Fall, 2020 CIS 515

Fundamentals of Linear Algebra and Optimization Jean Gallier Homework 7

November 30, 2020; Due December 14, 2020

Problem B1 (50 pts). Linear programming with box constraints is the following optimization problem:

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& l \leq x \leq u
\end{array}
$$

where A is an $m \times n$ matrix, $c, u, l, x \in \mathbb{R}^{n}$ and $b \in \mathbb{R}^{m}$, with $l \leq u$ (which means that $l_{i} \leq u_{i}$, for $i=1, \ldots, n)$.
(1) (20 points) Prove that the dual of the above program is the following program:

$$
\begin{array}{ll}
\operatorname{maximize} & -\nu^{\top} b-\lambda_{1}^{\top} u+\lambda_{2}^{\top} l \\
\text { subject to } & A^{\top} \nu+\lambda_{1}-\lambda_{2}+c=0 \\
& \lambda_{1} \geq 0, \quad \lambda_{2} \geq 0
\end{array}
$$

(2) (10 points) The primal problem in (1) can be reformulated by incorporating the constraints $l \leq x \leq u$ into the objective function by defining

$$
f_{0}(x)= \begin{cases}c^{\top} x & \text { if } l \leq x \leq u \\ +\infty & \text { otherwise }\end{cases}
$$

The primal is reformulated as

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & A x=b
\end{array}
$$

Prove that the new dual function is given by

$$
G(\nu)=\inf _{l \leq x \leq u}\left(c^{\top} x+\nu^{\top}(A x-b)\right) .
$$

(3) (20 points) Given any real number $s \in \mathbb{R}$, let

$$
s^{+}=\max \{s, 0\}, \quad s^{-}=\max \{-s, 0\} .
$$

Prove that for any fixed reals $s, \lambda, \mu \in \mathbb{R}$ with $\lambda \leq \mu$,

$$
\inf _{\lambda \leq y \leq \mu} s y=\lambda s^{+}-\mu s^{-}
$$

Hint. Consider the cases $s \geq 0$ and $s \leq 0$.
We extend the above operators to vectors $z \in \mathbb{R}^{n}$ componentwise by

$$
z^{+}=\left(z_{1}^{+}, \ldots z_{n}^{+}\right), \quad z^{-}=\left(z_{1}^{-}, \ldots z_{n}^{-}\right)
$$

For any $w \in \mathbb{R}^{n}$, prove that

$$
\inf _{l \leq x \leq u} x^{\top} w=l^{\top} w^{+}-u^{\top} w^{-}
$$

Use the above to prove that

$$
G(\nu)=-\nu^{\top} b+l^{\top}\left(A^{\top} \nu+c\right)^{+}-u^{\top}\left(A^{\top} \nu+c\right)^{-}
$$

and deduce that the dual program is the unconstrained problem

$$
\text { maximize } \quad-\nu^{\top} b+l^{\top}\left(A^{\top} \nu+c\right)^{+}-u^{\top}\left(A^{\top} \nu+c\right)^{-}
$$

with respect to ν.
Problem B2 (10 pts). Verify the formula

$$
\left(X^{\top} X+K I_{n}\right)^{-1} X^{\top}=X^{\top}\left(X X^{\top}+K I_{m}\right)^{-1}
$$

where X is a real $m \times n$ matrix and $K>0$. You may assume without proof that both $X^{\top} X+K I_{n}$ and $X X^{\top}+K I_{m}$ are invertible (because they are symmetric positive definite).

Problem B3 (40 pts). Recall that elastic net regression is the following optimization problem:

Program (elastic net):

minimize $\frac{1}{2} \xi^{\top} \xi+\frac{1}{2} K w^{\top} w+\tau \mathbf{1}_{n}^{\top} \epsilon$
subject to

$$
\begin{gathered}
y-X w-b \mathbf{1}_{m}=\xi \\
w \leq \epsilon \\
-w \leq \epsilon
\end{gathered}
$$

with X an $m \times n$ matrix, $y, \xi \in \mathbb{R}^{m}$, $w, \epsilon \in \mathbb{R}^{n}, b \in \mathbb{R}$, where $K>0$ and $\tau \geq 0$ are two constants controlling the influence of the ℓ^{2}-regularization and the ℓ^{1}-regularization.

