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Fundamentals of Linear Algebra and Optimization

Jean Gallier

Homework 7

November 30, 2020; Due December 14, 2020

Problem B1 (50 pts). Linear programming with box constraints is the following opti-
mization problem:

minimize c>x

subject to Ax = b

l ≤ x ≤ u,

where A is an m×n matrix, c, u, l, x ∈ Rn and b ∈ Rm, with l ≤ u (which means that li ≤ ui,
for i = 1, . . . , n).

(1) (20 points) Prove that the dual of the above program is the following program:

maximize − ν>b− λ>1 u+ λ>2 l

subject to A>ν + λ1 − λ2 + c = 0

λ1 ≥ 0, λ2 ≥ 0.

(2) (10 points) The primal problem in (1) can be reformulated by incorporating the con-
straints l ≤ x ≤ u into the objective function by defining

f0(x) =

{
c>x if l ≤ x ≤ u

+∞ otherwise.

The primal is reformulated as

minimize f0(x)

subject to Ax = b.

Prove that the new dual function is given by

G(ν) = inf
l≤x≤u

(c>x+ ν>(Ax− b)).
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(3) (20 points) Given any real number s ∈ R, let

s+ = max{s, 0}, s− = max{−s, 0}.

Prove that for any fixed reals s, λ, µ ∈ R with λ ≤ µ,

inf
λ≤y≤µ

sy = λs+ − µs−.

Hint . Consider the cases s ≥ 0 and s ≤ 0.

We extend the above operators to vectors z ∈ Rn componentwise by

z+ = (z+1 , . . . .z
+
n ), z− = (z−1 , . . . .z

−
n ).

For any w ∈ Rn, prove that

inf
l≤x≤u

x>w = l>w+ − u>w−.

Use the above to prove that

G(ν) = −ν>b+ l>(A>ν + c)+ − u>(A>ν + c)−

and deduce that the dual program is the unconstrained problem

maximize − ν>b+ l>(A>ν + c)+ − u>(A>ν + c)−

with respect to ν.

Problem B2 (10 pts). Verify the formula

(X>X +KIn)−1X> = X>(XX> +KIm)−1,

where X is a real m × n matrix and K > 0. You may assume without proof that both
X>X +KIn and XX>+KIm are invertible (because they are symmetric positive definite).

Problem B3 (40 pts). Recall that elastic net regression is the following optimization
problem:

Program (elastic net):

minimize
1

2
ξ>ξ +

1

2
Kw>w + τ1>n ε

subject to

y −Xw − b1m = ξ

w ≤ ε

− w ≤ ε,
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with X an m × n matrix, y, ξ ∈ Rm, w, ε ∈ Rn, b ∈ R, where K > 0 and τ ≥ 0 are two
constants controlling the influence of the `2-regularization and the `1-regularization.

The Lagrangian associated with this optimization problem is

L(ξ, w, ε, b, λ, α+, α−) =
1

2
ξ>ξ − ξ>λ+ λ>y − b1>mλ

+ ε>(τ1n − α+ − α−) + w>(α+ − α− −X>λ) +
1

2
Kw>w,

with λ ∈ Rm and α+, α− ∈ Rn
+.

(1) (5 points) Prove that the gradient ∇Lξ,w,ε,b of the above Lagrangian is given by
ξ − λ

Kw + (α+ − α− −X>λ)
τ1n − α+ − α−
−1>mλ

 .

(2) (10 points) By setting the gradient ∇Lξ,w,ε,b to zero we obtain the equations

ξ = λ

Kw = −(α+ − α− −X>λ) (∗w)

α+ + α− − τ1n = 0

1>mλ = 0.

We find that (∗w) determines w.

It is more convenient to write λ = λ+−λ−, with λ+, λ− ∈ Rm
+ (recall that α+, α− ∈ Rn

+),
and to rescale our variables by defining β+, β−, µ+, µ− such that

α+ = Kβ+, α− = Kβ−, λ+ = Kµ+, λ− = Kµ−.

We also let µ = µ+ − µ− so that λ = Kµ.

Prove that

w = −(β+ − β− −X>µ)

=
(
−In In X> −X>

)
β+
β−
µ+

µ−

 .

Use the above result to prove that

1

2
w>w =

1

2

(
β>+ β>− µ>+ µ>−

)
Q


β+
β−
µ+

µ−

 ,
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with Q the symmetric positive semidefinite matrix

Q =


In −In −X> X>

−In In X> −X>
−X X XX> −XX>
X −X −XX> XX>

 .

(3) (10 points) Prove that the dual function is given by

G(µ, β+, β−) =
1

2
ξ>ξ − ξ>λ+ λ>y + w>(α+ − α− −X>λ) +

1

2
Kw>w

= −1

2
K2µ>µ− 1

2
Kw>w +Ky>µ.

Hint . Use (∗w).

(4) (15 points) Prove that

1

2
µ>µ =

1

2

(
µ>+ µ>−

)( Im −Im
−Im Im

)(
µ+

µ−

)
.

Using (2) to rewrite 1
2
w>w, (4) to rewrite 1

2
µ>µ, and (3), prove that

G(β+, β−, µ+, µ−) = −1

2
K
(
β>+ β>− µ>+ µ>−

)
P


β+
β−
µ+

µ−

−Kq>

β+
β−
µ+

µ−


with

P = Q+K


0n,n 0n,n 0n,m 0n,m
0n,n 0n,n 0n,m 0n,m
0m,n 0m,n Im −Im
0m,n 0m,n −Im Im



=


In −In −X> X>

−In In X> −X>
−X X XX> +KIm −XX> −KIm
X −X −XX> −KIm XX> +KIm

 ,

and

q =


0n
0n
−y
y

 .

Problem B4 (Extra credit 50 pts). Recall the n2 matrices Ei,j having the entry 1 in
position (i, j) and 0 everywhere else form a basis of Mn(R).
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(1) Prove that
d detA(AEi,j) = δi,j det(A)

for all A ∈ Mn(R).

Hint . Use HW6, Problem B4(4), which states

d detA(H) =
n∑
k=1

det(A1, . . . , Ak−1, Hk, Ak+1, . . . , An),

for all A,H ∈ Mn(R), where A1, . . . , An are the columns of A and H1, . . . , Hn are the columns
of H.

(2) Prove that for any two matrices A,B ∈ Mn(R),

d detA(AB) = det(A)tr(B).

Assuming that A is invertible, prove (again) that

d detA(H) = det(A)tr(A−1H) = tr(ÃH)

for all H ∈ Mn(R).

(3) It can be shown that for any SPD matrix A, the second derivative of f = log det is
given by

D2fA(X1, X2) = −tr(A−1X1A
−1X2),

for all X1, X2 ∈ Mn(R). It is immediately verified that D2fA is bilinear symmetric on
Mn(R)×Mn(R).

Prove that if A is SPD and X is symmetric, then (A−1X)2 has nonnegative eigenvalues.
Conclude that if A is SPD and X is symmetric, then

D2fA(X,X) < 0

if X 6= 0.

Remark: This means that D2fA is strictly concave on symmetric matrices (with A SPD).

TOTAL: 100 points + 50 extra cedit.
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