can do this cheaply by solving the two triangular systems

Lw = b, and Ux = w.

There is a certain asymmetry in the LU -decomposition A = LU of an invertible matrix A.
Indeed, the diagonal entries of L are all 1, but this is generally false for U . This asymmetry
can be eliminated as follows: if

D = diag(u11, u22, . . . , unn)

is the diagonal matrix consisting of the diagonal entries in U (the pivots), then we if let
U ′ = D−1U , we can write

A = LDU ′,

where L is lower- triangular, U ′ is upper-triangular, all diagonal entries of both L and U ′ are
1, and D is a diagonal matrix of pivots. Such a decomposition is called an LDU-factorization.
We will see shortly than if A is symmetric, then U ′ = L>.

As we will see a bit later, symmetric positive definite matrices satisfy the condition of
Proposition 2.2. Therefore, linear systems involving symmetric positive definite matrices can
be solved by Gaussian elimination without pivoting. Actually, it is possible to do better:
This is the Cholesky factorization.
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The following easy proposition shows that, in principle, A can be premultiplied by some
permutation matrix, P , so that PA can be converted to upper-triangular form without
using any pivoting. Permutations are discussed in some detail in Section 5.2, but for now
we just need their definition. A permutation matrix is a square matrix that has a single 1
in every row and every column and zeros everywhere else. It is shown in Section 5.2 that
every permutation matrix is a product of transposition matrices (the P (i, k)s), and that P
is invertible with inverse P>.

Proposition 2.4. Let A be an invertible n × n-matrix. Then, there is some permutation
matrix, P , so that PA[1..k, 1..k] is invertible for k = 1, . . . , n.

Proof. The case n = 1 is trivial, and so is the case n = 2 (we swap the rows if necessary). If
n ≥ 3, we proceed by induction. Since A is invertible, its columns are linearly independent;
so, in particular, its first n−1 columns are also linearly independent. Delete the last column
of A. Since the remaining n−1 columns are linearly independent, there are also n−1 linearly
independent rows in the corresponding n × (n − 1) matrix. Thus, there is a permutation
of these n rows so that the (n − 1) × (n − 1) matrix consisting of the first n − 1 rows is
invertible. But, then, there is a corresponding permutation matrix, P1, so that the first n−1
rows and columns of P1A form an invertible matrix, A′. Applying the induction hypothesis
to the (n− 1)× (n− 1) matrix, A′, we see that there some permutation matrix P2 (leaving
the nth row fixed), so that P2P1A[1..k, 1..k] is invertible, for k = 1, . . . , n − 1. Since A is
invertible in the first place and P1 and P2 are invertible, P1P2A is also invertible, and we are
done.

Remark: One can also prove Proposition 2.4 using a clever reordering of the Gaussian
elimination steps suggested by Trefethen and Bau [56] (Lecture 21). Indeed, we know that if
A is invertible, then there are permutation matrices, Pi, and products of elementary matrices,
Ei, so that

An = En−1Pn−1 · · ·E2P2E1P1A,

where U = An is upper-triangular. For example, when n = 4, we have E3P3E2P2E1P1A = U .
We can define new matrices E ′1, E

′
2, E

′
3 which are still products of elementary matrices so

that we have

E ′3E
′
2E
′
1P3P2P1A = U.

Indeed, if we let E ′3 = E3, E ′2 = P3E2P
−1
3 , and E ′1 = P3P2E1P

−1
2 P−1

3 , we easily verify that
each E ′k is a product of elementary matrices and that

E ′3E
′
2E
′
1P3P2P1 = E3(P3E2P

−1
3 )(P3P2E1P

−1
2 P−1

3 )P3P2P1 = E3P3E2P2E1P1.

It can also be proved that E ′1, E
′
2, E

′
3 are lower triangular (see Theorem 2.5).

In general, we let

E ′k = Pn−1 · · ·Pk+1EkP
−1
k+1 · · ·P−1

n−1,
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and we have
E ′n−1 · · ·E ′1Pn−1 · · ·P1A = U,

where each E ′j is a lower triangular matrix (see Theorem 2.5).

Using the above idea, we can prove the theorem below which also shows how to compute
P,L and U using a simple adaptation of Gaussian elimination. We are not aware of a
detailed proof of Theorem 2.5 in the standard texts. Although Golub and Van Loan [26]
state a version of this theorem as their Theorem 3.1.4, they say that “The proof is a messy
subscripting argument.” Meyer [42] also provides a sketch of proof (see the end of Section
3.10). In view of this situation, we offer a complete proof. It does involve a lot of subscripts
and superscripts but, in our opinion, it contains some interesting techniques that go far
beyond symbol manipulation.

Theorem 2.5. For every invertible n× n-matrix A, the following hold:

(1) There is some permutation matrix P , some upper-triangular matrix U , and some unit
lower-triangular matrix L, so that PA = LU (recall, Li i = 1 for i = 1, . . . , n). Fur-
thermore, if P = I, then L and U are unique and they are produced as a result of
Gaussian elimination without pivoting.

(2) If En−1 . . . E1A = U is the result of Gaussian elimination without pivoting, write as

usual Ak = Ek−1 . . . E1A (with Ak = (a
(k)
ij )), and let `ik = a

(k)
ik /a

(k)
kk , with 1 ≤ k ≤ n− 1

and k + 1 ≤ i ≤ n. Then

L =




1 0 0 · · · 0
`21 1 0 · · · 0
`31 `32 1 · · · 0
...

...
...

. . . 0
`n1 `n2 `n3 · · · 1



,

where the kth column of L is the kth column of E−1
k , for k = 1, . . . , n− 1.

(3) If En−1Pn−1 · · ·E1P1A = U is the result of Gaussian elimination with some pivoting,
write Ak = Ek−1Pk−1 · · ·E1P1A, and define Ek

j , with 1 ≤ j ≤ n− 1 and j ≤ k ≤ n− 1,
such that, for j = 1, . . . , n− 2,

Ej
j = Ej

Ek
j = PkE

k−1
j Pk, for k = j + 1, . . . , n− 1,

and
En−1
n−1 = En−1.

Then,

Ek
j = PkPk−1 · · ·Pj+1EjPj+1 · · ·Pk−1Pk

U = En−1
n−1 · · ·En−1

1 Pn−1 · · ·P1A,
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and if we set

P = Pn−1 · · ·P1

L = (En−1
1 )−1 · · · (En−1

n−1)−1,

then
PA = LU. (†1)

Furthermore,
(Ek

j )−1 = I + Ekj , 1 ≤ j ≤ n− 1, j ≤ k ≤ n− 1,

where Ekj is a lower triangular matrix of the form

Ekj =




0 · · · 0 0 · · · 0
...

. . .
...

...
...

...
0 · · · 0 0 · · · 0

0 · · · `
(k)
j+1j 0 · · · 0

...
...

...
...

. . .
...

0 · · · `
(k)
nj 0 · · · 0




,

we have
Ek
j = I − Ekj ,

and
Ekj = PkEk−1

j , 1 ≤ j ≤ n− 2, j + 1 ≤ k ≤ n− 1,

where Pk = I or else Pk = P (k, i) for some i such that k + 1 ≤ i ≤ n; if Pk 6= I, this
means that (Ek

j )−1 is obtained from (Ek−1
j )−1 by permuting the entries on rows i and

k in column j. Because the matrices (Ek
j )−1 are all lower triangular, the matrix L is

also lower triangular.

In order to find L, define lower triangular n× n matrices Λk of the form

Λk =




0 0 0 0 0 · · · · · · 0

λ
(k)
21 0 0 0 0

...
... 0

λ
(k)
31 λ

(k)
32

. . . 0 0
...

... 0
...

...
. . . 0 0

...
...

...

λ
(k)
k+11 λ

(k)
k+12 · · · λ

(k)
k+1k 0 · · · · · · 0

λ
(k)
k+21 λ

(k)
k+22 · · · λ

(k)
k+2k 0

. . . · · · 0
...

...
. . .

...
...

...
. . .

...

λ
(k)
n1 λ

(k)
n2 · · · λ

(k)
nk 0 · · · · · · 0




to assemble the columns of L iteratively as follows: let

(−`(k)
k+1k, . . . ,−`

(k)
nk )
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be the last n−k elements of the kth column of Ek, and define Λk inductively by setting

Λ1 =




0 0 · · · 0

`
(1)
21 0 · · · 0
...

...
. . .

...

`
(1)
n1 0 · · · 0


 ,

then for k = 2, . . . , n− 1, define

Λ′k = PkΛk−1, (†2)

and

Λk = (I + Λ′k)E
−1
k − I =




0 0 0 0 0 · · · · · · 0

λ
′(k−1)
21 0 0 0 0

...
... 0

λ
′(k−1)
31 λ

′(k−1)
32

. . . 0 0
...

... 0
...

...
. . . 0 0

...
...

...

λ
′(k−1)
k1 λ

′(k−1)
k2 · · · λ

′(k−1)
k (k−1) 0 · · · · · · 0

λ
′(k−1)
k+11 λ

′(k−1)
k+12 · · · λ

′(k−1)
k+1 (k−1) `

(k)
k+1k

. . . · · · 0
...

...
. . .

...
...

...
. . .

...

λ
′(k−1)
n1 λ

′(k−1)
n2 · · · λ

′(k−1)
nk−1 `

(k)
nk · · · · · · 0




,

with Pk = I or Pk = P (k, i) for some i > k. This means that in assembling L, row k
and row i of Λk−1 need to be permuted when a pivoting step permuting row k and row
i of Ak is required. Then

I + Λk = (Ek
1 )−1 · · · (Ek

k )−1

Λk = Ek1 + · · ·+ Ekk ,

for k = 1, . . . , n− 1, and therefore

L = I + Λn−1.

Proof. (1) The only part that has not been proven is the uniqueness part (when P = I).
Assume that A is invertible and that A = L1U1 = L2U2, with L1, L2 unit lower-triangular
and U1, U2 upper-triangular. Then we have

L−1
2 L1 = U2U

−1
1 .

However, it is obvious that L−1
2 is lower-triangular and that U−1

1 is upper-triangular, and so
L−1

2 L1 is lower-triangular and U2U
−1
1 is upper-triangular. Since the diagonal entries of L1
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and L2 are 1, the above equality is only possible if U2U
−1
1 = I, that is, U1 = U2, and so

L1 = L2.

(2) When P = I, we have L = E−1
1 E−1

2 · · ·E−1
n−1, where Ek is the product of n − k

elementary matrices of the form Ei,k;−`i , where Ei,k;−`i subtracts `i times row k from row i,

with `ik = a
(k)
ik /a

(k)
kk , 1 ≤ k ≤ n− 1, and k + 1 ≤ i ≤ n. Then it is immediately verified that

Ek =




1 · · · 0 0 · · · 0
...

. . .
...

...
...

...
0 · · · 1 0 · · · 0
0 · · · −`k+1k 1 · · · 0
...

...
...

...
. . .

...
0 · · · −`nk 0 · · · 1



,

and that

E−1
k =




1 · · · 0 0 · · · 0
...

. . .
...

...
...

...
0 · · · 1 0 · · · 0
0 · · · `k+1k 1 · · · 0
...

...
...

...
. . .

...
0 · · · `nk 0 · · · 1



.

If we define Lk by

Lk =




1 0 0 0 0
... 0

`21 1 0 0 0
... 0

`31 `32
. . . 0 0

... 0
...

...
. . . 1 0

... 0
`k+11 `k+12 · · · `k+1k 1 · · · 0

...
...

. . .
... 0

... 0
`n1 `n2 · · · `nk 0 · · · 1




for k = 1, . . . , n− 1, we easily check that L1 = E−1
1 , and that

Lk = Lk−1E
−1
k , 2 ≤ k ≤ n− 1,

because multiplication on the right by E−1
k adds `i times column i to column k (of the matrix

Lk−1) with i > k, and column i of Lk−1 has only the nonzero entry 1 as its ith element.
Since

Lk = E−1
1 · · ·E−1

k , 1 ≤ k ≤ n− 1,

we conclude that L = Ln−1, proving our claim about the shape of L.

(3)
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Step 1. Prove (†1).

First we prove by induction on k that

Ak+1 = Ek
k · · ·Ek

1Pk · · ·P1A, k = 1, . . . , n− 2.

For k = 1, we have A2 = E1P1A = E1
1P1A, since E1

1 = E1, so our assertion holds trivially.

Now if k ≥ 2,

Ak+1 = EkPkAk,

and by the induction hypothesis,

Ak = Ek−1
k−1 · · ·Ek−1

2 Ek−1
1 Pk−1 · · ·P1A.

Because Pk is either the identity or a transposition, P 2
k = I, so by inserting occurrences of

PkPk as indicated below we can write

Ak+1 = EkPkAk

= EkPkE
k−1
k−1 · · ·Ek−1

2 Ek−1
1 Pk−1 · · ·P1A

= EkPkE
k−1
k−1(PkPk) · · · (PkPk)Ek−1

2 (PkPk)E
k−1
1 (PkPk)Pk−1 · · ·P1A

= Ek(PkE
k−1
k−1Pk) · · · (PkEk−1

2 Pk)(PkE
k−1
1 Pk)PkPk−1 · · ·P1A.

Observe that Pk has been “moved” to the right of the elimination steps. However, by
definition,

Ek
j = PkE

k−1
j Pk, j = 1, . . . , k − 1

Ek
k = Ek,

so we get

Ak+1 = Ek
kE

k
k−1 · · ·Ek

2E
k
1Pk · · ·P1A,

establishing the induction hypothesis. For k = n− 2, we get

U = An−1 = En−1
n−1 · · ·En−1

1 Pn−1 · · ·P1A,

as claimed, and the factorization PA = LU with

P = Pn−1 · · ·P1

L = (En−1
1 )−1 · · · (En−1

n−1)−1

is clear.

Step 2. Prove that the matrices (Ek
j )−1 are lower-triangular. To achieve this, we prove

that the matrices Ekj are strictly lower triangular matrices of a very special form.
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Since for j = 1, . . . , n− 2, we have Ej
j = Ej,

Ek
j = PkE

k−1
j Pk, k = j + 1, . . . , n− 1,

since En−1
n−1 = En−1 and P−1

k = Pk, we get (Ej
j )
−1 = E−1

j for j = 1, . . . , n − 1, and for
j = 1, . . . , n− 2, we have

(Ek
j )−1 = Pk(E

k−1
j )−1Pk, k = j + 1, . . . , n− 1.

Since
(Ek−1

j )−1 = I + Ek−1
j

and Pk = P (k, i) is a transposition or Pk = I, so P 2
k = I, and we get

(Ek
j )−1 = Pk(E

k−1
j )−1Pk = Pk(I + Ek−1

j )Pk = P 2
k + Pk Ek−1

j Pk = I + Pk Ek−1
j Pk.

Therefore, we have

(Ek
j )−1 = I + Pk Ek−1

j Pk, 1 ≤ j ≤ n− 2, j + 1 ≤ k ≤ n− 1.

We prove for j = 1, . . . , n− 1, that for k = j, . . . , n− 1, each Ekj is a lower triangular matrix
of the form

Ekj =




0 · · · 0 0 · · · 0
...

. . .
...

...
...

...
0 · · · 0 0 · · · 0

0 · · · `
(k)
j+1j 0 · · · 0

...
...

...
...

. . .
...

0 · · · `
(k)
nj 0 · · · 0




,

and that
Ekj = Pk Ek−1

j , 1 ≤ j ≤ n− 2, j + 1 ≤ k ≤ n− 1,

with Pk = I or Pk = P (k, i) for some i such that k + 1 ≤ i ≤ n.

For each j (1 ≤ j ≤ n− 1) we proceed by induction on k = j, . . . , n− 1. Since (Ej
j )
−1 =

E−1
j and since E−1

j is of the above form, the base case holds.

For the induction step, we only need to consider the case where Pk = P (k, i) is a trans-
position, since the case where Pk = I is trivial. We have to figure out what Pk Ek−1

j Pk =

P (k, i) Ek−1
j P (k, i) is. However, since

Ek−1
j =




0 · · · 0 0 · · · 0
...

. . .
...

...
...

...
0 · · · 0 0 · · · 0

0 · · · `
(k−1)
j+1j 0 · · · 0

...
...

...
...

. . .
...

0 · · · `
(k−1)
nj 0 · · · 0




,
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and because k + 1 ≤ i ≤ n and j ≤ k − 1, multiplying Ek−1
j on the right by P (k, i) will

permute columns i and k, which are columns of zeros, so

P (k, i) Ek−1
j P (k, i) = P (k, i) Ek−1

j ,

and thus,
(Ek

j )−1 = I + P (k, i) Ek−1
j .

But since
(Ek

j )−1 = I + Ekj ,
we deduce that

Ekj = P (k, i) Ek−1
j .

We also know that multiplying Ek−1
j on the left by P (k, i) will permute rows i and k, which

shows that Ekj has the desired form, as claimed. Since all Ekj are strictly lower triangular, all
(Ek

j )−1 = I + Ekj are lower triangular, so the product

L = (En−1
1 )−1 · · · (En−1

n−1)−1

is also lower triangular.

Step 3. Express L as L = I + Λn−1, with Λn−1 = E1
1 + · · ·+ En−1

n−1 .

From Step 1 of Part (3), we know that

L = (En−1
1 )−1 · · · (En−1

n−1)−1.

We prove by induction on k that

I + Λk = (Ek
1 )−1 · · · (Ek

k )−1

Λk = Ek1 + · · ·+ Ekk ,

for k = 1, . . . , n− 1.

If k = 1, we have E1
1 = E1 and

E1 =




1 0 · · · 0

−`(1)
21 1 · · · 0
...

...
. . .

...

−`(1)
n1 0 · · · 1


 .

We also get

(E−1
1 )−1 =




1 0 · · · 0

`
(1)
21 1 · · · 0
...

...
. . .

...

`
(1)
n1 0 · · · 1


 = I + Λ1.
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Since (E−1
1 )−1 = I + E1

1 , we find that we get Λ1 = E1
1 , and the base step holds.

Since (Ek
j )−1 = I + Ekj with

Ekj =




0 · · · 0 0 · · · 0
...

. . .
...

...
...

...
0 · · · 0 0 · · · 0

0 · · · `
(k)
j+1j 0 · · · 0

...
...

...
...

. . .
...

0 · · · `
(k)
nj 0 · · · 0




and Eki Ekj = 0 if i < j, as in part (2) for the computation involving the products of Lk’s, we
get

(Ek−1
1 )−1 · · · (Ek−1

k−1)−1 = I + Ek−1
1 + · · ·+ Ek−1

k−1 , 2 ≤ k ≤ n. (∗)
Similarly, from the fact that Ek−1

j P (k, i) = Ek−1
j if i ≥ k + 1 and j ≤ k − 1 and since

(Ek
j )−1 = I + PkEk−1

j , 1 ≤ j ≤ n− 2, j + 1 ≤ k ≤ n− 1,

we get
(Ek

1 )−1 · · · (Ek
k−1)−1 = I + Pk(Ek−1

1 + · · ·+ Ek−1
k−1 ), 2 ≤ k ≤ n− 1. (∗∗)

By the induction hypothesis,

I + Λk−1 = (Ek−1
1 )−1 · · · (Ek−1

k−1)−1,

and from (∗), we get
Λk−1 = Ek−1

1 + · · ·+ Ek−1
k−1 .

Using (∗∗), we deduce that

(Ek
1 )−1 · · · (Ek

k−1)−1 = I + PkΛk−1.

Since Ek
k = Ek, we obtain

(Ek
1 )−1 · · · (Ek

k−1)−1(Ek
k )−1 = (I + PkΛk−1)E−1

k .

However, by definition
I + Λk = (I + PkΛk−1)E−1

k ,

which proves that
I + Λk = (Ek

1 )−1 · · · (Ek
k−1)−1(Ek

k )−1, (†)
and finishes the induction step for the proof of this formula.

If we apply Equation (∗) again with k + 1 in place of k, we have

(Ek
1 )−1 · · · (Ek

k )−1 = I + Ek1 + · · ·+ Ekk ,
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and together with (†), we obtain,

Λk = Ek1 + · · ·+ Ekk ,
also finishing the induction step for the proof of this formula. For k = n−1 in (†), we obtain
the desired equation: L = I + Λn−1.

Part (3) of Theorem 2.5 shows the remarkable fact that in assembling the matrix L while
performing Gaussian elimination with pivoting, the only change to the algorithm is to make
the same transposition on the rows of L (really Λk, since the one’s are not altered) that we
make on the rows of A (really Ak) during a pivoting step involving row k and row i. We
can also assemble P by starting with the identity matrix and applying to P the same row
transpositions that we apply to A and Λ. Here is an example illustrating this method.

Consider the matrix

A =




1 2 −3 4
4 8 12 −8
2 3 2 1
−3 −1 1 −4


 .

We set P0 = I4, and we can also set Λ0 = 0. The first step is to permute row 1 and row 2,
using the pivot 4. We also apply this permutation to P0:

A′1 =




4 8 12 −8
1 2 −3 4
2 3 2 1
−3 −1 1 −4


 P1 =




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1


 .

Next, we subtract 1/4 times row 1 from row 2, 1/2 times row 1 from row 3, and add 3/4
times row 1 to row 4, and start assembling Λ:

A2 =




4 8 12 −8
0 0 −6 6
0 −1 −4 5
0 5 10 −10


 Λ1 =




0 0 0 0
1/4 0 0 0
1/2 0 0 0
−3/4 0 0 0


 P1 =




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1


 .

Next we permute row 2 and row 4, using the pivot 5. We also apply this permutation to Λ
and P :

A′3 =




4 8 12 −8
0 5 10 −10
0 −1 −4 5
0 0 −6 6


 Λ′2 =




0 0 0 0
−3/4 0 0 0
1/2 0 0 0
1/4 0 0 0


 P2 =




0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0


 .

Next we add 1/5 times row 2 to row 3, and update Λ′2:

A3 =




4 8 12 −8
0 5 10 −10
0 0 −2 3
0 0 −6 6


 Λ2 =




0 0 0 0
−3/4 0 0 0
1/2 −1/5 0 0
1/4 0 0 0


 P2 =




0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0


 .
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Next we permute row 3 and row 4, using the pivot −6. We also apply this permutation to
Λ and P :

A′4 =




4 8 12 −8
0 5 10 −10
0 0 −6 6
0 0 −2 3


 Λ′3 =




0 0 0 0
−3/4 0 0 0
1/4 0 0 0
1/2 −1/5 0 0


 P3 =




0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0


 .

Finally, we subtract 1/3 times row 3 from row 4, and update Λ′3:

A4 =




4 8 12 −8
0 5 10 −10
0 0 −6 6
0 0 0 1


 Λ3 =




0 0 0 0
−3/4 0 0 0
1/4 0 0 0
1/2 −1/5 1/3 0


 P3 =




0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0


 .

Consequently, adding the identity to Λ3, we obtain

L =




1 0 0 0
−3/4 1 0 0
1/4 0 1 0
1/2 −1/5 1/3 1


 , U =




4 8 12 −8
0 5 10 −10
0 0 −6 6
0 0 0 1


 , P =




0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0


 .

We check that

PA =




0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0







1 2 −3 4
4 8 12 −8
2 3 2 1
−3 −1 1 −4


 =




4 8 12 −8
−3 −1 1 −4
1 2 −3 4
2 3 2 1


 ,

and that

LU =




1 0 0 0
−3/4 1 0 0
1/4 0 1 0
1/2 −1/5 1/3 1







4 8 12 −8
0 5 10 −10
0 0 −6 6
0 0 0 1


 =




4 8 12 −8
−3 −1 1 −4
1 2 −3 4
2 3 2 1


 = PA.

Note that if one willing to overwrite the lower triangular part of the evolving matrix A,
one can store the evolving Λ there, since these entries will eventually be zero anyway! There
is also no need to save explicitly the permutation matrix P . One could instead record the
permutation steps in an extra column (record the vector (π(1), . . . , π(n)) corresponding to
the permutation π applied to the rows). We let the reader write such a bold and space-
efficient version of LU -decomposition!

As a corollary of Theorem 2.5(1), we can show the following result.
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Proposition 2.6. If an invertible symmetric matrix A has an LU-decomposition, then A
has a factorization of the form

A = LDL>,

where L is a lower-triangular matrix whose diagonal entries are equal to 1, and where D
consists of the pivots. Furthermore, such a decomposition is unique.

Proof. If A has an LU -factorization, then it has an LDU factorization

A = LDU,

where L is lower-triangular, U is upper-triangular, and the diagonal entries of both L and
U are equal to 1. Since A is symmetric, we have

LDU = A = A> = U>DL>,

with U> lower-triangular and DL> upper-triangular. By the uniqueness of LU -factorization
(part (1) of Theorem 2.5), we must have L = U> (and DU = DL>), thus U = L>, as
claimed.

Remark: It can be shown that Gaussian elimination + back-substitution requires n3/3 +
O(n2) additions, n3/3 +O(n2) multiplications and n2/2 +O(n) divisions.

Let us now briefly comment on the choice of a pivot. Although theoretically, any pivot
can be chosen, the possibility of roundoff errors implies that it is not a good idea to pick
very small pivots. The following example illustrates this point. Consider the linear system

10−4x + y = 1
x + y = 2.

Since 10−4 is nonzero, it can be taken as pivot, and we get

10−4x + y = 1
(1− 104)y = 2− 104.

Thus, the exact solution is

x =
104

104 − 1
, y =

104 − 2

104 − 1
.

However, if roundoff takes place on the fourth digit, then 104− 1 = 9999 and 104− 2 = 9998
will be rounded off both to 9990, and then, the solution is x = 0 and y = 1, very far from
the exact solution where x ≈ 1 and y ≈ 1. The problem is that we picked a very small pivot.
If instead we permute the equations, the pivot is 1, and after elimination, we get the system

x + y = 2
(1− 10−4)y = 1− 2× 10−4.
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This time, 1 − 10−4 = 0.9999 and 1 − 2 × 10−4 = 0.9998 are rounded off to 0.999 and the
solution is x = 1, y = 1, much closer to the exact solution.

To remedy this problem, one may use the strategy of partial pivoting . This consists of
choosing during step k (1 ≤ k ≤ n− 1) one of the entries aki k such that

|aki k| = max
k≤p≤n

|akp k|.

By maximizing the value of the pivot, we avoid dividing by undesirably small pivots.

Remark: A matrix, A, is called strictly column diagonally dominant iff

|aj j| >
n∑

i=1, i 6=j
|ai j|, for j = 1, . . . , n

(resp. strictly row diagonally dominant iff

|ai i| >
n∑

j=1, j 6=i
|ai j|, for i = 1, . . . , n.)

It has been known for a long time (before 1900, say by Hadamard) that if a matrix, A,
is strictly column diagonally dominant (resp. strictly row diagonally dominant), then it is
invertible. (This is a good exercise, try it!) It can also be shown that if A is strictly column
diagonally dominant, then Gaussian elimination with partial pivoting does not actually re-
quire pivoting (See Problem 21.6 in Trefethen and Bau [56], or Question 2.19 in Demmel
[14]).

Another strategy, called complete pivoting , consists in choosing some entry aki j, where
k ≤ i, j ≤ n, such that

|aki j| = max
k≤p,q≤n

|akp q|.

However, in this method, if the chosen pivot is not in column k, it is also necessary to
permute columns. This is achieved by multiplying on the right by a permutation matrix.
However, complete pivoting tends to be too expensive in practice, and partial pivoting is the
method of choice.

A special case where the LU -factorization is particularly efficient is the case of tridiagonal
matrices, which we now consider.



76 CHAPTER 2. GAUSSIAN ELIMINATION, LU, CHOLESKY, ECHELON FORM

2.3 Gaussian Elimination of Tridiagonal Matrices

Consider the tridiagonal matrix

A =




b1 c1

a2 b2 c2

a3 b3 c3

. . . . . . . . .

an−2 bn−2 cn−2

an−1 bn−1 cn−1

an bn




.

Define the sequence

δ0 = 1, δ1 = b1, δk = bkδk−1 − akck−1δk−2, 2 ≤ k ≤ n.

Proposition 2.7. If A is the tridiagonal matrix above, then δk = det(A[1..k, 1..k]), for
k = 1, . . . , n.

Proof. By expanding det(A[1..k, 1..k]) with respect to its last row, the proposition follows
by induction on k.

Theorem 2.8. If A is the tridiagonal matrix above and δk 6= 0 for k = 1, . . . , n, then A has
the following LU-factorization:

A =




1

a2
δ0

δ1

1

a3
δ1

δ2

1

. . . . . .

an−1
δn−3

δn−2

1

an
δn−2

δn−1

1







δ1

δ0

c1

δ2

δ1

c2

δ3

δ2

c3

. . . . . .
δn−1

δn−2

cn−1

δn
δn−1




.

Proof. Since δk = det(A[1..k, 1..k]) 6= 0 for k = 1, . . . , n, by Theorem 2.5 (and Proposition
2.2), we know that A has a unique LU -factorization. Therefore, it suffices to check that the
proposed factorization works. We easily check that

(LU)k k+1 = ck, 1 ≤ k ≤ n− 1

(LU)k k−1 = ak, 2 ≤ k ≤ n

(LU)k l = 0, |k − l| ≥ 2

(LU)1 1 =
δ1

δ0

= b1

(LU)k k =
akck−1δk−2 + δk

δk−1

= bk, 2 ≤ k ≤ n,
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since δk = bkδk−1 − akck−1δk−2.

It follows that there is a simple method to solve a linear system, Ax = d, where A is
tridiagonal (and δk 6= 0 for k = 1, . . . , n). For this, it is convenient to “squeeze” the diagonal
matrix, ∆, defined such that ∆k k = δk/δk−1, into the factorization so that A = (L∆)(∆−1U),
and if we let

z1 =
c1

b1

, zk = ck
δk−1

δk
, 2 ≤ k ≤ n− 1, zn =

δn
δn−1

= bn − anzn−1,

A = (L∆)(∆−1U) is written as

A =




c1

z1

a2
c2

z2

a3
c3

z3
. . . . . .

an−1
cn−1

zn−1

an zn







1 z1

1 z2

1 z3

. . . . . .

1 zn−2

1 zn−1

1




.

As a consequence, the system Ax = d can be solved by constructing three sequences: First,
the sequence

z1 =
c1

b1

, zk =
ck

bk − akzk−1

, k = 2, . . . , n− 1, zn = bn − anzn−1,

corresponding to the recurrence δk = bkδk−1 − akck−1δk−2 and obtained by dividing both
sides of this equation by δk−1, next

w1 =
d1

b1

, wk =
dk − akwk−1

bk − akzk−1

, k = 2, . . . , n,

corresponding to solving the system L∆w = d, and finally

xn = wn, xk = wk − zkxk+1, k = n− 1, n− 2, . . . , 1,

corresponding to solving the system ∆−1Ux = w.

Remark: It can be verified that this requires 3(n − 1) additions, 3(n − 1) multiplications,
and 2n divisions, a total of 8n−6 operations, which is much less that the O(2n3/3) required
by Gaussian elimination in general.
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We now consider the special case of symmetric positive definite matrices (SPD matrices).
Recall that an n× n symmetric matrix, A, is positive definite iff

x>Ax > 0 for all x ∈ Rn with x 6= 0.

Equivalently, A is symmetric positive definite iff all its eigenvalues are strictly positive. The
following facts about a symmetric positive definite matrice, A, are easily established (some
left as an exercise):

(1) The matrix A is invertible. (Indeed, if Ax = 0, then x>Ax = 0, which implies x = 0.)

(2) We have ai i > 0 for i = 1, . . . , n. (Just observe that for x = ei, the ith canonical basis
vector of Rn, we have e>i Aei = ai i > 0.)

(3) For every n× n invertible matrix, Z, the matrix Z>AZ is symmetric positive definite
iff A is symmetric positive definite.

Next, we prove that a symmetric positive definite matrix has a special LU -factorization
of the form A = BB>, where B is a lower-triangular matrix whose diagonal elements are
strictly positive. This is the Cholesky factorization.

2.4 SPD Matrices and the Cholesky Decomposition

First, we note that a symmetric positive definite matrix satisfies the condition of Proposition
2.2.

Proposition 2.9. If A is a symmetric positive definite matrix, then A[1..k, 1..k] is symmetric
positive definite, and thus, invertible, for k = 1, . . . , n.

Proof. Since A is symmetric, each A[1..k, 1..k] is also symmetric. If w ∈ Rk, with 1 ≤ k ≤ n,
we let x ∈ Rn be the vector with xi = wi for i = 1, . . . , k and xi = 0 for i = k + 1, . . . , n.
Now, since A is symmetric positive definite, we have x>Ax > 0 for all x ∈ Rn with x 6= 0.
This holds in particular for all vectors x obtained from nonzero vectors w ∈ Rk as defined
earlier, and clearly

x>Ax = w>A[1..k, 1..k]w,

which implies that A[1..k, 1..k] is positive definite Thus, A[1..k, 1..k] is also invertible.

Proposition 2.9 can be strengthened as follows: A symmetric matrix A is positive definite
iff det(A[1..k, 1..k]) > 0 for k = 1, . . . , n.

The above fact is known as Sylvester’s criterion. We will prove it after establishing the
Cholseky factorization.

Let A be a symmetric positive definite matrix and write

A =

(
a1 1 W>

W C

)
.
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Since A is symmetric positive definite, a1 1 > 0, and we can compute α =
√
a1 1. The trick is

that we can factor A uniquely as

A =

(
a1 1 W>

W C

)
=

(
α 0

W/α I

)(
1 0
0 C −WW>/a1 1

)(
α W>/α
0 I

)
,

i.e., as A = B1A1B
>
1 , where B1 is lower-triangular with positive diagonal entries. Thus, B1

is invertible, and by fact (3) above, A1 is also symmetric positive definite.

Theorem 2.10. (Cholesky Factorization) Let A be a symmetric positive definite matrix.
Then, there is some lower-triangular matrix, B, so that A = BB>. Furthermore, B can be
chosen so that its diagonal elements are strictly positive, in which case, B is unique.

Proof. We proceed by induction on k. For k = 1, we must have a1 1 > 0, and if we let
α =
√
a1 1 and B = (α), the theorem holds trivially. If k ≥ 2, as we explained above, again

we must have a1 1 > 0, and we can write

A =

(
a1 1 W>

W C

)
=

(
α 0

W/α I

)(
1 0
0 C −WW>/a1 1

)(
α W>/α
0 I

)
= B1A1B

>
1 ,

where α =
√
a1 1, the matrix B1 is invertible and

A1 =

(
1 0
0 C −WW>/a1 1

)

is symmetric positive definite. However, this implies that C −WW>/a1 1 is also symmetric
positive definite (consider x>A1x for every x ∈ Rn with x 6= 0 and x1 = 0). Thus, we can
apply the induction hypothesis to C − WW>/a1 1, and we find a unique lower-triangular
matrix, L, with positive diagonal entries, so that

C −WW>/a1 1 = LL>.

But then, we get

A =

(
α 0

W/α I

)(
1 0
0 C −WW>/a1 1

)(
α W>/α
0 I

)

=

(
α 0

W/α I

)(
1 0
0 LL>

)(
α W>/α
0 I

)

=

(
α 0

W/α I

)(
1 0
0 L

)(
1 0
0 L>

)(
α W>/α
0 I

)

=

(
α 0

W/α L

)(
α W>/α
0 L>

)
.

Therefore, if we let

B =

(
α 0

W/α L

)
,

we have a unique lower-triangular matrix with positive diagonal entries and A = BB>.
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The proof of Theorem 2.10 immediately yields an algorithm to compute B from A. For
j = 1, . . . , n,

bj j =

(
aj j −

j−1∑

k=1

b2
j k

)1/2

,

and for i = j + 1, . . . , n,

bi j =

(
ai j −

j−1∑

k=1

bi kbj k

)
/bj j.

The above formulae are used to compute the jth column of B from top-down, using the first
j − 1 columns of B previously computed, and the matrix A.

The Cholesky factorization can be used to solve linear systems, Ax = b, where A is
symmetric positive definite: Solve the two systems Bw = b and B>x = w.

Remark: It can be shown that this methods requires n3/6 +O(n2) additions, n3/6 +O(n2)
multiplications, n2/2+O(n) divisions, and O(n) square root extractions. Thus, the Cholesky
method requires half of the number of operations required by Gaussian elimination (since
Gaussian elimination requires n3/3 + O(n2) additions, n3/3 + O(n2) multiplications, and
n2/2 + O(n) divisions). It also requires half of the space (only B is needed, as opposed to
both L and U). Furthermore, it can be shown that Cholesky’s method is numerically stable.

Remark: If A = BB>, where B is any invertible matrix, then A is symmetric positive
definite.

Proof. Obviously, BB> is symmetric, and since B is invertible, B> is invertible, and from

x>Ax = x>BB>x = (B>x)>B>x,

it is clear that x>Ax > 0 if x 6= 0.

We now give three more criteria for a symmetric matrix to be positive definite.

Proposition 2.11. Let A be any n × n symmetric matrix. The following conditions are
equivalent:

(a) A is positive definite.

(b) All principal minors of A are positive; that is: det(A[1..k, 1..k]) > 0 for k = 1, . . . , n
(Sylvester’s criterion).

(c) A has an LU-factorization and all pivots are positive.

(d) A has an LDL>-factorization and all pivots in D are positive.
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Proof. By Proposition 2.9, if A is symmetric positive definite, then each matrix A[1..k, 1..k] is
symmetric positive definite for k = 1, . . . , n. By the Cholsesky decomposition, A[1..k, 1..k] =
Q>Q for some invertible matrix Q, so det(A[1..k, 1..k]) = det(Q)2 > 0. This shows that (a)
implies (b).

If det(A[1..k, 1..k]) > 0 for k = 1, . . . , n, then each A[1..k, 1..k] is invertible. By Proposi-
tion 2.2, the matrix A has an LU -factorization, and since the pivots πk are given by

πk =




a11 = det(A[1..1, 1..1]) if k = 1

det(A[1..k, 1..k])

det(A[1..k − 1, 1..k − 1])
if k = 2, . . . , n,

we see that πk > 0 for k = 1, . . . , n. Thus (b) implies (c).

Assume A has an LU -factorization and that the pivots are all positive. Since A is
symmetric, this implies that A has a factorization of the form

A = LDL>,

with L lower-triangular with 1’s on its diagonal, and where D is a diagonal matrix with
positive entries on the diagonal (the pivots). This shows that (c) implies (d).

Given a factorization A = LDL> with all pivots in D positive, if we form the diagonal
matrix √

D = diag(
√
π1, . . . ,

√
πn)

and if we let B = L
√
D, then we have

Q = BB>,

with B lower-triangular and invertible. By the remark before Proposition 2.11, A is positive
definite. Hence, (d) implies (a).

Criterion (c) yields a simple computational test to check whether a symmetric matrix is
positive definite. There is one more criterion for a symmetric matrix to be positive definite:
its eigenvalues must be positive. We will have to learn about the spectral theorem for
symmetric matrices to establish this criterion.

For more on the stability analysis and efficient implementation methods of Gaussian
elimination, LU -factoring and Cholesky factoring, see Demmel [14], Trefethen and Bau [56],
Ciarlet [11], Golub and Van Loan [26], Meyer [42], Strang [52, 53], and Kincaid and Cheney
[34].
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2.5 Reduced Row Echelon Form

Gaussian elimination described in Section 2.2 can also be applied to rectangular matrices.
This yields a method for determining whether a system Ax = b is solvable, and a description
of all the solutions when the system is solvable, for any rectangular m× n matrix A.

It turns out that the discussion is simpler if we rescale all pivots to be 1, and for this we
need a third kind of elementary matrix. For any λ 6= 0, let Ei,λ be the n×n diagonal matrix

Ei,λ =




1
. . .

1
λ

1
. . .

1




,

with (Ei,λ)ii = λ (1 ≤ i ≤ n). Note that Ei,λ is also given by

Ei,λ = I + (λ− 1)ei i,

and that Ei,λ is invertible with
E−1
i,λ = Ei,λ−1 .

Now, after k − 1 elimination steps, if the bottom portion

(akkk, a
k
k+1k, . . . , a

k
mk)

of the kth column of the current matrix Ak is nonzero so that a pivot πk can be chosen,
after a permutation of rows if necessary, we also divide row k by πk to obtain the pivot 1,
and not only do we zero all the entries i = k + 1, . . . ,m in column k, but also all the entries
i = 1, . . . , k − 1, so that the only nonzero entry in column k is a 1 in row k. These row
operations are achieved by multiplication on the left by elementary matrices.

If akkk = akk+1k = · · · = akmk = 0, we move on to column k + 1.

The result is that after performing such elimination steps, we obtain a matrix that has
a special shape known as a reduced row echelon matrix . Here is an example illustrating this
process: Starting from the matrix

A1 =




1 0 2 1 5
1 1 5 2 7
1 2 8 4 12




we perform the following steps

A1 −→ A2 =




1 0 2 1 5
0 1 3 1 2
0 2 6 3 7


 ,
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by subtracting row 1 from row 2 and row 3;

A2 −→




1 0 2 1 5
0 2 6 3 7
0 1 3 1 2


 −→




1 0 2 1 5
0 1 3 3/2 7/2
0 1 3 1 2


 −→ A3 =




1 0 2 1 5
0 1 3 3/2 7/2
0 0 0 −1/2 −3/2


 ,

after choosing the pivot 2 and permuting row 2 and row 3, dividing row 2 by 2, and sub-
tracting row 2 from row 3;

A3 −→




1 0 2 1 5
0 1 3 3/2 7/2
0 0 0 1 3


 −→ A4 =




1 0 2 0 2
0 1 3 0 −1
0 0 0 1 3


 ,

after dividing row 3 by −1/2, subtracting row 3 from row 1, and subtracting (3/2)× row 3
from row 2.

It is clear that columns 1, 2 and 4 are linearly independent, that column 3 is a linear
combination of columns 1 and 2, and that column 5 is a linear combinations of columns
1, 2, 4.

In general, the sequence of steps leading to a reduced echelon matrix is not unique. For
example, we could have chosen 1 instead of 2 as the second pivot in matrix A2. Nevertherless,
the reduced row echelon matrix obtained from any given matrix is unique; that is, it does
not depend on the the sequence of steps that are followed during the reduction process. This
fact is not so easy to prove rigorously, but we will do it later.

If we want to solve a linear system of equations of the form Ax = b, we apply elementary
row operations to both the matrix A and the right-hand side b. To do this conveniently, we
form the augmented matrix (A, b), which is the m× (n+ 1) matrix obtained by adding b as
an extra column to the matrix A. For example if

A =




1 0 2 1
1 1 5 2
1 2 8 4


 and b =




5
7
12


 ,

then the augmented matrix is

(A, b) =




1 0 2 1 5
1 1 5 2 7
1 2 8 4 12


 .

Now, for any matrix M , since
M(A, b) = (MA,Mb),

performing elementary row operations on (A, b) is equivalent to simultaneously performing
operations on both A and b. For example, consider the system

x1 + 2x3 + x4 = 5
x1 + x2 + 5x3 + 2x4 = 7
x1 + 2x2 + 8x3 + 4x4 = 12.
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Its augmented matrix is the matrix

(A, b) =




1 0 2 1 5
1 1 5 2 7
1 2 8 4 12




considered above, so the reduction steps applied to this matrix yield the system

x1 + 2x3 = 2
x2 + 3x3 = −1

x4 = 3.

This reduced system has the same set of solutions as the original, and obviously x3 can be
chosen arbitrarily. Therefore, our system has infinitely many solutions given by

x1 = 2− 2x3, x2 = −1− 3x3, x4 = 3,

where x3 is arbitrary.

The following proposition shows that the set of solutions of a system Ax = b is preserved
by any sequence of row operations.

Proposition 2.12. Given any m × n matrix A and any vector b ∈ Rm, for any sequence
of elementary row operations E1, . . . , Ek, if P = Ek · · ·E1 and (A′, b′) = P (A, b), then the
solutions of Ax = b are the same as the solutions of A′x = b′.

Proof. Since each elementary row operation Ei is invertible, so is P , and since (A′, b′) =
P (A, b), then A′ = PA and b′ = Pb. If x is a solution of the original system Ax = b, then
multiplying both sides by P we get PAx = Pb; that is, A′x = b′, so x is a solution of the
new system. Conversely, assume that x is a solution of the new system, that is A′x = b′.
Then, because A′ = PA, b′ = PB, and P is invertible, we get

Ax = P−1A′x = P−1b′ = b,

so x is a solution of the original system Ax = b.

Before stating the next proposition, which states another important fact, we need the
notion of rank.

Definition 2.1. Given any m×n matrix A, the rank (or column rank) of A is the maximum
number of linearly independent columns of A. The row rank of A is the maximum number of
linearly independent rows of A (equivalently, the maximum number of linearly independent
columns of A>).

It turns out that the column rank and the row rank of a matrix are always equal. This is
a fundamental result of linear algebra which is best proved using orthogonal complements.
We postpone the proof until we discuss Euclidean inner products in more details.
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Proposition 2.13. Given a m×n matrix A, for any sequence of row operations E1, . . . , Ek,
if P = Ek · · ·E1 and B = PA, then the subspaces spanned by the rows of A and the rows of
B are identical. Therefore, A and B have the same row rank. Furthermore, the matrices A
and B also have the same (column) rank.

Proof. Since B = PA, from a previous observation, the rows of B are linear combinations
of the rows of A, so the span of the rows of B is a subspace of the span of the rows of A.
Since P is invertible, A = P−1B, so by the same reasoning the span of the rows of A is a
subspace of the span of the rows of B. Therefore, the subspaces spanned by the rows of A
and the rows of B are identical, which implies that A and B have the same row rank.

Proposition 2.12 implies that the systems Ax = 0 and Bx = 0 have the same solutions.
Since Ax is a linear combinations of the columns of A and Bx is a linear combinations of
the columns of B, the maximum number of linearly independent columns in A is equal to
the maximum number of linearly independent columns in B; that is, A and B have the same
rank.

Remark: The subspaces spanned by the columns of A and B can be different! However,
their dimension must be the same.

We will see that the reduction to row echelon form provides of proof of the fact that the
row rank is equal to the column rank. Let us now define precisely what is a reduced row
echelon matrix.

Definition 2.2. A m×n matrix A is a reduced row echelon matrix iff the following conditions
hold:

(a) The first nonzero entry in every row is 1. This entry is called a pivot .

(b) The first nonzero entry of row i+ 1 is to the right of the first nonzero entry of row i.

(c) The entries above a pivot are zero.

If a matrix satisfies the above conditions, we also say that it is in reduced row echelon form,
for short rref .

Note that condition (b) implies that the entries below a pivot are also zero. For example,
the matrix

A =




1 6 0 1
0 0 1 2
0 0 0 0




is a reduced row echelon matrix.

The following proposition shows that every matrix can be converted to a reduced row
echelon form using row operations.
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Proposition 2.14. Given any m × n matrix A, there is a sequence of row operations
E1, . . . , Ek such that if P = Ek · · ·E1, then U = PA is a reduced row echelon matrix.

Proof. We proceed by induction on m. If m = 1, then either all entries on this row are zero
so A = 0, or if aj is the first nonzero entry in A, let P = (a−1

j ) (a 1× 1 matrix); clearly, PA
is a reduced row echelon matrix.

Let us now assume that m ≥ 2. If A = 0 we are done, so let us assume that A 6= 0. Since
A 6= 0, there is a leftmost column j which is nonzero, so pick any pivot π = aij in the jth
column, permute row i and row 1 if necessary, multiply the new first row by π−1, and clear
out the other entries in column j by subtracting suitable multiples of row 1. At the end of
this process, we have a matrix A1 that has the following shape:

A1 =




0 · · · 0 1 ∗ · · · ∗
0 · · · 0 0 ∗ · · · ∗
...

...
...

...
...

0 · · · 0 0 ∗ · · · ∗


 ,

where ∗ stands for an arbitrary scalar, or more concisely,

A1 =

(
0 1 B
0 0 D

)
,

where D is a (m− 1)× (n− j) matrix. If j = n, we are done. Otherwise, by the induction
hypothesis applied to D, there is a sequence of row operations that converts D to a reduced
row echelon matrix R′, and these row operations do not affect the first row of A1, which
means that A1 is reduced to a matrix of the form

R =

(
0 1 B
0 0 R′

)
.

Because R′ is a reduced row echelon matrix, the matrix R satisfies conditions (a) and (b) of
the reduced row echelon form. Finally, the entries above all pivots in R′ can be cleared out
by subtracting suitable multiples of the rows of R′ containing a pivot. The resulting matrix
also satisfies condition (c), and the induction step is complete.

Remark: There is a Matlab function named rref that converts any matrix to its reduced
row echelon form.

If A is any matrix and if R is a reduced row echelon form of A, the second part of
Proposition 2.13 can be sharpened a little. Namely, the rank of A is equal to the number of
pivots in R.

This is because the structure of a reduced row echelon matrix makes it clear that its rank
is equal to the number of pivots.
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Given a system of the form Ax = b, we can apply the reduction procedure to the aug-
mented matrix (A, b) to obtain a reduced row echelon matrix (A′, b′) such that the system
A′x = b′ has the same solutions as the original system Ax = b. The advantage of the reduced
system A′x = b′ is that there is a simple test to check whether this system is solvable, and
to find its solutions if it is solvable.

Indeed, if any row of the matrix A′ is zero and if the corresponding entry in b′ is nonzero,
then it is a pivot and we have the “equation”

0 = 1,

which means that the system A′x = b′ has no solution. On the other hand, if there is no
pivot in b′, then for every row i in which b′i 6= 0, there is some column j in A′ where the
entry on row i is 1 (a pivot). Consequently, we can assign arbitrary values to the variable
xk if column k does not contain a pivot, and then solve for the pivot variables.

For example, if we consider the reduced row echelon matrix

(A′, b′) =




1 6 0 1 0
0 0 1 2 0
0 0 0 0 1


 ,

there is no solution to A′x = b′ because the third equation is 0 = 1. On the other hand, the
reduced system

(A′, b′) =




1 6 0 1 1
0 0 1 2 3
0 0 0 0 0




has solutions. We can pick the variables x2, x4 corresponding to nonpivot columns arbitrarily,
and then solve for x3 (using the second equation) and x1 (using the first equation).

The above reasoning proved the following theorem:

Theorem 2.15. Given any system Ax = b where A is a m × n matrix, if the augmented
matrix (A, b) is a reduced row echelon matrix, then the system Ax = b has a solution iff there
is no pivot in b. In that case, an arbitrary value can be assigned to the variable xj if column
j does not contain a pivot.

Nonpivot variables are often called free variables .

Putting Proposition 2.14 and Theorem 2.15 together we obtain a criterion to decide
whether a system Ax = b has a solution: Convert the augmented system (A, b) to a row
reduced echelon matrix (A′, b′) and check whether b′ has no pivot.

If we have a homogeneous system Ax = 0, which means that b = 0, of course x = 0 is
always a solution, but Theorem 2.15 implies that if the system Ax = 0 has more variables
than equations, then it has some nonzero solution (we call it a nontrivial solution).
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Proposition 2.16. Given any homogeneous system Ax = 0 of m equations in n variables,
if m < n, then there is a nonzero vector x ∈ Rn such that Ax = 0.

Proof. Convert the matrix A to a reduced row echelon matrix A′. We know that Ax = 0 iff
A′x = 0. If r is the number of pivots of A′, we must have r ≤ m, so by Theorem 2.15 we may
assign arbitrary values to n− r > 0 nonpivot variables and we get nontrivial solutions.

Theorem 2.15 can also be used to characterize when a square matrix is invertible. First,
note the following simple but important fact:

If a square n× n matrix A is a row reduced echelon matrix, then either A is the identity
or the bottom row of A is zero.

Proposition 2.17. Let A be a square matrix of dimension n. The following conditions are
equivalent:

(a) The matrix A can be reduced to the identity by a sequence of elementary row operations.

(b) The matrix A is a product of elementary matrices.

(c) The matrix A is invertible.

(d) The system of homogeneous equations Ax = 0 has only the trivial solution x = 0.

Proof. First, we prove that (a) implies (b). If (a) can be reduced to the identity by a sequence
of row operations E1, . . . , Ep, this means that Ep · · ·E1A = I. Since each Ei is invertible,
we get

A = E−1
1 · · ·E−1

p ,

where each E−1
i is also an elementary row operation, so (b) holds. Now if (b) holds, since

elementary row operations are invertible, A is invertible, and (c) holds. If A is invertible, we
already observed that the homogeneous system Ax = 0 has only the trivial solution x = 0,
because from Ax = 0, we get A−1Ax = A−10; that is, x = 0. It remains to prove that (d)
implies (a), and for this we prove the contrapositive: if (a) does not hold, then (d) does not
hold.

Using our basic observation about reducing square matrices, if A does not reduce to the
identity, then A reduces to a row echelon matrix A′ whose bottom row is zero. Say A′ = PA,
where P is a product of elementary row operations. Because the bottom row of A′ is zero,
the system A′x = 0 has at most n − 1 nontrivial equations, and by Proposition 2.16, this
system has a nontrivial solution x. But then, Ax = P−1A′x = 0 with x 6= 0, contradicting
the fact that the system Ax = 0 is assumed to have only the trivial solution. Therefore, (d)
implies (a) and the proof is complete.
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Proposition 2.17 yields a method for computing the inverse of an invertible matrix A:
reduce A to the identity using elementary row operations, obtaining

Ep · · ·E1A = I.

Multiplying both sides by A−1 we get

A−1 = Ep · · ·E1.

From a practical point of view, we can build up the product Ep · · ·E1 by reducing to row
echelon form the augmented n× 2n matrix (A, In) obtained by adding the n columns of the
identity matrix to A. This is just another way of performing the Gauss–Jordan procedure.

Here is an example: let us find the inverse of the matrix

A =

(
5 4
6 5

)
.

We form the 2× 4 block matrix

(A, I) =

(
5 4 1 0
6 5 0 1

)

and apply elementary row operations to reduce A to the identity. For example:

(A, I) =

(
5 4 1 0
6 5 0 1

)
−→

(
5 4 1 0
1 1 −1 1

)

by subtracting row 1 from row 2,
(

5 4 1 0
1 1 −1 1

)
−→

(
1 0 5 −4
1 1 −1 1

)

by subtracting 4× row 2 from row 1,
(

1 0 5 −4
1 1 −1 1

)
−→

(
1 0 5 −4
0 1 −6 5

)
= (I, A−1),

by subtracting row 1 from row 2. Thus

A−1 =

(
5 −4
−6 5

)
.

Proposition 2.17 can also be used to give an elementary proof of the fact that if a square
matrix A has a left inverse B (resp. a right inverse B), so that BA = I (resp. AB = I),
then A is invertible and A−1 = B. This is an interesting exercise, try it!

For the sake of completeness, we prove that the reduced row echelon form of a matrix is
unique. The neat proof given below is borrowed and adapted from W. Kahan.
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Proposition 2.18. Let A be any m × n matrix. If U and V are two reduced row echelon
matrices obtained from A by applying two sequences of elementary row operations E1, . . . , Ep
and F1, . . . , Fq, so that

U = Ep · · ·E1A and V = Fq · · ·F1A,

then U = V and Ep · · ·E1 = Fq · · ·F1. In other words, the reduced row echelon form of any
matrix is unique.

Proof. Let

C = Ep · · ·E1F
−1
1 · · ·F−1

q

so that

U = CV and V = C−1U.

We prove by induction on n that U = V (and C = I).

Let `j denote the jth column of the identity matrix In, and let uj = U`j, vj = V `j,
cj = C`j, and aj = A`j, be the jth column of U , V , C, and A respectively.

First, I claim that uj = 0 iff vj = 0, iff aj = 0.

Indeed, if vj = 0, then (because U = CV ) uj = Cvj = 0, and if uj = 0, then vj =
C−1uj = 0. Since A = Ep · · ·E1U , we also get aj = 0 iff uj = 0.

Therefore, we may simplify our task by striking out columns of zeros from U, V , and A,
since they will have corresponding indices. We still use n to denote the number of columns of
A. Observe that because U and V are reduced row echelon matrices with no zero columns,
we must have u1 = v1 = `1.

Claim. If U and V are reduced row echelon matrices without zero columns such that
U = CV , for all k ≥ 1, if k ≤ n, then `k occurs in U iff `k occurs in V , and if `k does occurs
in U , then

1. `k occurs for the same index jk in both U and V ;

2. the first jk columns of U and V match;

3. the subsequent columns in U and V (of index > jk) whose elements beyond the kth
all vanish also match;

4. the first k columns of C match the first k columns of In.

We prove this claim by induction on k.

For the base case k = 1, we already know that u1 = v1 = `1. We also have

c1 = C`1 = Cv1 = u1 = `1.
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If vj = λ`1 for some µ ∈ R, then

uj = U`1 = CV `1 = Cvj = λC`1 = λ`1 = vj.

A similar argument using C−1 shows that if uj = λ`1, then vj = uj. Therefore, all the
columns of U and V proportional to `1 match, which establishes the base case. Observe that
if `2 appears in U , then it must appear in both U and V for the same index, and if not then
U = V .

Next us now prove the induction step; this is only necessary if `k+1 appears in both U ,
in wich case, by (3) of the induction hypothesis, it appears in both U and V for the same
index, say jk+1. Thus ujk+1

= vjk+1
= `k+1. It follows that

ck+1 = C`k+1 = Cvjk+1
= ujk+1

= `k+1,

so the first k + 1 columns of C match the first k + 1 columns of In.