The Lagrangian associated with this optimization problem is

$$
\begin{aligned}
L\left(\xi, w, \epsilon, b, \lambda, \alpha_{+}, \alpha_{-}\right)= & \frac{1}{2} \xi^{\top} \xi-\xi^{\top} \lambda+\lambda^{\top} y-b \mathbf{1}_{m}^{\top} \lambda \\
& +\epsilon^{\top}\left(\tau \mathbf{1}_{n}-\alpha_{+}-\alpha_{-}\right)+w^{\top}\left(\alpha_{+}-\alpha_{-}-X^{\top} \lambda\right)+\frac{1}{2} K w^{\top} w
\end{aligned}
$$

with $\lambda \in \mathbb{R}^{m}$ and $\alpha_{+}, \alpha_{-} \in \mathbb{R}_{+}^{n}$.
(1) (5 points) Prove that the gradient $\nabla L_{\xi, w, \epsilon, b}$ of the above Lagrangian is given by

$$
\left(\begin{array}{c}
\xi-\lambda \\
K w+\left(\alpha_{+}-\alpha_{-}-X^{\top} \lambda\right) \\
\tau \mathbf{1}_{n}-\alpha_{+}-\alpha_{-} \\
-\mathbf{1}_{m}^{\top} \lambda
\end{array}\right) .
$$

(2) (10 points) By setting the gradient $\nabla L_{\xi, w, \epsilon, b}$ to zero we obtain the equations

$$
\begin{align*}
\xi & =\lambda \\
K w & =-\left(\alpha_{+}-\alpha_{-}-X^{\top} \lambda\right) \tag{w}\\
\alpha_{+}+\alpha_{-}-\tau \mathbf{1}_{n} & =0 \\
\mathbf{1}_{m}^{\top} \lambda & =0
\end{align*}
$$

We find that $\left(*_{w}\right)$ determines w.
It is more convenient to write $\lambda=\lambda_{+}-\lambda_{-}$, with $\lambda_{+}, \lambda_{-} \in \mathbb{R}_{+}^{m}$ (recall that $\alpha_{+}, \alpha_{-} \in \mathbb{R}_{+}^{n}$), and to rescale our variables by defining $\beta_{+}, \beta_{-}, \mu_{+}, \mu_{-}$such that

$$
\alpha_{+}=K \beta_{+}, \quad \alpha_{-}=K \beta_{-}, \quad \lambda_{+}=K \mu_{+}, \quad \lambda_{-}=K \mu_{-} .
$$

We also let $\mu=\mu_{+}-\mu_{-}$so that $\lambda=K \mu$.
Prove that

$$
\begin{aligned}
w & =-\left(\begin{array}{llll}
\beta_{+}-\beta_{-}-X^{\top} \mu
\end{array}\right) \\
& =\left(\begin{array}{llll}
-I_{n} & I_{n} & X^{\top} & -X^{\top}
\end{array}\right)\left(\begin{array}{c}
\beta_{+} \\
\beta_{-} \\
\mu_{+} \\
\mu_{-}
\end{array}\right) .
\end{aligned}
$$

Use the above result to prove that

$$
\frac{1}{2} w^{\top} w=\frac{1}{2}\left(\beta_{+}^{\top} \quad \beta_{-}^{\top} \quad \mu_{+}^{\top} \quad \mu_{-}^{\top}\right) Q\left(\begin{array}{c}
\beta_{+} \\
\beta_{-} \\
\mu_{+} \\
\mu_{-}
\end{array}\right)
$$

with Q the symmetric positive semidefinite matrix

$$
Q=\left(\begin{array}{cccc}
I_{n} & -I_{n} & -X^{\top} & X^{\top} \\
-I_{n} & I_{n} & X^{\top} & -X^{\top} \\
-X & X & X X^{\top} & -X X^{\top} \\
X & -X & -X X^{\top} & X X^{\top}
\end{array}\right)
$$

(3) (10 points) Prove that the dual function is given by

$$
\begin{aligned}
G\left(\mu, \beta_{+}, \beta_{-}\right) & =\frac{1}{2} \xi^{\top} \xi-\xi^{\top} \lambda+\lambda^{\top} y+w^{\top}\left(\alpha_{+}-\alpha_{-}-X^{\top} \lambda\right)+\frac{1}{2} K w^{\top} w \\
& =-\frac{1}{2} K^{2} \mu^{\top} \mu-\frac{1}{2} K w^{\top} w+K y^{\top} \mu
\end{aligned}
$$

Hint. Use $\left(*_{w}\right)$.
(4) (15 points) Prove that

$$
\frac{1}{2} \mu^{\top} \mu=\frac{1}{2}\left(\begin{array}{ll}
\mu_{+}^{\top} & \mu_{-}^{\top}
\end{array}\right)\left(\begin{array}{cc}
I_{m} & -I_{m} \\
-I_{m} & I_{m}
\end{array}\right)\binom{\mu_{+}}{\mu_{-}} .
$$

