
Fall, 2020 CIS 515

Fundamentals of Linear Algebra and Optimization

Jean Gallier

Homework 6

November 16, 2020; Due November 30, 2020

Problem B1 (30 pts). Let ‖ ‖ be any operator norm. Given an invertible n×n real matrix
A, if c = 1/(2 ‖A−1‖), then for every n× n matrix H, prove that if ‖H‖ ≤ c, then A+H is
invertible.

Furthermore, prove that if ‖H‖ ≤ c, then ‖(A+H)−1‖ ≤ 1/c.

Problem B2 (40 pts). Consider the 2× 2 real matrices with zero trace,

A =

(
a b
c −a

)
.

(1) If a2 + bc < 0, let ω > 0 be the real such that ω2 = −(a2 + bc). Prove that

eA = cosωI +
sinω

ω
A.

(2) Find two real 2× 2 matrices A and B such that AB 6= BA, yet eA+B = eAeB.

Problem B3 (100 pts). Recall that a matrix B ∈ Mn(R) is skew-symmetric if

B> = −B.

The set so(n) of skew-symmetric matrices is a vector space of dimension n(n − 1)/2, and
thus is isomorphic to Rn(n−1)/2.

(1) Given a rotation matrix

R =

(
cos θ − sin θ
sin θ cos θ

)
,

where 0 < θ < π, prove that there is a skew symmetric matrix B such that

R = (I −B)(I +B)−1.
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(2)

Let C : so(n)→ Mn(R) be the function given by

C(B) = (I −B)(I +B)−1.

Prove that if B is skew-symmetric, then I − B and I + B are invertible, and so C is well-
defined.

Hint . The eigenvalues of a skew-symmetric matrix are either 0 or pure imaginary (that is,
of the form iµ for µ ∈ R).

(3) Prove that
(I +B)(I −B) = (I −B)(I +B),

and that
(I +B)(I −B)−1 = (I −B)−1(I +B).

Prove that
(C(B))>C(B) = I

and that
detC(B) = +1,

so that C(B) is a rotation matrix in SO(n). Furthermore, show that C(B) does not admit
−1 as an eigenvalue.

(4) Let SO(n) be the group of n× n rotation matrices. Prove that the map

C : so(n)→ SO(n)

is bijective onto the subset of rotation matrices that do not admit −1 as an eigenvalue. Show
that the inverse of this map is given by

B = (I +R)−1(I −R) = (I −R)(I +R)−1,

where R ∈ SO(n) does not admit −1 as an eigenvalue.

(5) Prove that

dCB(A) = −[I + (I −B)(I +B)−1]A(I +B)−1 = −2(I +B)−1A(I +B)−1,

for any B ∈ so(n) and any B ∈ Mn(R).

Hint . Use the chain rule, the product rule, and the formula for the derivative of the map
A 7→ A−1.

Prove that dCB is injective for every skew-symmetric matrix B.

Problem B4 (150 pts). (1) Consider the determinant map, f : Mn(R)→ R, given by

f(A) = det(A), A ∈Mn(R).
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For any matrix B ∈ Mn(R) (not necessarily invertible), let γ : R → GL(n,R) be the
function given by

γ(t) = etB, t ∈ R.

Obviously, γ(0) = I. Geometrically, γ defines a curve in the group GL(n,R) passing through
I at time t = 0. The function γ is differentiable, and by using the power series defining etB

it is easily shown that
γ′(t) = BetB,

so γ′(0) = B. In other words, the curve γ passes through I with velocity B. You don’t
have to prove this fact (Recall that when the domain space has dimension 1, we write
γ′(t) = dγ1(t), the velocity vector at t.)

Let g : R→ R be the function given by

g(t) = det(γ(t)) = det(etB), t ∈ R.

(1) Use the chain rule to prove that

d detI(B) = (det ◦ γ)′(0),

where d detI is the derivative of the determinant function det : Mn(R)→ R at I (the identity
matrix).