Consider any subsequent column vj (with j > jk+1) whose elements beyond the (k+ 1)th
all vanish. Then, vj is a linear combination of columns of V to the left of vj, so

uj = Cvj = vj.

because the first k+ 1 columns of C match the first column of In. Similarly, any subsequent
column uj (with j > jk+1) whose elements beyond the (k + 1)th all vanish is equal to vj.
Therefore, all the subsequent columns in U and V (of index > jk+1) whose elements beyond
the (k + 1)th all vanish also match, which completes the induction hypothesis.

We can now prove that U = V (recall that we may assume that U and V have no zero
columns). We noted earlier that u1 = v1 = `1, so there is a largest k ≤ n such that `k occurs
in U . Then, the previous claim implies that all the columns of U and V match, which means
that U = V .

The reduction to row echelon form also provides a method to describe the set of solutions
of a linear system of the form Ax = b. First, we have the following simple result.

Proposition 2.19. Let A be any m× n matrix and let b ∈ Rm be any vector. If the system
Ax = b has a solution, then the set Z of all solutions of this system is the set

Z = x0 + Ker (A) = {x0 + x | Ax = 0},

where x0 ∈ Rn is any solution of the system Ax = b, which means that Ax0 = b (x0 is called
a special solution), and where Ker (A) = {x ∈ Rn | Ax = 0}, the set of solutions of the
homogeneous system associated with Ax = b.

Proof. Assume that the system Ax = b is solvable and let x0 and x1 be any two solutions so
that Ax0 = b and Ax1 = b. Subtracting the first equation from the second, we get

A(x1 − x0) = 0,
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which means that x1 − x0 ∈ Ker (A). Therefore, Z ⊆ x0 + Ker (A), where x0 is a special
solution of Ax = b. Conversely, if Ax0 = b, then for any z ∈ Ker (A), we have Az = 0, and
so

A(x0 + z) = Ax0 + Az = b+ 0 = b,

which shows that x0 + Ker (A) ⊆ Z. Therefore, Z = x0 + Ker (A).

Given a linear system Ax = b, reduce the augmented matrix (A, b) to its row echelon
form (A′, b′). As we showed before, the system Ax = b has a solution iff b′ contains no pivot.
Assume that this is the case. Then, if (A′, b′) has r pivots, which means that A′ has r pivots
since b′ has no pivot, we know that the first r columns of In appear in A′.

We can permute the columns of A′ and renumber the variables in x correspondingly so
that the first r columns of In match the first r columns of A′, and then our reduced echelon
matrix is of the form (R, b′) with

R =

(
Ir F

0m−r,r 0m−r,n−r

)

and

b′ =

(
d

0m−r

)
,

where F is a r × (n− r) matrix and d ∈ Rr. Note that R has m− r zero rows.

Then, because (
Ir F

0m−r,r 0m−r,n−r

)(
d

0n−r

)
=

(
d

0m−r

)
,

we see that

x0 =

(
d

0n−r

)

is a special solution of Rx = b′, and thus to Ax = b. In other words, we get a special solution
by assigning the first r components of b′ to the pivot variables and setting the nonpivot
variables (the free variables) to zero.

We can also find a basis of the kernel (nullspace) of A using F . If x = (u, v) is in the
kernel of A, with u ∈ Rr and v ∈ Rn−r, then x is also in the kernel of R, which means that
Rx = 0; that is, (

Ir F
0m−r,r 0m−r,n−r

)(
u
v

)
=

(
u+ Fv
0m−r

)
=

(
0r

0m−r

)
.

Therefore, u = −Fv, and Ker (A) consists of all vectors of the form

(
−Fv
v

)
=

(
−F
In−r

)
v,
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for any arbitrary v ∈ Rn−r. It follows that the n− r columns of the matrix

N =

(
−F
In−r

)

form a basis of the kernel of A. This is because N contains the identity matrix In−r as a
submatrix, so the columns of N are linearly independent. In summary, if N1, . . . , Nn−r are
the columns of N , then the general solution of the equation Ax = b is given by

x =

(
d

0n−r

)
+ xr+1N

1 + · · ·+ xnN
n−r,

where xr+1, . . . , xn are the free variables, that is, the nonpivot variables.

In the general case where the columns corresponding to pivots are mixed with the columns
corresponding to free variables, we find the special solution as follows. Let i1 < · · · < ir be
the indices of the columns corresponding to pivots. Then, assign b′k to the pivot variable
xik for k = 1, . . . , r, and set all other variables to 0. To find a basis of the kernel, we
form the n − r vectors Nk obtained as follows. Let j1 < · · · < jn−r be the indices of the
columns corresponding to free variables. For every column jk corresponding to a free variable
(1 ≤ k ≤ n− r), form the vector Nk defined so that the entries Nk

i1
, . . . , Nk

ir are equal to the
negatives of the first r entries in column jk (flip the sign of these entries); let Nk

jk
= 1, and set

all other entries to zero. The presence of the 1 in position jk guarantees that N1, . . . , Nn−r

are linearly independent.

An illustration of the above method, consider the problem of finding a basis of the
subspace V of n× n matrices A ∈ Mn(R) satisfying the following properties:

1. The sum of the entries in every row has the same value (say c1);

2. The sum of the entries in every column has the same value (say c2).

It turns out that c1 = c2 and that the 2n−2 equations corresponding to the above conditions
are linearly independent. We leave the proof of these facts as an interesting exercise. By the
duality theorem, the dimension of the space V of matrices satisying the above equations is
n2 − (2n− 2). Let us consider the case n = 4. There are 6 equations, and the space V has
dimension 10. The equations are

a11 + a12 + a13 + a14 − a21 − a22 − a23 − a24 = 0

a21 + a22 + a23 + a24 − a31 − a32 − a33 − a34 = 0

a31 + a32 + a33 + a34 − a41 − a42 − a43 − a44 = 0

a11 + a21 + a31 + a41 − a12 − a22 − a32 − a42 = 0

a12 + a22 + a32 + a42 − a13 − a23 − a33 − a43 = 0

a13 + a23 + a33 + a43 − a14 − a24 − a34 − a44 = 0,
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and the corresponding matrix is

A =




1 1 1 1 −1 −1 −1 −1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 −1 −1 −1 −1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 −1 −1 −1 −1
1 −1 0 0 1 −1 0 0 1 −1 0 0 1 −1 0 0
0 1 −1 0 0 1 −1 0 0 1 −1 0 0 1 −1 0
0 0 1 −1 0 0 1 −1 0 0 1 −1 0 0 1 −1



.

The result of performing the reduction to row echelon form yields the following matrix
in rref:

U =




1 0 0 0 0 −1 −1 −1 0 −1 −1 −1 2 1 1 1
0 1 0 0 0 1 0 0 0 1 0 0 −1 0 −1 −1
0 0 1 0 0 0 1 0 0 0 1 0 −1 −1 0 −1
0 0 0 1 0 0 0 1 0 0 0 1 −1 −1 −1 0
0 0 0 0 1 1 1 1 0 0 0 0 −1 −1 −1 −1
0 0 0 0 0 0 0 0 1 1 1 1 −1 −1 −1 −1




The list pivlist of indices of the pivot variables and the list freelist of indices of the free
variables is given by

pivlist = (1, 2, 3, 4, 5, 9),

freelist = (6, 7, 8, 10, 11, 12, 13, 14, 15, 16).

After applying the algorithm to find a basis of the kernel of U , we find the following 16× 10
matrix

BK =




1 1 1 1 1 1 −2 −1 −1 −1
−1 0 0 −1 0 0 1 0 1 1
0 −1 0 0 −1 0 1 1 0 1
0 0 −1 0 0 −1 1 1 1 0
−1 −1 −1 0 0 0 1 1 1 1
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 −1 −1 −1 1 1 1 1
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1




.

The reader should check that that in each column j of BK, the lowest 1 belongs to the
row whose index is the jth element in freelist , and that in each column j of BK, the signs of
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the entries whose indices belong to pivlist are the fipped signs of the 6 entries in the column
U corresponding to the jth index in freelist . We can now read off from BK the 4×4 matrices
that form a basis of V : every column of BK corresponds to a matrix whose rows have been
concatenated. We get the following 10 matrices:

M1 =




1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0


 , M2 =




1 0 −1 0
−1 0 1 0
0 0 0 0
0 0 0 0


 , M3 =




1 0 0 −1
−1 0 0 1
0 0 0 0
0 0 0 0




M4 =




1 −1 0 0
0 0 0 0
−1 1 0 0
0 0 0 0


 , M5 =




1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0


 , M6 =




1 0 0 −1
0 0 0 0
−1 0 0 1
0 0 0 0




M7 =




−2 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0


 , M8 =




−1 0 1 1
1 0 0 0
1 0 0 0
0 1 0 0


 , M9 =




−1 1 0 1
1 0 0 0
1 0 0 0
0 0 1 0




M10 =




−1 1 1 0
1 0 0 0
1 0 0 0
0 0 0 1


 .

Recall that a magic square is a square matrix that satisfies the two conditions about
the sum of the entries in each row and in each column to be the same number, and also
the additional two constraints that the main descending and the main ascending diagonals
add up to this common number. Furthermore, the entries are also required to be positive
integers. For n = 4, the additional two equations are

a22 + a33 + a44 − a12 − a13 − a14 = 0

a41 + a32 + a23 − a11 − a12 − a13 = 0,

and the 8 equations stating that a matrix is a magic square are linearly independent. Again,
by running row elimination, we get a basis of the “generalized magic squares” whose entries
are not restricted to be positive integers. We find a basis of 8 matrices. For n = 3, we find
a basis of 3 matrices.

A magic square is said to be normal if its entries are precisely the integers 1, 2 . . . , n2.
Then, since the sum of these entries is

1 + 2 + 3 + · · ·+ n2 =
n2(n2 + 1)

2
,
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and since each row (and column) sums to the same number, this common value (the magic
sum) is

n(n2 + 1)

2
.

It is easy to see that there are no normal magic squares for n = 2. For n = 3, the magic sum
is 15, and for n = 4, it is 34. In the case n = 3, we have the additional condition that the
rows and columns add up to 15, so we end up with a solution parametrized by two numbers
x1, x2; namely, 


x1 + x2 − 5 10− x2 10− x1

20− 2x1 − x2 5 2x1 + x2 − 10
x1 x2 15− x1 − x2


 .

Thus, in order to find a normal magic square, we have the additional inequality constraints

x1 + x2 > 5

x1 < 10

x2 < 10

2x1 + x2 < 20

2x1 + x2 > 10

x1 > 0

x2 > 0

x1 + x2 < 15,

and all 9 entries in the matrix must be distinct. After a tedious case analysis, we discover the
remarkable fact that there is a unique normal magic square (up to rotations and reflections):




2 7 6
9 5 1
4 3 8


 .

It turns out that there are 880 different normal magic squares for n = 4, and 275, 305, 224
normal magic squares for n = 5 (up to rotations and reflections). Even for n = 4, it takes a
fair amount of work to enumerate them all!

Instead of performing elementary row operations on a matrix A, we can perform elemen-
tary columns operations, which means that we multiply A by elementary matrices on the
right. As elementary row and column operations, P (i, k), Ei,j;β, Ei,λ perform the following
actions:

1. As a row operation, P (i, k) permutes row i and row k.

2. As a column operation, P (i, k) permutes column i and column k.

3. The inverse of P (i, k) is P (i, k) itself.



2.6. SUMMARY 97

4. As a row operation, Ei,j;β adds β times row j to row i.

5. As a column operation, Ei,j;β adds β times column i to column j (note the switch in
the indices).

6. The inverse of Ei,j;β is Ei,j;−β.

7. As a row operation, Ei,λ multiplies row i by λ.

8. As a column operation, Ei,λ multiplies column i by λ.

9. The inverse of Ei,λ is Ei,λ−1 .

We can define the notion of a reduced column echelon matrix and show that every matrix
can be reduced to a unique reduced column echelon form. Now, given any m× n matrix A,
if we first convert A to its reduced row echelon form R, it is easy to see that we can apply
elementary column operations that will reduce R to a matrix of the form

(
Ir 0r,n−r

0m−r,r 0m−r,n−r

)
,

where r is the number of pivots (obtained during the row reduction). Therefore, for every
m×n matrix A, there exist two sequences of elementary matrices E1, . . . , Ep and F1, . . . , Fq,
such that

Ep · · ·E1AF1 · · ·Fq =

(
Ir 0r,n−r

0m−r,r 0m−r,n−r

)
.

The matrix on the right-hand side is called the rank normal form of A. Clearly, r is the
rank of A. It is easy to see that the rank normal form also yields a proof of the fact that A
and its transpose A> have the same rank.

2.6 Summary

The main concepts and results of this chapter are listed below:

• One does not solve (large) linear systems by computing determinants.

• Upper-triangular (lower-triangular) matrices.

• Solving by back-substitution (forward-substitution).

• Gaussian elimination.

• Permuting rows.

• The pivot of an elmination step; pivoting .
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• Transposition matrix ; elementary matrix .

• The Gaussian elimination theorem (Theorem 2.1).

• Gauss-Jordan factorization.

• LU-factorization; Necessary and sufficient condition for the existence of an
LU -factorization (Proposition 2.2).

• “PA = LU theorem” (Theorem 2.5).

• Avoiding small pivots: partial pivoting ; complete pivoting .

• Gaussian elimination of tridiagonal matrices.

• LU -factorization of tridiagonal matrices.

• Symmetric positive definite matrices (SPD matrices).

• Cholesky factorization (Theorem 2.10).

• Reduced row echelon form.

• Reduction of a rectangular matrix to its row echelon form.

• Using the reduction to row echelon form to decide whether a system Ax = b is solvable,
and to find its solutions, using a special solution and a basis of the homogeneous system
Ax = 0.



Chapter 3

Vector Spaces, Bases, Linear Maps

3.1 Vector Spaces, Subspaces

We will now be more precise as to what kinds of operations are allowed on vectors. In the
early 1900, the notion of a vector space emerged as a convenient and unifying framework for
working with “linear” objects and we will discuss this notion in the next few sections.

A (real) vector space is a set E together with two operations, +: E × E → E and
· : R×E → E, called addition and scalar multiplication, that satisfy some simple properties.
First of all, E under addition has to be a commutative (or abelian) group, a notion that we
review next.

However, keep in mind that vector spaces are not just algebraic
objects; they are also geometric objects.

Definition 3.1. A group is a set G equipped with a binary operation · : G × G → G that
associates an element a · b ∈ G to every pair of elements a, b ∈ G, and having the following
properties: · is associative, has an identity element e ∈ G, and every element in G is invertible
(w.r.t. ·). More explicitly, this means that the following equations hold for all a, b, c ∈ G:

(G1) a · (b · c) = (a · b) · c. (associativity);

(G2) a · e = e · a = a. (identity);

(G3) For every a ∈ G, there is some a−1 ∈ G such that a · a−1 = a−1 · a = e (inverse).

A group G is abelian (or commutative) if

a · b = b · a

for all a, b ∈ G.

99
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A set M together with an operation · : M ×M → M and an element e satisfying only
conditions (G1) and (G2) is called a monoid . For example, the set N = {0, 1, . . . , n, . . .} of
natural numbers is a (commutative) monoid under addition. However, it is not a group.

Some examples of groups are given below.

Example 3.1.

1. The set Z = {. . . ,−n, . . . ,−1, 0, 1, . . . , n, . . .} of integers is a group under addition,
with identity element 0. However, Z∗ = Z− {0} is not a group under multiplication.

2. The set Q of rational numbers (fractions p/q with p, q ∈ Z and q 6= 0) is a group
under addition, with identity element 0. The set Q∗ = Q− {0} is also a group under
multiplication, with identity element 1.

3. Similarly, the sets R of real numbers and C of complex numbers are groups under
addition (with identity element 0), and R∗ = R − {0} and C∗ = C − {0} are groups
under multiplication (with identity element 1).

4. The sets Rn and Cn of n-tuples of real or complex numbers are groups under compo-
nentwise addition:

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn),

with identity element (0, . . . , 0). All these groups are abelian.

5. Given any nonempty set S, the set of bijections f : S → S, also called permutations
of S, is a group under function composition (i.e., the multiplication of f and g is the
composition g ◦ f), with identity element the identity function idS. This group is not
abelian as soon as S has more than two elements.

6. The set of n× n matrices with real (or complex) coefficients is a group under addition
of matrices, with identity element the null matrix. It is denoted by Mn(R) (or Mn(C)).

7. The set R[X] of all polynomials in one variable with real coefficients is a group under
addition of polynomials.

8. The set of n×n invertible matrices with real (or complex) coefficients is a group under
matrix multiplication, with identity element the identity matrix In. This group is
called the general linear group and is usually denoted by GL(n,R) (or GL(n,C)).

9. The set of n×n invertible matrices with real (or complex) coefficients and determinant
+1 is a group under matrix multiplication, with identity element the identity matrix
In. This group is called the special linear group and is usually denoted by SL(n,R)
(or SL(n,C)).
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10. The set of n × n invertible matrices with real coefficients such that RR> = In and of
determinant +1 is a group called the special orthogonal group and is usually denoted
by SO(n) (where R> is the transpose of the matrix R, i.e., the rows of R> are the
columns of R). It corresponds to the rotations in Rn.

11. Given an open interval ]a, b[, the set C(]a, b[) of continuous functions f : ]a, b[→ R is a
group under the operation f + g defined such that

(f + g)(x) = f(x) + g(x)

for all x ∈]a, b[.

It is customary to denote the operation of an abelian group G by +, in which case the
inverse a−1 of an element a ∈ G is denoted by −a.

The identity element of a group is unique. In fact, we can prove a more general fact:

Fact 1. If a binary operation · : M ×M → M is associative and if e′ ∈ M is a left identity
and e′′ ∈M is a right identity, which means that

e′ · a = a for all a ∈M (G2l)

and
a · e′′ = a for all a ∈M, (G2r)

then e′ = e′′.

Proof. If we let a = e′′ in equation (G2l), we get

e′ · e′′ = e′′,

and if we let a = e′ in equation (G2r), we get

e′ · e′′ = e′,

and thus
e′ = e′ · e′′ = e′′,

as claimed.

Fact 1 implies that the identity element of a monoid is unique, and since every group is
a monoid, the identity element of a group is unique. Furthermore, every element in a group
has a unique inverse. This is a consequence of a slightly more general fact:

Fact 2. In a monoid M with identity element e, if some element a ∈M has some left inverse
a′ ∈M and some right inverse a′′ ∈M , which means that

a′ · a = e (G3l)

and
a · a′′ = e, (G3r)

then a′ = a′′.
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Proof. Using (G3l) and the fact that e is an identity element, we have

(a′ · a) · a′′ = e · a′′ = a′′.

Similarly, Using (G3r) and the fact that e is an identity element, we have

a′ · (a · a′′) = a′ · e = a′.

However, since M is monoid, the operation · is associative, so

a′ = a′ · (a · a′′) = (a′ · a) · a′′ = a′′,

as claimed.

Remark: Axioms (G2) and (G3) can be weakened a bit by requiring only (G2r) (the exis-
tence of a right identity) and (G3r) (the existence of a right inverse for every element) (or
(G2l) and (G3l)). It is a good exercise to prove that the group axioms (G2) and (G3) follow
from (G2r) and (G3r).

Vector spaces are defined as follows.

Definition 3.2. A real vector space is a set E (of vectors) together with two operations
+: E × E → E (called vector addition)1 and · : R × E → E (called scalar multiplication)
satisfying the following conditions for all α, β ∈ R and all u, v ∈ E;

(V0) E is an abelian group w.r.t. +, with identity element 0;2

(V1) α · (u+ v) = (α · u) + (α · v);

(V2) (α + β) · u = (α · u) + (β · u);

(V3) (α ∗ β) · u = α · (β · u);

(V4) 1 · u = u.

In (V3), ∗ denotes multiplication in R.

Given α ∈ R and v ∈ E, the element α · v is also denoted by αv. The field R is often
called the field of scalars.

In definition 3.2, the field R may be replaced by the field of complex numbers C, in which
case we have a complex vector space. It is even possible to replace R by the field of rational
numbers Q or by any other field K (for example Z/pZ, where p is a prime number), in which

1The symbol + is overloaded, since it denotes both addition in the field R and addition of vectors in E.
It is usually clear from the context which + is intended.

2The symbol 0 is also overloaded, since it represents both the zero in R (a scalar) and the identity element
of E (the zero vector). Confusion rarely arises, but one may prefer using 0 for the zero vector.
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case we have a K-vector space (in (V3), ∗ denotes multiplication in the field K). In most
cases, the field K will be the field R of reals.

From (V0), a vector space always contains the null vector 0, and thus is nonempty.
From (V1), we get α · 0 = 0, and α · (−v) = −(α · v). From (V2), we get 0 · v = 0, and
(−α) · v = −(α · v).

Another important consequence of the axioms is the following fact: For any u ∈ E and
any λ ∈ R, if λ 6= 0 and λ · u = 0, then u = 0.

Indeed, since λ 6= 0, it has a multiplicative inverse λ−1, so from λ · u = 0, we get

λ−1 · (λ · u) = λ−1 · 0.

However, we just observed that λ−1 · 0 = 0, and from (V3) and (V4), we have

λ−1 · (λ · u) = (λ−1λ) · u = 1 · u = u,

and we deduce that u = 0.

The field R itself can be viewed as a vector space over itself, addition of vectors being
addition in the field, and multiplication by a scalar being multiplication in the field.

Example 3.2.

1. The fields R and C are vector spaces over R.

2. The groups Rn and Cn are vector spaces over R, and Cn is a vector space over C.

3. The ring R[X]n of polynomials of degree at most n with real coefficients is a vector
space over R, and the ring C[X]n of polynomials of degree at most n with complex
coefficients is a vector space over C.

4. The ring R[X] of all polynomials with real coefficients is a vector space over R, and
the ring C[X] of all polynomials with complex coefficients is a vector space over C.

5. The ring of n× n matrices Mn(R) is a vector space over R.

6. The ring of m× n matrices Mm,n(R) is a vector space over R.

7. The ring C(]a, b[) of continuous functions f : ]a, b[→ R is a vector space over R.

Let E be a vector space. We would like to define the important notions of linear com-
bination and linear independence. These notions can be defined for sets of vectors in E,
but it will turn out to be more convenient to define them for families (vi)i∈I , where I is any
arbitrary index set.
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3.2 Linear Independence, Subspaces

In this section, we revisit linear independence and introduce the notion of a basis . One of
the most useful properties of vector spaces is that there possess bases. What this means
is that in every vector space, E, there is some set of vectors, {e1, . . . , en}, such that every
vector v ∈ E can be written as a linear combination,

v = λ1e1 + · · ·+ λnen,

of the ei, for some scalars, λ1, . . . , λn ∈ R. Furthermore, the n-tuple, (λ1, . . . , λn), as above
is unique.

This description is fine when E has a finite basis, {e1, . . . , en}, but this is not always the
case! For example, the vector space of real polynomials, R[X], does not have a finite basis
but instead it has an infinite basis, namely

1, X, X2, . . . , Xn, . . .

For simplicity, in this chapter, we will restrict our attention to vector spaces that have a
finite basis (we say that they are finite-dimensional). Let us review the notion of an indexed
family.

Given a set A, a family (ai)i∈I of elements of A is simply a function a : I → A.

Remark: When considering a family (ai)i∈I , there is no reason to assume that I is ordered.
The crucial point is that every element of the family is uniquely indexed by an element of
I. Thus, unless specified otherwise, we do not assume that the elements of an index set are
ordered.

We can deal with an arbitrary set X by viewing it as the family (Xx)x∈X corresponding
to the identity function id : X → X. We agree that when I = ∅, (ai)i∈I = ∅. A family (ai)i∈I
is finite if I is finite.

Given two disjoint sets I and J , the union of two families (ui)i∈I and (vj)j∈J , denoted as
(ui)i∈I ∪ (vj)j∈J , is the family (wk)k∈(I∪J) defined such that wk = uk if k ∈ I, and wk = vk
if k ∈ J . Given a family (ui)i∈I and any element v, we denote by (ui)i∈I ∪k (v) the family
(wi)i∈I∪{k} defined such that, wi = ui if i ∈ I, and wk = v, where k is any index such that
k /∈ I. Given a family (ui)i∈I , a subfamily of (ui)i∈I is a family (uj)j∈J where J is any subset
of I.

In this chapter, unless specified otherwise, it is assumed that all families of scalars are
finite (i.e., their index set is finite).

Definition 3.3. Let E be a vector space. A vector v ∈ E is a linear combination of a family
(ui)i∈I of elements of E iff there is a family (λi)i∈I of scalars in R such that

v =
∑

i∈I
λiui.
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When I = ∅, we stipulate that v = 0. We say that a family (ui)i∈I is linearly independent
iff for every family (λi)i∈I of scalars in R,

∑

i∈I
λiui = 0 implies that λi = 0 for all i ∈ I.

Equivalently, a family (ui)i∈I is linearly dependent iff there is some family (λi)i∈I of scalars
in R such that ∑

i∈I
λiui = 0 and λj 6= 0 for some j ∈ I.

We agree that when I = ∅, the family ∅ is linearly independent.

A family (ui)i∈I is linearly dependent iff either I consists of a single element, say i, and
ui = 0, or |I| ≥ 2 and some uj in the family can be expressed as a linear combination of the
other vectors in the family. Indeed, in the second case, there is some family (λi)i∈I of scalars
in R such that ∑

i∈I
λiui = 0 and λj 6= 0 for some j ∈ I,

and since |I| ≥ 2, the set I − {j} is nonempty and we get

uj =
∑

i∈(I−{j})
−λ−1

j λiui.

The above shows that a family (ui)i∈I is linearly independent iff either I = ∅, or I consists
of a single element i and ui 6= 0, or |I| ≥ 2 and no vector uj in the family can be expressed
as a linear combination of the other vectors in the family.

When I is nonempty, if the family (ui)i∈I is linearly independent, note that ui 6= 0 for
all i ∈ I. Otherwise, if ui = 0 for some i ∈ I, then we get a nontrivial linear dependence∑

i∈I λiui = 0 by picking any nonzero λi and letting λk = 0 for all k ∈ I with k 6= i, since
λi0 = 0. If |I| ≥ 2, we must also have ui 6= uj for all i, j ∈ I with i 6= j, since otherwise we
get a nontrivial linear dependence by picking λi = λ and λj = −λ for any nonzero λ, and
letting λk = 0 for all k ∈ I with k 6= i, j.

Example 3.3.

1. Any two distinct scalars λ, µ 6= 0 in R are linearly dependent.

2. In R3, the vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) are linearly independent.

3. In R4, the vectors (1, 1, 1, 1), (0, 1, 1, 1), (0, 0, 1, 1), and (0, 0, 0, 1) are linearly indepen-
dent.

4. In R2, the vectors u = (1, 1), v = (0, 1) and w = (2, 3) are linearly dependent, since

w = 2u+ v.
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When I is finite, we often assume that it is the set I = {1, 2, . . . , n}. In this case, we
denote the family (ui)i∈I as (u1, . . . , un).

The notion of a subspace of a vector space is defined as follows.

Definition 3.4. Given a vector space E, a subset F of E is a linear subspace (or subspace)
of E iff F is nonempty and λu+ µv ∈ F for all u, v ∈ F , and all λ, µ ∈ R.

It is easy to see that a subspace F of E is indeed a vector space, since the restriction
of +: E × E → E to F × F is indeed a function +: F × F → F , and the restriction of
· : R× E → E to R× F is indeed a function · : R× F → F .

It is also easy to see that any intersection of subspaces is a subspace.

Since F is nonempty, if we pick any vector u ∈ F and if we let λ = µ = 0, then
λu + µu = 0u + 0u = 0, so every subspace contains the vector 0. For any nonempty finite
index set I, one can show by induction on the cardinality of I that if (ui)i∈I is any family of
vectors ui ∈ F and (λi)i∈I is any family of scalars, then

∑
i∈I λiui ∈ F .

The subspace {0} will be denoted by (0), or even 0 (with a mild abuse of notation).

Example 3.4.

1. In R2, the set of vectors u = (x, y) such that

x+ y = 0

is a subspace.

2. In R3, the set of vectors u = (x, y, z) such that

x+ y + z = 0

is a subspace.

3. For any n ≥ 0, the set of polynomials f(X) ∈ R[X] of degree at most n is a subspace
of R[X].

4. The set of upper triangular n×n matrices is a subspace of the space of n×n matrices.

Proposition 3.1. Given any vector space E, if S is any nonempty subset of E, then the
smallest subspace 〈S〉 (or Span(S)) of E containing S is the set of all (finite) linear combi-
nations of elements from S.

Proof. We prove that the set Span(S) of all linear combinations of elements of S is a subspace
of E, leaving as an exercise the verification that every subspace containing S also contains
Span(S).
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First, Span(S) is nonempty since it contains S (which is nonempty). If u =
∑

i∈I λiui
and v =

∑
j∈J µjvj are any two linear combinations in Span(S), for any two scalars λ, µ ∈ R,

λu+ µv = λ
∑

i∈I
λiui + µ

∑

j∈J
µjvj

=
∑

i∈I
λλiui +

∑

j∈J
µµjvj

=
∑

i∈I−J
λλiui +

∑

i∈I∩J
(λλi + µµi)ui +

∑

j∈J−I
µµjvj,

which is a linear combination with index set I ∪ J , and thus λu + µv ∈ Span(S), which
proves that Span(S) is a subspace.

One might wonder what happens if we add extra conditions to the coefficients involved
in forming linear combinations. Here are three natural restrictions which turn out to be
important (as usual, we assume that our index sets are finite):

(1) Consider combinations
∑

i∈I λiui for which
∑

i∈I
λi = 1.

These are called affine combinations . One should realize that every linear combination∑
i∈I λiui can be viewed as an affine combination. For example, if k is an index not

in I, if we let J = I ∪ {k}, uk = 0, and λk = 1−∑i∈I λi, then
∑

j∈J λjuj is an affine
combination and ∑

i∈I
λiui =

∑

j∈J
λjuj.

However, we get new spaces. For example, in R3, the set of all affine combinations of
the three vectors e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1), is the plane passing
through these three points. Since it does not contain 0 = (0, 0, 0), it is not a linear
subspace.

(2) Consider combinations
∑

i∈I λiui for which

λi ≥ 0, for all i ∈ I.
These are called positive (or conic) combinations . It turns out that positive combina-
tions of families of vectors are cones . They show up naturally in convex optimization.

(3) Consider combinations
∑

i∈I λiui for which we require (1) and (2), that is
∑

i∈I
λi = 1, and λi ≥ 0 for all i ∈ I.

These are called convex combinations . Given any finite family of vectors, the set of all
convex combinations of these vectors is a convex polyhedron. Convex polyhedra play a
very important role in convex optimization.
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3.3 Bases of a Vector Space

Given a vector space E, given a family (vi)i∈I , the subset V of E consisting of the null vector 0
and of all linear combinations of (vi)i∈I is easily seen to be a subspace of E. Subspaces having
such a “generating family” play an important role, and motivate the following definition.

Definition 3.5. Given a vector space E and a subspace V of E, a family (vi)i∈I of vectors
vi ∈ V spans V or generates V iff for every v ∈ V , there is some family (λi)i∈I of scalars in
R such that

v =
∑

i∈I
λivi.

We also say that the elements of (vi)i∈I are generators of V and that V is spanned by (vi)i∈I ,
or generated by (vi)i∈I . If a subspace V of E is generated by a finite family (vi)i∈I , we say
that V is finitely generated . A family (ui)i∈I that spans V and is linearly independent is
called a basis of V .

Example 3.5.

1. In R3, the vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) form a basis.

2. The vectors (1, 1, 1, 1), (1, 1,−1,−1), (1,−1, 0, 0), (0, 0, 1,−1) form a basis of R4 known
as the Haar basis . This basis and its generalization to dimension 2n are crucial in
wavelet theory.

3. In the subspace of polynomials in R[X] of degree at most n, the polynomials 1, X,X2,
. . . , Xn form a basis.

4. The Bernstein polynomials

(
n
k

)
(1 − X)kXn−k for k = 0, . . . , n, also form a basis of

that space. These polynomials play a major role in the theory of spline curves .

It is a standard result of linear algebra that every vector space E has a basis, and that
for any two bases (ui)i∈I and (vj)j∈J , I and J have the same cardinality. In particular, if E
has a finite basis of n elements, every basis of E has n elements, and the integer n is called
the dimension of the vector space E. We begin with a crucial lemma.

Lemma 3.2. Given a linearly independent family (ui)i∈I of elements of a vector space E, if
v ∈ E is not a linear combination of (ui)i∈I , then the family (ui)i∈I ∪k (v) obtained by adding
v to the family (ui)i∈I is linearly independent (where k /∈ I).

Proof. Assume that µv+
∑

i∈I λiui = 0, for any family (λi)i∈I of scalars in R. If µ 6= 0, then
µ has an inverse (because R is a field), and thus we have v = −∑i∈I(µ

−1λi)ui, showing that
v is a linear combination of (ui)i∈I and contradicting the hypothesis. Thus, µ = 0. But then,
we have

∑
i∈I λiui = 0, and since the family (ui)i∈I is linearly independent, we have λi = 0

for all i ∈ I.
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The next theorem holds in general, but the proof is more sophisticated for vector spaces
that do not have a finite set of generators. Thus, in this chapter, we only prove the theorem
for finitely generated vector spaces.

Theorem 3.3. Given any finite family S = (ui)i∈I generating a vector space E and any
linearly independent subfamily L = (uj)j∈J of S (where J ⊆ I), there is a basis B of E such
that L ⊆ B ⊆ S.

Proof. Consider the set of linearly independent families B such that L ⊆ B ⊆ S. Since this
set is nonempty and finite, it has some maximal element, say B = (uh)h∈H . We claim that
B generates E. Indeed, if B does not generate E, then there is some up ∈ S that is not a
linear combination of vectors in B (since S generates E), with p /∈ H. Then, by Lemma
3.2, the family B′ = (uh)h∈H∪{p} is linearly independent, and since L ⊆ B ⊂ B′ ⊆ S, this
contradicts the maximality of B. Thus, B is a basis of E such that L ⊆ B ⊆ S.

Remark: Theorem 3.3 also holds for vector spaces that are not finitely generated. In this
case, the problem is to guarantee the existence of a maximal linearly independent family B
such that L ⊆ B ⊆ S. The existence of such a maximal family can be shown using Zorn’s
lemma.

The following proposition giving useful properties characterizing a basis is an immediate
consequence of Theorem 3.3.

Proposition 3.4. Given a vector space E, for any family B = (vi)i∈I of vectors of E, the
following properties are equivalent:

(1) B is a basis of E.

(2) B is a maximal linearly independent family of E.

(3) B is a minimal generating family of E.

Our next goal is to prove that any two bases in a finitely generated vector space have
the same number of elements. We could use the replacement lemma due to Steinitz but this
also follows from Proposition 1.8, which holds for any vector space (not just Rn). Since this
is an important fact, we repeat its statement and its proof.

Proposition 3.5. For any vector space E, let u1, . . . , up and v1, . . . , vq be any vectors in E.
If u1, . . . , up are linearly independent and if each uj is a linear combination of the vk, then
p ≤ q.

Proof. Since each ui is a linear combination of the vj, we can write

uj =
[
v1 · · · vq

]
aj,
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for some vector aj ∈ Rq, so if we form the q × p matrix A = [a1 · · · ap], we have

[
u1 · · · up

]
=
[
v1 · · · vq

]
A.

If p > q, then the matrix A has more columns than rows, so Proposition 1.6 implies that
the system Ax = 0 has a nontrival solution x 6= 0. But then,

[
u1 · · · up

]
x =

[
v1 · · · vq

]
Ax = 0,

and since x 6= 0, we get a nontrivial linear dependence among the ui’s, a contradiction.
Therefore, we must have p ≤ q.

Putting Theorem 3.3 and Proposition 3.5 together, we obtain the following fundamental
theorem.

Theorem 3.6. Let E be a finitely generated vector space. Any family (ui)i∈I generating E
contains a subfamily (uj)j∈J which is a basis of E. Furthermore, for every two bases (ui)i∈I
and (vj)j∈J of E, we have |I| = |J | = n for some fixed integer n ≥ 0.

Proof. The first part follows immediately by applying Theorem 3.3 with L = ∅ and S =
(ui)i∈I . Assume that (ui)i∈I and (vj)j∈J are bases of E. Since (ui)i∈I is linearly independent
and (vj)j∈J spans E, proposition 3.5 implies that |I| ≤ |J |. A symmetric argument yields
|J | ≤ |I|.

Remark: Theorem 3.6 also holds for vector spaces that are not finitely generated.

When E is not finitely generated we say that E is of infinite dimension. The dimension
of a finitely generated vector space E is the common dimension n of all of its bases and
is denoted by dim(E). Clearly, if the field R itself is viewed as a vector space, then every
family (a) where a ∈ R and a 6= 0 is a basis. Thus dim(R) = 1. Note that dim({0}) = 0.

If E is a vector space of dimension n ≥ 1, for any subspace U of E, if dim(U) = 1, then
U is called a line; if dim(U) = 2, then U is called a plane; if dim(U) = n − 1, then U is
called a hyperplane. If dim(U) = k, then U is sometimes called a k-plane.

Let (ui)i∈I be a basis of a vector space E. For any vector v ∈ E, since the family (ui)i∈I
generates E, there is a family (λi)i∈I of scalars in R, such that

v =
∑

i∈I
λiui.

A very important fact is that the family (λi)i∈I is unique.

Proposition 3.7. Given a vector space E, let (ui)i∈I be a family of vectors in E. Let v ∈ E,
and assume that v =

∑
i∈I λiui. Then, the family (λi)i∈I of scalars such that v =

∑
i∈I λiui

is unique iff (ui)i∈I is linearly independent.
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Proof. First, assume that (ui)i∈I is linearly independent. If (µi)i∈I is another family of scalars
in R such that v =

∑
i∈I µiui, then we have

∑

i∈I
(λi − µi)ui = 0,

and since (ui)i∈I is linearly independent, we must have λi−µi = 0 for all i ∈ I, that is, λi = µi
for all i ∈ I. The converse is shown by contradiction. If (ui)i∈I was linearly dependent, there
would be a family (µi)i∈I of scalars not all null such that

∑

i∈I
µiui = 0

and µj 6= 0 for some j ∈ I. But then,

v =
∑

i∈I
λiui + 0 =

∑

i∈I
λiui +

∑

i∈I
µiui =

∑

i∈I
(λi + µi)ui,

with λj 6= λj+µj since µj 6= 0, contradicting the assumption that (λi)i∈I is the unique family
such that v =

∑
i∈I λiui.

If (ui)i∈I is a basis of a vector space E, for any vector v ∈ E, if (xi)i∈I is the unique
family of scalars in R such that

v =
∑

i∈I
xiui,

each xi is called the component (or coordinate) of index i of v with respect to the basis (ui)i∈I .

Many interesting mathematical structures are vector spaces. A very important example
is the set of linear maps between two vector spaces to be defined in the next section. Here
is an example that will prepare us for the vector space of linear maps.

Example 3.6. Let X be any nonempty set and let E be a vector space. The set of all
functions f : X → E can be made into a vector space as follows: Given any two functions
f : X → E and g : X → E, let (f + g) : X → E be defined such that

(f + g)(x) = f(x) + g(x)

for all x ∈ X, and for every λ ∈ R, let λf : X → E be defined such that

(λf)(x) = λf(x)

for all x ∈ X. The axioms of a vector space are easily verified. Now, let E = R, and let I
be the set of all nonempty subsets of X. For every S ∈ I, let fS : X → E be the function
such that fS(x) = 1 iff x ∈ S, and fS(x) = 0 iff x /∈ S. We leave as an exercise to show that
(fS)S∈I is linearly independent.
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3.4 Linear Maps

A function between two vector spaces that preserves the vector space structure is called
a homomorphism of vector spaces, or linear map. Linear maps formalize the concept of
linearity of a function.

Keep in mind that linear maps, which are transformations of
space, are usually far more important than the spaces

themselves.

In the rest of this section, we assume that all vector spaces are real vector spaces.

Definition 3.6. Given two vector spaces E and F , a linear map between E and F is a
function f : E → F satisfying the following two conditions:

f(x+ y) = f(x) + f(y) for all x, y ∈ E;

f(λx) = λf(x) for all λ ∈ R, x ∈ E.

Setting x = y = 0 in the first identity, we get f(0) = 0. The basic property of linear
maps is that they transform linear combinations into linear combinations. Given any finite
family (ui)i∈I of vectors in E, given any family (λi)i∈I of scalars in R, we have

f(
∑

i∈I
λiui) =

∑

i∈I
λif(ui).

The above identity is shown by induction on |I| using the properties of Definition 3.6.

Example 3.7.

1. The map f : R2 → R2 defined such that

x′ = x− y
y′ = x+ y

is a linear map.

2. For any vector space E, the identity map id : E → E given by

id(u) = u for all u ∈ E

is a linear map. When we want to be more precise, we write idE instead of id.

3. The map D : R[X]→ R[X] defined such that

D(f(X)) = f ′(X),

where f ′(X) is the derivative of the polynomial f(X), is a linear map
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Definition 3.7. Given a linear map f : E → F , we define its image (or range) Im f = f(E),
as the set

Im f = {y ∈ F | (∃x ∈ E)(y = f(x))},
and its Kernel (or nullspace) Ker f = f−1(0), as the set

Ker f = {x ∈ E | f(x) = 0}.

Proposition 3.8. Given a linear map f : E → F , the set Im f is a subspace of F and the
set Ker f is a subspace of E. The linear map f : E → F is injective iff Ker f = 0 (where 0
is the trivial subspace {0}).

Proof. Given any x, y ∈ Im f , there are some u, v ∈ E such that x = f(u) and y = f(v),
and for all λ, µ ∈ R, we have

f(λu+ µv) = λf(u) + µf(v) = λx+ µy,

and thus, λx+ µy ∈ Im f , showing that Im f is a subspace of F .

Given any x, y ∈ Ker f , we have f(x) = 0 and f(y) = 0, and thus,

f(λx+ µy) = λf(x) + µf(y) = 0,

that is, λx+ µy ∈ Ker f , showing that Ker f is a subspace of E.

First, assume that Ker f = 0. We need to prove that f(x) = f(y) implies that x = y.
However, if f(x) = f(y), then f(x) − f(y) = 0, and by linearity of f we get f(x − y) = 0.
Because Ker f = 0, we must have x − y = 0, that is x = y, so f is injective. Conversely,
assume that f is injective. If x ∈ Ker f , that is f(x) = 0, since f(0) = 0 we have f(x) =
f(0), and by injectivity, x = 0, which proves that Ker f = 0. Therefore, f is injective iff
Ker f = 0.

Since by Proposition 3.8, the image Im f of a linear map f is a subspace of F , we can
define the rank rk(f) of f as the dimension of Im f .

A fundamental property of bases in a vector space is that they allow the definition of
linear maps as unique homomorphic extensions, as shown in the following proposition.

Proposition 3.9. Given any two vector spaces E and F , given any basis (ui)i∈I of E, given
any other family of vectors (vi)i∈I in F , there is a unique linear map f : E → F such that
f(ui) = vi for all i ∈ I. Furthermore, f is injective iff (vi)i∈I is linearly independent, and f
is surjective iff (vi)i∈I generates F .

Proof. If such a linear map f : E → F exists, since (ui)i∈I is a basis of E, every vector x ∈ E
can written uniquely as a linear combination

x =
∑

i∈I
xiui,
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and by linearity, we must have

f(x) =
∑

i∈I
xif(ui) =

∑

i∈I
xivi.

Define the function f : E → F , by letting

f(x) =
∑

i∈I
xivi

for every x =
∑

i∈I xiui. It is easy to verify that f is indeed linear, it is unique by the
previous reasoning, and obviously, f(ui) = vi.

Now, assume that f is injective. Let (λi)i∈I be any family of scalars, and assume that

∑

i∈I
λivi = 0.

Since vi = f(ui) for every i ∈ I, we have

f(
∑

i∈I
λiui) =

∑

i∈I
λif(ui) =

∑

i∈I
λivi = 0.

Since f is injective iff Ker f = 0, we have

∑

i∈I
λiui = 0,

and since (ui)i∈I is a basis, we have λi = 0 for all i ∈ I, which shows that (vi)i∈I is linearly
independent. Conversely, assume that (vi)i∈I is linearly independent. Since (ui)i∈I is a basis
of E, every vector v ∈ E is a linear combination v =

∑
i∈I λiui of (ui)i∈I . If

f(v) = f(
∑

i∈I
λiui) = 0,

then ∑

i∈I
λivi =

∑

i∈I
λif(ui) = f(

∑

i∈I
λiui) = 0,

and λi = 0 for all i ∈ I because (vi)i∈I is linearly independent, which means that v = 0.
Therefore, Ker f = 0, which implies that f is injective. The part where f is surjective is left
as a simple exercise.

By the second part of Proposition 3.9, an injective linear map f : E → F sends a basis
(ui)i∈I to a linearly independent family (f(ui))i∈I of F , which is also a basis when f is
bijective. Also, when E and F have the same finite dimension n, (ui)i∈I is a basis of E, and
f : E → F is injective, then (f(ui))i∈I is a basis of F (by Proposition 3.4).
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Given vector spaces E, F , and G, and linear maps f : E → F and g : F → G, it is
easily verified that the composition g ◦ f : E → G of f and g is a linear map. A linear map
f : E → F is an isomorphism iff there is a linear map g : F → E, such that

g ◦ f = idE and f ◦ g = idF . (∗)

Such a map g is unique. This is because if g and h both satisfy g ◦ f = idE, f ◦ g = idF ,
h ◦ f = idE, and f ◦ h = idF , then

g = g ◦ idF = g ◦ (f ◦ h) = (g ◦ f) ◦ h = idE ◦ h = h.

The map g satisfying (∗) above is called the inverse of f and it is also denoted by f−1.

Observe that Proposition 3.9 shows that if F = Rn, then we get an isomorphism between
any vector space E of dimension |J | = n and Rn. Proposition 3.9 also implies that if E and
F are two vector spaces, (ui)i∈I is a basis of E, and f : E → F is a linear map which is an
isomorphism, then the family (f(ui))i∈I is a basis of F .

One can verify that if f : E → F is a bijective linear map, then its inverse f−1 : F → E
is also a linear map, and thus f is an isomorphism.

Another useful corollary of Proposition 3.9 is this:

Proposition 3.10. Let E be a vector space of finite dimension n ≥ 1 and let f : E → E be
any linear map. The following properties hold:

(1) If f has a left inverse g, that is, if g is a linear map such that g ◦ f = id, then f is an
isomorphism and f−1 = g.

(2) If f has a right inverse h, that is, if h is a linear map such that f ◦ h = id, then f is
an isomorphism and f−1 = h.

Proof. (1) The equation g ◦ f = id implies that f is injective; this is a standard result about
functions (if f(x) = f(y), then g(f(x)) = g(f(y)), which implies that x = y since g ◦f = id).
Let (u1, . . . , un) be any basis of E. By Proposition 3.9, since f is injective, (f(u1), . . . , f(un))
is linearly independent, and since E has dimension n, it is a basis of E (if (f(u1), . . . , f(un))
doesn’t span E, then it can be extended to a basis of dimension strictly greater than n,
contradicting Theorem 3.6). Then, f is bijective, and by a previous observation its inverse
is a linear map. We also have

g = g ◦ id = g ◦ (f ◦ f−1) = (g ◦ f) ◦ f−1 = id ◦ f−1 = f−1.

(2) The equation f ◦ h = id implies that f is surjective; this is a standard result about
functions (for any y ∈ E, we have f(g(y)) = y). Let (u1, . . . , un) be any basis of E. By
Proposition 3.9, since f is surjective, (f(u1), . . . , f(un)) spans E, and since E has dimension
n, it is a basis of E (if (f(u1), . . . , f(un)) is not linearly independent, then because it spans E,
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it contains a basis of dimension strictly smaller than n, contradicting Theorem 3.6). Then,
f is bijective, and by a previous observation its inverse is a linear map. We also have

h = id ◦ h = (f−1 ◦ f) ◦ h = f−1 ◦ (f ◦ h) = f−1 ◦ id = f−1.

This completes the proof.

We have the following important result relating the dimension of the kernel (nullspace)
and the dimension of the image of a linear map.

Theorem 3.11. Let f : E → F be a linear map. For any choice of a basis (v1, . . . , vr) of the
image Im f of f , let (u1, . . . , ur) be any vectors in E such that vi = f(ui), for i = 1, . . . , r, and
let (h1, . . . , hs) be a basis of the kernel (nullspace) Ker f of f . Then, (u1, . . . , ur, h1, . . . , hs)
is a basis of E, so that n = dim(E) = s+ r, and thus

dim(E) = dim(Ker f) + dim(Im f) = dim(Ker f) + rk(f).

Proof. We claim that every vector w ∈ E can be written as

w = u+ h,

where u is a linear combination of (u1, . . . , ur) and h is a linear combination of (h1, . . . , hs).
Consider f(w) ∈ Im f . Since (v1, . . . , vr) is a basis of Im f , we can write

f(w) = λ1v1 + · · ·+ λrvr,

for some unique scalars λi ∈ R. Let

u = λ1u1 + · · ·+ λrur,

then using linearity and the fact that vi = f(ui), we have

f(w − u) = f(w)− f(u)

= λ1v1 + · · ·+ λrvr − f(λ1u1 + · · ·+ λrur)

= λ1v1 + · · ·+ λrvr − (λ1f(u1) + · · ·+ λrf(ur))

= λ1v1 + · · ·+ λrvr − (λ1v1 + · · ·+ λrvr)

= 0.

Consequently w − u ∈ Ker f , which means that w − u = h for some h ∈ Ker f , that is

w = u+ h,

with u = λ1u1 + · · ·+ λrur and h = µ1h1 + · · ·+ µshs for some µj ∈ R, since (h1, . . . , hs) is
a basis of Ker f . This proves that (u1, . . . , ur, h1, . . . , hs) span E.

Let us now prove that (u1, . . . , ur, h1, . . . , hs) are linearly independent.



3.4. LINEAR MAPS 117

Assume that
λ1u1 + · · ·+ λrur + µ1h1 + · · ·+ µshs = 0.

If we apply f , since h1, . . . , hs ∈ Ker f we have f(hj) = 0 for j = 1, . . . , s, and since
vi = f(ui), we get

λ1v1 + · · ·+ λrvr = 0.

However, (v1, . . . , vr) are linearly independent (a basis of Im f) so λ1 = · · · = λr = 0, and
we are left with

µ1h1 + · · ·+ µshs = 0.

But, (h1, . . . , hs) are also linearly independent (a basis of Ker f), therefore, µ1 = · · · = µs = 0,
which proves that (u1, . . . , ur, h1, . . . , hs) are linearly independent.

In summary, we proved that (u1, . . . , ur, h1, . . . , hs) is a basis of E, with (h1, . . . , hs) a basis
of Ker f , and (u1, . . . , ur) a basis of a subspace of E isomorphic to Im f (since (v1, . . . , vr) is
a basis of Im f). Then, it is immediate that

dim(E) = dim(Ker f) + dim(Im f) = dim(Ker f) + rk(f),

which completes the proof of our theorem.

The set of all linear maps between two vector spaces E and F is denoted by Hom(E,F )
or by L(E;F ) (the notation L(E;F ) is usually reserved to the set of continuous linear maps,
where E and F are normed vector spaces). When we wish to be more precise and specify
the field K over which the vector spaces E and F are defined we write HomK(E,F ).

The set Hom(E,F ) is a vector space under the operations defined in Example 3.6, namely

(f + g)(x) = f(x) + g(x)

for all x ∈ E, and
(λf)(x) = λf(x)

for all x ∈ E. The point worth checking carefully is that λf is indeed a linear map, which
uses the commutativity of ∗ in the field K (typically, K = R or K = C). Indeed, we have

(λf)(µx) = λf(µx) = λµf(x) = µλf(x) = µ(λf)(x).

When E and F have finite dimensions, the vector space Hom(E,F ) also has finite di-
mension, as we shall see shortly. When E = F , a linear map f : E → E is also called an
endomorphism. The space Hom(E,E) is also denoted by End(E).

It is also important to note that composition confers to Hom(E,E) a ring structure.
Indeed, composition is an operation ◦ : Hom(E,E) × Hom(E,E) → Hom(E,E), which is
associative and has an identity idE, and the distributivity properties hold:

(g1 + g2) ◦ f = g1 ◦ f + g2 ◦ f ;

g ◦ (f1 + f2) = g ◦ f1 + g ◦ f2.
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The ring Hom(E,E) is an example of a noncommutative ring.

It is easily seen that the set of bijective linear maps f : E → E is a group under compo-
sition. Bijective linear maps are also called automorphisms . The group of automorphisms
of E is called the general linear group (of E), and it is denoted by GL(E), or by Aut(E),
or when E = Rn, by GL(n,R), or even by GL(n).

3.5 Summary

The main concepts and results of this chapter are listed below:

• The notion of a vector space.

• Families of vectors.

• Linear combinations of vectors; linear dependence and linear independence of a family
of vectors.

• Linear subspaces .

• Spanning (or generating) family; generators , finitely generated subspace; basis of a
subspace.

• Every linearly independent family can be extended to a basis (Theorem 3.3).

• A family B of vectors is a basis iff it is a maximal linearly independent family iff it is
a minimal generating family (Proposition 3.4).

• Proposition 3.5.

• Any two bases in a finitely generated vector space E have the same number of elements ;
this is the dimension of E (Theorem 3.6).

• Hyperlanes .

• Every vector has a unique representation over a basis (in terms of its coordinates).

• The notion of a linear map.

• The image Im f (or range) of a linear map f .

• The kernel Ker f (or nullspace) of a linear map f .

• The rank rk(f) of a linear map f .

• The image and the kernel of a linear map are subspaces. A linear map is injective iff
its kernel is the trivial space (0) (Proposition 3.8).
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• The unique homomorphic extension property of linear maps with respect to bases
(Proposition 3.9 ).

• The representation of linear maps by matrices .

• The vector space of linear maps HomK(E,F ).
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Chapter 4

Matrices, Linear Maps, and Affine
Maps

4.1 Matrices

Proposition 3.9 shows that given two vector spaces E and F and a basis (uj)j∈J of E, every
linear map f : E → F is uniquely determined by the family (f(uj))j∈J of the images under
f of the vectors in the basis (uj)j∈J .

If we also have a basis (vi)i∈I of F , then every vector f(uj) can be written in a unique
way as

f(uj) =
∑

i∈I
ai jvi,

where j ∈ J , for a family of scalars (ai j)i∈I . Thus, with respect to the two bases (uj)j∈J
of E and (vi)i∈I of F , the linear map f is completely determined by a “I × J-matrix”
M(f) = (ai j)i∈I, j∈J .

Remark: Note that we intentionally assigned the index set J to the basis (uj)j∈J of E,
and the index I to the basis (vi)i∈I of F , so that the rows of the matrix M(f) associated
with f : E → F are indexed by I, and the columns of the matrix M(f) are indexed by J .
Obviously, this causes a mildly unpleasant reversal. If we had considered the bases (ui)i∈I of
E and (vj)j∈J of F , we would obtain a J × I-matrix M(f) = (aj i)j∈J, i∈I . No matter what
we do, there will be a reversal! We decided to stick to the bases (uj)j∈J of E and (vi)i∈I of
F , so that we get an I × J-matrix M(f), knowing that we may occasionally suffer from this
decision!

When I and J are finite, and say, when |I| = m and |J | = n, the linear map f is
determined by the matrix M(f) whose entries in the j-th column are the components of the

121
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vector f(uj) over the basis (v1, . . . , vm), that is, the matrix

M(f) =




a1 1 a1 2 . . . a1n

a2 1 a2 2 . . . a2n
...

...
. . .

...
am 1 am 2 . . . amn




whose entry on row i and column j is ai j (1 ≤ i ≤ m, 1 ≤ j ≤ n).

We will now show that when E and F have finite dimension, linear maps can be very
conveniently represented by matrices, and that composition of linear maps corresponds to
matrix multiplication. We will follow rather closely an elegant presentation method due to
Emil Artin.

Let E and F be two vector spaces, and assume that E has a finite basis (u1, . . . , un) and
that F has a finite basis (v1, . . . , vm). Recall that we have shown that every vector x ∈ E
can be written in a unique way as

x = x1u1 + · · ·+ xnun,

and similarly every vector y ∈ F can be written in a unique way as

y = y1v1 + · · ·+ ymvm.

Let f : E → F be a linear map between E and F . Then, for every x = x1u1 + · · ·+ xnun in
E, by linearity, we have

f(x) = x1f(u1) + · · ·+ xnf(un).

Let
f(uj) = a1 jv1 + · · ·+ amjvm,

or more concisely,

f(uj) =
m∑

i=1

ai jvi,

for every j, 1 ≤ j ≤ n. Then, substituting the right-hand side of each f(uj) into the
expression for f(x), we get

f(x) = x1(
m∑

i=1

ai 1vi) + · · ·+ xn(
m∑

i=1

ai nvi),

which, by regrouping terms to obtain a linear combination of the vi, yields

f(x) = (
n∑

j=1

a1 jxj)v1 + · · ·+ (
n∑

j=1

amjxj)vm.
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Thus, letting f(x) = y = y1v1 + · · ·+ ymvm, we have

yi =
n∑

j=1

ai jxj (1)

for all i, 1 ≤ i ≤ m.