Using (2) to rewrite $\frac{1}{2} w^{\top} w$, (4) to rewrite $\frac{1}{2} \mu^{\top} \mu$, and (3), prove that

$$
G\left(\beta_{+}, \beta_{-}, \mu_{+}, \mu_{-}\right)=-\frac{1}{2} K\left(\begin{array}{llll}
\beta_{+}^{\top} & \beta_{-}^{\top} & \mu_{+}^{\top} & \mu_{-}^{\top}
\end{array}\right) P\left(\begin{array}{c}
\beta_{+} \\
\beta_{-} \\
\mu_{+} \\
\mu_{-}
\end{array}\right)-K q^{\top}\left(\begin{array}{c}
\beta_{+} \\
\beta_{-} \\
\mu_{+} \\
\mu_{-}
\end{array}\right)
$$

with

$$
\begin{aligned}
P & =Q+K\left(\begin{array}{cccc}
0_{n, n} & 0_{n, n} & 0_{n, m} & 0_{n, m} \\
0_{n, n} & 0_{n, n} & 0_{n, m} & 0_{n, m} \\
0_{m, n} & 0_{m, n} & I_{m} & -I_{m} \\
0_{m, n} & 0_{m, n} & -I_{m} & I_{m}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
I_{n} & -I_{n} & -X^{\top} & X^{\top} \\
-I_{n} & I_{n} & X^{\top} & -X^{\top} \\
-X & X & X X^{\top}+K I_{m} & -X X^{\top}-K I_{m} \\
X & -X & -X X^{\top}-K I_{m} & X X^{\top}+K I_{m}
\end{array}\right)
\end{aligned}
$$

and

$$
q=\left(\begin{array}{c}
0_{n} \\
0_{n} \\
-y \\
y
\end{array}\right)
$$

Problem B4 (Extra credit 50 pts). Recall the n^{2} matrices $E_{i, j}$ having the entry 1 in position (i, j) and 0 everywhere else form a basis of $\mathrm{M}_{n}(\mathbb{R})$.
(1) Prove that

$$
d \operatorname{det}_{A}\left(A E_{i, j}\right)=\delta_{i, j} \operatorname{det}(A)
$$

for all $A \in \mathrm{M}_{n}(\mathbb{R})$.
Hint. Use HW6, Problem B4(4), which states

$$
d \operatorname{det}_{A}(H)=\sum_{k=1}^{n} \operatorname{det}\left(A^{1}, \ldots, A^{k-1}, H^{k}, A^{k+1}, \ldots, A^{n}\right),
$$

for all $A, H \in \mathrm{M}_{n}(\mathbb{R})$, where A^{1}, \ldots, A^{n} are the columns of A and H^{1}, \ldots, H^{n} are the columns of H.
(2) Prove that for any two matrices $A, B \in \mathrm{M}_{n}(\mathbb{R})$,

$$
d \operatorname{det}_{A}(A B)=\operatorname{det}(A) \operatorname{tr}(B)
$$

Assuming that A is invertible, prove (again) that

$$
d \operatorname{det}_{A}(H)=\operatorname{det}(A) \operatorname{tr}\left(A^{-1} H\right)=\operatorname{tr}(\widetilde{A} H)
$$

for all $H \in \mathrm{M}_{n}(\mathbb{R})$.
(3) It can be shown that for any SPD matrix A, the second derivative of $f=\log \operatorname{det}$ is given by

$$
\mathrm{D}^{2} f_{A}\left(X_{1}, X_{2}\right)=-\operatorname{tr}\left(A^{-1} X_{1} A^{-1} X_{2}\right)
$$

for all $X_{1}, X_{2} \in \mathrm{M}_{n}(\mathbb{R})$. It is immediately verified that $\mathrm{D}^{2} f_{A}$ is bilinear symmetric on $\mathrm{M}_{n}(\mathbb{R}) \times \mathrm{M}_{n}(\mathbb{R})$.

Prove that if A is SPD and X is symmetric, then $\left(A^{-1} X\right)^{2}$ has nonnegative eigenvalues. Conclude that if A is SPD and X is symmetric, then

$$
\mathrm{D}^{2} f_{A}(X, X)<0
$$

if $X \neq 0$.

Remark: This means that $\mathrm{D}^{2} f_{A}$ is strictly concave on symmetric matrices (with $A \mathrm{SPD}$).
TOTAL: 100 points +50 extra cedit.