(2) Prove that
d detI(B) = tr(B),

the trace of B, for any matrix B ∈ Mn(R).

Hint . Use the fact that det(eM) = etr(M) for any matrix M ∈ Mn(R).

(3) Prove that
d detA(B) = det(A)tr(A−1B),

for any A ∈ GL(n,R) and any matrix B ∈ Mn(R).

Hint . Find a curve γ : R→ GL(n,R) such that γ(0) = A and γ′(0) = B and use the chain
rule.

(4) Proposition 3.5 (Vol II) shows that for any continuous bilinear map f : E1×E2 → F ,
for every (a, b) ∈ E1 × E2, the derivative Df(a,b) exists and is given by

Df(a,b)(u, v) = f(u, b) + f(a, v),

for all (u, v) ∈ E1 × E2.

It can be shown (and you need not prove it, unless you decide to solve the extra credit
problem) that for any continuous multilinear map f : E1×· · ·×En → F , for any (a1, . . . , an) ∈
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E1 × · · · × En, the derivative Df(a1,...,an) exists and is given by

Df(a1,...,an)(u1, . . . , un) = f(u1, a2, a3, . . . , an) + f(a1, u2, a3, . . . , an) + · · ·
+ f(a1, a2, a3, . . . , an−1, un)

=
n∑

k=1

f(a1, . . . , ak−1, uk, ak+1, . . . , an),

for all (u1, . . . , un) ∈ E1 × · · · × En.

By definition, for every a = (a1, . . . , an) ∈ E1×· · ·×En, the map Dfa is a continuous linear
map from E1×· · ·×En to F , namely, Dfa ∈ L(E1×· · ·×En, F ). The map Df : E1×· · ·×En →
L(E1 × · · · × En, F ) given by a 7→ Dfa is not multilinear, but it can be shown that it is
continuous (you need not prove it, unless you decide to solve the extra credit problem).

Using the above facts, prove (quickly, this is easy) that for any matrix A ∈ Mn(R) and
any matrix B ∈ Mn(R), the derivative d detA exists and is given by

d detA(B) = det(B1, A2, A3, . . . , An) + det(A1, B2, A3, . . . , An) + · · ·
+ det(A1, A2, A3, . . . , An−1, Bn)

=
n∑

k=1

det(A1, . . . , Ak−1, Bk, Ak+1, . . . , An),

where A1, . . . , An are the columns of A and B1, . . . , Bn are the columns of B. Furthermore,
the map d det : Mn(R)→ L(Mn(R),R) given by A 7→ d detA is continuous.

Therefore, d detA exists even if A is not invertible, but we would like to find a more
“friendly” and more explicit expression for it. There such an explicit formula involving the
adjugate matrix Ã of A from Section 6.4, Definition 6.9.

(5) (Extra Credit 40 pts) Prove that for any continuous multilinear map f : E1×· · ·×
En → F , for any a = (a1, . . . , an) ∈ E1 × · · · × En, the derivative Df(a1,...,an) exists and is
given by

Df(a1,...,an)(u1, . . . , un) = f(u1, a2, a3, . . . , an) + f(a1, u2, a3, . . . , an) + · · ·
+ f(a1, a2, a3, . . . , an−1, un)

=
n∑

k=1

f(a1, . . . , ak−1, uk, ak+1, . . . , an),

for all u = (u1, . . . , un) ∈ E1 × · · · × En.

Hint . Generalize the proof of Proposition 3.5 (Vol II).

Prove that Df (a map from E1 × · · · × En to L(E1 × · · · × En, F )) is continuous.
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Hint . To prove that Df is continuous, first observe that Df is the sum of the n functions
(Df)1, . . . , (Df)n, with (Df)k from E1 × · · · × En to L(E1 × · · · × En, F ) given by

(Df)k(a1,...,an)(u1, . . . , un) = f(a1, . . . , ak−1, uk, ak+1, . . . , an).