To make things more concrete, let us treat the case where n = 3 and m = 2. In this case,

f(u1) = a11v1 + a21v2

f(u2) = a12v1 + a22v2

f(u3) = a13v1 + a23v2,

and we have

f(x) = f(x1u1 + x2u2 + x3u3)

= x1f(u1) + x2f(u2) + x3f(u3)

= x1(a11v1 + a21v2) + x2(a12v1 + a22v2) + x3(a13v1 + a23v2)

= (a11x1 + a12x2 + a13x3)v1 + (a21x1 + a22x2 + a23x3)v2.

Consequently, since
y = y1v1 + y2v2,

we have

y1 = a11x1 + a12x2 + a13x3

y2 = a21x1 + a22x2 + a23x3.

This agrees with the matrix equation

(
y1

y2

)
=

(
a11 a12 a13

a21 a22 a23

)

x1

x2

x3


 .

Let us now consider how the composition of linear maps is expressed in terms of bases.

Let E, F , and G, be three vectors spaces with respective bases (u1, . . . , up) for E,
(v1, . . . , vn) for F , and (w1, . . . , wm) for G. Let g : E → F and f : F → G be linear maps.
As explained earlier, g : E → F is determined by the images of the basis vectors uj, and
f : F → G is determined by the images of the basis vectors vk. We would like to understand
how f ◦ g : E → G is determined by the images of the basis vectors uj.

Remark: Note that we are considering linear maps g : E → F and f : F → G, instead
of f : E → F and g : F → G, which yields the composition f ◦ g : E → G instead of
g ◦ f : E → G. Our perhaps unusual choice is motivated by the fact that if f is represented
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by a matrix M(f) = (ai k) and g is represented by a matrix M(g) = (bk j), then f ◦g : E → G
is represented by the product AB of the matrices A and B. If we had adopted the other
choice where f : E → F and g : F → G, then g ◦ f : E → G would be represented by the
product BA. Personally, we find it easier to remember the formula for the entry in row i and
column of j of the product of two matrices when this product is written by AB, rather than
BA. Obviously, this is a matter of taste! We will have to live with our perhaps unorthodox
choice.

Thus, let

f(vk) =
m∑

i=1

ai kwi,

for every k, 1 ≤ k ≤ n, and let

g(uj) =
n∑

k=1

bk jvk,

for every j, 1 ≤ j ≤ p. By previous considerations, for every

x = x1u1 + · · ·+ xpup,

letting g(x) = y = y1v1 + · · ·+ ynvn, we have

yk =

p∑

j=1

bk jxj (2)

for all k, 1 ≤ k ≤ n, and for every

y = y1v1 + · · ·+ ynvn,

letting f(y) = z = z1w1 + · · ·+ zmwm, we have

zi =
n∑

k=1

ai kyk (3)

for all i, 1 ≤ i ≤ m. Then, if y = g(x) and z = f(y), we have z = f(g(x)), and in view of
(2) and (3), we have

zi =
n∑

k=1

ai k(

p∑

j=1

bk jxj)

=
n∑

k=1

p∑

j=1

ai kbk jxj

=

p∑

j=1

n∑

k=1

ai kbk jxj

=

p∑

j=1

(
n∑

k=1

ai kbk j)xj.
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Thus, defining ci j such that

ci j =
n∑

k=1

ai kbk j,

for 1 ≤ i ≤ m, and 1 ≤ j ≤ p, we have

zi =

p∑

j=1

ci jxj (4)

Identity (4) suggests defining a multiplication operation on matrices, and we proceed to
do so. We have the following definitions.

Definition 4.1. If K = R or K = C, An m× n-matrix over K is a family (ai j)1≤i≤m, 1≤j≤n
of scalars in K, represented by an array




a1 1 a1 2 . . . a1n

a2 1 a2 2 . . . a2n
...

...
. . .

...
am 1 am 2 . . . amn




In the special case where m = 1, we have a row vector , represented by

(a1 1 · · · a1n)

and in the special case where n = 1, we have a column vector , represented by



a1 1

...
am 1




In these last two cases, we usually omit the constant index 1 (first index in case of a row,
second index in case of a column). The set of all m × n-matrices is denoted by Mm,n(K)
or Mm,n. An n × n-matrix is called a square matrix of dimension n. The set of all square
matrices of dimension n is denoted by Mn(K), or Mn.

Remark: As defined, a matrix A = (ai j)1≤i≤m, 1≤j≤n is a family , that is, a function from
{1, 2, . . . ,m} × {1, 2, . . . , n} to K. As such, there is no reason to assume an ordering on
the indices. Thus, the matrix A can be represented in many different ways as an array, by
adopting different orders for the rows or the columns. However, it is customary (and usually
convenient) to assume the natural ordering on the sets {1, 2, . . . ,m} and {1, 2, . . . , n}, and
to represent A as an array according to this ordering of the rows and columns.

We also define some operations on matrices as follows.
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Definition 4.2. Given two m × n matrices A = (ai j) and B = (bi j), we define their sum
A+B as the matrix C = (ci j) such that ci j = ai j + bi j; that is,




a1 1 a1 2 . . . a1n

a2 1 a2 2 . . . a2n
...

...
. . .

...
am 1 am 2 . . . amn


+




b1 1 b1 2 . . . b1n

b2 1 b2 2 . . . b2n
...

...
. . .

...
bm 1 bm 2 . . . bmn




=




a1 1 + b1 1 a1 2 + b1 2 . . . a1n + b1n

a2 1 + b2 1 a2 2 + b2 2 . . . a2n + b2n
...

...
. . .

...
am 1 + bm 1 am 2 + bm 2 . . . amn + bmn


 .

For any matrix A = (ai j), we let −A be the matrix (−ai j). Given a scalar λ ∈ K, we define
the matrix λA as the matrix C = (ci j) such that ci j = λai j; that is

λ




a1 1 a1 2 . . . a1n

a2 1 a2 2 . . . a2n
...

...
. . .

...
am 1 am 2 . . . amn


 =




λa1 1 λa1 2 . . . λa1n

λa2 1 λa2 2 . . . λa2n
...

...
. . .

...
λam 1 λam 2 . . . λamn


 .

Given an m×n matrices A = (ai k) and an n× p matrices B = (bk j), we define their product
AB as the m× p matrix C = (ci j) such that

ci j =
n∑

k=1

ai kbk j,

for 1 ≤ i ≤ m, and 1 ≤ j ≤ p. In the product AB = C shown below




a1 1 a1 2 . . . a1n

a2 1 a2 2 . . . a2n
...

...
. . .

...
am 1 am 2 . . . amn







b1 1 b1 2 . . . b1 p

b2 1 b2 2 . . . b2 p
...

...
. . .

...
bn 1 bn 2 . . . bn p


 =




c1 1 c1 2 . . . c1 p

c2 1 c2 2 . . . c2 p
...

...
. . .

...
cm 1 cm 2 . . . cmp




note that the entry of index i and j of the matrix AB obtained by multiplying the matrices
A and B can be identified with the product of the row matrix corresponding to the i-th row
of A with the column matrix corresponding to the j-column of B:

(ai 1 · · · ai n)



b1 j
...
bn j


 =

n∑

k=1

ai kbk j.



4.1. MATRICES 127

The square matrix In of dimension n containing 1 on the diagonal and 0 everywhere else
is called the identity matrix . It is denoted by

In =




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1




Given an m × n matrix A = (ai j), its transpose A> = (a>j i), is the n ×m-matrix such
that a>j i = ai j, for all i, 1 ≤ i ≤ m, and all j, 1 ≤ j ≤ n.

The transpose of a matrix A is sometimes denoted by At, or even by tA. Note that the
transpose A> of a matrix A has the property that the j-th row of A> is the j-th column of
A. In other words, transposition exchanges the rows and the columns of a matrix.

The following observation will be useful later on when we discuss the SVD. Given any
m× n matrix A and any n× p matrix B, if we denote the columns of A by A1, . . . , An and
the rows of B by B1, . . . , Bn, then we have

AB = A1B1 + · · ·+ AnBn.

For every square matrix A of dimension n, it is immediately verified that AIn = InA = A.
If a matrix B such that AB = BA = In exists, then it is unique, and it is called the inverse
of A. The matrix B is also denoted by A−1. An invertible matrix is also called a nonsingular
matrix, and a matrix that is not invertible is called a singular matrix.

Proposition 3.10 shows that if a square matrix A has a left inverse, that is a matrix B
such that BA = I, or a right inverse, that is a matrix C such that AC = I, then A is actually
invertible; so B = A−1 and C = A−1.

It is immediately verified that the set Mm,n(K) of m×n matrices is a vector space under
addition of matrices and multiplication of a matrix by a scalar. Consider the m×n-matrices
Ei,j = (eh k), defined such that ei j = 1, and eh k = 0, if h 6= i or k 6= j. It is clear that every
matrix A = (ai j) ∈ Mm,n(K) can be written in a unique way as

A =
m∑

i=1

n∑

j=1

ai jEi,j.

Thus, the family (Ei,j)1≤i≤m,1≤j≤n is a basis of the vector space Mm,n(K), which has dimen-
sion mn.

Remark: Definition 4.1 and Definition 4.2 also make perfect sense when K is a (commuta-
tive) ring rather than a field. In this more general setting, the framework of vector spaces
is too narrow, but we can consider structures over a commutative ring A satisfying all the
axioms of Definition 3.2. Such structures are called modules . The theory of modules is
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(much) more complicated than that of vector spaces. For example, modules do not always
have a basis, and other properties holding for vector spaces usually fail for modules. When
a module has a basis, it is called a free module. For example, when A is a commutative
ring, the structure An is a module such that the vectors ei, with (ei)i = 1 and (ei)j = 0 for
j 6= i, form a basis of An. Many properties of vector spaces still hold for An. Thus, An is a
free module. As another example, when A is a commutative ring, Mm,n(A) is a free module
with basis (Ei,j)1≤i≤m,1≤j≤n. Polynomials over a commutative ring also form a free module
of infinite dimension.

Square matrices provide a natural example of a noncommutative ring with zero divisors.

Example 4.1. For example, letting A,B be the 2× 2-matrices

A =

(
1 0
0 0

)
, B =

(
0 0
1 0

)
,

then

AB =

(
1 0
0 0

)(
0 0
1 0

)
=

(
0 0
0 0

)
,

and

BA =

(
0 0
1 0

)(
1 0
0 0

)
=

(
0 0
1 0

)
.

We now formalize the representation of linear maps by matrices.

Definition 4.3. Let E and F be two vector spaces, and let (u1, . . . , un) be a basis for E,
and (v1, . . . , vm) be a basis for F . Each vector x ∈ E expressed in the basis (u1, . . . , un) as
x = x1u1 + · · ·+ xnun is represented by the column matrix

M(x) =



x1
...
xn




and similarly for each vector y ∈ F expressed in the basis (v1, . . . , vm).

Every linear map f : E → F is represented by the matrix M(f) = (ai j), where ai j is the
i-th component of the vector f(uj) over the basis (v1, . . . , vm), i.e., where

f(uj) =
m∑

i=1

ai jvi,

for every j, 1 ≤ j ≤ n. Explicitly, we have

M(f) =




a1 1 a1 2 . . . a1n

a2 1 a2 2 . . . a2n
...

...
. . .

...
am 1 am 2 . . . amn



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The matrix M(f) associated with the linear map f : E → F is called the matrix of f with
respect to the bases (u1, . . . , un) and (v1, . . . , vm). When E = F and the basis (v1, . . . , vm)
is identical to the basis (u1, . . . , un) of E, the matrix M(f) associated with f : E → E (as
above) is called the matrix of f with respect to the basis (u1, . . . , un).

Remark: As in the remark after Definition 4.1, there is no reason to assume that the vectors
in the bases (u1, . . . , un) and (v1, . . . , vm) are ordered in any particular way. However, it is
often convenient to assume the natural ordering. When this is so, authors sometimes refer
to the matrix M(f) as the matrix of f with respect to the ordered bases (u1, . . . , un) and
(v1, . . . , vm).

Then, given a linear map f : E → F represented by the matrix M(f) = (ai j) w.r.t. the
bases (u1, . . . , un) and (v1, . . . , vm), by equations (1) and the definition of matrix multipli-
cation, the equation y = f(x) corresponds to the matrix equation M(y) = M(f)M(x), that
is, 


y1
...
ym


 =



a1 1 . . . a1n

...
. . .

...
am 1 . . . amn






x1
...
xn


 .

Recall that



a1 1 a1 2 . . . a1n

a2 1 a2 2 . . . a2n
...

...
. . .

...
am 1 am 2 . . . amn







x1

x2
...
xn


 = x1




a1 1

a2 1
...

am 1


+ x2




a1 2

a2 2
...

am 2


+ · · ·+ xn




a1n

a2n
...

amn


 .

Sometimes, it is necessary to incoporate the bases (u1, . . . , un) and (v1, . . . , vm) in the
notation for the matrix M(f) expressing f with respect to these bases. This turns out to be
a messy enterprise!

We propose the following course of action: write U = (u1, . . . , un) and V = (v1, . . . , vm)
for the bases of E and F , and denote by MU ,V(f) the matrix of f with respect to the bases U
and V . Furthermore, write xU for the coordinates M(x) = (x1, . . . , xn) of x ∈ E w.r.t. the
basis U and write yV for the coordinates M(y) = (y1, . . . , ym) of y ∈ F w.r.t. the basis V .
Then,

y = f(x)

is expressed in matrix form by
yV = MU ,V(f)xU .

When U = V , we abbreviate MU ,V(f) as MU(f).

The above notation seems reasonable, but it has the slight disadvantage that in the
expression MU ,V(f)xU , the input argument xU which is fed to the matrix MU ,V(f) does not
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appear next to the subscript U in MU ,V(f). We could have used the notation MV,U(f), and
some people do that. But then, we find a bit confusing that V comes before U when f maps
from the space E with the basis U to the space F with the basis V . So, we prefer to use the
notation MU ,V(f).

Be aware that other authors such as Meyer [42] use the notation [f ]U ,V , and others such
as Dummit and Foote [17] use the notation MV

U (f), instead of MU ,V(f). This gets worse!
You may find the notation MU

V (f) (as in Lang [35]), or U [f ]V , or other strange notations.

Let us illustrate the representation of a linear map by a matrix in a concrete situation.
Let E be the vector space R[X]4 of polynomials of degree at most 4, let F be the vector
space R[X]3 of polynomials of degree at most 3, and let the linear map be the derivative
map d: that is,

d(P +Q) = dP + dQ

d(λP ) = λdP,

with λ ∈ R. We choose (1, x, x2, x3, x4) as a basis of E and (1, x, x2, x3) as a basis of F .
Then, the 4 × 5 matrix D associated with d is obtained by expressing the derivative dxi of
each basis vector xi for i = 0, 1, 2, 3, 4 over the basis (1, x, x2, x3). We find

D =




0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4


 .

Then, if P denotes the polynomial

P = 3x4 − 5x3 + x2 − 7x+ 5,

we have
dP = 12x3 − 15x2 + 2x− 7,

the polynomial P is represented by the vector (5,−7, 1,−5, 3) and dP is represented by the
vector (−7, 2,−15, 12), and we have




0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4







5
−7
1
−5
3




=




−7
2
−15
12


 ,

as expected! The kernel (nullspace) of d consists of the polynomials of degree 0, that is, the
constant polynomials. Therefore dim(Ker d) = 1, and from

dim(E) = dim(Ker d) + dim(Im d),
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we get dim(Im d) = 4 (since dim(E) = 5).

For fun, let us figure out the linear map from the vector space R[X]3 to the vector space
R[X]4 given by integration (finding the primitive, or anti-derivative) of xi, for i = 0, 1, 2, 3).
The 5× 4 matrix S representing

∫
with respect to the same bases as before is

S =




0 0 0 0
1 0 0 0
0 1/2 0 0
0 0 1/3 0
0 0 0 1/4



.

We verify that DS = I4,




0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4







0 0 0 0
1 0 0 0
0 1/2 0 0
0 0 1/3 0
0 0 0 1/4




=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ,

as it should! The equation DS = I4 show that S is injective and has D as a left inverse.
However, SD 6= I5, and instead




0 0 0 0
1 0 0 0
0 1/2 0 0
0 0 1/3 0
0 0 0 1/4







0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4


 =




0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



,

because constant polynomials (polynomials of degree 0) belong to the kernel of D.

The function that associates to a linear map f : E → F the matrix M(f) w.r.t. the bases
(u1, . . . , un) and (v1, . . . , vm) has the property that matrix multiplication corresponds to
composition of linear maps. This allows us to transfer properties of linear maps to matrices.
Here is an illustration of this technique:

Proposition 4.1. (1) Given any matrices A ∈ Mm,n(K), B ∈ Mn,p(K), and C ∈ Mp,q(K),
we have

(AB)C = A(BC);

that is, matrix multiplication is associative.

(2) Given any matrices A,B ∈ Mm,n(K), and C,D ∈ Mn,p(K), for all λ ∈ K, we have

(A+B)C = AC +BC

A(C +D) = AC + AD

(λA)C = λ(AC)

A(λC) = λ(AC),

so that matrix multiplication · : Mm,n(K)×Mn,p(K)→ Mm,p(K) is bilinear.
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Proof. (1) Every m× n matrix A = (ai j) defines the function fA : Kn → Km given by

fA(x) = Ax,

for all x ∈ Kn. It is immediately verified that fA is linear and that the matrix M(fA)
representing fA over the canonical bases in Kn and Km is equal to A. Then, formula (4)
proves that

M(fA ◦ fB) = M(fA)M(fB) = AB,

so we get

M((fA ◦ fB) ◦ fC) = M(fA ◦ fB)M(fC) = (AB)C

and

M(fA ◦ (fB ◦ fC)) = M(fA)M(fB ◦ fC) = A(BC),

and since composition of functions is associative, we have (fA ◦ fB) ◦ fC = fA ◦ (fB ◦ fC),
which implies that

(AB)C = A(BC).

(2) It is immediately verified that if f1, f2 ∈ HomK(E,F ), A,B ∈ Mm,n(K), (u1, . . . , un) is
any basis of E, and (v1, . . . , vm) is any basis of F , then

M(f1 + f2) = M(f1) +M(f2)

fA+B = fA + fB.

Then we have

(A+B)C = M(fA+B)M(fC)

= M(fA+B ◦ fC)

= M((fA + fB) ◦ fC))

= M((fA ◦ fC) + (fB ◦ fC))

= M(fA ◦ fC) +M(fB ◦ fC)

= M(fA)M(fC) +M(fB)M(fC)

= AC +BC.

The equation A(C + D) = AC + AD is proved in a similar fashion, and the last two
equations are easily verified. We could also have verified all the identities by making matrix
computations.

Note that Proposition 4.1 implies that the vector space Mn(K) of square matrices is a
(noncommutative) ring with unit In. (It even shows that Mn(K) is an associative algebra.)

The following proposition states the main properties of the mapping f 7→M(f) between
Hom(E,F ) and Mm,n. In short, it is an isomorphism of vector spaces.
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Proposition 4.2. Given three vector spaces E, F , G, with respective bases (u1, . . . , up),
(v1, . . . , vn), and (w1, . . . , wm), the mapping M : Hom(E,F )→ Mn,p that associates the ma-
trix M(g) to a linear map g : E → F satisfies the following properties for all x ∈ E, all
g, h : E → F , and all f : F → G:

M(g(x)) = M(g)M(x)

M(g + h) = M(g) +M(h)

M(λg) = λM(g)

M(f ◦ g) = M(f)M(g).

Thus, M : Hom(E,F ) → Mn,p is an isomorphism of vector spaces, and when p = n
and the basis (v1, . . . , vn) is identical to the basis (u1, . . . , up), M : Hom(E,E) → Mn is an
isomorphism of rings.

Proof. That M(g(x)) = M(g)M(x) was shown just before stating the proposition, using
identity (1). The identities M(g + h) = M(g) +M(h) and M(λg) = λM(g) are straightfor-
ward, and M(f ◦g) = M(f)M(g) follows from (4) and the definition of matrix multiplication.
The mapping M : Hom(E,F ) → Mn,p is clearly injective, and since every matrix defines a
linear map (see Proposition 4.1), it is also surjective, and thus bijective. In view of the above
identities, it is an isomorphism (and similarly for M : Hom(E,E)→ Mn, where Proposition
4.1 is used to show that Mn is a ring).

In view of Proposition 4.2, it seems preferable to represent vectors from a vector space
of finite dimension as column vectors rather than row vectors. Thus, from now on, we will
denote vectors of Rn (or more generally, of Kn) as columm vectors.

It is important to observe that the isomorphism M : Hom(E,F )→ Mn,p given by Propo-
sition 4.2 depends on the choice of the bases (u1, . . . , up) and (v1, . . . , vn), and similarly for the
isomorphism M : Hom(E,E) → Mn, which depends on the choice of the basis (u1, . . . , un).
Thus, it would be useful to know how a change of basis affects the representation of a linear
map f : E → F as a matrix. The following simple proposition is needed.

Proposition 4.3. Let E be a vector space, and let (u1, . . . , un) be a basis of E. For every
family (v1, . . . , vn), let P = (ai j) be the matrix defined such that vj =

∑n
i=1 ai jui. The matrix

P is invertible iff (v1, . . . , vn) is a basis of E.

Proof. Note that we have P = M(f), the matrix associated with the unique linear map
f : E → E such that f(ui) = vi. By Proposition 3.9, f is bijective iff (v1, . . . , vn) is a basis of
E. Furthermore, it is obvious that the identity matrix In is the matrix associated with the
identity id : E → E w.r.t. any basis. If f is an isomorphism, then f ◦f−1 = f−1◦f = id, and
by Proposition 4.2, we get M(f)M(f−1) = M(f−1)M(f) = In, showing that P is invertible
and that M(f−1) = P−1.

Proposition 4.3 suggests the following definition.
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Definition 4.4. Given a vector space E of dimension n, for any two bases (u1, . . . , un) and
(v1, . . . , vn) of E, let P = (ai j) be the invertible matrix defined such that

vj =
n∑

i=1

ai jui,

which is also the matrix of the identity id : E → E with respect to the bases (v1, . . . , vn) and
(u1, . . . , un), in that order (indeed, we express each id(vj) = vj over the basis (u1, . . . , un)).
The matrix P is called the change of basis matrix from (u1, . . . , un) to (v1, . . . , vn).

Clearly, the change of basis matrix from (v1, . . . , vn) to (u1, . . . , un) is P−1. Since P =
(ai j) is the matrix of the identity id : E → E with respect to the bases (v1, . . . , vn) and
(u1, . . . , un), given any vector x ∈ E, if x = x1u1 + · · ·+xnun over the basis (u1, . . . , un) and
x = x′1v1 + · · ·+ x′nvn over the basis (v1, . . . , vn), from Proposition 4.2, we have



x1
...
xn


 =



a1 1 . . . a1n

...
. . .

...
an 1 . . . ann






x′1
...
x′n




showing that the old coordinates (xi) of x (over (u1, . . . , un)) are expressed in terms of the
new coordinates (x′i) of x (over (v1, . . . , vn)).

Now we face the painful task of assigning a “good” notation incorporating the bases
U = (u1, . . . , un) and V = (v1, . . . , vn) into the notation for the change of basis matrix from
U to V . Because the change of basis matrix from U to V is the matrix of the identity map
idE with respect to the bases V and U in that order , we could denote it by MV,U(id) (Meyer
[42] uses the notation [I]V,U).

We prefer to use an abbreviation for MV,U(id) and we will use the notation

PV,U

for the change of basis matrix from U to V . Note that

PU ,V = P−1
V,U .

Then, if we write xU = (x1, . . . , xn) for the old coordinates of x with respect to the basis U
and xV = (x′1, . . . , x

′
n) for the new coordinates of x with respect to the basis V , we have

xU = PV,U xV , xV = P−1
V,U xU .

The above may look backward, but remember that the matrix MU ,V(f) takes input
expressed over the basis U to output expressed over the basis V . Consequently, PV,U takes
input expressed over the basis V to output expressed over the basis U , and xU = PV,U xV
matches this point of view!
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� Beware that some authors (such as Artin [2]) define the change of basis matrix from U
to V as PU ,V = P−1

V,U . Under this point of view, the old basis U is expressed in terms of
the new basis V . We find this a bit unnatural. Also, in practice, it seems that the new basis
is often expressed in terms of the old basis, rather than the other way around.

Since the matrix P = PV,U expresses the new basis (v1, . . . , vn) in terms of the old basis
(u1, . . ., un), we observe that the coordinates (xi) of a vector x vary in the opposite direction
of the change of basis. For this reason, vectors are sometimes said to be contravariant .
However, this expression does not make sense! Indeed, a vector in an intrinsic quantity that
does not depend on a specific basis. What makes sense is that the coordinates of a vector
vary in a contravariant fashion.

Let us consider some concrete examples of change of bases.

Example 4.2. Let E = F = R2, with u1 = (1, 0), u2 = (0, 1), v1 = (1, 1) and v2 = (−1, 1).
The change of basis matrix P from the basis U = (u1, u2) to the basis V = (v1, v2) is

P =

(
1 −1
1 1

)

and its inverse is

P−1 =

(
1/2 1/2
−1/2 1/2

)
.

The old coordinates (x1, x2) with respect to (u1, u2) are expressed in terms of the new
coordinates (x′1, x

′
2) with respect to (v1, v2) by

(
x1

x2

)
=

(
1 −1
1 1

)(
x′1
x′2

)
,

and the new coordinates (x′1, x
′
2) with respect to (v1, v2) are expressed in terms of the old

coordinates (x1, x2) with respect to (u1, u2) by
(
x′1
x′2

)
=

(
1/2 1/2
−1/2 1/2

)(
x1

x2

)
.

Example 4.3. Let E = F = R[X]3 be the set of polynomials of degree at most 3,
and consider the bases U = (1, x, x2, x3) and V = (B3

0(x), B3
1(x), B3

2(x), B3
3(x)), where

B3
0(x), B3

1(x), B3
2(x), B3

3(x) are the Bernstein polynomials of degree 3, given by

B3
0(x) = (1− x)3 B3

1(x) = 3(1− x)2x B3
2(x) = 3(1− x)x2 B3

3(x) = x3.

By expanding the Bernstein polynomials, we find that the change of basis matrix PV,U is
given by

PV,U =




1 0 0 0
−3 3 0 0
3 −6 3 0
−1 3 −3 1


 .
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We also find that the inverse of PV,U is

P−1
V,U =




1 0 0 0
1 1/3 0 0
1 2/3 1/3 0
1 1 1 1


 .

Therefore, the coordinates of the polynomial 2x3 − x+ 1 over the basis V are



1
2/3
1/3
2


 =




1 0 0 0
1 1/3 0 0
1 2/3 1/3 0
1 1 1 1







1
−1
0
2


 ,

and so

2x3 − x+ 1 = B3
0(x) +

2

3
B3

1(x) +
1

3
B3

2(x) + 2B3
3(x).

Our next example is the Haar wavelets, a fundamental tool in signal processing.

4.2 Haar Basis Vectors and a Glimpse at Wavelets

We begin by considering Haar wavelets in R4. Wavelets play an important role in audio
and video signal processing, especially for compressing long signals into much smaller ones
than still retain enough information so that when they are played, we can’t see or hear any
difference.

Consider the four vectors w1, w2, w3, w4 given by

w1 =




1
1
1
1


 w2 =




1
1
−1
−1


 w3 =




1
−1
0
0


 w4 =




0
0
1
−1


 .

Note that these vectors are pairwise orthogonal, so they are indeed linearly independent
(we will see this in a later chapter). Let W = {w1, w2, w3, w4} be the Haar basis , and let
U = {e1, e2, e3, e4} be the canonical basis of R4. The change of basis matrix W = PW,U from
U to W is given by

W =




1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1


 ,

and we easily find that the inverse of W is given by

W−1 =




1/4 0 0 0
0 1/4 0 0
0 0 1/2 0
0 0 0 1/2







1 1 1 1
1 1 −1 −1
1 −1 0 0
0 0 1 −1


 .
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So, the vector v = (6, 4, 5, 1) over the basis U becomes c = (c1, c2, c3, c4) over the Haar basis
W , with




c1

c2

c3

c4


 =




1/4 0 0 0
0 1/4 0 0
0 0 1/2 0
0 0 0 1/2







1 1 1 1
1 1 −1 −1
1 −1 0 0
0 0 1 −1







6
4
5
1


 =




4
1
1
2


 .

Given a signal v = (v1, v2, v3, v4), we first transform v into its coefficients c = (c1, c2, c3, c4)
over the Haar basis by computing c = W−1v. Observe that

c1 =
v1 + v2 + v3 + v4

4

is the overall average value of the signal v. The coefficient c1 corresponds to the background
of the image (or of the sound). Then, c2 gives the coarse details of v, whereas, c3 gives the
details in the first part of v, and c4 gives the details in the second half of v.

Reconstruction of the signal consists in computing v = Wc. The trick for good compres-
sion is to throw away some of the coefficients of c (set them to zero), obtaining a compressed
signal ĉ, and still retain enough crucial information so that the reconstructed signal v̂ = Wĉ
looks almost as good as the original signal v. Thus, the steps are:

input v −→ coefficients c = W−1v −→ compressed ĉ −→ compressed v̂ = Wĉ.

This kind of compression scheme makes modern video conferencing possible. It turns out
that there is a faster way to find c = W−1v, without actually using W−1. This has to do
with the multiscale nature of Haar wavelets.

Given the original signal v = (6, 4, 5, 1) shown in Figure 4.1, we compute averages and

6 4 5 1

Figure 4.1: The original signal v

half differences obtaining Figure 4.2. We get the coefficients c1 = 4 and c2 = 1. Again, the
signal on the left of Figure 4.2 can be reconstructed from the two signals in Figure 4.3.

4 4 4 4
1 1

−1 −1

Figure 4.3: Second averages and second half differences
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5 5 3 3

1

−1

2

−2

Figure 4.2: First averages and first half differences

This method can be generalized to signals of any length 2n. The previous case corresponds
to n = 2. Let us consider the case n = 3. The Haar basis (w1, w2, w3, w4, w5, w6, w7, w8) is
given by the matrix

W =




1 1 1 0 1 0 0 0
1 1 1 0 −1 0 0 0
1 1 −1 0 0 1 0 0
1 1 −1 0 0 −1 0 0
1 −1 0 1 0 0 1 0
1 −1 0 1 0 0 −1 0
1 −1 0 −1 0 0 0 1
1 −1 0 −1 0 0 0 −1




The columns of this matrix are orthogonal and it is easy to see that

W−1 = diag(1/8, 1/8, 1/4, 1/4, 1/2, 1/2, 1/2, 1/2)W>.

A pattern is begining to emerge. It looks like the second Haar basis vector w2 is the “mother”
of all the other basis vectors, except the first, whose purpose is to perform averaging. Indeed,
in general, given

w2 = (1, . . . , 1,−1, . . . ,−1)︸ ︷︷ ︸
2n

,

the other Haar basis vectors are obtained by a “scaling and shifting process.” Starting from
w2, the scaling process generates the vectors

w3, w5, w9, . . . , w2j+1, . . . , w2n−1+1,

such that w2j+1+1 is obtained from w2j+1 by forming two consecutive blocks of 1 and −1
of half the size of the blocks in w2j+1, and setting all other entries to zero. Observe that
w2j+1 has 2j blocks of 2n−j elements. The shifting process, consists in shifting the blocks of
1 and −1 in w2j+1 to the right by inserting a block of (k − 1)2n−j zeros from the left, with
0 ≤ j ≤ n− 1 and 1 ≤ k ≤ 2j. Thus, we obtain the following formula for w2j+k:

w2j+k(i) =





0 1 ≤ i ≤ (k − 1)2n−j

1 (k − 1)2n−j + 1 ≤ i ≤ (k − 1)2n−j + 2n−j−1

−1 (k − 1)2n−j + 2n−j−1 + 1 ≤ i ≤ k2n−j

0 k2n−j + 1 ≤ i ≤ 2n,
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with 0 ≤ j ≤ n− 1 and 1 ≤ k ≤ 2j. Of course

w1 = (1, . . . , 1)︸ ︷︷ ︸
2n

.

The above formulae look a little better if we change our indexing slightly by letting k vary
from 0 to 2j − 1 and using the index j instead of 2j. In this case, the Haar basis is denoted
by

w1, h
0
0, h

1
0, h

1
1, h

2
0, h

2
1, h

2
2, h

2
3, . . . , h

j
k, . . . , h

n−1
2n−1−1,

and

hjk(i) =





0 1 ≤ i ≤ k2n−j

1 k2n−j + 1 ≤ i ≤ k2n−j + 2n−j−1

−1 k2n−j + 2n−j−1 + 1 ≤ i ≤ (k + 1)2n−j

0 (k + 1)2n−j + 1 ≤ i ≤ 2n,

with 0 ≤ j ≤ n− 1 and 0 ≤ k ≤ 2j − 1.

It turns out that there is a way to understand these formulae better if we interpret a
vector u = (u1, . . . , um) as a piecewise linear function over the interval [0, 1). We define the
function plf(u) such that

plf(u)(x) = ui,
i− 1

m
≤ x <

i

m
, 1 ≤ i ≤ m.

In words, the function plf(u) has the value u1 on the interval [0, 1/m), the value u2 on
[1/m, 2/m), etc., and the value um on the interval [(m−1)/m, 1). For example, the piecewise
linear function associated with the vector

u = (2.4, 2.2, 2.15, 2.05, 6.8, 2.8,−1.1,−1.3)

is shown in Figure 4.4.
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Figure 4.4: The piecewise linear function plf(u)
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Then, each basis vector hjk corresponds to the function

ψjk = plf(hjk).

In particular, for all n, the Haar basis vectors

h0
0 = w2 = (1, . . . , 1,−1, . . . ,−1)︸ ︷︷ ︸

2n

yield the same piecewise linear function ψ given by

ψ(x) =





1 if 0 ≤ x < 1/2

−1 if 1/2 ≤ x < 1

0 otherwise,

whose graph is shown in Figure 4.5. Then, it is easy to see that ψjk is given by the simple

1

1

−1

0

Figure 4.5: The Haar wavelet ψ

expression
ψjk(x) = ψ(2jx− k), 0 ≤ j ≤ n− 1, 0 ≤ k ≤ 2j − 1.

The above formula makes it clear that ψjk is obtained from ψ by scaling and shifting. The
function φ0

0 = plf(w1) is the piecewise linear function with the constant value 1 on [0, 1), and
the functions ψjk together with ϕ0

0 are known as the Haar wavelets .

Rather than using W−1 to convert a vector u to a vector c of coefficients over the Haar
basis, and the matrix W to reconstruct the vector u from its Haar coefficients c, we can use
faster algorithms that use averaging and differencing.

If c is a vector of Haar coefficients of dimension 2n, we compute the sequence of vectors
u0, u1, . . ., un as follows:

u0 = c

uj+1 = uj

uj+1(2i− 1) = uj(i) + uj(2
j + i)

uj+1(2i) = uj(i)− uj(2j + i),
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for j = 0, . . . , n− 1 and i = 1, . . . , 2j. The reconstructed vector (signal) is u = un.

If u is a vector of dimension 2n, we compute the sequence of vectors cn, cn−1, . . . , c0 as
follows:

cn = u

cj = cj+1

cj(i) = (cj+1(2i− 1) + cj+1(2i))/2

cj(2
j + i) = (cj+1(2i− 1)− cj+1(2i))/2,

for j = n− 1, . . . , 0 and i = 1, . . . , 2j. The vector over the Haar basis is c = c0.

We leave it as an exercise to implement the above programs in Matlab using two variables
u and c, and by building iteratively 2j and 2n−j−1. Here is an example of the conversion of
a vector to its Haar coefficients for n = 3.

Given the sequence u = (31, 29, 23, 17,−6,−8,−2,−4), we get the sequence

c3 = (31, 29, 23, 17,−6,−8,−2,−4)

c2 = (30, 20,−7,−3, 1, 3, 1, 1)

c1 = (25,−5, 5,−2, 1, 3, 1, 1)

c0 = (10, 15, 5,−2, 1, 3, 1, 1),

so c = (10, 15, 5,−2, 1, 3, 1, 1). Conversely, given c = (10, 15, 5,−2, 1, 3, 1, 1), we get the
sequence

u0 = (10, 15, 5,−2, 1, 3, 1, 1)

u1 = (25,−5, 5,−2, 1, 3, 1, 1)

u2 = (30, 20,−7,−3, 1, 3, 1, 1)

u3 = (31, 29, 23, 17,−6,−8,−2,−4),

which gives back u = (31, 29, 23, 17,−6,−8,−2,−4).

There is another recursive method for constucting the Haar matrix Wn of dimension 2n

that makes it clearer why the above algorithms are indeed correct (which nobody seems to
prove!). If we split Wn into two 2n × 2n−1 matrices, then the second matrix containing the
last 2n−1 columns of Wn has a very simple structure: it consists of the vector

(1,−1, 0, . . . , 0)︸ ︷︷ ︸
2n
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and 2n−1 − 1 shifted copies of it, as illustrated below for n = 3:




1 0 0 0
−1 0 0 0
0 1 0 0
0 −1 0 0
0 0 1 0
0 0 −1 0
0 0 0 1
0 0 0 −1




.

Then, we form the 2n×2n−2 matrix obtained by “doubling” each column of odd index, which
means replacing each such column by a column in which the block of 1 is doubled and the
block of −1 is doubled. In general, given a current matrix of dimension 2n × 2j, we form a
2n × 2j−1 matrix by doubling each column of odd index, which means that we replace each
such column by a column in which the block of 1 is doubled and the block of −1 is doubled.
We repeat this process n− 1 times until we get the vector

(1, . . . , 1,−1, . . . ,−1)︸ ︷︷ ︸
2n

.

The first vector is the averaging vector (1, . . . , 1)︸ ︷︷ ︸
2n

. This process is illustrated below for n = 3:




1
1
1
1
−1
−1
−1
−1




⇐=




1 0
1 0
−1 0
−1 0
0 1
0 1
0 −1
0 −1




⇐=




1 0 0 0
−1 0 0 0
0 1 0 0
0 −1 0 0
0 0 1 0
0 0 −1 0
0 0 0 1
0 0 0 −1




Adding (1, . . . , 1, 1, . . . , 1)︸ ︷︷ ︸
2n

as the first column, we obtain

W3 =




1 1 1 0 1 0 0 0
1 1 1 0 −1 0 0 0
1 1 −1 0 0 1 0 0
1 1 −1 0 0 −1 0 0
1 −1 0 1 0 0 1 0
1 −1 0 1 0 0 −1 0
1 −1 0 −1 0 0 0 1
1 −1 0 −1 0 0 0 −1




.
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Observe that the right block (of size 2n × 2n−1) shows clearly how the detail coefficients
in the second half of the vector c are added and subtracted to the entries in the first half of
the partially reconstructed vector after n− 1 steps.

An important and attractive feature of the Haar basis is that it provides a multiresolu-
tion analysis of a signal. Indeed, given a signal u, if c = (c1, . . . , c2n) is the vector of its
Haar coefficients, the coefficients with low index give coarse information about u, and the
coefficients with high index represent fine information. For example, if u is an audio signal
corresponding to a Mozart concerto played by an orchestra, c1 corresponds to the “back-
ground noise,” c2 to the bass, c3 to the first cello, c4 to the second cello, c5, c6, c7, c7 to the
violas, then the violins, etc. This multiresolution feature of wavelets can be exploited to
compress a signal, that is, to use fewer coefficients to represent it. Here is an example.

Consider the signal

u = (2.4, 2.2, 2.15, 2.05, 6.8, 2.8,−1.1,−1.3),

whose Haar transform is

c = (2, 0.2, 0.1, 3, 0.1, 0.05, 2, 0.1).

The piecewise-linear curves corresponding to u and c are shown in Figure 4.6. Since some of
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Figure 4.6: A signal and its Haar transform

the coefficients in c are small (smaller than or equal to 0.2) we can compress c by replacing
them by 0. We get

c2 = (2, 0, 0, 3, 0, 0, 2, 0),

and the reconstructed signal is

u2 = (2, 2, 2, 2, 7, 3,−1,−1).

The piecewise-linear curves corresponding to u2 and c2 are shown in Figure 4.7.
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Figure 4.7: A compressed signal and its compressed Haar transform

An interesting (and amusing) application of the Haar wavelets is to the compression of
audio signals. It turns out that if your type load handel in Matlab an audio file will be
loaded in a vector denoted by y, and if you type sound(y), the computer will play this
piece of music. You can convert y to its vector of Haar coefficients, c. The length of y is
73113, so first tuncate the tail of y to get a vector of length 65536 = 216. A plot of the
signals corresponding to y and c is shown in Figure 4.8. Then, run a program that sets all
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Figure 4.8: The signal “handel” and its Haar transform

coefficients of c whose absolute value is less that 0.05 to zero. This sets 37272 coefficients
to 0. The resulting vector c2 is converted to a signal y2. A plot of the signals corresponding
to y2 and c2 is shown in Figure 4.9. When you type sound(y2), you find that the music
doesn’t differ much from the original, although it sounds less crisp. You should play with
other numbers greater than or less than 0.05. You should hear what happens when you type
sound(c). It plays the music corresponding to the Haar transform c of y, and it is quite
funny.

Another neat property of the Haar transform is that it can be instantly generalized to
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Figure 4.9: The compressed signal “handel” and its Haar transform

matrices (even rectangular) without any extra effort! This allows for the compression of
digital images. But first, we address the issue of normalization of the Haar coefficients. As
we observed earlier, the 2n × 2n matrix Wn of Haar basis vectors has orthogonal columns,
but its columns do not have unit length. As a consequence, W>

n is not the inverse of Wn,
but rather the matrix

W−1
n = DnW

>
n

with Dn = diag
(

2−n, 2−n︸︷︷︸
20

, 2−(n−1), 2−(n−1)

︸ ︷︷ ︸
21

, 2−(n−2), . . . , 2−(n−2)

︸ ︷︷ ︸
22

, . . . , 2−1, . . . , 2−1

︸ ︷︷ ︸
2n−1

)
.

Therefore, we define the orthogonal matrix

Hn = WnD
1
2
n

whose columns are the normalized Haar basis vectors, with

D
1
2
n = diag

(
2−

n
2 , 2−

n
2︸︷︷︸

20

, 2−
n−1
2 , 2−

n−1
2︸ ︷︷ ︸

21

, 2−
n−2
2 , . . . , 2−

n−2
2︸ ︷︷ ︸

22

, . . . , 2−
1
2 , . . . , 2−

1
2︸ ︷︷ ︸

2n−1

)
.

We call Hn the normalized Haar transform matrix. Because Hn is orthogonal, H−1
n = H>n .

Given a vector (signal) u, we call c = H>n u the normalized Haar coefficients of u. Then, a
moment of reflexion shows that we have to slightly modify the algorithms to compute H>n u
and Hnc as follows: When computing the sequence of ujs, use

uj+1(2i− 1) = (uj(i) + uj(2
j + i))/

√
2

uj+1(2i) = (uj(i)− uj(2j + i))/
√

2,

and when computing the sequence of cjs, use

cj(i) = (cj+1(2i− 1) + cj+1(2i))/
√

2

cj(2
j + i) = (cj+1(2i− 1)− cj+1(2i))/

√
2.
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Note that things are now more symmetric, at the expense of a division by
√

2. However, for
long vectors, it turns out that these algorithms are numerically more stable.

Remark: Some authors (for example, Stollnitz, Derose and Salesin [51]) rescale c by 1/
√

2n

and u by
√

2n. This is because the norm of the basis functions ψjk is not equal to 1 (under

the inner product 〈f, g〉 =
∫ 1

0
f(t)g(t)dt). The normalized basis functions are the functions√

2jψjk.

Let us now explain the 2D version of the Haar transform. We describe the version using
the matrix Wn, the method using Hn being identical (except that H−1

n = H>n , but this does
not hold for W−1

n ). Given a 2m × 2n matrix A, we can first convert the rows of A to their
Haar coefficients using the Haar transform W−1

n , obtaining a matrix B, and then convert the
columns of B to their Haar coefficients, using the matrix W−1

m . Because columns and rows
are exchanged in the first step,

B = A(W−1
n )>,

and in the second step C = W−1
m B, thus, we have

C = W−1
m A(W−1

n )> = DmW
>
mAWnDn.

In the other direction, given a matrix C of Haar coefficients, we reconstruct the matrix A
(the image) by first applying Wm to the columns of C, obtaining B, and then W>

n to the
rows of B. Therefore

A = WmCW
>
n .

Of course, we dont actually have to invert Wm and Wn and perform matrix multiplications.
We just have to use our algorithms using averaging and differencing. Here is an example.

If the data matrix (the image) is the 8× 8 matrix

A =




64 2 3 61 60 6 7 57
9 55 54 12 13 51 50 16
17 47 46 20 21 43 42 24
40 26 27 37 36 30 31 33
32 34 35 29 28 38 39 25
41 23 22 44 45 19 18 48
49 15 14 52 53 11 10 56
8 58 59 5 4 62 63 1




,
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then applying our algorithms, we find that

C =




32.5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 4 −4 4 −4
0 0 0 0 4 −4 4 −4
0 0 0.5 0.5 27 −25 23 −21
0 0 −0.5 −0.5 −11 9 −7 5
0 0 0.5 0.5 −5 7 −9 11
0 0 −0.5 −0.5 21 −23 25 −27




.

As we can see, C has a more zero entries than A; it is a compressed version of A. We can
further compress C by setting to 0 all entries of absolute value at most 0.5. Then, we get

C2 =




32.5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 4 −4 4 −4
0 0 0 0 4 −4 4 −4
0 0 0 0 27 −25 23 −21
0 0 0 0 −11 9 −7 5
0 0 0 0 −5 7 −9 11
0 0 0 0 21 −23 25 −27




.

We find that the reconstructed image is

A2 =




63.5 1.5 3.5 61.5 59.5 5.5 7.5 57.5
9.5 55.5 53.5 11.5 13.5 51.5 49.5 15.5
17.5 47.5 45.5 19.5 21.5 43.5 41.5 23.5
39.5 25.5 27.5 37.5 35.5 29.5 31.5 33.5
31.5 33.5 35.5 29.5 27.5 37.5 39.5 25.5
41.5 23.5 21.5 43.5 45.5 19.5 17.5 47.5
49.5 15.5 13.5 51.5 53.5 11.5 9.5 55.5
7.5 57.5 59.5 5.5 3.5 61.5 63.5 1.5




,

which is pretty close to the original image matrix A. It turns out that Matlab has a wonderful
command, image(X), which displays the matrix X has an image in which each entry is shown
as a little square whose gray level is proportional to the numerical value of that entry (lighter
if the value is higher, darker if the value is closer to zero; negative values are treated as zero).
The images corresponding to A and C are shown in Figure 4.10.

The compressed versions appear to be indistinguishable from the originals! If we use the
normalized matrices Hm and Hn, then the equations relating the image matrix A and its
normalized Haar transform C are

C = H>mAHn

A = HmCH
>
n .
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Figure 4.10: An image and its Haar transform

The compressed images corresponding to A2 and C2 are shown in Figure 4.11.

The Haar transform can also be used to send large images progressively over the internet.
Indeed, we can start sending the Haar coefficients of the matrix C starting from the coarsest
coefficients (the first column from top down, then the second column, etc.) and at the
receiving end we can start reconstructing the image as soon as we have received enough
data.

Oberve that instead of performing all rounds of averaging and differencing on each row
and each column, we can perform partial encoding (and decoding). For example, we can
perform a single round of averaging and differencing for each row and each column. The
result is an image consisting of four subimages, where the top left quarter is a coarser version
of the original, and the rest (consisting of three pieces) contain the finest detail coefficients.
We can also perform two rounds of averaging and differencing, or three rounds, etc. This
process is illustrated on the image shown in Figure 4.12.
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Figure 4.11: Compressed image and its Haar transform

Figure 4.12: Original drawing by Durer
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The result of performing one round, two rounds, three rounds, and nine rounds of aver-
aging is shown in Figure 4.13. Since our images have size 512×512, nine rounds of averaging
yields the Haar transform, displayed as the image on the bottom right. The original image
has completely disappeared! We leave it as a fun exercise to modify the algorithms involving
averaging and differencing to perform k rounds of averaging/differencing. The reconstruction
algorithm is a little tricky.

Figure 4.13: Haar tranforms after one, two, three, and nine rounds of averaging

A nice and easily accessible account of wavelets and their uses in image processing and
computer graphics can be found in Stollnitz, Derose and Salesin [51]. A very detailed account
is given in Strang and and Nguyen [54], but this book assumes a fair amount of background
in signal processing.
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We can find easily a basis of 2n×2n = 22n vectors wij for the linear map that reconstructs
an image from its Haar coefficients, in the sense that for any matrix C of Haar coefficients,
the image matrix A is given by

A =
2n∑

i=1

2n∑

j=1

cijwij.

Indeed, the matrix wj is given by the so-called outer product

wij = wi(wj)
>.

Similarly, there is a basis of 2n×2n = 22n vectors hij for the 2D Haar transform, in the sense
that for any matrix A, its matrix C of Haar coefficients is given by

C =
2n∑

i=1

2n∑

j=1

aijhij.

If W−1 = (w−1
ij ), then

hij = w−1
i (w−1

j )>.

We leave it as exercise to compute the bases (wij) and (hij) for n = 2, and to display the
corresponding images using the command imagesc.

4.3 The Effect of a Change of Bases on Matrices

The effect of a change of bases on the representation of a linear map is described in the
following proposition.

Proposition 4.4. Let E and F be vector spaces, let U = (u1, . . . , un) and U ′ = (u′1, . . . , u
′
n)

be two bases of E, and let V = (v1, . . . , vm) and V ′ = (v′1, . . . , v
′
m) be two bases of F . Let

P = PU ′,U be the change of basis matrix from U to U ′, and let Q = PV ′,V be the change of
basis matrix from V to V ′. For any linear map f : E → F , let M(f) = MU ,V(f) be the matrix
associated to f w.r.t. the bases U and V, and let M ′(f) = MU ′,V ′(f) be the matrix associated
to f w.r.t. the bases U ′ and V ′. We have

M ′(f) = Q−1M(f)P,

or more explicitly

MU ′,V ′(f) = P−1
V ′,VMU ,V(f)PU ′,U = PV,V ′MU ,V(f)PU ′,U .

Proof. Since f : E → F can be written as f = idF ◦ f ◦ idE, since P is the matrix of idE
w.r.t. the bases (u′1, . . . , u

′
n) and (u1, . . . , un), and Q−1 is the matrix of idF w.r.t. the bases

(v1, . . . , vm) and (v′1, . . . , v
′
m), by Proposition 4.2, we have M ′(f) = Q−1M(f)P .
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As a corollary, we get the following result.

Corollary 4.5. Let E be a vector space, and let U = (u1, . . . , un) and U ′ = (u′1, . . . , u
′
n) be

two bases of E. Let P = PU ′,U be the change of basis matrix from U to U ′. For any linear
map f : E → E, let M(f) = MU(f) be the matrix associated to f w.r.t. the basis U , and let
M ′(f) = MU ′(f) be the matrix associated to f w.r.t. the basis U ′. We have

M ′(f) = P−1M(f)P,

or more explicitly,

MU ′(f) = P−1
U ′,UMU(f)PU ′,U = PU ,U ′MU(f)PU ′,U .

Example 4.4. Let E = R2, U = (e1, e2) where e1 = (1, 0) and e2 = (0, 1) are the canonical
basis vectors, let V = (v1, v2) = (e1, e1 − e2), and let

A =

(
2 1
0 1

)
.

The change of basis matrix P = PV,U from U to V is

P =

(
1 1
0 −1

)
,

and we check that
P−1 = P.

Therefore, in the basis V , the matrix representing the linear map f defined by A is

A′ = P−1AP = PAP =

(
1 1
0 −1

)(
2 1
0 1

)(
1 1
0 −1

)
=

(
2 0
0 1

)
= D,

a diagonal matrix. Therefore, in the basis V , it is clear what the action of f is: it is a stretch
by a factor of 2 in the v1 direction and it is the identity in the v2 direction. Observe that v1

and v2 are not orthogonal.

What happened is that we diagonalized the matrix A. The diagonal entries 2 and 1 are
the eigenvalues of A (and f) and v1 and v2 are corresponding eigenvectors . We will come
back to eigenvalues and eigenvectors later on.

The above example showed that the same linear map can be represented by different
matrices. This suggests making the following definition:

Definition 4.5. Two n×n matrices A and B are said to be similar iff there is some invertible
matrix P such that

B = P−1AP.
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It is easily checked that similarity is an equivalence relation. From our previous consid-
erations, two n×n matrices A and B are similar iff they represent the same linear map with
respect to two different bases. The following surprising fact can be shown: Every square
matrix A is similar to its transpose A>. The proof requires advanced concepts than we will
not discuss in these notes (the Jordan form, or similarity invariants).

If U = (u1, . . . , un) and V = (v1, . . . , vn) are two bases of E, the change of basis matrix

P = PV,U =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann




from (u1, . . . , un) to (v1, . . . , vn) is the matrix whose jth column consists of the coordinates
of vj over the basis (u1, . . . , un), which means that

vj =
n∑

i=1

aijui.

It is natural to extend the matrix notation and to express the vector



v1
...
vn


 in En as the

product of a matrix times the vector



u1
...
un


 in En, namely as




v1

v2
...
vn


 =




a11 a21 · · · an1

a12 a22 · · · an2
...

...
. . .

...
a1n a2n · · · ann







u1

u2
...
un


 ,

but notice that the matrix involved is not P , but its transpose P>.

This observation has the following consequence: if U = (u1, . . . , un) and V = (v1, . . . , vn)
are two bases of E and if 


v1
...
vn


 = A



u1
...
un


 ,

that is,

vi =
n∑

j=1

aijuj,
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for any vector w ∈ E, if

w =
n∑

i=1

xiui =
n∑

k=1

ykvk,

then 

x1
...
xn


 = A>



y1
...
yn


 ,

and so 

y1
...
yn


 = (A>)−1



x1
...
xn


 .

It is easy to see that (A>)−1 = (A−1)>. Also, if U = (u1, . . . , un), V = (v1, . . . , vn), and
W = (w1, . . . , wn) are three bases of E, and if the change of basis matrix from U to V is
P = PV,U and the change of basis matrix from V to W is Q = PW,V , then



v1
...
vn


 = P>



u1
...
un


 ,



w1
...
wn


 = Q>



v1
...
vn


 ,

so 

w1
...
wn


 = Q>P>



u1
...
un


 = (PQ)>



u1
...
un


 ,

which means that the change of basis matrix PW,U from U to W is PQ. This proves that

PW,U = PV,UPW,V .

Even though matrices are indispensable since they are the major tool in applications of
linear algebra, one should not lose track of the fact that

linear maps are more fundamental, because they are intrinsic
objects that do not depend on the choice of bases.

Consequently, we advise the reader to try to think in terms of
linear maps rather than reduce everthing to matrices.

In our experience, this is particularly effective when it comes to proving results about
linear maps and matrices, where proofs involving linear maps are often more “conceptual.”
These proofs are usually more general because they do not depend on the fact that the
dimension is finite. Also, instead of thinking of a matrix decomposition, as a purely algebraic
operation, it is often illuminating to view it as a geometric decomposition. This is the case of
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the SVD, which in geometric term says that every linear map can be factored as a rotation,
followed by a rescaling along orthogonal axes, and then another rotation.

After all, a

a matrix is a representation of a linear map

and most decompositions of a matrix reflect the fact that with a suitable choice of a basis
(or bases), the linear map is a represented by a matrix having a special shape. The problem
is then to find such bases.

Still, for the beginner, matrices have a certain irresistible appeal, and we confess that
it takes a certain amount of practice to reach the point where it becomes more natural to
deal with linear maps. We still recommend it! For example, try to translate a result stated
in terms of matrices into a result stated in terms of linear maps. Whenever we tried this
exercise, we learned something.

Also, always try to keep in mind that

linear maps are geometric in nature; they act on space.

4.4 Affine Maps

We showed in Section 3.4 that every linear map f must send the zero vector to the zero
vector, that is,

f(0) = 0.

Yet, for any fixed nonzero vector u ∈ E (where E is any vector space), the function tu given
by

tu(x) = x+ u, for all x ∈ E
shows up in pratice (for example, in robotics). Functions of this type are called translations .
They are not linear for u 6= 0, since tu(0) = 0 + u = u.

More generally, functions combining linear maps and translations occur naturally in many
applications (robotics, computer vision, etc.), so it is necessary to understand some basic
properties of these functions. For this, the notion of affine combination turns out to play a
key role.

Recall from Section 3.4 that for any vector space E, given any family (ui)i∈I of vectors
ui ∈ E, an affine combination of the family (ui)i∈I is an expression of the form

∑

i∈I
λiui with

∑

i∈I
λi = 1,

where (λi)i∈I is a family of scalars.
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A linear combination is always an affine combination, but an affine combination is a linear
combination, with the restriction that the scalars λi must add up to 1. Affine combinations
are also called barycentric combinations .

Although this is not obvious at first glance, the condition that the scalars λi add up to
1 ensures that affine combinations are preserved under translations. To make this precise,
consider functions f : E → F , where E and F are two vector spaces, such that there is some
linear map h : E → F and some fixed vector b ∈ F (a translation vector), such that

f(x) = h(x) + b, for all x ∈ E.

The map f given by (
x1

x2

)
7→
(

8/5 −6/5
3/10 2/5

)(
x1

x2

)
+

(
1
1

)

is an example of the composition of a linear map with a translation.

We claim that functions of this type preserve affine combinations.

Proposition 4.6. For any two vector spaces E and F , given any function f : E → F defined
such that

f(x) = h(x) + b, for all x ∈ E,
where h : E → F is a linear map and b is some fixed vector in F , for every affine combination∑

i∈I λiui (with
∑

i∈I λi = 1), we have

f

(∑

i∈I
λiui

)
=
∑

i∈I
λif(ui).

In other words, f preserves affine combinations.

Proof. By definition of f , using the fact that h is linear, and the fact that
∑

i∈I λi = 1, we
have

f

(∑

i∈
λiui

)
= h

(∑

i∈I
λiui

)
+ b

=
∑

i∈I
λih(ui) + 1b

=
∑

i∈I
λih(ui) +

(∑

i∈I
λi

)
b

=
∑

i∈I
λi(h(ui) + b)

=
∑

i∈I
λif(ui),

as claimed.
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Observe how the fact that
∑

i∈I λi = 1 was used in a crucial way in line 3. Surprisingly,
the converse of Proposition 4.6 also holds.

Proposition 4.7. For any two vector spaces E and F , let f : E → F be any function that
preserves affine combinations, i.e., for every affine combination

∑
i∈I λiui (with

∑
i∈I λi =

1), we have

f

(∑

i∈I
λiui

)
=
∑

i∈I
λif(ui).

Then, for any a ∈ E, the function h : E → F given by

h(x) = f(a+ x)− f(a)

is a linear map independent of a, and

f(a+ x) = h(x) + f(a), for all x ∈ E.

In particular, for a = 0, if we let c = f(0), then

f(x) = h(x) + c, for all x ∈ E.

Proof. First, let us check that h is linear. Since f preserves affine combinations and since
a+ u+ v = (a+ u) + (a+ v)− a is an affine combination (1 + 1− 1 = 1), we have

h(u+ v) = f(a+ u+ v)− f(a)

= f((a+ u) + (a+ v)− a)− f(a)

= f(a+ u) + f(a+ v)− f(a)− f(a)

= f(a+ u)− f(a) + f(a+ v)− f(a)

= h(u) + h(v).

This proves that
h(u+ v) = h(u) + h(v), u, v ∈ E.

Observe that a+ λu = λ(a+ u) + (1− λ)a is also an affine combination (λ+ 1− λ = 1), so
we have

h(λu) = f(a+ λu)− f(a)

= f(λ(a+ u) + (1− λ)a)− f(a)

= λf(a+ u) + (1− λ)f(a)− f(a)

= λ(f(a+ u)− f(a))

= λh(u).

This proves that
h(λu) = λh(u), u ∈ E, λ ∈ R.
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Therefore, h is indeed linear.

For any b ∈ E, since b+ u = (a+ u)− a+ b is an affine combination (1− 1 + 1 = 1), we
have

f(b+ u)− f(b) = f((a+ u)− a+ b)− f(b)

= f(a+ u)− f(a) + f(b)− f(b)

= f(a+ u)− f(a),

which proves that for all a, b ∈ E,

f(b+ u)− f(b) = f(a+ u)− f(a), u ∈ E.

Therefore h(x) = f(a + u)− f(a) does not depend on a, and it is obvious by the definition
of h that

f(a+ x) = h(x) + f(a), for all x ∈ E.

For a = 0, we obtain the last part of our proposition.

We should think of a as a chosen origin in E. The function f maps the origin a in E to
the origin f(a) in F . Proposition 4.7 shows that the definition of h does not depend on the
origin chosen in E. Also, since

f(x) = h(x) + c, for all x ∈ E

for some fixed vector c ∈ F , we see that f is the composition of the linear map h with the
translation tc (in F ).

The unique linear map h as above is called the linear map associated with f and it is

sometimes denoted by
−→
f .

In view of Propositions 4.6 and 4.7, it is natural to make the following definition.

Definition 4.6. For any two vector spaces E and F , a function f : E → F is an affine
map if f preserves affine combinations, i.e., for every affine combination

∑
i∈I λiui (with∑

i∈I λi = 1), we have

f

(∑

i∈I
λiui

)
=
∑

i∈I
λif(ui).

Equivalently, a function f : E → F is an affine map if there is some linear map h : E → F

(also denoted by
−→
f ) and some fixed vector c ∈ F such that

f(x) = h(x) + c, for all x ∈ E.
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Note that a linear map always maps the standard origin 0 in E to the standard origin
0 in F . However an affine map usually maps 0 to a nonzero vector c = f(0). This is the
“translation component” of the affine map.

When we deal with affine maps, it is often fruitful to think of the elements of E and F
not only as vectors but also as points . In this point of view, points can only be combined
using affine combinations , but vectors can be combined in an unrestricted fashion using
linear combinations. We can also think of u + v as the result of translating the point u by
the translation tv. These ideas lead to the definition of affine spaces , but this would lead us
to far afield, and for our purposes, it is enough to stick to vector spaces. Still, one should be
aware that affine combinations really apply to points, and that points are not vectors!

If E and F are finite dimensional vector spaces, with dim(E) = n and dim(F ) = m,
then it is useful to represent an affine map with respect to bases in E in F . However, the
translation part c of the affine map must be somewhow incorporated. There is a standard
trick to do this which amounts to viewing an affine map as a linear map between spaces of
dimension n+ 1 and m+ 1. We also have the extra flexibility of choosing origins, a ∈ E and
b ∈ F .

Let (u1, . . . , un) be a basis of E, (v1, . . . , vm) be a basis of F , and let a ∈ E and b ∈ F be
any two fixed vectors viewed as origins . Our affine map f has the property that if v = f(u),
then

v − b = f(a+ u− a)− b = f(a)− b+ h(u− a).

So, if we let y = v − b, x = u− a, and d = f(a)− b, then

y = h(x) + d, x ∈ E.

Over the basis (u1, . . . , un), we write

x = x1u1 + · · ·+ xnun,

and over the basis (v1, . . . , vm), we write

y = y1v1 + · · ·+ ymvm,

d = d1v1 + · · ·+ dmvm.

Then, since
y = h(x) + d,

if we let A be the m× n matrix representing the linear map h, that is, the jth column of A
consists of the coordinates of h(uj) over the basis (v1, . . . , vm), then we can write

y = Ax+ d, x ∈ Rn.

The above is the matrix representation of our affine map f with respect to (a, (u1, . . . , un))
and (b, (v1, . . . , vm)).
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The reason for using the origins a and b is that it gives us more flexibility. In particular,
we can choose b = f(a), and then f behaves like a linear map with respect to the origins a
and b = f(a).

When E = F , if there is some a ∈ E such that f(a) = a (a is a fixed point of f), then
we can pick b = a. Then, because f(a) = a, we get

v = f(u) = f(a+ u− a) = f(a) + h(u− a) = a+ h(u− a),

that is
v − a = h(u− a).

With respect to the new origin a, if we define x and y by

x = u− a
y = v − a,

then we get
y = h(x).

Therefore, f really behaves like a linear map, but with respect to the new origin a (not the
standard origin 0). This is the case of a rotation around an axis that does not pass through
the origin.

Remark: A pair (a, (u1, . . . , un)) where (u1, . . . , un) is a basis of E and a is an origin chosen
in E is called an affine frame.

We now describe the trick which allows us to incorporate the translation part d into the
matrix A. We define the (m + 1) × (n + 1) matrix A′ obtained by first adding d as the
(n+ 1)th column, and then (0, . . . , 0︸ ︷︷ ︸

n

, 1) as the (m+ 1)th row:

A′ =

(
A d
0n 1

)
.

Then, it is clear that (
y
1

)
=

(
A d
0n 1

)(
x
1

)

iff
y = Ax+ d.

This amounts to considering a point x ∈ Rn as a point (x, 1) in the (affine) hyperplane Hn+1

in Rn+1 of equation xn+1 = 1. Then, an affine map is the restriction to the hyperplane Hn+1

of the linear map f̂ from Rn+1 to Rm+1 corresponding to the matrix A′, which maps Hn+1

into Hm+1 (f̂(Hn+1) ⊆ Hm+1). Figure 4.14 illustrates this process for n = 2.
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x1

x2

x3

(x1, x2, 1)

H3 : x3 = 1

x = (x1, x2)

Figure 4.14: Viewing Rn as a hyperplane in Rn+1 (n = 2)

For example, the map (
x1

x2

)
7→
(

1 1
1 3

)(
x1

x2

)
+

(
3
0

)

defines an affine map f which is represented in R3 by



x1

x2

1


 7→




1 1 3
1 3 0
0 0 1





x1

x2

1


 .

It is easy to check that the point a = (6,−3) is fixed by f , which means that f(a) = a, so by
translating the coordinate frame to the origin a, the affine map behaves like a linear map.

The idea of considering Rn as an hyperplane in Rn+1 can be be used to define projective
maps .

4.5 Summary

The main concepts and results of this chapter are listed below:

• The vector space Mm,n(K) of m × n matrices over the field K; The ring Mn(K) of
n× n matrices over the field K.

• Column vectors , row vectors .

• Matrix operations : addition, scalar multiplication, multiplication.
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• The matrix representation mapping M : Hom(E,F ) → Mn,p and the representation
isomorphism (Proposition 4.2).

• Change of basis matrix and Proposition 4.4.

• Haar basis vectors and a glimpse at Haar wavelets .

• Affine maps and their representations in terms of matrices.



Chapter 5

Determinants

5.1 Definition Using Expansion by Minors

Every square matrix A has a number associated to it and called its determinant , denoted by
det(A). One of the most important properties of a determinant is that it gives us a criterion
to decide whether the matrix is invertible:

A matrix A is invertible iff det(A) 6= 0.

It is possible to define determinants in terms of a fairly complicated formula involving
n! terms (assuming A is a n× n matrix) but this way to proceed makes it more difficult to
prove properties of determinants.

Consequently, we follow a more algorithmic approach due to Mike Artin. This approach
avoids dealing with the sign of permutations (at least, not until we need an explicit formula
for the determinant).

We will view the determinant as a function of the rows of an n × n matrix . Formally,
this means that

det : (Rn)n → R.

We will define the determinant recursively using a process called expansion by minors .
Then, we will derive properties of the determinant and prove that there is a unique function
satisfying these properties. As a consequence, we will have an axiomatic definition of the
determinant.

For a 1× 1 matrix A = (a), we have

det(A) = det(a) = a.

For a 2× 2 matrix,

A =

[
a b
c d

]

163
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it will turn out that

det(A) = ad− bc.

The determinant has a geometric interpretation as a signed area, in higher dimension as
a signed volume.

In order to describe the recursive process to define a determinant we need the notion of
a minor.

Definition 5.1. Given any n×n matrix with n ≥ 2, for any two indices i, j with 1 ≤ i, j ≤ n,
let Aij be the (n − 1) × (n − 1) matrix obtained by deleting row i and colummn j from A
and called a minor :

Aij =




×
×

× × × × × × ×
×
×
×
×




For example, if

A =




2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2




then

A2 3 =




2 −1 0 0
0 −1 −1 0
0 0 2 −1
0 0 −1 2


 .

We can now proceed with the definition of determinants.

Definition 5.2. Given any n× n matrix A = (aij), if n = 1, then

det(A) = a11,

else

det(A) = a11 det(A11) + · · ·+ (−1)i+1ai1 det(Ai1) + · · ·+ (−1)n+1an1 det(An1), (∗)

the expansion by minors on the first column.
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When n = 2, we have

det

[
a11 a12

a21 a22

]
= a11 det[a22]− a21 det[a12] = a11a22 − a21a12,

which confirms the formula claimed earlier. When n = 3, we get

det



a11 a12 a13

a21 a22 a23

a31 a32 a33


 = a11 det

[
a22 a23

a32 a33

]
− a21 det

[
a12 a13

a32 a33

]
+ a31 det

[
a12 a13

a22 a23

]
,

and using the formula for a 2× 2 determinant, we get

det



a11 a12 a13

a21 a22 a23

a31 a32 a33


 = a11(a22a33 − a32a23)− a21(a12a33 − a32a13) + a31(a12a23 − a22a13).

As we can see, the formula is already quite complicated!

Given a n× n-matrix A = (ai j), its determinant det(A) is also denoted by

det(A) =

∣∣∣∣∣∣∣∣∣

a1 1 a1 2 . . . a1n

a2 1 a2 2 . . . a2n
...

...
. . .

...
an 1 an 2 . . . ann

∣∣∣∣∣∣∣∣∣
.

We now derive some important and useful properties of the determinant. Recall that we
view the determinant det(A) as a function of the rows of the matrix A, so we can write

det(A) = det(A1, . . . , An),

where A1, . . . , An are the rows of A.

Proposition 5.1. The determinant function det : (Rn)n → R satisfies the following proper-
ties:

(1) det(I) = 1, where I is the identity matrix.

(2) The determinant is linear in each of its rows; this means that

det(A1, . . . , Ai−1, B + C,Ai+1, . . . , An) = det(A1, . . . , Ai−1, B,Ai+1, . . . , An)

+ det(A1, . . . , Ai−1, C, Ai+1, . . . , An)

and

det(A1, . . . , Ai−1, λAi, Ai+1, . . . , An) = λ det(A1, . . . , Ai−1, Ai, Ai+1, . . . , An).
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(3) If two adjacent rows of A are equal, then det(A) = 0. This means that

det(A1, . . . , Ai, Ai, . . . , An) = 0.

Property (2) says that det is a multilinear map, and property (3) says that det is an
alternating map.

Proposition 5.1 is not hard to prove by direct computations and by induction. Let us
verify property (3).

Proof of Property (3). Suppose that row j and j + 1 are equal. Then, the (n− 1)× (n− 1)
matrices Ai1 also have two identical rows, except when i = j or i = j + 1. By the induction
hypothesis, if i 6= j, j + 1, then

det(Ai 1) = 0.

Consequently, (∗) yields

det(A) = (−1)j+1aj 1 det(Aj1) + (−1)j+2aj+1 1 det(Aj+11).

But since the rows Aj and Aj+1 are equal, we must have Aj 1 = Aj+1 1 and aj 1 = aj+1 1, so

det(A) = (−1)j+1aj 1 det(Aj1)− (−1)j+1aj 1 det(Aj1) = 0,

as claimed.

We now derive more useful properties from Proposition 5.1.

Proposition 5.2. The determinant function det : (Rn)n → R satisfies the following proper-
ties:

(4) If two adjacent rows are interchanged, then the determinant is multiplied by −1; thus,

det(A1, . . . , Ai+1, Ai, . . . , An) = − det(A1, . . . , Ai, Ai+1, . . . , An).

(5) If two rows are identical then the determinant is zero; that is,

det(A1, . . . , Ai, . . . , Ai, . . . , An) = 0.

(6) If any two distinct rows of A are are interchanged, then the determinant is multiplied
by −1; thus,

det(A1, . . . , Aj, . . . , Ai, . . . , An) = − det(A1, . . . , Ai, . . . , Aj, . . . , An).

(7) If a multiple of a row is added to another row, the determinant is unchanged; that is,

det(A1, . . . , Ai + λAj, . . . , An) = det(A1, . . . , Ai, . . . , An).
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(8) If any row of A is zero, then det(A) = 0.

Proof. (4) Observe that by linearity and property (3) by have

0 = det(A1, . . . , Ai + Ai+1, Ai + Ai+1, . . . , An)

= det(A1, . . . , Ai, Ai + Ai+1, . . . , An) + det(A1, . . . , Ai+1, Ai + Ai+1, . . . , An)

= det(A1, . . . , Ai, Ai, . . . , An) + det(A1, . . . , Ai, Ai+1, . . . , An)

+ det(A1, . . . , Ai+1, Ai, . . . , An) + det(A1, . . . , Ai+1, Ai+1, . . . , An)

= det(A1, . . . , Ai, Ai+1, . . . , An) + det(A1, . . . , Ai+1, Ai, . . . , An),

which shows that

det(A1, . . . , Ai+1, Ai, . . . , An) = − det(A1, . . . , Ai, Ai+1, . . . , An).

(5) If Ai and Aj are not adjacent we can interchange Ai and Ai+1, and then Ai+1 and
Ai+2, etc., until Ai and Aj become adjacent. By (4),

det(A1, . . . , Ai, . . . , Aj, . . . , An) = ε det(A1, . . . , Ai, Aj, . . . , An),

with ε = ±1. However, if Ai = Aj, then by (3) det(A1, . . . , Ai, Aj, . . . , An) = 0, and so
det(A1, . . . , Ai, . . . , Ai, . . . , An) = 0.

(6) The proof is the same as in (4) using (5) instead of (3).

(7) Using linearity and (6) we have

det(A1, . . . , Ai + λAj, . . . , An) = det(A1, . . . , Ai, . . . , An) + λ det(A1, . . . , Aj, . . . , An),

but the matrix [A1 · · ·Aj · · ·An] contains the row Aj in two different positions, so
det(A1, . . . , Aj, . . . , An) = 0, and (7) holds.

(8) This is an immediate consequence of linearity.

Using property (6), it is easy to show that the expansion by minors formula (∗) can be
adapted to any column. Indeed, we have

det(A) = (−1)j+1a1j det(A1j) + · · ·+ (−1)j+iaij det(Aij) + · · ·+ (−1)j+nanj det(Anj). (∗∗)

The beauty of this approach is that properties (6) and (7) describe the effect of the
elementary operations P (i, j) and Ei,j,λ on the determinant: Indeed, (6) says that

det(P (i, j)A) = − det(A), (a)

and (7) says that
det(Ei,j;λA) = det(A). (b)

Furthermore, linearity (propery (2)) says that

det(Ei,λA) = λ det(A). (c)

Substituting the identity I for A in the above equations, since det(I) = 1, we find the
determinants of the elementary matrices:
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(1) For any permutation matrix P (i, j) (i 6= j), we have

det(P (i, j)) = −1.

(2) For any row operation Ei,j;λ (adding λ times row j to row i), we have

det(Ei,j;λ) = 1.

(3) For any row operation Ei,λ (multiplying row i by λ), we have

det(Ei,λ) = λ.

The above properties together with the equations (a), (b), (c) yield the following impor-
tant proposition:

Proposition 5.3. For every n× n matrix A and every elementary matrix E, we have

det(EA) = det(E) det(A).

We can now use Proposition 5.3 and the reduction to row echelon form to compute det(A).
Indeed, recall that we showed (just before Proposition 2.17)) that every square matrix A can
be reduced by elementary operations to a matrix A′ which is either the identity or else whose
last row is zero,

A′ = Ek · · ·E1A.

If A′ = I, then det(A′) = 1 by (1), else if A′ has a zero row, then det(A′) = 0 by (8).
Furthermore, by induction using Proposition 5.3 (see the proof of Proposition 5.7), we get

det(A′) = det(Ek · · ·E1A) = det(Ek) · · · det(E1) det(A).

Since all the determinants, det(Ek) of the elementary matrices Ei are known, we see that
the formula

det(A′) = det(Ek) · · · det(E1) det(A)

determines det(A). As a consequence, we have the following characterization of a determi-
nant:

Theorem 5.4. (Axiomatic Characterization of the Determinant) The determinant det is
the unique function f : (Rn)n → R satisfying properties (1), (2), and (3) of Proposition 5.1.

Proof. We already proved that for every square matrix A, if A′ = Ek · · ·E1A is the reduced
row echelon form of A, then

det(A′) = det(Ek) · · · det(E1) det(A).
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Now, observe that the proof that properties (4)–(8) follow from (1)–(3) applies to any func-
tion f satisfying properties (1)–(3). So for such a function, Proposition 5.3 also holds, and
then we have

f(A′) = f(Ek) · · · f(E1)f(A).

Furthermore, the same reasoning used for det shows that (a), (b), (c) hold, so f(E) = det(E)
for all elementary matrices E, and f(A′) = 1 iff A′ = I or f(A′) = 0 iff A′ has a zero row. It
follows that f(A) = det(A) for all A.

Instead of evaluating a determinant using expansion by minors on the columns, we can
use expansion by minors on the rows. Indeed, define the function D given

D(A) = (−1)i+1ai 1D(Ai 1) + · · ·+ (−1)i+nai nD(Ai n), (†)

with D([a]) = a. Then, it is fairly easy to show that the properties of Proposition 5.1 hold
for D, and thus, by Theorem 5.4, the function D also defines the determinant, that is,

D(A) = det(A).

The definition of the determinant in terms of D can be used to prove that a matrix and
its transpose have the same determinant. The proof is left as an exercise.

Proposition 5.5. For any square matrix A, we have det(A) = det(A>).

We also obtain the important characterization of invertibility of a matrix in terms of its
determinant.

Proposition 5.6. A square matrix A is invertible iff det(A) 6= 0.

Proof. We know that for every square matrix A, if A′ = Ek · · ·E1A is the reduced row
echelon form of A, then

det(A′) = det(Ek) · · · det(E1) det(A).

Note that if any Ei is of the form Ek,λ, then λ 6= 0 since a row operation only rescales
a pivot iff it is nonzero. Therefore det(Ei) 6= 0 for i = 1, . . . , k, and thus det(A) 6= 0 iff
det(A′) 6= 0. However, by Proposition 2.17, the matrix A is invertible iff A′ = I, in which
case det(A′) = 1.

We can now prove one of the most useful properties of determinants.

Proposition 5.7. Given any two n× n matrices A and B, we have

det(AB) = det(A) det(B).



170 CHAPTER 5. DETERMINANTS

Proof. First, assume that A is invertible. In this case, by Proposition 2.17, the matrix A is
of product of elementary matrices

A = E1 · · ·Ek.
We prove by induction on k that

det(E1 · · ·EkB) = det(E1) · · · det(Ek) det(B)

for any matrix B.

If k = 1, then by Proposition 5.3,

det(E1B) = det(E1) det(B).

For the induction step, by Proposition 5.3 again,

det(E1 · · ·EkB) = det(E1) det(E2 · · ·EkB),

and since by the induction hypothesis,

det(E2 · · ·EkB) = det(E2) · · · det(Ek) det(B),

we get
det(E1 · · ·EkB) = det(E1) · · · det(Ek) det(B).

Applying the above to B = I, we get

det(A) = det(E1) · · · det(Ek),

so
det(AB) = det(E1 · · ·EkB) = det(E1) · · · det(Ek) det(B) = det(A) det(B).

Let us now consider the case where A is singular. In this case, by Proposition 5.6, we
have det(A) = 0, and we just have to show that det(AB) = 0. By Proposition 5.6 again, we
know that A can be reduced to an echelon matrix

A′ = Ek · · ·E1A

using some elementary matrices Ei, where the last row of A′ is zero. Then, the last row of
A′B is also zero, and since

0 = det(A′B) = det(Ek · · ·E1AB) = det(Ek) · · · det(E1) det(AB),

and det(Ei) 6= 0 for i = 1, . . . , k, we must have det(AB) = 0.

In order to give an explicit formula for the determinant, we need to discuss some prop-
erties of permutation matrices.
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5.2 Permutations and Permutation Matrices

Let [n] = {1, 2 . . . , n}, where n ∈ N, and n > 0.

Definition 5.3. A permutation on n elements is a bijection π : [n]→ [n]. When n = 1, the
only function from [1] to [1] is the constant map: 1 7→ 1. Thus, we will assume that n ≥ 2.
A transposition is a permutation τ : [n]→ [n] such that, for some i < j (with 1 ≤ i < j ≤ n),
τ(i) = j, τ(j) = i, and τ(k) = k, for all k ∈ [n] − {i, j}. In other words, a transposition
exchanges two distinct elements i, j ∈ [n].

If τ is a transposition, clearly, τ ◦ τ = id. We have already encountered transpositions
before, but represented by the matrices P (i, j). We will also use the terminology product of
permutations (or transpositions), as a synonym for composition of permutations.

Clearly, the composition of two permutations is a permutation and every permutation
has an inverse which is also a permutation. Therefore, the set of permutations on [n] is a
group often denoted Sn. It is easy to show by induction that the group Sn has n! elements.

There are various ways of denoting permutations. One way is to use a functional notation
such as (

1 2 · · · i · · · n
π(1) π(2) · · · π(i) · · · π(n)

)
.

For example the permutation π : [4]→ [4] given by

π(1) = 3

π(2) = 4

π(3) = 2

π(4) = 1

is represented by (
1 2 3 4
3 4 2 1

)
.

The above representation has the advantage of being compact, but a matrix representa-
tion is also useful and has the advantage that composition of permutations corresponds to
matrix multiplication.

A permutation can be viewed as an operation permuting the rows of a matrix. For
example, the permutation (

1 2 3 4
3 4 2 1

)

corresponds to the matrix

Pπ =




0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0


 .
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Observe that the matrix Pπ has a single 1 on every row and every column, all other
entries being zero, and that if we multiply any 4 × 4 matrix A by Pπ on the left, then the
rows of PπA are permuted according to the permutation π; that is, the π(i)th row of PπA is
the ith row of A. For example,

PπA =




0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0







a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


 =




a41 a42 a43 a44

a31 a32 a33 a34

a11 a12 a13 a14

a21 a22 a23 a24


 .

Equivalently, the ith row of PπA is the π−1(i)th row of A. In order for the matrix Pπ to
move the ith row of A to the π(i)th row, the π(i)th row of Pπ must have a 1 in column i and
zeros everywhere else; this means that the ith column of Pπ contains the basis vector eπ(i),
the vector that has a 1 in position π(i) and zeros everywhere else.

This is the general situation and it leads to the following definition.

Definition 5.4. Given any permutation π : [n] → [n], the permutation matrix Pπ = (pij)
representing π is the matrix given by

pij =

{
1 if i = π(j)

0 if i 6= π(j);

equivalently, the jth column of Pπ is the basis vector eπ(j). A permutation matrix P is any
matrix of the form Pπ (where P is an n × n matrix, and π : [n] → [n] is a permutation, for
some n ≥ 1).

Remark: There is a confusing point about the notation for permutation matrices. A per-
mutation matrix P acts on a matrix A by multiplication on the left by permuting the rows
of A. As we said before, this means that the π(i)th row of PπA is the ith row of A, or
equivalently that the ith row of PπA is the π−1(i)th row of A. But then, observe that the
row index of the entries of the ith row of PA is π−1(i), and not π(i)! See the following
example: 



0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0







a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


 =




a41 a42 a43 a44

a31 a32 a33 a34

a11 a12 a13 a14

a21 a22 a23 a24


 ,

where

π−1(1) = 4

π−1(2) = 3

π−1(3) = 1

π−1(4) = 2.

The following proposition is easy to show and is left as an exercise.
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Proposition 5.8. The following properties hold:

(1) Given any two permutations π1, π2 : [n] → [n], the permutation matrix Pπ2◦π1 repre-
senting the composition of π1 and π2 is equal to the product Pπ2Pπ1 of the permutation
matrices Pπ1 and Pπ2 representing π1 and π2; that is,

Pπ2◦π1 = Pπ2Pπ1 .

(2) The matrix Pπ−1
1

representing the inverse of the permutation π1 is the inverse P−1
π1

of
the matrix Pπ1 representing the permutation π1; that is,

Pπ−1
1

= P−1
π1
.

Furthermore,
P−1
π1

= (Pπ1)
>.

The following proposition shows the importance of transpositions.

Proposition 5.9. For every n ≥ 2, every permutation π : [n] → [n] can be written as a
nonempty composition of transpositions.

Proof. We proceed by induction on n. If n = 2, there are exactly two permutations on [2],
the transposition τ exchanging 1 and 2, and the identity. However, id2 = τ 2. Now, let n ≥ 3.
If π(n) = n, since by the induction hypothesis, the restriction of π to [n− 1] can be written
as a product of transpositions, π itself can be written as a product of transpositions. If
π(n) = k 6= n, letting τ be the transposition such that τ(n) = k and τ(k) = n, it is clear
that τ ◦ π leaves n invariant, and by the induction hypothesis, we have τ ◦ π = τm ◦ . . . ◦ τ1

for some transpositions, and thus

π = τ ◦ τm ◦ . . . ◦ τ1,

a product of transpositions (since τ ◦ τ = idn).

Remark: When π = idn is the identity permutation, we can agree that the composition of
0 transpositions is the identity. Proposition 5.9 shows that the transpositions generate the
group of permutations Sn.

Since we already know that the determinant of a transposition matrix is −1, Proposition
5.9 implies that for every permutation matrix P , we have

det(P ) = ±1.

We can say more. Indeed if a given permutation π is factored into two different products of
transpositions τp ◦ · · · ◦ τ1 and τ ′q ◦ · · · ◦ τ ′1, because

det(Pπ) = det(Pτp) · · · det(Pτ1) = det(Pτ ′q) · · · det(Pτ ′1),

and det(Pτi) = det(Pτ ′j) = −1, the natural numbers p and q have the same parity.

Consequently, for every permutation σ of [n], the parity of the number p of transpositions
involved in any decomposition of σ as σ = τp ◦ · · · ◦ τ1 is an invariant (only depends on σ).
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Definition 5.5. For every permutation σ of [n], the parity ε(σ) of the number of transposi-
tions involved in any decomposition of σ is called the signature of σ. We have ε(σ) = det(Pσ).

Remark: When π = idn is the identity permutation, since we agreed that the composition
of 0 transpositions is the identity, it it still correct that (−1)0 = ε(id) = +1.

It is also easy to see that ε(π′ ◦ π) = ε(π′)ε(π). In particular, since π−1 ◦ π = idn, we get
ε(π−1) = ε(π).

We are now ready to give an explicit formula for a determinant.

Given an n× n matrix A (with n ≥ 2), we can view its first row A1 as the sum of the n
rows

[a11 0 · · · 0], [0 a12 0 · · · 0], . . . , [0 · · · 0 a1n],

and we can expand A by linearity as

det(A) = det




a11 0 · · · 0
...

... · · · ...
...

... · · · ...
...

... · · · ...




+ det




0 a12 · · · 0
...

... · · · ...
...

... · · · ...
...

... · · · ...




+ · · ·+ det




· · · · · · 0 a1n

· · · · · · ...
...

... · · · ...
...

· · · · · · ...
...



.

We can repeat this process on the second row, the third row, etc. At the end, we obtain a
sum of determinants of matrices of the form

M =




a1?

a2?
...

...
...

...
...
an?




having a single entry left in each row, all the others being zero. Observe that all the determi-
nants involving matrices having a zero column will be zero. Actually, the only determinants
that survive are those that have a single entry aij in each row and each column. Such matri-
ces are very similar to permutation matrices. In fact, they must be of the form Mπ = (mij)
for some permutation π of [n], with

mij =

{
aij if i = π(j)

0 if i 6= π(j).

Consequently, by multilinearity of determinants, we have

det(A) =
∑

π∈Sn

aπ(1)1 · · · aπ(n)n det(Pπ)

=
∑

π∈Sn

ε(π)aπ(1)1 · · · aπ(n)n.
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We summarize the above derivation as the following proposition which gives the complete
expansion of the determinant.

Proposition 5.10. For any n× n matrix A = (aij), we have

det(A) =
∑

π∈Sn

ε(π)aπ(1)1 · · · aπ(n)n.

Note that since det(A) = det(A>), we also have

det(A) =
∑

π∈Sn

ε(π)a1π(1) · · · anπ(n).

These formulae are more of theoretical than of practical importance. However, these
formulae do show that the determinant is a polynomial function in the n2 variables aij, and
this has some importance consequences.

Remark: There is a geometric interpretation of determinants which we find quite illumi-
nating. Given n linearly independent vectors (u1, . . . , un) in Rn, the set

Pn = {λ1u1 + · · ·+ λnun | 0 ≤ λi ≤ 1, 1 ≤ i ≤ n}

is called a parallelotope. If n = 2, then P2 is a parallelogram and if n = 3, then P3 is
a parallelepiped , a skew box having u1, u2, u3 as three of its corner sides. Then, it turns
out that det(u1, . . . , un) is the signed volume of the parallelotope Pn (where volume means
n-dimensional volume). The sign of this volume accounts for the orientation of Pn in Rn.

As we saw, the determinant of a matrix is a multilinear alternating map of its rows. This
fact, combined with the fact that the determinant of a matrix is also a multilinear alternating
map of its columns is often useful for finding short-cuts in computing determinants. We
illustrate this point on the following example which shows up in polynomial interpolation.

Example 5.1. Consider the so-called Vandermonde determinant

V (x1, . . . , xn) =

∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
x1 x2 . . . xn
x2

1 x2
2 . . . x2

n
...

...
. . .

...
xn−1

1 xn−1
2 . . . xn−1

n

∣∣∣∣∣∣∣∣∣∣∣

.

We claim that
V (x1, . . . , xn) =

∏

1≤i<j≤n
(xj − xi),



176 CHAPTER 5. DETERMINANTS

with V (x1, . . . , xn) = 1, when n = 1. We prove it by induction on n ≥ 1. The case n = 1 is
obvious. Assume n ≥ 2. We proceed as follows: multiply row n − 1 by x1 and substract it
from row n (the last row), then multiply row n − 2 by x1 and subtract it from row n − 1,
etc, multiply row i − 1 by x1 and subtract it from row i, until we reach row 1. We obtain
the following determinant:

V (x1, . . . , xn) =

∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
0 x2 − x1 . . . xn − x1

0 x2(x2 − x1) . . . xn(xn − x1)
...

...
. . .

...
0 xn−2

2 (x2 − x1) . . . xn−2
n (xn − x1)

∣∣∣∣∣∣∣∣∣∣∣

Now, expanding this determinant according to the first column and using multilinearity,
we can factor (xi − x1) from the column of index i − 1 of the matrix obtained by deleting
the first row and the first column, and thus

V (x1, . . . , xn) = (x2 − x1)(x3 − x1) · · · (xn − x1)V (x2, . . . , xn),

which establishes the induction step.

5.3 Inverse Matrices and Determinants

In the next two sections, K is a commutative ring and when needed, a field.

Definition 5.6. Let K be a commutative ring. Given a matrix A ∈ Mn(K), let Ã = (bi j)
be the matrix defined such that

bi j = (−1)i+j det(Aj i),

the cofactor of aj i. The matrix Ã is called the adjugate of A, and each matrix Aj i is called
a minor of the matrix A.

� Note the reversal of the indices in

bi j = (−1)i+j det(Aj i).

Thus, Ã is the transpose of the matrix of cofactors of elements of A.

We have the following proposition.

Proposition 5.11. Let K be a commutative ring. For every matrix A ∈ Mn(K), we have

AÃ = ÃA = det(A)In.

As a consequence, A is invertible iff det(A) is invertible, and if so, A−1 = (det(A))−1Ã.
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Proof. If Ã = (bi j) and AÃ = (ci j), we know that the entry ci j in row i and column j of AÃ
is

ci j = ai 1b1 j + · · ·+ ai kbk j + · · ·+ ai nbn j,

which is equal to

ai 1(−1)j+1 det(Aj 1) + · · ·+ ai n(−1)j+n det(Aj n).

If j = i, then we recognize the expression of the expansion of det(A) according to the i-th
row:

ci i = det(A) = ai 1(−1)i+1 det(Ai 1) + · · ·+ ai n(−1)i+n det(Ai n).

If j 6= i, we can form the matrix A′ by replacing the j-th row of A by the i-th row of A.
Now, the matrix Aj k obtained by deleting row j and column k from A is equal to the matrix
A′j k obtained by deleting row j and column k from A′, since A and A′ only differ by the j-th
row. Thus,

det(Aj k) = det(A′j k),

and we have

ci j = ai 1(−1)j+1 det(A′j 1) + · · ·+ ai n(−1)j+n det(A′j n).

However, this is the expansion of det(A′) according to the j-th row, since the j-th row of A′

is equal to the i-th row of A, and since A′ has two identical rows i and j, because det is an
alternating map of the rows (see an earlier remark), we have det(A′) = 0. Thus, we have
shown that ci i = det(A), and ci j = 0, when j 6= i, and so

AÃ = det(A)In.

It is also obvious from the definition of Ã, that

Ã> = Ã>.

Then, applying the first part of the argument to A>, we have

A>Ã> = det(A>)In,

and since, det(A>) = det(A), Ã> = Ã>, and (ÃA)> = A>Ã>, we get

det(A)In = A>Ã> = A>Ã> = (ÃA)>,

that is,

(ÃA)> = det(A)In,

which yields

ÃA = det(A)In,



178 CHAPTER 5. DETERMINANTS

since I>n = In. This proves that

AÃ = ÃA = det(A)In.

As a consequence, if det(A) is invertible, we have A−1 = (det(A))−1Ã. Conversely, if A is
invertible, from AA−1 = In, by Proposition 5.7, we have det(A) det(A−1) = 1, and det(A) is
invertible.

When K is a field, an element a ∈ K is invertible iff a 6= 0. In this case, the second part
of the proposition can be stated as A is invertible iff det(A) 6= 0. Note in passing that this
method of computing the inverse of a matrix is usually not practical.

We now consider some applications of determinants to linear independence and to solving
systems of linear equations. Although these results hold for matrices over certain rings, their
proofs require more sophisticated methods Therefore, we assume again that K is a field
(usually, K = R or K = C).

5.4 Systems of Linear Equations and Determinants

We now characterize when a system of linear equations of the form Ax = b has a unique
solution.

Proposition 5.12. Given an n× n-matrix A over a field K, the following properties hold:

(1) For every column vector b, there is a unique column vector x such that Ax = b iff the
only solution to Ax = 0 is the trivial vector x = 0, iff det(A) 6= 0.

(2) If det(A) 6= 0, the unique solution of Ax = b is given by the expressions

xj =
det(A1, . . . , Aj−1, b, Aj+1, . . . , An)

det(A1, . . . , Aj−1, Aj, Aj+1, . . . , An)
,

known as Cramer’s rules.

(3) The system of linear equations Ax = 0 has a nonzero solution iff det(A) = 0.

Proof. Assume that Ax = b has a single solution x0, and assume that Ay = 0 with y 6= 0.
Then,

A(x0 + y) = Ax0 + Ay = Ax0 + 0 = b,

and x0 + y 6= x0 is another solution of Ax = b, contadicting the hypothesis that Ax = b has
a single solution x0. Thus, Ax = 0 only has the trivial solution. Now, assume that Ax = 0
only has the trivial solution. This means that the columns A1, . . . , An of A are linearly
independent, and by Proposition 1.11 the matrix A is invertible, so by Proposition 5.6 we
have det(A) 6= 0. Finally, if det(A) 6= 0, by Proposition 5.6 the matrix A is invertible, and
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then, for every b, Ax = b is equivalent to x = A−1b, which shows that Ax = b has a single
solution.

(2) Assume that Ax = b. If we compute

det(A1, . . . , x1A
1 + · · ·+ xjA

j + · · ·+ xnA
n, . . . , An) = det(A1, . . . , b, . . . , An),

where b occurs in the j-th position, by multilinearity, all terms containing two identical
columns Ak for k 6= j vanish, and we get

xj det(A1, . . . , An) = det(A1, . . . , Aj−1, b, Aj+1, . . . , An),

for every j, 1 ≤ j ≤ n. Since we assumed that det(A) = det(A1, . . . , An) 6= 0, we get the
desired expression.

(3) Note that Ax = 0 has a nonzero solution iff A1, . . . , An are linearly dependent. Then,
by Proposition 1.11, the matrix A is singular, and by Proposition 5.6, this is equivalent to
det(A) = 0.

As pleasing as Cramer’s rules are, it is usually impractical to solve systems of linear
equations using the above expressions.

5.5 Determinant of a Linear Map

In this section we define the determinant of a linear map f : E → E.

Given a vector space E of finite dimension n, given a basis (u1, . . . , un) of E, for every
linear map f : E → E, if M(f) is the matrix of f w.r.t. the basis (u1, . . . , un), we can define
det(f) = det(M(f)). If (v1, . . . , vn) is any other basis of E, and if P is the change of basis
matrix, by Corollary 4.5, the matrix of f with respect to the basis (v1, . . . , vn) is P−1M(f)P .
Now, by proposition 5.7, we have

det(P−1M(f)P ) = det(P−1) det(M(f)) det(P ) = det(P−1) det(P ) det(M(f)) = det(M(f)).

Thus, det(f) is indeed independent of the basis of E.

Definition 5.7. Given a vector space E of finite dimension, for any linear map f : E → E,
we define the determinant det(f) of f as the determinant det(M(f)) of the matrix of f in
any basis (since, from the discussion just before this definition, this determinant does not
depend on the basis).

Then, we have the following proposition.

Proposition 5.13. Given any vector space E of finite dimension n, a linear map f : E → E
is invertible iff det(f) 6= 0.
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Proof. The linear map f : E → E is invertible iff its matrix M(f) in any basis is invertible
(by Proposition 4.2), iff det(M(f)) 6= 0, by Proposition 5.11.

Given a vector space of finite dimension n, it is easily seen that the set of bijective linear
maps f : E → E such that det(f) = 1 is a group under composition. This group is a
subgroup of the general linear group GL(E). It is called the special linear group (of E), and
it is denoted by SL(E), or when E = Kn, by SL(n,K), or even by SL(n).

5.6 The Cayley–Hamilton Theorem

We conclude this chapter with an interesting and important application of Proposition 5.11,
the Cayley–Hamilton theorem. The results of this section apply to matrices over any com-
mutative ring K. First, we need the concept of the characteristic polynomial of a matrix.

Definition 5.8. If K is any commutative ring, for every n × n matrix A ∈ Mn(K), the
characteristic polynomial PA(X) of A is the determinant

PA(X) = det(XI − A).

The characteristic polynomial PA(X) is a polynomial in K[X], the ring of polynomials
in the indeterminate X with coefficients in the ring K. For example, when n = 2, if

A =

(
a b
c d

)
,

then

PA(X) =

∣∣∣∣
X − a −b
−c X − d

∣∣∣∣ = X2 − (a+ d)X + ad− bc.

We can substitute the matrix A for the variable X in the polynomial PA(X), obtaining a
matrix PA. If we write

PA(X) = Xn + c1X
n−1 + · · ·+ cn,

then

PA = An + c1A
n−1 + · · ·+ cnI.

We have the following remarkable theorem.

Theorem 5.14. (Cayley–Hamilton) If K is any commutative ring, for every n × n matrix
A ∈ Mn(K), if we let

PA(X) = Xn + c1X
n−1 + · · ·+ cn

be the characteristic polynomial of A, then

PA = An + c1A
n−1 + · · ·+ cnI = 0.
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Proof. We can view the matrix B = XI −A as a matrix with coefficients in the polynomial
ring K[X], and then we can form the matrix B̃ which is the transpose of the matrix of

cofactors of elements of B. Each entry in B̃ is an (n− 1)× (n− 1) determinant, and thus a

polynomial of degree a most n− 1, so we can write B̃ as

B̃ = Xn−1B0 +Xn−2B1 + · · ·+Bn−1,

for some matrices B0, . . . , Bn−1 with coefficients in K. For example, when n = 2, we have

B =

(
X − a −b
−c X − d

)
, B̃ =

(
X − d b
c X − a

)
= X

(
1 0
0 1

)
+

(
−d b
c −a

)
.

By Proposition 5.11, we have

BB̃ = det(B)I = PA(X)I.

On the other hand, we have

BB̃ = (XI − A)(Xn−1B0 +Xn−2B1 + · · ·+Xn−j−1Bj + · · ·+Bn−1),

and by multiplying out the right-hand side, we get

BB̃ = XnD0 +Xn−1D1 + · · ·+Xn−jDj + · · ·+Dn,

with

D0 = B0

D1 = B1 − AB0

...

Dj = Bj − ABj−1

...

Dn−1 = Bn−1 − ABn−2

Dn = −ABn−1.

Since

PA(X)I = (Xn + c1X
n−1 + · · ·+ cn)I,

the equality

XnD0 +Xn−1D1 + · · ·+Dn = (Xn + c1X
n−1 + · · ·+ cn)I

is an equality between two matrices, so it requires that all corresponding entries are equal,
and since these are polynomials, the coefficients of these polynomials must be identical,
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which is equivalent to the set of equations

I = B0

c1I = B1 − AB0

...

cjI = Bj − ABj−1

...

cn−1I = Bn−1 − ABn−2

cnI = −ABn−1,

for all j, with 1 ≤ j ≤ n − 1. If we multiply the first equation by An, the last by I, and
generally the (j + 1)th by An−j, when we add up all these new equations, we see that the
right-hand side adds up to 0, and we get our desired equation

An + c1A
n−1 + · · ·+ cnI = 0,

as claimed.

As a concrete example, when n = 2, the matrix

A =

(
a b
c d

)

satisfies the equation
A2 − (a+ d)A+ (ad− bc)I = 0.

5.7 Further Readings

Thorough expositions of the material covered in Chapter 1, 2, 3, 4, and Chapter 5 can be
found in Strang [53, 52], Lax [38], Meyer [42], Artin [2], Lang [35], Mac Lane and Birkhoff
[39], Hoffman and Kunze [33], Dummit and Foote [17], Bourbaki [6, 7], Van Der Waerden
[58], Serre [48], Horn and Johnson [30], and Bertin [5]. These notions of linear algebra are
nicely put to use in classical geometry, see Berger [3, 4], Tisseron [55] and Dieudonné [15].



Chapter 6

Euclidean Spaces

Rien n’est beau que le vrai.

—Hermann Minkowski

6.1 Inner Products, Euclidean Spaces

So far, the framework of vector spaces allows us to deal with ratios of vectors and linear
combinations, but there is no way to express the notion of length of a line segment or to talk
about orthogonality of vectors. A Euclidean structure allows us to deal with metric notions
such as orthogonality and length (or distance).

This chapter covers the bare bones of Euclidean geometry. One of our main goals is
to give the basic properties of the transformations that preserve the Euclidean structure,
rotations and reflections, since they play an important role in practice. Euclidean geometry
is the study of properties invariant under certain affine maps called rigid motions . Rigid
motions are the maps that preserve the distance between points.

We begin by defining inner products and Euclidean spaces. The Cauchy–Schwarz in-
equality and the Minkowski inequality are shown. We define orthogonality of vectors and of
subspaces, orthogonal bases, and orthonormal bases. We prove that every finite-dimensional
Euclidean space has orthonormal bases using the Gram–Schmidt orthogonalization proce-
dure. Using orthonormal bases, we show that every linear map has an adjoint. The QR-
decomposition for invertible matrices is shown as an application of the Gram–Schmidt pro-
cedure. Linear isometries (also called orthogonal transformations) are defined and studied
briefly. We conclude with a short section in which some applications of Euclidean geome-
try are sketched. One of the most important applications, the method of least squares, is
discussed in Chapter 12.

For a more detailed treatment of Euclidean geometry, see Berger [3, 4], Snapper and
Troyer [49], or any other book on geometry, such as Pedoe [44], Coxeter [13], Fresnel [22],
Tisseron [55], or Cagnac, Ramis, and Commeau [10]. Serious readers should consult Emil
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Artin’s famous book [1], which contains an in-depth study of the orthogonal group, as well
as other groups arising in geometry. It is still worth consulting some of the older classics,
such as Hadamard [27, 28] and Rouché and de Comberousse [45]. The first edition of [27]
was published in 1898, and finally reached its thirteenth edition in 1947! In this chapter it is
assumed that all vector spaces are defined over the field R of real numbers unless specified
otherwise (in a few cases, over the complex numbers C).

First, we define a Euclidean structure on a vector space. Technically, a Euclidean struc-
ture over a vector space E is provided by a symmetric bilinear form on the vector space
satisfying some extra properties. Recall that a bilinear form ϕ : E ×E → R is definite if for
every u ∈ E, u 6= 0 implies that ϕ(u, u) 6= 0, and positive if for every u ∈ E, ϕ(u, u) ≥ 0.

Definition 6.1. A Euclidean space is a real vector space E equipped with a symmetric
bilinear form ϕ : E × E → R that is positive definite. More explicitly, ϕ : E × E → R
satisfies the following axioms:

ϕ(u1 + u2, v) = ϕ(u1, v) + ϕ(u2, v),

ϕ(u, v1 + v2) = ϕ(u, v1) + ϕ(u, v2),

ϕ(λu, v) = λϕ(u, v),

ϕ(u, λv) = λϕ(u, v),

ϕ(u, v) = ϕ(v, u),

u 6= 0 implies that ϕ(u, u) > 0.

The real number ϕ(u, v) is also called the inner product (or scalar product) of u and v. We
also define the quadratic form associated with ϕ as the function Φ: E → R+ such that

Φ(u) = ϕ(u, u),

for all u ∈ E.

Since ϕ is bilinear, we have ϕ(0, 0) = 0, and since it is positive definite, we have the
stronger fact that

ϕ(u, u) = 0 iff u = 0,

that is, Φ(u) = 0 iff u = 0.

Given an inner product ϕ : E × E → R on a vector space E, we also denote ϕ(u, v) by

u · v or 〈u, v〉 or (u|v),

and
√

Φ(u) by ‖u‖.

Example 6.1. The standard example of a Euclidean space is Rn, under the inner product
· defined such that

(x1, . . . , xn) · (y1, . . . , yn) = x1y1 + x2y2 + · · ·+ xnyn.

This Euclidean space is denoted by En.
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There are other examples.

Example 6.2. For instance, let E be a vector space of dimension 2, and let (e1, e2) be a
basis of E. If a > 0 and b2 − ac < 0, the bilinear form defined such that

ϕ(x1e1 + y1e2, x2e1 + y2e2) = ax1x2 + b(x1y2 + x2y1) + cy1y2

yields a Euclidean structure on E. In this case,

Φ(xe1 + ye2) = ax2 + 2bxy + cy2.

Example 6.3. Let C[a, b] denote the set of continuous functions f : [a, b] → R. It is easily
checked that C[a, b] is a vector space of infinite dimension. Given any two functions f, g ∈
C[a, b], let

〈f, g〉 =

∫ b

a

f(t)g(t)dt.

We leave as an easy exercise that 〈−,−〉 is indeed an inner product on C[a, b]. In the case
where a = −π and b = π (or a = 0 and b = 2π, this makes basically no difference), one
should compute

〈sin px, sin qx〉, 〈sin px, cos qx〉, and 〈cos px, cos qx〉,

for all natural numbers p, q ≥ 1. The outcome of these calculations is what makes Fourier
analysis possible!

Let us observe that ϕ can be recovered from Φ. Indeed, by bilinearity and symmetry, we
have

Φ(u+ v) = ϕ(u+ v, u+ v)

= ϕ(u, u+ v) + ϕ(v, u+ v)

= ϕ(u, u) + 2ϕ(u, v) + ϕ(v, v)

= Φ(u) + 2ϕ(u, v) + Φ(v).

Thus, we have

ϕ(u, v) =
1

2
[Φ(u+ v)− Φ(u)− Φ(v)].

We also say that ϕ is the polar form of Φ. We will generalize polar forms to polynomials,
and we will see that they play a very important role.

One of the very important properties of an inner product ϕ is that the map u 7→
√

Φ(u)
is a norm.



186 CHAPTER 6. EUCLIDEAN SPACES

Proposition 6.1. Let E be a Euclidean space with inner product ϕ, and let Φ be the corre-
sponding quadratic form. For all u, v ∈ E, we have the Cauchy–Schwarz inequality

ϕ(u, v)2 ≤ Φ(u)Φ(v),

the equality holding iff u and v are linearly dependent.

We also have the Minkowski inequality

√
Φ(u+ v) ≤

√
Φ(u) +

√
Φ(v),

the equality holding iff u and v are linearly dependent, where in addition if u 6= 0 and v 6= 0,
then u = λv for some λ > 0.

Proof. For any vectors u, v ∈ E, we define the function T : R→ R such that

T (λ) = Φ(u+ λv),

for all λ ∈ R. Using bilinearity and symmetry, we have

Φ(u+ λv) = ϕ(u+ λv, u+ λv)

= ϕ(u, u+ λv) + λϕ(v, u+ λv)

= ϕ(u, u) + 2λϕ(u, v) + λ2ϕ(v, v)

= Φ(u) + 2λϕ(u, v) + λ2Φ(v).

Since ϕ is positive definite, Φ is nonnegative, and thus T (λ) ≥ 0 for all λ ∈ R. If Φ(v) = 0,
then v = 0, and we also have ϕ(u, v) = 0. In this case, the Cauchy–Schwarz inequality is
trivial, and v = 0 and u are linearly dependent.

Now, assume Φ(v) > 0. Since T (λ) ≥ 0, the quadratic equation

λ2Φ(v) + 2λϕ(u, v) + Φ(u) = 0

cannot have distinct real roots, which means that its discriminant

∆ = 4(ϕ(u, v)2 − Φ(u)Φ(v))

is null or negative, which is precisely the Cauchy–Schwarz inequality

ϕ(u, v)2 ≤ Φ(u)Φ(v).

If
ϕ(u, v)2 = Φ(u)Φ(v),

then the above quadratic equation has a double root λ0, and we have Φ(u + λ0v) = 0. If
λ0 = 0, then ϕ(u, v) = 0, and since Φ(v) > 0, we must have Φ(u) = 0, and thus u = 0. In this
case, of course, u = 0 and v are linearly dependent. Finally, if λ0 6= 0, since Φ(u+ λ0v) = 0
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implies that u+λ0v = 0, then u and v are linearly dependent. Conversely, it is easy to check
that we have equality when u and v are linearly dependent.

The Minkowski inequality
√

Φ(u+ v) ≤
√

Φ(u) +
√

Φ(v)

is equivalent to
Φ(u+ v) ≤ Φ(u) + Φ(v) + 2

√
Φ(u)Φ(v).

However, we have shown that

2ϕ(u, v) = Φ(u+ v)− Φ(u)− Φ(v),

and so the above inequality is equivalent to

ϕ(u, v) ≤
√

Φ(u)Φ(v),

which is trivial when ϕ(u, v) ≤ 0, and follows from the Cauchy–Schwarz inequality when
ϕ(u, v) ≥ 0. Thus, the Minkowski inequality holds. Finally, assume that u 6= 0 and v 6= 0,
and that √

Φ(u+ v) =
√

Φ(u) +
√

Φ(v).

When this is the case, we have

ϕ(u, v) =
√

Φ(u)Φ(v),

and we know from the discussion of the Cauchy–Schwarz inequality that the equality holds
iff u and v are linearly dependent. The Minkowski inequality is an equality when u or v is
null. Otherwise, if u 6= 0 and v 6= 0, then u = λv for some λ 6= 0, and since

ϕ(u, v) = λϕ(v, v) =
√

Φ(u)Φ(v),

by positivity, we must have λ > 0.

Note that the Cauchy–Schwarz inequality can also be written as

|ϕ(u, v)| ≤
√

Φ(u)
√

Φ(v).

Remark: It is easy to prove that the Cauchy–Schwarz and the Minkowski inequalities still
hold for a symmetric bilinear form that is positive, but not necessarily definite (i.e., ϕ(u, v) ≥
0 for all u, v ∈ E). However, u and v need not be linearly dependent when the equality holds.

At this stage, it is useful to define the notion of norm on a vector space. We let R+

denote the set of nonnegative real numbers,

R+ = {λ ∈ R | λ ≥ 0}.
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Definition 6.2. Let E be a vector space over a field K, where K is either the field R of
reals, or the field C of complex numbers. A norm on E is a function ‖ ‖ : E → R+, assigning
a nonnegative real number ‖u‖ to any vector u ∈ E, and satisfying the following conditions
for all x, y, z ∈ E:

(N1) ‖x‖ ≥ 0, and ‖x‖ = 0 iff x = 0. (positivity)

(N2) ‖λx‖ = |λ| ‖x‖. (scaling)

(N3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖. (triangle inequality)

A vector space E together with a norm ‖ ‖ is called a normed vector space.

The Minkowski inequality

√
Φ(u+ v) ≤

√
Φ(u) +

√
Φ(v)

shows that the map u 7→
√

Φ(u) satisfies the convexity inequality (also known as triangle
inequality), condition (N3) of Definition 6.2, and since ϕ is bilinear and positive definite, it
also satisfies conditions (N1) and (N2) of Definition 6.2, and thus it is a norm on E. The
norm induced by ϕ is called the Euclidean norm induced by ϕ.

Note that the Cauchy–Schwarz inequality can be written as

|u · v| ≤ ‖u‖‖v‖,

and the Minkowski inequality as

‖u+ v‖ ≤ ‖u‖+ ‖v‖.

We now define orthogonality.

6.2 Orthogonality, Gram–Schmidt Procedure, Adjoint

Maps

An inner product on a vector space gives the ability to define the notion of orthogonality.
Families of nonnull pairwise orthogonal vectors must be linearly independent. They are
called orthogonal families. In a vector space of finite dimension it is always possible to find
orthogonal bases. This is very useful theoretically and practically. Indeed, in an orthogonal
basis, finding the coordinates of a vector is very cheap: It takes an inner product. Fourier
series make crucial use of this fact. We prove that in a finite-dimensional Euclidean space,
every basis can be orthormalized using the Gram–Schmidt orthonormalization procedure.
Then, we show that every linear map has an adjoint.
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Definition 6.3. Given a Euclidean space E, any two vectors u, v ∈ E are orthogonal, or
perpendicular , if u · v = 0. Given a family (ui)i∈I of vectors in E, we say that (ui)i∈I is
orthogonal if ui · uj = 0 for all i, j ∈ I, where i 6= j. We say that the family (ui)i∈I is
orthonormal if ui · uj = 0 for all i, j ∈ I, where i 6= j, and ‖ui‖ = ui · ui = 1, for all i ∈ I.
For any subset F of E, the set

F⊥ = {v ∈ E | u · v = 0, for all u ∈ F},

of all vectors orthogonal to all vectors in F , is called the orthogonal complement of F .