The function (Df)k is independent of the variable uk, so it is not multilinear, but its restric-
tion to E1 × · · · ×Ek−1 ×Ek+1 × · · · ×En is (n− 1)-multilinear, so if we can show that this
restriction is continuous, then (Df)k itself will be continuous. To simplify notation, write
Ek = E1 × · · · × Ek−1 × Ek+1 × · · · × En. We also use the notation (Df)k to denote the
restriction of (Df)k to Ek.

Show that the operator norm
∥∥(Df)k

∥∥ of the restriction of (Df)k to Ek satisfies the
inequality ∥∥(Df)k

∥∥ ≤ ‖f‖ ,
where ‖f‖ is the norm of the multilinear map f (for norms of linear and multilinear maps,
see Section 2.6, Vol. II).

(6) Prove that for any matrix A ∈ Mn(R), not necessarily invertible, there is a convergent
sequence (Ak)k≥1 of invertible matrices Ak ∈ GL(n,R) whose limit is A. To prove this, it
is convenient to use the Frobenius norm or the operator 2-norm (the spectral norm). You
need to construct a sequence of invertible matrices Ak such that

lim
k 7→∞
‖A− Ak‖ = 0.

Hint . Use a convenient factorization of A.

(7) Recall the definition of the adjugate matrix Ã of an n×n matrix A and the fact that
if A is invertible, then by Proposition 6.7 (see Vol I),

A−1 = (det(A))−1Ã.

Using the above, (3) is rewritten as

d detA(B) = tr(ÃB),

for any A ∈ GL(n,R) and any matrix B ∈ Mn(R). Use (6) to prove that

d detA(B) = tr(ÃB),

for any matrix A ∈ Mn(R) (not necessarily invertible) and any matrix B ∈ Mn(R).

(8) Let GL+(n,R) be the subgroup of GL(n,R) consisting of all matrices A such that
det(A) > 0. It can be shown that this subgroup is open in Mn(R). Consider the function
` : GL+(n,R)→ R given by

`(A) = log det(A).
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Prove that
d`A(B) = tr(A−1B)

for all A ∈ GL+(n,R) and all B ∈ Mn(R).

Remark: The function log det is a barrier function used in convex optimization.

(9) Let J be the (n+ 1)× (n+ 1) diagonal matrix

J =

(
In 0
0 −1

)
.

We denote by SO(n, 1) the group of real (n+ 1)× (n+ 1) matrices

SO(n, 1) = {A ∈ GL(n+ 1,R) | A>JA = J and det(A) = 1}.

Check that SO(n, 1) is indeed a group with the inverse of A given by A−1 = JA>J (this
is the special Lorentz group).

(10) Consider the function h : GL+(n+ 1)→ S(n+ 1), given by

h(A) = A>JA− J,

where S(n+ 1) denotes the space of (n+ 1)× (n+ 1) symmetric matrices. Prove that

dhA(H) = A>JH +H>JA

for any matrix H ∈ Mn+1(R).

Prove that dhA is surjective for all A ∈ SO(n, 1).

Remark: Parts (9) and (10) can be used to prove that SO(n, 1) is a smooth manifold of

dimension n(n+1)
2

.

Problem B5 (20). Let A be an n×n real symmetric matrix, B an n×n symmetric positive
definite matrix, and let b ∈ Rn.

Prove that a necessary condition for the function J given by

J(v) =
1

2
v>Av − b>v

to have an extremum in u ∈ U , with U defined by

U = {v ∈ Rn | v>Bv = 1},

is that there is some λ ∈ R such that

Au− b = λBu.
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Hint . Express the definition of U as

U = {v ∈ Rn | ϕ(v) = 0},

with

ϕ(v) =
1

2
− 1

2
v>Bv.

Extra credit (20 points). Prove that there is a symmetric positive definite matrix S such
that B = S2. Prove that if b = 0, then λ is an eigenvalue of the symmetric matrix S−1AS−1.

Remark: If b 6= 0, solving for λ is a lot harder.

TOTAL: 340 points + (60 extra credit)
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