Since inner products are positive definite, observe that for any vector u ∈ E, we have

u · v = 0 for all v ∈ E iff u = 0.

It is immediately verified that the orthogonal complement F⊥ of F is a subspace of E.

Example 6.4. Going back to Example 6.3 and to the inner product

〈f, g〉 =

∫ π

−π
f(t)g(t)dt

on the vector space C[−π, π], it is easily checked that

〈sin px, sin qx〉 =

{
π if p = q, p, q ≥ 1,
0 if p 6= q, p, q ≥ 1,

〈cos px, cos qx〉 =

{
π if p = q, p, q ≥ 1,
0 if p 6= q, p, q ≥ 0,

and
〈sin px, cos qx〉 = 0,

for all p ≥ 1 and q ≥ 0, and of course, 〈1, 1〉 =
∫ π
−π dx = 2π.

As a consequence, the family (sin px)p≥1∪(cos qx)q≥0 is orthogonal. It is not orthonormal,
but becomes so if we divide every trigonometric function by

√
π, and 1 by

√
2π.

We leave the following simple two results as exercises.

Proposition 6.2. Given a Euclidean space E, for any family (ui)i∈I of nonnull vectors in
E, if (ui)i∈I is orthogonal, then it is linearly independent.

Proposition 6.3. Given a Euclidean space E, any two vectors u, v ∈ E are orthogonal iff

‖u+ v‖2 = ‖u‖2 + ‖v‖2.
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One of the most useful features of orthonormal bases is that they afford a very simple
method for computing the coordinates of a vector over any basis vector. Indeed, assume
that (e1, . . . , em) is an orthonormal basis. For any vector

x = x1e1 + · · ·+ xmem,

if we compute the inner product x · ei, we get

x · ei = x1e1 · ei + · · ·+ xiei · ei + · · ·+ xmem · ei = xi,

since

ei · ej =

{
1 if i = j,
0 if i 6= j

is the property characterizing an orthonormal family. Thus,

xi = x · ei,

which means that xiei = (x · ei)ei is the orthogonal projection of x onto the subspace
generated by the basis vector ei. If the basis is orthogonal but not necessarily orthonormal,
then

xi =
x · ei
ei · ei

=
x · ei
‖ei‖2

.

All this is true even for an infinite orthonormal (or orthogonal) basis (ei)i∈I .

A very important property of Euclidean spaces of finite dimension is that they possess
orthonormal bases.

The existence of orthonormal bases can be shown using a procedure known as the Gram–
Schmidt orthonormalization procedure. Among other things, the Gram–Schmidt orthonor-
malization procedure yields the QR-decomposition for matrices , an important tool in nu-
merical methods.

Proposition 6.4. Given any nontrivial Euclidean space E of finite dimension n ≥ 1, from
any basis (e1, . . . , en) for E we can construct an orthonormal basis (u1, . . . , un) for E, with
the property that for every k, 1 ≤ k ≤ n, the families (e1, . . . , ek) and (u1, . . . , uk) generate
the same subspace.

Proof. We proceed by induction on n. For n = 1, let

u1 =
e1

‖e1‖
.

For n ≥ 2, we also let

u1 =
e1

‖e1‖
,
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and assuming that (u1, . . . , uk) is an orthonormal system that generates the same subspace
as (e1, . . . , ek), for every k with 1 ≤ k < n, we note that the vector

u′k+1 = ek+1 −
k∑

i=1

(ek+1 · ui)ui

is nonnull, since otherwise, because (u1, . . . , uk) and (e1, . . . , ek) generate the same subspace,
(e1, . . . , ek+1) would be linearly dependent, which is absurd, since (e1, . . ., en) is a basis.
Thus, the norm of the vector u′k+1 being nonzero, we use the following construction of the
vectors uk and u′k:

u′1 = e1, u1 =
u′1
‖u′1‖

,

and for the inductive step

u′k+1 = ek+1 −
k∑

i=1

(ek+1 · ui)ui, uk+1 =
u′k+1

‖u′k+1‖
,

where 1 ≤ k ≤ n − 1. It is clear that ‖uk+1‖ = 1, and since (u1, . . . , uk) is an orthonormal
system, we have

u′k+1 · ui = ek+1 · ui − (ek+1 · ui)ui · ui = ek+1 · ui − ek+1 · ui = 0,

for all i with 1 ≤ i ≤ k. This shows that the family (u1, . . . , uk+1) is orthonormal, and since
(u1, . . . , uk) and (e1, . . . , ek) generates the same subspace, it is clear from the definition of
uk+1 that (u1, . . . , uk+1) and (e1, . . . , ek+1) generate the same subspace. This completes the
induction step and the proof of the proposition.

Note that u′k+1 is obtained by subtracting from ek+1 the projection of ek+1 itself onto the
orthonormal vectors u1, . . . , uk that have already been computed. Then, u′k+1 is normalized.

Remarks:

(1) The QR-decomposition can now be obtained very easily, but we postpone this until
Section 6.4.

(2) We could compute u′k+1 using the formula

u′k+1 = ek+1 −
k∑

i=1

(
ek+1 · u′i
‖u′i‖2

)
u′i,

and normalize the vectors u′k at the end. This time, we are subtracting from ek+1

the projection of ek+1 itself onto the orthogonal vectors u′1, . . . , u
′
k. This might be

preferable when writing a computer program.
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(3) The proof of Proposition 6.4 also works for a countably infinite basis for E, producing
a countably infinite orthonormal basis.

Example 6.5. If we consider polynomials and the inner product

〈f, g〉 =

∫ 1

−1

f(t)g(t)dt,

applying the Gram–Schmidt orthonormalization procedure to the polynomials

1, x, x2, . . . , xn, . . . ,

which form a basis of the polynomials in one variable with real coefficients, we get a family
of orthonormal polynomials Qn(x) related to the Legendre polynomials .

The Legendre polynomials Pn(x) have many nice properties. They are orthogonal, but
their norm is not always 1. The Legendre polynomials Pn(x) can be defined as follows.
Letting fn be the function

fn(x) = (x2 − 1)n,

we define Pn(x) as follows:

P0(x) = 1, and Pn(x) =
1

2nn!
f (n)
n (x),

where f
(n)
n is the nth derivative of fn.

They can also be defined inductively as follows:

P0(x) = 1,

P1(x) = x,

Pn+1(x) =
2n+ 1

n+ 1
xPn(x)− n

n+ 1
Pn−1(x).

The polynomials Qn are related to the Legendre polynomials Pn as follows:

Qn(x) =

√
2n+ 1

2
Pn(x).

As a consequence of Proposition 6.4, given any Euclidean space of finite dimension n, if
(e1, . . . , en) is an orthonormal basis for E, then for any two vectors u = u1e1 + · · · + unen
and v = v1e1 + · · ·+ vnen, the inner product u · v is expressed as

u · v = (u1e1 + · · ·+ unen) · (v1e1 + · · ·+ vnen) =
n∑

i=1

uivi,
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and the norm ‖u‖ as

‖u‖ = ‖u1e1 + · · ·+ unen‖ =

( n∑

i=1

u2
i

)1/2

.

In matrix notation, if u and v are two column vectors of the same dimension n, we can
write

u · v = u>v = v>u.

We can also prove the following proposition regarding orthogonal spaces.

Proposition 6.5. Given any nontrivial Euclidean space E of finite dimension n ≥ 1, for
any subspace F of dimension k, the orthogonal complement F⊥ of F has dimension n − k,
and E = F ⊕ F⊥, which means that F ∩ F⊥ = (0), and that every u ∈ E can be written as
u = v + w, for some unique v ∈ F and w ∈ F⊥. Furthermore, we have F⊥⊥ = F .

Proof. From Proposition 6.4, the subspace F has some orthonormal basis (u1, . . . , uk). This
linearly independent family (u1, . . . , uk) can be extended to a basis (u1, . . . , uk, vk+1, . . . , vn),
and by Proposition 6.4, it can be converted to an orthonormal basis (u1, . . . , un), which
contains (u1, . . . , uk) as an orthonormal basis of F . Now, any vector w = w1u1 + · · ·+wnun ∈
E is orthogonal to F iff w · ui = 0, for every i, where 1 ≤ i ≤ k, iff wi = 0 for every i, where
1 ≤ i ≤ k. Clearly, this shows that (uk+1, . . . , un) is a basis of F⊥, and thus E = F⊕F⊥, and
F⊥ has dimension n− k. Similarly, any vector w = w1u1 + · · ·+ wnun ∈ E is orthogonal to
F⊥ iff w ·ui = 0, for every i, where k+ 1 ≤ i ≤ n, iff wi = 0 for every i, where k+ 1 ≤ i ≤ n.
Thus, (u1, . . . , uk) is a basis of F⊥⊥, and F⊥⊥ = F .

Using orthonormal bases, it is easy to show that every linear map has an adjoint with
respect to the inner product.

The importance of adjoint maps stems from the fact that the linear maps arising in
physical problems are often self-adjoint, which means that f = f ∗. Moreover, self-adjoint
maps can be diagonalized over orthonormal bases of eigenvectors. This is the key to the
solution of many problems in mechanics, and engineering in general (see Strang [52]).

Proposition 6.6. Given a Euclidean space E of finite dimension, for every orthonormal
basis (e1, . . . , en) of E, for every linear map f : E → E, if the matrix of f is A, then the
linear map f ∗ whose matrix is the transpose A> of A is the unique linear map such that

f ∗(u) · v = u · f(v), for all u, v ∈ E.

Proof. Assume that f ∗ exists, let A = (ai j) be the matrix of f , and let B = (bi j) be the
matrix of f ∗, with respect to the orthonormal basis (e1, . . . , en). Since f ∗ must satisfy the
condition

f ∗(u) · v = u · f(v) for all u, v ∈ E,
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using the fact that if w = w1e1 + · · · + wnen then wk = w · ek for all k, 1 ≤ k ≤ n, if we let
u = ei and v = ej, since

f(ej) =
n∑

i=1

aijei

and

f ∗(ei) =
n∑

j=1

bjiej,

we get

bj i = f ∗(ei) · ej = ei · f(ej) = ai j,

for all i, j, 1 ≤ i, j ≤ n. Thus, B = A>, which shows that if f ∗ exists, then it is unique.
However, by the above computation, the linear map f ∗ whose matrix is A> works, which
establishes our proposition.

The map f ∗ is called the adjoint of f (w.r.t. to the inner product). Linear maps f : E → E
such that f = f ∗ are called self-adjoint maps. They play a very important role because they
have real eigenvalues, and because orthonormal bases arise from their eigenvectors. Further-
more, many physical problems lead to self-adjoint linear maps (in the form of symmetric
matrices).

Linear maps such that f−1 = f ∗, or equivalently

f ∗ ◦ f = f ◦ f ∗ = id,

also play an important role. They are linear isometries , or isometries . Rotations are special
kinds of isometries. Another important class of linear maps are the linear maps satisfying
the property

f ∗ ◦ f = f ◦ f ∗,

called normal linear maps .

Given two Euclidean spaces E and F , where the inner product on E is denoted by 〈−,−〉1
and the inner product on F is denoted by 〈−,−〉2, given any linear map f : E → F , it is
immediately verified that the proof of Proposition 6.6 can be adapted to show that there is
a unique linear map f ∗ : F → E such that

〈f(u), v〉2 = 〈u, f ∗(v)〉1 for all u ∈ E and all v ∈ F .

The linear map f ∗ is also called the adjoint of f .
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6.3 Linear Isometries (Orthogonal Transformations)

In this section we consider linear maps between Euclidean spaces that preserve the Euclidean
norm. These transformations, sometimes called rigid motions , play an important role in
geometry.

Definition 6.4. Given any two nontrivial Euclidean spaces E and F of the same finite
dimension n, a function f : E → F is an orthogonal transformation, or a linear isometry , if
it is linear and

‖f(u)‖ = ‖u‖, for all u ∈ E.

Remarks:

(1) A linear isometry is often defined as a linear map such that

‖f(v)− f(u)‖ = ‖v − u‖,

for all u, v ∈ E. Since the map f is linear, the two definitions are equivalent. The
second definition just focuses on preserving the distance between vectors.

(2) Sometimes, a linear map satisfying the condition of Definition 6.4 is called a metric
map, and a linear isometry is defined as a bijective metric map.

An isometry (without the word linear) is sometimes defined as a function f : E → F (not
necessarily linear) such that

‖f(v)− f(u)‖ = ‖v − u‖,

for all u, v ∈ E, i.e., as a function that preserves the distance. This requirement turns out to
be very strong. Indeed, the next proposition shows that all these definitions are equivalent
when E and F are of finite dimension, and for functions such that f(0) = 0.

Proposition 6.7. Given any two nontrivial Euclidean spaces E and F of the same finite
dimension n, for every function f : E → F , the following properties are equivalent:

(1) f is a linear map and ‖f(u)‖ = ‖u‖, for all u ∈ E;

(2) ‖f(v)− f(u)‖ = ‖v − u‖, for all u, v ∈ E, and f(0) = 0;

(3) f(u) · f(v) = u · v, for all u, v ∈ E.

Furthermore, such a map is bijective.
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Proof. Clearly, (1) implies (2), since in (1) it is assumed that f is linear.

Assume that (2) holds. In fact, we shall prove a slightly stronger result. We prove that
if

‖f(v)− f(u)‖ = ‖v − u‖
for all u, v ∈ E, then for any vector τ ∈ E, the function g : E → F defined such that

g(u) = f(τ + u)− f(τ)

for all u ∈ E is a linear map such that g(0) = 0 and (3) holds. Clearly, g(0) = f(τ)−f(τ) = 0.

Note that from the hypothesis

‖f(v)− f(u)‖ = ‖v − u‖

for all u, v ∈ E, we conclude that

‖g(v)− g(u)‖ = ‖f(τ + v)− f(τ)− (f(τ + u)− f(τ))‖,
= ‖f(τ + v)− f(τ + u)‖,
= ‖τ + v − (τ + u)‖,
= ‖v − u‖,

for all u, v ∈ E. Since g(0) = 0, by setting u = 0 in

‖g(v)− g(u)‖ = ‖v − u‖,

we get
‖g(v)‖ = ‖v‖

for all v ∈ E. In other words, g preserves both the distance and the norm.

To prove that g preserves the inner product, we use the simple fact that

2u · v = ‖u‖2 + ‖v‖2 − ‖u− v‖2

for all u, v ∈ E. Then, since g preserves distance and norm, we have

2g(u) · g(v) = ‖g(u)‖2 + ‖g(v)‖2 − ‖g(u)− g(v)‖2

= ‖u‖2 + ‖v‖2 − ‖u− v‖2

= 2u · v,

and thus g(u) ·g(v) = u ·v, for all u, v ∈ E, which is (3). In particular, if f(0) = 0, by letting
τ = 0, we have g = f , and f preserves the scalar product, i.e., (3) holds.

Now assume that (3) holds. Since E is of finite dimension, we can pick an orthonor-
mal basis (e1, . . . , en) for E. Since f preserves inner products, (f(e1), . . ., f(en)) is also
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orthonormal, and since F also has dimension n, it is a basis of F . Then note that for any
u = u1e1 + · · ·+ unen, we have

ui = u · ei,
for all i, 1 ≤ i ≤ n. Thus, we have

f(u) =
n∑

i=1

(f(u) · f(ei))f(ei),

and since f preserves inner products, this shows that

f(u) =
n∑

i=1

(u · ei)f(ei) =
n∑

i=1

uif(ei),

which shows that f is linear. Obviously, f preserves the Euclidean norm, and (3) implies
(1).

Finally, if f(u) = f(v), then by linearity f(v− u) = 0, so that ‖f(v− u)‖ = 0, and since
f preserves norms, we must have ‖v − u‖ = 0, and thus u = v. Thus, f is injective, and
since E and F have the same finite dimension, f is bijective.

Remark: The dimension assumption is needed only to prove that (3) implies (1) when f
is not known to be linear, and to prove that f is surjective, but the proof shows that (1)
implies that f is injective.

In (2), when f does not satisfy the condition f(0) = 0, the proof shows that f is an affine
map. Indeed, taking any vector τ as an origin, the map g is linear, and

f(τ + u) = f(τ) + g(u)

for all u ∈ E. By Proposition 4.7, this shows that f is affine with associated linear map g.
This fact is worth recording as the following proposition.

Proposition 6.8. Given any two nontrivial Euclidean spaces E and F of the same finite
dimension n, for every function f : E → F , if

‖f(v)− f(u)‖ = ‖v − u‖ for all u, v ∈ E,

then f is an affine map, and its associated linear map g is an isometry.

In view of Proposition 6.7, we will drop the word “linear” in “linear isometry,” unless we
wish to emphasize that we are dealing with a map between vector spaces.

We are now going to take a closer look at the isometries f : E → E of a Euclidean space
of finite dimension.
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6.4 The Orthogonal Group, Orthogonal Matrices

In this section we explore some of the basic properties of the orthogonal group and of
orthogonal matrices.

Proposition 6.9. Let E be any Euclidean space of finite dimension n, and let f : E → E
be any linear map. The following properties hold:

(1) The linear map f : E → E is an isometry iff

f ◦ f ∗ = f ∗ ◦ f = id.

(2) For every orthonormal basis (e1, . . . , en) of E, if the matrix of f is A, then f is an
isometry iff A satisfies the identities

AA> = A>A = In,

where In denotes the identity matrix of order n, iff the columns of A form an orthonor-
mal basis of E, iff the rows of A form an orthonormal basis of E.

Proof. (1) The linear map f : E → E is an isometry iff

f(u) · f(v) = u · v,

for all u, v ∈ E, iff

f ∗(f(u)) · v = f(u) · f(v) = u · v
for all u, v ∈ E, which implies

(f ∗(f(u))− u) · v = 0

for all u, v ∈ E. Since the inner product is positive definite, we must have

f ∗(f(u))− u = 0

for all u ∈ E, that is,

f ∗ ◦ f = f ◦ f ∗ = id.

The converse is established by doing the above steps backward.

(2) By Proposition 6.6, the condition

f ◦ f ∗ = f ∗ ◦ f = id

is equivalent to

AA> = A>A = In.
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If X and Y are arbitrary matrices over the basis (e1, . . . , en), denoting as usual the jth
column of X by Xj, and similarly for Y , a simple calculation shows that

X>Y = (X i · Y j)1≤i,j≤n.

Then it is immediately verified that if X = Y = A, then

A>A = AA> = In

iff the column vectors (A1, . . . , An) form an orthonormal basis. Thus, from (1), we see that
(2) is clear (also because the rows of A are the columns of A>).

Proposition 6.9 shows that the inverse of an isometry f is its adjoint f ∗. Recall that
the set of all real n × n matrices is denoted by Mn(R). Proposition 6.9 also motivates the
following definition.

Definition 6.5. A real n× n matrix is an orthogonal matrix if

AA> = A>A = In.

Remark: It is easy to show that the conditions AA> = In, A>A = In, and A−1 = A>, are
equivalent. Given any two orthonormal bases (u1, . . . , un) and (v1, . . . , vn), if P is the change
of basis matrix from (u1, . . . , un) to (v1, . . . , vn), since the columns of P are the coordinates
of the vectors vj with respect to the basis (u1, . . . , un), and since (v1, . . . , vn) is orthonormal,
the columns of P are orthonormal, and by Proposition 6.9 (2), the matrix P is orthogonal.

The proof of Proposition 6.7 (3) also shows that if f is an isometry, then the image of an
orthonormal basis (u1, . . . , un) is an orthonormal basis. Students often ask why orthogonal
matrices are not called orthonormal matrices, since their columns (and rows) are orthonormal
bases! I have no good answer, but isometries do preserve orthogonality, and orthogonal
matrices correspond to isometries.

Recall that the determinant det(f) of a linear map f : E → E is independent of the
choice of a basis in E. Also, for every matrix A ∈ Mn(R), we have det(A) = det(A>), and
for any two n × n matrices A and B, we have det(AB) = det(A) det(B). Then, if f is an
isometry, and A is its matrix with respect to any orthonormal basis, AA> = A>A = In
implies that det(A)2 = 1, that is, either det(A) = 1, or det(A) = −1. It is also clear that
the isometries of a Euclidean space of dimension n form a group, and that the isometries of
determinant +1 form a subgroup. This leads to the following definition.

Definition 6.6. Given a Euclidean space E of dimension n, the set of isometries f : E → E
forms a subgroup of GL(E) denoted by O(E), or O(n) when E = Rn, called the orthogonal
group (of E). For every isometry f , we have det(f) = ±1, where det(f) denotes the deter-
minant of f . The isometries such that det(f) = 1 are called rotations, or proper isometries,
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or proper orthogonal transformations , and they form a subgroup of the special linear group
SL(E) (and of O(E)), denoted by SO(E), or SO(n) when E = Rn, called the special or-
thogonal group (of E). The isometries such that det(f) = −1 are called improper isometries,
or improper orthogonal transformations, or flip transformations .

As an immediate corollary of the Gram–Schmidt orthonormalization procedure, we obtain
the QR-decomposition for invertible matrices.

6.5 QR-Decomposition for Invertible Matrices

Now that we have the definition of an orthogonal matrix, we can explain how the Gram–
Schmidt orthonormalization procedure immediately yields the QR-decomposition for matri-
ces.

Proposition 6.10. Given any real n × n matrix A, if A is invertible, then there is an
orthogonal matrix Q and an upper triangular matrix R with positive diagonal entries such
that A = QR.

Proof. We can view the columns of A as vectors A1, . . . , An in En. If A is invertible, then they
are linearly independent, and we can apply Proposition 6.4 to produce an orthonormal basis
using the Gram–Schmidt orthonormalization procedure. Recall that we construct vectors
Qk and Q

′k as follows:

Q
′1 = A1, Q1 =

Q
′1

‖Q′1‖ ,

and for the inductive step

Q
′k+1 = Ak+1 −

k∑

i=1

(Ak+1 ·Qi)Qi, Qk+1 =
Q
′k+1

‖Q′k+1‖ ,

where 1 ≤ k ≤ n − 1. If we express the vectors Ak in terms of the Qi and Q
′i, we get the

triangular system

A1 = ‖Q′1‖Q1,
...

Aj = (Aj ·Q1)Q1 + · · ·+ (Aj ·Qi)Qi + · · ·+ ‖Q′j‖Qj,
...

An = (An ·Q1)Q1 + · · ·+ (An ·Qn−1)Qn−1 + ‖Q′n‖Qn.

Letting rk k = ‖Q′k‖, and ri j = Aj ·Qi (the reversal of i and j on the right-hand side is
intentional!), where 1 ≤ k ≤ n, 2 ≤ j ≤ n, and 1 ≤ i ≤ j − 1, and letting qi j be the ith
component of Qj, we note that ai j, the ith component of Aj, is given by

ai j = r1 jqi 1 + · · ·+ ri jqi i + · · ·+ rj jqi j = qi 1r1 j + · · ·+ qi iri j + · · ·+ qi jrj j.
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If we let Q = (qi j), the matrix whose columns are the components of the Qj, and R = (ri j),
the above equations show that A = QR, where R is upper triangular. The diagonal entries
rk k = ‖Q′k‖ = Ak ·Qk are indeed positive.

The reader should try the above procedure on some concrete examples for 2×2 and 3×3
matrices.

Remarks:

(1) Because the diagonal entries of R are positive, it can be shown that Q and R are
unique.

(2) The QR-decomposition holds even when A is not invertible. In this case, R has some
zero on the diagonal. However, a different proof is needed, see Strang [52, 53], Golub
and Van Loan [26], Trefethen and Bau [56], Demmel [14], Kincaid and Cheney [34], or
Ciarlet [11].

Example 6.6. Consider the matrix

A =




0 0 5
0 4 1
1 1 1


 .

We leave as an exercise to show that A = QR, with

Q =




0 0 1
0 1 0
1 0 0


 and R =




1 1 1
0 4 1
0 0 5


 .

Example 6.7. Another example of QR-decomposition is

A =




1 1 2
0 0 1
1 0 0


 =




1/
√

2 1/
√

2 0
0 0 1

1/
√

2 −1/
√

2 0





√

2 1/
√

2
√

2

0 1/
√

2
√

2
0 0 1


 .

The QR-decomposition yields a rather efficient and numerically stable method for solving
systems of linear equations. Indeed, given a system Ax = b, where A is an n× n invertible
matrix, writing A = QR, since Q is orthogonal, we get

Rx = Q>b,

and since R is upper triangular, we can solve it by Gaussian elimination, by solving for the
last variable xn first, substituting its value into the system, then solving for xn−1, etc. The
QR-decomposition is also very useful in solving least squares problems (we will come back
to this later on), and for finding eigenvalues. It can be easily adapted to the case where A is
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a rectangular m× n matrix with independent columns (thus, n ≤ m). In this case, Q is not
quite orthogonal. It is an m×n matrix whose columns are orthogonal, and R is an invertible
n × n upper triangular matrix with positive diagonal entries. For more on QR, see Strang
[52, 53], Golub and Van Loan [26], Demmel [14], Trefethen and Bau [56], or Serre [48].

It should also be said that the Gram–Schmidt orthonormalization procedure that we have
presented is not very stable numerically, and instead, one should use the modified Gram–
Schmidt method . To compute Q

′k+1, instead of projecting Ak+1 onto Q1, . . . , Qk in a single
step, it is better to perform k projections. We compute Qk+1

1 , Qk+1
2 , . . . , Qk+1

k as follows:

Qk+1
1 = Ak+1 − (Ak+1 ·Q1)Q1,

Qk+1
i+1 = Qk+1

i − (Qk+1
i ·Qi+1)Qi+1,

where 1 ≤ i ≤ k − 1. It is easily shown that Q
′k+1 = Qk+1

k . The reader is urged to code this
method.

6.6 Some Applications of Euclidean Geometry

Euclidean geometry has applications in computational geometry, in particular Voronoi dia-
grams and Delaunay triangulations. In turn, Voronoi diagrams have applications in motion
planning (see O’Rourke [43]).

Euclidean geometry also has applications to matrix analysis. Recall that a real n × n
matrix A is symmetric if it is equal to its transpose A>. One of the most important properties
of symmetric matrices is that they have real eigenvalues and that they can be diagonalized
by an orthogonal matrix (see Chapter 9). This means that for every symmetric matrix A,
there is a diagonal matrix D and an orthogonal matrix P such that

A = PDP>.

Even though it is not always possible to diagonalize an arbitrary matrix, there are various
decompositions involving orthogonal matrices that are of great practical interest. For exam-
ple, for every real matrix A, there is the QR-decomposition, which says that a real matrix
A can be expressed as

A = QR,

where Q is orthogonal and R is an upper triangular matrix. This can be obtained from
the Gram–Schmidt orthonormalization procedure, as we saw in Section 6.5, or better, using
Householder matrices. There is also the polar decomposition, which says that a real matrix
A can be expressed as

A = QS,

where Q is orthogonal and S is symmetric positive semidefinite (which means that the eigen-
values of S are nonnegative). Such a decomposition is important in continuum mechanics
and in robotics, since it separates stretching from rotation. Finally, there is the wonderful



6.7. SUMMARY 203

singular value decomposition, abbreviated as SVD, which says that a real matrix A can be
expressed as

A = V DU>,

where U and V are orthogonal and D is a diagonal matrix with nonnegative entries (see
Chapter 11). This decomposition leads to the notion of pseudo-inverse, which has many
applications in engineering (least squares solutions, etc). For an excellent presentation of all
these notions, we highly recommend Strang [53, 52], Golub and Van Loan [26], Demmel [14],
Serre [48], and Trefethen and Bau [56].

The method of least squares, invented by Gauss and Legendre around 1800, is another
great application of Euclidean geometry. Roughly speaking, the method is used to solve
inconsistent linear systems Ax = b, where the number of equations is greater than the
number of variables. Since this is generally impossible, the method of least squares consists
in finding a solution x minimizing the Euclidean norm ‖Ax − b‖2, that is, the sum of the
squares of the “errors.” It turns out that there is always a unique solution x+ of smallest
norm minimizing ‖Ax− b‖2, and that it is a solution of the square system

A>Ax = A>b,

called the system of normal equations . The solution x+ can be found either by using the QR-
decomposition in terms of Householder transformations, or by using the notion of pseudo-
inverse of a matrix. The pseudo-inverse can be computed using the SVD decomposition.
Least squares methods are used extensively in computer vision More details on the method
of least squares and pseudo-inverses can be found in Chapter 12.

6.7 Summary

The main concepts and results of this chapter are listed below:

• Bilinear forms; positive definite bilinear forms.

• inner products , scalar products , Euclidean spaces .

• quadratic form associated with a bilinear form.

• The Euclidean space En.

• The polar form of a quadratic form.

• The Cauchy–Schwarz inequality ; the Minkowski inequality .

• Orthogonality , orthogonal complement F⊥; orthonormal family .

• Existence of an orthonormal basis in a finite-dimensional Euclidean space (Proposition
6.4).
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• The Gram–Schmidt orthonormalization procedure (Proposition 6.4).

• The adjoint of a linear map (with respect to an inner product).

• Linear isometries (orthogonal transformations , rigid motions).

• The orthogonal group, orthogonal matrices .

• The matrix representing the adjoint f ∗ of a linear map f is the transpose of the matrix
representing f .

• The orthogonal group O(n) and the special orthogonal group SO(n).

• QR-decomposition for invertible matrices.



Chapter 7

Hermitian Spaces

7.1 Sesquilinear and Hermitian Forms, Pre-Hilbert

Spaces and Hermitian Spaces

In this chapter we generalize the basic results of Euclidean geometry presented in Chapter
6 to vector spaces over the complex numbers. Such a generalization is inevitable, and not
simply a luxury. For example, linear maps may not have real eigenvalues, but they always
have complex eigenvalues. Furthermore, some very important classes of linear maps can
be diagonalized if they are extended to the complexification of a real vector space. This
is the case for orthogonal matrices, and, more generally, normal matrices. Also, complex
vector spaces are often the natural framework in physics or engineering, and they are more
convenient for dealing with Fourier series. However, some complications arise due to complex
conjugation.

We begin with a quick review of complex numbers. One of the main motivations for
introducing the complex numbers is to ensure that every polynomial has a zero (or as we
say, a root). Because the square λ2 of a real number λ ∈ R is nonnegative, the equation

x2 + 1 = 0,

which is equivalent to x2 = −1, does not have any real root. Many other polynomials (with
real coefficients) do not have any (real) roots.

In the eighteenth century, various mathematicians such as Euler and Gauss introduced
and used complex numbers. The idea is to intoduce a new entity, the pure imaginary number
i, which has the fundamental property that

i2 = −1.

Now, as soon as we let i out of the bag, we realize that it is inevitable to add or multiply
real numbers with i. Thus, we are immediately led to consider new numbers of the form

a+ ib, with a, b ∈ R.

205
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The set of these “numbers” is the set of complex numbers , and it is denoted by C. It is
customary to denote complex numbers by the letter z.

If
z = a+ ib

is a complex number, then a is the real part of z, denoted by Re(z) (or by <z), and b is the
imaginary part of z, denoted by Im(z) (or by =z).

Complex numbers are added and multiplied as follows:

(a1 + ib1) + (a2 + ib2) = (a1 + a2) + i(b1 + b2)

(a1 + ib1) · (a2 + ib2) = (a1a2 − b1b2) + i(a1b2 + a2b1).

If z = a+ ib, we define −z as −a− ib.
One can check that addition of complex numbers is associative, commutative, and has

0 has an identity element. Every complex number z has an additive inverse −z. There-
fore, under addition, C is a commutative group. Multiplication of complex numbers is also
associative, commutative, and has 1 has an identity element. Furthermore, multiplication
distributes with respect to addition.

The conjugate z of a complex number z = a+ ib is the complex number given by

z = a− ib.

Observe that

Re(z) =
z + z

2

Im(z) =
z − z

2i
.

Also observe that

zz = zz = (a+ ib)(a− ib) = a2 − (ib)2 = a2 − i2b2 = a2 + b2.

We define |z|, the modulus (or absolute value) of z = a+ ib by

|z| =
√
zz =

√
a2 + b2.

Complex numbers z with |z| = 1 are called unit complex numbers . The set of unit complex
numbers is often denoted by U(1).

Clearly, z = 0 iff |z| = 0. Then, because

zz = zz = |z|2,

if z 6= 0, we see that z/|z|2 is the multiplicative inverse of z. Therefore, C − {0} = C∗ is a
commutative group under multiplication.



7.1. HERMITIAN SPACES, PRE-HILBERT SPACES 207

Complex numbers z = a + ib ∈ C have a geometric interpretation as points (a, b) ∈ R2

in the (real) plane. In fact, the mapping

z = a+ ib 7→ (a, b)

is a bijection from C to R2. For this reason, the set C of complex numbers is often called
the complex plane, although this terminology is confusing.

The bijection between C and R2 is best revealed by the polar form of a complex number.
Given any nonzero complex number z = a+ ib, we can write

z = a+ ib =
√
a2 + b2

(
a√

a2 + b2
+ i

b√
a2 + b2

)
.

But then, there is a unique angle θ ∈ [0, 2π) such that

cos θ =
a√

a2 + b2

sin θ =
b√

a2 + b2
,

so we can write

z = a+ ib =
√
a2 + b2 (cos θ + i sin θ) = |z|(cos θ + i sin θ).

We often write r = |z|, in which case

z = a+ ib = r(cos θ + i sin θ),

where the expression r(cos θ + i sin θ) is called the polar form of z. The angle θ is often
called the argument of z. Observe that unit complex numbers correspond to points on the
unit circle in R2.

It is also convenient to express cos θ + i sin θ as the complex exponential

eiθ = cos θ + i sin θ.

The above equation known as Euler’s Formula can be justified using power series.

One of the virtues of the polar reprentation of complex numbers is that multiplication
has a geometric interpretation. Indeed, using some well-known trigonometric identities, we
get

(cosα + i sinα)(cos β + i sin β) = (cosα cos β − sinα sin β) + i(cosα sin β + sinα cos β)

= cos(α + β) + i sin(α + β).

Therefore,

r(cosα + i sinα) · r′(cos β + i sin β) = rr′(cos(α + β) + i sin(α + β));



208 CHAPTER 7. HERMITIAN SPACES

this means that we multiply the moduli and we add the angles.

In particular, if r = r′ and α = β = θ, we get

(r(cos θ + i sin θ))2 = r2(cos 2θ + i sin 2θ),

and by induction,
(r(cos θ + i sin θ))n = rn(cosnθ + i sinnθ),

for all n ∈ N. In terms of the exponential notation, this is

(reiθ)n = rneinθ.

As a consequence, if we let ω = ei2π/n, observe that

(ωk)n = 1, k = 0, . . . , n− 1.

Therefore, 1, ω, ω2, . . . , ωn−1 are the n distinct roots of the equation

zn = 1.

For this reason, 1, ω, ω2, . . . , ωn−1 are called nth roots of 1 (or unity). The number zk

corresponds to the number on the unit circle whose angle is k(2π/n). The number ω plays
a crucial role in the Discrete Fourier Transform.

One should know that there is a neat way of realizing the complex numbers as 2× 2 real
matrices. Indeed, the function

a+ ib 7→
(
a −b
b a

)

is obviously a bijection between the set of complex numbers C and the set of all real 2 × 2
matrices of the above form. Furthermore, it is easy to check that addition of complex
numbers corresponds to addition of the corresponding matrices, and similarly multiplication
of complex numbers corresponds to multiplication of the corresponding matrices. Also

(
0 −1
1 0

)2

=

(
−1 0
0 −1

)
= −I2,

which shows that the matrix (
0 −1
1 0

)

is a “real analog” of the imaginary complex number i. In the above correspondence, a unit
complex number z = cos θ + i sin θ corresponds to the rotation matrix

(
cos θ − sin θ
sin θ cos θ

)
,

which represents the rotation around the origin by the angle θ.
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In conclusion of this quick review of the complex numbers, let us state the reason why
they are so important: Every polynomial

P (z) = a0z
n + a1z

n−1 + · · ·+ an

of degree n ≥ 1 with real or complex coefficients a0, a1, . . . , an (with a0 6= 0) always has n
roots in C. This means that P (z) can always be written as

P (z) = a0(z − z1)(z − z2) · · · (z − zn),

for some sequence (z1, . . . , zn) of n complex numbers not necessarily distinct. This property
is usually stated as: the field C of complex numbers is algebraically closed . This is one of
the many results due to Gauss, who gave several proofs of this fundamental result. Every
proof involves a little bit of analysis.

There are many natural situations where a map ϕ : E × E → C is linear in its first
argument and only semilinear in its second argument, which means that ϕ(u, µv) = µϕ(u, v),
as opposed to ϕ(u, µv) = µϕ(u, v). For example, the natural inner product to deal with
functions f : R→ C, especially Fourier series, is

〈f, g〉 =

∫ π

−π
f(x)g(x)dx,

which is semilinear (but not linear) in g. Thus, when generalizing a result from the real case
of a Euclidean space to the complex case, we always have to check very carefully that our
proofs do not rely on linearity in the second argument. Otherwise, we need to revise our
proofs, and sometimes the result is simply wrong!

Before defining the natural generalization of an inner product, it is convenient to define
semilinear maps.

Definition 7.1. Given two vector spaces E and F over the complex field C, a function
f : E → F is semilinear if

f(u+ v) = f(u) + f(v),

f(λu) = λf(u),

for all u, v ∈ E and all λ ∈ C.

Remark: Instead of defining semilinear maps, we could have defined the vector space E as
the vector space with the same carrier set E whose addition is the same as that of E, but
whose multiplication by a complex number is given by

(λ, u) 7→ λu.

Then it is easy to check that a function f : E → C is semilinear iff f : E → C is linear.

We can now define sesquilinear forms and Hermitian forms.
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Definition 7.2. Given a complex vector space E, a function ϕ : E×E → C is a sesquilinear
form if it is linear in its first argument and semilinear in its second argument, which means
that

ϕ(u1 + u2, v) = ϕ(u1, v) + ϕ(u2, v),

ϕ(u, v1 + v2) = ϕ(u, v1) + ϕ(u, v2),

ϕ(λu, v) = λϕ(u, v),

ϕ(u, µv) = µϕ(u, v),

for all u, v, u1, u2, v1, v2 ∈ E, and all λ, µ ∈ C. A function ϕ : E × E → C is a Hermitian
form if it is sesquilinear and if

ϕ(v, u) = ϕ(u, v)

for all all u, v ∈ E.

Obviously, ϕ(0, v) = ϕ(u, 0) = 0. Also note that if ϕ : E × E → C is sesquilinear, we
have

ϕ(λu+ µv, λu+ µv) = |λ|2ϕ(u, u) + λµϕ(u, v) + λµϕ(v, u) + |µ|2ϕ(v, v),

and if ϕ : E × E → C is Hermitian, we have

ϕ(λu+ µv, λu+ µv) = |λ|2ϕ(u, u) + 2<(λµϕ(u, v)) + |µ|2ϕ(v, v).

Note that restricted to real coefficients, a sesquilinear form is bilinear (we sometimes say
R-bilinear). The function Φ: E → C defined such that Φ(u) = ϕ(u, u) for all u ∈ E is called
the quadratic form associated with ϕ.

The standard example of a Hermitian form on Cn is the map ϕ defined such that

ϕ((x1, . . . , xn), (y1, . . . , yn)) = x1y1 + x2y2 + · · ·+ xnyn.

This map is also positive definite, but before dealing with these issues, we show the following
useful proposition.

Proposition 7.1. Given a complex vector space E, the following properties hold:

(1) A sesquilinear form ϕ : E×E → C is a Hermitian form iff ϕ(u, u) ∈ R for all u ∈ E.

(2) If ϕ : E × E → C is a sesquilinear form, then

4ϕ(u, v) = ϕ(u+ v, u+ v)− ϕ(u− v, u− v)

+ iϕ(u+ iv, u+ iv)− iϕ(u− iv, u− iv),

and

2ϕ(u, v) = (1 + i)(ϕ(u, u) + ϕ(v, v))− ϕ(u− v, u− v)− iϕ(u− iv, u− iv).
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These are called polarization identities.

Proof. (1) If ϕ is a Hermitian form, then

ϕ(v, u) = ϕ(u, v)

implies that

ϕ(u, u) = ϕ(u, u),

and thus ϕ(u, u) ∈ R. If ϕ is sesquilinear and ϕ(u, u) ∈ R for all u ∈ E, then

ϕ(u+ v, u+ v) = ϕ(u, u) + ϕ(u, v) + ϕ(v, u) + ϕ(v, v),

which proves that

ϕ(u, v) + ϕ(v, u) = α,

where α is real, and changing u to iu, we have

i(ϕ(u, v)− ϕ(v, u)) = β,

where β is real, and thus

ϕ(u, v) =
α− iβ

2
and ϕ(v, u) =

α + iβ

2
,

proving that ϕ is Hermitian.

(2) These identities are verified by expanding the right-hand side, and we leave them as
an exercise.

Proposition 7.1 shows that a sesquilinear form is completely determined by the quadratic
form Φ(u) = ϕ(u, u), even if ϕ is not Hermitian. This is false for a real bilinear form, unless
it is symmetric. For example, the bilinear form ϕ : R2 × R2 → R defined such that

ϕ((x1, y1), (x2, y2)) = x1y2 − x2y1

is not identically zero, and yet it is null on the diagonal. However, a real symmetric bilinear
form is indeed determined by its values on the diagonal, as we saw in Chapter 6.

As in the Euclidean case, Hermitian forms for which ϕ(u, u) ≥ 0 play an important role.

Definition 7.3. Given a complex vector space E, a Hermitian form ϕ : E×E → C is positive
if ϕ(u, u) ≥ 0 for all u ∈ E, and positive definite if ϕ(u, u) > 0 for all u 6= 0. A pair 〈E,ϕ〉
where E is a complex vector space and ϕ is a Hermitian form on E is called a pre-Hilbert
space if ϕ is positive, and a Hermitian (or unitary) space if ϕ is positive definite.



212 CHAPTER 7. HERMITIAN SPACES

We warn our readers that some authors, such as Lang [36], define a pre-Hilbert space as
what we define as a Hermitian space. We prefer following the terminology used in Schwartz
[46] and Bourbaki [8]. The quantity ϕ(u, v) is usually called the Hermitian product of u and
v. We will occasionally call it the inner product of u and v.

Given a pre-Hilbert space 〈E,ϕ〉, as in the case of a Euclidean space, we also denote
ϕ(u, v) by

u · v or 〈u, v〉 or (u|v),

and
√

Φ(u) by ‖u‖.

Example 7.1. The complex vector space Cn under the Hermitian form

ϕ((x1, . . . , xn), (y1, . . . , yn)) = x1y1 + x2y2 + · · ·+ xnyn

is a Hermitian space.

Example 7.2. Let l2 denote the set of all countably infinite sequences x = (xi)i∈N of complex
numbers such that

∑∞
i=0 |xi|2 is defined (i.e., the sequence

∑n
i=0 |xi|2 converges as n→ ∞).

It can be shown that the map ϕ : l2 × l2 → C defined such that

ϕ ((xi)i∈N, (yi)i∈N) =
∞∑

i=0

xiyi

is well defined, and l2 is a Hermitian space under ϕ. Actually, l2 is even a Hilbert space.

Example 7.3. Let Cpiece[a, b] be the set of piecewise bounded continuous functions f : [a, b]→
C under the Hermitian form

〈f, g〉 =

∫ b

a

f(x)g(x)dx.

It is easy to check that this Hermitian form is positive, but it is not definite. Thus, under
this Hermitian form, Cpiece[a, b] is only a pre-Hilbert space.

Example 7.4. Let C[a, b] be the set of complex-valued continuous functions f : [a, b] → C
under the Hermitian form

〈f, g〉 =

∫ b

a

f(x)g(x)dx.

It is easy to check that this Hermitian form is positive definite. Thus, C[a, b] is a Hermitian
space.

The Cauchy–Schwarz inequality and the Minkowski inequalities extend to pre-Hilbert
spaces and to Hermitian spaces.
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Proposition 7.2. Let 〈E,ϕ〉 be a pre-Hilbert space with associated quadratic form Φ. For
all u, v ∈ E, we have the Cauchy–Schwarz inequality

|ϕ(u, v)| ≤
√

Φ(u)
√

Φ(v).

Furthermore, if 〈E,ϕ〉 is a Hermitian space, the equality holds iff u and v are linearly de-
pendent.

We also have the Minkowski inequality

√
Φ(u+ v) ≤

√
Φ(u) +

√
Φ(v).

Furthermore, if 〈E,ϕ〉 is a Hermitian space, the equality holds iff u and v are linearly de-
pendent, where in addition, if u 6= 0 and v 6= 0, then u = λv for some real λ such that
λ > 0.

Proof. For all u, v ∈ E and all µ ∈ C, we have observed that

ϕ(u+ µv, u+ µv) = ϕ(u, u) + 2<(µϕ(u, v)) + |µ|2ϕ(v, v).

Let ϕ(u, v) = ρeiθ, where |ϕ(u, v)| = ρ (ρ ≥ 0). Let F : R→ R be the function defined such
that

F (t) = Φ(u+ teiθv),

for all t ∈ R. The above shows that

F (t) = ϕ(u, u) + 2t|ϕ(u, v)|+ t2ϕ(v, v) = Φ(u) + 2t|ϕ(u, v)|+ t2Φ(v).

Since ϕ is assumed to be positive, we have F (t) ≥ 0 for all t ∈ R. If Φ(v) = 0, we must have
ϕ(u, v) = 0, since otherwise, F (t) could be made negative by choosing t negative and small
enough. If Φ(v) > 0, in order for F (t) to be nonnegative, the equation

Φ(u) + 2t|ϕ(u, v)|+ t2Φ(v) = 0

must not have distinct real roots, which is equivalent to

|ϕ(u, v)|2 ≤ Φ(u)Φ(v).

Taking the square root on both sides yields the Cauchy–Schwarz inequality.

For the second part of the claim, if ϕ is positive definite, we argue as follows. If u and v
are linearly dependent, it is immediately verified that we get an equality. Conversely, if

|ϕ(u, v)|2 = Φ(u)Φ(v),

then the equation
Φ(u) + 2t|ϕ(u, v)|+ t2Φ(v) = 0
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has a double root t0, and thus

Φ(u+ t0e
iθv) = 0.

Since ϕ is positive definite, we must have

u+ t0e
iθv = 0,

which shows that u and v are linearly dependent.

If we square the Minkowski inequality, we get

Φ(u+ v) ≤ Φ(u) + Φ(v) + 2
√

Φ(u)
√

Φ(v).

However, we observed earlier that

Φ(u+ v) = Φ(u) + Φ(v) + 2<(ϕ(u, v)).

Thus, it is enough to prove that

<(ϕ(u, v)) ≤
√

Φ(u)
√

Φ(v),

but this follows from the Cauchy–Schwarz inequality

|ϕ(u, v)| ≤
√

Φ(u)
√

Φ(v)

and the fact that <z ≤ |z|.
If ϕ is positive definite and u and v are linearly dependent, it is immediately verified that

we get an equality. Conversely, if equality holds in the Minkowski inequality, we must have

<(ϕ(u, v)) =
√

Φ(u)
√

Φ(v),

which implies that

|ϕ(u, v)| =
√

Φ(u)
√

Φ(v),

since otherwise, by the Cauchy–Schwarz inequality, we would have

<(ϕ(u, v)) ≤ |ϕ(u, v)| <
√

Φ(u)
√

Φ(v).

Thus, equality holds in the Cauchy–Schwarz inequality, and

<(ϕ(u, v)) = |ϕ(u, v)|.

But then, we proved in the Cauchy–Schwarz case that u and v are linearly dependent. Since
we also just proved that ϕ(u, v) is real and nonnegative, the coefficient of proportionality
between u and v is indeed nonnegative.
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As in the Euclidean case, if 〈E,ϕ〉 is a Hermitian space, the Minkowski inequality

√
Φ(u+ v) ≤

√
Φ(u) +

√
Φ(v)

shows that the map u 7→
√

Φ(u) is a norm on E. The norm induced by ϕ is called the

Hermitian norm induced by ϕ. We usually denote
√

Φ(u) by ‖u‖, and the Cauchy–Schwarz
inequality is written as

|u · v| ≤ ‖u‖‖v‖.

Since a Hermitian space is a normed vector space, it is a topological space under the
topology induced by the norm (a basis for this topology is given by the open balls B0(u, ρ)
of center u and radius ρ > 0, where

B0(u, ρ) = {v ∈ E | ‖v − u‖ < ρ}.

If E has finite dimension, every linear map is continuous; see Chapter 5 (or Lang [36, 37],
Dixmier [16], or Schwartz [46, 47]). The Cauchy–Schwarz inequality

|u · v| ≤ ‖u‖‖v‖

shows that ϕ : E × E → C is continuous, and thus, that ‖ ‖ is continuous.

If 〈E,ϕ〉 is only pre-Hilbertian, ‖u‖ is called a seminorm. In this case, the condition

‖u‖ = 0 implies u = 0

is not necessarily true. However, the Cauchy–Schwarz inequality shows that if ‖u‖ = 0, then
u · v = 0 for all v ∈ E.

We will now basically mirror the presentation of Euclidean geometry given in Chapter 6
rather quickly, leaving out most proofs, except when they need to be seriously amended.

7.2 Orthogonality, Gram–Schmidt Procedure, Adjoint

Maps

In this section we assume that we are dealing with Hermitian spaces. We denote the Her-
mitian inner product by u · v or 〈u, v〉. The concepts of orthogonality, orthogonal family of
vectors, orthonormal family of vectors, and orthogonal complement of a set of vectors are
unchanged from the Euclidean case (Definition 6.3).

For example, the set C[−π, π] of continuous functions f : [−π, π] → C is a Hermitian
space under the product

〈f, g〉 =

∫ π

−π
f(x)g(x)dx,

and the family (eikx)k∈Z is orthogonal.
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Proposition 6.2 and 6.3 hold without any changes. It is easy to show that

∥∥∥∥∥
n∑

i=1

ui

∥∥∥∥∥

2

=
n∑

i=1

‖ui‖2 +
∑

1≤i<j≤n
2<(ui · uj).

The Gram–Schmidt orthonormalization procedure also applies to Hermitian spaces of
finite dimension, without any changes from the Euclidean case!

Proposition 7.3. Given a nontrivial Hermitian space E of finite dimension n ≥ 1, from
any basis (e1, . . . , en) for E we can construct an orthonormal basis (u1, . . . , un) for E with
the property that for every k, 1 ≤ k ≤ n, the families (e1, . . . , ek) and (u1, . . . , uk) generate
the same subspace.

Remark: The remarks made after Proposition 6.4 also apply here, except that in the QR-
decomposition, Q is a unitary matrix.

As a consequence of Proposition 7.3, given any Hermitian space of finite dimension n, if
(e1, . . . , en) is an orthonormal basis for E, then for any two vectors u = u1e1 + · · · + unen
and v = v1e1 + · · ·+ vnen, the Hermitian product u · v is expressed as

u · v = (u1e1 + · · ·+ unen) · (v1e1 + · · ·+ vnen) =
n∑

i=1

uivi,

and the norm ‖u‖ as

‖u‖ = ‖u1e1 + · · ·+ unen‖ =

( n∑

i=1

|ui|2
)1/2

.

Proposition 6.5 also holds unchanged.

Proposition 7.4. Given any nontrivial Hermitian space E of finite dimension n ≥ 1, for
any subspace F of dimension k, the orthogonal complement F⊥ of F has dimension n − k,
and E = F ⊕ F⊥. Furthermore, we have F⊥⊥ = F .

As in the case of real Euclidean spaces, using orthonormal bases, it is easy to show that
every linear map has an adjoint with respect to the Hermitian inner product. However,
in the Hermitian framework, the matrix of the adjoint of a linear map is not given by the
transpose of the original matrix, but by its conjugate.
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Definition 7.4. Given a complex m × n matrix A, the transpose A> of A is the n × m
matrix A> =

(
a>i j
)

defined such that

a>i j = aj i,

and the conjugate A of A is the m× n matrix A = (bi j) defined such that

bi j = ai j

for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n. The adjoint A∗ of A is the matrix defined such that

A∗ = (A>) =
(
A
)>
.

Proposition 7.5. Given a Hermitian space E of finite dimension, for every orthonormal
basis (e1, . . . , en) of E, for every linear map f : E → E, if the matrix of f is A, then the
linear map f ∗ whose matrix is the adjoint A∗ of A is the unique linear map such that

f ∗(u) · v = u · f(v), for all u, v ∈ E.

Proof. Assume that f ∗ exists, let A = (ai j) be the matrix of f , and let B = (bi j) be
the matrix of f ∗, with respect to the orthonormal basis (e1, . . . , en). Since f ∗ satisfies the
condition

f ∗(u) · v = u · f(v) for all u, v ∈ E,

using the fact that if w = w1e1 + · · ·+wnen, we have wk = w · ek, for all k, 1 ≤ k ≤ n; if we
let u = ei and v = ej, we get

bj i = f ∗(ei) · ej = ei · f(ej) = f(ej) · ei = ai j,

for all i, j, 1 ≤ i, j ≤ n. Thus, B = A∗. However, by the above computation, the linear map
f ∗ whose matrix is A∗ works, which establishes our proposition.

Given two Hermitian spaces E and F , where the Hermitian product on E is denoted
by 〈−,−〉1 and the Hermitian product on F is denoted by 〈−,−〉2, given any linear map
f : E → F , it is immediately verified that the proof of Proposition 7.5 can be adapted to
show that there is a unique linear map f ∗ : F → E such that

〈f(u), v〉2 = 〈u, f ∗(v)〉1

for all u ∈ E and all v ∈ F . The linear map f ∗ is also called the adjoint of f .
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7.3 Linear Isometries (Also Called Unitary Transfor-

mations)

In this section we consider linear maps between Hermitian spaces that preserve the Hermitian
norm. All definitions given for Euclidean spaces in Section 6.3 extend to Hermitian spaces,
except that orthogonal transformations are called unitary transformation, but Proposition
6.7 extends only with a modified condition (2). Indeed, the old proof that (2) implies (3)
does not work, and the implication is in fact false! It can be repaired by strengthening
condition (2). For the sake of completeness, we state the Hermitian version of Definition 6.4.

Definition 7.5. Given any two nontrivial Hermitian spaces E and F of the same finite
dimension n, a function f : E → F is a unitary transformation, or a linear isometry , if it is
linear and

‖f(u)‖ = ‖u‖, for all u ∈ E.
Proposition 6.7 can be salvaged by strengthening condition (2).

Proposition 7.6. Given any two nontrivial Hermitian spaces E and F of the same finite
dimension n, for every function f : E → F , the following properties are equivalent:

(1) f is a linear map and ‖f(u)‖ = ‖u‖, for all u ∈ E;

(2) ‖f(v)− f(u)‖ = ‖v − u‖ and f(iu) = if(u), for all u, v ∈ E.

(3) f(u) · f(v) = u · v, for all u, v ∈ E.

Furthermore, such a map is bijective.

Proof. The proof that (2) implies (3) given in Proposition 6.7 needs to be revised as follows.
We use the polarization identity

2ϕ(u, v) = (1 + i)(‖u‖2 + ‖v‖2)− ‖u− v‖2 − i‖u− iv‖2.

Since f(iv) = if(v), we get f(0) = 0 by setting v = 0, so the function f preserves distance
and norm, and we get

2ϕ(f(u), f(v)) = (1 + i)(‖f(u)‖2 + ‖f(v)‖2)− ‖f(u)− f(v)‖2

− i‖f(u)− if(v)‖2

= (1 + i)(‖f(u)‖2 + ‖f(v)‖2)− ‖f(u)− f(v)‖2

− i‖f(u)− f(iv)‖2

= (1 + i)(‖u‖2 + ‖v‖2)− ‖u− v‖2 − i‖u− iv‖2

= 2ϕ(u, v),

which shows that f preserves the Hermitian inner product, as desired. The rest of the proof
is unchanged.
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Remarks:

(i) In the Euclidean case, we proved that the assumption

‖f(v)− f(u)‖ = ‖v − u‖ for all u, v ∈ E and f(0) = 0 (2′)

implies (3). For this we used the polarization identity

2u · v = ‖u‖2 + ‖v‖2 − ‖u− v‖2.

In the Hermitian case the polarization identity involves the complex number i. In fact,
the implication (2′) implies (3) is false in the Hermitian case! Conjugation z 7→ z
satisfies (2′) since

|z2 − z1| = |z2 − z1| = |z2 − z1|,
and yet, it is not linear!

(ii) If we modify (2) by changing the second condition by now requiring that there be some
τ ∈ E such that

f(τ + iu) = f(τ) + i(f(τ + u)− f(τ))

for all u ∈ E, then the function g : E → E defined such that

g(u) = f(τ + u)− f(τ)

satisfies the old conditions of (2), and the implications (2)→ (3) and (3)→ (1) prove
that g is linear, and thus that f is affine. In view of the first remark, some condition
involving i is needed on f , in addition to the fact that f is distance-preserving.

7.4 The Unitary Group, Unitary Matrices

In this section, as a mirror image of our treatment of the isometries of a Euclidean space,
we explore some of the fundamental properties of the unitary group and of unitary matrices.
As an immediate corollary of the Gram–Schmidt orthonormalization procedure, we obtain
the QR-decomposition for invertible matrices.

Proposition 7.7. Let E be any Hermitian space of finite dimension n, and let f : E → E
be any linear map. The following properties hold:

(1) The linear map f : E → E is an isometry iff

f ◦ f ∗ = f ∗ ◦ f = id.

(2) For every orthonormal basis (e1, . . . , en) of E, f is an isometry iff A satisfies the
identities

AA∗ = A∗A = In,

where In denotes the identity matrix of order n, iff the columns of A form an orthonor-
mal basis of E, iff the rows of A form an orthonormal basis of E.
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Proof. (1) The proof is identical to that of Proposition 6.9 (1).

(2) By Proposition 7.5, the condition

f ◦ f ∗ = f ∗ ◦ f = id

is equivalent to the condition
AA∗ = A∗A = In.

If X and Y are arbitrary matrices over the basis (e1, . . . , en), denoting as usual the jth
column of X by Xj, and similarly for Y , a simple calculation shows that

Y ∗X = (Xj · Y i)1≤i,j≤n.

Then it is immediately verified that if X = Y = A, then A∗A = AA∗ = In iff the column
vectors (A1, . . . , An) form an orthonormal basis. Thus, from (1), we see that (2) is clear.

Proposition 6.9 shows that the inverse of an isometry f is its adjoint f ∗. Proposition 6.9
also motivates the following definition.

Definition 7.6. A complex n× n matrix is a unitary matrix if

AA∗ = A∗A = In.

Remarks:

(1) The conditions AA∗ = In, A∗A = In, and A−1 = A∗ are equivalent. Given any two
orthonormal bases (u1, . . . , un) and (v1, . . . , vn), if P is the change of basis matrix
from (u1, . . . , un) to (v1, . . . , vn), it is easy to show that the matrix P is unitary. The
proof of Proposition 7.6 (3) also shows that if f is an isometry, then the image of an
orthonormal basis (u1, . . . , un) is an orthonormal basis.

(2) Using the explicit formula for the determinant, we see immediately that

det(A) = det(A).

If f is unitary and A is its matrix with respect to any orthonormal basis, from AA∗ = I,
we get

det(AA∗) = det(A) det(A∗) = det(A)det(A>) = det(A)det(A) = | det(A)|2,

and so | det(A)| = 1. It is clear that the isometries of a Hermitian space of dimension
n form a group, and that the isometries of determinant +1 form a subgroup.

This leads to the following definition.
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Definition 7.7. Given a Hermitian space E of dimension n, the set of isometries f : E →
E forms a subgroup of GL(E,C) denoted by U(E), or U(n) when E = Cn, called the
unitary group (of E). For every isometry f we have | det(f)| = 1, where det(f) denotes
the determinant of f . The isometries such that det(f) = 1 are called rotations, or proper
isometries, or proper unitary transformations , and they form a subgroup of the special
linear group SL(E,C) (and of U(E)), denoted by SU(E), or SU(n) when E = Cn, called
the special unitary group (of E). The isometries such that det(f) 6= 1 are called improper
isometries, or improper unitary transformations, or flip transformations .

A very important example of unitary matrices is provided by Fourier matrices (up to a
factor of

√
n), matrices that arise in the various versions of the discrete Fourier transform.

For more on this topic, see the problems, and Strang [52, 54].

Now that we have the definition of a unitary matrix, we can explain how the Gram–
Schmidt orthonormalization procedure immediately yields the QR-decompo-sition for ma-
trices.

Proposition 7.8. Given any n × n complex matrix A, if A is invertible, then there is a
unitary matrix Q and an upper triangular matrix R with positive diagonal entries such that
A = QR.

The proof is absolutely the same as in the real case!

7.5 Summary

The main concepts and results of this chapter are listed below:

• Semilinear maps .

• Sesquilinear forms ; Hermitian forms .

• Quadratic form associated with a sesquilinear form.

• Polarization identities .

• Positive and positibe definite Hermitian forms; pre-Hilbert spaces , Hermitian spaces .

• The Cauchy–Schwarz inequality and the Minkowski inequality .

• Hermitian inner product , Hermitian norm.

• Existence of orthonormal bases in a Hermitian space (Proposition 7.3).

• Gram–Schmidt orthonormalization procedure.

• The adjoint of a linear map (with respect to a Hermitian inner product).
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• Linear isometries (unitary transformatios).

• The unitary group, unitary matrices .

• The unitary group U(n); The special unitary group SU(n).

• QR-Decomposition for invertible matrices.



Chapter 8

Eigenvectors and Eigenvalues

8.1 Eigenvectors and Eigenvalues of a Linear Map

Given a finite-dimensional vector space E, let f : E → E be any linear map. If, by luck,
there is a basis (e1, . . . , en) of E with respect to which f is represented by a diagonal matrix

D =




λ1 0 . . . 0

0 λ2
. . .

...
...

. . . . . . 0
0 . . . 0 λn


 ,

then the action of f on E is very simple; in every “direction” ei, we have

f(ei) = λiei.

We can think of f as a transformation that stretches or shrinks space along the direction
e1, . . . , en (at least if E is a real vector space). In terms of matrices, the above property
translates into the fact that there is an invertible matrix P and a diagonal matrix D such
that a matrix A can be factored as

A = PDP−1.

When this happens, we say that f (or A) is diagonalizable, the λis are called the eigenvalues
of f , and the eis are eigenvectors of f . For example, we will see that every symmetric matrix
can be diagonalized. Unfortunately, not every matrix can be diagonalized. For example, the
matrix

A1 =

(
1 1
0 1

)

can’t be diagonalized. Sometimes, a matrix fails to be diagonalizable because its eigenvalues
do not belong to the field of coefficients, such as

A2 =

(
0 −1
1 0

)
,

223
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whose eigenvalues are ±i. This is not a serious problem because A2 can be diagonalized over
the complex numbers. However, A1 is a “fatal” case! Indeed, its eigenvalues are both 1 and
the problem is that A1 does not have enough eigenvectors to span E.

The next best thing is that there is a basis with respect to which f is represented by an
upper triangular matrix. In this case we say that f can be triangularized . As we will see
in Section 8.2, if all the eigenvalues of f belong to the field of coefficients K, then f can be
triangularized. In particular, this is the case if K = C.

Now, an alternative to triangularization is to consider the representation of f with respect
to two bases (e1, . . . , en) and (f1, . . . , fn), rather than a single basis. In this case, if K = R
or K = C, it turns out that we can even pick these bases to be orthonormal , and we get a
diagonal matrix Σ with nonnegative entries , such that

f(ei) = σifi, 1 ≤ i ≤ n.

The nonzero σis are the singular values of f , and the corresponding representation is the
singular value decomposition, or SVD . The SVD plays a very important role in applications,
and will be considered in detail later.

In this section, we focus on the possibility of diagonalizing a linear map, and we introduce
the relevant concepts to do so. Given a vector space E over a field K, let I denote the identity
map on E.

Definition 8.1. Given any vector space E and any linear map f : E → E, a scalar λ ∈ K
is called an eigenvalue, or proper value, or characteristic value of f if there is some nonzero
vector u ∈ E such that

f(u) = λu.

Equivalently, λ is an eigenvalue of f if Ker (λI − f) is nontrivial (i.e., Ker (λI − f) 6= {0}).
A vector u ∈ E is called an eigenvector, or proper vector, or characteristic vector of f if
u 6= 0 and if there is some λ ∈ K such that

f(u) = λu;

the scalar λ is then an eigenvalue, and we say that u is an eigenvector associated with
λ. Given any eigenvalue λ ∈ K, the nontrivial subspace Ker (λI − f) consists of all the
eigenvectors associated with λ together with the zero vector; this subspace is denoted by
Eλ(f), or E(λ, f), or even by Eλ, and is called the eigenspace associated with λ, or proper
subspace associated with λ.

Note that distinct eigenvectors may correspond to the same eigenvalue, but distinct
eigenvalues correspond to disjoint sets of eigenvectors.

Remark: We emphasize that we require an eigenvector to be nonzero. This requirement
seems to have more benefits than inconvenients, even though it may considered somewhat
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inelegant because the set of all eigenvectors associated with an eigenvalue is not a subspace
since the zero vector is excluded.

Let us now assume that E is of finite dimension n. The next proposition shows that the
eigenvalues of a linear map f : E → E are the roots of a polynomial associated with f .

Proposition 8.1. Let E be any vector space of finite dimension n and let f be any linear
map f : E → E. The eigenvalues of f are the roots (in K) of the polynomial

det(λI − f).

Proof. A scalar λ ∈ K is an eigenvalue of f iff there is some nonzero vector u 6= 0 in E such
that

f(u) = λu

iff
(λI − f)(u) = 0

iff (λI − f) is not invertible iff, by Proposition 5.13,

det(λI − f) = 0.

In view of the importance of the polynomial det(λI−f), we have the following definition.

Definition 8.2. Given any vector space E of dimension n, for any linear map f : E → E,
the polynomial Pf (X) = χf (X) = det(XI − f) is called the characteristic polynomial of
f . For any square matrix A, the polynomial PA(X) = χA(X) = det(XI − A) is called the
characteristic polynomial of A.

Note that we already encountered the characteristic polynomial in Section 5.6; see Defi-
nition 5.8.

Given any basis (e1, . . . , en), if A = M(f) is the matrix of f w.r.t. (e1, . . . , en), we can
compute the characteristic polynomial χf (X) = det(XI−f) of f by expanding the following
determinant:

det(XI − A) =

∣∣∣∣∣∣∣∣∣

X − a1 1 −a1 2 . . . −a1n

−a2 1 X − a2 2 . . . −a2n
...

...
. . .

...
−an 1 −an 2 . . . X − ann

∣∣∣∣∣∣∣∣∣
.

If we expand this determinant, we find that

χA(X) = det(XI − A) = Xn − (a1 1 + · · ·+ ann)Xn−1 + · · ·+ (−1)n det(A).

The sum tr(A) = a1 1 + · · ·+ann of the diagonal elements of A is called the trace of A. Since
we proved in Section 5.6 that the characteristic polynomial only depends on the linear map
f , the above shows that tr(A) has the same value for all matrices A representing f . Thus,
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the trace of a linear map is well-defined; we have tr(f) = tr(A) for any matrix A representing
f .

Remark: The characteristic polynomial of a linear map is sometimes defined as det(f−XI).
Since

det(f −XI) = (−1)n det(XI − f),

this makes essentially no difference but the version det(XI − f) has the small advantage
that the coefficient of Xn is +1.

If we write

χA(X) = det(XI − A) = Xn − τ1(A)Xn−1 + · · ·+ (−1)kτk(A)Xn−k + · · ·+ (−1)nτn(A),

then we just proved that

τ1(A) = tr(A) and τn(A) = det(A).

It is also possible to express τk(A) in terms of determinants of certain submatrices of A. For
any nonempty subset, I ⊆ {1, . . . , n}, say I = {i1, . . . , ik}, let AI,I be the k × k submatrix
of A whose jth column consists of the elements aih ij , where h = 1, . . . , k. Then, it can be
shown that

τk(A) =
∑

I⊆{1,...,n}
|I|=k

det(AI,I).

If all the roots, λ1, . . . , λn, of the polynomial det(XI −A) belong to the field K, then we
can write

χA(X) = det(XI − A) = (X − λ1) · · · (X − λn),

where some of the λis may appear more than once. Consequently,

χA(X) = det(XI − A) = Xn − σ1(λ)Xn−1 + · · ·+ (−1)kσk(λ)Xn−k + · · ·+ (−1)nσn(λ),

where
σk(λ) =

∑

I⊆{1,...,n}
|I|=k

∏

i∈I
λi,

the kth symmetric function of the λi’s. From this, it clear that

σk(λ) = τk(A)

and, in particular, the product of the eigenvalues of f is equal to det(A) = det(f), and the
sum of the eigenvalues of f is equal to the trace tr(A) = tr(f), of f ; for the record,

tr(f) = λ1 + · · ·+ λn

det(f) = λ1 · · ·λn,
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where λ1, . . . , λn are the eigenvalues of f (and A), where some of the λis may appear more
than once. In particular, f is not invertible iff it admits 0 has an eigenvalue.

Remark: Depending on the field K, the characteristic polynomial χA(X) = det(XI − A)
may or may not have roots in K. This motivates considering algebraically closed fields ,
which are fields K such that every polynomial with coefficients in K has all its root in K.
For example, over K = R, not every polynomial has real roots. If we consider the matrix

A =

(
cos θ − sin θ
sin θ cos θ

)
,

then the characteristic polynomial det(XI − A) has no real roots unless θ = kπ. However,
over the field C of complex numbers, every polynomial has roots. For example, the matrix
above has the roots cos θ ± i sin θ = e±iθ.

It is possible to show that every linear map f over a complex vector space E must have
some (complex) eigenvalue without having recourse to determinants (and the characteristic
polynomial). Let n = dim(E), pick any nonzero vector u ∈ E, and consider the sequence

u, f(u), f 2(u), . . . , fn(u).

Since the above sequence has n + 1 vectors and E has dimension n, these vectors must be
linearly dependent, so there are some complex numbers c0, . . . , cm, not all zero, such that

c0f
m(u) + c1f

m−1(u) + · · ·+ cmu = 0,

where m ≤ n is the largest integer such that the coefficient of fm(u) is nonzero (m must
exits since we have a nontrivial linear dependency). Now, because the field C is algebraically
closed, the polynomial

c0X
m + c1X

m−1 + · · ·+ cm

can be written as a product of linear factors as

c0X
m + c1X

m−1 + · · ·+ cm = c(X − λ1) · · · (X − λm)

for some complex numbers λ1, . . . , λm ∈ C, not necessarily distinct, and some c ∈ C with
c 6= 0. But then, since c 6= 0,

c0f
m(u) + c1f

m−1(u) + · · ·+ cmu = 0

is equivalent to
(f − λ1I) ◦ · · · ◦ (f − λmI)(u) = 0.

If all the linear maps f−λiI were injective, then (f−λ1I)◦· · ·◦(f−λmI) would be injective,
contradicting the fact that u 6= 0. Therefore, some linear map f−λiI must have a nontrivial
kernel, which means that there is some v 6= 0 so that

f(v) = λiv;
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that is, λi is some eigenvalue of f and v is some eigenvector of f .

As nice as the above argument is, it does not provide a method for finding the eigenvalues
of f , and even if we prefer avoiding determinants as a much as possible, we are forced to
deal with the characteristic polynomial det(XI − f).

Definition 8.3. Let A be an n× n matrix over a field, K. Assume that all the roots of the
characteristic polynomial χA(X) = det(XI−A) of A belong to K, which means that we can
write

det(XI − A) = (X − λ1)k1 · · · (X − λm)km ,

where λ1, . . . , λm ∈ K are the distinct roots of det(XI − A) and k1 + · · · + km = n. The
integer, ki, is called the algebraic multiplicity of the eigenvalue λi and the dimension of the
eigenspace, Eλi = Ker(λiI − A), is called the geometric multiplicity of λi. We denote the
algebraic multiplicity of λi by alg(λi) and its geometric multiplicity by geo(λi).

By definition, the sum of the algebraic multiplicities is equal to n but the sum of the
geometric multiplicities can be strictly smaller.

Proposition 8.2. Let A be an n×n matrix over a field K and assume that all the roots of the
characteristic polynomial χA(X) = det(XI − A) of A belong to K. For every eigenvalue λi
of A, the geometric multiplicity of λi is always less than or equal to its algebraic multiplicity,
that is,

geo(λi) ≤ alg(λi).

Proof. To see this, if ni is the dimension of the eigenspace, Eλi , associated with the eigen-
value, λi, we can form a basis obtained by picking a basis of Eλi and completing this basis.
With respect to this new basis, our matrix is of the form

A′ =

(
λiIni

B
0 D

)

and a simple determinant calculation shows that

det(XI − A) = det(XI − A′) = (X − λi)ni det(XIn−ni
−D).

Therefore, (X−λi)ni divides the characteristic polynomial of A′, and thus, the characteristic
polynomial of A. It follows that ni is less than or equal to the algebraic multiplicity of λi.

The following proposition shows an interesting property of eigenspaces.

Proposition 8.3. Let E be any vector space of finite dimension n and let f be any linear
map. If u1, . . . , um are eigenvectors associated with pairwise distinct eigenvalues λ1, . . . , λm,
then the family (u1, . . . , um) is linearly independent.
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Proof. Assume that (u1, . . . , um) is linearly dependent. Then, there exists µ1, . . . , µk ∈ K
such that

µ1ui1 + · · ·+ µkvik = 0,

where 1 ≤ k ≤ m, µi 6= 0 for all i, 1 ≤ i ≤ k, {i1, . . . , ik} ⊆ {1, . . . ,m}, and no proper
subfamily of (ui1 , . . . , uik) is linearly dependent (in other words, we consider a dependency
relation with k minimal). Applying f to this dependency relation, we get

µ1λi1ui1 + · · ·+ µkλikuik = 0,

and if we multiply the original dependency relation by λi1 and subtract it from the above,
we get

µ2(λi2 − λi1)ui2 + · · ·+ µk(λik − λi1)uik = 0,

which is a linear dependency among a proper subfamily of (ui1 , . . . , uik), a contradiction.

Thus, from Proposition 8.3, if λ1, . . . , λm are all the pairwise distinct eigenvalues of f
(where m ≤ n), we have a direct sum

Eλ1 ⊕ · · · ⊕ Eλm
of the eigenspaces Eλi . This means that Eλ1 ⊕ · · · ⊕ Eλm is the space of all vectors u ∈ E
that can be written as

u = u1 + · · ·+ um, ui ∈ Eλi , i = 1, . . . ,m,

in a unique way. Unfortunately, it is not always the case that

E = Eλ1 ⊕ · · · ⊕ Eλm .

When
E = Eλ1 ⊕ · · · ⊕ Eλm ,

we say that f is diagonalizable (and similarly for any matrix associated with f). Indeed,
picking a basis in each Eλi , we obtain a matrix which is a diagonal matrix consisting of the
eigenvalues, each λi occurring a number of times equal to the dimension of Eλi . This happens
if the algebraic multiplicity and the geometric multiplicity of every eigenvalue are equal. In
particular, when the characteristic polynomial has n distinct roots, then f is diagonalizable.
It can also be shown that symmetric matrices have real eigenvalues and can be diagonalized.

For a negative example, we leave as exercise to show that the matrix

M =

(
1 1
0 1

)

cannot be diagonalized, even though 1 is an eigenvalue. The problem is that the eigenspace
of 1 only has dimension 1. The matrix

A =

(
cos θ − sin θ
sin θ cos θ

)

cannot be diagonalized either, because it has no real eigenvalues, unless θ = kπ. However,
over the field of complex numbers, it can be diagonalized.
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8.2 Reduction to Upper Triangular Form

Unfortunately, not every linear map on a complex vector space can be diagonalized. The
next best thing is to “triangularize,” which means to find a basis over which the matrix has
zero entries below the main diagonal. Fortunately, such a basis always exist.

We say that a square matrix A is an upper triangular matrix if it has the following shape,




a1 1 a1 2 a1 3 . . . a1n−1 a1n

0 a2 2 a2 3 . . . a2n−1 a2n

0 0 a3 3 . . . a3n−1 a3n
...

...
...

. . .
...

...
0 0 0 . . . an−1n−1 an−1n

0 0 0 . . . 0 ann



,

i.e., ai j = 0 whenever j < i, 1 ≤ i, j ≤ n.

Theorem 8.4. Given any finite dimensional vector space over a field K, for any linear map
f : E → E, there is a basis (u1, . . . , un) with respect to which f is represented by an upper
triangular matrix (in Mn(K)) iff all the eigenvalues of f belong to K. Equivalently, for every
n× n matrix A ∈ Mn(K), there is an invertible matrix P and an upper triangular matrix T
(both in Mn(K)) such that

A = PTP−1

iff all the eigenvalues of A belong to K.

Proof. If there is a basis (u1, . . . , un) with respect to which f is represented by an upper
triangular matrix T in Mn(K), then since the eigenvalues of f are the diagonal entries of T ,
all the eigenvalues of f belong to K.

For the converse, we proceed by induction on the dimension n of E. For n = 1 the result
is obvious. If n > 1, since by assumption f has all its eigenvalue in K, pick some eigenvalue
λ1 ∈ K of f , and let u1 be some corresponding (nonzero) eigenvector. We can find n − 1
vectors (v2, . . . , vn) such that (u1, v2, . . . , vn) is a basis of E, and let F be the subspace of
dimension n − 1 spanned by (v2, . . . , vn). In the basis (u1, v2 . . . , vn), the matrix of f is of
the form

U =




λ1 a1 2 . . . a1n

0 a2 2 . . . a2n
...

...
. . .

...
0 an 2 . . . ann


 ,

since its first column contains the coordinates of λ1u1 over the basis (u1, v2, . . . , vn). If we
let p : E → F be the projection defined such that p(u1) = 0 and p(vi) = vi when 2 ≤ i ≤ n,
the linear map g : F → F defined as the restriction of p ◦ f to F is represented by the
(n − 1) × (n − 1) matrix V = (ai j)2≤i,j≤n over the basis (v2, . . . , vn). We need to prove
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that all the eigenvalues of g belong to K. However, since the first column of U has a single
nonzero entry, we get

χU(X) = det(XI − U) = (X − λ1) det(XI − V ) = (X − λ1)χV (X),

where χU(X) is the characteristic polynomial of U and χV (X) is the characteristic polynomial
of V . It follows that χV (X) divides χU(X), and since all the roots of χU(X) are in K, all
the roots of χV (X) are also in K. Consequently, we can apply the induction hypothesis, and
there is a basis (u2, . . . , un) of F such that g is represented by an upper triangular matrix
(bi j)1≤i,j≤n−1. However,

E = Ku1 ⊕ F,
and thus (u1, . . . , un) is a basis for E. Since p is the projection from E = Ku1 ⊕ F onto F
and g : F → F is the restriction of p ◦ f to F , we have

f(u1) = λ1u1

and

f(ui+1) = a1 iu1 +
i∑

j=1

bi juj+1

for some a1 i ∈ K, when 1 ≤ i ≤ n−1. But then the matrix of f with respect to (u1, . . . , un)
is upper triangular.

For the matrix version, we assume that A is the matrix of f with respect to some basis,
Then, we just proved that there is a change of basis matrix P such that A = PTP−1 where
T is upper triangular.

If A = PTP−1 where T is upper triangular, note that the diagonal entries of T are the
eigenvalues λ1, . . . , λn of A. Indeed, A and T have the same characteristic polynomial. Also,
if A is a real matrix whose eigenvalues are all real, then P can be chosen to real, and if A
is a rational matrix whose eigenvalues are all rational, then P can be chosen rational. Since
any polynomial over C has all its roots in C, Theorem 8.4 implies that every complex n× n
matrix can be triangularized.

If E is a Hermitian space, the proof of Theorem 8.4 can be easily adapted to prove that
there is an orthonormal basis (u1, . . . , un) with respect to which the matrix of f is upper
triangular. This is usually known as Schur’s lemma.

Theorem 8.5. (Schur decomposition) Given any linear map f : E → E over a complex
Hermitian space E, there is an orthonormal basis (u1, . . . , un) with respect to which f is
represented by an upper triangular matrix. Equivalently, for every n×n matrix A ∈ Mn(C),
there is a unitary matrix U and an upper triangular matrix T such that

A = UTU∗.
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If A is real and if all its eigenvalues are real, then there is an orthogonal matrix Q and a
real upper triangular matrix T such that

A = QTQ>.

Proof. During the induction, we choose F to be the orthogonal complement of Cu1 and we
pick orthonormal bases. If E is a real Euclidean spaace and if the eigenvalues of f are all
real, the proof also goes through with real matrices.

Using, Theorem 8.5, we can derive the fact that if A is a Hermitian matrix, then there
is a unitary matrix U and a real diagonal matrix D such that A = UDU∗. Indeed, since
A∗ = A, we get

UTU∗ = UT ∗U∗,

which implies that T = T ∗. Since T is an upper triangular matrix, T ∗ is a lower triangular
matrix, which implies that T is a real diagonal matrix. In fact, applying this result to a
(real) symmetric matrix A, we obtain the fact that all the eigenvalues of a symmetric matrix
are real, and by applying Theorem 8.5 again, we conclude that A = QDQ>, where Q is
orthogonal and D is a real diagonal matrix. We will also prove this in Chapter 9.

When A has complex eigenvalues, there is a version of Theorem 8.5 involving only real
matrices provided that we allow T to be block upper-triangular (the diagonal entries may
be 2× 2 matrices or real entries).

Theorem 8.5 is not a very practical result but it is a useful theoretical result to cope
with matrices that cannot be diagonalized. For example, it can be used to prove that
every complex matrix is the limit of a sequence of diagonalizable matrices that have distinct
eigenvalues!

8.3 Location of Eigenvalues

If A is an n×n complex (or real) matrix A, it would be useful to know, even roughly, where
the eigenvalues of A are located in the complex plane C. The Gershgorin discs provide some
precise information about this.

Definition 8.4. For any complex n× n matrix A, for i = 1, . . . , n, let

R′i(A) =
n∑

j=1
j 6=i

|ai j|

and let

G(A) =
n⋃

i=1

{z ∈ C | |z − ai i| ≤ R′i(A)}.

Each disc {z ∈ C | |z − ai i| ≤ R′i(A)} is called a Gershgorin disc and their union G(A) is
called the Gershgorin domain.
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Although easy to prove, the following theorem is very useful:

Theorem 8.6. (Gershgorin’s disc theorem) For any complex n× n matrix A, all the eigen-
values of A belong to the Gershgorin domain G(A). Furthermore the following properties
hold:

(1) If A is strictly row diagonally dominant, that is

|ai i| >
n∑

j=1, j 6=i
|ai j|, for i = 1, . . . , n,

then A is invertible.

(2) If A is strictly row diagonally dominant, and if ai i > 0 for i = 1, . . . , n, then every
eigenvalue of A has a strictly positive real part.

Proof. Let λ be any eigenvalue of A and let u be a corresponding eigenvector (recall that we
must have u 6= 0). Let k be an index such that

|uk| = max
1≤i≤n

|ui|.

Since Au = λu, we have

(λ− ak k)uk =
n∑

j=1
j 6=k

ak juj,

which implies that

|λ− ak k||uk| ≤
n∑

j=1
j 6=k

|ak j||uj| ≤ |uk|
n∑

j=1
j 6=k

|ak j|

and since u 6= 0 and |uk| = max1≤i≤n |ui|, we must have |uk| 6= 0, and it follows that

|λ− ak k| ≤
n∑

j=1
j 6=k

|ak j| = R′k(A),

and thus
λ ∈ {z ∈ C | |z − ak k| ≤ R′k(A)} ⊆ G(A),

as claimed.

(1) Strict row diagonal dominance implies that 0 does not belong to any of the Gershgorin
discs, so all eigenvalues of A are nonzero, and A is invertible.

(2) If A is strictly row diagonally dominant and ai i > 0 for i = 1, . . . , n, then each of the
Gershgorin discs lies strictly in the right half-plane, so every eigenvalue of A has a strictly
positive real part.
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In particular, Theorem 8.6 implies that if a symmetric matrix is strictly row diagonally
dominant and has strictly positive diagonal entries, then it is positive definite. Theorem 8.6
is sometimes called the Gershgorin–Hadamard theorem.

Since A and A> have the same eigenvalues (even for complex matrices) we also have a
version of Theorem 8.6 for the discs of radius

C ′j(A) =
n∑

i=1
i 6=j

|ai j|,

whose domain is denoted by G(A>). Thus we get the following:

Theorem 8.7. For any complex n × n matrix A, all the eigenvalues of A belong to the
intersection of the Gershgorin discs, G(A) ∩ G(A>). Furthermore the following properties
hold:

(1) If A is strictly column diagonally dominant, that is

|ai i| >
n∑

i=1, i 6=j
|ai j|, for j = 1, . . . , n,

then A is invertible.

(2) If A is strictly column diagonally dominant, and if ai i > 0 for i = 1, . . . , n, then every
eigenvalue of A has a strictly positive real part.

There are refinements of Gershgorin’s theorem and eigenvalue location results involving
other domains besides discs; for more on this subject, see Horn and Johnson [30], Sections
6.1 and 6.2.

Remark: Neither strict row diagonal dominance nor strict column diagonal dominance are
necessary for invertibility. Also, if we relax all strict inequalities to inequalities, then row
diagonal dominance (or column diagonal dominance) is not a sufficient condition for invert-
ibility.

8.4 Summary

The main concepts and results of this chapter are listed below:

• Diagonal matrix .

• Eigenvalues, eigenvectors ; the eigenspace associated with an eigenvalue.

• The characteristic polynomial .
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• The trace.

• algebraic and geometric multiplicity .

• Eigenspaces associated with distinct eigenvalues form a direct sum (Proposition 8.3).

• Reduction of a matrix to an upper-triangular matrix.

• Schur decomposition.

• The Gershgorin’s discs can be used to locate the eigenvalues of a complex matrix; see
Theorems 8.6 and 8.7.
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Chapter 9

Spectral Theorems in Euclidean and
Hermitian Spaces

9.1 Introduction

The spectral theorem for symmetric matrices states that symmetric matrices have real eigen-
values and that they can be diagonalized over an orthonormal basis. The spectral theorem
for Hermitian matrices states that Hermitian matrices also have real eigenvalues and that
they can be diagonalized over a complex orthonormal basis.

9.2 The Spectral Theorem for Self-Adjoint Maps; The

Hermitian Case

Recall that if E is a finite-dimensional complex vector space with a Hermitian inner product
〈−,−〉, a linear map f : E → E is self-adjoint if f = f ∗.

The first important fact about a self-adjoint linear map is that its eigenvalues are real.

Proposition 9.1. Given a Hermitian space E, all the eigenvalues of any self-adjoint linear
map f : E → E are real.

Proof. Let z (in C) be an eigenvalue of f and let u be an eigenvector for z. We compute
〈f(u), u〉 in two different ways. We have

〈f(u), u〉 = 〈zu, u〉 = z〈u, u〉,
and since f = f ∗, we also have

〈f(u), u〉 = 〈u, f ∗(u)〉 = 〈u, f(u)〉 = 〈u, zu〉 = z〈u, u〉.
Thus,

z〈u, u〉 = z〈u, u〉,
which implies that z = z, since u 6= 0, and z is indeed real.

237
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The second important fact about a self-adjoint linear map is that eigenvectors associated
with distinct eigenvalues are orthogonal.

Proposition 9.2. Given a Hermitian space E, for any self-adjoint linear map f : E → E,
if u and v are eigenvectors of f associated with the eigenvalues λ and µ (in R) where λ 6= µ,
then 〈u, v〉 = 0.

Proof. Let us compute 〈f(u), v〉 in two different ways. Proposition 9.1 tells us that λ and µ
are real. We have

〈f(u), v〉 = 〈λu, v〉 = λ〈u, v〉
and

〈f(u), v〉 = 〈u, f ∗(v)〉 = 〈u, µv〉 = µ〈u, v〉,
where the last identity holds because µ = µ since µ is real Thus,

λ〈u, v〉 = µ〈u, v〉,

that is,
(λ− µ)〈u, v〉 = 0,

which implies that 〈u, v〉 = 0, since λ 6= µ.

Given any subspace W of a Hermitian space E, recall that the orthogonal complement
W⊥ of W is the subspace defined such that

W⊥ = {u ∈ E | 〈u,w〉 = 0, for all w ∈ W}.

Recall from Proposition 7.4 that E = W ⊕ W⊥ (this can be easily shown, for example,
by constructing an orthonormal basis of E using the Gram–Schmidt orthonormalization
procedure).

Theorem 9.3. (Spectral theorem for self-adjoint linear maps on a Hermitian space) Given
a Hermitian space E of dimension n, for every self-adjoint linear map f : E → E, there is
an orthonormal basis (e1, . . . , en) of eigenvectors of f such that the matrix of f w.r.t. this
basis is a diagonal matrix 



λ1 . . .
λ2 . . .

...
...

. . .
...

. . . λn


 ,

with λi ∈ R.

Proof. We proceed by induction on the dimension n of E. From Proposition 9.1, all the
eigenvalues of f are real. If n = 1, the result is trivial. Assume now that n ≥ 2. Pick
some eigenvalue λ ∈ R, and let w be some eigenvector for λ. By dividing w by its norm, we
may assume that w is a unit vector. Let W be the subspace of dimension 1 spanned by w.
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Clearly, f(W ) ⊆ W . We claim that f(W⊥) ⊆ W⊥, where W⊥ is the orthogonal complement
of W .

Indeed, for any v ∈ W⊥, that is, if 〈v, w〉 = 0, because f is self-adjoint and f(w) = λw,
we have

〈f(v), w〉 = 〈v, f(w)〉
= 〈v, λw〉
= λ〈v, w〉 = 0

since 〈v, w〉 = 0 (since λ is real, λ = λ). Therefore,

f(W⊥) ⊆ W⊥.

Clearly, the restriction of f to W⊥ is self-adjoint, and we conclude by applying the induction
hypothesis to W⊥ (whose dimension is n− 1).

9.3 The Spectral Theorem for Self-Adjoint Maps; The

Euclidean Case

Proposition 9.1 also holds in the Euclidean case.

Proposition 9.4. Given a Euclidean space E, if f : E → E is any self-adjoint linear map,
then every eigenvalue of f is real.

Proof. The problem is that we can’t apply directly Proposition 9.1 because in that theorem,
the eigenvector u could be complex. Instead, we can proceed as follows. Pick some orthonor-
mal basis (u1, . . . , un) of E, and let A be the matrix representing f on this basis. Since f
is self-adjoint, A is symmetric. Then, consider the linear map fC : Cn → Cn defined by the
matrix A (viewed as a complex matrix). Since A is real and symmetric, A = A> = A∗, so fC
is self-adjoint with respect to the standard Hermitian inner product on Cn. By Proposition
9.1 applied to fC (and the Hermitian space Cn), all the eigenvalues of fC are real. Now, the
characteristic polynomials of both f and fC are equal to det(zI−A), a polynomial with real
coefficients, and we just proved that all its roots are real. Therefore, the eigenvalues of f are
all real.

Proposition 9.2 also holds in the Euclidean case and the proof is exactly the same.

Proposition 9.5. Given a Euclidean space E, for any self-adjoint linear map f : E → E, if
u and v are eigenvectors of f associated with the eigenvalues λ and µ (in R) where λ 6= µ,
then 〈u, v〉 = 0.
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Given any subspace W of a Euclidean space E, the orthogonal complement W⊥ of W is
the subspace defined such that

W⊥ = {u ∈ E | 〈u,w〉 = 0, for all w ∈ W}.

Recall from Proposition 6.5 that E = W ⊕W⊥ Then, we have a version of Theorem 9.3 for
Euclidean spaces. The proof is the same, except that it uses Proposition 9.4.

Theorem 9.6. (Spectral theorem for self-adjoint linear maps on a Euclidean space) Given
a Euclidean space E of dimension n, for every self-adjoint linear map f : E → E, there is
an orthonormal basis (e1, . . . , en) of eigenvectors of f such that the matrix of f w.r.t. this
basis is a diagonal matrix 



λ1 . . .
λ2 . . .

...
...

. . .
...

. . . λn


 ,

with λi ∈ R.

The theorems of this section and of the previous section can be immediately applied to
matrices.

9.4 Normal and Other Special Matrices

First, we consider real matrices. Recall the following definitions.

Definition 9.1. Given a real m× n matrix A, the transpose A> of A is the n×m matrix
A> = (a>i j) defined such that

a>i j = aj i

for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n. A real n× n matrix A is

• normal if

AA> = A>A,

• symmetric if

A> = A,

• skew-symmetric if

A> = −A,
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• orthogonal if
AA> = A>A = In.

Recall from Proposition 6.9 that when E is a Euclidean space and (e1, . . ., en) is an
orthonormal basis for E, if A is the matrix of a linear map f : E → E w.r.t. the basis
(e1, . . . , en), then A> is the matrix of the adjoint f ∗ of f . Consequently, a normal linear map
has a normal matrix, a self-adjoint linear map has a symmetric matrix, a skew-self-adjoint
linear map has a skew-symmetric matrix, and an orthogonal linear map has an orthogonal
matrix.

Furthermore, if (u1, . . . , un) is another orthonormal basis for E and P is the change of
basis matrix whose columns are the components of the ui w.r.t. the basis (e1, . . . , en), then
P is orthogonal, and for any linear map f : E → E, if A is the matrix of f w.r.t (e1, . . . , en)
and B is the matrix of f w.r.t. (u1, . . . , un), then

B = P>AP.

As a consequence, Theorem 9.6 can be restated as follows.

Theorem 9.7. For every symmetric matrix A there is an orthogonal matrix P and a diagonal
matrix D such that A = PDP>, where D is of the form

D =




λ1 . . .
λ2 . . .

...
...

. . .
...

. . . λn


 ,

where λi ∈ R.

We now consider complex matrices.

Definition 9.2. Given a complex m × n matrix A, the transpose A> of A is the n × m
matrix A> =

(
a>i j
)

defined such that

a>i j = aj i

for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n. The conjugate A of A is the m × n matrix A = (bi j)
defined such that

bi j = ai j

for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n. Given an m× n complex matrix A, the adjoint A∗ of A is
the matrix defined such that

A∗ = (A>) = (A)>.

A complex n× n matrix A is
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• normal if

AA∗ = A∗A,

• Hermitian if

A∗ = A,

• skew-Hermitian if

A∗ = −A,

• unitary if

AA∗ = A∗A = In.

Recall from Proposition 7.7 that when E is a Hermitian space and (e1, . . ., en) is an
orthonormal basis for E, if A is the matrix of a linear map f : E → E w.r.t. the basis
(e1, . . . , en), then A∗ is the matrix of the adjoint f ∗ of f . Consequently, a normal linear map
has a normal matrix, a self-adjoint linear map has a Hermitian matrix, a skew-self-adjoint
linear map has a skew-Hermitian matrix, and a unitary linear map has a unitary matrix.

Furthermore, if (u1, . . . , un) is another orthonormal basis for E and P is the change of
basis matrix whose columns are the components of the ui w.r.t. the basis (e1, . . . , en), then
P is unitary, and for any linear map f : E → E, if A is the matrix of f w.r.t (e1, . . . , en) and
B is the matrix of f w.r.t. (u1, . . . , un), then

B = P ∗AP.

Theorem 9.3 can be restated in terms of matrices as follows.

Theorem 9.8. For every complex Hermitian matrix A there is a unitary matrix U and a
diagonal matrix D with real entries such that A = UDU∗.

We now have all the tools to present the important singular value decomposition (SVD)
and the polar form of a matrix. However, we prefer to first illustrate how the material of this
section can be used to discretize boundary value problems, and we give a brief introduction
to the finite elements method.
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9.5 Summary

The main concepts and results of this chapter are listed below:

• self-adjoint linear maps

• The eigenvalues of a self-adjoint map in a Hermitian space are real .

• The eigenvalues of a self-adjoint map in a Euclidean space are real .

• Eigenvectors of a self-adjoint map associated to distinct eigenvalues are orthogonal.

• Every self-adjoint linear map on a Hermitian space has an orthonormal basis of eigen-
vectors.

• Every self-adjoint linear map on a Euclidean space has an orthonormal basis of eigen-
vectors.

• The spectral theorem for symmetric matrices.

• The spectral theorem for Hermitian matrices.
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Chapter 10

Variational Approximation of
Boundary-Value Problems;
Introduction to the Finite Elements
Method

10.1 A One-Dimensional Problem: Bending of a Beam

Consider a beam of unit length supported at its ends in 0 and 1, stretched along its axis by
a force P , and subjected to a transverse load f(x)dx per element dx, as illustrated in Figure
10.1.

0 1dx
P−P

f(x)dx

Figure 10.1: Vertical deflection of a beam

The bending moment u(x) at the absissa x is the solution of a boundary problem (BP)
of the form

−u′′(x) + c(x)u(x) = f(x), 0 < x < 1

u(0) = α

u(1) = β,

245
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where c(x) = P/(EI(x)), where E is the Young’s modulus of the material of which the beam
is made and I(x) is the principal moment of inertia of the cross-section of the beam at the
abcissa x, and with α = β = 0. For this problem, we may assume that c(x) ≥ 0 for all
x ∈ [0, 1].

Remark: The vertical deflection w(x) of the beam and the bending moment u(x) are related
by the equation

u(x) = −EI d
2w

dx2
.

If we seek a solution u ∈ C2([0, 1]), that is, a function whose first and second derivatives
exist and are continuous, then it can be shown that the problem has a unique solution
(assuming c and f to be continuous functions on [0, 1]).

Except in very rare situations, this problem has no closed-form solution, so we are led to
seek approximations of the solutions.

One one way to proceed is to use the finite difference method , where we discretize the
problem and replace derivatives by differences. Another way is to use a variational approach.
In this approach, we follow a somewhat surprising path in which we come up with a so-called
“weak formulation” of the problem, by using a trick based on integrating by parts!

First, let us observe that we can always assume that α = β = 0, by looking for a solution
of the form u(x)− (α(1−x) + βx). This turns out to be crucial when we integrate by parts.
There are a lot of subtle mathematical details involved to make what follows rigorous, but
here, we will take a “relaxed” approach.

First, we need to specify the space of “weak solutions.” This will be the vector space V of
continuous functions f on [0, 1], with f(0) = f(1) = 0, and which are piecewise continuously
differentiable on [0, 1]. This means that there is a finite number of points x0, . . . , xN+1 with
x0 = 0 and xN+1 = 1, such that f ′(xi) is undefined for i = 1, . . . , N , but otherwise f ′ is
defined and continuous on each interval (xi, xi+1) for i = 0, . . . , N .1 The space V becomes a
Euclidean vector space under the inner product

〈f, g〉V =

∫ 1

0

(f(x)g(x) + f ′(x)g′(x))dx,

for all f, g ∈ V . The associated norm is

‖f‖V =

(∫ 1

0

(f(x)2 + f ′(x)2)dx

)1/2

.

Assume that u is a solution of our original boundary problem (BP), so that

−u′′(x) + c(x)u(x) = f(x), 0 < x < 1

u(0) = 0

u(1) = 0.

1We also assume that f ′(x) has a limit when x tends to a boundary of (xi, xi+1).
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Multiply the differential equation by any arbitrary test function v ∈ V , obtaining

−u′′(x)v(x) + c(x)u(x)v(x) = f(x)v(x), (∗)

and integrate this equation! We get

−
∫ 1

0

u′′(x)v(x)dx+

∫ 1

0

c(x)u(x)v(x)dx =

∫ 1

0

f(x)v(x)dx. (†)

Now, the trick is to use integration by parts on the first term. Recall that

(u′v)′ = u′′v + u′v′,

and to be careful about discontinuities, write

∫ 1

0

u′′(x)v(x)dx =
N∑

i=0

∫ xi+1

xi

u′′(x)v(x)dx.

Using integration by parts, we have
∫ xi+1

xi

u′′(x)v(x)dx =

∫ xi+1

xi

(u′(x)v(x))′dx−
∫ xi+1

xi

u′(x)v′(x)dx

= [u′(x)v(x)]
x=xi+1

x=xi
−
∫ xi+1

xi

u′(x)v′(x)dx

= u′(xi+1)v(xi+1)− u′(xi)v(xi)−
∫ xi+1

xi

u′(x)v′(x)dx.

It follows that

∫ 1

0

u′′(x)v(x)dx =
N∑

i=0

∫ xi+1

xi

u′′(x)v(x)dx

=
N∑

i=0

(
u′(xi+1)v(xi+1)− u′(xi)v(xi)−

∫ xi+1

xi

u′(x)v′(x)dx

)

= u′(1)v(1)− u′(0)v(0)−
∫ 1

0

u′(x)v′(x)dx.

However, the test function v satisfies the boundary conditions v(0) = v(1) = 0 (recall that
v ∈ V ), so we get ∫ 1

0

u′′(x)v(x)dx = −
∫ 1

0

u′(x)v′(x)dx.

Consequently, the equation (†) becomes

∫ 1

0

u′(x)v′(x)dx+

∫ 1

0

c(x)u(x)v(x)dx =

∫ 1

0

f(x)v(x)dx,
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or ∫ 1

0

(u′v′ + cuv)dx =

∫ 1

0

fvdx, for all v ∈ V. (∗∗)

Thus, it is natural to introduce the bilinear form a : V × V → R given by

a(u, v) =

∫ 1

0

(u′v′ + cuv)dx, for all u, v ∈ V ,

and the linear form f̃ : V → R given by

f̃(v) =

∫ 1

0

f(x)v(x)dx, for all v ∈ V .

Then, (∗∗) becomes

a(u, v) = f̃(v), for all v ∈ V.

We also introduce the energy function J given by

J(v) =
1

2
a(v, v)− f̃(v) v ∈ V.

Then, we have the following theorem.

Theorem 10.1. Let u be any solution of the boundary problem (BP).

(1) Then we have

a(u, v) = f̃(v), for all v ∈ V, (WF)

where

a(u, v) =

∫ 1

0

(u′v′ + cuv)dx, for all u, v ∈ V ,

and

f̃(v) =

∫ 1

0

f(x)v(x)dx, for all v ∈ V .

(2) If c(x) ≥ 0 for all x ∈ [0, 1], then a function u ∈ V is a solution of (WF) iff u
minimizes J(v), that is,

J(u) = inf
v∈V

J(v),

with

J(v) =
1

2
a(v, v)− f̃(v) v ∈ V.

Furthermore, u is unique.
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Proof. We already proved (1).

To prove (2), first we show that

‖v‖2
V ≤ 2a(v, v), for all v ∈ V.

For this, it suffices to prove that

‖v‖2
V ≤ 2

∫ 1

0

(f ′(x))2dx, for all v ∈ V.

However, by Cauchy-Schwarz for functions, for every x ∈ [0, 1], we have

|v(x)| =
∣∣∣∣
∫ x

0

v′(t)dt

∣∣∣∣ ≤
∫ 1

0

|v′(t)|dt ≤
(∫ 1

0

|v′(t)|2dt
)1/2

,

and so

‖v‖2
V =

∫ 1

0

((v(x))2 + (v′(x))2)dx ≤ 2

∫ 1

0

(v′(x))2dx ≤ 2a(v, v),

since

a(v, v) =

∫ 1

0

((v′)2 + cv2)dx.

Next, it is easy to check that

J(u+ v)− J(u) = a(u, v)− f̃(v) +
1

2
a(v, v), for all u, v ∈ V .

Then, if u is a solution of (WF), we deduce that

J(u+ v)− J(u) =
1

2
a(v, v) ≥ 1

4
‖v‖V ≥ 0 for all v ∈ V.

since a(u, v)− f̃(v) = 0 for all v ∈ V . Therefore, J achieves a minimun for u.

We also have

J(u+ θv)− J(u) = θ(a(u, v)− f(v)) +
θ2

2
a(v, v) for all θ ∈ R,

and so J(u + θv) − J(u) ≥ 0 for all θ ∈ R. Consequently, if J achieves a minimum for u,

then a(u, v) = f̃(v), which means that u is a solution of (WF).

Finally, assuming that c(x) ≥ 0, we claim that if v ∈ V and v 6= 0, then a(v, v) > 0. This
is because if a(v, v) = 0, since

‖v‖2
V ≤ 2a(v, v) for all v ∈ V,

we would have ‖v‖V = 0, that is, v = 0. Then, if v 6= 0, from

J(u+ v)− J(u) =
1

2
a(v, v) for all v ∈ V

we see that J(u+ v) > J(u), so the minimum u is unique
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Theorem 10.1 shows that every solution u of our boundary problem (BP) is a solution
(in fact, unique) of the equation (WF).

The equation (WF) is called the weak form or variational equation associated with the
boundary problem. This idea to derive these equations is due to Ritz and Galerkin.

Now, the natural question is whether the variational equation (WF) has a solution, and
whether this solution, if it exists, is also a solution of the boundary problem (it must belong
to C2([0, 1]), which is far from obvious). Then, (BP) and (WF) would be equivalent.

Some fancy tools of analysis can be used to prove these assertions. The first difficulty is
that the vector space V is not the right space of solutions, because in order for the variational
problem to have a solution, it must be complete. So, we must construct a completion of the
vector space V . This can be done and we get the Sobolev space H1

0 (0, 1). Then, the question
of the regularity of the “weak solution” can also be tackled.

We will not worry about all this. Instead, let us find approximations of the problem (WF).
Instead of using the infinite-dimensional vector space V , we consider finite-dimensional sub-
spaces Va (with dim(Va) = n) of V , and we consider the discrete problem:

Find a function u(a) ∈ Va, such that

a(u(a), v) = f̃(v), for all v ∈ Va. (DWF)

Since Va is finite dimensional (of dimension n), let us pick a basis of functions (w1, . . . , wn)
in Va, so that every function u ∈ Va can we written as

u = u1w1 + · · ·+ unwn.

Then, the equation (DWF) holds iff

a(u,wj) = f̃(wj), j = 1, . . . , n,

and by plugging u1w1 + · · ·+ unwn for u, we get a system of k linear equations

n∑

i=1

a(wi, wj)ui = f̃(wj), 1 ≤ j ≤ n.

Because a(v, v) ≥ 1
2
‖v‖Va , the bilinear form a is symmetric positive definite, and thus

the matrix (a(wi, wj)) is symmetric positive definite, and thus invertible. Therefore, (DWF)
has a solution given by a linear system!

From a practical point of view, we have to compute the integrals

aij = a(wi, wj) =

∫ 1

0

(w′iw
′
j + cwiwj)dx,

and

bj = f̃(wj) =

∫ 1

0

f(x)wj(x)dx.
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However, if the basis functions are simple enough, this can be done “by hand.” Otherwise,
numerical integration methods must be used, but there are some good ones.

Let us also remark that the proof of Theorem 10.1 also shows that the unique solution of
(DWF) is the unique minimizer of J over all functions in Va. It is also possible to compare
the approximate solution u(a) ∈ Va with the exact solution u ∈ V .

Theorem 10.2. Suppose c(x) ≥ 0 for all x ∈ [0, 1]. For every finite-dimensional subspace
Va (dim(Va) = n) of V , for every basis (w1, . . . , wn) of Va, the following properties hold:

(1) There is a unique function u(a) ∈ Va such that

a(u(a), v) = f̃(v), for all v ∈ Va, (DWF)

and if u(a) = u1w1 + · · · + unwn, then u = (u1, . . . , un) is the solution of the linear
system

Au = b, (∗)

with A = (aij) = (a(wi, wj)) and bj = f̃(wj), 1 ≤ i, j ≤ n. Furthermore, the matrix
A = (aij) is symmetric positive definite.

(2) The unique solution u(a) ∈ Va of (DWF) is the unique minimizer of J over Va, that is,

J(u(a)) = inf
v∈Va

J(v),

(3) There is a constant C independent of Va and of the unique solution u ∈ V of (WF),
such that ∥∥u− u(a)

∥∥
V
≤ C inf

v∈Va
‖u− v‖V .

We proved (1) and (2), but we will omit the proof of (3) which can be found in Ciarlet
[11].

Let us now give examples of the subspaces Va used in practice. They usually consist of
piecewise polynomial functions.

Pick an integer N ≥ 1 and subdivide [0, 1] into N + 1 intervals [xi, xi+1], where

xi = hi, h =
1

N + 1
, i = 0, . . . , N + 1.

We will use the following fact: every polynomial P (x) of degree 2m + 1 (m ≥ 0) is
completely determined by its values as well as the values of its first m derivatives at two
distinct points α, β ∈ R.
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There are various ways to prove this. One way is to use the Bernstein basis, because
the kth derivative of a polynomial is given by a formula in terms of its control points. For
example, for m = 1, every degree 3 polynomial can be written as

P (x) = (1− x)3 b0 + 3(1− x)2x b1 + 3(1− x)x2 b2 + x3 b3,

with b0, b1, b2, b3 ∈ R, and we showed that

P ′(0) = 3(b1 − b0)

P ′(1) = 3(b3 − b2).

Given P (0) and P (1), we determine b0 and b3, and from P ′(0) and P ′(1), we determine b1

and b2.

In general, for a polynomial of degree m written as

P (x) =
m∑

j=0

bjB
m
j (x)

in terms of the Bernstein basis (Bm
0 (x), . . . , Bm

m(x)) with

Bm
j (x) =

(
m

j

)
(1− x)m−jxj,

it can be shown that the kth derivative of P at zero is given by

P (k)(0) = m(m− 1) · · · (m− k + 1)

( k∑

i=0

(
k

i

)
(−1)k−i bi

)
,

and there is a similar formula for P (k)(1).

Actually, we need to use the Bernstein basis of polynomials Bm
k [r, s], where

Bm
j [r, s](x) =

(
m

j

)(
s− x
s− r

)m−j (
x− r
s− r

)j
,

with r < s, in which case

P (k)(0) =
m(m− 1) · · · (m− k + 1)

(s− r)k
( k∑

i=0

(
k

i

)
(−1)k−i bi

)
,

with a similar formula for P (k)(1). In our case, we set r = xi, s = xi+1.

Now, if the 2m+ 2 values

P (0), P (1)(0), . . . , P (m)(0), P (1), P (1)(1), . . . , P (m)(1)
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are given, we obtain a triangular system that determines uniquely the 2m+ 2 control points
b0, . . . , b2m+1.

Recall that Cm([0, 1]) denotes the set of Cm functions f on [0, 1], which means that
f, f (1), . . . , f (m) exist are are continuous on [0, 1].

We define the vector space V m
N as the subspace of Cm([0, 1]) consisting of all functions f

such that

1. f(0) = f(1) = 0.

2. The restriction of f to [xi, xi+1] is a polynomial of degree 2m+ 1, for i = 0, . . . , N .

Observe that the functions in V 0
N are the piecewise affine functions f with f(0) = f(1) =

0; an example is shown in Figure 10.2.

x

y

0 1ih

Figure 10.2: A piecewise affine function

This space has dimension N , and a basis consists of the “hat functions” wi, where the
only two nonflat parts of the graph of wi are the line segments from (xi−1, 0) to (xi, 1), and
from (xi, 1) to (xi+1, 0), for i = 1, . . . , N , see Figure 10.3.

The basis functions wi have a small support, which is good because in computing the
integrals giving a(wi, wj), we find that we get a tridiagonal matrix. They also have the nice
property that every function v ∈ V 0

N has the following expression on the basis (wi):

v(x) =
N∑

i=1

v(ih)wi(x), x ∈ [0, 1].
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x

y

ih(i − 1)h (i + 1)h

wi

Figure 10.3: A basis “hat function”

In general, it it not hard to see that V m
N has dimension mN + 2(m− 1).

Going back to our problem (the bending of a beam), assuming that c and f are constant
functions, it is not hard to show that the linear system (∗) becomes

1

h




2 + 2c
3
h2 −1 + c

6
h2

−1 + c
6
h2 2 + 2c

3
h2 −1 + c

6
h2

. . . . . . . . .

−1 + c
6
h2 2 + 2c

3
h2 −1 + c

6
h2

−1 + c
6
h2 2 + 2c

3
h2







u1

u2

...

uN−1

uN




= h




f

f

...

f

f




.

We can also find a basis of 2N + 2 cubic functions for V 1
N consisting of functions with

small support. This basis consists of the N functions w0
i and of the N + 2 functions w1

i
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uniquely determined by the following conditions:

w0
i (xj) = δij, 1 ≤ j ≤ N, 1 ≤ i ≤ N

(w0
i )
′(xj) = 0, 0 ≤ j ≤ N + 1, 1 ≤ i ≤ N

w1
i (xj) = 0, 1 ≤ j ≤ N, 0 ≤ i ≤ N + 1

(w1
i )
′(xj) = δij, 0 ≤ j ≤ N + 1, 0 ≤ i ≤ N + 1

with δij = 1 iff i = j and δij = 0 if i 6= j. Some of these functions are displayed in Figure
10.4. The function w0

i is given explicitly by

w0
i (x) =

1

h3
(x− (i− 1)h)2((2i+ 1)h− 2x), (i− 1)h ≤ x ≤ ih,

w0
i (x) =

1

h3
((i+ 1)h− x)2(2x− (2i− 1)h), ih ≤ x ≤ (i+ 1)h,

for i = 1, . . . , N . The function w1
j is given explicitly by

w1
j (x) = − 1

h2
(ih− x)(x− (i− 1)h)2, (i− 1)h ≤ x ≤ ih,

and

w1
j (x) =

1

h2
((i+ 1)h− x)2(x− ih), ih ≤ x ≤ (i+ 1)h,

for j = 0, . . . , N + 1. Furthermore, for every function v ∈ V 1
N , we have

v(x) =
N∑

i=1

v(ih)w0
i (x) +

N+1∑

j=0

v′jih)w1
j (x), x ∈ [0, 1].

If we order these basis functions as

w1
0, w

0
1, w

1
1, w

0
2, w

1
2, . . . , w

0
N , w

1
N , w

1
N+1,

we find that if c = 0, the matrix A of the system (∗) is tridiagonal by blocks, where the blocks
are 2× 2, 2× 1, or 1× 2 matrices, and with single entries in the top left and bottom right
corner. A different order of the basis vectors would mess up the tridiagonal block structure
of A. We leave the details as an exercise.

Let us now take a quick look at a two-dimensional problem, the bending of an elastic
membrane.
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x

y

ih jh

w0
i

w1
j

w1
0 w1

N+1

0 1

Figure 10.4: The basis functions w0
i and w1

j

10.2 A Two-Dimensional Problem: An Elastic

Membrane

Consider an elastic membrane attached to a round contour whose projection on the (x1, x2)-
plane is the boundary Γ of an open, connected, bounded region Ω in the (x1, x2)-plane, as
illustrated in Figure 10.5. In other words, we view the membrane as a surface consisting of
the set of points (x, z) given by an equation of the form

z = u(x),

with x = (x1, x2) ∈ Ω, where u : Ω → R is some sufficiently regular function, and we think
of u(x) as the vertical displacement of this membrane.

We assume that this membrane is under the action of a vertical force τf(x)dx per surface
element in the horizontal plane (where τ is the tension of the membrane). The problem is
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x1

x2

Γy

g(y)

Ω

u(x)

x

τf(x)dx

dx

Figure 10.5: An elastic membrane

to find the vertical displacement u as a function of x, for x ∈ Ω. It can be shown (under

some assumptions on Ω, Γ, and f), that u(x) is given by a PDE with boundary condition,
of the form

−∆u(x) = f(x), x ∈ Ω

u(x) = g(x), x ∈ Γ,

where g : Γ → R represents the height of the contour of the membrane. We are looking for
a function u in C2(Ω) ∩ C1(Ω). The operator ∆ is the Laplacian, and it is given by

∆u(x) =
∂2u

∂x2
1

(x) +
∂2u

∂x2
2

(x).

This is an example of a boundary problem, since the solution u of the PDE must satisfy the
condition u(x) = g(x) on the boundary of the domain Ω. The above equation is known as
Poisson’s equation, and when f = 0 as Laplace’s equation.

It can be proved that if the data f, g and Γ are sufficiently smooth, then the problem has
a unique solution.

To get a weak formulation of the problem, first we have to make the boundary condition
homogeneous, which means that g(x) = 0 on Γ. It turns out that g can be extended to the

whole of Ω as some sufficiently smooth function ĥ, so we can look for a solution of the form
u − ĥ, but for simplicity, let us assume that the contour of Ω lies in a plane parallel to the
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(x1, x2)- plane, so that g = 0. We let V be the subspace of C2(Ω) ∩ C1(Ω) consisting of
functions v such that v = 0 on Γ.

As before, we multiply the PDE by a test function v ∈ V , getting

−∆u(x)v(x) = f(x)v(x),

and we “integrate by parts.” In this case, this means that we use a version of Stokes formula
known as Green’s first identity , which says that

∫

Ω

−∆u v dx =

∫

Ω

(gradu) · (grad v) dx−
∫

Γ

(gradu) · n vdσ

(where n denotes the outward pointing unit normal to the surface). Because v = 0 on Γ, the
integral

∫
Γ

drops out, and we get an equation of the form

a(u, v) = f̃(v) for all v ∈ V,

where a is the bilinear form given by

a(u, v) =

∫

Ω

(
∂u

∂x1

∂v

∂x1

+
∂u

∂x2

∂v

∂x2

)
dx

and f̃ is the linear form given by

f̃(v) =

∫

Ω

fvdx.

We get the same equation as in section 10.2, but over a set of functions defined on a
two-dimensional domain. As before, we can choose a finite-dimensional subspace Va of V
and consider the discrete problem with respect to Va. Again, if we pick a basis (w1, . . . , wn)
of Va, a vector u = u1w1 + · · ·+ unwn is a solution of the Weak Formulation of our problem
iff u = (u1, . . . , un) is a solution of the linear system

Au = b,

with A = (a(wi, wj)) and b = (f̃(wj)). However, the integrals that give the entries in A and
b are much more complicated.

An approach to deal with this problem is the method of finite elements . The idea is
to also discretize the boundary curve Γ. If we assume that Γ is a polygonal line, then we
can triangulate the domain Ω, and then we consider spaces of functions which are piecewise
defined on the triangles of the triangulation of Ω. The simplest functions are piecewise affine
and look like tents erected above groups of triangles. Again, we can define base functions
with small support, so that the matrix A is tridiagonal by blocks.

The finite element method is a vast subject and it is presented in many books of various
degrees of difficulty and obscurity. Let us simply state three important requirements of the
finite element method:
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1. “Good” triangulations must be found. This in itself is a vast research topic. Delaunay
triangulations are good candidates.

2. “Good” spaces of functions must be found; typically piecewise polynomials and splines.

3. “Good” bases consisting of functions will small support must be found, so that integrals
can be easily computed and sparse banded matrices arise.

We now consider boundary problems where the solution varies with time.

10.3 Time-Dependent Boundary Problems: The Wave

Equation

Consider a homogeneous string (or rope) of constant cross-section, of length L, and stretched
(in a vertical plane) between its two ends which are assumed to be fixed and located along
the x-axis at x = 0 and at x = L.

Figure 10.6: A vibrating string

The string is subjected to a transverse force τf(x)dx per element of length dx (where
τ is the tension of the string). We would like to investigate the small displacements of the
string in the vertical plane, that is, how it vibrates.

Thus, we seek a function u(x, t) defined for t ≥ 0 and x ∈ [0, L], such that u(x, t)
represents the vertical deformation of the string at the abscissa x and at time t.

It can be shown that u must satisfy the following PDE

1

c2

∂2u

∂t2
(x, t)− ∂2u

∂x2
(x, t) = f(x, t), 0 < x < L, t > 0,

with c =
√
τ/ρ, where ρ is the linear density of the string, known as the one-dimensional

wave equation.
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Furthermore, the initial shape of the string is known at t = 0, as well as the distribution
of the initial velocities along the string; in other words, there are two functions ui,0 and ui,1
such that

u(x, 0) = ui,0(x), 0 ≤ x ≤ L,

∂u

∂t
(x, 0) = ui,1(x), 0 ≤ x ≤ L.

For example, if the string is simply released from its given starting position, we have ui,1 = 0.
Lastly, because the ends of the string are fixed, we must have

u(0, t) = u(L, t) = 0, t ≥ 0.

Consequently, we look for a function u : R+ × [0, L] → R satisfying the following condi-
tions:

1

c2

∂2u

∂t2
(x, t)− ∂2u

∂x2
(x, t) = f(x, t), 0 < x < L, t > 0,

u(0, t) = u(L, t) = 0, t ≥ 0 (boundary condition),

u(x, 0) = ui,0(x), 0 ≤ x ≤ L (intitial condition),

∂u

∂t
(x, 0) = ui,1(x), 0 ≤ x ≤ L (intitial condition).

This is an example of a time-dependent boundary-value problem, with two initial condi-
tions .

To simplify the problem, assume that f = 0, which amounts to neglecting the effect of
gravity. In this case, our PDE becomes

1

c2

∂2u

∂t2
(x, t)− ∂2u

∂x2
(x, t) = 0, 0 < x < L, t > 0,

Let us try our trick of multiplying by a test function v depending only on x, C1 on [0, L],
and such that v(0) = v(L) = 0, and integrate by parts. We get the equation

∫ L

0

∂2u

∂t2
(x, t)v(x)dx− c2

∫ L

0

∂2u

∂x2
(x, t)v(x)dx = 0.

For the first term, we get
∫ L

0

∂2u

∂t2
(x, t)v(x)dx =

∫ L

0

∂2

∂t2
[u(x, t)v(x)]dx

=
d2

dt2

∫ L

0

u(x, t)v(x)dx

=
d2

dt2
〈u, v〉,
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where 〈u, v〉 is the inner product in L2([0, L]). The fact that it is legitimate to move ∂2/∂t2

outside of the integral needs to be justified rigorously, but we won’t do it here.

For the second term, we get

−
∫ L

0

∂2u

∂x2
(x, t)v(x)dx = −

[
∂u

∂x
(x, t)v(x)

]x=L

x=0

+

∫ L

0

∂u

∂x
(x, t)

dv

dx
(x)dx,

and because v ∈ V , we have v(0) = v(L) = 0, so we obtain

−
∫ L

0

∂2u

∂x2
(x, t)v(x)dx =

∫ L

0

∂u

∂x
(x, t)

dv

dx
(x)dx.

Our integrated equation becomes

d2

dt2
〈u, v〉+ c2

∫ L

0

∂u

∂x
(x, t)

dv

dx
(x)dx = 0, for all v ∈ V and all t ≥ 0.

It is natural to introduce the bilinear form a : V × V → R given by

a(u, v) =

∫ L

0

∂u

∂x
(x, t)

∂v

∂x
(x, t)dx,

where, for every t ∈ R+, the functions u(x, t) and (v, t) belong to V . Actually, we have to
replace V by the subspace of the Sobolev space H1

0 (0, L) consisting of the functions such
that v(0) = v(L) = 0. Then, the weak formulation (variational formulation) of our problem
is this:

Find a function u ∈ V such that

d2

dt2
〈u, v〉+ a(u, v) = 0, for all v ∈ V and all t ≥ 0

u(x, 0) = ui,0(x), 0 ≤ x ≤ L (intitial condition),

∂u

∂t
(x, 0) = ui,1(x), 0 ≤ x ≤ L (intitial condition).

It can be shown that there is a positive constant α > 0 such that

a(u, u) ≥ α ‖u‖2
H1

0
for all v ∈ V

(Poincaré’s inequality), which shows that a is positive definite on V . The above method is
known as the method of Rayleigh-Ritz .

A study of the above equation requires some sophisticated tools of analysis which go
far beyond the scope of these notes. Let us just say that there is a countable sequence of
solutions with separated variables of the form

u
(1)
k = sin

(
kπx

L

)
cos

(
kπct

L

)
, u

(2)
k = sin

(
kπx

L

)
sin

(
kπct

L

)
, k ∈ N+,
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called modes (or normal modes). Complete solutions of the problem are series obtained by
combining the normal modes, and they are of the form

u(x, t) =
∞∑

k=1

sin

(
kπx

L

)(
Ak cos

(
kπct

L

)
+Bk sin

(
kπct

L

))
,

where the coefficients Ak, Bk are determined from the Fourier series of ui,0 and ui,1.

We now consider discrete approximations of our problem. As before, consider a finite
dimensional subspace Va of V and assume that we have approximations ua,0 and ua,1 of ui,0
and ui,1. If we pick a basis (w1, . . . , wn) of Va, then we can write our unknown function
u(x, t) as

u(x, t) = u1(t)w1 + · · ·+ un(t)wn,

where u1, . . . , un are functions of t. Then, if we write u = (u1, . . . , un), the discrete version
of our problem is

A
d2u

dt2
+Ku = 0,

u(x, 0) = ua,0(x), 0 ≤ x ≤ L,

∂u

∂t
(x, 0) = ua,1(x), 0 ≤ x ≤ L,

where A = (〈wi, wj〉) and K = (a(wi, wj)) are two symmetric matrices, called the mass
matrix and the stiffness matrix , respectively. In fact, because a and the inner product
〈−,−〉 are positive definite, these matrices are also positive definite.

We have made some progress since we now have a system of ODE’s, and we can solve it
by analogy with the scalar case. So, we look for solutions of the form U cosωt (or U sinωt),
where U is an n-dimensional vector. We find that we should have

(K − ω2A)U cosωt = 0,

which implies that ω must be a solution of the equation

KU = ω2AU.

Thus, we have to find some λ such that

KU = λAU,

a problem known as a generalized eigenvalue problem, since the ordinary eigenvalue problem
for K is

KU = λU.
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Fortunately, because A is SPD, we can reduce this generalized eigenvalue problem to a
standard eigenvalue problem. A good way to do so is to use a Cholesky decomposition of A
as

A = LL>,

where L is a lower triangular matrix (see Theorem 2.10). Because A is SPD, it is invertible,
so L is also invertible, and

KU = λAU = λLL>U

yields
L−1KU = λL>U,

which can also be written as

L−1K(L>)−1L>U = λL>U.

Then, if we make the change of variable

Y = L>U,

using the fact (L>)−1 = (L−1)>, the above equation is equivalent to

L−1K(L−1)>Y = λY,

a standard eigenvalue problem for the matrix K̂ = L−1K(L−1)>. Furthermore, we know

from Section 2.3 that since K is SPD and L−1 is invertible, the matrix K̂ = L−1K(L−1)> is
also SPD.

Consequently, K̂ has positive real eigenvalues (ω2
1, . . . , ω

2
n) (not necessarily distinct) and

it can be diagonalized with respect to an orthonormal basis of eigenvectors, say Y1, . . . ,Yn.
Then, since Y = L>U, the vectors

Ui = (L>)−1Yi, i = 1, . . . , n,

are linearly independent and are solutions of the generalized eigenvalue problem; that is,

KUi = ω2
iAUi, i = 1, . . . , n.

More is true. Because the vectors Y1, . . . ,Yn are orthonormal, and because Yi = L>Ui,
from

(Yi)>Yj = δij,

we get
(Ui)>LL>Uj = δij, 1 ≤ i, j ≤ n,

and since A = LL>, this yields

(Ui)>AUj = δij, 1 ≤ i, j ≤ n.
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This suggests defining the functions U i ∈ Va by

U i =
n∑

k=1

Ui
kwk.

Then, it immediate to check that

a(U i, U j) = (Ui)>AUj = δij,

which means that the functions (U1, . . . , Un) form an orthonormal basis of Va for the inner
product a. The functions U i ∈ Va are called modes (or modal vectors).

As a final step, let us look again for a solution of our discrete weak formulation of the
problem, this time expressing the unknown solution u(x, t) over the modal basis (U1, . . . , Un),
say

u =
n∑

j=1

ũj(t)U
j,

where each ũj is a function of t. Because

u =
n∑

j=1

ũj(t)U
j =

n∑

j=1

ũj(t)

(
n∑

k=1

Uj
kwk

)
=

n∑

k=1

(
n∑

j=1

ũj(t)U
j
k

)
wk,

if we write u = (u1, . . . , un) with uk =
∑n

j=1 ũj(t)U
j
k for k = 1, . . . , n, we see that

u =
n∑

j=1

ũjU
j,

so using the fact that
KUj = ω2

jAUj, j = 1, . . . , n,

the equation

A
d2u

dt2
+Ku = 0

yields
n∑

j=1

[(ũj)
′′ + ω2

j ũj]AUj = 0.

Since A is invertible and since (U1, . . . ,Un) are linearly independent, the vectors (AU1,
. . . , AUn) are linearly independent, and consequently we get the system of n ODEs’

(ũj)
′′ + ω2

j ũj = 0, 1 ≤ j ≤ n.

Each of these equation has a well-known solution of the form

ũj = Aj cosωjt+Bj sinωjt.
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Therefore, the solution of our approximation problem is given by

u =
n∑

j=1

(Aj cosωjt+Bj sinωjt)U
j,

and the constants Aj, Bj are obtained from the intial conditions

u(x, 0) = ua,0(x), 0 ≤ x ≤ L,

∂u

∂t
(x, 0) = ua,1(x), 0 ≤ x ≤ L,

by expressing ua,0 and ua,1 on the modal basis (U1, . . . , Un). Furthermore, the modal func-
tions (U1, . . . , Un) form an orthonormal basis of Va for the inner product a.

If we use the vector space V 0
N of piecewise affine functions, we find that the matrices A

and K are familar! Indeed,

A =
1

h




2 −1 0 0 0
−1 2 −1 0 0
...

. . . . . . . . .
...

0 0 −1 2 −1
0 0 0 −1 2




and

K =
h

6




4 1 0 0 0
1 4 1 0 0
...

. . . . . . . . .
...

0 0 1 4 1
0 0 0 1 4



.

To conclude this section, let us discuss briefly the wave equation for an elastic membrane,
as described in Section 10.2. This time, we look for a function u : R+ × Ω → R satisfying
the following conditions:

1

c2

∂2u

∂t2
(x, t)−∆u(x, t) = f(x, t), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ Γ, t ≥ 0 (boundary condition),

u(x, 0) = ui,0(x), x ∈ Ω (intitial condition),

∂u

∂t
(x, 0) = ui,1(x), x ∈ Ω (intitial condition).

Assuming that f = 0, we look for solutions in the subspace V of the Sobolev space H1
0 (Ω)

consisting of functions v such that v = 0 on Γ. Multiplying by a test function v ∈ V and
using Green’s first identity, we get the weak formulation of our problem:
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Find a function u ∈ V such that

d2

dt2
〈u, v〉+ a(u, v) = 0, for all v ∈ V and all t ≥ 0

u(x, 0) = ui,0(x), x ∈ Ω (intitial condition),

∂u

∂t
(x, 0) = ui,1(x), x ∈ Ω (intitial condition),

where a : V × V → R is the bilinear form given by

a(u, v) =

∫

Ω

(
∂u

∂x1

∂v

∂x1

+
∂u

∂x2

∂v

∂x2

)
dx,

and

〈u, v〉 =

∫

Ω

uvdx.

As usual, we find approximations of our problem by using finite dimensional subspaces
Va of V . Picking some basis (w1, . . . , wn) of Va, and triangulating Ω, as before, we obtain
the equation

A
d2u

dt2
+Ku = 0,

u(x, 0) = ua,0(x), x ∈ Γ,

∂u

∂t
(x, 0) = ua,1(x), x ∈ Γ,

where A = (〈wi, wj〉) and K = (a(wi, wj)) are two symmetric positive definite matrices.

In principle, the problem is solved, but, it may be difficult to find good spaces Va, good
triangulations of Ω, and good bases of Va, to be able to compute the matrices A and K, and
to ensure that they are sparse.



Chapter 11

Singular Value Decomposition and
Polar Form

11.1 The Four Fundamental Subspaces

In this section we assume that we are dealing with a real Euclidean space E. Let f : E → E
be any linear map. In general, it may not be possible to diagonalize f . We show that every
linear map can be diagonalized if we are willing to use two orthonormal bases. This is the
celebrated singular value decomposition (SVD). A close cousin of the SVD is the polar form
of a linear map, which shows how a linear map can be decomposed into its purely rotational
component (perhaps with a flip) and its purely stretching part.

The key observation is that f ∗ ◦ f is self-adjoint, since

〈(f ∗ ◦ f)(u), v〉 = 〈f(u), f(v)〉 = 〈u, (f ∗ ◦ f)(v)〉.

Similarly, f ◦ f ∗ is self-adjoint.

The fact that f ∗ ◦ f and f ◦ f ∗ are self-adjoint is very important, because it implies that
f ∗ ◦ f and f ◦ f ∗ can be diagonalized and that they have real eigenvalues. In fact, these
eigenvalues are all nonnegative. Indeed, if u is an eigenvector of f ∗ ◦ f for the eigenvalue λ,
then

〈(f ∗ ◦ f)(u), u〉 = 〈f(u), f(u)〉
and

〈(f ∗ ◦ f)(u), u〉 = λ〈u, u〉,
and thus

λ〈u, u〉 = 〈f(u), f(u)〉,
which implies that λ ≥ 0, since 〈−,−〉 is positive definite. A similar proof applies to f ◦ f ∗.
Thus, the eigenvalues of f ∗ ◦ f are of the form σ2

1, . . . , σ
2
r or 0, where σi > 0, and similarly

for f ◦ f ∗. The situation is even better, since we will show shortly that f ∗ ◦ f and f ◦ f ∗
have the same eigenvalues.

267
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Remark: Given any two linear maps f : E → F and g : F → E, where dim(E) = n and
dim(F ) = m, it can be shown that

(−λ)m det(g ◦ f − λ In) = (−λ)n det(f ◦ g − λ Im),

and thus g ◦ f and f ◦ g always have the same nonzero eigenvalues!

Definition 11.1. The square roots σi > 0 of the positive eigenvalues of f ∗ ◦ f (and f ◦ f ∗)
are called the singular values of f .

Definition 11.2. A self-adjoint linear map f : E → E whose eigenvalues are nonnegative is
called positive semidefinite (or positive), and if f is also invertible, f is said to be positive
definite. In the latter case, every eigenvalue of f is strictly positive.

We just showed that f ∗ ◦ f and f ◦ f ∗ are positive semidefinite self-adjoint linear maps.
This fact has the remarkable consequence that every linear map has two important decom-
positions:

1. The polar form.

2. The singular value decomposition (SVD).

The wonderful thing about the singular value decomposition is that there exist two or-
thonormal bases (u1, . . . , un) and (v1, . . . , vn) such that, with respect to these bases, f is
a diagonal matrix consisting of the singular values of f , or 0. Thus, in some sense, f can
always be diagonalized with respect to two orthonormal bases. The SVD is also a useful tool
for solving overdetermined linear systems in the least squares sense and for data analysis, as
we show later on.

First, we show some useful relationships between the kernels and the images of f , f ∗,
f ∗ ◦ f , and f ◦ f ∗. Recall that if f : E → F is a linear map, the image Im f of f is the
subspace f(E) of F , and the rank of f is the dimension dim(Im f) of its image. Also recall
that (Theorem 3.11)

dim (Ker f) + dim (Im f) = dim (E),

and that (Propositions 6.5 and 7.4) for every subspace W of E,

dim (W ) + dim (W⊥) = dim (E).

Proposition 11.1. Given any two Euclidean spaces E and F , where E has dimension n
and F has dimension m, for any linear map f : E → F , we have

Ker f = Ker (f ∗ ◦ f),

Ker f ∗ = Ker (f ◦ f ∗),
Ker f = (Im f ∗)⊥,

Ker f ∗ = (Im f)⊥,

dim(Im f) = dim(Im f ∗),

and f , f ∗, f ∗ ◦ f , and f ◦ f ∗ have the same rank.
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Proof. To simplify the notation, we will denote the inner products on E and F by the same
symbol 〈−,−〉 (to avoid subscripts). If f(u) = 0, then (f ∗ ◦ f)(u) = f ∗(f(u)) = f ∗(0) = 0,
and so Ker f ⊆ Ker (f ∗ ◦ f). By definition of f ∗, we have

〈f(u), f(u)〉 = 〈(f ∗ ◦ f)(u), u〉

for all u ∈ E. If (f ∗ ◦ f)(u) = 0, since 〈−,−〉 is positive definite, we must have f(u) = 0,
and so Ker (f ∗ ◦ f) ⊆ Ker f . Therefore,

Ker f = Ker (f ∗ ◦ f).

The proof that Ker f ∗ = Ker (f ◦ f ∗) is similar.

By definition of f ∗, we have

〈f(u), v〉 = 〈u, f ∗(v)〉 for all u ∈ E and all v ∈ F . (∗)

This immediately implies that

Ker f = (Im f ∗)⊥ and Ker f ∗ = (Im f)⊥.

Let us explain why Ker f = (Im f ∗)⊥, the proof of the other equation being similar.

Because the inner product is positive definite, for every u ∈ E, we have
u ∈ Ker f
iff f(u) = 0
iff 〈f(u), v〉 = 0 for all v,
by (∗) iff 〈u, f ∗(v)〉 = 0 for all v,
iff u ∈ (Im f ∗)⊥.

Since
dim(Im f) = n− dim(Ker f)

and
dim(Im f ∗) = n− dim((Im f ∗)⊥),

from
Ker f = (Im f ∗)⊥

we also have
dim(Ker f) = dim((Im f ∗)⊥),

from which we obtain
dim(Im f) = dim(Im f ∗).

Since
dim(Ker (f ∗ ◦ f)) + dim(Im (f ∗ ◦ f)) = dim(E),

Ker (f ∗ ◦ f) = Ker f and Ker f = (Im f ∗)⊥, we get

dim((Im f ∗)⊥) + dim(Im (f ∗ ◦ f)) = dim(E).
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Since

dim((Im f ∗)⊥) + dim(Im f ∗) = dim(E),

we deduce that

dim(Im f) = dim(Im (f ∗ ◦ f)).

A similar proof shows that

dim(Im f ∗) = dim(Im (f ◦ f ∗)).

Consequently, f , f ∗, f ∗ ◦ f , and f ◦ f ∗ have the same rank.

Since the matrix representing f ∗ with respect to an orthonormal basis is the transpose of
the matrix representing f (see Proposition 6.6), Proposition 11.1 gives a short proof of the
fundamental fact that a matrix A and its transpose A> have the same rank.

Proposition 11.1 reveals that the four spaces

Im f, Im f ∗, Ker f, Ker f ∗

play a special role. They are often called the fundamental subspaces associated with f . These
spaces are related in an intimate manner, since Proposition 11.1 shows that

Ker f = (Im f ∗)⊥

Ker f ∗ = (Im f)⊥,

and that

rk(f) = rk(f ∗).

It is instructive to translate these relations in terms of matrices (actually, certain linear
algebra books make a big deal about this!). If dim(E) = n and dim(F ) = m, given an
orthonormal basis (u1, . . . , un) of E and an orthonormal basis (v1, . . . , vm) of F , we know
that f is represented by an m× n matrix A = (ai j), where the jth column of A is equal to
f(uj) over the basis (v1, . . . , vm). Furthermore, the transpose map f ∗ is represented by the
n×m matrix A>. Consequently, the four fundamental spaces

Im f, Im f ∗, Ker f, Ker f ∗

correspond to

(1) The column space of A, denoted by ImA or R(A); this is the subspace of Rm spanned
by the columns of A, which corresponds to image Im f of f .

(2) The kernel or nullspace of A, denoted by KerA or N (A); this is the subspace of Rn

consisting of all vectors x ∈ Rn such that Ax = 0.
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(3) The row space of A, denoted by ImA> or R(A>); this is the subspace of Rn spanned
by the rows of A, or equivalently, spanned by the columns of A>, which corresponds
to image Im f ∗ of f ∗.

(4) The left kernel or left nullspace of A denoted by KerA> or N (A>); this is the kernel
(nullspace) of A>, the subspace of Rm consisting of all vectors y ∈ Rm such that
A>y = 0, or equivalently, y>A = 0.

Recall that the dimension r of Im f , which is also equal to the dimension of the column
space ImA = R(A), is the rank of A (and f). Then, some our previous results can be
reformulated as follows:

1. The column space R(A) of A has dimension r.

2. The nullspace N (A) of A has dimension n− r.

3. The row space R(A>) has dimension r.

4. The left nullspace N (A>) of A has dimension m− r.

The above statements constitute what Strang calls the Fundamental Theorem of Linear
Algebra, Part I (see Strang [53]).

The two statements

Ker f = (Im f ∗)⊥

Ker f ∗ = (Im f)⊥

translate to

(1) The nullspace of A is the orthogonal of the row space of A.

(2) The left nullspace of A is the orthogonal of the column space of A.

The above statements constitute what Strang calls the Fundamental Theorem of Linear
Algebra, Part II (see Strang [53]).

Since (2) is equivalent to the fact that the column space of A is equal to the orthogonal
of the left nullspace of A, we get the following criterion for the solvability of an equation of
the form Ax = b:

The equation Ax = b has a solution iff for all y ∈ Rm, if A>y = 0, then y>b = 0.

Indeed, the condition on the right-hand side says that b is orthogonal to the left nullspace
of A, that is, that b belongs to the column space of A.
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This criterion can be cheaper to check that checking directly that b is spanned by the
columns of A. For example, if we consider the system

x1 − x2 = b1

x2 − x3 = b2

x3 − x1 = b3

which, in matrix form, is written Ax = b as below:




1 −1 0
0 1 −1
−1 0 1





x1

x2

x3


 =



b1

b2

b3


 ,

we see that the rows of the matrix A add up to 0. In fact, it is easy to convince ourselves that
the left nullspace of A is spanned by y = (1, 1, 1), and so the system is solvable iff y>b = 0,
namely

b1 + b2 + b3 = 0.

Note that the above criterion can also be stated negatively as follows:

The equation Ax = b has no solution iff there is some y ∈ Rm such that A>y = 0 and
y>b 6= 0.

11.2 Singular Value Decomposition for

Square Matrices

We will now prove that every square matrix has an SVD. Stronger results can be obtained
if we first consider the polar form and then derive the SVD from it (there are uniqueness
properties of the polar decomposition). For our purposes, uniqueness results are not as
important so we content ourselves with existence results, whose proofs are simpler. Readers
interested in a more general treatment are referred to [23].

The early history of the singular value decomposition is described in a fascinating paper
by Stewart [50]. The SVD is due to Beltrami and Camille Jordan independently (1873,
1874). Gauss is the grandfather of all this, for his work on least squares (1809, 1823)
(but Legendre also published a paper on least squares!). Then come Sylvester, Schmidt, and
Hermann Weyl. Sylvester’s work was apparently “opaque.” He gave a computational method
to find an SVD. Schmidt’s work really has to do with integral equations and symmetric and
asymmetric kernels (1907). Weyl’s work has to do with perturbation theory (1912). Autonne
came up with the polar decomposition (1902, 1915). Eckart and Young extended SVD to
rectangular matrices (1936, 1939).

Theorem 11.2. (Singular value decomposition) For every real n×n matrix A there are two
orthogonal matrices U and V and a diagonal matrix D such that A = V DU>, where D is of
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the form

D =




σ1 . . .
σ2 . . .

...
...

. . .
...

. . . σn


 ,

where σ1, . . . , σr are the singular values of f , i.e., the (positive) square roots of the nonzero
eigenvalues of A>A and AA>, and σr+1 = · · · = σn = 0. The columns of U are eigenvectors
of A>A, and the columns of V are eigenvectors of AA>.

Proof. Since A>A is a symmetric matrix, in fact, a positive semidefinite matrix, there exists
an orthogonal matrix U such that

A>A = UD2U>,

with D = diag(σ1, . . . , σr, 0, . . . , 0), where σ2
1, . . . , σ

2
r are the nonzero eigenvalues of A>A,

and where r is the rank of A; that is, σ1, . . . , σr are the singular values of A. It follows that

U>A>AU = (AU)>AU = D2,

and if we let fj be the jth column of AU for j = 1, . . . , n, then we have

〈fi, fj〉 = σ2
i δij, 1 ≤ i, j ≤ r

and
fj = 0, r + 1 ≤ j ≤ n.

If we define (v1, . . . , vr) by
vj = σ−1

j fj, 1 ≤ j ≤ r,

then we have
〈vi, vj〉 = δij, 1 ≤ i, j ≤ r,

so complete (v1, . . . , vr) into an orthonormal basis (v1, . . . , vr, vr+1, . . . , vn) (for example,
using Gram–Schmidt). Now, since fj = σjvj for j = 1 . . . , r, we have

〈vi, fj〉 = σj〈vi, vj〉 = σjδi,j, 1 ≤ i ≤ n, 1 ≤ j ≤ r

and since fj = 0 for j = r + 1, . . . , n,

〈vi, fj〉 = 0 1 ≤ i ≤ n, r + 1 ≤ j ≤ n.

If V is the matrix whose columns are v1, . . . , vn, then V is orthogonal and the above equations
prove that

V >AU = D,

which yields A = V DU>, as required.
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The equation A = V DU> implies that

A>A = UD2U>, AA> = V D2V >,

which shows that A>A and AA> have the same eigenvalues, that the columns of U are
eigenvectors of A>A, and that the columns of V are eigenvectors of AA>.

Theorem 11.2 suggests the following definition.

Definition 11.3. A triple (U,D, V ) such that A = V DU>, where U and V are orthogonal
and D is a diagonal matrix whose entries are nonnegative (it is positive semidefinite) is called
a singular value decomposition (SVD) of A.

The proof of Theorem 11.2 shows that there are two orthonormal bases (u1, . . . , un) and
(v1, . . . , vn), where (u1, . . . , un) are eigenvectors of A>A and (v1, . . . , vn) are eigenvectors
of AA>. Furthermore, (u1, . . . , ur) is an orthonormal basis of ImA>, (ur+1, . . . , un) is an
orthonormal basis of KerA, (v1, . . . , vr) is an orthonormal basis of ImA, and (vr+1, . . . , vn)
is an orthonormal basis of KerA>.

Using a remark made in Chapter 1, if we denote the columns of U by u1, . . . , un and the
columns of V by v1, . . . , vn, then we can write

A = V DU> = σ1v1u
>
1 + · · ·+ σrvru

>
r .

As a consequence, if r is a lot smaller than n (we write r � n), we see that A can be
reconstructed from U and V using a much smaller number of elements. This idea will be
used to provide “low-rank” approximations of a matrix. The idea is to keep only the k top
singular values for some suitable k � r for which σk+1, . . . σr are very small.

Remarks:

(1) In Strang [53] the matrices U, V,D are denoted by U = Q2, V = Q1, and D = Σ, and
an SVD is written as A = Q1ΣQ>2 . This has the advantage that Q1 comes before Q2 in
A = Q1ΣQ>2 . This has the disadvantage that A maps the columns of Q2 (eigenvectors
of A>A) to multiples of the columns of Q1 (eigenvectors of AA>).

(2) Algorithms for actually computing the SVD of a matrix are presented in Golub and
Van Loan [26], Demmel [14], and Trefethen and Bau [56], where the SVD and its
applications are also discussed quite extensively.

(3) The SVD also applies to complex matrices. In this case, for every complex n×n matrix
A, there are two unitary matrices U and V and a diagonal matrix D such that

A = V DU∗,

where D is a diagonal matrix consisting of real entries σ1, . . . , σn, where σ1, . . . , σr are
the singular values of A, i.e., the positive square roots of the nonzero eigenvalues of
A∗A and AA∗, and σr+1 = . . . = σn = 0.
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A notion closely related to the SVD is the polar form of a matrix.

Definition 11.4. A pair (R, S) such that A = RS with R orthogonal and S symmetric
positive semidefinite is called a polar decomposition of A.

Theorem 11.2 implies that for every real n×n matrix A, there is some orthogonal matrix
R and some positive semidefinite symmetric matrix S such that

A = RS.

This is easy to show and we will prove it below. Furthermore, R, S are unique if A is
invertible, but this is harder to prove.

For example, the matrix

A =
1

2




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1




is both orthogonal and symmetric, and A = RS with R = A and S = I, which implies that
some of the eigenvalues of A are negative.

Remark: In the complex case, the polar decomposition states that for every complex n×n
matrix A, there is some unitary matrix U and some positive semidefinite Hermitian matrix
H such that

A = UH.

It is easy to go from the polar form to the SVD, and conversely.

Given an SVD decomposition A = V DU>, let R = V U> and S = UDU>. It is clear
that R is orthogonal and that S is positive semidefinite symmetric, and

RS = V U>UDU> = V DU> = A.

Going the other way, given a polar decomposition A = R1S, where R1 is orthogonal
and S is positive semidefinite symmetric, there is an orthogonal matrix R2 and a positive
semidefinite diagonal matrix D such that S = R2DR>2 , and thus

A = R1R2DR>2 = V DU>,

where V = R1R2 and U = R2 are orthogonal.
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The eigenvalues and the singular values of a matrix are typically not related in any
obvious way. For example, the n× n matrix

A =




1 2 0 0 . . . 0 0
0 1 2 0 . . . 0 0
0 0 1 2 . . . 0 0
...

...
. . . . . . . . .

...
...

0 0 . . . 0 1 2 0
0 0 . . . 0 0 1 2
0 0 . . . 0 0 0 1




has the eigenvalue 1 with multiplicity n, but its singular values, σ1 ≥ · · · ≥ σn, which are
the positive square roots of the eigenvalues of the matrix B = A>A with

B =




1 2 0 0 . . . 0 0
2 5 2 0 . . . 0 0
0 2 5 2 . . . 0 0
...

...
. . . . . . . . .

...
...

0 0 . . . 2 5 2 0
0 0 . . . 0 2 5 2
0 0 . . . 0 0 2 5




have a wide spread, since
σ1

σn
= cond2(A) ≥ 2n−1.

If A is a complex n× n matrix, the eigenvalues λ1, . . . , λn and the singular values
σ1 ≥ σ2 ≥ · · · ≥ σn of A are not unrelated, since

σ2
1 · · ·σ2

n = det(A∗A) = | det(A)|2

and
|λ1| · · · |λn| = | det(A)|,

so we have
|λ1| · · · |λn| = σ1 · · · σn.

More generally, Hermann Weyl proved the following remarkable theorem:

Theorem 11.3. (Weyl’s inequalities, 1949 ) For any complex n×n matrix, A, if λ1, . . . , λn ∈
C are the eigenvalues of A and σ1, . . . , σn ∈ R+ are the singular values of A, listed so that
|λ1| ≥ · · · ≥ |λn| and σ1 ≥ · · · ≥ σn ≥ 0, then

|λ1| · · · |λn| = σ1 · · ·σn and

|λ1| · · · |λk| ≤ σ1 · · · σk, for k = 1, . . . , n− 1.
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A proof of Theorem 11.3 can be found in Horn and Johnson [31], Chapter 3, Section
3.3, where more inequalities relating the eigenvalues and the singular values of a matrix are
given.

Theorem 11.2 can be easily extended to rectangular m × n matrices, as we show in the
next section (for various versions of the SVD for rectangular matrices, see Strang [53] Golub
and Van Loan [26], Demmel [14], and Trefethen and Bau [56]).

11.3 Singular Value Decomposition for

Rectangular Matrices

Here is the generalization of Theorem 11.2 to rectangular matrices.

Theorem 11.4. (Singular value decomposition) For every real m × n matrix A, there are
two orthogonal matrices U (n×n) and V (m×m) and a diagonal m×n matrix D such that
A = V DU>, where D is of the form

D =




σ1 . . .
σ2 . . .

...
...

. . .
...

. . . σn

0
... . . . 0

...
...

. . .
...

0
... . . . 0




or D =




σ1 . . . 0 . . . 0
σ2 . . . 0 . . . 0

...
...

. . .
... 0

... 0
. . . σm 0 . . . 0


 ,

where σ1, . . . , σr are the singular values of f , i.e. the (positive) square roots of the nonzero
eigenvalues of A>A and AA>, and σr+1 = . . . = σp = 0, where p = min(m,n). The columns
of U are eigenvectors of A>A, and the columns of V are eigenvectors of AA>.

Proof. As in the proof of Theorem 11.2, since A>A is symmetric positive semidefinite, there
exists an n× n orthogonal matrix U such that

A>A = UΣ2U>,

with Σ = diag(σ1, . . . , σr, 0, . . . , 0), where σ2
1, . . . , σ

2
r are the nonzero eigenvalues of A>A,

and where r is the rank of A. Observe that r ≤ min{m,n}, and AU is an m× n matrix. It
follows that

U>A>AU = (AU)>AU = Σ2,

and if we let fj ∈ Rm be the jth column of AU for j = 1, . . . , n, then we have

〈fi, fj〉 = σ2
i δij, 1 ≤ i, j ≤ r
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and
fj = 0, r + 1 ≤ j ≤ n.

If we define (v1, . . . , vr) by
vj = σ−1

j fj, 1 ≤ j ≤ r,

then we have
〈vi, vj〉 = δij, 1 ≤ i, j ≤ r,

so complete (v1, . . . , vr) into an orthonormal basis (v1, . . . , vr, vr+1, . . . , vm) (for example,
using Gram–Schmidt).

Now, since fj = σjvj for j = 1 . . . , r, we have

〈vi, fj〉 = σj〈vi, vj〉 = σjδi,j, 1 ≤ i ≤ m, 1 ≤ j ≤ r

and since fj = 0 for j = r + 1, . . . , n, we have

〈vi, fj〉 = 0 1 ≤ i ≤ m, r + 1 ≤ j ≤ n.

If V is the matrix whose columns are v1, . . . , vm, then V is an m×m orthogonal matrix and
if m ≥ n, we let

D =

(
Σ

0m−n

)
=




σ1 . . .
σ2 . . .

...
...

. . .
...

. . . σn

0
... . . . 0

...
...

. . .
...

0
... . . . 0




,

else if n ≥ m, then we let

D =




σ1 . . . 0 . . . 0
σ2 . . . 0 . . . 0

...
...

. . .
... 0

... 0
. . . σm 0 . . . 0


 .

In either case, the above equations prove that

V >AU = D,

which yields A = V DU>, as required.

The equation A = V DU> implies that

A>A = UD>DU> = Udiag(σ2
1, . . . , σ

2
r , 0, . . . , 0︸ ︷︷ ︸

n−r

)U>
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and
AA> = V DD>V > = V diag(σ2

1, . . . , σ
2
r , 0, . . . , 0︸ ︷︷ ︸

m−r

)V >,

which shows that A>A and AA> have the same nonzero eigenvalues, that the columns of U
are eigenvectors of A>A, and that the columns of V are eigenvectors of AA>.

A triple (U,D, V ) such that A = V DU> is called a singular value decomposition (SVD)
of A.

Even though the matrix D is an m×n rectangular matrix, since its only nonzero entries
are on the descending diagonal, we still say that D is a diagonal matrix.

If we view A as the representation of a linear map f : E → F , where dim(E) = n and
dim(F ) = m, the proof of Theorem 11.4 shows that there are two orthonormal bases (u1, . . .,
un) and (v1, . . . , vm) for E and F , respectively, where (u1, . . . , un) are eigenvectors of f ∗ ◦ f
and (v1, . . . , vm) are eigenvectors of f ◦f ∗. Furthermore, (u1, . . . , ur) is an orthonormal basis
of Im f ∗, (ur+1, . . . , un) is an orthonormal basis of Ker f , (v1, . . . , vr) is an orthonormal basis
of Im f , and (vr+1, . . . , vm) is an orthonormal basis of Ker f ∗.

The SVD of matrices can be used to define the pseudo-inverse of a rectangular matrix; we
will do so in Chapter 12. The reader may also consult Strang [53], Demmel [14], Trefethen
and Bau [56], and Golub and Van Loan [26].

One of the spectral theorems states that a symmetric matrix can be diagonalized by
an orthogonal matrix. There are several numerical methods to compute the eigenvalues
of a symmetric matrix A. One method consists in tridiagonalizing A, which means that
there exists some orthogonal matrix P and some symmetric tridiagonal matrix T such that
A = PTP>. In fact, this can be done using Householder transformations. It is then possible
to compute the eigenvalues of T using a bisection method based on Sturm sequences. One
can also use Jacobi’s method. For details, see Golub and Van Loan [26], Chapter 8, Demmel
[14], Trefethen and Bau [56], Lecture 26, or Ciarlet [11]. Computing the SVD of a matrix A is
more involved. Most methods begin by finding orthogonal matrices U and V and a bidiagonal
matrix B such that A = V BU>. This can also be done using Householder transformations.
Observe that B>B is symmetric tridiagonal. Thus, in principle, the previous method to
diagonalize a symmetric tridiagonal matrix can be applied. However, it is unwise to compute
B>B explicitly, and more subtle methods are used for this last step. Again, see Golub and
Van Loan [26], Chapter 8, Demmel [14], and Trefethen and Bau [56], Lecture 31.

The polar form has applications in continuum mechanics. Indeed, in any deformation it
is important to separate stretching from rotation. This is exactly what QS achieves. The
orthogonal part Q corresponds to rotation (perhaps with an additional reflection), and the
symmetric matrix S to stretching (or compression). The real eigenvalues σ1, . . . , σr of S are
the stretch factors (or compression factors) (see Marsden and Hughes [40]). The fact that
S can be diagonalized by an orthogonal matrix corresponds to a natural choice of axes, the
principal axes.
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The SVD has applications to data compression, for instance in image processing. The
idea is to retain only singular values whose magnitudes are significant enough. The SVD
can also be used to determine the rank of a matrix when other methods such as Gaussian
elimination produce very small pivots. One of the main applications of the SVD is the
computation of the pseudo-inverse. Pseudo-inverses are the key to the solution of various
optimization problems, in particular the method of least squares. This topic is discussed in
the next chapter (Chapter 12). Applications of the material of this chapter can be found in
Strang [53, 52]; Ciarlet [11]; Golub and Van Loan [26], which contains many other references;
Demmel [14]; and Trefethen and Bau [56].

11.4 Ky Fan Norms and Schatten Norms

The singular values of a matrix can be used to define various norms on matrices which
have found recent applications in quantum information theory and in spectral graph theory.
Following Horn and Johnson [31] (Section 3.4) we can make the following definitions:

Definition 11.5. For any matrix A ∈ Mm,n(C), let q = min{m,n}, and if σ1 ≥ · · · ≥ σq are
the singular values of A, for any k with 1 ≤ k ≤ q, let

Nk(A) = σ1 + · · ·+ σk,

called the Ky Fan k-norm of A.

More generally, for any p ≥ 1 and any k with 1 ≤ k ≤ q, let

Nk;p(A) = (σp1 + · · ·+ σpk)
1/p,

called the Ky Fan p-k-norm of A. When k = q, Nq;p is also called the Schatten p-norm.

Observe that when k = 1, N1(A) = σ1, and the Ky Fan norm N1 is simply the spectral
norm from Chapter 5, which is the subordinate matrix norm associated with the Euclidean
norm. When k = q, the Ky Fan norm Nq is given by

Nq(A) = σ1 + · · ·+ σq = tr((A∗A)1/2)

and is called the trace norm or nuclear norm. When p = 2 and k = q, the Ky Fan Nq;2 norm
is given by

Nk;2(A) = (σ2
1 + · · ·+ σ2

q )
1/2 =

√
tr(A∗A) = ‖A‖F ,

which is the Frobenius norm of A.

It can be shown that Nk and Nk;p are unitarily invariant norms, and that when m = n,
they are matrix norms; see Horn and Johnson [31] (Section 3.4, Corollary 3.4.4 and Problem
3).
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11.5 Summary

The main concepts and results of this chapter are listed below:

• For any linear map f : E → E on a Euclidean space E, the maps f ∗ ◦ f and f ◦ f ∗ are
self-adjoint and positive semidefinite.

• The singular values of a linear map.

• Positive semidefinite and positive definite self-adjoint maps.

• Relationships between Im f , Ker f , Im f ∗, and Ker f ∗.

• The singular value decomposition theorem for square matrices (Theorem 11.2).

• The SVD of matrix.

• The polar decomposition of a matrix.

• The Weyl inequalities .

• The singular value decomposition theorem for m× n matrices (Theorem 11.4).

• Ky Fan k-norms, Ky Fan p-k-norms, Schatten p-norms.
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Chapter 12

Applications of SVD and
Pseudo-Inverses

De tous les principes qu’on peut proposer pour cet objet, je pense qu’il n’en est pas de
plus général, de plus exact, ni d’une application plus facile, que celui dont nous avons
fait usage dans les recherches précédentes, et qui consiste à rendre minimum la somme
des carrés des erreurs. Par ce moyen il s’établit entre les erreurs une sorte d’équilibre
qui, empêchant les extrêmes de prévaloir, est très propre à faire connaitre l’état du
système le plus proche de la vérité.

—Legendre, 1805, Nouvelles Méthodes pour la détermination des Orbites des
Comètes

12.1 Least Squares Problems and the Pseudo-Inverse

This chapter presents several applications of SVD. The first one is the pseudo-inverse, which
plays a crucial role in solving linear systems by the method of least squares. The second ap-
plication is data compression. The third application is principal component analysis (PCA),
whose purpose is to identify patterns in data and understand the variance–covariance struc-
ture of the data. The fourth application is the best affine approximation of a set of data, a
problem closely related to PCA.

The method of least squares is a way of “solving” an overdetermined system of linear
equations

Ax = b,

i.e., a system in which A is a rectangular m×n matrix with more equations than unknowns
(when m > n). Historically, the method of least squares was used by Gauss and Legendre
to solve problems in astronomy and geodesy. The method was first published by Legendre
in 1805 in a paper on methods for determining the orbits of comets. However, Gauss had
already used the method of least squares as early as 1801 to determine the orbit of the asteroid

283
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Ceres, and he published a paper about it in 1810 after the discovery of the asteroid Pallas.
Incidentally, it is in that same paper that Gaussian elimination using pivots is introduced.

The reason why more equations than unknowns arise in such problems is that repeated
measurements are taken to minimize errors. This produces an overdetermined and often
inconsistent system of linear equations. For example, Gauss solved a system of eleven equa-
tions in six unknowns to determine the orbit of the asteroid Pallas. As a concrete illustration,
suppose that we observe the motion of a small object, assimilated to a point, in the plane.
From our observations, we suspect that this point moves along a straight line, say of equation
y = dx+ c. Suppose that we observed the moving point at three different locations (x1, y1),
(x2, y2), and (x3, y3). Then we should have

c+ dx1 = y1,

c+ dx2 = y2,

c+ dx3 = y3.

If there were no errors in our measurements, these equations would be compatible, and c
and d would be determined by only two of the equations. However, in the presence of errors,
the system may be inconsistent. Yet we would like to find c and d!

The idea of the method of least squares is to determine (c, d) such that it minimizes the
sum of the squares of the errors, namely,

(c+ dx1 − y1)2 + (c+ dx2 − y2)2 + (c+ dx3 − y3)2.

In general, for an overdetermined m×n system Ax = b, what Gauss and Legendre discovered
is that there are solutions x minimizing

‖Ax− b‖2
2

(where ‖u‖2
2 = u2

1 +· · ·+u2
n, the square of the Euclidean norm of the vector u = (u1, . . . , un)),

and that these solutions are given by the square n× n system

A>Ax = A>b,

called the normal equations . Furthermore, when the columns of A are linearly independent,
it turns out that A>A is invertible, and so x is unique and given by

x = (A>A)−1A>b.

Note that A>A is a symmetric matrix, one of the nice features of the normal equations of a
least squares problem. For instance, the normal equations for the above problem are

(
3 x1 + x2 + x3

x1 + x2 + x3 x2
1 + x2

2 + x2
3

)(
c
d

)
=

(
y1 + y2 + y3

x1y1 + x2y2 + x3y3

)
.

In fact, given any real m × n matrix A, there is always a unique x+ of minimum norm
that minimizes ‖Ax− b‖2

2, even when the columns of A are linearly dependent. How do we
prove this, and how do we find x+?
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Theorem 12.1. Every linear system Ax = b, where A is an m × n matrix, has a unique
least squares solution x+ of smallest norm.

Proof. Geometry offers a nice proof of the existence and uniqueness of x+. Indeed, we can
interpret b as a point in the Euclidean (affine) space Rm, and the image subspace of A (also
called the column space of A) as a subspace U of Rm (passing through the origin). Then, it
is clear that

inf
x∈Rn
‖Ax− b‖2

2 = inf
y∈U
‖y − b‖2

2,

with U = ImA, and we claim that x minimizes ‖Ax− b‖2
2 iff Ax = p, where p the orthogonal

projection of b onto the subspace U .

Recall that the orthogonal projection pU : U ⊕ U⊥ → U is the linear map given by

pU(u+ v) = u,

with u ∈ U and v ∈ U⊥. If we let p = pU(b) ∈ U , then for any point y ∈ U , the vectors
−→py = y − p ∈ U and

−→
bp = p− b ∈ U⊥ are orthogonal, which implies that

‖−→by‖2
2 = ‖−→bp‖2

2 + ‖−→py‖2
2,

where
−→
by = y− b. Thus, p is indeed the unique point in U that minimizes the distance from

b to any point in U .

Thus, the problem has been reduced to proving that there is a unique x+ of minimum
norm such that Ax+ = p, with p = pU(b) ∈ U , the orthogonal projection of b onto U . We
use the fact that

Rn = KerA⊕ (KerA)⊥.

Consequently, every x ∈ Rn can be written uniquely as x = u + v, where u ∈ KerA and
v ∈ (KerA)⊥, and since u and v are orthogonal,

‖x‖2
2 = ‖u‖2

2 + ‖v‖2
2.

Furthermore, since u ∈ KerA, we have Au = 0, and thus Ax = p iff Av = p, which shows
that the solutions of Ax = p for which x has minimum norm must belong to (KerA)⊥.
However, the restriction of A to (KerA)⊥ is injective. This is because if Av1 = Av2, where
v1, v2 ∈ (KerA)⊥, then A(v2 − v2) = 0, which implies v2 − v1 ∈ KerA, and since v1, v2 ∈
(KerA)⊥, we also have v2 − v1 ∈ (KerA)⊥, and consequently, v2 − v1 = 0. This shows that
there is a unique x+ of minimum norm such that Ax+ = p, and that x+ must belong to
(KerA)⊥. By our previous reasoning, x+ is the unique vector of minimum norm minimizing
‖Ax− b‖2

2.

The proof also shows that x minimizes ‖Ax − b‖2
2 iff

−→
pb = b − Ax is orthogonal to U ,

which can be expressed by saying that b−Ax is orthogonal to every column of A. However,
this is equivalent to

A>(b− Ax) = 0, i.e., A>Ax = A>b.
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Finally, it turns out that the minimum norm least squares solution x+ can be found in terms
of the pseudo-inverse A+ of A, which is itself obtained from any SVD of A.

Definition 12.1. Given any m× n matrix A, if A = V DU> is an SVD of A with

D = diag(λ1, . . . , λr, 0, . . . , 0),

where D is an m× n matrix and λi > 0, if we let

D+ = diag(1/λ1, . . . , 1/λr, 0, . . . , 0),

an n×m matrix, the pseudo-inverse of A is defined by

A+ = UD+V >.

Actually, it seems that A+ depends on the specific choice of U and V in an SVD (U,D, V )
for A, but the next theorem shows that this is not so.

Theorem 12.2. The least squares solution of smallest norm of the linear system Ax = b,
where A is an m× n matrix, is given by

x+ = A+b = UD+V >b.

Proof. First, assume that A is a (rectangular) diagonal matrix D, as above. Then, since x
minimizes ‖Dx− b‖2

2 iff Dx is the projection of b onto the image subspace F of D, it is fairly
obvious that x+ = D+b. Otherwise, we can write

A = V DU>,

where U and V are orthogonal. However, since V is an isometry,

‖Ax− b‖2 = ‖V DU>x− b‖2 = ‖DU>x− V >b‖2.

Letting y = U>x, we have ‖x‖2 = ‖y‖2, since U is an isometry, and since U is surjective,
‖Ax − b‖2 is minimized iff ‖Dy − V >b‖2 is minimized, and we have shown that the least
solution is

y+ = D+V >b.

Since y = U>x, with ‖x‖2 = ‖y‖2, we get

x+ = UD+V >b = A+b.

Thus, the pseudo-inverse provides the optimal solution to the least squares problem.
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By Proposition 12.2 and Theorem 12.1, A+b is uniquely defined by every b, and thus A+

depends only on A.

Let A = UΣV > be an SVD for A. It is easy to check that

AA+A = A,

A+AA+ = A+,

and both AA+ and A+A are symmetric matrices. In fact,

AA+ = UΣV >V Σ+U> = UΣΣ+U> = U

(
Ir 0
0 0n−r

)
U>

and

A+A = V Σ+U>UΣV > = V Σ+ΣV > = V

(
Ir 0
0 0n−r

)
V >.

We immediately get

(AA+)2 = AA+,

(A+A)2 = A+A,

so both AA+ and A+A are orthogonal projections (since they are both symmetric). We
claim that AA+ is the orthogonal projection onto the range of A and A+A is the orthogonal
projection onto Ker(A)⊥ = Im(A>), the range of A>.

Obviously, we have range(AA+) ⊆ range(A), and for any y = Ax ∈ range(A), since
AA+A = A, we have

AA+y = AA+Ax = Ax = y,

so the image of AA+ is indeed the range of A. It is also clear that Ker(A) ⊆ Ker(A+A), and
since AA+A = A, we also have Ker(A+A) ⊆ Ker(A), and so

Ker(A+A) = Ker(A).

Since A+A is Hermitian, range(A+A) = Ker(A+A)⊥ = Ker(A)⊥, as claimed.

It will also be useful to see that range(A) = range(AA+) consists of all vectors y ∈ Rn

such that

U>y =

(
z
0

)
,

with z ∈ Rr.

Indeed, if y = Ax, then

U>y = U>Ax = U>UΣV >x = ΣV >x =

(
Σr 0
0 0n−r

)
V >x =

(
z
0

)
,
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where Σr is the r × r diagonal matrix diag(σ1, . . . , σr). Conversely, if U>y = ( z0 ), then
y = U ( z0 ), and

AA+y = U

(
Ir 0
0 0n−r

)
U>y

= U

(
Ir 0
0 0n−r

)
U>U

(
z
0

)

= U

(
Ir 0
0 0n−r

)(
z
0

)

= U

(
z
0

)
= y,

which shows that y belongs to the range of A.

Similarly, we claim that range(A+A) = Ker(A)⊥ consists of all vectors y ∈ Rn such that

V >y =

(
z
0

)
,

with z ∈ Rr.

If y = A+Au, then

y = A+Au = V

(
Ir 0
0 0n−r

)
V >u = V

(
z
0

)
,

for some z ∈ Rr. Conversely, if V >y = ( z0 ), then y = V ( z0 ), and so

A+AV

(
z
0

)
= V

(
Ir 0
0 0n−r

)
V >V

(
z
0

)

= V

(
Ir 0
0 0n−r

)(
z
0

)

= V

(
z
0

)
= y,

which shows that y ∈ range(A+A).

If A is a symmetric matrix, then in general, there is no SVD UΣV > of A with U = V .
However, if A is positive semidefinite, then the eigenvalues of A are nonnegative, and so the
nonzero eigenvalues of A are equal to the singular values of A and SVDs of A are of the form

A = UΣU>.

Analogous results hold for complex matrices, but in this case, U and V are unitary
matrices and AA+ and A+A are Hermitian orthogonal projections.
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If A is a normal matrix, which means that AA> = A>A, then there is an intimate
relationship between SVD’s of A and block diagonalizations of A. As a consequence, the
pseudo-inverse of a normal matrix A can be obtained directly from a block diagonalization
of A.

If A is a (real) normal matrix, then it can be shown that A can be block diagonalized
with respect to an orthogonal matrix U as

A = UΛU>,

where Λ is the (real) block diagonal matrix

Λ = diag(B1, . . . , Bn),

consisting either of 2× 2 blocks of the form

Bj =

(
λj −µj
µj λj

)

with µj 6= 0, or of one-dimensional blocks Bk = (λk). Then we have the following proposition:

Proposition 12.3. For any (real) normal matrix A and any block diagonalization A =
UΛU> of A as above, the pseudo-inverse of A is given by

A+ = UΛ+U>,

where Λ+ is the pseudo-inverse of Λ. Furthermore, if

Λ =

(
Λr 0
0 0

)
,

where Λr has rank r, then

Λ+ =

(
Λ−1
r 0
0 0

)
.

Proof. Assume that B1, . . . , Bp are 2× 2 blocks and that λ2p+1, . . . , λn are the scalar entries.
We know that the numbers λj ± iµj, and the λ2p+k are the eigenvalues of A. Let ρ2j−1 =

ρ2j =
√
λ2
j + µ2

j for j = 1, . . . , p, ρ2p+j = λj for j = 1, . . . , n−2p, and assume that the blocks

are ordered so that ρ1 ≥ ρ2 ≥ · · · ≥ ρn. Then it is easy to see that

UU> = U>U = UΛU>UΛ>U> = UΛΛ>U>,

with
ΛΛ> = diag(ρ2

1, . . . , ρ
2
n),

so the singular values σ1 ≥ σ2 ≥ · · · ≥ σn of A, which are the nonnegative square roots of
the eigenvalues of AA>, are such that

σj = ρj, 1 ≤ j ≤ n.
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We can define the diagonal matrices

Σ = diag(σ1, . . . , σr, 0, . . . , 0),

where r = rank(A), σ1 ≥ · · · ≥ σr > 0 and

Θ = diag(σ−1
1 B1, . . . , σ

−1
2p Bp, 1, . . . , 1),

so that Θ is an orthogonal matrix and

Λ = ΘΣ = (B1, . . . , Bp, λ2p+1, . . . , λr, 0, . . . , 0).

But then we can write
A = UΛU> = UΘΣU>,

and we if let V = UΘ, since U is orthogonal and Θ is also orthogonal, V is also orthogonal
and A = V ΣU> is an SVD for A. Now we get

A+ = UΣ+V > = UΣ+Θ>U>.

However, since Θ is an orthogonal matrix, Θ> = Θ−1, and a simple calculation shows that

Σ+Θ> = Σ+Θ−1 = Λ+,

which yields the formula
A+ = UΛ+U>.

Also observe that if we write

Λr = (B1, . . . , Bp, λ2p+1, . . . , λr),

then Λr is invertible and

Λ+ =

(
Λ−1
r 0
0 0

)
.

Therefore, the pseudo-inverse of a normal matrix can be computed directly from any block
diagonalization of A, as claimed.

The following properties, due to Penrose, characterize the pseudo-inverse of a matrix.
We have already proved that the pseudo-inverse satisfies these equations. For a proof of the
converse, see Kincaid and Cheney [34].

Proposition 12.4. Given any m× n matrix A (real or complex), the pseudo-inverse A+ of
A is the unique n×m matrix satisfying the following properties:

AA+A = A,

A+AA+ = A+,

(AA+)> = AA+,

(A+A)> = A+A.
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If A is an m × n matrix of rank n (and so m ≥ n), it is immediately shown that the
QR-decomposition in terms of Householder transformations applies as follows:

There are n m × m matrices H1, . . . , Hn, Householder matrices or the identity, and an
upper triangular m× n matrix R of rank n such that

A = H1 · · ·HnR.

Then, because each Hi is an isometry,

‖Ax− b‖2 = ‖Rx−Hn · · ·H1b‖2,

and the least squares problem Ax = b is equivalent to the system

Rx = Hn · · ·H1b.

Now, the system
Rx = Hn · · ·H1b

is of the form (
R1

0m−n

)
x =

(
c
d

)
,

where R1 is an invertible n× n matrix (since A has rank n), c ∈ Rn, and d ∈ Rm−n, and the
least squares solution of smallest norm is

x+ = R−1
1 c.

Since R1 is a triangular matrix, it is very easy to invert R1.

The method of least squares is one of the most effective tools of the mathematical sciences.
There are entire books devoted to it. Readers are advised to consult Strang [53], Golub and
Van Loan [26], Demmel [14], and Trefethen and Bau [56], where extensions and applications
of least squares (such as weighted least squares and recursive least squares) are described.
Golub and Van Loan [26] also contains a very extensive bibliography, including a list of
books on least squares.

12.2 Data Compression and SVD

Among the many applications of SVD, a very useful one is data compression, notably for
images. In order to make precise the notion of closeness of matrices, we use the notion of
matrix norm. This concept is defined in Chapter 5 and the reader may want to review it
before reading any further.

Given an m× n matrix of rank r, we would like to find a best approximation of A by a
matrix B of rank k ≤ r (actually, k < r) so that ‖A−B‖2 (or ‖A−B‖F ) is minimized.
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Proposition 12.5. Let A be an m× n matrix of rank r and let V DU> = A be an SVD for
A. Write ui for the columns of U , vi for the columns of V , and σ1 ≥ σ2 ≥ · · · ≥ σp for the
singular values of A (p = min(m,n)). Then a matrix of rank k < r closest to A (in the ‖ ‖2

norm) is given by

Ak =
k∑

i=1

σiviu
>
i = V diag(σ1, . . . , σk)U

>

and ‖A− Ak‖2 = σk+1.

Proof. By construction, Ak has rank k, and we have

‖A− Ak‖2 =
∥∥∥

p∑

i=k+1

σiviu
>
i

∥∥∥
2

=
∥∥V diag(0, . . . , 0, σk+1, . . . , σp)U

>∥∥
2

= σk+1.

It remains to show that ‖A−B‖2 ≥ σk+1 for all rank-k matrices B. Let B be any rank-k
matrix, so its kernel has dimension p− k. The subspace Vk+1 spanned by (v1, . . . , vk+1) has
dimension k + 1, and because the sum of the dimensions of the kernel of B and of Vk+1 is
(p − k) + k + 1 = p + 1, these two subspaces must intersect in a subspace of dimension at
least 1. Pick any unit vector h in Ker(B) ∩ Vk+1. Then since Bh = 0, we have

‖A−B‖2
2 ≥ ‖(A−B)h‖2

2 = ‖Ah‖2
2 =

∥∥V DU>h
∥∥2

2
≥ σ2

k+1

∥∥U>h
∥∥2

2
= σ2

k+1,

which proves our claim.

Note that Ak can be stored using (m + n)k entries, as opposed to mn entries. When
k � m, this is a substantial gain.

A nice example of the use of Proposition 12.5 in image compression is given in Demmel
[14], Chapter 3, Section 3.2.3, pages 113–115; see the Matlab demo.

An interesting topic that we have not addressed is the actual computation of an SVD.
This is a very interesting but tricky subject. Most methods reduce the computation of an
SVD to the diagonalization of a well-chosen symmetric matrix (which is not A>A). Interested
readers should read Section 5.4 of Demmel’s excellent book [14], which contains an overview
of most known methods and an extensive list of references.

12.3 Principal Components Analysis (PCA)

Suppose we have a set of data consisting of n points X1, . . . , Xn, with each Xi ∈ Rd viewed
as a row vector .

Think of the Xi’s as persons, and if Xi = (xi 1, . . . , xi d), each xi j is the value of some
feature (or attribute) of that person. For example, the Xi’s could be mathematicians, d = 2,
and the first component, xi 1, of Xi could be the year that Xi was born, and the second
component, xi 2, the length of the beard of Xi in centimeters. Here is a small data set:
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Name year length
Carl Friedrich Gauss 1777 0
Camille Jordan 1838 12
Adrien-Marie Legendre 1752 0
Bernhard Riemann 1826 15
David Hilbert 1862 2
Henri Poincaré 1854 5
Emmy Noether 1882 0
Karl Weierstrass 1815 0
Eugenio Beltrami 1835 2
Hermann Schwarz 1843 20

We usually form the n × d matrix X whose ith row is Xi, with 1 ≤ i ≤ n. Then the
jth column is denoted by Cj (1 ≤ j ≤ d). It is sometimes called a feature vector , but this
terminology is far from being universally accepted. In fact, many people in computer vision
call the data points Xi feature vectors!

The purpose of principal components analysis , for short PCA, is to identify patterns in
data and understand the variance–covariance structure of the data. This is useful for the
following tasks:

1. Data reduction: Often much of the variability of the data can be accounted for by a
smaller number of principal components .

2. Interpretation: PCA can show relationships that were not previously suspected.

Given a vector (a sample of measurements) x = (x1, . . . , xn) ∈ Rn, recall that the mean
(or average) x of x is given by

x =

∑n
i=1 xi
n

.

We let x− x denote the centered data point

x− x = (x1 − x, . . . , xn − x).

In order to measure the spread of the xi’s around the mean, we define the sample variance
(for short, variance) var(x) (or s2) of the sample x by

var(x) =

∑n
i=1(xi − x)2

n− 1
.

There is a reason for using n − 1 instead of n. The above definition makes var(x) an
unbiased estimator of the variance of the random variable being sampled. However, we
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don’t need to worry about this. Curious readers will find an explanation of these peculiar
definitions in Epstein [18] (Chapter 14, Section 14.5), or in any decent statistics book.

Given two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn), the sample covariance (for short,
covariance) of x and y is given by

cov(x, y) =

∑n
i=1(xi − x)(yi − y)

n− 1
.

The covariance of x and y measures how x and y vary from the mean with respect to each
other . Obviously, cov(x, y) = cov(y, x) and cov(x, x) = var(x).

Note that

cov(x, y) =
(x− x)>(y − y)

n− 1
.

We say that x and y are uncorrelated iff cov(x, y) = 0.

Finally, given an n × d matrix X of n points Xi, for PCA to be meaningful, it will be
necessary to translate the origin to the centroid (or center of gravity) µ of the Xi’s, defined
by

µ =
1

n
(X1 + · · ·+Xn).

Observe that if µ = (µ1, . . . , µd), then µj is the mean of the vector Cj (the jth column of
X).

We let X − µ denote the matrix whose ith row is the centered data point Xi − µ (1 ≤
i ≤ n). Then, the sample covariance matrix (for short, covariance matrix ) of X is the d× d
symmetric matrix

Σ =
1

n− 1
(X − µ)>(X − µ) = (cov(Ci, Cj)).

Remark: The factor 1
n−1

is irrelevant for our purposes and can be ignored.

Here is the matrix X − µ in the case of our bearded mathematicians: Since

µ1 = 1828.4, µ2 = 5.6,

we get
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Name year length
Carl Friedrich Gauss −51.4 −5.6
Camille Jordan 9.6 6.4
Adrien-Marie Legendre −76.4 −5.6
Bernhard Riemann −2.4 9.4
David Hilbert 33.6 −3.6
Henri Poincaré 25.6 −0.6
Emmy Noether 53.6 −5.6
Karl Weierstrass 13.4 −5.6
Eugenio Beltrami 6.6 −3.6
Hermann Schwarz 14.6 14.4

We can think of the vector Cj as representing the features of X in the direction ej (the
jth canonical basis vector in Rd, namely ej = (0, . . . , 1, . . . 0), with a 1 in the jth position).

If v ∈ Rd is a unit vector, we wish to consider the projection of the data points X1, . . . , Xn

onto the line spanned by v. Recall from Euclidean geometry that if x ∈ Rd is any vector
and v ∈ Rd is a unit vector, the projection of x onto the line spanned by v is

〈x, v〉v.
Thus, with respect to the basis v, the projection of x has coordinate 〈x, v〉. If x is represented
by a row vector and v by a column vector, then

〈x, v〉 = xv.

Therefore, the vector Y ∈ Rn consisting of the coordinates of the projections of X1, . . . , Xn

onto the line spanned by v is given by Y = Xv, and this is the linear combination

Xv = v1C1 + · · ·+ vdCd

of the columns of X (with v = (v1, . . . , vd)).

Observe that because µj is the mean of the vector Cj (the jth column of X), we get

Y = Xv = v1µ1 + · · ·+ vdµd,

and so the centered point Y − Y is given by

Y − Y = v1(C1 − µ1) + · · ·+ vd(Cd − µd) = (X − µ)v.

Furthermore, if Y = Xv and Z = Xw, then

cov(Y, Z) =
((X − µ)v)>(X − µ)w

n− 1

= v>
1

n− 1
(X − µ)>(X − µ)w

= v>Σw,
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where Σ is the covariance matrix of X. Since Y − Y has zero mean, we have

var(Y ) = var(Y − Y ) = v>
1

n− 1
(X − µ)>(X − µ)v.

The above suggests that we should move the origin to the centroid µ of the Xi’s and consider
the matrix X − µ of the centered data points Xi − µ.

From now on, beware that we denote the columns of X − µ by C1, . . . , Cd and that Y
denotes the centered point Y = (X − µ)v =

∑d
j=1 vjCj, where v is a unit vector.

Basic idea of PCA: The principal components of X are uncorrelated projections Y of the
data points X1, . . ., Xn onto some directions v (where the v’s are unit vectors) such that
var(Y ) is maximal.

This suggests the following definition:

Definition 12.2. Given an n×d matrix X of data points X1, . . . , Xn, if µ is the centroid of
the Xi’s, then a first principal component of X (first PC) is a centered point Y1 = (X−µ)v1,
the projection of X1, . . . , Xn onto a direction v1 such that var(Y1) is maximized, where v1 is
a unit vector (recall that Y1 = (X − µ)v1 is a linear combination of the Cj’s, the columns of
X − µ).

More generally, if Y1, . . . , Yk are k principal components of X along some unit vectors
v1, . . . , vk, where 1 ≤ k < d, a (k+1)th principal component of X ((k+1)th PC) is a centered
point Yk+1 = (X − µ)vk+1, the projection of X1, . . . , Xn onto some direction vk+1 such that
var(Yk+1) is maximized, subject to cov(Yh, Yk+1) = 0 for all h with 1 ≤ h ≤ k, and where
vk+1 is a unit vector (recall that Yh = (X − µ)vh is a linear combination of the Cj’s). The
vh are called principal directions .

The following proposition is the key to the main result about PCA:

Proposition 12.6. If A is a symmetric d×d matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd and
if (u1, . . . , ud) is any orthonormal basis of eigenvectors of A, where ui is a unit eigenvector
associated with λi, then

max
x 6=0

x>Ax

x>x
= λ1

(with the maximum attained for x = u1) and

max
x 6=0,x∈{u1,...,uk}⊥

x>Ax

x>x
= λk+1

(with the maximum attained for x = uk+1), where 1 ≤ k ≤ d− 1.
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Proof. First, observe that

max
x 6=0

x>Ax

x>x
= max

x
{x>Ax | x>x = 1},

and similarly,

max
x 6=0,x∈{u1,...,uk}⊥

x>Ax

x>x
= max

x

{
x>Ax | (x ∈ {u1, . . . , uk}⊥) ∧ (x>x = 1)

}
.

Since A is a symmetric matrix, its eigenvalues are real and it can be diagonalized with respect
to an orthonormal basis of eigenvectors, so let (u1, . . . , ud) be such a basis. If we write

x =
d∑

i=1

xiui,

a simple computation shows that

x>Ax =
d∑

i=1

λix
2
i .

If x>x = 1, then
∑d

i=1 x
2
i = 1, and since we assumed that λ1 ≥ λ2 ≥ · · · ≥ λd, we get

x>Ax =
d∑

i=1

λix
2
i ≤ λ1

( d∑

i=1

x2
i

)
= λ1.

Thus,
max
x

{
x>Ax | x>x = 1

}
≤ λ1,

and since this maximum is achieved for e1 = (1, 0, . . . , 0), we conclude that

max
x

{
x>Ax | x>x = 1

}
= λ1.

Next, observe that x ∈ {u1, . . . , uk}⊥ and x>x = 1 iff x1 = · · · = xk = 0 and
∑d

i=1 xi = 1.
Consequently, for such an x, we have

x>Ax =
d∑

i=k+1

λix
2
i ≤ λk+1

( d∑

i=k+1

x2
i

)
= λk+1.

Thus,
max
x

{
x>Ax | (x ∈ {u1, . . . , uk}⊥) ∧ (x>x = 1)

}
≤ λk+1,

and since this maximum is achieved for ek+1 = (0, . . . , 0, 1, 0, . . . , 0) with a 1 in position k+1,
we conclude that

max
x

{
x>Ax | (x ∈ {u1, . . . , uk}⊥) ∧ (x>x = 1)

}
= λk+1,

as claimed.
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The quantity
x>Ax

x>x
is known as the Rayleigh–Ritz ratio and Proposition 12.6 is often known as part of the
Rayleigh–Ritz theorem.

Proposition 12.6 also holds if A is a Hermitian matrix and if we replace x>Ax by x∗Ax
and x>x by x∗x. The proof is unchanged, since a Hermitian matrix has real eigenvalues
and is diagonalized with respect to an orthonormal basis of eigenvectors (with respect to the
Hermitian inner product).

We then have the following fundamental result showing how the SVD of X yields the
PCs :

Theorem 12.7. (SVD yields PCA) Let X be an n × d matrix of data points X1, . . . , Xn,
and let µ be the centroid of the Xi’s. If X − µ = V DU> is an SVD decomposition of X − µ
and if the main diagonal of D consists of the singular values σ1 ≥ σ2 ≥ · · · ≥ σd, then the
centered points Y1, . . . , Yd, where

Yk = (X − µ)uk = kth column of V D

and uk is the kth column of U , are d principal components of X. Furthermore,

var(Yk) =
σ2
k

n− 1

and cov(Yh, Yk) = 0, whenever h 6= k and 1 ≤ k, h ≤ d.

Proof. Recall that for any unit vector v, the centered projection of the points X1, . . . , Xn

onto the line of direction v is Y = (X − µ)v and that the variance of Y is given by

var(Y ) = v>
1

n− 1
(X − µ)>(X − µ)v.

Since X − µ = V DU>, we get

var(Y ) = v>
1

(n− 1)
(X − µ)>(X − µ)v

= v>
1

(n− 1)
UDV >V DU>v

= v>U
1

(n− 1)
D2U>v.

Similarly, if Y = (X − µ)v and Z = (X − µ)w, then the covariance of Y and Z is given by

cov(Y, Z) = v>U
1

(n− 1)
D2U>w.
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Obviously, U 1
(n−1)

D2U> is a symmetric matrix whose eigenvalues are
σ2
1

n−1
≥ · · · ≥ σ2

d

n−1
, and

the columns of U form an orthonormal basis of unit eigenvectors.

We proceed by induction on k. For the base case, k = 1, maximizing var(Y ) is equivalent
to maximizing

v>U
1

(n− 1)
D2U>v,

where v is a unit vector. By Proposition 12.6, the maximum of the above quantity is the

largest eigenvalue of U 1
(n−1)

D2U>, namely
σ2
1

n−1
, and it is achieved for u1, the first columnn

of U . Now we get
Y1 = (X − µ)u1 = V DU>u1,

and since the columns of U form an orthonormal basis, U>u1 = e1 = (1, 0, . . . , 0), and so Y1

is indeed the first column of V D.

By the induction hypothesis, the centered points Y1, . . . , Yk, where Yh = (X − µ)uh and
u1, . . . , uk are the first k columns of U , are k principal components of X. Because

cov(Y, Z) = v>U
1

(n− 1)
D2U>w,

where Y = (X − µ)v and Z = (X − µ)w, the condition cov(Yh, Z) = 0 for h = 1, . . . , k
is equivalent to the fact that w belongs to the orthogonal complement of the subspace
spanned by {u1, . . . , uk}, and maximizing var(Z) subject to cov(Yh, Z) = 0 for h = 1, . . . , k
is equivalent to maximizing

w>U
1

(n− 1)
D2U>w,

where w is a unit vector orthogonal to the subspace spanned by {u1, . . . , uk}. By Proposition
12.6, the maximum of the above quantity is the (k+1)th eigenvalue of U 1

(n−1)
D2U>, namely

σ2
k+1

n−1
, and it is achieved for uk+1, the (k + 1)th columnn of U . Now we get

Yk+1 = (X − µ)uk+1 = V DU>uk+1,

and since the columns of U form an orthonormal basis, U>uk+1 = ek+1, and Yk+1 is indeed
the (k + 1)th column of V D, which completes the proof of the induction step.

The d columns u1, . . . , ud of U are usually called the principal directions of X − µ (and
X). We note that not only do we have cov(Yh, Yk) = 0 whenever h 6= k, but the directions
u1, . . . , ud along which the data are projected are mutually orthogonal.

We know from our study of SVD that σ2
1, . . . , σ

2
d are the eigenvalues of the symmetric

positive semidefinite matrix (X − µ)>(X − µ) and that u1, . . . , ud are corresponding eigen-
vectors. Numerically, it is preferable to use SVD on X−µ rather than to compute explicitly
(X − µ)>(X − µ) and then diagonalize it. Indeed, the explicit computation of A>A from
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a matrix A can be numerically quite unstable, and good SVD algorithms avoid computing
A>A explicitly.

In general, since an SVD of X is not unique, the principal directions u1, . . . , ud are not
unique. This can happen when a data set has some rotational symmetries , and in such a
case, PCA is not a very good method for analyzing the data set.

12.4 Best Affine Approximation

A problem very close to PCA (and based on least squares) is to best approximate a data
set of n points X1, . . . , Xn, with Xi ∈ Rd, by a p-dimensional affine subspace A of Rd, with
1 ≤ p ≤ d− 1 (the terminology rank d− p is also used).

First, consider p = d − 1. Then A = A1 is an affine hyperplane (in Rd), and it is given
by an equation of the form

a1x1 + · · ·+ adxd + c = 0.

By best approximation, we mean that (a1, . . . , ad, c) solves the homogeneous linear system



x1 1 · · · x1 d 1

...
...

...
...

xn 1 · · · xnd 1







a1
...
ad
c


 =




0
...
0
0




in the least squares sense, subject to the condition that a = (a1, . . . , ad) is a unit vector , that
is, a>a = 1, where Xi = (xi 1, · · · , xi d).

If we form the symmetric matrix



x1 1 · · · x1 d 1

...
...

...
...

xn 1 · · · xnd 1




>

x1 1 · · · x1 d 1

...
...

...
...

xn 1 · · · xnd 1




involved in the normal equations, we see that the bottom row (and last column) of that
matrix is

nµ1 · · · nµd n,

where nµj =
∑n

i=1 xi j is n times the mean of the column Cj of X.

Therefore, if (a1, . . . , ad, c) is a least squares solution, that is, a solution of the normal
equations, we must have

nµ1a1 + · · ·+ nµdad + nc = 0,

that is,

a1µ1 + · · ·+ adµd + c = 0,
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which means that the hyperplane A1 must pass through the centroid µ of the data points
X1, . . . , Xn. Then we can rewrite the original system with respect to the centered data
Xi − µ, and we find that the variable c drops out and we get the system

(X − µ)a = 0,

where a = (a1, . . . , ad).

Thus, we are looking for a unit vector a solving (X − µ)a = 0 in the least squares sense,
that is, some a such that a>a = 1 minimizing

a>(X − µ)>(X − µ)a.

Compute some SVD V DU> of X−µ, where the main diagonal of D consists of the singular
values σ1 ≥ σ2 ≥ · · · ≥ σd of X − µ arranged in descending order. Then

a>(X − µ)>(X − µ)a = a>UD2U>a,

where D2 = diag(σ2
1, . . . , σ

2
d) is a diagonal matrix, so pick a to be the last column in U

(corresponding to the smallest eigenvalue σ2
d of (X − µ)>(X − µ)). This is a solution to our

best fit problem.

Therefore, if Ud−1 is the linear hyperplane defined by a, that is,

Ud−1 = {u ∈ Rd | 〈u, a〉 = 0},
where a is the last column in U for some SVD V DU> of X − µ, we have shown that the
affine hyperplane A1 = µ + Ud−1 is a best approximation of the data set X1, . . . , Xn in the
least squares sense.

Is is easy to show that this hyperplane A1 = µ + Ud−1 minimizes the sum of the square
distances of each Xi to its orthogonal projection onto A1. Also, since Ud−1 is the orthogonal
complement of a, the last column of U , we see that Ud−1 is spanned by the first d−1 columns
of U , that is, the first d− 1 principal directions of X − µ.

All this can be generalized to a best (d−k)-dimensional affine subspace Ak approximating
X1, . . . , Xn in the least squares sense (1 ≤ k ≤ d− 1). Such an affine subspace Ak is cut out
by k independent hyperplanes Hi (with 1 ≤ i ≤ k), each given by some equation

ai 1x1 + · · ·+ ai dxd + ci = 0.

If we write ai = (ai 1, · · · , ai d), to say that the Hi are independent means that a1, . . . , ak are
linearly independent. In fact, we may assume that a1, . . . , ak form an orthonormal system.

Then, finding a best (d − k)-dimensional affine subspace Ak amounts to solving the
homogeneous linear system



X 1 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 X 1







a1

c1
...
ak
ck




=




0
...
0


 ,
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in the least squares sense, subject to the conditions a>i aj = δi j, for all i, j with 1 ≤ i, j ≤ k,
where the matrix of the system is a block diagonal matrix consisting of k diagonal blocks
(X,1), where 1 denotes the column vector (1, . . . , 1) ∈ Rn.

Again, it is easy to see that each hyperplane Hi must pass through the centroid µ of
X1, . . . , Xn, and by switching to the centered data Xi − µ we get the system



X − µ 0 · · · 0

...
...

. . .
...

0 0 · · · X − µ






a1
...
ak


 =




0
...
0


 ,

with a>i aj = δi j for all i, j with 1 ≤ i, j ≤ k.

If V DU> = X−µ is an SVD decomposition, it is easy to see that a least squares solution
of this system is given by the last k columns of U , assuming that the main diagonal of D
consists of the singular values σ1 ≥ σ2 ≥ · · · ≥ σd of X−µ arranged in descending order. But
now the (d− k)-dimensional subspace Ud−k cut out by the hyperplanes defined by a1, . . . , ak
is simply the orthogonal complement of (a1, . . . , ak), which is the subspace spanned by the
first d− k columns of U .

So the best (d−k)-dimensional affine subpsace Ak approximating X1, . . . , Xn in the least
squares sense is

Ak = µ+ Ud−k,

where Ud−k is the linear subspace spanned by the first d−k principal directions of X−µ, that
is, the first d−k columns of U . Consequently, we get the following interesting interpretation
of PCA (actually, principal directions):

Theorem 12.8. Let X be an n×d matrix of data points X1, . . . , Xn, and let µ be the centroid
of the Xi’s. If X − µ = V DU> is an SVD decomposition of X − µ and if the main diagonal
of D consists of the singular values σ1 ≥ σ2 ≥ · · · ≥ σd, then a best (d − k)-dimensional
affine approximation Ak of X1, . . . , Xn in the least squares sense is given by

Ak = µ+ Ud−k,

where Ud−k is the linear subspace spanned by the first d − k columns of U , the first d − k
principal directions of X − µ (1 ≤ k ≤ d− 1).

There are many applications of PCA to data compression, dimension reduction, and
pattern analysis. The basic idea is that in many cases, given a data set X1, . . . , Xn, with
Xi ∈ Rd, only a “small” subset of m < d of the features is needed to describe the data set
accurately.

If u1, . . . , ud are the principal directions of X−µ, then the first m projections of the data
(the first m principal components, i.e., the first m columns of V D) onto the first m principal
directions represent the data without much loss of information. Thus, instead of using the
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original data points X1, . . . , Xn, with Xi ∈ Rd, we can use their projections onto the first m
principal directions Y1, . . . , Ym, where Yi ∈ Rm and m < d, obtaining a compressed version
of the original data set.

For example, PCA is used in computer vision for face recognition. Sirovitch and Kirby
(1987) seem to be the first to have had the idea of using PCA to compress facial images.
They introduced the term eigenpicture to refer to the principal directions, ui. However, an
explicit face recognition algorithm was given only later, by Turk and Pentland (1991). They
renamed eigenpictures as eigenfaces .

For details on the topic of eigenfaces, see Forsyth and Ponce [21] (Chapter 22, Section
22.3.2), where you will also find exact references to Turk and Pentland’s papers.

Another interesting application of PCA is to the recognition of handwritten digits . Such
an application is described in Hastie, Tibshirani, and Friedman, [29] (Chapter 14, Section
14.5.1).

12.5 Summary

The main concepts and results of this chapter are listed below:

• Least squares problems .

• Existence of a least squares solution of smallest norm (Theorem 12.1).

• The pseudo-inverse A+ of a matrix A.

• The least squares solution of smallest norm is given by the pseudo-inverse (Theorem
12.2)

• Projection properties of the pseudo-inverse.

• The pseudo-inverse of a normal matrix.

• The Penrose characterization of the pseudo-inverse.

• Data compression and SVD.

• Best approximation of rank < r of a matrix.

• Principal component analysis .

• Review of basic statistical concepts: mean, variance, covariance, covariance matrix .

• Centered data, centroid .

• The principal components (PCA).
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• The Rayleigh–Ritz theorem (Theorem 12.6).

• The main theorem: SVD yields PCA (Theorem 12.7).

• Best affine approximation.

• SVD yields a best affine approximation (Theorem 12.8).

• Face recognition, eigenfaces.



Chapter 13

Quadratic Optimization Problems

13.1 Quadratic Optimization: The Positive Definite

Case

In this chapter, we consider two classes of quadratic optimization problems that appear
frequently in engineering and in computer science (especially in computer vision):

1. Minimizing

f(x) =
1

2
x>Ax+ x>b

over all x ∈ Rn, or subject to linear or affine constraints.

2. Minimizing

f(x) =
1

2
x>Ax+ x>b

over the unit sphere.

In both cases, A is a symmetric matrix. We also seek necessary and sufficient conditions for
f to have a global minimum.

Many problems in physics and engineering can be stated as the minimization of some
energy function, with or without constraints. Indeed, it is a fundamental principle of me-
chanics that nature acts so as to minimize energy. Furthermore, if a physical system is in a
stable state of equilibrium, then the energy in that state should be minimal. For example, a
small ball placed on top of a sphere is in an unstable equilibrium position. A small motion
causes the ball to roll down. On the other hand, a ball placed inside and at the bottom of a
sphere is in a stable equilibrium position, because the potential energy is minimal.

The simplest kind of energy function is a quadratic function. Such functions can be
conveniently defined in the form

P (x) = x>Ax− x>b,

305
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where A is a symmetric n× n matrix, and x, b, are vectors in Rn, viewed as column vectors.
Actually, for reasons that will be clear shortly, it is preferable to put a factor 1

2
in front of

the quadratic term, so that

P (x) =
1

2
x>Ax− x>b.

The question is, under what conditions (on A) does P (x) have a global minimum, prefer-
ably unique?

We give a complete answer to the above question in two stages:

1. In this section, we show that if A is symmetric positive definite, then P (x) has a unique
global minimum precisely when

Ax = b.

2. In Section 13.2, we give necessary and sufficient conditions in the general case, in terms
of the pseudo-inverse of A.

We begin with the matrix version of Definition 11.2.

Definition 13.1. A symmetric positive definite matrix is a matrix whose eigenvalues are
strictly positive, and a symmetric positive semidefinite matrix is a matrix whose eigenvalues
are nonnegative.

Equivalent criteria are given in the following proposition.

Proposition 13.1. Given any Euclidean space E of dimension n, the following properties
hold:

(1) Every self-adjoint linear map f : E → E is positive definite iff

〈x, f(x)〉 > 0

for all x ∈ E with x 6= 0.

(2) Every self-adjoint linear map f : E → E is positive semidefinite iff

〈x, f(x)〉 ≥ 0

for all x ∈ E.

Proof. (1) First, assume that f is positive definite. Recall that every self-adjoint linear map
has an orthonormal basis (e1, . . . , en) of eigenvectors, and let λ1, . . . , λn be the corresponding
eigenvalues. With respect to this basis, for every x = x1e1 + · · ·+ xnen 6= 0, we have

〈x, f(x)〉 =
〈 n∑

i=1

xiei, f
( n∑

i=1

xiei

)〉
=
〈 n∑

i=1

xiei,
n∑

i=1

λixiei

〉
=

n∑

i=1

λix
2
i ,
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which is strictly positive, since λi > 0 for i = 1, . . . , n, and x2
i > 0 for some i, since x 6= 0.

Conversely, assume that
〈x, f(x)〉 > 0

for all x 6= 0. Then for x = ei, we get

〈ei, f(ei)〉 = 〈ei, λiei〉 = λi,

and thus λi > 0 for all i = 1, . . . , n.

(2) As in (1), we have

〈x, f(x)〉 =
n∑

i=1

λix
2
i ,

and since λi ≥ 0 for i = 1, . . . , n because f is positive semidefinite, we have 〈x, f(x)〉 ≥ 0, as
claimed. The converse is as in (1) except that we get only λi ≥ 0 since 〈ei, f(ei)〉 ≥ 0.

Some special notation is customary (especially in the field of convex optinization) to
express that a symmetric matrix is positive definite or positive semidefinite.

Definition 13.2. Given any n × n symmetric matrix A we write A � 0 if A is positive
semidefinite and we write A � 0 if A is positive definite.

It should be noted that we can define the relation

A � B

between any two n×n matrices (symmetric or not) iff A−B is symmetric positive semidef-
inite. It is easy to check that this relation is actually a partial order on matrices, called the
positive semidefinite cone ordering ; for details, see Boyd and Vandenberghe [9], Section 2.4.

If A is symmetric positive definite, it is easily checked that A−1 is also symmetric positive
definite. Also, if C is a symmetric positive definite m×m matrix and A is an m× n matrix
of rank n (and so m ≥ n), then A>CA is symmetric positive definite.

We can now prove that

P (x) =
1

2
x>Ax− x>b

has a global minimum when A is symmetric positive definite.

Proposition 13.2. Given a quadratic function

P (x) =
1

2
x>Ax− x>b,

if A is symmetric positive definite, then P (x) has a unique global minimum for the solution
of the linear system Ax = b. The minimum value of P (x) is

P (A−1b) = −1

2
b>A−1b.
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Proof. Since A is positive definite, it is invertible, since its eigenvalues are all strictly positive.
Let x = A−1b, and compute P (y)− P (x) for any y ∈ Rn. Since Ax = b, we get

P (y)− P (x) =
1

2
y>Ay − y>b− 1

2
x>Ax+ x>b

=
1

2
y>Ay − y>Ax+

1

2
x>Ax

=
1

2
(y − x)>A(y − x).

Since A is positive definite, the last expression is nonnegative, and thus

P (y) ≥ P (x)

for all y ∈ Rn, which proves that x = A−1b is a global minimum of P (x). A simple
computation yields

P (A−1b) = −1

2
b>A−1b.

Remarks:

(1) The quadratic function P (x) is also given by

P (x) =
1

2
x>Ax− b>x,

but the definition using x>b is more convenient for the proof of Proposition 13.2.

(2) If P (x) contains a constant term c ∈ R, so that

P (x) =
1

2
x>Ax− x>b+ c,

the proof of Proposition 13.2 still shows that P (x) has a unique global minimum for
x = A−1b, but the minimal value is

P (A−1b) = −1

2
b>A−1b+ c.

Thus, when the energy function P (x) of a system is given by a quadratic function

P (x) =
1

2
x>Ax− x>b,

where A is symmetric positive definite, finding the global minimum of P (x) is equivalent to
solving the linear system Ax = b. Sometimes, it is useful to recast a linear problem Ax = b
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as a variational problem (finding the minimum of some energy function). However, very
often, a minimization problem comes with extra constraints that must be satisfied for all
admissible solutions. For instance, we may want to minimize the quadratic function

Q(y1, y2) =
1

2

(
y2

1 + y2
2

)

subject to the constraint
2y1 − y2 = 5.

The solution for which Q(y1, y2) is minimum is no longer (y1, y2) = (0, 0), but instead,
(y1, y2) = (2,−1), as will be shown later.

Geometrically, the graph of the function defined by z = Q(y1, y2) in R3 is a paraboloid
of revolution P with axis of revolution Oz. The constraint

2y1 − y2 = 5

corresponds to the vertical plane H parallel to the z-axis and containing the line of equation
2y1−y2 = 5 in the xy-plane. Thus, the constrained minimum of Q is located on the parabola
that is the intersection of the paraboloid P with the plane H.

A nice way to solve constrained minimization problems of the above kind is to use the
method of Lagrange multipliers . But first, let us define precisely what kind of minimization
problems we intend to solve.

Definition 13.3. The quadratic constrained minimization problem consists in minimizing a
quadratic function

Q(y) =
1

2
y>C−1y − b>y

subject to the linear constraints
A>y = f,

where C−1 is an m×m symmetric positive definite matrix, A is an m× n matrix of rank n
(so that m ≥ n), and where b, y ∈ Rm (viewed as column vectors), and f ∈ Rn (viewed as a
column vector).

The reason for using C−1 instead of C is that the constrained minimization problem has
an interpretation as a set of equilibrium equations in which the matrix that arises naturally
is C (see Strang [52]). Since C and C−1 are both symmetric positive definite, this doesn’t
make any difference, but it seems preferable to stick to Strang’s notation.

The method of Lagrange consists in incorporating the n constraints A>y = f into the
quadratic function Q(y), by introducing extra variables λ = (λ1, . . . , λn) called Lagrange
multipliers , one for each constraint. We form the Lagrangian

L(y, λ) = Q(y) + λ>(A>y − f) =
1

2
y>C−1y − (b− Aλ)>y − λ>f.
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We shall prove that our constrained minimization problem has a unique solution given
by the system of linear equations

C−1y + Aλ = b,

A>y = f,

which can be written in matrix form as
(
C−1 A
A> 0

)(
y
λ

)
=

(
b
f

)
.

Note that the matrix of this system is symmetric. Eliminating y from the first equation

C−1y + Aλ = b,

we get
y = C(b− Aλ),

and substituting into the second equation, we get

A>C(b− Aλ) = f,

that is,
A>CAλ = A>Cb− f.

However, by a previous remark, since C is symmetric positive definite and the columns of
A are linearly independent, A>CA is symmetric positive definite, and thus invertible. Note
that this way of solving the system requires solving for the Lagrange multipliers first.

Letting e = b− Aλ, we also note that the system

(
C−1 A
A> 0

)(
y
λ

)
=

(
b
f

)

is equivalent to the system

e = b− Aλ,
y = Ce,

A>y = f.

The latter system is called the equilibrium equations by Strang [52]. Indeed, Strang shows
that the equilibrium equations of many physical systems can be put in the above form.
This includes spring-mass systems, electrical networks, and trusses, which are structures
built from elastic bars. In each case, y, e, b, C, λ, f , and K = A>CA have a physical
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interpretation. The matrix K = A>CA is usually called the stiffness matrix . Again, the
reader is referred to Strang [52].

In order to prove that our constrained minimization problem has a unique solution, we
proceed to prove that the constrained minimization of Q(y) subject to A>y = f is equivalent
to the unconstrained maximization of another function −P (λ). We get P (λ) by minimizing
the Lagrangian L(y, λ) treated as a function of y alone. Since C−1 is symmetric positive
definite and

L(y, λ) =
1

2
y>C−1y − (b− Aλ)>y − λ>f,

by Proposition 13.2 the global minimum (with respect to y) of L(y, λ) is obtained for the
solution y of

C−1y = b− Aλ,
that is, when

y = C(b− Aλ),

and the minimum of L(y, λ) is

min
y
L(y, λ) = −1

2
(Aλ− b)>C(Aλ− b)− λ>f.

Letting

P (λ) =
1

2
(Aλ− b)>C(Aλ− b) + λ>f,

we claim that the solution of the constrained minimization of Q(y) subject to A>y = f
is equivalent to the unconstrained maximization of −P (λ). Of course, since we minimized
L(y, λ) with respect to y, we have

L(y, λ) ≥ −P (λ)

for all y and all λ. However, when the constraint A>y = f holds, L(y, λ) = Q(y), and thus
for any admissible y, which means that A>y = f , we have

min
y
Q(y) ≥ max

λ
−P (λ).

In order to prove that the unique minimum of the constrained problem Q(y) subject to
A>y = f is the unique maximum of −P (λ), we compute Q(y) + P (λ).

Proposition 13.3. The quadratic constrained minimization problem of Definition 13.3 has
a unique solution (y, λ) given by the system

(
C−1 A
A> 0

)(
y
λ

)
=

(
b
f

)
.

Furthermore, the component λ of the above solution is the unique value for which −P (λ) is
maximum.
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Proof. As we suggested earlier, let us compute Q(y) + P (λ), assuming that the constraint
A>y = f holds. Eliminating f , since b>y = y>b and λ>A>y = y>Aλ, we get

Q(y) + P (λ) =
1

2
y>C−1y − b>y +

1

2
(Aλ− b)>C(Aλ− b) + λ>f

=
1

2
(C−1y + Aλ− b)>C(C−1y + Aλ− b).

Since C is positive definite, the last expression is nonnegative. In fact, it is null iff

C−1y + Aλ− b = 0,

that is,
C−1y + Aλ = b.

But then the unique constrained minimum of Q(y) subject to A>y = f is equal to the
unique maximum of −P (λ) exactly when A>y = f and C−1y + Aλ = b, which proves the
proposition.

Remarks:

(1) There is a form of duality going on in this situation. The constrained minimization
of Q(y) subject to A>y = f is called the primal problem, and the unconstrained
maximization of −P (λ) is called the dual problem. Duality is the fact stated slightly
loosely as

min
y
Q(y) = max

λ
−P (λ).

Recalling that e = b− Aλ, since

P (λ) =
1

2
(Aλ− b)>C(Aλ− b) + λ>f,

we can also write

P (λ) =
1

2
e>Ce+ λ>f.

This expression often represents the total potential energy of a system. Again, the
optimal solution is the one that minimizes the potential energy (and thus maximizes
−P (λ)).

(2) It is immediately verified that the equations of Proposition 13.3 are equivalent to the
equations stating that the partial derivatives of the Lagrangian L(y, λ) are null:

∂L

∂yi
= 0, i = 1, . . . ,m,

∂L

∂λj
= 0, j = 1, . . . , n.
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Thus, the constrained minimum of Q(y) subject to A>y = f is an extremum of the
Lagrangian L(y, λ). As we showed in Proposition 13.3, this extremum corresponds
to simultaneously minimizing L(y, λ) with respect to y and maximizing L(y, λ) with
respect to λ. Geometrically, such a point is a saddle point for L(y, λ).

(3) The Lagrange multipliers sometimes have a natural physical meaning. For example, in
the spring-mass system they correspond to node displacements. In some general sense,
Lagrange multipliers are correction terms needed to satisfy equilibrium equations and
the price paid for the constraints. For more details, see Strang [52].

Going back to the constrained minimization of Q(y1, y2) = 1
2
(y2

1 + y2
2) subject to

2y1 − y2 = 5,

the Lagrangian is

L(y1, y2, λ) =
1

2

(
y2

1 + y2
2

)
+ λ(2y1 − y2 − 5),

and the equations stating that the Lagrangian has a saddle point are

y1 + 2λ = 0,

y2 − λ = 0,

2y1 − y2 − 5 = 0.

We obtain the solution (y1, y2, λ) = (2,−1,−1).

Much more should be said about the use of Lagrange multipliers in optimization or
variational problems. This is a vast topic. Least squares methods and Lagrange multipliers
are used to tackle many problems in computer graphics and computer vision; see Trucco and
Verri [57], Metaxas [41], Jain, Katsuri, and Schunck [32], Faugeras [19], and Foley, van Dam,
Feiner, and Hughes [20]. For a lucid introduction to optimization methods, see Ciarlet [11].

13.2 Quadratic Optimization: The General Case

In this section, we complete the study initiated in Section 13.1 and give necessary and
sufficient conditions for the quadratic function 1

2
x>Ax+ x>b to have a global minimum. We

begin with the following simple fact:

Proposition 13.4. If A is an invertible symmetric matrix, then the function

f(x) =
1

2
x>Ax+ x>b

has a minimum value iff A � 0, in which case this optimal value is obtained for a unique
value of x, namely x∗ = −A−1b, and with

f(A−1b) = −1

2
b>A−1b.
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Proof. Observe that

1

2
(x+ A−1b)>A(x+ A−1b) =

1

2
x>Ax+ x>b+

1

2
b>A−1b.

Thus,

f(x) =
1

2
x>Ax+ x>b =

1

2
(x+ A−1b)>A(x+ A−1b)− 1

2
b>A−1b.

If A has some negative eigenvalue, say −λ (with λ > 0), if we pick any eigenvector u of A
associated with λ, then for any α ∈ R with α 6= 0, if we let x = αu − A−1b, then since
Au = −λu, we get

f(x) =
1

2
(x+ A−1b)>A(x+ A−1b)− 1

2
b>A−1b

=
1

2
αu>Aαu− 1

2
b>A−1b

= −1

2
α2λ ‖u‖2

2 −
1

2
b>A−1b,

and since α can be made as large as we want and λ > 0, we see that f has no minimum.
Consequently, in order for f to have a minimum, we must have A � 0. In this case, since
(x + A−1b)>A(x + A−1b) ≥ 0, it is clear that the minimum value of f is achieved when
x+ A−1b = 0, that is, x = −A−1b.

Let us now consider the case of an arbitrary symmetric matrix A.

Proposition 13.5. If A is a symmetric matrix, then the function

f(x) =
1

2
x>Ax+ x>b

has a minimum value iff A � 0 and (I − AA+)b = 0, in which case this minimum value is

p∗ = −1

2
b>A+b.

Furthermore, if A = U>ΣU is an SVD of A, then the optimal value is achieved by all x ∈ Rn

of the form

x = −A+b+ U>
(

0
z

)
,

for any z ∈ Rn−r, where r is the rank of A.

Proof. The case that A is invertible is taken care of by Proposition 13.4, so we may assume
that A is singular. If A has rank r < n, then we can diagonalize A as

A = U>
(

Σr 0
0 0

)
U,



13.2. QUADRATIC OPTIMIZATION: THE GENERAL CASE 315

where U is an orthogonal matrix and where Σr is an r× r diagonal invertible matrix. Then
we have

f(x) =
1

2
x>U>

(
Σr 0
0 0

)
Ux+ x>U>Ub

=
1

2
(Ux)>

(
Σr 0
0 0

)
Ux+ (Ux)>Ub.

If we write

Ux =

(
y
z

)
and Ub =

(
c
d

)
,

with y, c ∈ Rr and z, d ∈ Rn−r, we get

f(x) =
1

2
(Ux)>

(
Σr 0
0 0

)
Ux+ (Ux)>Ub

=
1

2
(y>, z>)

(
Σr 0
0 0

)(
y
z

)
+ (y>, z>)

(
c
d

)

=
1

2
y>Σry + y>c+ z>d.

For y = 0, we get
f(x) = z>d,

so if d 6= 0, the function f has no minimum. Therefore, if f has a minimum, then d = 0.
However, d = 0 means that

Ub =

(
c
0

)
,

and we know from Section 12.1 that b is in the range of A (here, U is U>), which is equivalent
to (I − AA+)b = 0. If d = 0, then

f(x) =
1

2
y>Σry + y>c,

and since Σr is invertible, by Proposition 13.4, the function f has a minimum iff Σr � 0,
which is equivalent to A � 0.

Therefore, we have proved that if f has a minimum, then (I − AA+)b = 0 and A � 0.
Conversely, if (I − AA+)b = 0 and A � 0, what we just did proves that f does have a
minimum.

When the above conditions hold, the minimum is achieved if y = −Σ−1
r c, z = 0 and

d = 0, that is, for x∗ given by

Ux∗ =

(
−Σ−1

r c
0

)
and Ub =

(
c
0

)
,
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from which we deduce that

x∗ = −U>
(

Σ−1
r c
0

)
= −U>

(
Σ−1
r c 0
0 0

)(
c
0

)
= −U>

(
Σ−1
r c 0
0 0

)
Ub = −A+b

and the minimum value of f is

f(x∗) = −1

2
b>A+b.

For any x ∈ Rn of the form

x = −A+b+ U>
(

0
z

)
,

for any z ∈ Rn−r, our previous calculations show that f(x) = −1
2
b>A+b.

The case in which we add either linear constraints of the form C>x = 0 or affine con-
straints of the form C>x = t (where t 6= 0) can be reduced to the unconstrained case using a
QR-decomposition of C or N . Let us show how to do this for linear constraints of the form
C>x = 0.

If we use a QR decomposition of C, by permuting the columns, we may assume that

C = Q>
(
R S
0 0

)
Π,

where R is an r × r invertible upper triangular matrix and S is an r × (m − r) matrix (C
has rank r). Then, if we let

x = Q>
(
y
z

)
,

where y ∈ Rr and z ∈ Rn−r, then C>x = 0 becomes

Π>
(
R 0
S 0

)
Qx = Π>

(
R> 0
S> 0

)(
y
z

)
= 0,

which implies y = 0, and every solution of C>x = 0 is of the form

x = Q>
(

0
z

)
.

Our original problem becomes

minimize
1

2
(y>, z>)QAQ>

(
y
z

)
+ (y>, z>)Qb

subject to y = 0, y ∈ Rr, z ∈ Rn−r.

Thus, the constraint C>x = 0 has been eliminated, and if we write

QAQ> =

(
G11 G12

G21 G22

)
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and

Qb =

(
b1

b2

)
, b1 ∈ Rr, b2 ∈ Rn−r,

our problem becomes

minimize
1

2
z>G22z + z>b2, z ∈ Rn−r,

the problem solved in Proposition 13.5.

Constraints of the form C>x = t (where t 6= 0) can be handled in a similar fashion. In
this case, we may assume that C is an n × m matrix with full rank (so that m ≤ n) and
t ∈ Rm. Then we use a QR-decomposition of the form

C = P

(
R
0

)
,

where P is an orthogonal matrix and R is an m×m invertible upper triangular matrix. If
we write

x = P

(
y
z

)
,

where y ∈ Rm and z ∈ Rn−m, the equation C>x = t becomes

(R>, 0)P>x = t,

that is,

(R>, 0)

(
y
z

)
= t,

which yields
R>y = t.

Since R is invertible, we get y = (R>)−1t, and then it is easy to see that our original problem
reduces to an unconstrained problem in terms of the matrix P>AP ; the details are left as
an exercise.

13.3 Maximizing a Quadratic Function on the Unit

Sphere

In this section we discuss various quadratic optimization problems mostly arising from com-
puter vision (image segmentation and contour grouping). These problems can be reduced to
the following basic optimization problem: Given an n× n real symmetric matrix A

maximize x>Ax

subject to x>x = 1, x ∈ Rn.
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In view of Proposition 12.6, the maximum value of x>Ax on the unit sphere is equal
to the largest eigenvalue λ1 of the matrix A, and it is achieved for any unit eigenvector u1

associated with λ1.

A variant of the above problem often encountered in computer vision consists in mini-
mizing x>Ax on the ellipsoid given by an equation of the form

x>Bx = 1,

where B is a symmetric positive definite matrix. Since B is positive definite, it can be
diagonalized as

B = QDQ>,

where Q is an orthogonal matrix and D is a diagonal matrix,

D = diag(d1, . . . , dn),

with di > 0, for i = 1, . . . , n. If we define the matrices B1/2 and B−1/2 by

B1/2 = Q diag
(√

d1, . . . ,
√
dn

)
Q>

and
B−1/2 = Q diag

(
1/
√
d1, . . . , 1/

√
dn

)
Q>,

it is clear that these matrices are symmetric, that B−1/2BB−1/2 = I, and that B1/2 and
B−1/2 are mutual inverses. Then, if we make the change of variable

x = B−1/2y,

the equation x>Bx = 1 becomes y>y = 1, and the optimization problem

maximize x>Ax

subject to x>Bx = 1, x ∈ Rn,

is equivalent to the problem

maximize y>B−1/2AB−1/2y

subject to y>y = 1, y ∈ Rn,

where y = B1/2x and where B−1/2AB−1/2 is symmetric.

The complex version of our basic optimization problem in which A is a Hermitian matrix
also arises in computer vision. Namely, given an n× n complex Hermitian matrix A,

maximize x∗Ax

subject to x∗x = 1, x ∈ Cn.
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Again by Proposition 12.6, the maximum value of x∗Ax on the unit sphere is equal to the
largest eigenvalue λ1 of the matrix A and it is achieved for any unit eigenvector u1 associated
with λ1.

It is worth pointing out that if A is a skew-Hermitian matrix, that is, if A∗ = −A, then
x∗Ax is pure imaginary or zero.

Indeed, since z = x∗Ax is a scalar, we have z∗ = z (the conjugate of z), so we have

x∗Ax = (x∗Ax)∗ = x∗A∗x = −x∗Ax,

so x∗Ax+ x∗Ax = 2Re(x∗Ax) = 0, which means that x∗Ax is pure imaginary or zero.

In particular, if A is a real matrix and if A is skew-symmetric, then

x>Ax = 0.

Thus, for any real matrix (symmetric or not),

x>Ax = x>H(A)x,

where H(A) = (A+ A>)/2, the symmetric part of A.

There are situations in which it is necessary to add linear constraints to the problem
of maximizing a quadratic function on the sphere. This problem was completely solved by
Golub [25] (1973). The problem is the following: Given an n × n real symmetric matrix A
and an n× p matrix C,

minimize x>Ax

subject to x>x = 1, C>x = 0, x ∈ Rn.

Golub shows that the linear constraint C>x = 0 can be eliminated as follows: If we use
a QR decomposition of C, by permuting the columns, we may assume that

C = Q>
(
R S
0 0

)
Π,

where R is an r×r invertible upper triangular matrix and S is an r×(p−r) matrix (assuming
C has rank r). Then if we let

x = Q>
(
y
z

)
,

where y ∈ Rr and z ∈ Rn−r, then C>x = 0 becomes

Π>
(
R> 0
S> 0

)
Qx = Π>

(
R> 0
S> 0

)(
y
z

)
= 0,
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which implies y = 0, and every solution of C>x = 0 is of the form

x = Q>
(

0
z

)
.

Our original problem becomes

minimize (y>, z>)QAQ>
(
y
z

)

subject to z>z = 1, z ∈ Rn−r,

y = 0, y ∈ Rr.

Thus, the constraint C>x = 0 has been eliminated, and if we write

QAQ> =

(
G11 G12

G>12 G22

)
,

our problem becomes

minimize z>G22z

subject to z>z = 1, z ∈ Rn−r,

a standard eigenvalue problem. Observe that if we let

J =

(
0 0
0 In−r

)
,

then

JQAQ>J =

(
0 0
0 G22

)
,

and if we set
P = Q>JQ,

then
PAP = Q>JQAQ>JQ.

Now, Q>JQAQ>JQ and JQAQ>J have the same eigenvalues, so PAP and JQAQ>J also
have the same eigenvalues. It follows that the solutions of our optimization problem are
among the eigenvalues of K = PAP , and at least r of those are 0. Using the fact that CC+

is the projection onto the range of C, where C+ is the pseudo-inverse of C, it can also be
shown that

P = I − CC+,

the projection onto the kernel of C>. In particular, when n ≥ p and C has full rank (the
columns of C are linearly independent), then we know that C+ = (C>C)−1C> and

P = I − C(C>C)−1C>.
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This fact is used by Cour and Shi [12] and implicitly by Yu and Shi [59].

The problem of adding affine constraints of the form N>x = t, where t 6= 0, also comes
up in practice. At first glance, this problem may not seem harder than the linear problem in
which t = 0, but it is. This problem was extensively studied in a paper by Gander, Golub,
and von Matt [24] (1989).

Gander, Golub, and von Matt consider the following problem: Given an (n+m)×(n+m)
real symmetric matrix A (with n > 0), an (n+m)×m matrix N with full rank, and a nonzero
vector t ∈ Rm with

∥∥(N>)†t
∥∥ < 1 (where (N>)† denotes the pseudo-inverse of N>),

minimize x>Ax

subject to x>x = 1, N>x = t, x ∈ Rn+m.

The condition
∥∥(N>)†t

∥∥ < 1 ensures that the problem has a solution and is not trivial.
The authors begin by proving that the affine constraint N>x = t can be eliminated. One
way to do so is to use a QR decomposition of N . If

N = P

(
R
0

)
,

where P is an orthogonal matrix and R is an m×m invertible upper triangular matrix, then
if we observe that

x>Ax = x>PP>APP>x,

N>x = (R>, 0)P>x = t,

x>x = x>PP>x = 1,

and if we write

P>AP =

(
B Γ>

Γ C

)

and

P>x =

(
y
z

)
,

then we get

x>Ax = y>By + 2z>Γy + z>Cz,

R>y = t,

y>y + z>z = 1.

Thus

y = (R>)−1t,
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and if we write
s2 = 1− y>y > 0

and
b = Γy,

we get the simplified problem

minimize z>Cz + 2z>b

subject to z>z = s2, z ∈ Rm.

Unfortunately, if b 6= 0, Proposition 12.6 is no longer applicable. It is still possible to find
the minimum of the function z>Cz + 2z>b using Lagrange multipliers, but such a solution
is too involved to be presented here. Interested readers will find a thorough discussion in
Gander, Golub, and von Matt [24].

13.4 Summary

The main concepts and results of this chapter are listed below:

• Quadratic optimization problems; quadratic functions .

• Symmetric positive definite and positive semidefinite matrices.

• The positive semidefinite cone ordering .

• Existence of a global minimum when A is symmetric positive definite.

• Constrained quadratic optimization problems.

• Lagrange multipliers ; Lagrangian.

• Primal and dual problems.

• Quadratic optimization problems: the case of a symmetric invertible matrix A.

• Quadratic optimization problems: the general case of a symmetric matrix A.

• Adding linear constraints of the form C>x = 0.

• Adding affine constraints of the form C>x = t, with t 6= 0.

• Maximizing a quadratic function over the unit sphere.

• Maximizing a quadratic function over an ellipsoid.

• Maximizing a Hermitian quadratic form.

• Adding linear constraints of the form C>x = 0.

• Adding affine constraints of the form N>x = t, with t 6= 0.
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